
Teaching Formal Methods for Fun
Using Maude

Peter Csaba Ölveczky(B)

University of Oslo, Oslo, Norway
peterol@ifi.uio.no

Abstract. In this paper I try to identify some general criteria for teach-
ing an undergraduate formal methods course in a “fun” way. Based on
those criteria, I have developed an introductory formal methods course
using rewriting logic and Maude. I explain why Maude is a suitable for-
mal method for such a course, give an overview of the course and its
textbook, and summarize student feedback to the course.

1 Introduction

These days present a great opportunity for integrating formal methods into main-
stream software development, beyond their traditional role of verifying safety-
critical systems, for a number of reasons:

– The software industry is realizing that standard industrial validation tech-
niques are insufficient and do not scale up to today’s systems.

– The “winner-takes-all” nature of the software industry justifies an up-front
investment into making the systems as reliable and efficient as possible.

– Society is increasingly reliant also on “non-safety-critical” systems.
– Success stories are emerging on the use of formal methods in standard software

development, including from Amazon Web Services, the most profitable part
of one the world’s most valuable brands.

To take advantage of this opportunity and achieve the goal of making formal
methods an integral part of mainstream software development, we need to edu-
cate students who have some knowledge of formal methods, and appreciation
that they can add value to industrial software development.

However, there are many challenges to make students study and appreciate
formal methods that I discuss in Sect. 2: students may not have heard of formal
methods, and if they have heard of them they may not consider them relevant for
the job market; students may have limited mathematical background; and our
colleagues may manage to keep formal methods far away from mainstream course
programs. This easily leads to a vicious circle, where few formal methods people
in industry leads to limited use and appreciation of them, so that prospective
students do not see the point of studying formal methods, and so on.

To break out of this vicious circle, the organizers of the FMfun workshop
argue that formal methods teaching should be fun. But how should we teach
c© Springer Nature Switzerland AG 2021
A. Cerone and M. Roggenbach (Eds.): FMFun 2019, CCIS 1301, pp. 58–91, 2021.
https://doi.org/10.1007/978-3-030-71374-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71374-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-71374-4_3

Teaching Formal Methods Using Rewriting Logic 59

formal methods in a fun way? I try to identify what a computer science student
thinks is fun in Sect. 3. I use this knowledge in Sect. 4 to identify some general
criteria for what an introductory undergraduate course in formal methods should
look like.

Based on those criteria, and that as an undergraduate student eons ago I
thought that functional programming was the most “fun,” I have developed,
taught, and written a textbook [42] for a second-year introductory course on
formal methods using rewriting logic [28] and its simulation and model checking
tool Maude [13]. I give an overview of the course and its textbook in Sect. 5.
The course emphasizes the formal modeling and model checking analysis of cor-
nerstone distributed algorithms in today’s systems, including transport proto-
cols, distributed algorithms, and cryptographic protocols. Maude should be very
well-suited for this, since it combines a powerful object-based and functional-
programming (style of) modeling with automatic model checking. In particular,
Maude’s simple yet expressive and general formalism makes it easy to formalize
textbook distributed systems in different domains, as I illustrate in Sect. 5.5.

Is the course fun and seen as relevant? Section 6 summarizes student feedback
from the last 10+ years. What is promising is that twice as many students
finished the course this year compared to last year.

2 Making Students Study Formal Methods: Challenges

This section discusses challenges involved in making undergraduate students take
introductory formal methods courses, and how these challenges can be addressed.

The first challenge is a perception problem, summarized by Amazon Web Ser-
vices (AWS) engineers in their paper “How Amazon Web Services Uses Formal
Methods” [35]:

In industry, formal methods have a reputation for requiring a huge amount
of training and effort to verify a tiny piece of relatively straightforward
code, so the return on investment is justified only in safety-critical domains
(such as medical systems and avionics).

This perception is not restricted to “industry”—and therefore, by word-of-
mouth, to prospective students—but may also be shared by our non-formal-
methods professor colleagues, which easily leads to formal methods being
marginalized in the various course plans, as exemplified by the courses required
for the “Programming” bachelor degree at my department1 shown in Fig. 1.

The introductory formal methods course (IN 2100) competes for a single
10-credit slot with two other courses, one that introduces operating systems
and computer networking, which probably appeals quite a lot and seems work-
relevant to most students, and an (important) course on computational com-
plexity.2 I am not convinced that the situation is better at other universities.
1 Since the bachelor degree is only offered in Norwegian, this course plan is unfortu-

nately only available in Norwegian.
2 Oddly enough, the formal methods course is placed last in its slot, which is sorted

neither by course code nor alphabetically.

60 P. C. Ölveczky

Fig. 1. The course plan for the “Programming and Networks” bachelor degree at my
university. The third year is devoted to freely selected courses and is not shown.

I would not fault a student for taking a course on operating systems and
networking instead of formal methods. I would probably have done so myself as
a young student with an eye on the non-academic job market.

The second part of the quote above deals with the perception—often heavily
promoted by ourselves—that formal methods are important for safety-critical
systems like aircrafts and nuclear power plants. Since Norway, where I currently
work, does not produce aircrafts (or, as far as I know, larger medical devices) and
does not have commercial nuclear power plants, justifying formal methods with
such safety-critical applications may not sway the average 19-year-old student.

I think that some solutions to the above challenges is to emphasize that for-
mal methods provide useful and cost-efficient methods to achieve high-quality
non-safety-critical systems. Whereas previously, applying formal methods to an
in-house system intended for an in-house user base would probably not be worth
it, today we live in a globalized “winner-takes–all” world: Only the “best”
program/system/application in each domain/problem (online auctions, social
media, search, cloud provisioning, photo storage, online meetings, and so on)
will be widely adopted, and these “winners” will rake in billions of dollars, while
the runners-up disappear. Amazon, Google, Facebook, Alibaba, and Tencent

Teaching Formal Methods Using Rewriting Logic 61

are among the top 10 companies in the BrandZ Top 100 Most Valuable Global
Brand ranking 2019.3

While none of these companies produce what we would call safety-critical
systems, their products are complex distributed systems where any flaw (e.g.,
Gmail losing your emails from time to time, Facebook losing your photos or
leaking your confidential data, or Amazon Web Services losing some of the data
stored for you) could (should?) lead to loss of consumer confidence, with users
taking up competing systems, costing billions of dollars and potentially killing
the company. Today’s systems rely heavily on complex algorithms—just think
of the many variants of Paxos that feature prominently in large cloud-based
applications—and on large libraries. The application of formal methods on such
complex algorithms and libraries should therefore be very worthwhile.

The above-mentioned AWS paper [35] makes a strong case for using formal
methods in industry. The sentences after the above quote are:

Our experience with TLA+ shows this perception to be wrong. [...] Ama-
zon engineers have used TLA+ on 10 large complex real-world systems.
In each, TLA+ has added significant value, either finding subtle bugs we
are sure we would not have found by other means, or giving us enough
understanding and confidence to make aggressive performance optimiza-
tions without sacrificing correctness.

I can add that Facebook, Google, Amazon, and others are hiring, and have
recently hired, many formal methods researchers.

While I am skeptical to focus on safety-criticality, there are a number of
fashionable safety-critical systems these days that might motivate students: self-
driving cars, embedded devices, drones, and maybe even power distribution.
Blockchains and their electronic contracts are also “sexy” topics that could moti-
vate the use of formal methods.

Nevertheless, I think that we must emphasize the usefulness of formal meth-
ods in mainstream software development, and provide examples that seem more
work-relevant to the 19-year-old student than airplanes and nuclear power plants.

Changing the (mis-)perceptions of our esteemed professor colleagues is prob-
ably difficult. Maybe the best (or only) option to gain their appreciation is by
showing how formal methods can perform interesting analysis of systems in their
fields of expertise. Neither do I have brilliant ideas on how to make students
choose formal methods (which they probably have not even heard about when
they select courses) instead of seemingly more work-relevant courses. The most
realistic approach is to make excellent and fun formal methods courses that seem
relevant to students who will soon look for jobs, and hope that the courses grow
year by year through word-of-mouth. To achieve this, an introductory formal
methods course should demonstrate its usefulness on non-trivial applications in
different domains/problems that seem work-related to the student.

3 https://www.cnbc.com/2019/06/11/amazon-beats-apple-and-google-to-become-
the-worlds-most-valuable-brand.html.

https://www.cnbc.com/2019/06/11/amazon-beats-apple-and-google-to-become-the-worlds-most-valuable-brand.html
https://www.cnbc.com/2019/06/11/amazon-beats-apple-and-google-to-become-the-worlds-most-valuable-brand.html

62 P. C. Ölveczky

Another challenge to the uptake of formal methods is that students tend
to have worse mathematical background than ever [34,53] and (maybe there-
fore) are skeptical to mathematics. After all, if they were into mathematics they
probably would study mathematics or physics instead of computer science. The
straight-forward way of addressing this problem is to base your teaching on intu-
itive formal methods that do not require too much mathematical background.

This discussion therefore also leads to another conclusion: Automatic model
checking methods should be emphasized, even ahead of (or together with) theo-
rem proving. Model checking allows us to analyze even fairly complex and inter-
esting systems with modest effort (only modeling). It is also worth emphasizing
that the use of formal methods at AWS reported in [35] solely used model check-
ing, which nevertheless increased their confidence so much that they released
sophisticated products without formally verifying them.

A problem often mentioned is that formal methods teaching is not integrated
with other courses, and should be parts of other courses (see, e.g., [55]). I am
not sure how realistic such an approach is, because:

1. Teachers of other courses may not be formal methods experts and would
therefore be unwilling and/or unable to use such methods in their courses.
Furthermore, adding formal methods to their courses inevitably means that
they have to remove some of their own stuff from the course, which most
professors are reluctant to do.

2. Introducing a formal method and an associated tool to the degree that it can
be useful on applications in other courses may itself require a few lectures.

Instead, I believe that a realistic, and even quite good, solution is to apply for-
mal methods on systems/algorithms encountered in other courses that students
are taking, for example on security protocols, transport and other network pro-
tocols, databases/distributed transactions, and operating systems algorithms. I
also think that applying formal methods on systems that the students study in
other courses is crucial to illustrate that formal methods cannot only be used
on avionics, but on the kinds of systems that the students will face when they
start working. As explained in Sect. 5.5, this is the approach I have followed, and
it involved asking professors teaching databases and distributed systems about
algorithms that would be interesting to formalize and formally analyze.

Finally, the last “problem,” mentioned in [22] is that:

Courses on formal methods are often based on examples. [...] However,
examples often fall into one of two categories: First, many are constructed
and thus do not relate to practice. Second, examples are based on projects
of industry partners and are, thus, way too involved for students to under-
stand them.

The solution to this problem is to study systems which look relevant, for exam-
ple for social media (e.g., distributed transactions), online shopping, and cloud
applications (Gmail, ebay, etc.). Even simple examples such as distributed atomic
commit protocols and distributed leader election and consensus algorithms can
be motivated by such applications, as explained in Sect. 5.5.

Teaching Formal Methods Using Rewriting Logic 63

To summarize, in this Sect. 1 have argued for teaching formal methods using
a fairly expressive, intuitive, and general formalism that allows the students to
easily model and analyze a range of relevant-looking systems/algorithms, for
example those they study in other courses.

3 Making Formal Methods Teaching Fun

The stated goal of the FMfun 2019 workshop is to investigate how formal meth-
ods can be taught in such a way that every student can have fun with them.

To make teaching formal methods fun, let us try to figure out what a com-
puter science student thinks is “fun.” First of all, why does someone choose to
(continue to) study computer science? I think that there are two main reasons:

1. (S)he thinks that programming is fun.
2. The job market for computer science graduates has always been (perceived

to be) excellent.

Therefore, to make formal methods fun, we should base it on “programming.”
But what kind of programming? As an undergraduate student way too many
years ago, I got a taste of: standard imperative programming in a Pascal-like
language; C programming; assembly programming; and functional programming
in LISP/Scheme and a local functional language. While I enjoyed all of these
programming paradigms, I was most fascinated by the power and elegance of
functional programming. Therefore, at least for me, a formal method involving
“programming” in a functional-programming style would be the most “fun.”

As for applications, some of the very few relevant hits I got when I searched
for “teaching formal methods” and “fun” suggested using formal methods on
card tricks [15] and on games and puzzles such as Pac-Man, chess, Sudoku, and
the wolf-goat-cabbage problem [22,50]. However, without having any evidence,
I think that applying formal methods to relevant computer systems, such as dis-
tributed algorithms and security protocols, should be more “fun” and certainly
much more motivating for the students, in particular since many of them study
computer science because of the job prospects. Furthermore, even if a student
becomes proficient in applying a formal method on small games, that may not
teach them how to apply the method on computer systems. Finally, this app-
roach would also perpetuate the misconception that formal methods can only
be applied to artificial toy examples.

Let me end this section by mentioning two things that are not fun:

1. Struggling with an immature and buggy tool.
2. A number of students once complained that they were taking a formal meth-

ods course using some kind of automata to model and analyze distributed
systems, and that the hacks and tricky encodings needed to model anything
of interest made it very “un-fun.” Again: a nice powerful modeling language
that allows you to easily and elegantly model non-trivial systems without
awkward encodings are needed to make formal methods “fun.”

64 P. C. Ölveczky

4 How to Teach Formal Methods?

This section first discusses some seminal papers on teaching formal methods.
It then presents my thoughts on what to teach, and finally summarizes all the
requirements for a “fun” formal methods course that I have derived in this paper.

4.1 Related Work

This section summarizes a few key papers on teaching formal methods. A com-
mon thread in these papers is that their recommendations do not seem to have
been properly scientifically validated: the authors just get the impression and
some anecdotal evidence that their suggestions work well in their teaching. I
follow their lead in Sect. 6.

In “Teaching Formal Methods in the Context of Software Engineering,”
Shaoying Liu and researchers at The Nippon Signal Co. propose using a com-
bination of VDM, refinement calculus, and Hoare logic to teach formal meth-
ods in a software engineering context (which is also the context of the present
paper) [24]. In contrast to almost all other papers on the subject I have read,
Liu at al. think that using tools when teaching formal methods is “perhaps less
effective” than not using a tool, since “most effective for students [...] is to write
formal specifications by hand, [just] as they learn English as a foreign language.”

However, Liu et al. admit that their suggested formal methods are not easy
to use by practitioners on real software projects and that “there is little hope to
apply the refinement calculus in practice.” In a recurring theme among papers
on the topic, Liu et al. also say that each course should not be too ambitious,
and should instead be focused: It takes time to digest and master mathematical
concepts, and we should teach them slowly with many examples. Then there is
just not enough time to introduce too many formal methods concepts.

That the field of formal methods is too large to gain encyclopedic knowledge,
and that one should therefore choose a non-representative selection of formal
methods to teach is also the first of ten “principles for teaching Fun With Formal
Methods” given by Antonio Cerone and others in their paper “Teaching Formal
Methods for Software Engineering – Ten Principles” [10]. In contrast to Liu
et al., Cerone et al. advocate strongly for teaching using available and stable
“tools for simulation of behaviour and visualization of state space or traces”
that are powerful, even industrial-strength, and come with many “big” examples
(Principles 3, 5, and 6). The modeling language should make it easy to model
systems at a suitable level of abstraction (Principle 4). Principle 7 says that
formal methods are best taught by (computing) examples that are familiar to
students, which is in contrast to studying formal methods using card tricks and
games and puzzles. Cerone et al. end their list of principles by asking us to shout
out loud that formal methods are fun, and to motivate the students to participate
in competitions such as the SAT competition. I am not convinced that shouting
out loud that formal methods are fun is a good idea, or that a student will
be attracted to a formal methods course for the opportunity to participate in

Teaching Formal Methods Using Rewriting Logic 65

the SAT competition, but I share their opinion that human learning capacity is
highest when we enjoy what we are doing, so formal methods must be fun!

Luca Aceto and others [1] also argue that less is more in formal methods edu-
cation, emphasizing the need to repeatedly convey a few key concepts instead of
giving a broad overview. Their “main messages” are that formal models should
be developed using very expressive and flexible, but mathematically simple, exe-
cutable formalisms, that modal and temporal logics are fundamental to specify
system requirements, and that automatic verification tools should be used.

4.2 What to Teach?

What should be taught in an introductory formal methods course aimed at
second-year university students?

The main point of any university course is to teach concepts, and not single
logics, tools, and formalisms for their own sake. In my view, the key concepts in
formal methods are:

1. Mathematical modeling/formalization of both systems/designs and of the
properties/requirements that the systems should satisfy.

2. Reasoning about such systems models and whether they satisfy their require-
ments. There are two main ways to do this: automatic model checking and
interactive theorem proving verification. In today’s world, where performance
often is as important as correctness, model-based reasoning about system
performance would also be useful.

3. Mathematical analysis of programs/code. (A related, less central, concept is
how to obtain correct code from a verified formal specification.)

It would also be good to give the student a flavor of logical reasoning in general.
If possible, the student should be introduced to some logic and the concepts of
logical deduction, model theory, satisfaction, maybe even soundness and com-
pleteness, and so on. The student should also be exposed to key folklore results,
such as basic undecidability results (for example of termination and reachability
of certain states, which they can relate to their imperative programs).

The main applications of formal methods are modeling and analyzing
designs/algorithms and analyzing program code. In an introductory course at
a non-selective university you may not be able to cover both (“less is more”). In
that case, focusing on modeling and formally analyzing high-level designs seems
to be the best choice for a number of reasons:

1. Programmers code pretty well, and there are also good programming envi-
ronments and tools for generating or developing correct code from correct
specifications. In an early example illustrating the importance of developing
correct system models, it turned out that only three of the 197 critical defects
identified during integration and testing of the Voyager and Galileo space-
crafts were due to coding errors [27,48]. Most faults arose in requirements
and difficult design problems related to distribution [48]. Furthermore, John
Rushby wrote in 2011 that “no [plane] crash has ever been caused by software

66 P. C. Ölveczky

error” [49], and what we know of aircraft problems (such as Boeing 737 Max)
since then confirms this: the problems lie in understanding the problems and
developing a correct design. I discuss the successful use of formal methods at
Amazon Web Services in Sect. 5.5; this also concerned modeling and model
checking designs of distributed algorithm—not code.

2. Not only are defects more likely to be introduced in the early stages of system
development; it is also much cheaper to catch errors as early as possible.

3. It is easier to achieve something interesting in a short time with modeling
and analysis of high-level designs than with program verification, which typ-
ically requires defining the formal semantics of a (possibly toy) programming
language combined with theorem proving.

The courses discussed in Sect. 4.1 deal with modeling and analyzing high-level
designs. Program language semantics and verification are usually part of courses
on programming languages.

4.3 Summarizing the Requirements

To summarize, in my view a fun introductory course in formal methods should
satisfy the following criteria:
1. Be based on functional (or another fun) style of programming for executable

systems modeling.
2. Be based on a fair amount of examples/applications, which should be relevant

for other computer science courses that the students are taking, and which
should be seen as industrially relevant.

3. Should use a few mature and available tools that are seen as relevant in
industry.

4. Should motivate formal methods with industrial successes, preferably not only
on safety-critical systems.

5. Should introduce the key concepts in formal methods:
– modeling system designs;
– formalizing system requirements;
– formal correctness analysis, by model checking and by theorem proving,

and possibly also support formal model-based performance analysis;
– program verification; and
– provide some basics of logics and key folklore results.

On the other hand:
6. The course should focus on a few concepts.

It follows from these requirements that we need an expressive executable
formalism, that allows us to easily model a range of not-entirely-trivial systems,
preferably in different domains (e.g., taken from different other courses). The
formal method should also be simple and intuitive and should not require much
mathematical background. If we want students to achieve meaningful results
on interesting problems, this may lead us to prefer automatic model checking
analysis over interactive theorem proving verification, which scales less well to
non-trivial systems in the short time available in an introductory formal methods
course. Finally, we must show that the formal method has industrial relevance.

Teaching Formal Methods Using Rewriting Logic 67

5 Teaching Introductory Formal Methods Using
Rewriting Logic

This section gives an overview of an introductory formal methods course—and
its accompanying textbook—aimed at second-year undergraduate students at
the University of Oslo that tries to teach formal methods according to the cri-
teria in Sect. 4.3. I first present the setting of the course. Sections 5.2 and 5.3
briefly introduce rewriting logic and its associated modeling language and formal
analysis tool Maude. Section 5.4 explains why I think that Maude is a promis-
ing formal modeling language and analysis tool addressing the requirements for
teaching formal methods for fun. Finally, Sect. 5.5 gives an overview of the course
and its textbook, with some samples thrown in to give a flavor of modeling and
analysis in Maude.

5.1 Course Setting

As already mentioned, the course is an elective course taught to second-year
“programming and networks” students at the University of Oslo. The course
was taught to third- and fourth-year students until 2018, when the textbook was
published. The course has one 90-minute lecture and one 90-minute seminar, dis-
cussing solutions to weekly exercises, per week for 15 weeks. As shown in Fig. 1,
the students have taken some general imperative programming courses and a
number of software engineering courses, as well as introductions to databases
and computer security, before taking this class. They have also taken a basic
first-year introduction to standard mathematical logic, although my course does
not assume any significant knowledge of mathematical logic.

5.2 Formalism Used: Rewriting Logic

I base the course on rewriting logic [9,28,31], which is a simple but powerful
logic of change developed by José Meseguer in the late 1980s and early 1990s.
Rewriting logic has been shown to be very suitable to model a wide range of
distributed systems in a natural way. In particular, rewriting logic has a simple
model of concurrent objects, which are ideal to model distributed systems.

In rewriting logic, data types (domains and functions on such domains) are
specified using (first-order) algebraic equational specifications, which could be
many-sorted, order-sorted, or being based on membership equational logic [29].

Dynamic behaviors are then specified by labeled conditional rewrite rules
l : t −→ u if cond , where t and u are two terms4 representing state patterns.

5.3 Language and Tool Used: Maude

Maude [13,14,16] (http://maude.cs.illinois.edu) is a specification language and
high-performance analysis tool for rewriting logic developed at SRI International
4 More precisely, they are equivalence classes of terms modulo the equations in the

equational specification.

http://maude.cs.illinois.edu

68 P. C. Ölveczky

and the University of Illinois since the beginning of the 1990s. Maude supports
convenient mix-fix operator syntax; deduction modulo equational axioms such
as associativity, commutativity, and identity, and their combinations; and order-
sorted and membership equational logic theories. Maude assumes that the equa-
tions (when oriented from left to right) are ground confluent and terminating
(modulo the equational axioms), and executes an equational specification by
computing the normal form of a term in a standard term rewriting sense.

Since rewrite rules modeling atomic transition patterns may not be termi-
nating and/or confluent, there are different ways of formally analyzing rewriting
logic specifications (called rewrite theories). Rewriting applies rewrite rules to a
ground term representing the initial system state to simulate one possible behav-
ior of the system from the initial state, and explicit-state reachability analysis
uses a breadth-first search strategy to search for states reachable from the initial
state that match a given state pattern. More sophisticated system requirements
can be formalized as linear temporal logic (LTL) formulas [12], where atomic
propositions are terms of sort Prop and LTL formulas terms of sort Formula.
If the state space reachable from the initial state is finite, Maude’s explicit-
state LTL model checker can check whether all behaviors from the initial state
satisfies an LTL property. Maude has recently been equipped with symbolic anal-
ysis methods (where reasoning is performed on state patterns, i.e., terms with
variables, that represent infinite sets of concrete states), such as narrowing and
rewriting combined with SMT solving for symbolic reachability analysis [14,16].

Thanks to Maude’s meta-programming features, where any Maude module
can be represented as a term of a sort Module at the Maude meta-level, and
where we hence can define Maude functions on such (meta-represented) Maude
modules, the user can define specific analysis commands herself. She can also do
so in Maude 3 using Maude’s strategy language.

Maude specifications can also be subjected to interactive theorem proving
verification of invariants [45] and reachability logic properties [52].

It should also be mentioned that rewriting logic has natural extensions to
model probabilistic [2] and real-time systems [37]. Such systems can be ana-
lyzed by, respectively, statistical model checkers such as PVeStA [3] and Mul-
tiVesta [51], and by the Real-Time Maude tool [36,38].

5.4 Why Maude?

How does Maude address the requirements in Sect. 4.3 for teaching formal meth-
ods in a “fun” way?

– Maude provides a fun functional-programming-style specification of data
types and a functional-programming and object-oriented style of modeling
distributed systems, which are the systems we want to target these days.

– Maude provides a very simple and intuitive formalism that does not require
much (if any) mathematical background. The students should be familiar
with equations, having used equations such as (x + y)2 = x2 + 2xy + y2 as
simplification rules in school.

Teaching Formal Methods Using Rewriting Logic 69

– The Maude formalism is very general and expressive, so that a wide range of
distributed systems and forms of communication can be easily modeled at the
desired level of abstraction, without tricky encodings. This makes it possible
to specify different kinds of non-trivial systems in the limited time frame of
such an introductory course.

– As argued above, to illustrate the use of formal methods on interesting prob-
lems, one may have to prefer automatic model checking methods over inter-
active theorem proving methods in such an introductory course, and Maude
provides automatic reachability analysis and LTL model checking.

– The tool is quite mature and efficient, is freely available, and is very easy to
install on Linux platforms. Furthermore, I have never had a student with a
Windows machine who could not run Maude.

– Although neither my course nor my textbook covers it, rewriting logic can
also be used to verify programs in a wide range of languages, such as C, Java,
and so on, using Grigore Rosu’s rewriting-logic-based K framework [47] and
matching logic [46].

– Students tend to be more motivated to use a new tool when it seems relevant
to industry and is used on interesting real applications. Maude and related
tools have been applied to a wide range of complex systems. For example,
in security, Maude was applied at Microsoft to discover previously unknown
address bar and status bar spoof attacks in Internet Explorer [33], and one
of the leading formal crypt-analysis tools, the latest version of Cathy Mead-
ows’ NRL Protocol Analyzer, called Maude-NPA, is written in Maude. We
have already mentioned Grigore Rosu’s work on rewriting logic semantics
of programming languages [7,17,30,32]. This framework is used in a com-
mercial setting to formalize the Ethereum Virtual Machine and to formally
analyze electronic contracts on the blockchain [20,43]. Maude and PVeStA
have been used to formally model and analyze both the correctness and per-
formance of large transport protocols [23,39], state-of-the-art wireless sensor
network algorithms [21,40], and large cloud-based transaction systems such
as Google’s Megastore [18,19], Apache Cassandra [25], and others (see [6,41]
for an overview). Researchers at NASA have used Maude to verify pro-
grams written in NASA’s PLEXIL language for commanding and monitoring
autonomous systems [44]. In the biological and medical domains, rewriting
logic and Maude have been used to formalize and analyze cell biology [54]
and simple models of biochemical processes in the brain [4,5]. Maude has
also been used to reason about human cognition [11], in particular human
multitasking [8]. Th survey paper [31] gives a more comprehensive overview
of some applications of Maude as of 2012. My students may also be inspired
by the fact that two of my former TAs started a company with a product
written in Maude that is still thriving, more than 15 years later.

– Since Maude provides support for sockets, a Maude instance can communicate
with other Maude instances and with other external objects. In [26] this is
used to automatically generate correct-by-construction distributed implemen-
tations with decent performance from verified Maude models of distributed

70 P. C. Ölveczky

transaction systems. These implementations can then run on real workloads,
such as those generated by YCSB.

5.5 Overview of the Course and Its Textbook

Fig. 2. Course textbook

This section summarizes the content of
the course and its textbook, Designing
Reliable Distributed Systems: A Formal
Methods Approach Based on Executable
Modeling in Maude, which was published
in 2018 as a volume in Springer’s Under-
graduate Topics in Computer Science
series.

The course (and the textbook) are
divided into two parts: Part I shows how
to define data types in Maude, and gives
a quite standard introduction to algebraic
equational specifications and term rewrite
systems. Part II explains how the dynamic
behaviors of distributed systems can be
modeled and analyzed in Maude.

To give a flavor of the course, I also
give a few small examples of specification
and analysis in Maude. The section head-
ers show in parenthesis the number of 90-
minute lectures I devote to each topic.

Equational Specification in Maude (3.5 Lectures). This chapter intro-
duces equational specification of data types in Maude, starting with a “Hello
Word” example, a specification of the natural numbers with addition in a Peano
style:

Example 1. The following Maude functional module (fmod) defines a sort Nat
whose constructor ground terms 0, s(0), s(s(0)), . . . represent the natural
numbers 0, 1, 2, . . . , and defines the addition function on such (representations
of) natural numbers, where ‘_’ denotes the argument positions in “mix-fix” func-
tion symbols:

fmod NAT-ADD is

sort Nat .

op 0 : -> Nat [ctor] . vars M N : Nat .

op s : Nat -> Nat [ctor] . eq 0 + M = M .

op _+_ : Nat Nat -> Nat . eq s(M) + N = s(M + N) .

endfm

Maude’s reduce (red) command can then be used to compute the value of 3+2:

Teaching Formal Methods Using Rewriting Logic 71

Maude> red s(s(s(0))) + s(s(0)) .

...

result Nat: s(s(s(s(s(0))))) �

In this way, we define data types such as lists, multisets, binary trees, graphs,
and so on, in rewriting logic/Maude. “Syntactic subtypes” can be defined using
subsorts, and “semantic subtypes” can be defined by membership axioms. A
(binary) function/operator can be declared to be associative (assoc), commu-
tative (comm), and/or to have an identity element t (id: t), so that matching is
performed modulo these properties.

Example 2. Combining subsorts and operator attributes, we can define lists and
non-empty lists (of natural numbers) as follows:

fmod LIST is

protecting NAT .

sorts List NeList . subsorts Nat < NeList < List .

op nil : -> List .

op _:_ : List List -> List [ctor assoc id: nil] .

op _:_ : NeList NeList -> NeList [ctor assoc id: nil] .

endfm

The list 〈2, 8, 5, 3〉 is then represented as the term 2 : 8 : 5 : 3 of sort NeList;
since NeList is a subsort of the sort List, this term is also a term of sort List.

We can then define the insertion sort algorithm, which sorts a list by inserting
the elements, one by one, in the right place in the sorted list of the elements
that have already been treated. In the auxiliary function, the first argument is
the elements that have not yet been inserted into the sorted (sub)list, and the
second argument is the sorted list of elements that have already been treated:

fmod INSERTION-SORT is protecting LIST .

op insertionSort : List -> List .

op insertionSort : List List -> List .

vars L L2 L3 : List . vars M N K : Nat .

eq insertionSort(L) = insertionSort(L, nil) .

eq insertionSort(M : L, nil) = insertionSort(L, M) .

ceq insertionSort(M : L, N : L2) = insertionSort(L, M : N : L2) if M <= N .

ceq insertionSort(M : L, L2 : N) = insertionSort(L, L2 : N : M) if M > N .

ceq insertionSort(M : L, L2 : K : N : L3)

= insertionSort(L, L2 : K : M : N : L3) if M > K and M <= N .

eq insertionSort(nil, L) = L .

endfm

Maude> red insertionSort(8 : 5 : 12 : 2 : 45 : 3 : 45 : 46 : 47) .

...

result NeList: 2 : 3 : 5 : 8 : 12 : 45 : 45 : 46 : 47 �

72 P. C. Ölveczky

Multisets (of, say, natural numbers) can be defined equally easily using an
associative and commutative multiset union operator (which we denote by empty
syntax: _ _):

fmod MULTISET-NAT is protecting NAT .

sort Mset . subsort Nat < Mset .

op none : -> Mset [ctor] .

op __ : Mset Mset -> Mset [ctor assoc comm id: none] .

endfm

As examples, and to “sneak-introduce” classic NP-complete problems, the
book introduces and defines functions solving problems such as subset sum,
Hamiltonian circuit, (integer) knapsack, and the traveling salesman problem.

Example 3. The subset sum problem, where the question is to decide whether
it is possible to pick a subset of numbers with sum K from a given multiset
M of natural numbers, can be solved as follows (where sd denotes symmetric
difference (“minus”) on natural numbers):

op subsetSum : Mset NzNat -> Bool .

vars N : Nat . var NZ : NzNat . var REST : Mset .

eq subsetSum(none, NZ) = false .

eq subsetSum(N REST, NZ)

= if N > NZ then subsetSum(REST, NZ)

else (if N < NZ then subsetSum(REST, sd(NZ,N)) or subsetSum(REST, NZ)

else true fi) fi . --- N == NZ �

Finally, the book discusses parametrized modules in Maude, which are not taught
in class, and the Bergstra-Tucker meta-theorem that any computable data type
can be defined by a terminating and confluent equational specification.

Operational Semantics (Half a Lecture), Termination (1–2 Lectures),
and Confluence (1 Lecture). This part defines the operational semantics
of equational specifications (by rewriting). Since this is an introductory text-
book, all treatment of theoretical issues is restricted to one-sorted unconditional
theories without operator attributes such associativity and commutativity.

Since Maude assumes the equations to be terminating and (ground) con-
fluent, we must be able to reason about termination and confluence. The book
gives a proof for the undecidability of termination using Turing machines. It then
shows how “weight” functions, where each ground term is assigned a weight in
a well-founded strict partial order, can be used to prove termination. The book
then explains the elegant theory of simplification orders, which leads to the lex-
icographic and multiset path orders (lpo and mpo, respectively). I used to teach
the theory of simplification orders, but now omit it for the second-year students
(who must learn temporal logic instead). The book contains lots of examples
and exercises, including indicating how the techniques also can be applied to

Teaching Formal Methods Using Rewriting Logic 73

imperative programs. One exercise is to implement lpo, which can be done very
elegantly in Maude, and which also implicitly introduces meta-programming.

A chapter on checking confluence leads to the critical-pair algorithm for
checking confluence in terminating specifications.

Equational Logic (1 Lecture). To introduce students to fundamentals such
as proof systems, proof theory, and logics, the course introduces equational logic
(again, in its basic unsorted version), with its deduction rules, and basic results
such as undecidability of equality in the general case, and decidability when the
specification is terminating and confluent. The second part of that chapter deals
with inductive theorems, and includes an explanation of how it follows from
the negative solution to Hilbert’s Tenth Problem that there is no finitary sound
and complete proof system for inductive theorems. This part also presents the
general “constructor induction” scheme for proving inductive theorems, applied
to simple equalities for lists and binary trees, and shows how Maude in some
cases can prove inductive theorems automatically.

Models of Equational Specifications. The chapter on the model theory
for algebraic specifications gives the basics: σ-algebras, term algebras, (Σ,E)-
algebras, quotient algebras, the algebra TΣ,E , proof of the soundness and com-
pleteness of equational logic, and explains how initial algebras are the intended
models that satisfy expected properties. This chapter is not taught in the course.

Rewriting Logic and Executing Rewrite Theories in Maude (1 Lec-
ture). In rewriting logic, data types are defined as equational specifications,
and dynamic behavior is modeled by labeled rewrite rules l : t −→ t′ if cond,
where l is a label, and t and t′ are terms that should be seen as state fragments,
parametrized by the variables that appear in the rule. The key point is that
the rewrite rules, modeling dynamic behaviors, need not be terminating and/or
confluent. This chapter introduces rewriting logic and its deduction rules, as well
as how to reason logically about which steps can be performed concurrently.

In Maude, a rewrite rule is executed by first reducing the state to its equa-
tional normal form, and then applying the rewrite rule to simulate one step of
the system. Maude’s rewrite (rew) command simulates one of the behaviors from
a given initial state. Maude’s search command performs breadth-first search to
check whether a given state pattern is reachable from a given initial state. We
apply Maude to model and analyze small games and populations of humans,
simulating Turing machines, and exhibiting solutions to NP-complete problems
such as knapsack and traveling salesman.

Example 4. In the blackboard game, a bunch of natural numbers are written on
a blackboard. In each step of the game, any two numbers on the blackboard can
be replaced with their arithmetic mean. This exciting game can be modeled as
follows in Maude, where the blackboard is represented as a multiset of numbers:

74 P. C. Ölveczky

mod BLACKBOARD-GAME is including MULTISET-NAT .

vars M N : Nat .

rl [replace] : M N => (M + N) quo 2 .

endm

We can simulate one behavior of this game from the blackboard 98 2 4 56 7:

Maude> rew 98 2 4 56 7 .

result NzNat: 64

and can check whether it is possible to reach a state where the blackboard only
has a single number, which, in addition, is less than 15:

Maude> search [1] 98 2 4 56 7 =>* N such that N < 15 .

Solution 1 (state 156)

N --> 14 �

Object-Oriented Specification in Maude (1 Lecture). A convenient way
to represent the state of a distributed system is as a multiset of objects and
messages traveling between the objects. Objects and messages can be any terms;
a convenient notation we use is that the term

< o : C | att1 : val1, ..., attn : valn >

denotes an object o of class C, with attributes att1 to attn, whose current values
are val1 to valn, resp. A message is a term of sort Msg which in this course has
the form msg content from o1 to o2.

Full Maude is an extension of Maude, specified in Maude, that provides
convenient syntax for object-based specification, as well as support for sub-
classes. In Full Maude, a class is declared class C | att1 : s1, ..., attn : sn .
This chapter illustrates object-oriented specification not only with populations
of humans, but also with the dining philosophers problem and with blackjack,
where we use Maude’s random function to draw cards pseudo-randomly and to
simulate the outcome of playing blackjack with different strategies.

Modeling Communication and Transport Protocols (1 Lecture). The
book then explains how different forms of communication, including synchronous
communication, (unordered) unicast, multicast, and broadcast, message loss
and duplication, ordered unicast, wireless broadcast, and communication using
“shared variables” can be abstractly modeled in Maude.

This enables us to start modeling and analyzing some of the most well-
known and key distributed algorithms/protocols, and we start by modeling and
analyzing classic transport protocols such as TCP, the alternating bit protocol,
and different versions of the sliding window protocol.

Teaching Formal Methods Using Rewriting Logic 75

Distributed Algorithms (1 Lecture). The chapter which shows how Maude
can be used to formalize and analyze central algorithms in distributed systems
is an important chapter in the book. The algorithms were selected as follows:

– A professor colleague in Oslo from the database community challenged me to
model and analyze the two-phase commit (2PC) protocol.

– A professor teaching distributed systems at the University of Illinois suggested
some key algorithms in distributed systems.

– When I was part of the University of Illinois Center for Assured Cloud Com-
puting, I noticed that 2PC and distributed consensus algorithms (in particu-
lar various flavors of Paxos) show up as key components in many cloud-based
systems, such as Google’s Megastore and UC Berkeley’s RAMP transactions.

– It is easy to motivate the selected algorithms with simple use cases.

The chapter first treats the two-phase commit (2PC) protocol, admittedly
a simple protocol, which is nevertheless much used. It is also easy to motivate:
a transaction today is typically a multi-site transaction. For example, a travel
agent may sell a trip with both hotel room and plane ticket included. Such
a transaction involves at least three different sites: the flight reservation sys-
tem, the hotel reservation system, and the payment processing system. If one of
the operations fails (there are no flights or no hotel rooms, or the payment is
unsuccessful), the whole transaction must be aborted. Modern systems replicate
data for availability and disaster tolerance; therefore, two different replicating
sites/servers may sell the same seat on a flight (or the same unique ebay item) to
two different persons at the same time. 2PC solves the problems by aborting the
transaction unless all servers agree to commit the transaction (which they will
not do if there are double bookings, or if the payment (or the hotel reservation
or the flight reservation) fails).

The part on 2PC also discusses techniques for injecting faults into the system.
Distributed mutual exclusion algorithms are also easy to motivate (e.g., to

avoid lost updates in a distributed setting, or to disallow that the same flight seat
can be accessed (and hence sold) by different servers at the same time). We model
and analyze the central server, the token ring, and the Maekawa distributed
mutual exclusion algorithms. Exam problems have asked students to model and
analyze Lamport’s bakery algorithm and the Suzuki-Kasami algorithm.

Instead of canceling both transactions when the same seat is sold to two per-
sons, it would be much better if the sites can agree (i.e., reach consensus) on
one person to sell the ticket to. This leads to distributed consensus algorithms,
which typically include distributed leader election algorithms as key compo-
nents. We study a distributed token ring leader election algorithm, as well as
a spanning-tree-based leader election algorithm that is the basis of many wire-
less algorithms. The book also discusses distributed consensus and gives a very
abstract description of Paxos, but does not provide details.

Example 5. In the token ring distributed mutual exclusion algorithm, the nodes
form a ring. Each node executes forever, alternating between executing outside
its critical section and executing inside its critical section. There is one token

76 P. C. Ölveczky

that the nodes send along the ring; a node can only execute inside its critical
section when it holds the token.

This algorithm can be specified in (Full) Maude as follows:

load full-maude

(omod TOKEN-RING-MUTEX is

sort Status MsgContent .

ops outsideCS waitForCS insideCS : -> Status [ctor] .

op msg_from_to_ : MsgContent Oid Oid -> Msg [ctor] .

op token : -> MsgContent [ctor] .

class Node | next : Oid, status : Status .

vars O O1 O2 : Oid .

rl [wantToEnterCS] :

< O : Node | status : outsideCS >

=>

< O : Node | status : waitForCS > .

rl [rcvToken1] :

(msg token from O1 to O)

< O : Node | status : waitForCS >

=>

< O : Node | status : insideCS > .

rl [rcvToken2] :

(msg token from O1 to O)

< O : Node | status : outsideCS, next : O2 >

=>

< O : Node | >

(msg token from O to O2) .

rl [exitCS] :

< O : Node | status : insideCS, next : O2 >

=>

< O : Node | status : outsideCS >

(msg token from O to O2) .

endom)

The first line starts Full Maude. The class declaration declares a class Node
with two attributes. The attribute status shows the “execution status” of the
node, i.e., whether the node is executing outside its critical section (outsideCS),
is waiting to access its critical section (waitForCS), or is executing inside its
critical section (insideCS). The attribute next points to the object identifier of
the next node in the ring.

In rule wantoToEnterCS, a node that is executing outside its critical section
needs to enter its critical section, and starts waiting for the token. In rule

Teaching Formal Methods Using Rewriting Logic 77

rcvToken1, such a waiting node receives the token (message), and starts exe-
cuting inside its critical section (i.e., changes its status to insideCS). In rule
rcvToken2, a node that is executing outside its critical section receives the token,
and just sends the token (message) to the next node in the ring. Finally, in rule
exitCS, a node ends its execution inside its critical section and sends the token
to the next node in the ring.

The following module defines a suitable initial state init consisting of four
nodes, named a, b, c, and d, and where the token is “on the way” to node a:

(omod INITIAL is including TOKEN-RING-MUTEX .

ops a b c d : -> Oid [ctor] . --- object names

op init : -> Configuration . --- initial state

eq init

= (msg token from d to a)

< a : Node | status : outsideCS, next : b >

< b : Node | status : outsideCS, next : c >

< c : Node | status : outsideCS, next : d >

< d : Node | status : outsideCS, next : a > .

endom)

We can then simulate 100 steps of this (nonterminating) algorithm:

Maude> (frew [100] init .)

...

result Configuration :

< a : Node | next : b, status : insideCS >

< b : Node | next : c, status : waitForCS >

< c : Node | next : d, status : waitForCS >

< d : Node | next : a, status : outsideCS >

The main invariant that the algorithm should satisfy is that two nodes never
execute inside the critical section at the same time. We check this invariant by
searching for a reachable state where two objects both have status insideCS
(variables in search patterns are given as var:sort):

Maude> (search [1] init =>* REST:Configuration

< O1:Oid : Node | status : insideCS >

< O2:Oid : Node | status : insideCS > .)

No solution.

Finally, we check whether it is possible to reach a deadlock (=>!) from init:

Maude> (search [1] init =>! SYSTEM:Configuration .)

No solution. �

78 P. C. Ölveczky

Modeling and Breaking Cryptographic Protocols (1 Lecture). One cha-
pter of the textbook gives a basic introduction to cryptography (public/private-
key cryptography, shared-key cryptography, digital signatures, and so on),
and shows how the well-known Needham-Schroeder public-key (NSPK) mutual
authentication protocol can be modeled and broken using the Maude techniques
that the students have learnt.

Yes, NSPK is a standard example, but it should be inspiring for the students.
I use it in the beginning of the course to motivate formal methods:

– NSPK is an excellent example for the need for formal methods. It was a
well-known and well-studied protocol from 1978. The Handbook of Applied
Cryptography from 1996 discusses it without mentioning any flaws. The key
(pardon the pun) thing is that it was broken by Gavin Lowe in 1995 using
exhaustive analysis of a formal model, which is exactly what we are doing.
That is, the flaw in NSPK went undiscovered for 17 years until formal analysis
found a successful attack on NSPK.

– NSPK is a prime example of the complexity of distributed systems: the whole
protocol is described in three lines, yet it is so hard to really understand that
the flaw was not found for 17 years.

– More or less all our use of computers (email, social media, online shopping and
banking, etc.) is based on our ability to authenticate ourselves to a service,
so this is an absolutely crucial problem.

– I guess that security is a popular topic with students, and using NSPK allows
me to both show the use of formal methods on a sexy topic, as well as to give
the students the briefest of crash courses on cryptography.

The NSPK protocol is usually described in standard crypto-protocol notation as
follows, where A (the initiator) and B (the responder) are two agents who want
to authenticate themselves to each other.

Message 1. A → B : A .B . {Na . A}PKB

Message 2. B → A : B .A . {Na . Nb}PKA

Message 3. A → B : A .B . {Nb}PKB

In the first step, A generates the nonce (“fresh random number”) Na, adds her
identity A, encrypts this concatenation Na . A with the public key of B, and sends
this encrypted message, together with her own and B’s name (unencrypted) to
B. When B receives this first message, he decrypts the encrypted part using his
private key to obtain the nonce Na. The responder B then generates his own
nonce Nb, and returns the nonce Na along with the new nonce Nb, encrypted
with the public key of A. When A receives this Message 2 she decrypts it with
her private key to read both Na and Nb, and sends the nonce Nb, encrypted with
B’s public key, back to B. It should be (and for many years was) obvious that
after the three messages have been successfully read and decrypted, that A and
B really wanted to participate in a protocol run with each other.

I do not show the declaration of the messages in Maude, but refer to the
book [42] for details. For example, a Message 1 can be modeled as the term

Teaching Formal Methods Using Rewriting Logic 79

msg (encrypt (nonce(A, 3) ; A) with pubKey(B)) from A to B.

where nonce(A, 3) is the third nonce generated by A. Our model allows multiple
runs of the protocol with multiple participants. An initiator is an object of class

class Initiator | initSessions : InitSessions, nonceCtr : Nat .

where nonceCtr is a counter for generating nonces, and initSessions is a mul-
tiset of elements of the following kinds:

– notInitiated(B) indicates that A wants to initiate contact with B but has
not yet done so;

– initiated(B,N) indicates that A has sent Message 1 to B with nonce N
and is waiting for Message 2 from B; and

– trustedConnection(B) indicates that A has established (what she thinks is)
an authenticated connection with B.

The following two rewrite rules model the behavior of initiator nodes. The rule
send-1 models sending Message 1. The agent A has notInitiated(B) in its
initSessions attribute, which means that it wants to establish a connection
with B. The agent A generates a fresh nonce nonce(A, N) and sends the cor-
responding Message 1 to B. Agent A must also remember that it has initiated
contact with B using nonce nonce(A, N) and must increase its nonce counter:

rl [send-1] :

< A : Initiator | initSessions : notInitiated(B) IS,

nonceCtr : N >

=>

< A : Initiator | initSessions : initiated(B, nonce(A, N)) IS,

nonceCtr : N + 1 >

msg (encrypt (nonce(A, N) ; A) with pubKey(B)) from A to B .

In rule read-2-send-3 an agent A receives a Message 2 from B. If the first
nonce (NONCE) in the message received (and decrypted) by A is the same as the
nonce stored in A’s initSessions attribute for B, then agent A figures out that
it has established an authenticated connection with B, and sends Message 3 (B’s
nonce (NONCE’) encrypted with B’s public key) to B:

rl [read-2-send-3] :

(msg (encrypt (NONCE ; NONCE’) with pubKey(A)) from B to A)

< A : Initiator | initSessions : initiated(B, NONCE) IS >

=>

< A : Initiator | initSessions : trustedConnection(B) IS >

msg (encrypt NONCE’ with pubKey(B)) from A to B .

Responders are modeled by two similar rewrite rules (modeling receiving
Message 1 and sending Message 2, and receiving Message 3). Some nodes may
be both initiators and responders (in different runs of the protocol). They are
modeled as subclasses of both Initiator and Responder, and therefore inherit
the attributes and rewrite rules of both superclasses:

80 P. C. Ölveczky

class InitAndResp .

subclass InitAndResp < Initiator Responder .

“Dolev-Yao” intruders are modeled by specifying their capabilities, and by
in each step also storing any new agent names, nonces, or encrypted messages
whose content it cannot understand:

class Intruder | initSessions : InitSessions,

respSessions : RespSessions, nonceCtr : Nat,

agentsSeen : OidSet,

noncesSeen : NonceSet,

encrMsgsSeen : EncrMsgContentSet .

Rules then model the intruder participating in normal protocol runs (and
storing the obtained information), intercepting and stealing messages, and send-
ing any kind of fake messages, using information it has gathered. For example,
in the following rule, an intruder sends out a completely random Message 2:

crl [send-2-fake] :

< I : Intruder | agentsSeen : A ; B ; OS,

noncesSeen : NONCE NONCE’ NSET >

=>

< I : Intruder | >

(msg (encrypt (NONCE ; NONCE’) with pubKey(A)) from B to A)

if A =/= B /\ A =/= I .

We then define the following initial state intruderInit:

op intruderInit : -> Configuration .

eq intruderInit

= <"Scrooge" : Initiator |

initSessions : notInitiated("BeagleBoys"), nonceCtr : 1 >

< "Bank" : Responder |

respSessions : emptySession, nonceCtr : 1 >

< "BeagleBoys" : Intruder |

initSessions : emptySession, respSessions : emptySession,

nonceCtr : 1, agentsSeen : "Bank" ; "BeagleBoys",

noncesSeen : emptyNonceSet, encrMsgsSeen : emptyEncrMsg > .

The Beagle Boys do not know any other agent, except the bank, but hope to be
contacted by some rich guys after creating an enticing web site promising
. . . Indeed, Scrooge wants to contact the Beagle Boys but not the bank. Therefore,
if it is possible to reach a state where the bank thinks that it has established an
authenticated connection with Scrooge, then the protocol is broken, and Scrooge’s
wealth canbe transferred to theBeagleBoys.The following search commandchecks
whether such an undesired state is reachable from intruderInit:

Maude> (search [1] intruderInit =>*

C:Configuration

< "Bank" : Responder | respSessions :

trustedConnection("Scrooge") RS:RespSessions > .)

Teaching Formal Methods Using Rewriting Logic 81

This Maude search actually finds such a bad state where the Bank thinks
that is has a connection with Scrooge:

Solution 1

...

Maude can then output the path leading from the initial state to this bad
state, and this behavior indeed corresponds to a real attack on NSPK.

System Requirements (1 Lecture). Whereas up to this point, the course
has dealt with formalizing the behaviors of the system, this and the follow-
ing chapter deals with the requirements that the system should satisfy. I first
introduce state-based and action-based properties, and then classes of proper-
ties, such as invariants, reachability, “guarantee” (“something good must even-
tually happen”), response properties, stability, and so on. I also discuss fairness
assumptions, which are often needed to have liveness/guarantee properties, and
how invariants can be proved inductively.

Formalizing and Model Checking Requirements Using Temporal Logic
(1 Lecture). Maude is equipped with a linear temporal logic (LTL) model
checker. Atomic propositions are terms of sort Prop, and LTL formulas are con-
structed (as terms of sort Formula) in the usual way. One chapter of the book
introduces LTL and Maude’s LTL model checker, and explains how various
requirements, including fairness assumptions, can be formalized in LTL, and how
crucial requirements of the distributed algorithms in the book can be analyzed.

Example 6. Consider the token-ring mutual exclusion algorithm in Example 5.
The key liveness property we want to prove is that each node executes in its
critical section infinitely often. This cannot be proved using search, but can easily
be done using LTL model checking. We define a parametric atomic proposition
inCS(o) to hold if node o is currently executing inside its critical section:

(omod MODEL-CHECK-MUTEX is protecting INITIAL . including MODEL-CHECKER .

subsort Configuration < State .

op inCS : Oid -> Prop [ctor] .

var REST : Configuration . var S : Status . var O : Oid .

eq REST < O : Node | status : S > |= inCS(O) = (S == insideCS) .

endom)

We check if each node in init executes infinitely often in its critical section:5

Maude> (red modelCheck(init, ([] <> inCS(a)) /\ ([] <> inCS(b)) /\

([] <> inCS(c)) /\ ([] <> inCS(d))) .)

result ModelCheckResult : counterexample(...)

5 ‘[]’ and ‘<>’ denote the temporal operators � and ♦, respectively, and ‘/\ and ‘->’
denote logical conjunction and implication.

82 P. C. Ölveczky

The property does not hold: the model checker returns a counterexample where
node d never starts waiting to enter its critical section. We therefore add the
following justice fairness assumption for the first rule: for each node o, if, from
some point on, the first rule is continuously enabled for o (that is, o’s status
is outsideCS), then the first rule must also be taken infinitely often for o (i.e.,
o’s status must be waitForCS). We add the following declarations to the above
module to define the formula justAll that encodes this justice assumption:

ops waiting outside : Oid -> Prop [ctor] .

eq REST < O : Node | status : S > |= waiting(O) = (S == waitForCS) .

eq REST < O : Node | status : S > |= outside(O) = (S == outsideCS) .

op just : Oid -> Formula .

op justAll : -> Formula .

eq just(O) = (<> [] outside(O)) -> ([] <> waiting(O)) .

eq justAll = just(a) /\ just(b) /\ just(c) /\ just(d) .

We can check whether the justice fairness assumption justAll implies the
desired property:

Maude> (red modelCheck(init, justAll ->

(([] <> inCS(a)) /\ ([] <> inCS(b)) /\

([] <> inCS(c)) /\ ([] <> inCS(d)))) .)

result Bool : true �

Real-Time and Probabilistic Systems (Not Taught). Up to this point, the
models have been untimed. However, these days the performance of a system is
also an important metric, whose analysis requires modeling time. Furthermore,
fault-tolerant systems must detect message losses and node crashes, which is
impossible in untimed asynchronous distributed systems. Therefore, most larger
system these days are real-time systems, whose modeling and analysis in Maude
is supported by the Real-Time Maude tool [36,38]. The course textbook briefly
introduces how real-time systems can be modeled and analyzed in Maude, and
also mentions timed extensions of temporal logics.

Randomized simulations, such that those performed simulating playing black-
jack with each card drawn pseudo-randomly, do not provide performance esti-
mates with mathematical guarantees. I need more solid guarantees to quit my
day job and move to Las Vegas. My textbook therefore indicates how probabilis-
tic systems can be modeled in rewriting logic as probabilistic rewrite theories [2].
Such probabilistic models can then be subjected to statistical model checking
(SMC) using Maude-connected tools such as PVeStA [3] and MultiVesta [51],
which estimate the expected value of a path expression up to certain confidence
intervals. Although, in contrast to precise probabilistic model checking, SMC does
not give absolute guarantees, it is considered to be a scalable formal method,
which, since it is based on simulating single paths until the desired confidence
level has been reached, can be easily parallelized.

PVeStA analysis showed that if I start with $1000 and play 20 $100-rounds
of blackjack, then with 99% statistical confidence, I am expected to walk home

Teaching Formal Methods Using Rewriting Logic 83

with between $875 and $877, and that the expected probability that I can walk
out of the casino with $1200 or more is a promising 31%.

In contrast to the other chapters in the book, the book only gives a flavor
of these subjects, and does not give details about how to run Real-Time Maude
or PVeStA. I have sometimes taught this part to fourth-year students, but do
not currently teach it to second-year students.

Using Maude on Cloud Systems and the Use of Formal Methods at
Amazon (1 Lecture). To give students the impression that Maude can be
applied to analyze industrial designs, in the last lecture I give an overview of the
use of Maude (and PVeStA) to model and analyze both the correctness and per-
formance of cloud transaction systems such as Google’s Megastore (which runs,
e.g., Gmail and Google AppEngine), Apache Cassandra (developed at Facebook
and used by, e.g., Amadeus, CERN, Netflix, Twitter), and the academic P-Store
design, as well as our own extensions of these designs (see [6] for an overview).

The last lecture should summarize the course: What have you learnt? What
is it useful for? Instead of singing the praises of formal methods myself, I sum-
marize the course by quoting the experiences of engineers at Amazon Web Ser-
vices, who used formal methods while developing their Simple Storage System
and DynamoDB data store, which are key components of Amazon’s profitable
cloud computing business (which is much more profitable than Amazon’s retail
business). The engineers at Amazon used Lamport’s TLA+ formalism with its
model checker TLC. They report that formal methods have been a big success
at Amazon, and describe their experiences in the previously mentioned paper
“How Amazon Web Services Uses Formal Methods” [35] as follows:

– Formal methods found serious “corner case” bugs in the systems that were
not found with any other method used in industry.

– A formal specification is a valuable precise description of an algorithm, which,
furthermore, can be directly tested.

– Formal methods can be learnt by engineers in short time and give good return
on investment.

– Formal methods makes it easy to quickly explore design alternatives and
optimizations.

It is worth remarking that both the TLA+ efforts at Amazon and Maude as
taught in this course use model checking. There is no evidence that Amazon
formally verified their algorithms: model checking gave them enough confidence.

My textbook does not contain a chapter on the topics covered in this lecture.

6 Evaluation

The fact that I think that the course described above should be fun is irrelevant.
What do the students think? Unfortunately, I have not solicited their feedback.
Ideally, I should have asked: all students in the “Programming” program who
did not take the course why they did not take it; all students who signed up for

84 P. C. Ölveczky

the course but did not finish it why they did not finish it; and all students who
did finish it what they thought about the course.

Instead, at the end of each semester, the department sends an email to all
students, making them aware of the possibility of providing feedback to courses
signed up for. Most students typically do not bother to do this. Therefore,
although I am trying to summarize the students’ experiences the best I can,
this evaluation is unscientific and anecdotal.

In addition to the random collection of students who answer the call to
provide course feedback in the middle of the summer, there are many other
variables as well, such as the quality of the lecturer and the TA, time of lectures
(avoid Friday afternoons!), pandemics, and so on. Bonus tip: Giving good grades
to many students seems to improve student satisfaction.

The course has changed a lot since its embryonic first version was given in
2002, but has stabilized since the textbook was published in 2018. Until 2018,
it was taught to third-year and fourth-year students. In 2019 and 2020 it was
taken by second-year students.

6.1 Summary of Student Feedback

I have gathered anonymous student feedback, administered by the department,
from 2007. In general, only 10%–15% of the invited students submit responses,
and those include students who quit the course during the semester.

The following tables show the cumulated response to the all-important ques-
tions “How do you rate this course in general?”6 and “How do you rate the level
(difficulty) of the course?” Since 2019 was the first time the course was given at
the second-year level, I also show the results from 2019 in separate columns.

How do you rate this course in general?

2007–2019 2019

Exceptionally good 15 4

Very good 23 3

Good 8 0

OK (neither good nor bad) 6 1

Not that good 1 0

Not good 0 0

Difficulty/level of the course

2007–2019 2019

Too difficult 1 0

Somewhat difficult 38 4

OK/Average 38 4

Easy 0 0

Too easy 0 0

6 This general question did not appear in the evaluation form the first couple of years.

Teaching Formal Methods Using Rewriting Logic 85

An overwhelming majority (75–80%) of the student report that the workload
is “OK” (or average) for the number of credits (10) given.

Oddly enough, none of the 30 questions in the 2018 and 2019 evaluation
forms concerned the quality of the course textbook, so I cannot report on the
students’ impressions of my book.

6.2 Selected Student Comments

The evaluation form allows students to comment on the course in free-text. Below
I quote some student opinions about the course content from 2015 to 2019. What
students liked about the course:

– “Very interesting course where we learnt a lot. A unique course at the bachelor
level in informatics in Norway.”

– “Different and powerful method for system analysis. Creative textbook.”
– “Learn a different kind of programming language. Learn about algorithms,

and how to model them to check security vulnerabilities. After finishing the
course you have relevant knowledge that some of the world’s leading compa-
nies are looking for.”

– “Programming was fun.”
– “Introduction to a different programming paradigm.”
– “Interesting, but not too extensive, curriculum.”
– “Fun curriculum.”
– “Course content.”
– “IN2100 is the best course I have taken at the University of Oslo. [...] The

funniest lecturer in Norway.”
– “Showed the importance of the topic.”
– “Interesting topic.”
– “It allows to develop complex systems, and test safety and security of critical

systems as well.”
– “Strong foundations, applicable to real systems, useful for developing robust

systems.”
– “All in all I think this was a very fun course, clearly one of those I remember

the most from my bachelor. Maude essentially worked well, and even though
I don’t think that I will ever use it after the course, I have learnt a lot by
using it.”

– “I did not choose this course [...] but I loved every week and content.”
– “The assignments are really well balanced between theory and the entertain-

ing Maude programming parts.”

What the students liked less:

– “Language that is not used much or at all.”
– “Course might be difficult for many of us.”
– “Need more real world critical systems for analysis. [...] Lack of applicability

in industry.”

86 P. C. Ölveczky

Other complaints concern Full Maude and its “peculiarities” (lack of robust-
ness and good error messages) and that there are not too many resources about
Maude. From earlier years, I also remember complaints about Full Maude, and,
as always, a number of students do not understand why they need to learn a
programming language that is not widely used.

6.3 Other Issues

Temporal Logic. I was afraid that introducing temporal logic to second-year
students is recipe for a disaster, especially since only one lecture is devoted to
the topic (and one lecture is devoted to classes of requirements). I am very
surprised to observe that students seem to master temporal logic pretty well:
Their exam solutions show that they understand temporal logic formulas and
can judge whether such a formula holds in a system.

Industrial Impact. I have no idea whether the students who have taken the
course will ever use Maude or formal methods again. What I know is that two
former students and TAs in my course started a company based on a product
programmed in Maude. That company is still doing well after 15 years, and
sometimes hires my better master’s students.7 Another alumnus of the course
started a company on security analysis using Maude a few years ago; I believe
that the company still exists.

Popularity of the Course. I have discussed in Sect. 2 the difficulties of attracting
students to formal methods courses. In 2019, when the course for the first time
became a fourth-semester course, and one of three elective courses that semester,
around 20 students took the exam. This year, 48 students finished all three
mandatory assignments, and 42 students submitted solutions to the exam.

Level. As mentioned, until 2018, the course was a third/fourth-year course. The
move to a second-year course in 2019 was risky, also since my textbook had then
been published and I could therefore not simplify it much (if replacing simplifi-
cation orders and Turing machines with temporal logic counts as simplification).
My experiences so far are positive. The grades in 2019 were significantly better
than most years, although I think that the exam might have been slightly easier.
The students follow the course very well, and, if anything, seem more enthusias-
tic than their older precursors. I am so far very happy with my decision to move
the course down to the fourth semester.

6.4 Weaknesses

The course has a number of weaknesses. First and foremost, although I still teach
Full Maude for its interface that supports elegant modeling of object-oriented

7 Coincidentally, my son’s teacher recommended me to use their Maude product to
teach my son mathematics during the home schooling caused by the corona virus.

Teaching Formal Methods Using Rewriting Logic 87

systems, Full Maude is frustrating, with its lack of (informative) error messages
and its lack of robustness. This makes even small modeling tasks a frustrating
experience for the students. Most people working with objects in Maude therefore
do it all at the (core) Maude level, which requires cluttering the rewrite rules
with variables capturing the “remaining attributes” of the objects in the rewrite
rules, and which makes it much harder to use subclasses.

Another issue is that Maude, at least as taught in the course, relies on
explicit-state model checking. Even though the state space is significantly
reduced by the fact that the states are E-equivalence classes of terms modulo
the equational theory E (or, equivalently, the states are E-normal-forms), such
explicit-state model checking nevertheless encounters the state space explosion
problem pretty early. In this course, with its small- and medium-sized models
and modest initial states, this is not a significant problem. I actually want the
students to experience having to wait a few minutes for a (model checking)
execution to end, which I do not think they have experienced before.

Every formal methods researcher who reads this paper will miss a lot of
her favorite things in the course. Notable omissions include: SMT solving and
symbolic methods, higher-order logics, and tool-assisted theorem proving.

The course focuses on modeling and analyzing designs, and does not discuss
software/code analysis. However, as mentioned above, Maude and Grigore Rosu’s
rewriting-logic-based K framework have been used to provide the most complete
formal semantics of languages like C and Java, and have successfully been applied
to verify source and virtual machine code.

7 Concluding Remarks

Although the value of formal methods for mainstream software development is
increasingly realized in industry, trying to introduce formal methods to under-
graduate students is challenging. The main challenges, I believe, is that students
consider computer science education as job training instead of as a science, and
therefore prefer more “practical” courses (computer networks, security, machine
learning, databases, software engineering, . . .), and that our colleagues do not
see the need for something they think “requires huge effort to verify a tiny piece
of straight-forward code” and therefore relegate formal methods to the hidden
corners of course plans—far away from the mandatory courses—where they have
to compete with sexy-sounding topics for the few spare slots available. In the
face of these challenges, the best approach to make students take formal methods
courses is to make them “fun,” motivating, and industry-relevant.

In this paper, I have distilled some requirements for an undergraduate course
introducing formal methods in a fun and motivating way. Some of these are: use
few, but simple yet expressive and executable, formalisms; study relevant and
motivating problems, for example from other CS courses; focus on automatic
analysis; and demonstrate industrial relevance.

When I was an undergraduate student, I thought that functional program-
ming was the most “fun” style of programming. I therefore suggest rewriting

88 P. C. Ölveczky

logic, with its fairly mature simulation and model checking tool Maude, as a suit-
able formal method for an introductory formal methods course. What is unique
about Maude compared to other formalisms used for formal methods education
(such as different kinds of transition systems, (timed) automata, functional pro-
gramming, HOL/Coq/Isabelle, Z, B, Event-B, Hoare logic or other logics on
imperative programs, and so on8) is the combination of:

– (modeling in a) functional programming (style),
– object-based executable modeling,
– focus on distributed systems, and
– model checking.

Thanks to the intuitive and expressive formalism, even in my fourth-semester
undergraduate course, students can model and analyze a wide range of key dis-
tributed algorithms in computer science. I give an overview of that course and
its accompanying textbook [42] in this paper.

Exam results show that second-year students indeed can formally model and
analyze textbook cryptographic protocols, transport protocols, and distributed
mutual exclusion and leader election algorithms. What surprises me more is that
they also understand temporal logic formulas quite well. I have summarized
students’ feedback to the course, since I believe that the only way to attract
students to study formal methods, unless it is made mandatory, is the hard way:
by word-of-mouth from student to student. Preliminary results are promising:
42 students took the exam in 2020, which is almost twice as many as in 2019.

Acknowledgments. I am grateful to Antonio Cerone and Markus Roggenbach for
inviting me to give a talk at FMfun 2019, and for patiently waiting for this paper to
be finished.

References

1. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Teaching concurrency: theory
in practice. In: Gibbons, J., Oliveira, J.N. (eds.) TFM 2009. LNCS, vol. 5846, pp.
158–175. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04912-
5 11

2. Agha, G.A., Meseguer, J., Sen, K.: PMaude: rewrite-based specification language
for probabilistic object systems. Electr. Notes Theor. Comput. Sci. 153(2), 213–239
(2006)

3. AlTurki, M., Meseguer, J.: PVeStA: a parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO
2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22944-2 28

4. Anastasio, T.J.: Computer modeling in neuroscience: from imperative to declara-
tive programming: Maude modeling in neuroscience. In: Mart́ı-Oliet, N., Ölveczky,
P.C., Talcott, C. (eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp.
97–113. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23165-5 4

8 See https://fme-teaching.github.io/courses/ for a list of formal methods courses.

https://doi.org/10.1007/978-3-642-04912-5_11
https://doi.org/10.1007/978-3-642-04912-5_11
https://doi.org/10.1007/978-3-642-22944-2_28
https://doi.org/10.1007/978-3-642-22944-2_28
https://doi.org/10.1007/978-3-319-23165-5_4
https://fme-teaching.github.io/courses/

Teaching Formal Methods Using Rewriting Logic 89

5. Bentea, L., Ölveczky, P.C., Bentea, E.: Using probabilistic strategies to formalize
and compare α-synuclein aggregation and propagation under different scenarios.
In: Gupta, A., Henzinger, T.A. (eds.) CMSB 2013. LNCS, vol. 8130, pp. 92–105.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40708-6 8

6. Bobba, R., et al.: Survivability: design, formal modeling, and validation of cloud
storage systems using Maude. In: Assured Cloud Computing, chap. 2, pp. 10–48.
Wiley-IEEE Computer Society Press (2018)

7. Bogdănaş, D., Roşu, G.: K-Java: a complete semantics of Java. In: Proceedings of
POPL 2015. ACM (2015)

8. Broccia, G., Milazzo, P., Ölveczky, P.C.: Formal modeling and analysis of safety-
critical human multitasking. Innovations Syst. Softw. Eng. 15(3–4), 169–190 (2019)

9. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theoret. Comput. Sci. 360(1–3), 386–414 (2006)

10. Cerone, A., Roggenbach, M., Schlingloff, H., Schneider, G., Shaikh, S.: Teaching
formal methods for software engineering - ten principles. In: Proceedings of Fun
With Formal Methods (a CAV 2013 Workshop) (2013)

11. Cerone, A.: A cognitive framework based on rewriting logic for the analysis of inter-
active systems. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol. 9763, pp.
287–303. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41591-8 20

12. Clarke, E., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

13. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

14. Clavel, M., et al.: Maude Manual (Version 3.0) (2020). http://maude.cs.illinois.edu
15. Curzon, P., McOwan, P.W.: Teaching formal methods using magic tricks (2013).

Paper presented at the Workshop “Fun with formal methods” at CAV 2013
16. Durán, F., et al.: Programming and symbolic computation in Maude. J. Log.

Algebr. Meth. Program. 110, 100497 (2020)
17. Ellison, C., Rosu, G.: An executable formal semantics of C with applications. In:

Proceedings of POPL 2012. ACM (2012)
18. Grov, J., Ölveczky, P.C.: Formal modeling and analysis of Google’s Megastore

in Real-Time Maude. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification,
Algebra, and Software. LNCS, vol. 8373, pp. 494–519. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54624-2 25

19. Grov, J., Ölveczky, P.C.: Increasing consistency in multi-site data stores:
Megastore-CGC and its formal analysis. In: Giannakopoulou, D., Salaün, G. (eds.)
SEFM 2014. LNCS, vol. 8702, pp. 159–174. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10431-7 12

20. Kasampalis, T., et al.: IELE: a rigorously designed language and tool ecosystem
for the blockchain. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019.
LNCS, vol. 11800, pp. 593–610. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30942-8 35

21. Katelman, M., Meseguer, J., Hou, J.: Redesign of the LMST wireless sensor pro-
tocol through formal modeling and statistical model checking. In: Barthe, G., de
Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 150–169. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-68863-1 10

22. Krings, S., Körner, P.: Prototyping games using formal methods. In: Proceedings
of FMfun 2019. CCIS, Springer, pp. 124–142 (2020)

23. Lien, E., Ölveczky, P.C.: Formal modeling and analysis of an IETF multicast pro-
tocol. In: Proceedings of SEFM 2009. IEEE Computer Society (2009)

https://doi.org/10.1007/978-3-642-40708-6_8
https://doi.org/10.1007/978-3-319-41591-8_20
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
http://maude.cs.illinois.edu
https://doi.org/10.1007/978-3-642-54624-2_25
https://doi.org/10.1007/978-3-319-10431-7_12
https://doi.org/10.1007/978-3-319-10431-7_12
https://doi.org/10.1007/978-3-030-30942-8_35
https://doi.org/10.1007/978-3-030-30942-8_35
https://doi.org/10.1007/978-3-540-68863-1_10

90 P. C. Ölveczky

24. Liu, S., Takahashi, K., Hayashi, T., Nakayama, T.: Teaching formal methods in
the context of software engineering. ACM SIGCSE Bull. 41(2), 17–23 (2009)

25. Liu, S., Ganhotra, J., Rahman, M.R., Nguyen, S., Gupta, I., Meseguer, J.: Quanti-
tative analysis of consistency in NoSQL key-value stores. LITES 4(1), 03:1–03:26
(2017)

26. Liu, S., Sandur, A., Meseguer, J., Ölveczky, P.C., Wang, Q.: Generating correct-by-
construction distributed implementations from formal Maude designs. In: Lee, R.,
Jha, S., Mavridou, A., Giannakopoulou, D. (eds.) NFM 2020. LNCS, vol. 12229,
pp. 22–40. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55754-6 2

27. Lutz, R.R.: Analyzing software requirements errors in safety-critical embedded
systems. In: IEEE International Symposium on Requirements Engineering, San
Diego, CA, pp. 126–133, January 1993

28. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96, 73–155 (1992)

29. Meseguer, J.: Membership algebra as a logical framework for equational specifica-
tion. In: Presicce, F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-64299-4 26

30. Meseguer, J., Rosu, G.: The rewriting logic semantics project. Theor. Comput. Sci.
373(3), 213–237 (2007)

31. Meseguer, J.: Twenty years of rewriting logic. J. Log. Algebraic Methods Program
81(7–8), 721–781 (2012)

32. Meseguer, J., Roşu, G.: The rewriting logic semantics project: a progress report.
Inf. Comput. 231, 38–69 (2013)

33. Meseguer, J., Sasse, R., Wang, H.J., Wang, Y.: A systematic approach to uncover
security flaws in GUI logic. In: 2007 IEEE Symposium on Security and Privacy
(S&P 2007). IEEE Computer Society (2007)

34. Moller, F., O’Reilly, L., Powell, S.: Teaching them early: formal methods in school.
In: Proceedings of FMfun 2019. CCIS, Springer, pp. 173–190 (2020)

35. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon Web Services uses formal methods. Commun. ACM 58(4), 66–73
(2015)

36. Ölveczky, P.C.: Real-Time Maude and its applications. In: Escobar, S. (ed.) WRLA
2014. LNCS, vol. 8663, pp. 42–79. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-12904-4 3

37. Ölveczky, P.C., Meseguer, J.: Specification of real-time and hybrid systems in
rewriting logic. Theor. Comput. Sci. 285, 359–405 (2002)

38. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude. High.
Order Symb. Comput. 20(1–2), 161–196 (2007)

39. Ölveczky, P.C., Meseguer, J., Talcott, C.L.: Specification and analysis of the
AER/NCA active network protocol suite in Real-Time Maude. Formal Methods
Syst. Des. 29(3), 253–293 (2006)

40. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and
model checking of wireless sensor network algorithms in Real-Time Maude. Theor.
Comput. Sci. 410(2–3), 254–280 (2009)

41. Ölveczky, P.C.: Design and validation of cloud storage systems using formal meth-
ods. In: Mousavi, M.R., Sgall, J. (eds.) TTCS 2017. LNCS, vol. 10608, pp. 3–8.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68953-1 1

42. Ölveczky, P.C.: Designing Reliable Distributed Systems: A Formal Methods App-
roach Based on Executable Modeling in Maude. Undergraduate Topics in Com-
puter Science. Springer, London (2017). https://doi.org/10.1007/978-1-4471-6687-
0

https://doi.org/10.1007/978-3-030-55754-6_2
https://doi.org/10.1007/3-540-64299-4_26
https://doi.org/10.1007/978-3-319-12904-4_3
https://doi.org/10.1007/978-3-319-12904-4_3
https://doi.org/10.1007/978-3-319-68953-1_1
https://doi.org/10.1007/978-1-4471-6687-0
https://doi.org/10.1007/978-1-4471-6687-0

Teaching Formal Methods Using Rewriting Logic 91

43. Park, D., Zhang, Y., Saxena, M., Daian, P., Roşu, G.: A formal verification tool for
Ethereum VM bytecode. In: Proceedings of ESEC/FSE 2018, pp. 912–915. ACM
(2018)

44. Rocha, C., Cadavid, H., Muñoz, C., Siminiceanu, R.: A formal interactive verifi-
cation environment for the Plan Execution Interchange Language. In: Derrick, J.,
Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 343–357.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30729-4 24

45. Rocha, C., Meseguer, J.: Proving safety properties of rewrite theories. In: Corra-
dini, A., Klin, B., Ĉırstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 314–328.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22944-2 22

46. Roşu, G.: Matching logic. Logical Methods Comput. Sci. 13(4), 1–61 (2017)
47. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. J. Logic

Algebraic Program. 79(6), 397–434 (2010)
48. Rushby, J.: Mechanized formal methods: progress and prospects. In: Chandru, V.,

Vinay, V. (eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 43–51. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-62034-6 36

49. Rushby, J.M.: New challenges in certification for aircraft software. In: Proceedings
of EMSOFT 2011. ACM (2011)

50. Schlingloff, H.: Teaching model checking via games and puzzles. In: Proceedings of
FMfun 2019. CCIS, Springer, pp. 143–158 (2020)

51. Sebastio, S., Vandin, A.: Multivesta: statistical model checking for discrete event
simulators. In: ValueTools, pp. 310–315. ICST/ACM (2013)

52. Skeirik, S., Stefanescu, A., Meseguer, J.: A constructor-based reachability logic for
rewrite theories. In: Fioravanti, F., Gallagher, J.P. (eds.) LOPSTR 2017. LNCS,
vol. 10855, pp. 201–217. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-94460-9 12

53. Spichkova, M., Zamansky, A.: Teaching of formal methods for software engineering.
In: Proceedings of ENASE 2016. SciTePress (2016)

54. Talcott, C.L.: The Pathway Logic formal modeling system: diverse views of a formal
representation of signal transduction. In: Proceedings of IEEE International Con-
ference on Bioinformatics and Biomedicine, BIBM 2016. IEEE Computer Society
(2016)

55. Wing, J.M.: Weaving formal methods into the undergraduate computer science
curriculum (extended abstract). In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816,
pp. 2–7. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45499-3 2

https://doi.org/10.1007/978-3-642-30729-4_24
https://doi.org/10.1007/978-3-642-22944-2_22
https://doi.org/10.1007/3-540-62034-6_36
https://doi.org/10.1007/978-3-319-94460-9_12
https://doi.org/10.1007/978-3-319-94460-9_12
https://doi.org/10.1007/3-540-45499-3_2

	Teaching Formal Methods for Fun Using Maude
	1 Introduction
	2 Making Students Study Formal Methods: Challenges
	3 Making Formal Methods Teaching Fun
	4 How to Teach Formal Methods?
	4.1 Related Work
	4.2 What to Teach?
	4.3 Summarizing the Requirements

	5 Teaching Introductory Formal Methods Using Rewriting Logic
	5.1 Course Setting
	5.2 Formalism Used: Rewriting Logic
	5.3 Language and Tool Used: Maude
	5.4 Why Maude?
	5.5 Overview of the Course and Its Textbook

	6 Evaluation
	6.1 Summary of Student Feedback
	6.2 Selected Student Comments
	6.3 Other Issues
	6.4 Weaknesses

	7 Concluding Remarks
	References

