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Abstract. Is there a need to popularize Formal Methods in Software
Engineering? Maybe industrial demand in Formal Methods is the best
way to explain their utility and importance? – We try to argue edu-
cational and emotional role of popularization for a better comprehen-
sion and a positive attitude to Formal Methods and discuss several
Math Olympiad problems that can be solved using Formal Methods
(while, unfortunately, Mathematical education suffers of lack of Theo-
retical Computer science curricular) .
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1 Introduction

1.1 A Semiannual Anniversary

Fifty two years have passed since Robert Floyd had published a paper Assigning
Meaning to Programs, a pioneering research on Formal Methods [6], fifty – since
C.A.R. Hoare published a paper An axiomatic basis for computer programming
[10], the first paper on axiomatic of program correctness. During these years
people frequently questioned the efficiency, the utility, the industrial strength,
the educational value, the understandability of Formal Methods (FM).

For example, in 2010 David Parnas published a very polemical article Really
Rethinking “Formal Methods” [20]; in particular, he wrote in the article that
there are much more FM academic experts than industrial developers using FM,
and analyzed the reasons why FM have not became a common practice in Soft-
ware Engineering.

We believe that this sad picture is not true. Indeed, ACM Turing Prize in
2007 was awarded to Edmund M. Clarke, E. Allen Emerson and Joseph Sifakis
for their role in developing Model-Checking into a highly effective verification
technology that is widely adopted in the hardware and software industries [29].
Later in years 2007-12 model checking was successfully used for verification of
on-board software of Mars-rover Curiosity [11].
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We also think that academic theory and/or industrial practice aren’t the
only dimensions for Formal Methods, there exists (at least) one more aspect—
education. In the next paragraph we explain how we understand education and
what role FM may/should play in Software Engineering education.

There exists an opinion (sometimes attributed to Karl Weierstrass) that the
education should bring up minds, not just trains skills. Also we would like to
quote an aphorism (commonly attributed to Mikhailo Lomonosov) that mathe-
matics should be learned just because it disciplines minds. By citing these maxims
we wouldn’t like to claim that the purpose of education is bringing up minds, or
that the utility of Mathematics is restricted by mind discipline. We just would
like to emphasize a value of Formal Methods for Software Engineering education:
to bring up and discipline minds of the future engineers and developers.

1.2 Fun for Better Education

A part of the reason why the Formal Methods moves slowly from the academy
to industry is FM education, a “transmission”: some students consider FM too
poor (inefficient), other students consider FM too pure. We need to improve
transmission, i.e. to improve FM education.

Ascending approach (from simple and easy to the most complex and com-
plicated) is a common practice in education. Nobody starts teaching arithmetic
with Peano axioms and formal derivation of formal statements like (for instance)
addition associativity ∀x.∀y.∀z : ((x + y) + z) = (x + (y + z)); instead the
education/teaching starts with elementary exercises/problems like the follow-
ing: Dad gave Peter 5 apples and then Peter passes 2 apples to a sister; how
many apples Peter has after that?

If educator would like to engage students with a topic then fun and amuse-
ment may be very important and helpful ingredients (maybe, a lubricating oil
for the transmission). Even a simple joke can help! (For example, if you think
that the answer for the above problem about apples is 3 then you are not right,
because the correct answer depends on initial number of apples that Peter had
before his Dad gave him these 5 apples;-)

Same should be true for FM education: it should start with simple and easy
examples/problems, exploit jokes, fun and amusement for engagement and pop-
ularization. Many FM educators use ascending approach altogether with fun
and amusement in their educational practice. – Just for example, a very con-
cise, sound and comprehensive textbook [12] on model checking with SPIN is
illustrated by many puzzles solved by model checking. (Of course, a renowned
Cabbage, Goat and Wolf is one of the puzzles used in this book.) But we question
is: how common is this practice to engage students with FM via fun, puzzles,
games and entertainment?

1.3 FWFM Workshop Series

The primary purpose of the workshop series on Fun With Formal Methods
(FWFM) was (and still is) to popularize and disseminate the best practice of
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popularization of Formal Methods. Not an exhaustive list of topics of FWFM
follows:

– fascinating examples of use of FM in SE;
– simple but interesting educational examples of FM;
– FM for puzzles, games and entertainment;
– FM and programming contests and Olympiads;
– FM elsewhere (outside software and hardware);
– anything and everything related to popularization of FM.

History of the workshop is depicted in brief in the Fig. 1 and explained below in
the next paragraphs.

Fig. 1. History of the FWFM workshop series.

The workshops from FWFM series ware organized twice in the years 2013 [30]
and 2014 [31] but (for fun!) the same day both times – July 13 – and both times—
in affiliation with the International Conference on Computer Aided Verification
(CAV). Both workshops were successful because of number of submissions, good
quality of selected papers and a high attendance.

Then there was non-successful attempt to organize the third workshop in the
year 2018 [32]. The attempt had the same affiliation (CAV), but was scheduled
for another day then two previous workshops — July 19 instead of July 13.
This shift was not fun, it has led to few submissions and cancellation of the
workshop. – Of course, we are kidding about the role of the day and its influence
on the number of submissions; maybe the main reason of the deficit of interest
to the FWFM-2018 was publication policy of the first two workshops: no formal
proceedings of the FWFM-2013 and FWFM-2014 have been published.

After an epic failure in 2018, we attempted to revive FWFM series in year
2019 [33]. Because of this intention we had decided to give up fixed affiliation
(CAV), fixed day (July 13), and presentation “in person” (offline) policy. (By
the way, this online move has been implemented months before the outbreak of
COVID-19 [34] and hadn’t been motivated by the epidemic situation. Maybe,
it (the move) had much more in common with climate change concern recently
stressed in [28].) In the year 2019 the workshop was organized as a satellite event
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of another conference TOOLS 50+1: Technology of Object-Oriented Languages
and Systems, distance (online) presentations (via Skype) were allowed, and live
streaming video of the workshop was organized and recorded [35]. – Maybe it
is too early to say that the workshop was successful, but it is right time to say
that we had the workshop and the FWFM series is alive!

The problem that FWFM-series needs to solve is a proper publication of the
workshop proceedings. If not to solve but to compensate a publication deficit,we
would like to present in brief in the next section the following 5 talks from
FWFM-2013 and FWFM-2014:

– The Ontological Argument in PVS: What Does This Really Prove? (John
Rushby, FWFM-2013);

– Tackling Fibonacci words puzzles by finite countermodels (Alexei Lisitsa,
FWFM-2013);

– Teaching Formal Methods using Magic Tricks (Paul Curzon and Peter Mc-
Owan, FWFM-2013);

– Chekofv: Crowd-sourced Formal Verification (Heather Logas et al., FWFM-
2014);

– Using Esoteric Language for Teaching Formal Semantics (Nikolay Shilov,
FWFM-2014).

1.4 Structure of the Paper

In the next Sect. 2 we give a brief overview of selected talks from FWFM-
2013 and FWFM-2014. Then in the Sect. 3 we just sketch the programme of
FWFM-2019 but present (some) details solutions (with aid of Formal Methods)
of two problems from the 60th International Mathematical Olympiad IMO-2019.
Finally, we conclude in the last Sect. 4 by summing-up our arguments for pop-
ularization of Formal Methods and discussing challenges of further integration
of Formal Methods and Artificial Intelligence – Computer Science in general –
with Mathematics.

2 FWFM13-14 in Brief: From Ontological Argument
to Esoteric Languages

2.1 The Ontological Argument in PVS

An ontological argument is a tradition to prove that God existence using ontol-
ogy. One of known ontological arguments was formulated by Anselm of Can-
terbury in 1078 in work Proslogion. Anselm defined God as “that than which
nothing greater can be thought”. He suggested that, if the greatest possible exists
in the mind, it must also exists in reality and proved it by contradiction: if the
greatest possible does exist just in the mind, then an even greater must exists in
the mind—one which is greater both in the mind and in reality; therefore, this
the greatest possible being must do exist in reality.
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Please refer [21] for a formalization and verification of the Ontological Argu-
ment in PVS [36]. Although the formalization is consistent, the formal veri-
fication doesn’t compel the Ontological Argument. The educational value of
the formalization and verification of the Ontological Argument with PVS is an
opportunity to use it as a case study in graduate programs at Philosophy and
Humanities Departments for teaching automated theorem proving.

2.2 Countermodels for Fibonacci Words

An infinite sequence of Fibonacci words w0, w1, . . . is defined [17] very similar as
the infamous sequence of Fibonacci numbers: let a and b be two distinguishable
symbols; then w0 = b, w1 = a, and wi+2 = wiwi+1 for all i ≥ 0. It is easy to
see that the sequence of Fibonacci words stars as b; a; ba; aba; baaba; ababaaba;
baabaababaaba.

One can observe that none of the first 7 Fibonacci words listed above contains
two b’s or three a’s in a row (i.e. no sub-words bb or aaa). This observation leads
to a hypothesis that all Fibonacci words contain neither two b’s nor three a’s in a
row. But then the next question arises: how to prove (ore refute) the hypothesis?

A particular way to prove the hypothesis presented in [17] comprises two
steps:

1. first-order sound axiomatization of algebraic systems (first-order models)
where all elements of the domain may be generated using Fibonacci words

2. and then automatic generation of finite countermodels that meet the axioma-
tization but refute that some element may be generated using two b’s or three
a’s in a row.

Surprisingly, the countermodels for each of these properties are quite small,—just
5 elements to refute a possibility of two b’s and 11 element to refute a possibility
three a’s in a row [17].

The educational value of the case-study is popularization of non-standard
models for proving properties of the standard (“default” or assumed) models
and tools like finite model generators for first-order theories.

2.3 Learning Loop Invariant via Card Magic

After great publications by Martin Gardner like Mathematics, Magic, and Mys-
tery (1956) or Mathematical Puzzles (1961), it is hard to engage magic tricks
with any other discipline than Mathematics. But still many magic tricks are
much more dynamic and algorithmic in nature than static and Mathematical.
Hence many magic tricks can/may be used to teach Computer Science and For-
mal Methods.

Some examples of engagement of card magic with CS and FM can be found in
paper [1] that summarizes some experience accumulated in the science-popular
project cs4fn (Computer Science for Fun) [37]. Below we present in brief one
example of a card magic (borrowed from [1]) and discuss educational value of
the example.
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1. Take 10 cards consisting of a series of 5 cards of a suit followed by the same
5 cards of a different suit placed in the same order.

2. Fan the cards to show that you have a mix of cards and then turn the pack
over, face down and ask a volunteer to touch the back of any card. Cut the
pack at this point, putting the top half to the bottom and fan the cards again.
Repeat this several times until the audience becomes happy that the cards
are sufficiently mixed.

3. Count out 5 cards into a pile on the table, reversing their order as you do
so. Place the remaining 5 cards straight down to make a second pile (non-
reversed).

4. Give a volunteer 4 coins and ask to put each down on one of the two piles (i.e.
the volunteer may spread coins between the two piles arbitrary). Once coins
are placed you now do the same number of moves on a pile as the number
of coins on the pile. (A move consists just of moving a card from the top to
the bottom of the pile.) Then take the resulting top card of each pile and
place them together (face down) at the side together with one coin (from 4
that you use). Repeat the same with the remaining 3 (instead of 4) coins and
remaining two piles (each with 4 instead of 5 cards), then – with 2 coins and
piles with 3 cards each, and finally – with the last coin and piles with 2 cards
each.

5. Turn over all pairs of cards and demonstrate to the audience that cards in
pairs match each other!

The correctness of the magic trick can be explained in terms of partial cor-
rectness of the non-deterministic algorithm presented above using pre-conditions,
invariants and post-conditions:

– Precondition of the first non-deterministic loop on step 2 is formulated in step
1: the first 5 cards of one suit are followed by the same 5 cards of another suit
in the same order.

– The invariant and the post-condition of the first loop is very similar to the
pre-condition: the first 5 cards are followed by the same 5 cards in the same
order.

– Pre-condition for the loop on steps 4 results from post-condition for step 2
after implementing step 3: the order of 5 cards in the first pile is reverse of
the order of the 5 cards in the second pile.

– The invariant of the second loop is closely related to the pre-condition: the
order of cards in the first pile is reverse of the order of the cards in the second
pile and cards in pairs that are put aside match each other.

– The post-condition is what we want to demonstrate to the audience: cards in
pairs match each other.

So, Formal Method’s classics is a magic!

2.4 Gamification and Crowd-Sourcing Loop Invariants

Chekofv [18,19] is a system for crowd-sourced formal verification. It starts with
an attempt to verify a given C program using the source code analysis platform
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Frama-C. Every time the analysis needs a loop invariant (like in the previous sub-
section) Chekofv translates the problem into a puzzle game Xylem and presents
it to players.

Xylem [19] is an iPad game where players make mathematical observations
about synthetic plants, which are turned into predicates used for the construc-
tion of loop invariants. The game is a logical induction puzzle game where the
player plays a botanist exploring and discovering new forms of plant life on a
mysterious island. The player observes patterns in the way a plant grows, and
then constructs mathematical equations to express the observations. These equa-
tions are considered as candidates for loop invariants and must be verified by
any proof-assistance (PVS in particular).

2.5 Formal Semantics Though an Esoteric Language

Teaching different types of formal semantics (at undergraduate level especially)
is not a trivial task. A gentleman’s set should include some variants of operation-
al, denotational and axiomatic semantics. A common approach to teaching the
topics consists in use of toy programming languages. Instead, [23,24] presented
an approach with use of an esoteric language [38].

Every language (artificial or natural) may be characterized by its syntax,
semantics, and pragmatics. For example, in one of the 56 Sherlock Holmes short
stories, The Adventure of the Dancing Men, written by Arthur Conan Doyle,
Mr. Hilton Cubitt gives Sherlock Holmes a piece of paper with this mysterious
sequence of stick figures of dancing men that had driven driving his young wife
Elsie to distraction. Holmes realizes that it is a substitution cipher, cracks the
code by frequency analysis and realizes that the syntax was just as in English
with dancing men instead of letters, the semantics was provided by transforma-
tion to English, pragmatics (usage) of the language was to serve as a cryptogra-
phy for Chicago gangsters.

Toy Esoteric Language (TEL) is not a programming language at all since it
is not design for data processing. Its pragmatics is to introduce and explain what
different types of formal semantics are, namely: what are operational, denota-
tional, axiomatic, second-order and game semantics and how they may relate
to each other. TEL syntax is easy to explain: correct words look like bodies of
structured Pascal programs (with integer variables exclusively). TEL informal
semantics can be defined as follows. Since every correct TEL word looks like an
iterative program, one can draw a flowchart of this program. Every flowchart
is a graph with assignments and conditions as nodes and control passing as
edges. Let us count length of a path between nodes in a flowchart by number of
assignments in this path (i.e. we do not count conditions at all). Then seman-
tics of a correct TEL “program” is the shortest length of a path through the
corresponding flowchart (i.e. from start to finish).
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3 How FM and Math Can Help and Boost Each-Other?

3.1 FWFM-2019 in Brief

The programme of FWFM-2019 [33,35] comprises the following 5 talks:

1. Do we need Fun with Formal Methods? (Nikolay Shilov and Evgeiy Muravev);
2. Cables, Trains and Types (Simon Gay);
3. On programming content of Math contests (Nikolay Shilov and Svetlana

Shilova);
4. Towards a Broader Acceptance of Formal Varication Tools (Mansur Khazeev

et al.);
5. Fun with Formal Methods: teaching unambiguous English to avoid confusions

(Maya Stoyanova).

The first talk presented a tool to play with the axiomatic semantics for the
esoteric language TEL from papers [23,24].

The second talk presented a dependent type system for cables and toy rail-
road, a background paper is available [8] and is under publication right now.

The third talk addressed relations between Mathematics and Theory of Pro-
gramming, its content has not been published anywhere else and because of it
is discussed in the following subsections of this paper.

The forth talk presented results of in-class study how a small group of master
students in Software Engineering accept formal verification tools in general and
AutoProof system [7] in particular, a background paper has been published in
arXiv [13].

The last talk was English-language experience report how to teach future
software developers and engineers to speak and write in unambiguous way (espe-
cially when it concerns technical writing and specifications in English).

The workshop FWFM-2019 was concluded by a discussion moderated by
Hamna Aslam. The topics of the discussion included (but were not limited by)
the following questions:

– Who should not be teaching Math & FM?
– Which Math & FM book(s) are not recommended to be proposed as a text-

book for freshmen?
– How to promote Math & FM group learning among students?
– How to teach Math & FM to students in their language?

(The purpose of the “negative” questions wasn’t to exclude someone or some
book as but to learn student’s opinions about a “good” and a “bad” education
practice.)

3.2 On Relations Between Program Theory and Mathematics

A discourse about historical, cultural, educational relations and connections be-
tween Mathematics and Science and Art of Programming (exactly Programming
not Computer Science) is quite old: it originated in early days of computing
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machinery more than 70 years ago (since, at least, since ENIAC was completed
and first put to work in 1945). Many programming pioneers—e.g. Edsger W.
Dijkstra, Andrey P. Ershov, Donald E. Knuth—had published their reflections
on this topic [2–4,14]. (Unfortunately, we are not aware about reflections of
mathematicians on this topic while we know and highly recommend a book of
outstanding Russian mathematician Vladimir A. Uspensky [27] where he had
promoted and advocated a view on Mathematics as a humanitarian science.)

In the talk On programming content of Math contests we drew attention to
the importance of introduction of programming art and science [5,9,15,16] to
mathematical education not just because of industrial demand and/or employ-
ment opportunities for graduates but because of a need of programming culture
for solving mathematical problems. We would like to advocate this claim by
analysis of the problem set [40] of the most recent International Mathematical
Olympiad [39] (which was the 60th in the series).

The Olympiad set [40] comprises 6 problems from which 1.5 (exactly one
and a half ) are good examples to demonstrate programming art and science.
Namely, we speak about the following problems from the set.

[Problem IMO-19-1]. Let Z be the set of integers. Determine all functions
f : Z → Z such that, for all integers a and b, f(2a) + 2f(b) = f (f(a + b)).

[Problem IMO-19-5]. The Bank of Bath issues coins with an H on one side
and a T on the other. Harry has n of these coins arranged in a line from left to
right. He repeatedly performs the following operation: if there are exactly k >
0 coins showing H, then he turns over the kth coin from the left; otherwise,
all coins show T and he stops. For example, if n = 3 the process starting with
the configuration THT would be THT → HHT → HTT → TTT , which
stops after three operations.

a) Show that, for each initial configuration, Harry stops after a finite number
of operations.

b) For each initial configuration C, let L(C) be the number of operations
before Harry stops. For example, L(THT ) = 3 and L(TTT ) = 0. Deter-
mine the average value of L(C) over all 2n possible initial configurations.

The problem IMO-19-1 can serve as an example of recursion elimination
[15,22] using reduction of a monadic recursion to a tail recursion, we discuss
this programming technique and its application to the problem IMO-19-1 in the
next subsection. (A pure mathematical solution can be found at [40] in the orig-
inal Problems (with solutions) provided by the 60th International Mathematical
Olympiad, and watched at [41] among other Math videos by Presh Talwalkar.)

The problem IMO-19-5(a) is a “typical” problem on algorithm termination
to be solved by Floyd method [9,25] (but this time some preliminary equivalent
algorithm transformations are required), we present a programming solution of
the problem in the subsection after the next one.
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3.3 Problem IMO-19-1 via Recursion Elimination

A classic example monadic recursion elimination by reduction to the tail recur-
sion is a so-called John McCarthy function M91 : N → N [15,22] that is defined
as follows below:

M91(n) = if n > 100 then (n − 10) else M91 (M91(n + 11)).

It turns out that M91(n) = if n > 101 then (n − 10) else 91. A key
idea in recursion elimination is move from a monadic function M91 : N → N

to a binary function M2 : N × N → N such that M2(n, k) = (M91)k(n) for all
n, k ∈ N (where (M91)k(n) is k-time application of the function, i.e. (M91)k(n) =

k
︷ ︸︸ ︷

M91 (. . .M91(n) . . . )); of course, M2(n, 0) = (M91)0(n) = n for every n ∈ N.
Let us apply the idea presented in the previous paragraph to the problem 1.

Since f(2a) + 2f(b) = f (f(a + b)) is true for all a, b ∈ Z, then f(0) + 2f(b) =
f(f(b)) for all b ∈ Z. Let us define a binary function F : Z × N → Z such that
F (b, k) = fk(b) and F (b, 0) = f0(b) = b for all a ∈ Z and k ∈ N. Then for all
a ∈ Z and k ∈ N

F (b, (k + 1)) = 2F (b, k) + f(0) = 2 (2F (b, (k − 1)) + f(0)) + f(0) = . . .

= 2(k+1)F (b, 0) + (2(k+1) − 1)f(0) = 2(k+1)b + (2(k+1) − 1)f(0),

and, hence, f(b) = f1(b) = F (b, 1) = 2b+ f(0) and thus the problem 1 is solved!

3.4 Problem IMO-19-5(a) via Proving Algorithm Termination

Let us start with the following formalization (in pseudo-code) of the algorithm
specified in the problem statement 5:

var W: a word in the alphabet {T,H};
var k: a natural number;
while H exists in W
do k:= number of H in W;

if W[k] = T then W[k]:= H else W[k]:= T
od

Because of the loop condition while H exists in W, the only thing we need
to prove is the loop termination.

For this purpose, let us transform the above algorithm as follows:

var W: a word in the alphabet {T,H};
var k, i: natural numbers;
while H exists in W
do k:= number of H instances in W;

i:= k;
while W[i] = T
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do W[i]:= H; i:= i+1 od;
while W[i] = H

do W[i]:= T; i:= i-1 od;
od

This transformed algorithm is equivalent to the original one because it first
serializes conversions of T to H and then serializes conversions of H to T. Remark
that the conjunction of the following three clauses

– the number of H in W is i;
– k ≤ i ≤ the index of the rightmost instance of H in W;
– W[k..(i-1)] consists of H only (i.e. hasn’t any instance of T)

forms an invariant [9] of each of both internal loops (i.e. if the conjunction is
true before any exercise of a loop body then it remains true after the exercise).
It implies that for each legal iteration of the external loop (i.e. when W has any
instance of H)

the number of instances of H in W
before the loop body exercise
(that is the value of k)

is positive and greater than
the number of instances of H in W

after the loop body exercise
(that is the final value of i);

in other words, the number of instances of H in W decreases on each legal iteration
of the external loop. Hence, the number of instances of H in W is the loop variance
and (according to Floyd method of proving termination [9]) the transformed
algorithm as well as the original one always terminates.

4 Conclusion: What Else and Next?

Fun, jokes, puzzles, games and entertainment in teaching is not the unique ingre-
dient needed to improve Formal Method education (more general — Computer
Science and Software Engineering education). All these should be used to engage
(undergraduate) students with learning/study/comprehension/mastering For-
mal Methods. We believe that experience of individual educators and expertise of
research groups in the field of Formal Method popularization deserves a positive
attitude from Computer Science and Software Engineering academic community
and industry.

Another opportunity to engage students is a competitive spirit that is so
appropriate to young people (in particular — to students of CS and SE depart-
ments). International competitions between FM tools (e.g. automated theorem
provers and satisfiability solvers) are popular, useful and valuable from industrial
and research perspectives, but not from undergraduate education perspective.
Unfortunately, competitions especially designed for (undergraduate) students
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(like Collegiate Programming Contest [42]) are still not involved into education
process in general and in FM education in particular. We hope that competitions
of this kind may be used better for engaging students with Theory of Computer
Science and Formal Methods in Software Engineering [26].

We would like to conclude by drawing attention to a so-called IMO Grad
Challenge [43]:

The International Mathematical Olympiad (IMO) is perhaps the most cel-
ebrated mental competition in the world and as such is among the ultimate
grand challenges for Artificial Intelligence (AI).
The challenge: build an AI that can win a gold medal in the competition .
To remove ambiguity about the scoring rules, we propose the formal-to-
formal (F2F) variant of the IMO: the AI receives a formal representation
of the problem (in the Lean Theorem Prover), and is required to emit
a formal (i.e. machine-checkable) proof. We are working on a proposal
for encoding IMO problems in Lean and will seek broad consensus on the
protocol.
. . .
Challenge. The grand challenge is to develop an AI that earns enough
points in the F2F version of the IMO (described above) that, if it were a
human competitor, it would have earned a gold medal.

So, it is a high time for mathematicians not only to learn the art and the
science of programming, but technologies and tools of the Artificial Intelligence!
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