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Abstract. In this paper, we describe a programme of school engagement
aimed at instilling a discipline of computational thinking within pupils
before they embark on a university course. The workshops we deliver are
designed mainly to increase the pipeline of school leavers going on to
study computer science or software engineering, specifically by changing
perceptions on what this means amongst the vast majority – particularly
girls – who think it is just a geeky topic for boys.

Over the past number of years, student enrollment has been increas-
ing dramatically in our university’s undergraduate computer science and
software engineering degree programmes. Also, the performance of the
students on first-year formal methods modules – which has historically
been poor – has risen substantially. Whilst there are many influences
contributing towards these trends, we present evidence that our efforts
with school engagement has to a non-trivial extent contributed towards
these: both through the way the undergraduate programme has been
adapted to incorporate the Technocamps approach, and through provid-
ing a pipeline of students who understand the principles of computational
thinking.

Keywords: Formal methods · School engagement · Computer science
education · Pedagogy

1 Introduction

A typical 1st-year undergraduate student likes writing computer programs as
this provides instant gratification: the computer does what you tell it to do.
This is often why they choose to do computer science at university. As they
proceed through their undergraduate education, they learn how to be more and
more creative and to get the computer to do more and more exciting things.

For most of these students, however, stopping to think about whether the
things that they make the computer do are in fact the right things to do – both
technically as well as ethically – is often unattractive. Unwelcome digressions
into mathematics are required to learn how to make your programs do what
you want them to do – and to even formulate the specifications of what they
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should do. Unwelcome digressions into philosophy are required to understand
the ethical implications of the programs that they write.

It is generally accepted that the typical modern computer science student is
less mathematically minded than a generation ago, and the reasons for this are
now understood. Moller and Crick [12] give a detailed account of the history of
computing education in UK schools: from a strong position in the 1980s with
the introduction of the BBC Micro into every school along with a curriculum
for teaching the fundamentals of programming including hardware, software,
Boolean logic and number representation; through the 1990s and beyond where
the emergence of pre-installed office productivity software led to the computing
curricula being permeated – and overwritten – by basic IT skills; “death-by-
PowerPoint” became a common epithet for the subject. Beyond the arguments
and references provided in [12], we can note a trend towards omitting mathe-
matics as a prerequisite subject for studying computer science: of the 164 under-
graduate computer science programmes offered by 105 universities in the UK,
over 60% of these do not require mathematics as a school prerequisite [7].

There is a recognised digital skills shortage providing a high demand for
computer science graduates [8], and an eagerness on the part of universities
to fill places. However, with ever more students declaring on their applications
that they are choosing to study computer science due to an affection for digital
devices rather than an affection for the subject – and thus ever less prepared
for the intellectual, logical and mathematical problem-solving challenges this
entails – it can be a challenge in making some of the mathematical content
(the formal methods) of the curriculum palatable. This is especially true in the
current climate where student satisfaction is a key indicator which universities
are required by law in the UK to publish in their recruitment and marketing.

Our thesis is simple: if we instil within pupils in schools the discipline of
computational thinking and problem solving before and alongside their learning
of how to write programs, we can deter them from forming a hacker’s mentality of
“program first, think later”, and thus prevent habits forming which invite failures
in software quality due, for example, to unintended consequences. Finding a
means of doing this, however, is not straightforward; engaging the pupils in
thought experiments before they get onto the computer requires an approach
which is inspiring, creative and fun.

In this paper, we report on how we have addressed this issue in schools,
and the impact that this has had on our university programme – both in the
nature of the students entering the programme as well as on how we teach the
syllabus. The structure of the paper is as follows. In Sect. 2 we reflect further on
the background to the issues we address. In Sect. 3 we describe our programme
of school and pupil engagement, in particular reflecting on our computational
thinking and problem solving workshops. In Sect. 4 we describe how first year
formal methods has changed in our university since we’ve started our school
engagement activity. Finally, in Sect. 5 we provide some concluding remarks,
and identify related activities.
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2 Background

The nature of computer science education is changing, reflecting the increasing
ubiquity and importance of its subject matter. In the last decades, computational
methods and tools have revolutionised the sciences, engineering and technology.
Computational concepts and techniques are starting to influence the way we
think, reason and tackle problems; and computing systems have become an inte-
gral part of our professional, economic and social lives. The more we depend on
these systems – particularly for safety-critical or economically-critical applica-
tions – the more we must ensure that they are safe, reliable and well designed,
and the less forgiving we can be of failures, delays or inconveniences caused by
the notorious “computer glitch.”

Unlike for traditional engineering disciplines, the mathematical foundations
underlying computer science are often not afforded the attention they deserve.
The civil engineering student learns exactly how to define and analyse a math-
ematical model of the components of a bridge design so that it can be relied
on not to fall down, and the aeronautical engineer learns exactly how to define
and analyse a mathematical model of an aeroplane wing for the same purpose.
However, software engineers are typically not as robustly drilled in the use of
mathematical modelling tools. In the words of the eminent computer scientist
Alan Kay [9], “most undergraduate degrees in computer science these days are
basically Java vocational training.” But computing systems can be at least as
complex as bridges or aeroplanes, and a canon of mathematical methods for mod-
elling computing systems is therefore very much needed. “Software’s Chronic
Crisis” was the title of a popular and widely-cited Scientific American article
from 1994 [6] – with the dramatic term “software crisis” coined a quarter of
a century earlier by Fritz Bauer [14] – and, unfortunately, its message remains
valid a quarter of a century later.

University computer science departments face a sociological challenge posed
by the fact that computers have become everyday, deceptively easy-to-use
objects. Today’s students – born directly into the heart of the computer era –
have grown up with the Internet, a billion dollar computer games industry, and
mobile phones with more computing power than the space shuttle. They often
choose to study computer science on the basis of having a passion for using com-
puting devices throughout their everyday lives, for everything from socialising
with their friends to enjoying the latest films and music; and they often have
less regard than they might to the considerations of what a university computer
science programme entails, that it is far more than just using computers. In our
experience, many of these students are easily turned off the subject when first
faced with formal methods through a traditional course in discrete mathematics.

This has motivated us as a university department to reflect on our presen-
tation of first-year formal methods, as well as explore means by which we can
inform and educate pupils in schools as to the true nature of computer science
before they become university students.
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3 The Technocamps School Engagement Programme

Technocamps1 is a pan-Wales schools outreach programme based at Swansea
University but with hubs in the computer science department of every univer-
sity across Wales. It was founded in 2003 to address the issues of computer
science education in the context of the specific challenges posed in Wales. The
portfolio of activities carried out by Technocamps is described and discussed
in detail in [4], framed by the key educational challenges that exist in Wales,
along with an evaluation of Technocamps interventions. In this paper, we will
consider specifically the ways in which Technocamps workshops introduce and
reinforce computational thinking and problem solving; how this has impacted
on the uptake of computing; and how it has influenced the way in which the
subject is delivered in our undergraduate programme.

Within classrooms throughout Wales, teachers are struggling to deliver the
current computer science curriculum. This is unsurprising given that less than
40% of the teachers leading these classes have any training in ICT let along
computer science [5]. The result is that pupils typically experience a lacklustre
delivery focused on basic coding to solve the problem specified on the scheme
of work in a very specific way according to the teacher’s limited understanding,
rather than exploring generic computational problem solving strategies to break
down the problem and develop a solution.

As part of the varied offerings of the Technocamps programme, we have devel-
oped and delivered a series of computational problem solving workshops which
explore the fundamentals of computational thinking – abstraction, algorithms,
pattern recognition and decomposition – providing an accessible (if somewhat
covert) introduction to formal methods. Suitable workshops are provided to the
whole range of school classes from early primary through to late secondary.
Our workshops for the youngest participants, which we deliver as part of our
Playground Computing programme for primary schools, are mainly “unplugged”
workshops – i.e., not involving a computer – typically carried out in the school
gymnasium. Figure 1 depicts a scene from a Playground Computing workshop
where the children are following instructions, whilst blindfolded, to solve tasks.
By being blindfolded, they readily understand the need for absolute precision
both in specifying solutions as well as in the instructions for carrying out these
solutions.

Within these workshops – be they Playground Computing workshops for pri-
mary children or Technocamps workshops for late secondary students – pupils
are challenged to approach problem solving in a way that is very different to
what they have experienced. Rather than exploring problems through a series of
steps which translate directly into lines of code, we use problems that are derived
from puzzles and riddles, and have the pupils model the problems using state
transition systems as a formalism. Again, these are very much unplugged exer-
cises, though computer software is ultimately used to facilitate the modelling.
We present here two classic riddles that feature in Technocamps Workshops.

1 technocamps.com.
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Fig. 1. A Technocamps Playground Computing Workshop in action

3.1 The Man-Wolf-Goat-Cabbage Riddle

The following riddle was posed by Alcuin of York in the 8th century, and more
recently tackled by Homer Simpson in a 2009 episode of The Simpsons titled
Gone Maggie Gone (which provides the ideal way to introduce the problem).

A man needs to cross a river with a wolf, a goat and a cabbage. His boat is
only large enough to carry himself and one of his three possessions, so he
must transport these items one at a time. However, if he leaves the wolf
and the goat together unattended, then the wolf will eat the goat; similarly,
if he leaves the goat and the cabbage together unattended, then the goat will
eat the cabbage. How can the man get across safely with his three items?

Pupils are challenged to first think logically about how to solve the problem,
often through trial-and-error, which we enable through a collection of supportive
tools2 – developed in Scratch3 – which allow pupils to explore the puzzles in an
interactive way. A more systematic approach is then presented by suggesting
to pupils that they should “model” the scenario by abstracting away the non-
important information and presenting the problem as a sequence of states. Pupils
are encourage to think about what constitutes a state, and what actions might
occur that would result in a transition from one state to another.

Figure 2 gives a taste of how this is presented to the class. Having introduced
the problem, it is represented by a picture which captures the essential infor-
mation (which side of the river each of the four entities lies). The participants
are then encouraged to consider what actions may occur, and how these actions
would change the picture – that is, how the state of the world would change.
This introduces and reinforces the notions of abstraction – identifying the rel-
evant information and disregarding anything irrelevant – and decomposition –

2 bit.ly/Technothink.
3 https://scratch.mit.edu.

http://bit.ly/technothink
https://scratch.mit.edu
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Visualising the Problem

Using abstraction we can simplify the problem to only the
necessary details.

M
W
G
C

Labelled Transition System

Mapping out the steps of the puzzle using the different states is
called a Labelled Transition System (LTS). It is made up of states
and transitions.

M
W
G
C

W 

C

M

G
g

?States

Transitions

Fig. 2. Introducing modelling using transition systems

breaking down a problem and solving it by solving smaller problems. Getting
the participants to depict the occurrence of actions by arrows between states,
they are naturally introduced to the notion of a labelled transition system (LTS).
Through exploring transitions – by hand and using simulation tools – the par-
ticipants are asked to find a sequence of actions which will solve the problem.
Figure 3 shows this problem being solved in a workshop.

Fig. 3. LTS modelling in the classroom

The labelled transition system which the students are developing is depicted
in Fig. 4. A state of the LTS represent the current position (left or right bank)
of the four entities (man, wolf, goat, cabbage); and there are four actions repre-
senting the four possible actions that the man can take:

• m = the man crosses the river on his own;
• w = the man crosses the river with the wolf;
• g = the man crosses the river with the goat; and
• c = the man crosses the river with the cabbage.
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Fig. 4. The Man-Wolf-Goat-Cabbage LTS.

The initial state is MWGC : (meaning all are on the left bank of the river), and
the goal is to find a sequence of actions which will lead to the state : MWGC

(meaning all are on the right bank of the river). However, we want to avoid going
through any of the six dangerous (red) states:

WGC : M GC : MW WG : MC MC : WG MW : GC M : WGC

There are several possibilities (all involving at least 7 crossings), for example:

g, m, w, g, c, m, g.

3.2 The Water Jugs Riddle

In the 1995 film Die Hard: With a Vengeance, New York detective John McClane
(played by Bruce Willis) and Harlem dry cleaner Zeus Carver (played by Samuel
L. Jackson) had to solve the following problem in order to prevent a bomb from
exploding at a public fountain. (Again, this provides the ideal means to introduce
the problem to a class.)
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Fig. 5. Solving the water jug puzzle in Computational Thinking workshops

Given only a five-gallon jug and a three-gallon jug, neither with any mark-
ings on them, fill the larger jug with exactly four gallons of water from the
fountain, and place it onto a scale in order to stop the bomb’s timer and
prevent disaster.

This riddle – and many others like it – was posed by Abbot Albert in the 13th
Century, and can be solved using an LTS. A state of the system underlying
this riddle consists of a pair of integers (i, j) with 0 ≤ i ≤ 5 and 0 ≤ j ≤ 3,
representing the volume of water in the 5-gallon and 3-gallon jugs A and B,
respectively. The initial state is (0, 0) and the final state you wish to reach is
(4, 0).

There are six moves possible from a given state (i, j):

• (0, j)
fillA

−−−−−→ (5, j) • (i, j)
emptyA
−−−−−→ (0, j) if i > 0

• (i, 0)
fillB

−−−−−→ (i, 3) • (i, j)
emptyB
−−−−−→ (i, 0) if j > 0

• (i, j)
AtoB−−−−−→ (

max(0, i + j − 3),min(3, i + j)
)

if i > 0 and j < 3

• (i, j)
BtoA−−−−−→ (

min(5, i + j),max(0, i + j − 5)
)

if i < 5 and j > 0

Drawing out the LTS (admittedly a daunting task in this instance yet a useful
exercise), we get the following 7-step solution:

(0, 0)
fillA

−−−−−→ (5, 0)
AtoB−−−−−→ (2, 3)

emptyB
−−−−−→ (2, 0)

AtoB−−−−−→ (0, 2)
fillA

−−−−−→ (5, 2)
AtoB−−−−−→ (4, 3)

emptyB
−−−−−→ (4, 0).

In Fig. 5 we can see a school workshop in action. We use blue sand rather
than water in these workshops to avoid the obvious risk of creating a wet chaos.
Through experimenting, the participants inevitably stumble upon a solution; but
charged with the task of explaining their solution step-by-step, they naturally
arrive at a solution which they describe using the language and notation of
labelled transition systems. Arriving at a complete solution does not require the
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class to find and express the most general rules as presented above. However, for
older groups, finding these rules provides an interesting challenge in numeracy.

These types of riddles and puzzles allow pupils to easily grasp and under-
stand the powerful concept of labelled transition systems. After seeing only a
few examples, they are able to model straightforward systems by themselves
using LTSs. Once an intuitive understanding has been established, the task of
understanding the mathematics behind LTSs becomes less foreboding.

3.3 Feedback from the Workshops

Technocamps has been successfully delivering these workshops to school groups
since 2003, on university campuses and in schools as well as elsewhere in the
community. In particular, in the Learning in Digital Wales project for Welsh
Government’s Department of Education, Technocamps delivered an average of
9.8 h of interactive workshops across every secondary school throughout Wales
over an 18-month period during 2014–2016. For the purposes of this paper, we
reflect on a recent programme of engagement.

During the Summer term of 2019, Technocamps delivered its computational
problem solving workshops to 424 pupils, aged between 12–15, within the South
Wales region as part of a series of STEM Enrichment Programmes. Of those
who answered the feedback questionnaire, feedback was significantly positive
with over 86% of pupils rating the workshop overall as Great/Good as well as
its subject content.

The Technocamps goal of changing perceptions about computer science as
a subject worth studying is reflected in its activity. Since 2011, 50,000 young
people – over 7% of the Welsh population who are today aged 5–24 – have
participated in Technocamps Workshops; a full 43% of these have been girls, and
these girls are 25% more likely than the boys to return for follow-on workshops.

4 First-Year Formal Methods

We have replicated the Technocamps approach to introducing formal methods for
our first-year university computer science students. Our efforts in this direction
have been nothing short of remarkable. By adopting and adapting our approach
over the past twenty years from a traditional starting point, we have substantially
increased the success rate – and substantially decreased the failure rate – of our
students. Figure 6 shows how the percentage of students attaining a 1st-class
grade (a grade over 70%) rose from 2% in 2000–2001 to over 60% in 2017–2018
and 2018–2019, whilst those failing the course (by attaining a grade under 40%)
dropped over the same time frame from 56% to under 2%. The figure also shows
the class sizes which have more than tripled over the most recent five years
which explains a noticeable dip in attainment which, as we explain below, was
remedied by further tweaking of our delivery model. The fact that this success is
based on our approach is borne out by reflecting on annual student feedback for
the various modules which students take across their programme of study; our
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Fig. 6. Trends of students achieving 1st-class and failing results; and class sizes.

delivery model is contrasted favourably against traditional approaches used in
other modules taken by the same students, and recorded attendance (and hence
engagement) is highest in this module.

Through years of reflecting on how to successfully present formal methods
to beginning computer science students, we have identified the following key
considerations, all of which we have gleaned – and from which we have learned
– from student feedback.

• Do not call it (discrete) mathematics. A simple change of name from “dis-
crete mathematics for computer science” to “modelling computing systems”
in 2010–2011 was enough for us to witness a substantially increased level of
engagement and attainment with the course, as made evident in Fig. 6. There
was no other change that year to add to the cause of this effect.

• Do not formalise early on. The standard approach to, e.g., propositional logic
is to present the formal syntax and semantics of the logic and emphasise the
precise form and function of the connectives. The approach we have adopted
is to stress the careful use of English, and to introduce logical symbols as
mere shorthand for writing out English sentences. Formalism becomes far
easier to adapt to if and once the students are comfortable with working with
the concepts.

• Exploit riddles and games. As described above, riddles and games provide
an effective way to instil the rigours of computational thinking. These were
incorporated more and more from 2010 onwards, resulting in the year-on-year
improvement in attainment reflected in Fig. 6.
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• Use regular interactive small-group problem sessions. We supplement three
hours of weekly whole-class lectures with a one-hour small-group problem
session (of 30–50 students) in which the emphasis is on the students carrying
out computational problem-solving tasks, typically in pairs. We are confident
in our thesis that this matters, as tweaking the sizes and regularity of these
groups through the years coincides with peaks and dips in the attainment
graphs. In particular, see the next consideration.

• Keep these problem session groups small. As can be seen in Fig. 6, attainment
dropped between 2014 and 2017 as class sizes grew, but more than recovered
in 2017–2018 despite a huge increase in the overall class size. This was due to
an increase in the number of problem session groups; whilst the whole-class
lectures became far less personable due to the huge numbers, the decrease
in the sizes of the problem session groups resulted in much better results.
Again, this being the only substantive change to delivery, we are confident in
attributing the positive effect to this.

It is worth stressing that throughout the years, entrance requirements have
not changed to admit only stronger applicants. On the contrary, pressures to
increase student numbers (i.e., fees income) have meant that academically-
weaker students (those with lower school grades) are being admitted in greater
numbers. Also, neither the content of the course nor the way it is assessed has
gotten easier. Again, quite to the contrary, the topics covered in the first-year
formal methods modules have expanded to include the coinductive concept of
bisimulation equivalence, a topic which even postgraduate research students find
challenging, but which we successfully present as outlined in the next section.

4.1 Verification via Games

Having introduced a formalism for representing and simulating (the behaviour
of) a system, the next question to explore is: Is the system correct? In its most
basic form, this amounts to determining if the system matches its specification,
where we assume that both the system and its specification are given as states of
some LTS. For example, consider the two vending machines V1 and V2 depicted
in Fig. 7, where V1 is taken to represent the specification of the vending machine
while V2 is taken to represent its implementation. Clearly the behaviour of V1

is somehow different from the behaviour of V2: after twice inserting a 10p coin
into V1, we are guaranteed to be able to press the coffee button; this is not true
of V2. The question is: How do we formally distinguish between processes?

4.2 The Formal Definition of Equivalence

A traditional approach to this question relies on determining if these two states
are related by a bisimulation relation, which is a binary relation R over its states
in which whenever (x, y) ∈ R:
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V1

10p
10p

coffee

tea

collect

V2

10p
10p

10p

coffee

tea

collect

Fig. 7. Two Vending Machines.

• if x > ax′ for some x′ and a, then y > ay′ for some y′ such that (x′, y′) ∈ R;
• if y > ay′ for some y′ and a, then x > ax′ for some x′ such that (x′, y′) ∈ R.

Simple inductive definitions already represent a major challenge for undergrad-
uate university students; so it is no surprise that this coinductive definition of
a bisimulation relation is incomprehensible even to some of the brightest post-
graduate students – at least on their first encounter with it. It thus may seem
incredulous to consider this to be a first-year discrete mathematics topic, even
if it is a perfect application for exploring equivalence relations as taught earlier
in the course. However, there is a straightforward way to explain the idea of
bisimulation equivalence to first-year students – a way which they can readily
grasp and are happy to explore and, indeed, play with. The approach is based
on the following game.

4.3 The Copy-Cat Game

This game is played between two players, typically referred to as Alice and Bob.
We start by placing tokens on two states of an LTS, and then proceed as follows.

1. Alice moves either of the two tokens forward along an arrow to another state;
if this is impossible (that is, if there are no arrows leading out of either node
on which the tokens sit), then Bob is declared to be the winner.

2. Bob must move the other token forward along an arrow which has the same
label as the arrow used by Alice; if this is impossible, then the Alice is declared
to be the winner.

This exchange of moves is repeated for as long as neither player gets stuck. If
Bob ever gets stuck, then Alice is declared to be the winner; otherwise Bob is
declared to be the winner (in particular, if the game goes on forever).
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Alice, therefore, wants to show that the two states holding tokens are some-
how different, in that there is something that can happen from one of the two
states which cannot happen from the other. Bob, on the other hand, wants to
show that the two states are the same: that whatever might happen from one of
the two states can be copied by the other state.

It is easy to argue that two states should be considered equivalent exactly
when Bob has a winning strategy in this game starting with the tokens on the
two states in question; and indeed this is taken to be the definition of when two
states are equal, specifically, when an implementation matches its specification.

As an example, consider playing the game on the LTS depicted in Fig. 8.

U

V

W

Z Y X

a

a

b

c

c

b a

Fig. 8. A simple LTS.

Starting with tokens on states U and X, Alice has a winning strategy:

• Alice can move the token on U along the a-transition to V .
• Bob must respond by moving the token on X along the a-transition to Y .
• Alice can then move the token on Y along the c-transition to Z.
• Bob will be stuck, as there is no matching c-transition from V .

This example is a simplified version of the vending machine example; and
a straightforward adaptation of the winning strategy for Alice will work in the
game starting with the tokens on the vending machine states V1 and V2. We thus
have an argument as to why the two vending machines are different.

4.4 Relating Winning Strategies to Equivalence

Whilst this notion of equality between states is particularly simple, and even
entertaining to explore, it coincides precisely with the complicated coinductive
definition of when two states are bisimulation equivalent. Seeing this is the case
is almost equally straightforward.

• Suppose we play the copy-cat game starting with the tokens on two states x
and y which are related by some bisimulation relation R. It is easy to see that
Bob has a winning strategy: whatever move Alice makes, by the definition of
a bisimulation relation, Bob will be able to copy this move in such a way that
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the two tokens will end up on states x′ and y′ which are again related by R;
and Bob can keep repeating this for as long as the game lasts, meaning that
he wins the game.

• Suppose now that R is the set of pairs of states of an LTS from which Bob
has a winning strategy in the copy-cat game. It is easy to see that this is a
bisimulation relation: suppose that (x, y) ∈ R:

– if x > ax′ for some x′ and a, then taking this to be a move by Alice in
the copy-cat game, we let y > ay′ be a response by Bob using his winning
strategy; this would mean that Bob still has a winning strategy from the
resulting pair of states, that is (x′, y′) ∈ R;

– if y > ay′ for some y′ and a, then taking this to be a move by Alice in the
copy-cat game, we let x > ax′ be a response by Bob using his winning
strategy; this would mean that Bob still has a winning strategy from the
resulting pair of states, that is (x′, y′) ∈ R.

We have thus taken a concept which baffles postgraduate research students, and
presented it in a way which is well within the grasp of first-year undergraduate
students.

4.5 Determining Who Has the Winning Strategy

Once the notion of equivalence is understood in terms of winning strategies in the
copy-cat game, the question then arises as to how to determine if two particular
states are equivalent, i.e., if Bob has a winning strategy starting with the tokens
on the two given states. This isn’t generally a simple prospect; games like chess
and go are notoriously difficult to play perfectly, as you can only look ahead a
few moves before getting caught up in the vast number of positions into which
the game may evolve.

Here again, though, we have a straightforward way to determine when two
states are equivalent. Suppose we could paint the states of an LTS in such a
way that any two states which are equivalent – that is, from which Bob has a
winning strategy – are painted the same colour. The following property would
then hold.

If any state with some colour C has a transition leading out of it into a
state with some colour C ′, then every state with colour C has an identically-
labelled transition leading out of it into a state coloured C ′.

That is, if two tokens are on like-coloured states (meaning that Bob has a winning
strategy) then no matter what move Alice makes, Bob can respond in such a
way as to keep the tokens on like-coloured states (ie, a position from which he
still has a winning strategy). We refer to such a special colouring of the states
as a game colouring .
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To demonstrate, consider the following LTS.

1

3

2

45 6

a

a

a

a

a

a

a

a

b

a

a

a

a

a

At the moment, all states are coloured white, and we might consider whether
this is a valid game colouring. It becomes readily apparent that it is not, as
the white state 4 can make a b-transition to the white state 5 whereas none of
the other white states (1, 2, 3, 5 and 6) can do likewise. In fact, in any game
colouring, the state 4 must have a different colour from 1, 2, 3, 5 and 6. Hence
we paint it a different colour from white; say blue:

1

3

2

45 6

a

a

a

a

a

a

a

a

b

a

a

a

a

a

We again consider whether this is now a valid game colouring. Again it becomes
apparent that it is not, as the white states 3 and 6 have a-transitions to a blue
state, whereas none of the other white states 1, 2 and 5 do. And in any game
colouring, the states 3 and 6 must have a different colour from 1, 2 and 5. Hence
we paint these a different colour from white and blue; say yellow:
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1

3

2

45 6

a

a

a

a

a

a

a

a

b

a

a

a

a

a

We again consider whether this is now a valid game colouring. This time we
find that it is, as every state can do exactly the same thing as every other state
of the same colour:

• every white state has an a-transition to a white state and an a-transition to
a yellow state;

• every yellow state has an a-transition to a yellow state and an a-transition to
a blue state;

• every blue state has a b-transition to a white state.

At this point we have a complete understanding of the game, and can say
with certainty which states are equivalent to each other. This is an exercise
which first-year students can happily carry out on arbitrarily-complicated LTSs,
which again gives testament to the effectiveness of using games to great success
in imparting difficult theoretical concepts to first-year students – in this case the
concept of partition refinement.

While students take turns playing each other in the copy-cat game, they
develop an intuitive understanding of winning strategies: that the first player
must play correctly, and the second player – no matter how well they play –
can never win. They even have fun doing it! This allows them to argue when
two systems are different (or the same) and even paves the way for other more
advanced formal verification techniques such as observational equivalence.

5 Conclusions

As with any topic, teaching formal methods – even to school children – is most
successful when done in a way which nurtures their willingness to engage. Appeal-
ing to their existing understand of how the world works, using puzzles as a
medium, students can quickly become comfortable using mathematical concepts
such as labelled transition systems. A similar lesson is learnt when it comes
to teaching verification: starting with the formal definition of bisimulation (or
similar) is an uphill battle from the start, even for postgraduate research stu-
dents. However, starting from games like the copy-cat game, such topics become
immediately accessible.
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We have used this approach for over a decade to teach discrete mathemat-
ics incorporating the modelling and verification of computing systems as part
of our first-year undergraduate programme. With the fine-tuning of our app-
roach, and abiding by the considerations outlined in Sect. 4, we have succeeded
in maximising attainment levels of the students through active and interested
engagement.

Of course, problem solving through recreational mathematics – which is
ultimately what we are exploiting in our approach – has very many propo-
nents, and there is a long and extensive history of books marketed towards the
mathematically-inquisitive. We are by no means alone in recognising the power
of applying recreational mathematics to the development of computational prob-
lem solving skills; as relevant exemplars we note Averbach and Chein’s Problem
Solving Through Recreational Mathematics [1], Backhouse’s Algorithmic Prob-
lem Solving [2], Levitin and Levitin’s Algorithmic Puzzles [10]; and Michalewicz
and Michalewicz’s Puzzle-Based Learning [11]. What we propose in particular is
an embedding of the approach from before a student’s undergraduate journey, in
particular to engage them in a topic – discrete mathematics – that they typically
struggle with, both academically and in terms of recognising its relevance in the
subject. In this sense, we are closely related to the various approaches that have
been developed of late for introducing school-aged audiences to computational
thinking. In this vein we note the CS Unplugged4 and the CS4FN5 initiatives.

The “informal” way in which we approach the teaching of formal methods
has many parallels with Morgan’s (In)Formal Methods: The Lost Art [13]. The
course described in this report is for upper-level computer science students who
are already adept at writing programs who are studying software development
methods. Nonetheless, many of its findings – in particular as reflected in the
student feedback – are replicated in our own activity, where positive feedback is
provided on: the interactive and hands-on approach; the amusing exercises and
assignments; the class room style teaching; the overall teaching methodology
with dedicated tutors; and the means by which the relevance of the course is
stressed.

As a final note, many of the considerations that we have identified as being
important in teaching mathematics to computing students are reflected by Bet-
teridge et al. [3] as being useful and thus adopted in their novel approach to
teaching computing to mathematics students.
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