
Antonio Cerone
Markus Roggenbach (Eds.)

First International Workshop, FMFun 2019
Bergen, Norway, December 2–3, 2019
Revised Selected Papers

Formal Methods –
Fun for Everybody

Communications in Computer and Information Science 1301

Communications
in Computer and Information Science 1301

Editorial Board Members

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Raquel Oliveira Prates
Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0002-7128-4974

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Antonio Cerone • Markus Roggenbach (Eds.)

Formal Methods –
Fun for Everybody
First International Workshop, FMFun 2019
Bergen, Norway, December 2–3, 2019
Revised Selected Papers

123

Editors
Antonio Cerone
Nazarbayev University
Nur-Sultan, Kazakhstan

Markus Roggenbach
Swansea University
Swansea, UK

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-71373-7 ISBN 978-3-030-71374-4 (eBook)
https://doi.org/10.1007/978-3-030-71374-4

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-2691-5279
https://orcid.org/0000-0002-3819-2787
https://doi.org/10.1007/978-3-030-71374-4

Preface

The largest transformations that universities make to industrial practices is through
releasing legions of graduates every year. These graduates challenge established pro-
cesses and pave ways for new approaches. The standard computer science or software
engineering graduate leaves university with either no knowledge of Formal Methods or
a hatred for Formal Methods. Unless this situation is changed, Formal Methods will
never be accepted in industry.

The First International Workshop “Formal Methods – Fun for Everybody” (FMFun
2019) explored ways to utilize this pathway to transformation for spreading Formal
Methods. In current practice, Formal Methods is often taught by theoreticians, who (ab)
use their Formal Methods courses to teach theoretical concepts rather than putting
Formal Methods in a software engineering context. The vision of this workshop series
is that Formal Methods ought to be taught in such a way that every student can have
fun with it.

The 2019 two-day workshop included participants from Formal Methods as well as
from Education who exchanged their views and perspectives. The innovative format
of the workshop consisted of two keynote talks by Peter Csaba Ölveczky and Magne
Haveraaen, 11 contributed presentations and a number of open discussion sessions.
These sessions were characterised by an open atmosphere in which participants listened
to each other’s views, provided feedback and were inspired to develop ideas further.
The workshop also featured a living lab on teaching Formal Methods with Fun, which
was split in two parts: on the first day participants made available and presented their
teaching materials and discussed them in small groups; on the second day the living lab
session merged with the open discussion sessions and contributed to the formulation
of the white paper published in these proceedings. This joint paper, which is
co-authored by most of the workshop participants and some of the workshop authors
who could not participate in the physical event, collects the outcomes of discussion and
activities at the workshop, further revised via email in an intense collaborative effort
that extended over several months. This paper provides examples of good practice in
Formal Methods teaching as well as general recommendations on curriculum devel-
opment which we intend to circulate to appropriate educational bodies.

The workshop received 15 full paper submissions and two presentation paper
submissions. Each full paper submission was reviewed for quality, correctness, origi-
nality and relevance by at least three Program Committee members. A final discussion
among the Program Committee members was carried out using EasyChair. Ten full
paper contributions and one presentation paper contribution were accepted for pre-
sentation at the workshop. This volume contains the white paper, two papers by the
workshop keynote speakers and revised versions of the nine full paper contributions
that were accepted for publication. The published contributed papers were further
reviewed after the workshop.

We would like to thank all the Program Committee members for their valuable and
timely efforts. We are also grateful to the General Chair, Volker Stolz, and the
Workshops Chairs, Violet Ka I Pun and Martin Leucker. Finally, we would like to
thank all the workshop attendees for their active participation in discussions and for the
feedback they provided to the authors.

October 2020 Antonio Cerone
Markus Roggenbach

vi Preface

Organization

Program Committee

Luis Barbosa University of Minho, Portugal
Hubert Baumeister Technical University of Denmark, Denmark
Antonio Cerone Nazarbayev University, Kazakhstan
Ming Chai Beijing Jiaotong University, China
Tom Crick Swansea University, UK
Hans de Nivelle Nazarbayev University, Kazakhstan
Elsa Estevez Universidad Nacional del Sur, Argentina
Sabine Glesner TU Berlin, Germany
Jan Friso Groote Eindhoven University of Technology, The Netherlands
Stefan Gruner University of Pretoria, South Africa
Klaus Havelund Jet Propulsion Laboratory, USA
Magne Haveraaen University of Bergen, Norway
Paddy Krishnan Oracle, Australia
Karl Lermer Zurich University of Applied Sciences, Switzerland
Carlos Gustavo Lopez

Pombo
Universidad de Buenos Aires and CONICET,

Argentina
Bas Luttik Eindhoven University of Technology, The Netherlands
Kathy Malone Nazarbayev University, Kazakhstan
Faron Moller Swansea University, UK
Lucia Rapanotti The Open University, UK
Steve Reeves University of Waikato, New Zealand
Markus Roggenbach Swansea University, UK
Kristin Yvonne Rozier Iowa State University, USA
Holger Schlingloff Fraunhofer FOKUS and Humboldt University,

Germany
Gerardo Schneider Chalmers — University of Gothenburg, Sweden
Siraj A. Shaikh Coventry University, UK
Benjamin Tyler Nazarbayev University, Kazakhstan
Janis Voigtländer University of Duisburg-Essen, Germany
Ayman Wahba Ain Shams University, Egypt
Peter Ölveczky University of Oslo, Norway

Additional Reviewers

Arcuschin Moreno, Iván
Martinez Suñé, Agustín Eloy

Contents

Rooting Formal Methods Within Higher Education Curricula for Computer
Science and Software Engineering — A White Paper — 1

Antonio Cerone, Markus Roggenbach, James Davenport, Casey Denner,
Marie Farrell, Magne Haveraaen, Faron Moller, Philipp Körner,
Sebastian Krings, Peter Csaba Ölveczky, Bernd-Holger Schlingloff,
Nikolay Shilov, and Rustam Zhumagambetov

Axiom Based Testing for Fun and Pedagogy . 27
Magne Haveraaen

Teaching Formal Methods for Fun Using Maude . 58
Peter Csaba Ölveczky

Fun with Formal Methods for Better Education. 92
Nikolay V. Shilov, Evgeniy Muravev, and Svetlana Shilova

Adapting to Different Types of Target Audience in Teaching
Formal Methods . 106

Antonio Cerone and Karl Reiner Lermer

Prototyping Games Using Formal Methods. 124
Sebastian Krings and Philipp Körner

Teaching Model Checking via Games and Puzzles 143
Bernd-Holger Schlingloff

Cybersecurity Education and Formal Methods . 159
James H. Davenport and Tom Crick

Teaching Them Early: Formal Methods in School . 173
Faron Moller, Liam O’Reilly, Stewart Powell, and Casey Denner

From Stories to Concurrency: How Children Can Play with
Formal Methods . 191

Antonio Cerone

When the Student Becomes the Teacher. 208
Marie Farrell and Hao Wu

Teaching Formal Methods in Academia: A Systematic Literature Review. . . . 218
Rustam Zhumagambetov

Author Index . 227

Rooting Formal Methods
Within Higher Education Curricula

for Computer Science and Software Engineering
— A White Paper —

Antonio Cerone1(B) , Markus Roggenbach2 , James Davenport3,
Casey Denner2, Marie Farrell4, Magne Haveraaen5, Faron Moller2,

Philipp Körner6, Sebastian Krings7, Peter Csaba Ölveczky8,
Bernd-Holger Schlingloff9, Nikolay Shilov10, and Rustam Zhumagambetov1

1 Nazarbayev University, Nur-Sultan, Kazakhstan
antonio.cerone@nu.edu.kz

2 Swansea University, Swansea, UK
m.roggenbach@swansea.ac.uk

3 University of Bath, Bath, UK
4 University of Manchester, Manchester, UK

5 University of Bergen, Bergen, Norway
6 Heinrich-Heine-Universität, Düsseldorf, Germany

7 Niederrhein University of Applied Sciences, Krefeld, Germany
8 University of Oslo, Oslo, Norway

9 Humboldt-Universität zu Berlin, Berlin, Germany
10 Innopolis University, Kazan, Russia

Abstract. This white paper argues that formal methods need to be
better rooted in higher education curricula for computer science and
software engineering programmes of study. To this end, it advocates

– improved teaching of formal methods;
– systematic highlighting of formal methods within existing, ‘classical’

computer science courses; and
– the inclusion of a compulsory formal methods course in computer

science and software engineering curricula.
These recommendations are based on the observations that

– formal methods are an essential and cost-effective means to increase
software quality; however

– computer science and software engineering programmes typically fail
to provide adequate training in formal methods; and thus

– there is a lack of computer science graduates who are qualified to
apply formal methods in industry.

This white paper is the result of a collective effort by authors and par-
ticipants of the 1st International Workshop on Formal Methods – Fun
for Everybody which was held in Bergen, Norway, 2–3 December 2019.

c© Springer Nature Switzerland AG 2021
A. Cerone and M. Roggenbach (Eds.): FMFun 2019, CCIS 1301, pp. 1–26, 2021.
https://doi.org/10.1007/978-3-030-71374-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71374-4_1&domain=pdf
http://orcid.org/0000-0003-2691-5279
http://orcid.org/0000-0002-3819-2787
https://doi.org/10.1007/978-3-030-71374-4_1

2 A. Cerone et al.

As such, it represents insights based on learning and teaching computer
science and software engineering (with or without formal methods) at
various universities across Europe.

1 Introduction

The greatest contribution that universities make to industrial practices is
through releasing legions of graduates every year. When properly equipped with
a scholarly education, these graduates challenge established processes and pave
the way for new approaches. In the increasingly-digital world we live in, the
scope for this is arguably greatest in the software industry, particularly given
that the public perception – and indeed the reality – is that software is inherently
unreliable.

Advances in digital technology take place at an astronomical rate, unfettered
by regulations which would hinder progress in other scientific endeavours. There
are generally few established principles in place to ensure that new software
systems are as reliable as, say, a new vaccine. Software engineers demonstrate
success in their company by releasing systems which, for almost all intents and
purposes, appear to work. Because of the benefits these advances offer society,
the public are generally accepting of – and, indeed, used to – software failures.

This situation persists in spite of the fact that computer science and software
engineering research has developed a multitude of design principles which could
help to improve software quality [Bar11]. It has been over half a century since
Robert Floyd’s seminal paper [Flo67] set out the means by which computer pro-
grams could be analysed to determine their functional correctness, and formal
methods for developing correct software have been steadily devised and refined
ever since. The typical computer science or software engineering graduate, how-
ever, leaves university with little or no knowledge of formal methods, and even
a dislike for whatever formal methods they have encountered in their studies.
Thus, rather than opening doors for formal methods in (software) industry, uni-
versity education seems to have a detrimental effect.

Due to their ubiquity, software failures are overlooked by society as they tend
to result in nothing more serious than delays and frustrations. We accept as mere
inconvenience when a software failure results in a delayed train or an out-of-order
cash machine or a need to repeatedly enter details into a website. However, the
problems of systems failures become more serious (costly, deadly, invasive) as
automatic control systems find their way into virtually every aspect of our daily
lives. This increasing reliance on computer systems makes it essential to develop
and maintain software in which the possibility, and probability, of hazardous
errors is minimised. Formal methods offer cost-efficient means to achieve the
required high degree of software quality.

A major reason that students (and, in turn, software engineers) have a nega-
tive attitude towards formal methods is that these are not introduced with due
care during the early stages of higher education. Left to the theoretical computer
science professor, such courses often start with fearful terms like state machine,

Rooting Formal Methods Within Higher Education Curricula 3

logical inference, mathematical semantics, etc., without providing elementary
explanations of the basic notions which relate these to the practice of software
development. In their defence, formal methods professors often find it difficult
to deliver the subject due to students’ scepticism [Zhu20], which arises from the
generally limited or non-existent exposure to formal methods in the rest of the
curriculum. Boute [Bou09] and Sekerinski [Sek06] observe that limited references
from other subjects and isolated use are the main factors leading to students’
low opinion. Even worse, students perceive formal methods to be unsuitable for
actual software engineering [BDK+06] or even an “additional burden” [BLA+09].

In this white paper we analyse what hinders a successful formal methods
education, and make constructive suggestions about how to change the situation.
We are convinced that such changes are a prerequisite for formal methods to
become widely accepted in industry. We analyse the current situation of formal
methods teaching and explore ways which we think will be engaging for students
and practitioners alike. Our vision is that formal methods can be taught in such
a way that both students and lecturers will enjoy formal methods teaching.

This white paper is the result of a collective effort by authors and participants
at the 1st International Workshop “Formal Methods – Fun for Everybody”,
which was held in Bergen, Norway, 2–3 December 2019. At the workshop, there
were several discussion sessions. Based on these, the two lead authors devised a
paper outline, which was subsequently “populated” with text snippets written
by all authors. The resulting draft was carefully edited, and agreed upon by all
authors. By its very nature, this white paper offers a spectrum of opinions, in
particular in the personal statements. What unites us are the following beliefs:

– Current software engineering practices fail to deliver dependable software.
– Formal methods are capable of improving this situation, and are beneficial

and cost-effective for mainstream software development.
– Education in formal methods is key to progress things.
– Education in formal methods needs to be transformed.

In Sect. 2, we analyse the challenges in teaching formal methods. In Sect. 3,
we collect ideas about how to teach formal methods – the fun way. In
Sect. 4, we discuss how to increase the visibility of formal methods throughout
the curriculum. In Sect. 5, we suggest a syllabus for a compulsory formal meth-
ods course. Finally, we discuss how to assess such teaching efforts in Sect. 6,
before making concluding remarks in Sect. 7.

2 Challenges in Teaching Formal Methods

Teaching of formal methods faces a number of challenges. Currently, as a knowl-
edge area, formal methods are virtually absent from curricula in computer science
or software engineering. Formal Methods barely appear in the ACM/IEEE 2014
Software Engineering Curriculum, and indeed the development of formal specifi-
cations is explicitly deemed to be inappropriate for a capstone project [ACM15,
p. 56]. Moreover, many students have an incorrect perception of what formal

4 A. Cerone et al.

methods are about. Formal methods neither make the headlines nor are a pop-
ular topic in social networks, nor are they visibly used by industry. It is also
the case that colleagues as well as students have misguided ideas concerning the
mathematical background required to utilise formal methods. In the following,
we elaborate on these topics. The section concludes with personal statements.

We begin our discussion by providing a working definition, cf. [RCS+21], of
what a formal method might be.

Definition 1. A formal method M can be seen to consist of the three elements
syntax, semantics, and method:

– Syntax: the precise description of the form of objects (strings or graphs)
belonging to M .

– Semantics: the ‘meaning’ of the syntactic objects of M , in general by a map-
ping into some mathematical structure.

– Method: algorithmic ways of transforming syntactic objects, in order to gain
some insight about them.

A typical example of a formal method is the process algebra CSP: its syntax
is given in form of a grammar; there are various formal semantics (operational,
denotational, and axiomatic ones); and there are proof methods for refinement
via model checking and theorem proving.

Applying this definition, e.g., to the programming language Pascal, we see
that it also qualifies as a formal method. It has a defined syntax and formal
semantics; and each compiler and static analyser provides a method, the Hoare
calculus would be another instance of a method.

UML on the other hand does not qualify as a formal method. The syntax is
largely fixed via meta models, and there are various methods available, e.g., for
code generation (e.g., from class diagrams or state machines). However, proposed
semantics for UML contain several critical “variation points” and has – to the
best of our knowledge – never been fully formalised.

2.1 On the Absence of Formal Methods from Computer Science and
Software Engineering Curricula

Anecdotal evidence suggests that current computer science and software engi-
neering curricula rarely cover formal methods to a large extent. We exemplify
this observation by providing an historic perspective on programming education,
an element central to all curricula.

In the late 1980s, Pascal was a dominant teaching language for beginning pro-
gramming students. Pascal is a small, structured programming language with a
syntax designed to be easy to parse [ISO90]. Most textbooks of the time pre-
sented the Pascal language using syntax diagrams, alerting the students to the
idea of context free grammars, e.g., [CC82]. The element of syntax was taught as
an integral part of programming. Some textbooks included the entire ISO Pascal

Rooting Formal Methods Within Higher Education Curricula 5

standard, thus making the students aware of language definition documents.1

For those specifically interested, Pascal had a widely available formal seman-
tics [HW73]. Robust programming, i.e., checking preconditions, was an essential
part of programming courses. Some universities would even have space for a
formal methods course, typically based on Hoare logic, in their undergraduate
curriculum: i.e., a formal method was taught.

About 20 years ago, Pascal was superseded by Java as the dominating
teaching language. Java is a much more complex language than Pascal; it sup-
ports object-oriented development, and it has large support libraries. Thus, in
the transition to Java, precise syntax and semantics was replaced by a more
example-driven approach, e.g., [DD07], where the first half contains similar ma-
terial to [CC82]. Verification tools such as Java Pathfinder2 rarely made it into
the syllabus of a programming course. Instead, students needed to learn more
methodology, such as object-orientation, test-driven design and agile methods.
All of this reduces the students’ exposure to formality, such as formal syntax
or precise semantics3, making the gap to formal methods larger. Further, the
pragmatics of software development take up more of the curriculum, leaving less
space for a formal methods course in the core curriculum. Dewar and Schonberg
support this critical assessment: “It is our view that Computer Science education
is neglecting basic skills, in particular in the areas of programming and formal
methods. We consider that the general adoption of Java as a first programming
language is in part responsible for this decline [DS18].”

In recent years, Python has emerged into a common teaching language for
programming. The move towards Python represents a change back to a much
smaller language than Java. The Python reference document is just 160 pages,
and its formal grammar is only four pages [vRtPdt20]. This should make it
possible to at least expose the students to formal syntax and a standardisation
document. However, the typing and semantic model of Python remains complex,
and is not easily formalised.

Thus, while current programming education based on Java often fails to
provide foundations for formal methods by discussing syntax and semantics, the
move towards Python provides the silver lining that the element of syntax might
again become a part of standard education in programming.

1 Pattis [Pat94] even suggested teaching Extended Backus-Naur Form (EBNF) as the
first topic in computer science. Not to facilitate presenting the syntax of a program-
ming language, but because EBNF is a microcosm of programming. With no prereq-
uisites, students are introduced to a variety of fundamental concepts in programming:
formal systems, abstraction, control structures, equivalence of descriptions, the dif-
ference between syntax and semantics, and the relative power of recursion versus
iteration.

2 https://github.com/javapathfinder/jpf-core/wiki.
3 The recent The Java R©Language Specification, Java SE 14 Edition is 800

pages [GJS+20] and not easily digestible.

https://github.com/javapathfinder/jpf-core/wiki

6 A. Cerone et al.

2.2 Students’ Perception of Formal Methods

The reduced exposure to formal approaches, as described in Sect. 2.1, supports
university students’ misconception that formal methods are a difficult topic with
little or no practical relevance. This keeps students away from formal methods
during their undergraduate studies. Even worse, it leads them to embrace the
common belief that mathematics and computer science are two independent,
fully distinct disciplines. Computer science is rather identified with program-
ming, which, in turn, is seen more like an art rather than a scientific activ-
ity [CL20]. Interestingly, this view has even been supported not only by the prag-
matic evolution of programming languages outlined in the previous paragraphs,
but also by some academic publications claiming that rigorous mathematical
knowledge is not necessary for computer science practitioners [Gla00]. Finally,
this view has been paradoxically encouraged by the introduction of computer
science in high schools. In fact, although in several schools computer science has
been introduced as a stand-alone subject, it is not connected with mathematics
but, instead, it is presented as a ‘service subject’ intrinsically tied to the use of
computers. Scope of the subject is to provide tools that facilitate students in
carrying out their homework and class projects [Cer20,Gib08].

Although we can say that, on average, a typical computer science student
tends to have a negative perception of formal methods, in reality lecturers ob-
serve a lot of variation between students, as well as changes of perceptions in one
direction or the other. Variations in students can be observed starting from the
first programming courses. A slightly exaggerated categorisation goes as follows.
On the one hand, there are students who tackle programming in a purely ‘artis-
tic way’ by sitting down at the computer and writing code immediately, using
debugging rather than problem solving to reach the solution. On the other hand,
there are students who start analysing the problem using pen and paper, then
draw diagrams, possibly write pseudo-code, test their solution on paper and,
only when they are confident in their solution, they sit in front of a computer
and convert their solution into a program. Obviously, it is the latter approach
what lectures suggest. Normally, the former group of students tend to have a
negative perception of formal methods, whereas the latter group tend to have a
positive one. This partition of the students in two groups appears more evident
once recursion is introduced in the programming course. The former group of
students will tend to hate recursion, the latter group will tend to love it.

These two opposite perceptions obviously occur in several degrees. More-
over, they are not static but, at least potentially, dynamic and may be either
encouraged or hindered in various ways throughout the course of undergraduate
studies. The common absence of formal semantics among the topics of program-
ming courses definitely keeps students away from an early exposure to formal
methods and prevents them from really understanding what formal methods are.
Being exposed to some basic operational semantics could actually help students
to better understand conditional and iterative constructs, which are normally
serious challenges for first year students. Furthermore, recursion could be better
understood, thus providing the basis for a future interest in formal methods.

Rooting Formal Methods Within Higher Education Curricula 7

Concerning senior students, although for some of them their perception of
formal methods may have been strongly oriented towards the negative side, there
is hope to shift them towards the positive side. Senior students tend to be very
pragmatic and their minds are dominated by the goal of entering the job market
and the industrial world. Therefore they will build a positive perception of formal
methods when presented with their pragmatic and industry-oriented aspects.

2.3 Limited Visibility of Formal Methods in Media and Industry

How students perceive a knowledge area has many drivers, such as personal
success, like/dislike of certain academic teachers, their grades, etc. But maybe
‘coolness’ is the dominant factor. During their studies, students want to do some-
thing cool, maybe work with AlphaZero4 or participate in a hackathon such as
Google’s Hash Code. Students also strive to get ‘cool jobs’, e.g., with Google,
Facebook, Amazon, and the like. Currently, what one might want to call the
‘coolness factor’ of formal methods is rather low. Formal methods make neither
the headlines nor are prominent in social media, nor are they visibly used by
industry.

Besides studying, quite a number of students work on the side for compa-
nies. In these jobs, students often see only small parts of the overall job profile
of a professional computer scientist or software engineer. Many of these side jobs
deal with having a quick and dirty solution for some pressing problem, adapting
software according to customer requests, or building prototypes in order to find
out whether some concept works out. In contrast, mature students, coming back
from industry and getting into university education again, know about the im-
portance of quality assurance. But as they usually were not exposed to formal
methods in their jobs, they are often reluctant to study them.

Luckily, there is some serious uptake of formal methods in industry. The
classic case of a safety-critical industry is railway signalling, as described
e.g. in [GM13]. Ligne 14 of the Paris Métro had software built using the
B method [GM13] and has now run for over 20 years without a bug being
reported. The “High Integrity Systems” unit of Altran develops systems for,
e.g., the railway signalling industry and air traffic control, as well as tools and
methodologies, such as the SPARK subset of Ada [MC15]. SPARK 2014 uses
contracts to describe the specification of components in a form that is suitable
for both static and dynamic verification.

Outside the safety-critical industry, a few ‘enlightened’, large information
technology companies are beginning to use formal methods:

– Google is developing an ecosystem for formal analysis tools [SvGJ+15].
– Facebook uses “advanced static analysis” as described in [DFLO19].
– Amazon’s use of formal methods is discussed in [NRZ+15,BBC+19]. There

is a more technical description of one component in [CCC+18].

4 AlphaZero is the descendant of AlphaGo, the AI that became known for defeating
Lee Sedol, the world’s best Go player, in March of 2016.

8 A. Cerone et al.

If we look at Facebook, [DFLO19] reports that, in many cases, “we have grav-
itated toward a ‘diff time’ deployment, where analyzers participate as bots in
code review, making automatic comments when an engineer submits a code mod-
ification”. For their Infer tool, which has its origin in the separation logic work
of [CDOY11], they aim “for Infer to run in 15–20 min on a diff on average”.

Similarly, at Altran, an attempt to check source code into the main repository
(the equivalent of git push) generates a requirement to prove the appropriate
contracts, and the verification conditions that ensure, for example, no numeric
overflow. An important requirement here is that this verification be “reasonably
fast”. [BS12] describes their work here as “this changes the qualitative time band
for a large scale industrial project from ‘Nightly’ to ‘Coffee’.” Both Facebook
and Altran argue that the primary purpose of this time requirement is to avoid
‘context switch’ in the developer’s brain.

Further changes could be initiated by academics. “Two-hundred-terabyte
maths proof is largest ever” reported Nature in May 20165 and wrote: “Three
computer scientists have announced the largest-ever mathematics proof: a file
that comes in at a whopping 200 terabytes, roughly equivalent to all the digi-
tized text held by the US Library of Congress. The researchers have created a
68-gigabyte compressed version of their solution – which would allow anyone with
about 30,000 hours of spare processor time to download, reconstruct and verify
it – but a human could never hope to read through it.” The results that triggered
this media interest concerns the Pythagorean Triples Problem. “We consider all
partitions of the set {1, 2, . . . } of natural numbers into finitely many parts, and
the question is whether always at least one part contains a Pythagorean triple
(a, b, c) with a2+b2 = c2. For example when splitting into odd and even numbers,
then the odd part does not contain a Pythagorean triple (due to odd plus odd =
even), but the even part contains for example 62 + 82 = 102. We show that the
answer is yes when partitioning into two parts, and we conjecture the answer
to be yes for any finite size of the partition.” [HK17] Such results triggering
media interest could possibly change the situation. Another approach could be
to organise, say, verification competitions at a student level. They would need
to provide a stimulating social environment by being accessible to all students,
and could be supported by elements such as cool prizes and free pizza.

2.4 Students’ Mathematical Background

The seeming need for a solid mathematical background is often an argument
against teaching formal methods. However, reflecting on the three elements of
a formal method, grasping the syntax of a formal method is not more involved
than understanding the syntax of a programming language: both are given by
grammars. Grammars for formal methods are usually smaller than those for pro-
gramming languages. However, students learn programming languages by trial
and error on a computer, where the compiler/interpreter provides feedback on
syntax errors. As discussed in Sect. 2.1, standard programming courses mostly

5 Nature, 26 May 2016.

https://www.nature.com/news/two-hundred-terabyte-maths-proof-is-largest-ever-1.19990

Rooting Formal Methods Within Higher Education Curricula 9

take an example-driven approach to syntax. In contrast, in formal methods stu-
dents are often presented with a grammar for the syntax. For students, this
often provides the first mathematical hurdle6. The challenge in formal methods
teaching therefore lies in adopting a more example-driven style when it comes
to syntax.

The semantics of a formal method is inherently mathematical in nature: in
logic it is given in terms of the satisfaction of a formula by a model, process
algebra utilizes structural operational semantics or denotational semantics, etc.

However, in a basic course focused upon the application of formal methods,
it would be enough to point out that such formal semantics exists and to hint
at its nature. The teaching challenge lies in providing an explorative approach
to semantics via tools. In logic, this could follow ideas such as Tarski’s world.
In process algebra, one can explore processes by simulating them. In such a
set-up, students could develop their own formal models and explore them, i.e.,
tools provide students with a similar feedback like running a computer program.
Another idea would be to use a semantics compatible with the programming lan-
guages students are using. For instance in axiom-based testing, the ‘axioms’ can
be interpreted as code in the programming language, thus utilising the students’
programming background.

In an advanced course, in addition to such an explorative approach, the for-
mal semantics itself needs to be presented. This will require a good mathematical
background from the students.

Finally, the method aspect of a formal method is best presented through the
use of a tool that automates the analysis in which one is interested. Running
a tool would not require any mathematical background at all. Understanding
the result of a method applied to a concrete example is usually immediate. An
advanced course would address the mathematical details of why a method is
sound.

These considerations refute the common prejudice that teaching formal meth-
ods requires students to have a profound mathematical background. An explo-
rative teaching approach can make formal methods accessible even to students
who like to program the ‘artistic way’. This is supported by experience reports
such as: “Engineers from entry level to principal have been able to learn TLA+
from scratch and get useful results in two to three weeks” [NRZ+15].

2.5 Personal Statements

In the order in which they were contributed, we present a number of personal
statements by the co-authors.

sk. One challenge in teaching formal methods is to spark an initial interest.
This is the case, because links are weak between formal methods and the current
hot topics in computer science. Many students steer towards what currently is

6 This is not eased by the often poor error messages provided by formal method tools.

10 A. Cerone et al.

perceived to dominate the future: data science and artificial intelligence, to name
a just a few.

To overcome this, the formal methods community should strive to demon-
strate its relevance, beyond ‘classical’ topics such as railway engineering. Cor-
rectness is as relevant in the new, upcoming areas of computer science as it is in
the classical ones.

pk. A similar thought adding to sk: many students do not even have a clear idea
of what formal methods are! They have heard of other areas such as machine
learning, databases, operating systems, computer networks, compiler construc-
tion, and have an idea what is going on there. It’s hard to encounter many
aspects of formal methods in daily programming life, especially for a student
with a limited view. So, why exactly would they pick a ‘no-name’ course such
as “formal methods” or “model checking” over the other choices?

cd. The name of a course makes a big difference: students tend to avoid courses
that already sound complicated (i.e. anything math or formal) in contrast to
courses that sound ‘useful’ or ‘applicable’ or even just trendy. As a student, I
had a course named “Modelling Computer Systems” that was on discrete mathe-
matics. If it had been called “Discrete Mathematics”, I’m sure it would have put
several students on edge to begin with. Courses with names that contain tech
buzzwords may also sound more appealing to students, such as cyber security,
software testing, machine learning, artificial intelligence etc. We should consider
these trendy subjects and adjust formal methods to be just as appealing, even
if it means slightly adjusting course names.

mf. The lack of reliable tools that are suitable for teaching formal methods, as
well as are scalable enough to demonstrate interesting and realistic use cases,
creates a barrier for students. Throughout our course, we used a number of
freely available formal methods and students struggled to understand the error
messages and other feedback from the tools [FW20]. This kind of ambiguous
feedback causes the students to lose interest and prevents them from engaging
with the tools in a positive, constructive way. Furthermore, this usability issue
also hinders the uptake of these tools in industry. This is somewhat of a vicious
circle. Admittedly, most formal method tools are academic in nature and thus
often are aimed at being good for publication. Better error messages and the
like are often not prioritized that way. This causes the industrial uptake to miss,
which decreases the focus again.

2.6 A Student’s Personal Statement

rz. My first introduction to formal methods was during my second year (right
after introductory programming courses but before software engineering) in the
GPU computing course. We used Petri nets for modelling the classic dining
philosophers’ problem. One of the motivations for using them was to avoid soft-
ware failures. By providing a mathematical proof with Petri nets, so the professor

Rooting Formal Methods Within Higher Education Curricula 11

claimed, we would be on course for success. At that time formal methods looked
to me like an advanced technique in software development and a usual practice.
My illusions were shattered later when another professor pointed out that it
takes numerous assumptions for formal methods to work in the real world, and
that often these assumptions do not apply.

3 Teaching Formal Methods — the Fun Way

In this section we collect a number of personal views and ideas on how teaching
formal methods can be done the fun way. While some authors, see, e.g. [CRS+15],
have written systematic accounts of the topic, here we present a number of
personal statements in the order in which they were contributed.

mf. Games can be useful when it comes to teaching formal methods in the
initial stages. However, to adequately demonstrate the importance of formal
methods there must also be an emphasis on building and verifying software and
not just on solving a puzzle, as entertaining as that may be. Of course, computer
science students will find enjoyment in building systems, otherwise they would
not be studying the subject. So, perhaps setting them the task of developing
and verifying a simple, but realistic, model of a system would also be beneficial
while encouraging them to have fun with formal methods. In this setting, games
would ideally be placed at the beginning of the course as a light-weight and fun
introduction.

jd. It is often difficult to motivate formal methods. Most students will not go
into the construction of safety-critical systems, important though they are. Also,
the specialist safety-critical companies tend to do their own training (though
they would really like to have to do less!). It is perhaps easier to motivate formal
methods with more common examples. The Chromium Project7 is one example
of ‘mainstream’ software, viz. browsers, and shows that the Chromium team is
moving ‘more formal’.

sk. Usually, what makes any course interesting is the applications and the trans-
fer of knowledge from classroom to reality. However, most formal method courses
rely on examples that, while interesting, are far away from what students can
experience and experiment with. We often rely on examples from industry and
spend quite a lot of time explaining what a particular model is supposed to
achieve exactly. I feel this often distracts students. Rather than focusing on
what formal methods have to offer, we get lost in technical details. This is not
the case with games, especially if considering well-known ones. Usually, the rules
are known and (mostly. . ..) agreed upon already and we can focus on how a for-
mal method can help us to get them right in our application.

Again, I strongly believe we should get away from the purely theoretical app-
roach to teaching formal methods to beginners. At least for me, the theoretical

7 https://www.chromium.org/Home/chromium-security/memory-safety.

https://www.chromium.org/Home/chromium-security/memory-safety

12 A. Cerone et al.

advances in formal methods have always been a means to an end. In order to
appreciate them, one has to experience what it means to try and reach the same
end without them. This however falls short in programming education in general.
Students proceed from smallish group projects to other smallish group projects,
while only seldom have to experience larger refactoring, legacy code, etc. In an
environment like this, formal methods are less useful. Let’s teach our students
what programming is like in reality: 90% of the work is reworking legacy code,
fixing bugs and trying to understand why things are or are not working – by ac-
cident, this is where formal approaches could shine as well. Another aspect that
could make a formal methods course interesting is to involve students in formal
methods research rather than formal methods application. We used to teach for-
mal methods by discussion software issues first and then having students try to
find automatic ways to detect them, leading from simple static analysis ideas to
model checking. The course has been thoroughly documented, also showing that
the approach was highly motivating for students students [KKS19].

Notably, students (at least on the masters level) are able and willing to
do ‘actual research’ in an inquiry-based course, eventually leading to publica-
tions [POKG19]. The inquiry- or research-based approach has taught students
the internals of model checkers and how they can be efficiently implemented for
prototypical languages.

pk. Shriram Krishnamurthi had a great Keynote at FM’198. One of the main
points to take away from that is that tools are a large issue. If you hit students
with a full-blown industrial tool, they get frustrating error messages, because
they have no idea what is going wrong (as the tool is able to understand a larger
part of, e.g., a specification language than the student and raises errors related
to other concepts). While it is nice to see that such tools are used in practice,
they might be the wrong means to learn formal methods.

In Düsseldorf, our group has worked on an approach based on Jupyter note-
books [GL20]. It allows evaluation of smaller expressions or predicates without
a state-based approach, so students can learn and experiment with the logical
foundations of the language9 where it is used to solve some logic puzzles). It
can also be used to interact with B machines, so errors in a specification can be
explained and documented in a nicer way (that you can replay). We think that
might resolve some of the issues in teaching (but probably not all).

cd. Games are important, maybe even essential in teaching formal methods and
making it fun. As a teacher of all ages from 8 years old to university level, I have
found games to be one of the best tools to use when teaching. Students under-
stand games and want to win them, naturally. When you explain to students
that there is a method in which they are either guaranteed to win, or indeed a

8 https://www.youtube.com/watch?v=UCwyOSHRBi0.
9 https://gitlab.cs.uni-duesseldorf.de/general/stups/

prob2-jupyter-kernel/-/blob/master/notebooks/tutorials/prob solver
intro.ipynb.

https://www.youtube.com/watch?v=UCwyOSHRBi0
https://gitlab.cs.uni-duesseldorf.de/general/stups/prob2-jupyter-kernel/-/blob/master/notebooks/tutorials/prob_solver_intro.ipynb
https://gitlab.cs.uni-duesseldorf.de/general/stups/prob2-jupyter-kernel/-/blob/master/notebooks/tutorials/prob_solver_intro.ipynb
https://gitlab.cs.uni-duesseldorf.de/general/stups/prob2-jupyter-kernel/-/blob/master/notebooks/tutorials/prob_solver_intro.ipynb

Rooting Formal Methods Within Higher Education Curricula 13

method in which the second player cannot win, their interest levels peak! Stu-
dents rush home to play the games against their parents and show off their new
found ability.

Games can also be taught to most age groups. As said in our other paper
in this volume “Appealing to their existing understanding of how the world
works, using puzzles as a medium, students can quickly become comfortable
using mathematical concepts such as labelled transition systems” [MOPD20].

We have had success in asking 11 year olds to draw labelled transition sys-
tems. If we start teaching them sooner, this could act as a base from which we
can build upon to further their understanding later on.

mf. In our experience [FW20] the students found it difficult to bridge the gap
between the theory that was taught during the course (e.g. natural deduction
proofs) and the associated tool support used during the lab sessions (e.g. Coq).
As a result, I am inclined to agree with sk above in that the students need to
see how these methods can work in reality rather than focus too much (although
it is important and should be covered at some level) on the theory.

ac. The use of tools provides a great potential for introducing fun in teach-
ing formal methods. This is particularly true for simulation and model-checking
tools, whose emphasis is in giving “life” to formal specifications rather than
getting involved in the complexity of a formal proof, as it happens, instead,
for theorem-proving tools. Moreover, formal methods can be applied to a large
range of problems, basically any problem, well beyond the domain of computer
science. These give chances to teachers to propose fun problems, such as classical
mathematical puzzles as well as popular games and even video games, and to
learners to select problems that are close to their personal and professional inter-
ests [CL20]. One effective approach consists of providing learners with examples
of formal methods descriptions of video games and inviting them to create formal
models of their favourite video games. More in general, learners may be invited
to define any problem they wish, formally specify/model it and carry out analysis
with the support of tools. It is actually important to blur the distinction between
learner and instructor by letting the learners drive the choice of exercises and use
their creativity to identify and specify potential problems and invent new games.
Blurring such a distinction will also contribute to instill in students a level of
self-confidence that can lead students to carry out “actual research” [POKG19]
and to actively contribute to curriculum development [Zhu20].

We can conclude our discussion on the teacher’s view about fun by saying that
if motivation is the dimension that allows learners to build up interest in formal
methods, fun is actually the essential dimension to keep learners continuously
engaged, thus assuring the retention and possibly increase of their interest over
time [CL20,Cer16,RCS+21]. However, it is important that the fun occurs from
the perspective of the student, not the teacher, and, if it is associated with
some form of competition, this much effectively fosters motivation and does not
cause frustration. In fact, nothing could be worse than “fun degenerating into
frustration”, which could be the case when a game that is fun for the teacher is

14 A. Cerone et al.

actually too complex or uninteresting for the students or, especially in the case
of school children, if the outcome of competition is interpreted by the student
as a form of assessment [Cer20].

ns. Fun, puzzles, games and entertainment in teaching are not the unique ingre-
dients needed to improve formal methods education (more general – computer
science and software engineering education). All these (and something else) are
just ways to engage (undergraduate) students with the learning, studying, com-
prehension and mastering of formal methods using curiosity and amusement.
We believe that the experience of individual educators and expertise of research
groups in the field of formal methods popularization deserves a positive atti-
tude from the computer science, software engineering and (even) mathematics
academic community and industry.

Another opportunity (just as an example) is a competitive spirit that is so
appropriate for young people (in particular – for students of computer science
and software engineering departments). International competitions between for-
mal methods tools (e.g. automated theorem provers and satisfiability solvers) are
popular, useful and valuable from the industrial and research perspectives, but
not from the undergraduate education perspective. Unfortunately, competitions
especially designed for (undergraduate) students (like Collegiate Programming
Contest10) are still not involved in the education process in general and in formal
methods education in particular. We hope that competitions of this kind may
be used better for engaging students with theory of computer science and formal
methods in software engineering [SY02].

po. I also disagree with the ‘puzzle’/‘games’/‘card tricks’ approach. I do not
think that they show the usefulness and relevance of formal methods. I also use
small games (lots of them!) in my second-year course, up to blackjack, but only
as small “toy examples” to get to know the modeling language and tool. On the
other hand, real industrial applications, as others write here, are too large and
complex to include in beginner’s formal methods courses. A good compromise
that I use (and describe in my FMfun’19 paper) are seminal systems/algorithms
that are the cornerstones of different other domains and, equally important, of
today’s large software systems. For example, 2-phase-commit (while simple) and
Paxos (less so) are still key building blocks in today’s distributed systems. I
include key designs from other courses and beyond, like cryptographic protocols
(modeling and breaking NSKP), distributed transactions (2PC), distributed mu-
tual exclusion, distributed leader election, transport protocols like TCP, ABP,
sliding window, and so on. This shows the relevance of formal methods on many
kinds of systems, and are small enough to easily model and analyze using for-
mal methods, but might still give students (and other professors!) an idea of the
usefulness of formal methods.

One final problem with games/tricks: even if you learn how to apply your
formal method to model and analyze such games, can you then apply your formal
method to a real distributed system such as Paxos or a cryptographic protocol?

10 https://icpc.baylor.edu/.

https://icpc.baylor.edu/

Rooting Formal Methods Within Higher Education Curricula 15

I refer to my paper “Teaching Formal Methods for Fun Using Maude” [Ölv20]
in this volume for a lengthier exposition of how I think formal methods should
be taught at the undergraduate level.

3.1 Summarizing the Ideas

It is obviously impossible to establish general criteria to make formal methods
teaching a fun activity. Fun cannot be characterised in an objective way and can
only naturally emerge from the interaction between teachers and students. In
fact, the emergence of fun is affected by the personalities of individual teachers
and students as well as by the interaction context in which such different person-
alities meet in the classroom collaborative environment. Here, different criteria
have been suggested and discussed, including:

– games and puzzles may represent a light-weight and fun introduction to
formal methods;

– there should be an emphasis on building and verifying software for simple,
but realistic, systems;

– teaching should focus on demonstrating that tools work rather than on de-
livering too much theory;

– students are likely to enjoy undertaking actual research activities;
– students should be involved in curricula development.

There is a general view among the co-authors that games and puzzles can
be useful when it comes to teaching formal methods in the initial stages and
represent a light-weight and fun introduction (mf, cd, ac). It is important to
note that this view includes former formal methods students who became formal
methods teachers [MOPD20]. Games may be also associated with some form of
competition (ac, ns), which may be within-class (ac) or in terms of participa-
tion at an international context (ns). Games and puzzles are also a great tool to
start formal methods education early, even by teaching to school level children,
as young as 10–11 (cd, ac). Competition can also be beneficial in the context
of school children, but should to carefully planned in order to avoid being inter-
preted by the student as a form of assessment, which therefore inhibits rather
than motivates the students [Cer20].

In addition, there must also be some emphasis on building and verifying
software (mf). However, such a connection with reality should be established
in the right form to keep in line with the fun determined by the game-based
approach. In fact, giving students the task of developing and verifying a simple,
but realistic, model of a system would be beneficial while encouraging them
to have fun with formal methods (mf). However, on the one hand, realistic,
industrial systems are often far away from what students can experience and
experiment with (sk) and most students will not go into the construction of
safety-critical systems, important though they are (jd). On the other hand, the
specialist safety-critical companies tend to do their own training (jd), which
may provide a very different perspective from what students learn in formal

16 A. Cerone et al.

methods courses. Moreover, focusing on examples from industry is very time
consuming and often involves heavy technical details and, as a consequence, may
be distractive rather than beneficial (sk). Instead, it might be more effective to
motivate formal methods with more common, but still realistic examples, such
as the Chromium Project (jd).

There is a general agreement among the co-authors that students need to see
how formal methods work in reality using tools rather than focusing too much
on the theory (sk, mf, pk, ac, po). However, making students use industrial
tools may result in heavy frustration. While it is nice to see that such tools are
used in practice, they might be the wrong means to learn formal methods (pk).

An final aspect that could make a formal methods course interesting is
to involve students in formal methods research rather than formal meth-
ods application (sk). In fact, students’ publication are often highly appreci-
ated [POKG19,Zhu20].

4 Increasing Visibility of Formal Methods Throughout the
Curriculum

In common computer science and software engineering curricula, formal methods
play a minor role. There are at most one or two specialized courses focusing on
teaching formal methods. Often, these courses are only weakly linked to the rest
of the curriculum.

Formal methods fail to link to the current hot topics in computer science
and software engineering, both in teaching and research. In consequence, even
students with considerable interest in software engineering are drawn towards
courses such as data science, machine learning or artificial intelligence. However,
now that artificial intelligence and machine learning techniques find their way
into safety critical systems (such as autonomous cars), correctness considerations
become more important every day.

The ‘winner-takes-all’ nature of today’s software industry (where essentially
one product/service in each category ‘wins’ and makes billions, and other so-
lutions fade away, e.g., Facebook for social media; Google for search engines,
eBay for online auctions, Zoom for online discussions/teaching/meetings) jus-
tifies an upfront investment in system quality. We note that major firms like
Google [SvGJ+15], Facebook [DFLO19], and Amazon [NRZ+15] are all doing
this, but this has yet to feed through to their hiring practices, or to students’
perceptions of what they need to get a job at these favoured employers.

In consequence, an ideal integration of formal methods into a computer
science or software engineering curriculum should first and foremost strive to
present formal methods as a quality assurance tool to be used in other areas,
be it embedded systems engineering or machine learning. This first contact to
formal methods would aim at teaching usage scenarios as well as techniques and
how they are to be deployed.

We believe that showing the benefit of formal methods by discussing appli-
cations to other areas will achieve two goals. First, it ensures code quality and

Rooting Formal Methods Within Higher Education Curricula 17

system functionality are considered as critical. Furthermore, this initial contact
to formal methods might spark an interest into their development and improve-
ment. Both topics could then be a part of dedicated courses in formal methods.

While such a ‘casual’ approach would be ideal, it would require colleagues
to be willing and to be able to teach small units on formal methods. This might
be an unrealistic assumption. Organising ‘guest sessions’ from formal methods
experts might be a way forward.

To gain an acceptance of having more formal methods visibility in a university
curriculum, we need to persuade first and foremost our colleagues. Ultimately
they decide whether/how/how much formal methods a university curriculum
could/must contain. There is huge competition for places on a curriculum be-
tween the different specialties/fields. At least the older colleagues may remember
times when formal methods were not too useful.

The 2013 “Curriculum Guidelines for Undergraduate Degree Programs in
Computer Science” [ACM13] lists 18 “Knowledge Areas”. In the following, we
make a number of suggestions for formal method units in some of these areas:

AL-Algorithms and Complexity: formal verification of algorithms; model
checking algorithms.

DS-Discrete Structures: logic, modelling, semantic foundations of formal
methods.

HCI-Human-Computer Interaction: mode confusion problems; formal
analysis of user dialogs; cognitive models.

IAS-Information Assurance and Security: formal analysis of security
protocols.

IM-Information Management: specifying and analyzing both the correct-
ness and the performance of cloud storage systems.

NC-Networking and Communication: protocol verification.

OS-Operating Systems: parallel modelling; scheduling.

PBD-Platform-based Development: formal model based development.

PD-Parallel and Distributed Computing: process calculi; Petri nets.

PL-Programming Languages: how to analyse software written in a specific
programming paradigm; compiler correctness; semantics of programming
languages; program correctness.

18 A. Cerone et al.

5 Syllabus of a Compulsory Formal Methods Course

Besides increasing the visibility of formal methods throughout all courses and
also having specialised advanced courses on formal methods, we suggest that
curricula for computer science and software engineering should include a com-
pulsory formal methods course.

The target audience for such a compulsory formal methods course would be
the complete cohort of computer science/software engineering students in year
2 or year 3 of a 3-year BSc degree programme.

Due to the wealth of available formal methods, we refrain from proposing
a unified or ‘standard’ syllabus. Local expertise in specific formal methods and
application domains should be taken into account. Therefore, we rather capture
the essence of an ideal course in a generic way:

Introduction.

– The role of formal methods in the context of software engineering, see, e.g.,
Roggenbach et al. [RCS+21], Chapter 1, for a thorough discussion, and
Barnes [Bar11] for a comparative case study.

– Success stories of formal methods, see, e.g., Roggenbach et al. [RCS+21] for a
compilation of such stories, another good source is Section 1.3.4 of Garavel’s
report [GG13];

– Relating formal methods to current trends in computer science, such as ma-
chine learning, where one can use machine learning to improve formal meth-
ods [ALB18], or, a nascent field but one that is growing in importance and
has already attracted the attention of ISO in the draft TR 24029-2, the appli-
cation of formal methods to big data [vdA16,Cam14,MLM18] or to machine
learning [HKW17,SKS19,WPW+18].

Main Part. The main part should offer one or two formal methods of different
nature, e.g. a “model-oriented” and a “property-oriented” one, cf. [Win90] for
further discussion of this classification; in order to demonstrate the ‘universal-
ity’ of formal methods, it would appear useful to draw examples from different
domains.

The following topics (listed in no particular order) should be covered:

– Modelling: going from the informal to the formal; traceability; validation of
models.

– Language design: explaining how the language of a formal method is designed
for specific purposes (what are essentials necessary for expressivity, what is
syntactic sugar easing the life of the specifier?).

– Semantics: presenting just the essentials – this needs to be one topic among
many rather than the dominating one, as happens too often in current prac-
tice.

– Software engineering context: demonstrating that formal methods are appli-
cable throughout the whole software lifecycle, e.g., in analysing designs, in
software verification, testing from formal models.

Rooting Formal Methods Within Higher Education Curricula 19

– Method: systematically using tools to illustrate the ‘method’ aspect.
– Application domains: illustrate the reach of formal methods by selecting ex-

amples from different application domains. Safety, security, human-computer
interaction, e-contracts, and non-computer areas (biological systems, ecology,
chemistry) are some possible examples.
Traditionally, formal methods teaching advocates the use of formal methods
for safety-critical systems. Formal methods are of course super-important
for those systems, but experience in class (and otherwise) suggests that this
does not inspire and is almost counterproductive: most students do not fore-
see themselves designing the quite narrow range of safety-critical systems
we tend to use as example (airplanes, cars, medical devices, etc.); focusing
almost exclusively on safety-critical systems can actually be counterproduc-
tive as it (can be perceived to) send signals that formal methods are only
usable for such systems.
As cybersecurity failures are much in the news, we might look at these and
see how formal methods might have found these (e.g. Heartbleed), or are
being used (e.g. Chromium), as a way of emphasising the mainstream utility
of formal methods.

Conclusion – Reflection on Formal Methods. We present below some items of
reflective nature that ought to be addressed at the end of a formal methods
course.

– General limitations: what formal methods can offer, what formal methods
cannot deliver, e.g., based on Levenson’s provocative article “Are You Sure
Your Software Will Not Kill Anyone?” [Lev20].

– Scalability: why formal methods work on toy examples but their applica-
tion might become impossible for technical reasons when it comes to real
life challenges, see, e.g., [RMS+12] and [JMN+14]. [RMS+12] shows a for-
mal methods in its early stages, where it can barely verify a toy example;
[JMN+14] shows how, after two further years of research, with the help of
abstractions it is possible to verify a real world example with the very same
approach.

– Costs/benefits: what the cost and financial benefits of formal methods
are [Bar11]. The key insight “Formal methods are surprisingly feasible for
mainstream software development and give good return on investment.” from
Newcombe et al. [NRZ+15] and Amazon’s “We can now use automated rea-
soning to provide inexpensive and provable assurance to customers” from J.
Backes et al. [BBC+19] are probably a ‘must have’ !

– Acceptance: current uptake of formal methods in industry and reasons for
the low acceptance.

– Current trends: where one expects the field of formal methods to be in, say,
a decade.

Each lecturer will have her/his own subjective view concerning the above list
of topics. Probably they offer a good point for discussion with students. The
systematic element underlying them is that they ought to be addressed at the
end of a formal methods course.

20 A. Cerone et al.

Learning Outcomes. Such a course would provide the learning outcomes that
students

– understand the thinking behind formal methods and how it differs from ad-
hoc programming;

– are fluent in the application of one or two formal methods to academic
examples;

– are able to estimate the potential of formal methods with concrete challenges;
– are able to critically compare different formal approaches and choose the most

appropriate for a given, specific application.

6 How to Assess Our Teaching Efforts?

Having introduced changes to teaching, it is important to assess if they have
been successful. In this section, we collect a number of ideas as to how this could
be done. In the order in which they were contributed, we present a number of
personal statements.

mf. The obvious measurement is to compare exam results year after year, as-
suming that the same person teaches the course before and after any changes
are made. We are working towards making some changes to our course that we
could compare against the previous years’ results. However, it is also important
to survey the students before and after the course as well as during the lab ses-
sions to really understand how they are progressing and how effective the notes,
teaching and lab sessions are in improving their formal methods expertise.

cd. As a teacher on a Degree Apprenticeship programme, I think one such
method of assessing our own teaching methods, is to actually assess the stu-
dents’ level of understanding by getting them to apply formal methods in their
workplace: students on our programme are employed. Often, when we teach for-
mal methods, our students have never seen them before. We tasked our students
with producing a work-based portfolio where they have to apply discrete mathe-
matics to their workplace. Whilst some students struggle with the task, for most
of them it becomes apparent how beneficial it is in the workplace. Sometimes
it even highlights issues with the existing systems logic. In my opinion this is
the best outcome and therefore would demonstrate that we have been teaching
successfully.

sk. The formal methods community ought to reflect on what it wants to achieve
in teaching. Ultimately, there is no use in being able to enumerate different
formal methods and just being able to use them if you don’t see any reason to
do so. Rather, I am in favour of indeed trying to change (and measure/evaluate)
students’ opinions and attitudes.

Employing a formal approach to software engineering is all about the re-
sulting quality of the product. Thus, a formal methods course needs to change

Rooting Formal Methods Within Higher Education Curricula 21

students’ perceptions about software as a product that is used in different appli-
cations and situations – eventually, even in safety critical ones. Nobody would
cross a bridge that seems like it might collapse. At the same time, delivering
software that is known to cease working under certain conditions has become
quite accepted. Once students gain an awareness and consciousness for quality
aspects of software, formal methods (and the effort to use them) will appear
more beneficial.

mr. In my teaching experience, students best learn those topics that they like
to do, that they can try themselves, and that provide them with a feeling of
achievement. For teaching practice in formal methods that means that we ought
to run supporting lab classes. These would offer meaningful examples on which
students can successfully apply a formal method, or explore why some specific
formal method fails. In my view, lab tasks would be well-designed if, say, 80%
of the students can solve them, i.e., offer them a sense of achievement.

The other objective would be to educate the majority of computer science
students in such a way that they are capable of applying formal methods in their
future careers in industry. This could be evaluated by looking at dissertations:
do the majority of them report on the application of formal methods when the
project concerns software development?

pk. One criterion could be the number of students that are interested in writing
their dissertation in the field of formal methods. In particular, our experience is
that while formal methods are not in high demand with students, the ones who
finish our formal methods courses usually are willing to gain an expert level of
knowledge. Many students stay interested, once they have developed an appetite
for formal methods.

ac. Assessing the effect of teaching changes in standard formal methods courses
is a tricky task for a number of reasons:

1. classes are normally small;
2. even within the small group there is often a large variety in background and

interest of the students;
3. although students might be interested and even successful in using formal

methods, in their future research or work goals they are driven by more
trendy areas and topics, where there is little place for the use of formal
methods.

Reason 1 prevents us from collecting enough data to allow us to produce sta-
tistically significant results. It is therefore more important to informally collect
personal opinions from students through discussions, open-ended questionnaires
and interviews, rather than analysing numerical data such as grades and per-
centage of successful students.

Reason 2 requires an initial assessment of the students to be compared with
the final objectives that they achieve at the and of the course (see mf’s statement
earlier in this section). A possible form of initial assessment is a questionnaire

22 A. Cerone et al.

to be administered during the very first course class. The questionnaire should
aim at the assessment of

– mathematical background;
– logical and problem solving skills;
– experience with the logic and functional programming paradigms;
– knowledge of the software engineering concepts that are central in formal

methods, such as specification, testing, verification, validation, assurance.
– knowledge of basic logical and set-theoretic concepts such as syntax, seman-

tics, theorem, proof, function and more specific computability concepts such
as decidability, enumerability, undecidability.

– perception of more “exotic” formal methods concepts such as system state
and concurrent system.

Due to Reason 3, looking at dissertations or careers of former students does
not really provide a measure of the achievement of learning objective. In fact,
students’ pragmatics in looking for a thesis topic or choosing their professional
career may clash with their academic interests.

6.1 Summarizing the Ideas

Assessment is often an exercise of producing numbers that can be compared
over several academic years. Here, different criteria have been suggested and
discussed, including:

– exam results of a particular course;
– number of dissertations in which formal methods are applied; and
– number of dissertations in the area of formal methods.

ac provided arguments why one should look at such numbers with care.
For teaching a formal method it has been suggested to closely survey students

during the course (mf), and to design lab classes with ‘guaranteed success’, i.e.,
which are barely contributing to a differentiation between students in form of
marks (mr).

A slightly deeper looking approach would be to look at students’ opinions
and attitudes and see how they change over time (sk).

7 Conclusion and Outlook

In this white paper, we have analysed why formal methods are seldom promi-
nently included in computer science and software engineering curricula. One
often heard reason for this is that they fail to attract students. However, we be-
lieve that students often just have misconceptions about formal methods. Also,
the ‘coolness factor’ of formal methods is low. Finally, formal methods are not
visibly used by industry. It is a myth that formal methods teaching on a basic
level would require a particularly strong mathematical background. We provided
a number of ideas on how to make formal methods more attractive to students

Rooting Formal Methods Within Higher Education Curricula 23

and gave examples of the uptake of formal methods in industry beyond the
critical systems sector.

In the spirit of the workshop “Formal Methods – Fun for Everybody”, this
paper has collected a number of ‘sparkling ideas’ that aim at improving the situa-
tion summarised above. We grouped such ideas into four categories, namely indi-
vidual teaching delivery, cf. Sect. 3, making formal methods visible throughout
the syllabus, cf. Sect. 4, the proposal of a compulsory formal methods course,
cf. Sect. 5, and ideas about how to measure the effect of teaching changes, cf.
Sect. 6.

With this white paper a start has been made to make formal method teaching
more popular. The ideas and arguments presented are ready to be picked up in
order to improve existing courses, to design new courses, and to make formal
methods more prominent in academic curricula. The participants of the 2019
workshop were enthusiastic about this topic, and we hope to have shared some
of this enthusiasm with the reader. Let’s turn this into a wider movement!

References

[ACM13] ACM. Computer science curricula 2013: Curriculum guidelines for under-
graduate degree programs in computer science (2013). http://dx.doi.org/
10.1145/2534860

[ACM15] ACM. Software engineering 2014: Curriculum guidelines for undergradu-
ate degree programs in computer science (2015). https://doi.org/10.1145/
2965631

[ALB18] Amrani, M., Lucio, L., Bibal, A.: ML + FV = ♥? A survey on the applica-
tion of machine learning to formal verification. arXiv Software Engineering
(2018)

[Bar11] Barnes, J.E.: Experiences in the industrial use of formal methods. In:
Romanovsky, A., Jones, C., Bendiposto, J., Leuschel, M., (eds.) AVoCS
2011. Electronic Communications of the EASST (2011)

[BBC+19] Backes, J., Bolignano, P., Cook, B., Gacek, A., Luckow, K.S., Rungta,
N., Schaef, M., Schlesinger, C., Tanash, R., Varming, C., Whalen, M.:
One-click formal methods. IEEE Softw. 36(6), 61–65 (2019)

[BDK+06] Brakman, H., Driessen, V., Kavuma, J., Bijvank, L.N., Vermolen, S.: Sup-
porting formal method teaching with real-life protocols. In: Formal Meth-
ods in the Teaching Lab (2006). http://www4.di.uminho.pt/FME-SoE/
FMEd06/Preprints.pdf

[BLA+09] Blanco, J., Losano, L., Aguirre, N., Novaira, M.M., Permigiani, S.,
Scilingo, G.: An introductory course on programming based on formal
specification and program calculation. SIGCSE Bull. 41(2), 31–37 (2009)

[Bou09] Boute, R.: Teaching and practicing computer science at the university
level. SIGCSE Bull. 41(2), 24–30 (2009)

[BS12] Brain, M., Schanda, F.: A lightweight technique for distributed and incre-
mental program verification. In: Joshi, R., Müller, P., Podelski, A. (eds.)
VSTTE 2012. LNCS, vol. 7152, pp. 114–129. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-27705-4 10

[Cam14] Camilli, M.: Formal verification problems in a big data world: towards a
mighty synergy. In: Proceedings of ICSE 2014, pp. 638–641. ACM (2014)

http://dx.doi.org/10.1145/2534860
http://dx.doi.org/10.1145/2534860
https://doi.org/10.1145/2965631
https://doi.org/10.1145/2965631
http://www4.di.uminho.pt/FME-SoE/FMEd06/Preprints.pdf
http://www4.di.uminho.pt/FME-SoE/FMEd06/Preprints.pdf
https://doi.org/10.1007/978-3-642-27705-4_10

24 A. Cerone et al.

[CC82] Cooper, D., Clancy, M.: Oh! Pascal. W.W. Norton & Company Inc., New
York (1982)

[CCC+18] Chudnov, A., et al.: Continuous formal verification of Amazon s2n. In:
Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982,
pp. 430–446. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
96142-2 26

[CDOY11] Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional
shape analysis by means of bi-abduction. J. ACM 58(6), 26:1–26:66 (2011)

[Cer16] Cerone, A.: Human-oriented formal modelling of human-computer interac-
tion: practitioners’ and students’ perspectives. In: Milazzo, P., Varró, D.,
Wimmer, M. (eds.) STAF 2016. LNCS, vol. 9946, pp. 232–241. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-50230-4 17

[Cer20] Cerone, A.: From stories to concurrency: How children can play with for-
mal methods. In: A. Cerone and M. Roggenbach (eds.) FMFun 2019, CCIS
1301, pp. 191–207. Springer, Cham (2017)

[CL20] Cerone, A., Lermer, K.R.: Adapting to different types of target audience
in teaching formal methods. In: A. Cerone and M. Roggenbach (eds.)
FMFun 2019, CCIS 1301, pp. 106–123. Springer, Cham (2017)

[CRS+15] Cerone, A., Roggenbach, M., Schlingloff, B.-H., Schneider, G., Shaikh,
S.A.: Teaching formal methods for software engineering - ten
principles (2015). https://www.informaticadidactica.de/uploads/Artikel/
Schlinghoff2015/Schlinghoff2015.pdf

[DD07] Deitel, P.J., Deitel, H.M.: Java - How to Program, 7th edn. Pearson Edu-
cation Inc., Upper Saddle River (2007)

[DFLO19] Distefano, D., Fähndrich, M., Logozzo, F., O’Hearn, P.W.: Scaling static
analyses at Facebook. Commun. ACM 62(8), 62–70 (2019)

[DS18] Dewar, R.B.K., Schonberg, E.: Computer science education: Where are the
software engineers of tomorrow? CROSSTALK - The Journal of Defense
Software Engineering (2018)

[Flo67] Floyd, R.W.: Assigning meaning to programs. Math. Aspects Comput.
Sci. 19, 19–32 (1967)

[FW20] Farrell, M., Wu, H.: When the student becomes the teacher. In: A.
Cerone and M. Roggenbach (eds.) FMFun 2019, CCIS 1301, pp. 208–217.
Springer, Cham (2017)

[GG13] Garavel, H., Graf, S.: Formal Methods for Safe and Secure Computers
Systems. Federal Office for Information Security (2013). https://www.bsi.
bund.de/DE/Publikationen/Studien/Formal Methods Study 875/study
875.html

[Gib08] Paul Gibson, J.: Formal methods: never too young to start. In: Proceedings
of FORMED 2008, pp. 151–160 (2008)

[GJS+20] Gosling, J., et al.: The Java language specification - Java SE 14 Edition.
Technical Report JSR-389 Java SE 2014, Oracle America, February 2020

[GL20] Geleßus, D., Leuschel, M.: ProB and Jupyter for logic, set theory, theo-
retical computer science and formal methods. In: Raschke, A., Méry, D.,
Houdek, F. (eds.) ABZ 2020. LNCS, vol. 12071, pp. 248–254. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-48077-6 19

[Gla00] Glass, R.L.: A new answer to “how important is mathematics to the soft-
ware practitioner?”. IEEE Softw. 17(6), 136 (2000)

[GM13] Gnesi, S., Margaria, T.: Some Trends in Formal Methods Applications to
Railway Signaling, pp. 61–84 (2013)

https://doi.org/10.1007/978-3-319-96142-2_26
https://doi.org/10.1007/978-3-319-96142-2_26
https://doi.org/10.1007/978-3-319-50230-4_17
https://www.informaticadidactica.de/uploads/Artikel/Schlinghoff2015/Schlinghoff2015.pdf
https://www.informaticadidactica.de/uploads/Artikel/Schlinghoff2015/Schlinghoff2015.pdf
https://www.bsi.bund.de/DE/Publikationen/Studien/Formal_Methods_Study_875/study_875.html
https://www.bsi.bund.de/DE/Publikationen/Studien/Formal_Methods_Study_875/study_875.html
https://www.bsi.bund.de/DE/Publikationen/Studien/Formal_Methods_Study_875/study_875.html
https://doi.org/10.1007/978-3-030-48077-6_19

Rooting Formal Methods Within Higher Education Curricula 25

[HK17] Heule, M.J.H., Kullmann, O.: The science of brute force. Commun. ACM
60(8), 70–79 (2017)

[HKW17] Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of
deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10426, pp. 3–29. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63387-9 1

[HW73] Hoare, C.A.R., Wirth, N.: An axiomatic definition of the programming
language PASCAL. Acta Inf. 2, 335–355 (1973)

[ISO90] ISO 7185:1990 Information technology - Programming languages - Pascal
(1990)

[JMN+14] James, P., Moller, F., Nga, N.H., Roggenbach, M., Schneider, S.A., Tre-
harne, H.: Techniques for modelling and verifying railway interlockings.
Int. J. Softw. Tools Technol. Transf. 16(6), 685–711 (2014)

[KKS19] Krings, S., Körner, P., Schmidt, J.: Experience report on an inquiry-based
course on model checking. In: Tagungsband des 16. Workshops zu Software
Engineering im Unterricht der Hochschulen, CEUR, vol. 2358 (2019)

[Lev20] Leveson, N.: Are you sure your software will not kill anyone? Commun.
ACM 63(2), 25–28 (2020)

[MC15] McCormick, J.W., Chapin, P.C.: Building High Integrity Applications
with SPARK. Cambridge University Press, Cambridge (2015)

[MLM18] Mandrioli, C., Leva, A., Maggio, M.: Dynamic models for the formal ver-
ification of big data applications via stochastic model checking. In: Pro-
ceedings of CCTA 2018, pp. 1466–1471. IEEE Computer Society (2018)

[MOPD20] Moller, F., O’Reilly, L., Powell, S., Denner, C.: Teaching them early: for-
mal methods in school. In: A. Cerone and M. Roggenbach (eds.) FMFun
2019, CCIS 1301, pp. 173–190. Springer, Cham (2017)

[NRZ+15] Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M.,
Deardeuff, M.: How Amazon web services uses formal methods. Commun.
ACM 58(4), 66–73 (2015)

[Ölv20] Ölveczky, P.: Teaching formal methods for fun using Maude. In: A. Cerone
and M. Roggenbach (eds.) FMFun 2019, CCIS 1301, pp. 58–91. Springer,
Cham (2017)

[Pat94] Pattis, R.E.: Teaching EBNF first in CS 1. In: Proceedings of the Twenty-
Fifth SIGCSE Symposium on Computer Science Education, SIGCSE
1994, New York, NY, USA, pp. 300–303. Association for Computing
Machinery (1994)

[POKG19] Petrasch, J., Oepen, J.-H., Krings, S., Gericke, M.: Writing a model
checker in 80 days: reusable libraries and custom implementation. In:
Proceedings of AVoCS 2018, vol. 76, Electronic Communications of the
EASST (2019)

[RCS+21] Roggenbach, M., Cerone, A., Schlingloff, B.-H., Schneider, G., Shaikh,
S.A.: Formal Methods for Software Engineering. Springer, Switzerland
(2021)

[RMS+12] Roggenbach, M., Moller, F., Schneider, S., Treharne, H., Nguyen, H.N.:
Railway modelling in CSP||B: the double junction case study. ECEASST,
53 (2012)

[Sek06] Sekerinski, E.: Teaching the mathematics of software design. In: Formal
Methods in the Teaching Lab (2006). http://www4.di.uminho.pt/FME-
SoE/FMEd06/Preprints.pdf

https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_1
http://www4.di.uminho.pt/FME-SoE/FMEd06/Preprints.pdf
http://www4.di.uminho.pt/FME-SoE/FMEd06/Preprints.pdf

26 A. Cerone et al.

[SKS19] Sun, X., Khedr, H., Shoukry, Y.: Formal verification of neural network
controlled autonomous systems. In: Proceedings of HSCC 2019, pp. 147–
156. ACM (2019)

[SvGJ+15] Sadowski, C., van Gogh, J., Jaspan, C., Söderberg, E., Winter, C.: Tri-
corder: building a program analysis ecosystem. In: 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, vol. 1, pp. 598–
608 (2015)

[SY02] Shilov, N.V., Yi, K.: Engaging students with theory through ACM colle-
giate programming contests. Commun. ACM 45(9), 98–101 (2002)

[vdA16] van der Aalst, W.: Process Mining - Data Science in Action, 2nd edn.
Springer, Heidelberg (2016)

[vRtPdt20] van Rossum, G., the Python development team: the Python Language Ref-
erence - Release 3.8.3. Python Software Foundation, June 2020. Retrieved
2020–06-15

[Win90] Wing, J.: A specifier’s introduction to formal methods. IEEE Comput.
23(9), 8–22 (1990)

[WPW+18] Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security
analysis of neural networks using symbolic intervals. In: Proceedings of
Sec 2018, pp. 1599–1614. ACM (2018)

[Zhu20] Zhumagambetov, R.: Teaching formal methods in academia: a systematic
literature review. In: A. Cerone and M. Roggenbach (eds.) FMFun 2019,
CCIS 1301, pp. 218–226. Springer, Cham (2017)

Axiom Based Testing for Fun
and Pedagogy

Magne Haveraaen(B)

Bergen Language Design Laboratory, Department of Computer Science,
University of Bergen, Bergen, Norway

Magne.Haveraaen@ii.uib.no
https://bldl.ii.uib.no/

Abstract. The intricacies of programming demands a precise under-
standing of a programming language, its libraries and its conventions.
Programming education normally does not emphasise this well enough,
often leaving technicalities vague and omitting corner cases. In addition,
students starting computing studies at university have about 12 years
of basic education behind them. The intuition the students bring with
them to university is in many ways at odds with the technicalities of pro-
gramming. This mismatch is later the source of many computer related
vulnerabilities and in some cases causes disasters.

Here we advocate axiom based testing as a technique to master these
demands. Axiom based testing is based on programming language seman-
tics, not mathematical semantics. There is no need for quantifiers in the
specifications, and no need for formal reasoning to achieve the benefits.
Using axiom based testing does not presuppose more than the ability
to write methods and assertions, a part of any beginning programming
course. Thus axiom based testing is a very lightweight formal method. It
can be used both to understand other people’s code, e.g., libraries and
APIs, and to validate own code. Axiom based testing integrates naturally
with unit testing and can be an aid for both students and practitioners
in getting the technical details right. Our experience is that axiom based
testing can easily be taught at the undergraduate level. It is as fun to
use as unit testing, giving the same direct feedback.

This paper contains many hands on examples, mostly in Java. It can
be the basis for self studies in axiom based testing for Java or for teaching
axiom based testing for any programming language.

Keywords: Axiom based testing · Parameterised unit tests ·
Lightweight formal methods · Java collection classes · Behavioural
subtyping · Liskov substitution principle · Software vulnerabilities ·
Programming caveats · Teaching object-orientation

1 Introduction

Software is a complex system of intricate technical details interacting in order
to achieve some overall behaviour. A software developer must master this in
c© Springer Nature Switzerland AG 2021
A. Cerone and M. Roggenbach (Eds.): FMFun 2019, CCIS 1301, pp. 27–57, 2021.
https://doi.org/10.1007/978-3-030-71374-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71374-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-71374-4_2

28 M. Haveraaen

the formal system defined by the programming language, its standard libraries
and conventions. Unfortunately this formal system can be at odds with the
programmer’s training, making the development task hard and error prone.

Most programming languages lack a formal definition and resort to stylised
English (standardese) in overly large documents, e.g., [14,21,22]. This makes
the task of gaining a precise understanding of the programming language over-
whelming. Contemporary programming languages also come with a standard
library, sometimes defined outside of the language standard document [23]. In
order to master programming one needs to master a changing selection of the
types and operations of the language and its libraries, whether the libraries are
standard, third party, or programmer developed. Hoare and Wirth’s formalisa-
tion of Pascal used axioms to capture the semantics of the intrinsic types [18].
Axioms have a sound theoretical basis. They can be applied on the types and
methods we are interested in, e.g., on the intrinsics and libraries we actually use
in a software system. Sets of axioms can be composed while keeping the insights
already gained from the component specifications.

Here we advocate using axioms as test oracles for understanding data types—
and for placing requirements on our own code. Axiom based testing is using
axioms as test oracles for checking code against expected properties [12]. This
is useful for newly developed code, as a generalisation of test driven develop-
ment [2], but also for gaining a precise understanding of existing types, e.g., in
libraries or programming language intrinsics. Programming is a setting where
the semantics of computers, as opposed to the mathematical ideas we learnt in
school, is significant. Mastering the corner cases is important to avoid vulnera-
bilities in software.

Axiom based tests can be written as methods with assertions. The parameters
to the methods are the variables of the axioms. This blends naturally with unit
testing which uses assertions in method bodies to express the tests. The only
difference is that axioms are parameterised tests [28] and need a selection of test
data to be used for unit testing.

In objected oriented programming axiom based tests capture the behavioural
aspect of classes. Class hierarchies organised according to the Liskov substitu-
tion principle [26] will inherit these axioms. A prominent example is the Java
standard library [23] which is designed around the substitution principle. In
addition, many of the Java standard library specifications are expressed as alge-
braic properties. These can readily be written as axiom based tests using JUnit
assertions [24]. A nice aspect is that these tests are written as Java (JUnit) code.
The student thus needs no additional mathematical background in order to write
and explore these axioms. A basic programming background is sufficient. And
checking axiom based tests gives direct feedback through the unit testing system
in the same way as good unit tests.

This is lightweight formal methods at its best:

the fun of programming, the feedback of unit testing, and
the precision of axioms, all in one.

Axiom Based Testing for Fun and Pedagogy 29

In the rest of this paper we next present the ideas of axiom based testing
and behavioural subtyping (the Liskov substitution principle). Then we look at
how these are engrained into the Java standard library. In Sect. 4 we turn the
tool of axiom based testing to understanding the computer integers and how
they deviate from mathematical integers. We then have a short interlude with
floating point numbers before the final summary and conclusion.

2 Axiom Based Testing and Liskov Substitution Principle

Here we first present the idea of axiom based testing and place it in a conceptual
and pragmatic context. Then we see how it supports behavioural subtyping—
known as the Liskov substitution principle in object-oriented programming.

2.1 Axiom Based Testing

The principle of axiom based testing is writing parameterised test oracles, i.e.,
test oracles that can be applied to arbitrarily many values of the appropriate
types. Thus writing axiom based tests is as simple as writing a parameterised test
oracle, which is as simple as writing a method with an assertion. Since assertions
are part of most modern programming languages, and are well supported by all
unit testing frameworks, axiom based testing can be integrated in most modern
software development practices.

From a formal methods perspective, axiom based testing is a natural step-
ping stone. It sensitises a student or practitioner to the idea of writing precise
definitions for their code. It also prepares them for understanding algebraic spec-
ifications, central to understanding properties of both mathematical and com-
puter structures. This includes the pragmatics of correctly using, e.g., collection
classes from a programming language library.

Historically formal specifications has been a mathematical discipline, while
testing has originated from pragmatical considerations in software development.
This creates a divide in the semantics of the two worlds, which can lead to severe
integration problems [29].

The DAISTS system countered this by showing that axioms can be used
as test oracles embedded in the programming language [12]. This integrates
the fun and immediate feedback of testing with the precision of axioms. The
DAISTS tool merges the classes being tested, the properties expected of the class
(axioms), a set of data points, and a monitoring library, into a test program.

From a programming viewpoint the principles used in DAISTS was to write
an axiom as an assertion in a procedure (the axiom), placing the free variables of
the axiom as parameters to the procedure. In modern parlance we can consider
the monitoring library as a unit testing framework. This gives a parameterised
unit test [28] with the axiom as the test oracle, e.g., as embodied in JUnit 5 [24].

To reap the benefits of axiom based testing, we can make the axiom generic.
Then the types and operators of the axiom’s generic arguments are instantiated
by the classes under test.

30 M. Haveraaen

The JUnit parameterised test sets are normally limited to a finite list of
test cases. Our JAxT (Java Axiom Testing) Eclipse [11] plugin [16,25] supports
randomised testing integrated with JUnit. JAxT also comes with a collection of
test oracles for the Java standard library, and most importantly, axioms checking
user code against requirements for the Java Collection classes (see Sect. 3).

The principles used for axiom testing are not limited to the mentioned lan-
guages. We have developed Catsfoot for C++ testing [1,9] which allows a mix
of crafted and randomised tests. The most well known system for axiom based
testing is QuickCheck [6]. QuickCheck embodies a very clever mechanism for
searching for a minimal counter example for axioms that fail. It also has good
approaches to finding non-trivial randomised data for conditional axioms. The
QuickCheck tool was originally developed for Haskell, but now has been extended
to many languages, most notably Erlang.

In axiom based testing the notation, semantics and logical expressions of the
programming language are used when formulating the axioms. This goes very
well for equational properties, conditional equational axioms, and in general for
any kind of boolean expression. Boolean expressions are typically the languages’
mechanism for writing conditionals and are thus very familiar for any software
developer or student of programming.

The more powerful logics, such as first order predicate logic are not that
easy to embed into axiom based tests. Predicate logic is, for instance, heav-
ily used when verifying algorithms as in pre/post specifications [10,17,27]. The
observation that algebraic specifications rarely need first order, and often can do
with equational specifications, is beneficial for axiom based testing as a practical
approach to formal methods. Additionally, there is theoretical backing for the
observation that enlarging an API will allow a simpler specification logic [4].
Pragmatically using a simpler, more easily testable specification logic, has the
cost of implementing a larger API. Often this additional cost gives a more ver-
satile class, more often a benefit rather than a drawback.

2.2 Behavioural Subtyping and Axioms

Subtyping is a relationship between types that allow data of a subtype to be used
in place of a supertype. There are two levels to this. The first level is ensuing
type safety, such that runnable code can be generated for the subtype when it
has been checked for the supertype. Thus the subtype must, e.g., support the
same methods as the supertype. The second level is to what extent the subtype is
semantically related to the supertype. That is, how is the subtype constrained by
the supertype such that any program expecting supertype data should compute
essentially the same result given subtype data.

There are various approaches to behavioural subtyping that attempts to for-
malise “constrained by the supertype”. Here we will understand behavioural sub-
typing as when a subtype inherits a specified set of properties of a supertype.
Defining such a property by an axiom, this implies that the axioms for a super-
type are valid for the subtype. For axiom based testing it follows that selected
axioms valid for a type can be used as test oracles for all its subtypes.

Axiom Based Testing for Fun and Pedagogy 31

In the object oriented setting behavioural subtyping is known as the Liskov
substitution principle [26]. According to the principle, object oriented hierar-
chies are designed to propagate properties from superclasses to subclasses. This
is in contrast to the actual inheritance mechanism which is a code reuse mecha-
nism [8].

The Java standard library [23] is designed according to the Liskov substi-
tution principle. Its documentation also has a clear algebraic flavour, making
it easy to make properties and requirements into axiom based test oracles in
Java/JUnit. A significant benefit of this is that the code that defines the axioms
has the same semantic interpretation as the programming language itself.

The JAxT tool [25] mentioned above traces the Java inheritance hierarchies
when deciding which axioms to apply to a given class for testing purposes.

3 Behavioural Subtyping – Java Style

We will use behavioural subtyping as a perspective on the class hierarchy of
Java and its standard library. Studying the Java collection classes specifically, it
is clear that they have been designed with axiom inheritance in mind.

All classes in Java belong to a single inheritance hierarchy rooted in the class
Object while Java’s primitive types are stand-alone.

Axiom based testing will help us see how we can gain a precise understanding
of a class and its requirements. These requirements are essential to get right in
order to use the standard library appropriately. A limited, informal understand-
ing can miss out on important corner cases, leaving software with reliability and
security vulnerabilities. Nothing of this is specifically tied to Java, though it is
a nice candidate to study due to the documentation style used in the standard
libraries.

In Sects. 4 and 5 we will apply the same axiom based testing methods to
gain insight in the primitive data types (integral and floating point, respectively)
of Java. Java has a strict separation between primitive types and classes. The
primitive types include booleans, integers, floats, and characters.

A Java class inheriting another class gets access to all declarations and meth-
ods of the superclass (modulo visibility issues). New declarations of field vari-
ables may overshadow the superclass’s field variables, while new declarations of
methods override the superclass’s methods, i.e., replaces the algorithms.

The documentation of the Java standard library emphasises what properties
should be expected, and relates in several distinct ways to the class hierarchy [23].

– Properties that should hold for this class and all subclasses.
For instance that the equals method of Object (and all subclasses) should
be an equivalence relation. This is behavioural subtyping in practice.

– Properties that hold for this class only, and is not expected to hold for sub-
classes.
For instance that Object ’s equals method is comparing object references
and not values. This is OK since the algorithms used for a class’s methods
have specific properties and these can be made clear.

32 M. Haveraaen

Fig. 1. Examples of Java standard library hierarchies: HashMap hierarchy to the left,

TreeMap hierarchy to the right. A green circled C represents a class, a blue circled

I an interface. Note that the SortedMap properties take precedence over the Map

properties for TreeMap . (The illustration is made using Eclipse’s Open Type Hierarchy
feature [11].)

– Properties that do not hold for this class, but should hold for all subclasses.
This is OK since these are properties that will be introduced one level down
from where they are described.

– Properties that are recommendations only.
For instance that a class’s natural order should be compatible with its
equals method. This is OK since these are properties that may be intro-
duced one level down from where they are described.

– Properties that take precedence over other properties.
For instance, SortedMap properties take precedence over Map properties,
see TreeMap in Fig. 1. Properties that take precedence over other properties
break the Liskov substitution principle.

– Properties that appear multiple places in the hierarchy, but have no formal
relation.
This is the case with, e.g., properties for Stack and its recommended replace-
ments, the Deque implementations, and the properties for primitive types.
The lack of a relevant common superclass forces us to copy-paste the specifi-
cation in order to adapt the axiom.

The textual description, in English, of the properties follow an algebraic style
based on conditional equations. This blends well with axiom based testing.

In addition to the inheritance hierarchy, Java has interface declarations. A
class may implement one or more interfaces, and interfaces may extend one
or more interfaces. Interfaces form multiple inheritance hierarchies of declara-
tions. The textual description of the standard library’s interfaces follow the same
algebraic style as for classes. When a class explicitly implements one or more
interfaces it is bound by the interfaces’ behavioural description. All subclasses of
such a class implicitly implement the interfaces and their axioms. This quickly
becomes convoluted, see Fig. 1 to get an impression.

Axiom Based Testing for Fun and Pedagogy 33

For Java generic classes interfaces and inheritance play an important role.
A generic parameter may require all instantiations to implement an interface or
be a subclass of a specific class. This ensures that the generic code can expect
all declared methods from the generic parameter to be available. The Java type
checker enforces that only declared methods can be used in the generic code. Fur-
ther, the generic code may assume the described properties of a generic parame-
ter class. Thus a method sorting arrays of generic Comparable elements can rely
on the properties of the generic element’s compareTo method defining its nat-
ural order. Any generic parameter, whether explicitly stated or not, is assumed
to be a subclass of Object .

3.1 Java Class Requirements – HashMap

The HashMap class has two generic parameters, K for key and V for value. The
class represents dictionaries of key-value pairs, mapping stored keys to values.
The HashMap is a Map , so it satisfies the following property, here written as
an axiom in Java.

public static <K, V>
void retrieveEqualsAxiom(Map<K, V> map, K key, V value, K k2) {
V v1 = map.get(k2);
map.put(key, value);
V v2 = map.get(k2);
if (key.equals(k2))
assertEquals(value, v2);

else
assertEquals(v1, v2);

}

According to the Java type system, this axiom can be used for any class imple-
menting (directly or indirectly) the Map interface. The behavioural properties
of the class hierarchy decides whether the axiom is relevant for any specific
such class. The assertEquals method is a JUnit method for checking that
two values are equal, using the appropriate equals method (or regular ==

for primitive types). Apparently neither generic parameter K nor V has any
constraints, and it should be fine to use any class for these.

There is a subtle point in Java, which is often omitted from beginning courses
in programming:

Java’s Object class description places strict constraints on every Java class.

Specifically every, class, whether developer defined or available in an external
library, must provide both an equals method and a hashCode method prone
to specific requirements. These are utilised by the Java standard library classes,
e.g., HashMap<K,V> . Any mistake in the implementation of these two methods

34 M. Haveraaen

may leave data unretrievable in a collection. Not overriding these methods may
also induce errors.

To expose this problem, consider a simple Person class with two data fields,
a name and a numerical post code (post codes in Norway are 4 digit numbers
and fit into Java’s short integer data type).

public class Person {
String name;
short postcode;
public Person(String name, int postcode) {

this.name = name;
this.postcode = (short) postcode;

}
}

Assume we are building a small hospital support system, and we will use the
Person class above as key for storing and retrieving electronic patient records
(EPRs) in a hash map. But according to Java semantics, two Person objects
with identical values will not be equal.

Person a = new Person("Ole",5000);
Person b = new Person("Ole",5000);
assert a != b; // Distinct objects have distinct pointers
assert ! a.equals(b); // Class Object’s equality method is inherited

Though technically not breaking the retrieveEqualsAxiom property above, it
seems wrong not to be able to retrieve person b when person a is stored in
the map, as in the following Java snippet.

HashMap<Person,EPR> patients = new HashMap<Person, EPR>();
Person a = new Person("Ole",5000);
Person b = new Person("Ole",5000);
patients.put(a, epr);
EPR epra = patients.get(a); // Retrieves stored EPR.
assert epra.equals(epr);
EPR eprb = patients.get(b); // Does not retrieve stored EPR.
assert eprb == null;

It would be necessary to retrieve patients by Person data, not just by the
pointer to the original Person object. To fix this, we need to implement an
equals method for Person .

Most integrated development environments (IDEs) will have options for gen-
erating matching equals and hash code methods. This normally is a very good
sketch for such implementations. Note that not overriding these two functions
causes the error above.

In the following two subsections we investigate the requirements imposed by
the Object class specification on any user implemented class.

Axiom Based Testing for Fun and Pedagogy 35

The Equals Method. Java’s requirements for the equals method are listed
in the documentation of Object [23], the root class for all classes in a Java
software system.

boolean java.lang.Object.equals(Object obj)

Indicates whether some other object is "equal to" this one.

The equals method implements an equivalence relation on non-null
object references:

– It is reflexive: for any non-null reference value x , x.equals(x)

should return true .
– It is symmetric: for any non-null reference values x and y ,

x.equals(y) should return true if and only if y.equals(x)

returns true .
– It is transitive: for any non-null reference values x , y , and z , if

x.equals(y) returns true and y.equals(z) returns true , then

x.equals(z) should return true .
– It is consistent : for any non-null reference values x and y , multiple

invocations of x.equals(y) consistently return true or consistently

return false , provided no information used in equals comparisons on
the objects is modified.

– For any non-null reference value x , x.equals(null) should return

false .
The equals method for class Object implements the most discriminating
possible equivalence relation on objects; that is, for any non-null reference
values x and y , this method returns true if and only if x and y refer
to the same object (x == y has the value true).

Note that it is generally necessary to override the hashCode method
whenever this method is overridden, so as to maintain the general contract
for the hashCode method, which states that equal objects must have equal
hash codes.

Parameters: obj the reference object with which to compare.

Returns: true if this object is the same as the obj argument;

false otherwise.
See Also: hashCode() , java.util.HashMap

These properties of the equals method are expected to hold for all classes. The
first three properties are the standard properties defining equivalence relations,
though there is a conditional here: the variables are not null pointers. The
properties can be captured as parameterised JUnit tests. The following code is
taken from JAxT [25].

36 M. Haveraaen

public static void equalsProperty1reflexive(Object x) {
if (x != null)
assertEquals(x, x);

}
public static void equalsProperty2symmetric
(Object x, Object y) {

if (x != null && y != null)
assertEquals(x.equals(y), y.equals(x));

}
public static void equalsProperty3transitive
(Object x, Object y, Object z) {
if (x != null && y != null && z != null)
if (x.equals(y) && y.equals(z))
assertEquals(x, z);

}

These axioms are close to the mathematical formulation, but utilise Java seman-
tics as suggested in the Java standard library documentation. The fourth prop-
erty is a bit more awkward. It is tightly related to the Java semantics and asks
that no volatile or temporal or out-of-object (etc.) data is used in the equals
algorithm. Though an axiom for the property can be written, e.g., a loop repeat-
edly testing two objects for “equality”, running it will have minute chances of
discovering any problems. The last property in the list is also related to Java
semantics. It completes the right hand cases by providing comparisons to null .
Note that a call null.equals(x) per Java semantics is meaningless and will
throw java.lang.NullPointerException (if not already discovered and com-
plained about by the compiler).

public static void equalsProperty5null(Object x) {
if (x != null)
assertFalse(x.equals(null));

}

The JUnit assertFalse assertion checks that the argument is the boolean
value false .

The HashCode Method. The other part of the motivating problem is to
understand the hashCode method. The Java documentation for the Object
class states the following [23].

int java.lang.Object.hashCode()

Returns a hash code value for the object. This method is supported for the
benefit of hash tables such as those provided by java.util.HashMap .

The general contract of hashCode is:
– Whenever it is invoked on the same object more than once dur-

ing an execution of a Java application, the hashCode method must

Axiom Based Testing for Fun and Pedagogy 37

consistently return the same integer, provided no information used
in equals comparisons on the object is modified. This integer need
not remain consistent from one execution of an application to another
execution of the same application.

– If two objects are equal according to the equals(Object) method,
then calling the hashCode method on each of the two objects must
produce the same integer result.

– It is not required that if two objects are unequal according to the
equals(Object) method, then calling the hashCode method on
each of the two objects must produce distinct integer results. How-
ever, the programmer should be aware that producing distinct inte-
ger results for unequal objects may improve the performance of hash
tables.

Returns: a hash code value for this object.
See Also: java.lang.Object.equals(java.lang.Object)

java.lang.System.identityHashCode

Impl Spec: As far as is reasonably practical, the hashCode method
defined by class Object returns distinct integers for distinct objects.

Only the second of these properties is meaningful to test for. This is also the
crucial property that ensures equal objects will end up in the same hash bucket.

public static void hashCodeProperty2congruenceEquals
(Object a, Object b) {
if (a.equals(b))
assertEquals(a.hashCode(), b.hashCode());

}

This axiom states that the equals method behaves as a congruence relation
with respect to the hashCode method.

By capturing these axiomatic properties from the Java documentation as
parameterised unit tests, we now have test oracles that will allow us to check
the properties for an arbitrary amount of data.

On Writing Equals/hashCode Methods. To make our implementation of
Person compatible with the Java language’s standard library specification and
allow us to use it with the Java collection classes, we need to provide an equiv-
alence relation equals and a compatible hashCode method. Often case we
can use an IDE like Eclipse [11] to generate these methods from the fields of the
class.

There are two options for these methods. They can be restricted to compare
objects belonging to the same class, or they can allow comparing objects within
the subclass hierarchy being instances of this class.

38 M. Haveraaen

Option 1: comparing only objects from the same class. Here an explicit check
getClass() != obj.getClass() has been used to ensure that the two objects
belong to the same class.

@Override
public boolean equals(Object obj) {

if (this == obj)
return true;

if (obj == null)
return false;

if (getClass() != obj.getClass())
return false;

Person other = (Person) obj;
return Objects.equals(name, other.name)
&& postcode == other.postcode;

}
@Override
public int hashCode() {
return Objects.hash(name, postcode);

}

Note all the caveats in testing for special cases, partly due to the require-
ments imposed on the equals and hashCode methods, partly for optimi-
sation purposes. Above we are using support methods Objects.equals and
Objects.hash . These take care of the mentioned caveats for the fields, but
equality comparison and computing hash codes is with case sensitive operations
on String . Using case insensitive operations needs explicitly taking care of the

technicalities with possibly null pointers in the fields.
Here two objects can compare equal only if they belong to the Person class.

Thus if we also have subclasses of Person , e.g., a person with a birth place or
with an age, an object of such classes will not compare equal to a Person
object. However, unless explicitly overridden, the equals method above will be
inherited by these subclasses. It will still be an equivalence relation for each such
class, but it may be coarser than intended since the extra fields are not used in
the equality algorithm.

Option 2: comparing objects within the subclass hierarchy. We might want people
with the same name and address to compare equal, even though one may have
a designated birth place, and the other may have a known age. One way of
doing this is to compare objects belonging to classes rooted in Person by using
instanceof rather than the technique above for demanding a specific class.

@Override
final public boolean equals(Object obj) {
if (this == obj)
return true;

Axiom Based Testing for Fun and Pedagogy 39

if (obj == null)
return false;

if (!(obj instanceof Person))
return false;

Person other = (Person) obj;
return Objects.equals(name, other.name)
&& postcode == other.postcode;

}
@Override
final public int hashCode() {
return Objects.hash(name, postcode);

}

This equality comparison is fixed to the Person class (line 7 in the code
snippet above) for all subclasses. Note that we have declared these methods
as final. This is to prevent one of the subclasses reimplementing them, e.g.,
by taking into account additional fields. Any such modification of the equals
method in a subclass would break symmetry or transitivity:

Proof. Assume we want to have a more fine grained equality between subclass
objects. Symmetry breaks unless the subclass equals method takes great care
in letting a subclass object be equal to a superclass object based only on the
superclass equals algorithm. But then transitivity breaks, since now we can
have two unequal (using fine grained equals) subclass objects s1 and s2 and
a superclass object x such that s1.equals(x) && x.equals(s2) .

Similar arguments can be given to show that any modification a subclass could
do to the equals method will break the method’s requirements.

As an addendum to this observation, any modification of the hashCode
method in a subclass would break the hashCodeProperty2congruenceEquals
property.

On Creating Test Data for Object Axioms. The JUnit 5 approach to
parameterised testing is to annotate the axiom class with a set of data for testing.
This gives a fixed set of test data for an axiom, contrary to what we want to
achieve with axiom based testing. We actually want to reuse the Object class
test oracles (parameterised tests) for all classes that we develop, but for each
class, or group of classes, we need a specific test data generator.

First observe that we actually want to test a specific set of equals algo-
rithms: a new class and possibly all its subclasses (and maybe also some of its
superclasses) that are supposed to interact with respect to equality. To activate
the algorithms we want to test, we need to make certain the first argument to
the test oracles belong to this set of classes.

40 M. Haveraaen

As the second argument to equalsProperty2symmetric we want this set
plus data for some irrelevant classes to make certain symmetry holds or fails
symmetrically.

For the last two arguments of equalsProperty3transitive we want a
large proportion of “equal data” from distinct objects. This indicates we want to
create such data using different constructors, different expressions and different
sequences of data. In the Person example it is sufficient to call the constructors
with “equal” values, but for classes with interesting ways of building data creating
good data is demanding.

In general, random test selection is as good as any, at least when providing
a 10–15% increase in the test size [15]. Random testing also has the benefit
it can span the data space and avoid a bias towards data sets that happen
to pass the tests. Specifically random testing makes it impossible to adapt the
algorithms under test to the test data. Unfortunately, completely random data
will seldom generate data that is interesting for the equality axioms, since most
of the random data will compare unequal. Some care can be used to skew random
data generators towards a high proportion of “equal” data.

Also note that having some large numberN of data points and reusing them for
all the test arguments can have a profound effect on testing time. For two-argument
oracles the testing time is squared N ∗ N , for three-argument oracles it is cubed
N ∗ N ∗ N , and for n-argument oracles the testing time becomes Nn. Thus, e.g.,
doublingN to increase test coverage using a random testing approach will increase
the cost of testing the equalsProperty3transitive by a factor of 8.

3.2 Orderable Data – TreeMap

The TreeMap is a Java collection class that provides data sorted according to
some chosen criterion. Such data can be traversed in order, as well as being stored
and retrieved, similar to a Map . To achieve this the keys must be orderable,
either directly by implementing the Compareable specification, or by having
an explicit Comparator object. The retrieveComparableAxiom axiom below,
expressed in Java, takes precedence over the retrieveEqualsAxiom from Map

for every implementation of SortedMap .

public static <K extends Comparable<K>, V>
void retrieveComparableAxiom
(SortedMap<K, V> map, K key, V value, K k2) {
V v1 = map.get(k2);
map.put(key, value);
V v2 = map.get(k2);
if (key.compareTo(k2) == 0)
assertEquals(value, v2);

else
assertEquals(v1, v2);

}

Axiom Based Testing for Fun and Pedagogy 41

This axiom is slightly simplified as a SortedMap may be using a Comparator

instead of Comparable . See Fig. 1 to get an impression how difficult it can be
to keep track of precedence properties.

The java.lang.Compareable specification [23] defines k1.compareTo(k2) ,
a method call which returns an integer. The object k1 is considered smaller than
k2 if the returned integer is negative, they are equivalent if the returned integer
is 0, and k1 is larger than k2 if the integer is positive. In Java terminology
the compareTo method is called the class’s natural order.

A java.util.Comparator object x defines x.compare(k1,k2) , a
method call which returns an integer and orders objects k1 and k2 as above.

Both comparables and comparators are defined as total orders, which may
cause conceptual problems when encoding a partial order. For instance, it may
need to be more fine grained or coarse grained than the class’s equals method.

Below is the axiom based test oracles for the comparable interface [23]. The
axioms for compareTo from the interface Comparable are captured as follows.

public static <T extends Comparable<T>>
void compareToProperty1aDuality(T x, T y) {
try {
assertEquals
(signum(x.compareTo(y)), -signum(y.compareTo(x)));

} catch (RuntimeException re) {
succeed("compareTo is allowed to throw.");

}
}

public static <T extends Comparable<T>>
void compareToProperty1bNull(T e) {
try {
e.compareTo(null);
fail(e + ".compareTo(null) should throw a NullPointerException");

} catch (NullPointerException npe) {
succeed("Throws NullPointerException as required");

}
}

public static <T extends Comparable<T>>
void compareToProperty1cStrongSymmetry(T x, T y) {
try {
x.compareTo(y);
y.compareTo(x);
succeed("neither call fails ");

42 M. Haveraaen

} catch (RuntimeException e) {
// at least one of the calls throws an exception
try {
x.compareTo(y);
fail("y.compareTo(x) throws while x.compareTo(y) does not");

} catch (RuntimeException e1) {
try {
y.compareTo(x);
fail("x.compareTo(y) throws while y.compareTo(x) does not");

} catch (RuntimeException e2) {
succeed("OK! Both calls fail symmetrically");

}
}

}
}

public static <T extends Comparable<T>>
void compareToProperty2primeTransitive(T x, T y, T z) {
try {

if (x.compareTo(y) >= 0 && y.compareTo(z) >= 0)
assertTrue(x.compareTo(z) >= 0);

} catch (RuntimeException re) {
succeed("compareTo is allowed to throw.");

}
}

These parameterised unit tests also show a technique for capturing allowed
exceptions so as to avoid them being reported as problems by the unit testing
system. The assertion success is not part of JUnit, but is a NOOP introduced
for documentation purposes.

The first axiom, duality, captures that swapping the order of comparison
should swap the sign of the comparison. The second axiom, comparison with
null , demands that a specific exception should be thrown when comparing

with null . The third axiom, strong symmetry, demands that the comparator
should consistently throw or not throw an exception when given the same pair
of arguments in any order. The last axiom, transitivity, captures the transitivity
requirement for the ordering operations. Note that while the first three axioms
closely follow the Java standard library documentation, the last axiom has been
formulated differently and, in consort with the other axioms, replaces two explicit
requirements in the documentation.

The comparator defines an equivalence relation for x.compareTo(y)==0 .
The Java standard library strongly recommends that this equivalence is com-
patible with the equivalence defined by the equals method.

public static <T extends Comparable<T>>
void compareToProperty3anaturalOrderingEquals(T x, T y) {

Axiom Based Testing for Fun and Pedagogy 43

try {
if (x.equals(y))
assertEquals
("The natural ordering is inconsistent with equals.",
0, x.compareTo(y));

} catch (RuntimeException e) {
succeed("some run−time exception occurred");

}
}

public static <T extends Comparable<T>>
void compareToProperty3bnaturalOrderingEquals(T x, T y) {
try {

if (x.compareTo(y) == 0)
assertEquals
("The natural ordering is inconsistent with equals.", x, y);

} catch (RuntimeException e) {
succeed("some run−time exception occurred");

}
}

The first axiom requires that the equals equivalence relation is more fine
grained than the compareTo operation. The second axiom requires that the
equals equivalence relation is more coarse grained than the compareTo oper-
ation. Together they check the consistency between the two equivalence relations.
By splitting the requirement into two axioms, any failed check will be clear on
which granularity is failing the requirement. These axioms are optional, since
they are not demanded by the library, only recommended.

The reason for a recommendation only, is that when partial orders are shoe-
horned into total orders, they are often made either more coarse grained or more
fine grained to accomplish this.

The reason that consistency is strongly recommended, is an anomaly in Java’s
behavioural inheritance hierarchy. The definition of the java.util.Map inter-
face is formulated using the equals method, but any orderable map is defined
using the comparator for ordering. Thus the equivalence relation defined by the
comparator is used, as written in the java.util.SortedMap interface docu-
mentation [23]:

Note that the ordering maintained by a sorted map (whether or not
an explicit comparator is provided) must be consistent with equals if
the sorted map is to correctly implement the Map interface. (See the
Comparable interface or Comparator interface for a precise definition of
consistent with equals.) This is so because the Map interface is defined in
terms of the equals operation, but a sorted map performs all key com-

44 M. Haveraaen

parisons using its compareTo (or compare) method, so two keys that
are deemed equal by this method are, from the standpoint of the sorted
map, equal. The behavior of a tree map is well-defined even if its ordering
is inconsistent with equals; it just fails to obey the general contract of the
Map interface.

All maps on orderable data, i.e., any class implementing the SortedMap inter-

face, uses the equivalence relation a.compareTo(b)==0 and not the equivalence

relation a.equals(b) . This is in direct violation of the properties defined by

Map which uses the equivalence relation a.equals(b) . Figure 1 illustrates
how HashMap and TreeMap relate to the behavioural specifications Map and
SortedMap . Following the path from Map to TreeMap a programmer might
think that they both will store and retrieve the same data sets. This is the case if
the two equivalence relations are consistent, but if they are not, subtle differences
may occur when storing and retrieving data.

On Writing Comparison Operations. There are several caveats to consider
when writing a comparator.

One issue is the symmetry of throwing specific exceptions. This turns out to
be less of a special case, and fearlessly accessing expected components and calling
comparators on the components generally takes care of the intended exceptions.

When comparing fields containing strings there are options to choose com-
parators that ignore case. If you want to keep the natural ordering consistent
with equals , be certain to choose the same style of string comparison for both
comparators and equality.

Since comparators return integers indicating the ordering, it may be tempt-
ing to use subtraction when comparing int fields. This is generally a bad idea,
since if the subtraction yields Integer.MIN_VALUE the duality rule breaks. The
reason is that Integer.MIN_VALUE == -Integer.MIN_VALUE in Java’s seman-

tics for int . On the other hand, in our Person example where the post code
is encoded as short , we can safely use subtraction to find the ordering. The
reason is that the range of short is too small for the subtraction to reach that
limit, and the subtraction returns the result as int which avoids any problems
with representability of the difference. For more details on this see Sect. 4.

In the same way as for the equals method, there are two options regarding
the interaction with the subclass hierarchy.

Option 1: comparing only objects from the same class. This requires the same
trick as for the equals method: a check for getClass() != obj.getClass()
needs to be included in the code.

Option 2: comparing objects within the subclass hierarchy. Since the
Comparable is generically typed, the default is that subclasses are allowed

Axiom Based Testing for Fun and Pedagogy 45

in the comparison. Be certain to mark the compareTo method as final to
avoid problems with overriding implementations.

Note. The same option should be chosen both for the comparator and for the
equals method for a class. Otherwise the software design will induce a lack of
consistency between the two equivalence relations.

3.3 Discussion

In this section we have shown how axiom based testing can be used to understand
the Java standard libraries. Much of the documentation is easy to translate from
its algebraic style of English to parameterised test oracles. The library is mostly
organised according to behavioural subtyping, which allows axioms to follow the
inheritance hierarchy, both for classes and for interfaces. There is one notable
exception from this, namely that the SortedMap specification takes precedence
over the Map specification. The two specifications use two different equivalence
relations so being aware of this anomaly is very important.

The axiom based tests also make the requirements on equals / hashCode

and Comparable / Comparator methods testable. These are methods most
programmers need to implement for the classes they are developing. Getting
these methods right is central to the use of the collection classes. With axiom
based testing we have a set of tests which can be reused for every implementation.

Further analysis reveals that there are two approaches to implementing these
methods. Option 1 is making certain they can be used only between objects of
the same class. Option 2 is making them into final methods that compare
objects for the entire subclass hierarchy.

As illustrated by Fig. 1, traversing the inheritance hierarchy to find all appro-
priate axioms by hand can be challenging. A tool like JAxT [25] can trace the
inheritance hierarchies and identify all relevant inherited axioms.

Hopefully seeing and studying these axioms empowers the student in writ-
ing their own axiom based tests when developing code. Axiom based software
development is similar to test based development [2], but has the benefit that
the test oracles capture the intention across the entire range of data, not just
the few data points embedded in a typical unit test.

4 Computer Integers

When students arrive at university to study computer science/software engi-
neering, they have about twelve years of training (primary school through high
school) in natural numbers N (non-negative integers) and mathematical integers
Z. Some students may even have some programming experience using a dynamic
programming language with arbitrary precision integers. This background intu-
ition is not compatible with computer integers as represented in hardware or in
major languages like Java and C++. In addition, the way we teach programming

46 M. Haveraaen

often strengthens the students’ misconception of computer integers. Our exam-
ples use small numbers and thus never hit the boundary where the difference
between mathematical and computer integers are manifest. And when problems
could occur, we recommend increasing the precision of the integers to circumvent
trouble rather than discussing the issue.

In this section we try to unravel the students’ knowledge and intuition of
integers, and confront this with the actual behaviour of the computer integers.
We will do so using our tool of axiom based testing: gently formalising the stu-
dents’ math training as axioms, then hit those axioms with data that breaks the
perceived communality between mathematical integers and computer integers.

4.1 Ring Properties

Discovering the commutative ring properties should be easy for students, as most
of them have been trained from early school years in the rules for computing
with numbers. A few examples should be sufficient to identify the axioms.

Example Rule Property name
5 + 7 = 7 + 5 x+ y = y + x commutativity
5 ∗ 7 = 7 ∗ 5 x ∗ y = y ∗ x

(5 + 7) + 9 = 5 + (7 + 9) (x+ y) + z = x+ (y + z) associativity
(5 ∗ 7) ∗ 9 = 5 ∗ (7 ∗ 9) (x ∗ y) ∗ z = x ∗ (y ∗ z)

38 + 0 = 38 x+ 0 = x neutral element
1 ∗ 38 = 38 = 38 ∗ 1 1 ∗ x = x, x ∗ 1 = x

5 ∗ (7 + 9) = 5 ∗ 7 + 5 ∗ 9 x ∗ (y + z) = x ∗ y + x ∗ z distributivity
(7 + 9) ∗ 5 = 7 ∗ 5 + 9 ∗ 5 (y + z) ∗ x = y ∗ x+ z ∗ x

(7 + 5) − 7 = 5 (x+ y) − x = y subtraction
57 ∗ 0 = 0 = 0 ∗ 57 x ∗ 0 = 0, 0 ∗ x = 0 annihilation

All these rules are equational, and easy to formulate as parameterised test ora-
cles. Without the commutativity rule for ∗ we define a ring. With the commuta-
tivity rule for ∗ the second forms of the neutral element for ∗, the distributivity
and the annihilation rules are redundant and can be omitted from testing. The
subtraction rule above is closer to what we learn in primary school math than the
unary minus operation (additive inverse) normally used when specifying rings.
The subtraction rule, with certain limitations, also work for natural numbers
(non-negative integers) N. Since natural numbers lack proper subtraction they
are not proper (commutative) rings. The annihilation rule is redundant as a ring
property. However, if we remove subtraction from the operations we consider,
but keep the other operations and properties, including the annihilation rule
(which is no longer redundant), we get a commutative semiring. Further drop-
ping commutativity for ∗ we get a semiring. Obviously all (commutative) rings
are (commutative) semirings. The set of natural numbers forms a commutative
semiring.

Axiom Based Testing for Fun and Pedagogy 47

No Zero Divisors. For the mathematical integers (and natural numbers) there
is also the no zero divisors rule: the product of two non-zero numbers is non-
zero. This can be formalised as x ∗ y = 0 ⇒ (x = 0 || y = 0). Though closely
related to the ring operations (+, ∗,−) and constants (0, 1), this property does
not hold for all rings.

Sign Change. Another expectation is that mathematical integers change sign
with the unary minus operator: x == −x ⇒ x == 0. This does not hold for rings
in general. For ordered rings, see Sect. 4.3 below, this property is redundant.

4.2 Total Order Properties

It is also relatively easy to guide students to discover the total order properties
of the integers.

Example Rule Property name
12 ≤ 12 x ≤ x reflexivity

8 ≤ 2 + 6 && 2 + 6 ≤ 8 ⇒
2 + 6 = 8 x ≤ y && y ≤ x ⇒ x = y antisymmetry

23 ≤ 33 && 33 ≤ 54 => 23 ≤ 54 x ≤ y && y ≤ z ⇒ x ≤ z transitivity
24 ≤ 14 || 14 ≤ 24 x ≤ y || y ≤ x connexity

Note that connexity implies reflexivity, so reflexivity can be omitted from testing.

4.3 Ordered Ring

An ordered ring has ring properties, order properties, and two axioms explaining
how ring operations (+, ∗,−) are to interact with the order operation (≤) and
constants (0, 1).

Example Rule Property name
10 ≤ 13 ⇒

10 + 43 ≤ 13 + 43 x ≤ y ⇒ x+ z ≤ y + z ordered plus
10 ≤ 13 && 0 ≤ 43 ⇒

10 ∗ 43 ≤ 13 ∗ 43 x ≤ y && 0 ≤ z ⇒ x ∗ z ≤ y ∗ z ordered multiply

These two properties are more dim for students, though they can easily recog-
nise and accept them as part of the mathematical numbers. The tacitness of
these properties should be a major concern when switching from mathematical
to computer integers. Worryingly this seems mostly ignored by the program-
ming literature though it is a significant concern for software vulnerabilities.
Even more troublesome it also seems mostly ignored by the formal methods
community.

Using examples like 0 ≤ 67 ⇔ −67 ≤ 0 it is possible to present a third more
familiar property, 0 ≤ x ⇔ −x ≤ 0. The rule is a simple consequence of the
ordered plus property. It implies the sign change rule above.

48 M. Haveraaen

4.4 Integer Types and Test Data

The computer integers are several distinct types. Java has four ranges of integers
(subsets of Z) [14] in two’s complement representation.

– byte 8-bit, range −128 = −27 through 127 = 27 − 1.
– short 16-bit, range −32 768 = −215 through 32 767 = 215 − 1.
– int 32-bit, range −2 147 483 648 = −231 through 2 147 483 647 = 231 − 1.
– long 64-bit, range −9 223 372 036 854 775 808 = −263 through 9 223 372
036 854 775 807 = 263 − 1.

This is the standard representation of computer integers on current commodity
computing devices. Older programming languages, like C and C++, used to
allow more flexibility in ranges and representation of integer types, but C++
currently is also intending to standardise on two’s complement representation.
In addition C and C++ support unsigned integers, corresponding to ranges of
natural numbers (subsets of N):

– unsigned char 8-bit, range 0 through 255 = 28 − 1.
– unsigned short 16-bit, range 0 through 65 535 = 216 − 1.
– unsigned int 32-bit, range 0 through 4 294 967 295 = 232 − 1.
– unsigned long 64-bit, range 0 through 18 446 744 073 709 551 615 = 264−1.

From a mathematical perspective, the unsigned integers form a commutative ring
with modulus computations (2k for k = 8, 16, 32, 64). In hardware all operations
+, ∗,− and 0, 1 are the same for signed and unsigned integers. The difference
shows in the interpretation of the bit patterns when comparing (total orders) and
I/O. In Java, unsigned integers are treated as signed integers, but the program
calls special functions for comparing and conversion to and from strings. Below
we illustrate this in Java for the ordered plus axiom.

public static void orderedPlus(int x, int y, int z) {
if (x <= y)

assertTrue(x + z <= y + z);
}
public static void orderedPlusUnsigned(int x, int y, int z) {
if (Integer.compareUnsigned(x, y) <= 0)

assertTrue(Integer.compareUnsigned(x + z, y + z) <= 0);
}

The computer integer properties are well suited for random testing. Spelling out
the axioms for type int and using the Random class’s nextInt() method is
a good setup for testing 32-bit integers. A few hundred test cases will pass the
commutative ring and total order axioms,1 but both ring order axioms will fail.
1 There is of course a problem with the conditional axioms like antisymmetry, where

few, if any, of the test values actually will reach the target of the conditional.
Quickcheck [6] has special treatment of conditionals in order to generate random
data that actually reaches the target.

Axiom Based Testing for Fun and Pedagogy 49

The benefit of using an appropriate random number generator is that it
will span the whole domain of the computer integer under test. Values selected
manually tend to be from a small range since small numbers are more easy to
comprehend by the tester. Such a bias will prevent discovering that the ring
order axioms fail to hold.

When testing the other computer integers in Java (and C or C++), there
is need for caution. For instance, due to widening (see Sect. 4.5), when writing
axioms for 16-bit integers, care has to be taken to make certain computed values
are treated as short . Thus explicit casting needs to be introduced as in the
Java example test oracles below.

public static void orderedPlus(short x, short y, short z) {
if (x <= y)
assertTrue((short) (x + z) <= (short) (y + z));

}
public static void orderedPlusUnsigned
(short x, short y, short z) {
if (Short.compareUnsigned(x, y) <= 0)
assertTrue(
Short.compareUnsigned((short) (x + z),

(short) (y + z)) <= 0);
}

Without the casts the code will compute with 32-bit integers. Using 16-bit values
embedded in a 32-bit range will not invalidate the ring order axioms.

When creating test values for 64-bit integers designating the types as long
does not incur problems as all computations then will take place using 64-bit.
However, it is important to use a random generator for long , e.g., Random ’s

nextLong() .

@Test
final void testOrderedAdd() {
for (int i = 0; i < n; ++i) {
long x = r.nextLong();
long y = r.nextLong();
long z = r.nextLong();
OrderLong.orderedPlus(x, y, z);

}
}

If using nextInt() the test will be limited to 32-bit integers, which when
silently embedded in 64-bit integers will not invalidate the ring order axioms.

A drawback with testing int and long is that the violating values will be
so large that they are difficult to read and comprehend. The shear number of
digits involved means that they defy manual validation. This hinders a deeper
understanding of why the axioms are violated. Testing the axioms on a smaller

50 M. Haveraaen

range, like short , keeps numbers manageable. Using 16-bit integers also permits
complete testing for all axioms with 1 or 2 arguments. Complete testing of a 3
argument axiom (such as associativity, distributivity and transitivity) using 16-
bit integers will take several days on a modern computer. A hybrid solution is an
alternative: complete coverage of the first 2 arguments combined with random
selection of the third. The test code below shows this approach for the ordered
plus axiom on short in Java.

@Test
final void testCompletishOrderedAdd() {
for (int x = Short.MIN_VALUE; x <= Short.MAX_VALUE; ++x)
for (int y = Short.MIN_VALUE; y <= Short.MAX_VALUE; ++y) {
short z = (short) r.nextInt();
OrderShort.orderedPlus((short) x, (short) y, z);

}
}

Note the use of int in the loops to be certain we cover the entire range for
short . This will take a few minutes per successful 3 argument axiom. Typically
much shorter time for the failing axioms, as the one tested above.

Using complete testing of the no zero divisors axiom will reveal that it does
not hold for computer integers. For this axiom, random testing will most proba-
bly not uncover the problem. The ratio of failing number pairs is about 10−2 for
8-bit integers, about 10−4 for 16-bit integers, about 3 ∗ 10−9 for 32-bit integers
(the most used computer integer type), and about 2 ∗ 10−18 for 64-bit integers.
For the larger ranges it is thus practically impossible to randomly discover any
failing pair of values. Complete testing of 2 argument axioms is out of hand for
any integer type larger than 16-bit. The number of complete test cases grows
by a factor of about 4 ∗ 109 going from 16-bit to 32-bit, and by about 2 ∗ 1019

going from 32-bit to 64-bit. Only crafting failing values will reveal that computer
integers have zero divisors, and being able to craft such values requires a proper
understanding of the problem.

The sign change rule is also interesting from this perspective. Since computer
integers are not ordered rings, this property is not redundant. It is violated by
exactly one value per computer integer in two’s complement representation. Since
this is a 1 argument axiom, it can be tested completely for up to 32-bit inte-
gers in at most a few minutes. The range for long is just too large to stumble
upon the result in reasonable time, unless the “culprit” is identified and manu-
ally injected early into the test set. Though, for this axiom, and in signed two’s
complement representation, the culprit will always be the minimum number rep-
resented in its range. For unsigned integers it will be the unsigned interpretation
of that bit pattern. A naïve complete test that starts at the minimum signed
number will actually find the culprit effortlessly (sic). However, as mentioned
in Sect. 3.2, understanding this property properly is important for the correct
implementation of comparators.

Axiom Based Testing for Fun and Pedagogy 51

4.5 Narrowing and Widening Computer Integers

In the programming literature, especially related to Java or C++, integer widen-
ing is transforming an integer from a type with fewer bits to a type with more
bits. Widening is also called promotion since the value is “promoted” to a larger
bit range, ensuring it can be represented. In the common two’s complement
representation this amounts to replicating the sign bit (when relevant) into the
newly assigned bits. Widening often occurs automatically, e.g., these languages
typically carry out all integer computations in 32-bit or 64-bit, and widen any
type with fewer bits to the nearest enclosing size. A danger is that students will
think widening is always good since it automatically removes some problems
from dealing with the smaller integer sizes.

The opposite, going from many bits to fewer bits, is called narrowing, and
requires explicit casting in Java and C++, i.e., the code must explicitly request
conversion to the intended type. Narrowing just truncates the higher end bits in
the two’s complement representation. This may change the sign of the truncated
value, depending on which bit of the value that happens to be in position of the
sign bit. For unsigned numbers narrowing corresponds to a modulus operation,
i.e., going from n bits to k bits (n > k) is computing modulus 2k.

Promotion of expressions is the reason the first two loops below are infinite
since ++i will wrap around (as byte or short , respectively) while i+1 is

promoted to int and does not wrap around. The latter two loops are finite due
to the wraparound that occurs when i+1 exceeds the bounds for its type.

for (byte i=0; i < i+1; ++i) {}
for (short i=0; i < i+1; ++i) {}
for (int i=0; i < i+1; ++i) {}
for (long i=0; i < i+1; ++i) {}

The following loops are all finite, since the ++i operation returns the wrapped
value (for comparison) before i is updated. However, the loop body sees the
updated value, hence it will not see the iteration for i==0 .

for (byte i=0; i < ++i;) {}
for (short i=0; i < ++i;) {}
for (int i=0; i < ++i;) {}
for (long i=0; i < ++i;) {}

In both groups the loop iterating over long will take too long to compute to
notice that the loops will terminate.

If we look at the computer integers as algebraic structures, we can relate
widening and narrowing to the formal concept of homomorphisms. Informally, a
homomorphism maps between two models for a specification (same selection of
operations, constants and axioms), such that the operations of the algebra behave
consistently across the mapping. We call a homomorphism an embedding if the
mapping is injective. Homomorphisms compose.

52 M. Haveraaen

The computer integers satisfy the commutative ring specification (operations
+, ∗,− and constants 0, 1) and the total order specification (operation ≤ includ-
ing the constants 0, 1), but they have zero divisors and are not ordered rings.

Fig. 2. Illustrating the homomorphic (ring related operations) and embedding (total
order related operations) relationships between natural numbers N and mathematical
integers Z and various common computer integer representations.

Widening can be seen as embedding the smaller ranges into the larger ranges.
Embedding preserves the total order properties, but not the ring properties. The
order embeddings are illustrated with the thick red arrows in Fig. 2. This includes
the embedding into the natural numbers N for the unsigned integers, and into
the mathematical integers Z for all computer integers.

The ring homomorphisms give a rather interesting picture, the thin blue
arrows in Fig. 2. They are bijections between the signed/unsigned integers with
the same number of bits. There are also ring homomorphisms from the wider
ranges to the narrower ranges that preserve the ring computations: computing
a value then narrowing it has the same results as first narrowing the values,
then computing in the narrower range. These homomorphisms do not preserve
ordering. For instance, the 32-bit integers 65535 < 65536, but truncating to
16-bits we get the numbers 65535 and 0, respectively, thus the ordering is not
preserved. In Fig. 2 there is also a mapping from the mathematical integers Z to
the computer integers. The mapping from the natural numbers N to the unsigned
numbers is “dotted” since the subtraction operation does not really exist for N,
which is thus only a semiring, not a ring as the unsigned computer integers.

The seemingly unproblematic widening and narrowing between various mod-
ulus integers and computer integers can leave the students with the intuition that
modulus and computations using computer integers are interchangeable. This is
an artefact of the two’s complement integers all being signed and unsigned “mod-
ulus 2k” numbers. It only holds when the narrow “modulus” is a factor of the
wide “modulus”. A useful challenge is to consider what happens when trying to
compute modulus 7 operations inside the wider range of modulus 13 operations.

Axiom Based Testing for Fun and Pedagogy 53

The wraparound effect taking place in the modulus 13 ring computations causes
problems for the modulus 7 operation we attempted to implement.

e (e mod 7) (e mod 13) mod 7 (e mod 7644) mod 7
6 + 6 5 5 5
2 ∗ 5 3 3 3
4 ∗ 5 6 0 6
3 − 1 2 2 2
1 − 3 5 4 5

The problems with “(e mod 13) mod 7” relates to a lack of ring homomorphisms
from modulus 13 integers to modulus 7 integers. Modulus 7 within modulus 7644
works fine since 7644 = 2 ∗ 2 ∗ 3 ∗ 7 ∗ 7 ∗ 13, i.e., there is a ring homomorphism
from modulus 7644 integers to modulus 7 integers, the homomorphism being
x �→ (x mod 7).

4.6 Discussion

Here we have expanded how a student’s perception of the mathematical integers
gives a misconception of the computer integers. This misconception is reinforced
when we only use unproblematically small integers in our examples.

We have argued that making the student’s expectations of integer behaviour
explicit as axiom based tests, allows the student to generate test cases and see for
themselves that some expectations are broken for the computer integers. Some
of the test cases must be hand crafted since they are rare among the humongous
sizes of the wider computer integers (32-bit and 64-bit). To better understand
the issues at hand, computing with 16-bit integers (short) is illustrative. Due
to the promotion rules between integer computations in many programming
languages, great care has to be taken when writing axioms for the short data
type.

These misconceptions are important for both the correctness and the vul-
nerability of code. Even the rare “culprit” data values are often used in attacks
against computer systems. Triggering a strange behaviour in an innocent game
may be sufficient to cause denial of service for other applications.

Some common examples of problems related to overflow and modulus prob-
lems.

– Overflow in binary search algorithms can cause programs to crash in Java or
access of arbitrary memory in C [5]. This was first noticed in the mid 2000s
when computer memory started to exceed 2GB, allowing array indices to
span the entire positive 32-bit integer range.

– Buffer overwrites (and arbitrary changes to code) may occur due to miscal-
culation of buffer sizes. For instance, a request for 24642 buffers each of size
194651 bytes requires 4796589942 bytes (4.8GB) of buffer space, but due to
32-bit wrapping an int calculation will end up requesting 501622646 bytes
(0.5GB). The incoming data stream can then overwrite other parts of com-
puter memory, parts that are later interpreted as instructions. It is difficult to

54 M. Haveraaen

spot that the request should have 10 digits but the allocated size is 9 digits,
unless one is on the outlook for such problems.

These days a few minutes of digital video easily exceeds 2GB, so arrays beyond
2GB are not exceptional.

Another issue to consider is that many formal tools support mathematical
integers and computer integers, but fail to alert the user of what is lost in the
transition from mathematical integers to computer integers [3]. This is especially
a problem for the ring order axioms. The tool may be happy verifying at the
mathematical integer level that the computation of buffer size it correct, and it
may verify at the computer integer side that the computation of buffer size is
correct according to the wraparound semantics. But without the tool detecting
that the transition from mathematics to computers breaks the allocation size
assumption, the program is still wrong and harbours a security threat.

Wraparound semantics is one alternative when going from mathematical inte-
gers to computer integers. Hoare in [17] mentions two other approaches, the strict
interpretation and the firm boundary (commonly known as saturation integers).
The alternatives trade off other properties than the wraparound integers do. For
instance, the strict interpretation approach makes certain computations, like
adding two large numbers, illegal, possibly terminating a program. The satura-
tion integers may trade off associativity and others in order to keep the ordered
plus and ordered multiply properties.

This leaves us with some final thoughts.

– There are multiple choices in what integer properties to sacrifice when decid-
ing on a computer integer system.

– It will be fun for students to write down the relevant axiom based tests and
figure out which tradeoffs each such representation has made.

– Different choices will leave programmers with different blind spots unless they
are specifically trained to be aware of them.

– Even though an axiom only fails for a minute fraction of the possible values,
it is as serious as any vulnerability.

And what stories about vulnerabilities can be conjunctured for alternative inte-
ger representations?

5 Floating Point Numbers

From school we know that we have learnt the inclusions from the naturals to the
mathematical integers to the rationals to the reals N ⊆ Z ⊆ Q ⊆ R. This is also
the typical sequence these number systems were introduced during our school
years up through high school. With our formal concept of homomorphism, we can
see that in this mathematical world these inclusions are commutative (semi)ring,
total order, ordered ring, no zero divisor, and sign change embeddings. As such
a beautiful picture.

Axiom Based Testing for Fun and Pedagogy 55

In the computer setting this breaks down. We need to compromise on which
properties to retain for the unsigned/signed computer integers. Computer ratio-
nals do not make practical sense. They will be represented as fractions, by a
pair of computer integers, and after a few additions of fractions we often hit the
range limits of the underlying computer integers. Reals are not representable on
computers, and are approximated with floating point numbers.

Computer scientists, especially the theoretically oriented ones, shy away from
floating point as the data types are unruly and difficult to analyse.

In some ways floating point is a saturation number system with −∞ and ∞
as the boundaries. From a formalistic viewpoint it is problematic that 0 = −0
but 1

0 = ∞
= −∞ = 1
−0 , but this is well motivated from a pragmatic viewpoint.

Floating point systems also include a large range of not a number (NaN) which
is used to encode some errors, e.g., ∞ + (−∞) or 0

0 .
One idea could be to familiarise students with floating point properties. For

instance, they could write axiom based tests based on the properties of the real
numbers. The task should not be to figure out which laws fail, as we normally do.
Instead we could try to make statistics on how well each law holds up (its ratio
of success). There are many parameters to vary: the precision of the numbers,
the distribution of test data, etc.

Hopefully such ideas can make numerical computations less of an anomaly in
computer science and software engineering. The engineers and scientists working
with numerical programs are in dire need of more software expertise. They are
specifically looking for knowhow in formal methods, see the report [13] and the
followup workshop series CORRECTNESS [7]. And exciting things are happen-
ing in the floating point domain as well. New number representations are being
investigated in aim of reproducible results for numerical computing. This domain
harbours many interesting challenges for software science students.

6 Summary and Conclusion

Throughout this paper we have presented Java axiom based tests (parameterised
JUnit 5 tests [24]) showing how to capture precisely

– specifications of types & classes (computer integers in detail, and sketches for
HashMap , TreeMap and floating point),

– requirements for the use of classes (equals , hashCode and Comparable
in full detail with two specific implementation options that need to be chosen
consistently, and implications for Comparator),

– behavioural subtyping in Java’s class hierarchy (generally inheritance of
axioms, and the Map — SortedMap anomaly)

Guidelines on how to create data for these parameterised JUnit tests have been
presented, both to discover general issues and to be aware of rare special cases.
The examples expose the many technicalities involved in programming and are
coupled to discussions of some related vulnerabilities. They provide reusable

56 M. Haveraaen

tests that can be used both when developing own classes and also for exploring
libraries for conformance.2 More examples are available in [25].

The discussion of computer integers can alert students and practitioners alike
to problems that occur by tacitly transferring assumptions about mathematical
numbers to programming. This mismatch also seems insufficiently handled by
the formal methods community [3].

The examples in this paper demonstrate that axiom based tests are simple
to code. Writing parameterised unit tests is on par with writing regular unit
tests. This is undoubtedly accessible for students with beginning knowledge of
programming. Experience with teaching Quickcheck indicates axiom based test-
ing is better taught after the first semester [20]. Clearly axiom based testing is a
toolset that belongs in an undergraduate degree. The tests are straight forward
to program using boolean expressions, as there in practice is no need for explicit
quantifiers or other constructs that require a separate specification language.
Developing and using axiom based tests require no training in formal methods.
Teaching axiom based testing early can be a good stepping stone for a follow up
formal methods course.

References

1. Bagge, A.H., David, V., Haveraaen, M.: Testing with axioms in C++ 2011. J.
Object Technol. 10, 10:1–10:32 (2011). https://doi.org/10.5381/jot.2011.10.1.a10

2. Beck, K.: Extreme programming: a humanistic discipline of software development.
In: Astesiano, E. (ed.) FASE 1998. LNCS, vol. 1382, pp. 1–6. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0053579

3. Beckert, B., Schlager, S.: Refinement and retrenchment for programming language
data types. Formal Asp. Comput. 17(4), 423–442 (2005). https://doi.org/10.1007/
s00165-005-0073-x

4. Bergstra, J.A., Tucker, J.: Algebraic specifications of computable and semi-
computable data types. Theor. Comput. Sci. 50, 137–181 (1987). https://doi.org/
10.1016/0304-3975(87)90123-X

5. Bloch, J.: Extra, extra - read all about it: Nearly all binary searches and merge
sorts are broken. https://ai.googleblog.com/2006/06/extra-extra-read-all-about-
it-nearly.html. Accessed 23 July 2020

6. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: ICFP 2000: Proceedings of the Fifth ACM SIGPLAN Inter-
national Conference on Functional Programming, pp. 268–279. ACM Press, New
York, NY, USA (2000). https://doi.org/10.1145/351240.351266

7. Correctness 2020: Fourth International Workshop on Software Correctness for HPC
Applications. https://correctness-workshop.github.io/2020/. Accessed 08 Apr 2020

8. Dahl, O.J., Myhrhaug, B., Nygaard, K.: SIMULA 67 Common Base Language,
Vol. S-2. Norwegian Computing Center, Oslo (1968)

9. David, V.: Catsfoot (2011). https://catsfoot.sourceforge.net/
10. Dijkstra, E.W.: Guarded commands, non determinacy and formal derivation of

programs. Commun. ACM 18(8), 453–457 (1975). https://doi.org/10.1145/360933.
360975

2 The end of [19] shows additional benefits.

https://doi.org/10.5381/jot.2011.10.1.a10
https://doi.org/10.1007/BFb0053579
https://doi.org/10.1007/s00165-005-0073-x
https://doi.org/10.1007/s00165-005-0073-x
https://doi.org/10.1016/0304-3975(87)90123-X
https://doi.org/10.1016/0304-3975(87)90123-X
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://doi.org/10.1145/351240.351266
https://correctness-workshop.github.io/2020/
https://catsfoot.sourceforge.net/
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975

Axiom Based Testing for Fun and Pedagogy 57

11. Eclipse. https://www.eclipse.org. Accessed 22 June 2020
12. Gannon, J.D., McMullin, P.R., Hamlet, R.G.: Data-abstraction implementation,

specification, and testing. ACM Trans. Program. Lang. Syst. 3(3), 211–223 (1981).
https://doi.org/10.1145/357139.357140

13. Gopalakrishnan, G., et al.: Report of the HPC correctness summit, Jan 25–26, 2017,
Washington, DC. CoRR abs/1705.07478 (2017). https://arxiv.org/abs/1705.07478

14. Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A., Smith, D., Bierman, G.:
The Java language specification - Java SE 14 Edition. Technical report. JSR-389
Java SE 14, Oracle America (Feb 2020). https://docs.oracle.com/javase/specs/

15. Hamlet, R.: Random testing. In: Marciniak, J. (ed.) Encyclopedia of Software Engi-
neering, pp. 970–978. Wiley, Hoboken (1994). https://doi.org/10.1002/0471028959.
sof268

16. Haveraaen, M., Kalleberg, K.T.: JAxT and JDI: the simplicity of JUnit applied to
axioms and data invariants. In: OOPSLA Companion 2008: Companion to the 23rd
ACM SIGPLAN Conference on Object Oriented Programming Systems Languages
and Applications, pp. 731–732. ACM, New York, NY, USA (2008). https://doi.org/
10.1145/1449814.1449834

17. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–583 (1969). https://doi.org/10.1145/363235.363259

18. Hoare, C.A.R., Wirth, N.: An axiomatic definition of the programming language
PASCAL. Acta Inf. 2, 335–355 (1973). https://doi.org/10.1007/BF00289504

19. Hughes, J.: Quickcheck testing for fun and profit. In: Hanus, M. (ed.) PADL 2007.
LNCS, vol. 4354, pp. 1–32. Springer, Heidelberg (2006). https://doi.org/10.1007/
978-3-540-69611-7_1

20. Hughes, J.: Experiences from teaching functional programming at Chalmers. ACM
SIGPLAN Notices 43(11), 77–80 (2008). https://doi.org/10.1145/1480828.1480845

21. ISO/IEC 14882:2017 - Programming languages - C++ (2017). https://www.iso.
org/standard/68564.html

22. ISO/IEC 9899:2018 - Information technology - Programming languages - C (2018).
https://www.iso.org/standard/74528.html

23. Java platform, standard edition & Java development kit - version 14 API spec-
ification. https://docs.oracle.com/en/java/javase/14/docs/api/java.base/module-
summary.html. Accessed 29 June 2020

24. Junit 5. https://junit.org/junit5/. Accessed 24 June 2020
25. Kalleberg, K.T., Haveraaen, M.: JAxT - Java Axiomatic Testing. https://www.ii.

uib.no/mouldable/testing/. Accessed 24 June 2020
26. Liskov, B.: Keynote address - data abstraction and hierarchy. In: Addendum to the

Proceedings on Object-Oriented Programming Systems, Languages and Applica-
tions (Addendum), pp. 17–34, OOPSLA 1987. Association for Computing Machin-
ery, New York, NY, USA (1987). https://doi.org/10.1145/62138.62141

27. Meyer, B.: Applying “Design by contract”. Computer 25(10), 40–51 (1992). https://
doi.org/10.1109/2.161279

28. Saff, D.: Theory-infected: or how I learned to stop worrying and love universal
quantification. In: OOPSLA 2007: Companion to the 22nd ACM SIGPLAN Con-
ference on Object Oriented Programming Systems and Applications Companion,
pp. 846–847. ACM, New York, NY, USA (2007). https://doi.org/10.1145/1297846.
1297919

29. Sannella, D., Tarlecki, A.: Mind the gap! Abstract versus concrete models of spec-
ifications. In: Penczek, W., Szałas, A. (eds.) MFCS 1996. LNCS, vol. 1113, pp.
114–134. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61550-4_143

https://www.eclipse.org
https://doi.org/10.1145/357139.357140
https://arxiv.org/abs/1705.07478
https://docs.oracle.com/javase/specs/
https://doi.org/10.1002/0471028959.sof268
https://doi.org/10.1002/0471028959.sof268
https://doi.org/10.1145/1449814.1449834
https://doi.org/10.1145/1449814.1449834
https://doi.org/10.1145/363235.363259
https://doi.org/10.1007/BF00289504
https://doi.org/10.1007/978-3-540-69611-7_1
https://doi.org/10.1007/978-3-540-69611-7_1
https://doi.org/10.1145/1480828.1480845
https://www.iso.org/standard/68564.html
https://www.iso.org/standard/68564.html
https://www.iso.org/standard/74528.html
https://docs.oracle.com/en/java/javase/14/docs/api/java.base/module-summary.html
https://docs.oracle.com/en/java/javase/14/docs/api/java.base/module-summary.html
https://junit.org/junit5/
https://www.ii.uib.no/mouldable/testing/
https://www.ii.uib.no/mouldable/testing/
https://doi.org/10.1145/62138.62141
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/2.161279
https://doi.org/10.1145/1297846.1297919
https://doi.org/10.1145/1297846.1297919
https://doi.org/10.1007/3-540-61550-4_143

Teaching Formal Methods for Fun
Using Maude

Peter Csaba Ölveczky(B)

University of Oslo, Oslo, Norway
peterol@ifi.uio.no

Abstract. In this paper I try to identify some general criteria for teach-
ing an undergraduate formal methods course in a “fun” way. Based on
those criteria, I have developed an introductory formal methods course
using rewriting logic and Maude. I explain why Maude is a suitable for-
mal method for such a course, give an overview of the course and its
textbook, and summarize student feedback to the course.

1 Introduction

These days present a great opportunity for integrating formal methods into main-
stream software development, beyond their traditional role of verifying safety-
critical systems, for a number of reasons:

– The software industry is realizing that standard industrial validation tech-
niques are insufficient and do not scale up to today’s systems.

– The “winner-takes-all” nature of the software industry justifies an up-front
investment into making the systems as reliable and efficient as possible.

– Society is increasingly reliant also on “non-safety-critical” systems.
– Success stories are emerging on the use of formal methods in standard software

development, including from Amazon Web Services, the most profitable part
of one the world’s most valuable brands.

To take advantage of this opportunity and achieve the goal of making formal
methods an integral part of mainstream software development, we need to edu-
cate students who have some knowledge of formal methods, and appreciation
that they can add value to industrial software development.

However, there are many challenges to make students study and appreciate
formal methods that I discuss in Sect. 2: students may not have heard of formal
methods, and if they have heard of them they may not consider them relevant for
the job market; students may have limited mathematical background; and our
colleagues may manage to keep formal methods far away from mainstream course
programs. This easily leads to a vicious circle, where few formal methods people
in industry leads to limited use and appreciation of them, so that prospective
students do not see the point of studying formal methods, and so on.

To break out of this vicious circle, the organizers of the FMfun workshop
argue that formal methods teaching should be fun. But how should we teach
c© Springer Nature Switzerland AG 2021
A. Cerone and M. Roggenbach (Eds.): FMFun 2019, CCIS 1301, pp. 58–91, 2021.
https://doi.org/10.1007/978-3-030-71374-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71374-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-71374-4_3

Teaching Formal Methods Using Rewriting Logic 59

formal methods in a fun way? I try to identify what a computer science student
thinks is fun in Sect. 3. I use this knowledge in Sect. 4 to identify some general
criteria for what an introductory undergraduate course in formal methods should
look like.

Based on those criteria, and that as an undergraduate student eons ago I
thought that functional programming was the most “fun,” I have developed,
taught, and written a textbook [42] for a second-year introductory course on
formal methods using rewriting logic [28] and its simulation and model checking
tool Maude [13]. I give an overview of the course and its textbook in Sect. 5.
The course emphasizes the formal modeling and model checking analysis of cor-
nerstone distributed algorithms in today’s systems, including transport proto-
cols, distributed algorithms, and cryptographic protocols. Maude should be very
well-suited for this, since it combines a powerful object-based and functional-
programming (style of) modeling with automatic model checking. In particular,
Maude’s simple yet expressive and general formalism makes it easy to formalize
textbook distributed systems in different domains, as I illustrate in Sect. 5.5.

Is the course fun and seen as relevant? Section 6 summarizes student feedback
from the last 10+ years. What is promising is that twice as many students
finished the course this year compared to last year.

2 Making Students Study Formal Methods: Challenges

This section discusses challenges involved in making undergraduate students take
introductory formal methods courses, and how these challenges can be addressed.

The first challenge is a perception problem, summarized by Amazon Web Ser-
vices (AWS) engineers in their paper “How Amazon Web Services Uses Formal
Methods” [35]:

In industry, formal methods have a reputation for requiring a huge amount
of training and effort to verify a tiny piece of relatively straightforward
code, so the return on investment is justified only in safety-critical domains
(such as medical systems and avionics).

This perception is not restricted to “industry”—and therefore, by word-of-
mouth, to prospective students—but may also be shared by our non-formal-
methods professor colleagues, which easily leads to formal methods being
marginalized in the various course plans, as exemplified by the courses required
for the “Programming” bachelor degree at my department1 shown in Fig. 1.

The introductory formal methods course (IN 2100) competes for a single
10-credit slot with two other courses, one that introduces operating systems
and computer networking, which probably appeals quite a lot and seems work-
relevant to most students, and an (important) course on computational com-
plexity.2 I am not convinced that the situation is better at other universities.
1 Since the bachelor degree is only offered in Norwegian, this course plan is unfortu-

nately only available in Norwegian.
2 Oddly enough, the formal methods course is placed last in its slot, which is sorted

neither by course code nor alphabetically.

60 P. C. Ölveczky

Fig. 1. The course plan for the “Programming and Networks” bachelor degree at my
university. The third year is devoted to freely selected courses and is not shown.

I would not fault a student for taking a course on operating systems and
networking instead of formal methods. I would probably have done so myself as
a young student with an eye on the non-academic job market.

The second part of the quote above deals with the perception—often heavily
promoted by ourselves—that formal methods are important for safety-critical
systems like aircrafts and nuclear power plants. Since Norway, where I currently
work, does not produce aircrafts (or, as far as I know, larger medical devices) and
does not have commercial nuclear power plants, justifying formal methods with
such safety-critical applications may not sway the average 19-year-old student.

I think that some solutions to the above challenges is to emphasize that for-
mal methods provide useful and cost-efficient methods to achieve high-quality
non-safety-critical systems. Whereas previously, applying formal methods to an
in-house system intended for an in-house user base would probably not be worth
it, today we live in a globalized “winner-takes–all” world: Only the “best”
program/system/application in each domain/problem (online auctions, social
media, search, cloud provisioning, photo storage, online meetings, and so on)
will be widely adopted, and these “winners” will rake in billions of dollars, while
the runners-up disappear. Amazon, Google, Facebook, Alibaba, and Tencent

Teaching Formal Methods Using Rewriting Logic 61

are among the top 10 companies in the BrandZ Top 100 Most Valuable Global
Brand ranking 2019.3

While none of these companies produce what we would call safety-critical
systems, their products are complex distributed systems where any flaw (e.g.,
Gmail losing your emails from time to time, Facebook losing your photos or
leaking your confidential data, or Amazon Web Services losing some of the data
stored for you) could (should?) lead to loss of consumer confidence, with users
taking up competing systems, costing billions of dollars and potentially killing
the company. Today’s systems rely heavily on complex algorithms—just think
of the many variants of Paxos that feature prominently in large cloud-based
applications—and on large libraries. The application of formal methods on such
complex algorithms and libraries should therefore be very worthwhile.

The above-mentioned AWS paper [35] makes a strong case for using formal
methods in industry. The sentences after the above quote are:

Our experience with TLA+ shows this perception to be wrong. [...] Ama-
zon engineers have used TLA+ on 10 large complex real-world systems.
In each, TLA+ has added significant value, either finding subtle bugs we
are sure we would not have found by other means, or giving us enough
understanding and confidence to make aggressive performance optimiza-
tions without sacrificing correctness.

I can add that Facebook, Google, Amazon, and others are hiring, and have
recently hired, many formal methods researchers.

While I am skeptical to focus on safety-criticality, there are a number of
fashionable safety-critical systems these days that might motivate students: self-
driving cars, embedded devices, drones, and maybe even power distribution.
Blockchains and their electronic contracts are also “sexy” topics that could moti-
vate the use of formal methods.

Nevertheless, I think that we must emphasize the usefulness of formal meth-
ods in mainstream software development, and provide examples that seem more
work-relevant to the 19-year-old student than airplanes and nuclear power plants.

Changing the (mis-)perceptions of our esteemed professor colleagues is prob-
ably difficult. Maybe the best (or only) option to gain their appreciation is by
showing how formal methods can perform interesting analysis of systems in their
fields of expertise. Neither do I have brilliant ideas on how to make students
choose formal methods (which they probably have not even heard about when
they select courses) instead of seemingly more work-relevant courses. The most
realistic approach is to make excellent and fun formal methods courses that seem
relevant to students who will soon look for jobs, and hope that the courses grow
year by year through word-of-mouth. To achieve this, an introductory formal
methods course should demonstrate its usefulness on non-trivial applications in
different domains/problems that seem work-related to the student.

3 https://www.cnbc.com/2019/06/11/amazon-beats-apple-and-google-to-become-
the-worlds-most-valuable-brand.html.

https://www.cnbc.com/2019/06/11/amazon-beats-apple-and-google-to-become-the-worlds-most-valuable-brand.html
https://www.cnbc.com/2019/06/11/amazon-beats-apple-and-google-to-become-the-worlds-most-valuable-brand.html

62 P. C. Ölveczky

Another challenge to the uptake of formal methods is that students tend
to have worse mathematical background than ever [34,53] and (maybe there-
fore) are skeptical to mathematics. After all, if they were into mathematics they
probably would study mathematics or physics instead of computer science. The
straight-forward way of addressing this problem is to base your teaching on intu-
itive formal methods that do not require too much mathematical background.

This discussion therefore also leads to another conclusion: Automatic model
checking methods should be emphasized, even ahead of (or together with) theo-
rem proving. Model checking allows us to analyze even fairly complex and inter-
esting systems with modest effort (only modeling). It is also worth emphasizing
that the use of formal methods at AWS reported in [35] solely used model check-
ing, which nevertheless increased their confidence so much that they released
sophisticated products without formally verifying them.

A problem often mentioned is that formal methods teaching is not integrated
with other courses, and should be parts of other courses (see, e.g., [55]). I am
not sure how realistic such an approach is, because:

1. Teachers of other courses may not be formal methods experts and would
therefore be unwilling and/or unable to use such methods in their courses.
Furthermore, adding formal methods to their courses inevitably means that
they have to remove some of their own stuff from the course, which most
professors are reluctant to do.

2. Introducing a formal method and an associated tool to the degree that it can
be useful on applications in other courses may itself require a few lectures.

Instead, I believe that a realistic, and even quite good, solution is to apply for-
mal methods on systems/algorithms encountered in other courses that students
are taking, for example on security protocols, transport and other network pro-
tocols, databases/distributed transactions, and operating systems algorithms. I
also think that applying formal methods on systems that the students study in
other courses is crucial to illustrate that formal methods cannot only be used
on avionics, but on the kinds of systems that the students will face when they
start working. As explained in Sect. 5.5, this is the approach I have followed, and
it involved asking professors teaching databases and distributed systems about
algorithms that would be interesting to formalize and formally analyze.

Finally, the last “problem,” mentioned in [22] is that:

Courses on formal methods are often based on examples. [...] However,
examples often fall into one of two categories: First, many are constructed
and thus do not relate to practice. Second, examples are based on projects
of industry partners and are, thus, way too involved for students to under-
stand them.

The solution to this problem is to study systems which look relevant, for exam-
ple for social media (e.g., distributed transactions), online shopping, and cloud
applications (Gmail, ebay, etc.). Even simple examples such as distributed atomic
commit protocols and distributed leader election and consensus algorithms can
be motivated by such applications, as explained in Sect. 5.5.

Teaching Formal Methods Using Rewriting Logic 63

To summarize, in this Sect. 1 have argued for teaching formal methods using
a fairly expressive, intuitive, and general formalism that allows the students to
easily model and analyze a range of relevant-looking systems/algorithms, for
example those they study in other courses.

3 Making Formal Methods Teaching Fun

The stated goal of the FMfun 2019 workshop is to investigate how formal meth-
ods can be taught in such a way that every student can have fun with them.

To make teaching formal methods fun, let us try to figure out what a com-
puter science student thinks is “fun.” First of all, why does someone choose to
(continue to) study computer science? I think that there are two main reasons:

1. (S)he thinks that programming is fun.
2. The job market for computer science graduates has always been (perceived

to be) excellent.

Therefore, to make formal methods fun, we should base it on “programming.”
But what kind of programming? As an undergraduate student way too many
years ago, I got a taste of: standard imperative programming in a Pascal-like
language; C programming; assembly programming; and functional programming
in LISP/Scheme and a local functional language. While I enjoyed all of these
programming paradigms, I was most fascinated by the power and elegance of
functional programming. Therefore, at least for me, a formal method involving
“programming” in a functional-programming style would be the most “fun.”

As for applications, some of the very few relevant hits I got when I searched
for “teaching formal methods” and “fun” suggested using formal methods on
card tricks [15] and on games and puzzles such as Pac-Man, chess, Sudoku, and
the wolf-goat-cabbage problem [22,50]. However, without having any evidence,
I think that applying formal methods to relevant computer systems, such as dis-
tributed algorithms and security protocols, should be more “fun” and certainly
much more motivating for the students, in particular since many of them study
computer science because of the job prospects. Furthermore, even if a student
becomes proficient in applying a formal method on small games, that may not
teach them how to apply the method on computer systems. Finally, this app-
roach would also perpetuate the misconception that formal methods can only
be applied to artificial toy examples.

Let me end this section by mentioning two things that are not fun:

1. Struggling with an immature and buggy tool.
2. A number of students once complained that they were taking a formal meth-

ods course using some kind of automata to model and analyze distributed
systems, and that the hacks and tricky encodings needed to model anything
of interest made it very “un-fun.” Again: a nice powerful modeling language
that allows you to easily and elegantly model non-trivial systems without
awkward encodings are needed to make formal methods “fun.”

64 P. C. Ölveczky

4 How to Teach Formal Methods?

This section first discusses some seminal papers on teaching formal methods.
It then presents my thoughts on what to teach, and finally summarizes all the
requirements for a “fun” formal methods course that I have derived in this paper.

4.1 Related Work

This section summarizes a few key papers on teaching formal methods. A com-
mon thread in these papers is that their recommendations do not seem to have
been properly scientifically validated: the authors just get the impression and
some anecdotal evidence that their suggestions work well in their teaching. I
follow their lead in Sect. 6.

In “Teaching Formal Methods in the Context of Software Engineering,”
Shaoying Liu and researchers at The Nippon Signal Co. propose using a com-
bination of VDM, refinement calculus, and Hoare logic to teach formal meth-
ods in a software engineering context (which is also the context of the present
paper) [24]. In contrast to almost all other papers on the subject I have read,
Liu at al. think that using tools when teaching formal methods is “perhaps less
effective” than not using a tool, since “most effective for students [...] is to write
formal specifications by hand, [just] as they learn English as a foreign language.”

However, Liu et al. admit that their suggested formal methods are not easy
to use by practitioners on real software projects and that “there is little hope to
apply the refinement calculus in practice.” In a recurring theme among papers
on the topic, Liu et al. also say that each course should not be too ambitious,
and should instead be focused: It takes time to digest and master mathematical
concepts, and we should teach them slowly with many examples. Then there is
just not enough time to introduce too many formal methods concepts.

That the field of formal methods is too large to gain encyclopedic knowledge,
and that one should therefore choose a non-representative selection of formal
methods to teach is also the first of ten “principles for teaching Fun With Formal
Methods” given by Antonio Cerone and others in their paper “Teaching Formal
Methods for Software Engineering – Ten Principles” [10]. In contrast to Liu
et al., Cerone et al. advocate strongly for teaching using available and stable
“tools for simulation of behaviour and visualization of state space or traces”
that are powerful, even industrial-strength, and come with many “big” examples
(Principles 3, 5, and 6). The modeling language should make it easy to model
systems at a suitable level of abstraction (Principle 4). Principle 7 says that
formal methods are best taught by (computing) examples that are familiar to
students, which is in contrast to studying formal methods using card tricks and
games and puzzles. Cerone et al. end their list of principles by asking us to shout
out loud that formal methods are fun, and to motivate the students to participate
in competitions such as the SAT competition. I am not convinced that shouting
out loud that formal methods are fun is a good idea, or that a student will
be attracted to a formal methods course for the opportunity to participate in

Teaching Formal Methods Using Rewriting Logic 65

the SAT competition, but I share their opinion that human learning capacity is
highest when we enjoy what we are doing, so formal methods must be fun!

Luca Aceto and others [1] also argue that less is more in formal methods edu-
cation, emphasizing the need to repeatedly convey a few key concepts instead of
giving a broad overview. Their “main messages” are that formal models should
be developed using very expressive and flexible, but mathematically simple, exe-
cutable formalisms, that modal and temporal logics are fundamental to specify
system requirements, and that automatic verification tools should be used.

4.2 What to Teach?

What should be taught in an introductory formal methods course aimed at
second-year university students?

The main point of any university course is to teach concepts, and not single
logics, tools, and formalisms for their own sake. In my view, the key concepts in
formal methods are:

1. Mathematical modeling/formalization of both systems/designs and of the
properties/requirements that the systems should satisfy.

2. Reasoning about such systems models and whether they satisfy their require-
ments. There are two main ways to do this: automatic model checking and
interactive theorem proving verification. In today’s world, where performance
often is as important as correctness, model-based reasoning about system
performance would also be useful.

3. Mathematical analysis of programs/code. (A related, less central, concept is
how to obtain correct code from a verified formal specification.)

It would also be good to give the student a flavor of logical reasoning in general.
If possible, the student should be introduced to some logic and the concepts of
logical deduction, model theory, satisfaction, maybe even soundness and com-
pleteness, and so on. The student should also be exposed to key folklore results,
such as basic undecidability results (for example of termination and reachability
of certain states, which they can relate to their imperative programs).

The main applications of formal methods are modeling and analyzing
designs/algorithms and analyzing program code. In an introductory course at
a non-selective university you may not be able to cover both (“less is more”). In
that case, focusing on modeling and formally analyzing high-level designs seems
to be the best choice for a number of reasons:

1. Programmers code pretty well, and there are also good programming envi-
ronments and tools for generating or developing correct code from correct
specifications. In an early example illustrating the importance of developing
correct system models, it turned out that only three of the 197 critical defects
identified during integration and testing of the Voyager and Galileo space-
crafts were due to coding errors [27,48]. Most faults arose in requirements
and difficult design problems related to distribution [48]. Furthermore, John
Rushby wrote in 2011 that “no [plane] crash has ever been caused by software

66 P. C. Ölveczky

error” [49], and what we know of aircraft problems (such as Boeing 737 Max)
since then confirms this: the problems lie in understanding the problems and
developing a correct design. I discuss the successful use of formal methods at
Amazon Web Services in Sect. 5.5; this also concerned modeling and model
checking designs of distributed algorithm—not code.

2. Not only are defects more likely to be introduced in the early stages of system
development; it is also much cheaper to catch errors as early as possible.

3. It is easier to achieve something interesting in a short time with modeling
and analysis of high-level designs than with program verification, which typ-
ically requires defining the formal semantics of a (possibly toy) programming
language combined with theorem proving.

The courses discussed in Sect. 4.1 deal with modeling and analyzing high-level
designs. Program language semantics and verification are usually part of courses
on programming languages.

4.3 Summarizing the Requirements

To summarize, in my view a fun introductory course in formal methods should
satisfy the following criteria:
1. Be based on functional (or another fun) style of programming for executable

systems modeling.
2. Be based on a fair amount of examples/applications, which should be relevant

for other computer science courses that the students are taking, and which
should be seen as industrially relevant.

3. Should use a few mature and available tools that are seen as relevant in
industry.

4. Should motivate formal methods with industrial successes, preferably not only
on safety-critical systems.

5. Should introduce the key concepts in formal methods:
– modeling system designs;
– formalizing system requirements;
– formal correctness analysis, by model checking and by theorem proving,

and possibly also support formal model-based performance analysis;
– program verification; and
– provide some basics of logics and key folklore results.

On the other hand:
6. The course should focus on a few concepts.

It follows from these requirements that we need an expressive executable
formalism, that allows us to easily model a range of not-entirely-trivial systems,
preferably in different domains (e.g., taken from different other courses). The
formal method should also be simple and intuitive and should not require much
mathematical background. If we want students to achieve meaningful results
on interesting problems, this may lead us to prefer automatic model checking
analysis over interactive theorem proving verification, which scales less well to
non-trivial systems in the short time available in an introductory formal methods
course. Finally, we must show that the formal method has industrial relevance.

Teaching Formal Methods Using Rewriting Logic 67

5 Teaching Introductory Formal Methods Using
Rewriting Logic

This section gives an overview of an introductory formal methods course—and
its accompanying textbook—aimed at second-year undergraduate students at
the University of Oslo that tries to teach formal methods according to the cri-
teria in Sect. 4.3. I first present the setting of the course. Sections 5.2 and 5.3
briefly introduce rewriting logic and its associated modeling language and formal
analysis tool Maude. Section 5.4 explains why I think that Maude is a promis-
ing formal modeling language and analysis tool addressing the requirements for
teaching formal methods for fun. Finally, Sect. 5.5 gives an overview of the course
and its textbook, with some samples thrown in to give a flavor of modeling and
analysis in Maude.

5.1 Course Setting

As already mentioned, the course is an elective course taught to second-year
“programming and networks” students at the University of Oslo. The course
was taught to third- and fourth-year students until 2018, when the textbook was
published. The course has one 90-minute lecture and one 90-minute seminar, dis-
cussing solutions to weekly exercises, per week for 15 weeks. As shown in Fig. 1,
the students have taken some general imperative programming courses and a
number of software engineering courses, as well as introductions to databases
and computer security, before taking this class. They have also taken a basic
first-year introduction to standard mathematical logic, although my course does
not assume any significant knowledge of mathematical logic.

5.2 Formalism Used: Rewriting Logic

I base the course on rewriting logic [9,28,31], which is a simple but powerful
logic of change developed by José Meseguer in the late 1980s and early 1990s.
Rewriting logic has been shown to be very suitable to model a wide range of
distributed systems in a natural way. In particular, rewriting logic has a simple
model of concurrent objects, which are ideal to model distributed systems.

In rewriting logic, data types (domains and functions on such domains) are
specified using (first-order) algebraic equational specifications, which could be
many-sorted, order-sorted, or being based on membership equational logic [29].

Dynamic behaviors are then specified by labeled conditional rewrite rules
l : t −→ u if cond , where t and u are two terms4 representing state patterns.

5.3 Language and Tool Used: Maude

Maude [13,14,16] (http://maude.cs.illinois.edu) is a specification language and
high-performance analysis tool for rewriting logic developed at SRI International
4 More precisely, they are equivalence classes of terms modulo the equations in the

equational specification.

http://maude.cs.illinois.edu

68 P. C. Ölveczky

and the University of Illinois since the beginning of the 1990s. Maude supports
convenient mix-fix operator syntax; deduction modulo equational axioms such
as associativity, commutativity, and identity, and their combinations; and order-
sorted and membership equational logic theories. Maude assumes that the equa-
tions (when oriented from left to right) are ground confluent and terminating
(modulo the equational axioms), and executes an equational specification by
computing the normal form of a term in a standard term rewriting sense.

Since rewrite rules modeling atomic transition patterns may not be termi-
nating and/or confluent, there are different ways of formally analyzing rewriting
logic specifications (called rewrite theories). Rewriting applies rewrite rules to a
ground term representing the initial system state to simulate one possible behav-
ior of the system from the initial state, and explicit-state reachability analysis
uses a breadth-first search strategy to search for states reachable from the initial
state that match a given state pattern. More sophisticated system requirements
can be formalized as linear temporal logic (LTL) formulas [12], where atomic
propositions are terms of sort Prop and LTL formulas terms of sort Formula.
If the state space reachable from the initial state is finite, Maude’s explicit-
state LTL model checker can check whether all behaviors from the initial state
satisfies an LTL property. Maude has recently been equipped with symbolic anal-
ysis methods (where reasoning is performed on state patterns, i.e., terms with
variables, that represent infinite sets of concrete states), such as narrowing and
rewriting combined with SMT solving for symbolic reachability analysis [14,16].

Thanks to Maude’s meta-programming features, where any Maude module
can be represented as a term of a sort Module at the Maude meta-level, and
where we hence can define Maude functions on such (meta-represented) Maude
modules, the user can define specific analysis commands herself. She can also do
so in Maude 3 using Maude’s strategy language.

Maude specifications can also be subjected to interactive theorem proving
verification of invariants [45] and reachability logic properties [52].

It should also be mentioned that rewriting logic has natural extensions to
model probabilistic [2] and real-time systems [37]. Such systems can be ana-
lyzed by, respectively, statistical model checkers such as PVeStA [3] and Mul-
tiVesta [51], and by the Real-Time Maude tool [36,38].

5.4 Why Maude?

How does Maude address the requirements in Sect. 4.3 for teaching formal meth-
ods in a “fun” way?

– Maude provides a fun functional-programming-style specification of data
types and a functional-programming and object-oriented style of modeling
distributed systems, which are the systems we want to target these days.

– Maude provides a very simple and intuitive formalism that does not require
much (if any) mathematical background. The students should be familiar
with equations, having used equations such as (x + y)2 = x2 + 2xy + y2 as
simplification rules in school.

Teaching Formal Methods Using Rewriting Logic 69

– The Maude formalism is very general and expressive, so that a wide range of
distributed systems and forms of communication can be easily modeled at the
desired level of abstraction, without tricky encodings. This makes it possible
to specify different kinds of non-trivial systems in the limited time frame of
such an introductory course.

– As argued above, to illustrate the use of formal methods on interesting prob-
lems, one may have to prefer automatic model checking methods over inter-
active theorem proving methods in such an introductory course, and Maude
provides automatic reachability analysis and LTL model checking.

– The tool is quite mature and efficient, is freely available, and is very easy to
install on Linux platforms. Furthermore, I have never had a student with a
Windows machine who could not run Maude.

– Although neither my course nor my textbook covers it, rewriting logic can
also be used to verify programs in a wide range of languages, such as C, Java,
and so on, using Grigore Rosu’s rewriting-logic-based K framework [47] and
matching logic [46].

– Students tend to be more motivated to use a new tool when it seems relevant
to industry and is used on interesting real applications. Maude and related
tools have been applied to a wide range of complex systems. For example,
in security, Maude was applied at Microsoft to discover previously unknown
address bar and status bar spoof attacks in Internet Explorer [33], and one
of the leading formal crypt-analysis tools, the latest version of Cathy Mead-
ows’ NRL Protocol Analyzer, called Maude-NPA, is written in Maude. We
have already mentioned Grigore Rosu’s work on rewriting logic semantics
of programming languages [7,17,30,32]. This framework is used in a com-
mercial setting to formalize the Ethereum Virtual Machine and to formally
analyze electronic contracts on the blockchain [20,43]. Maude and PVeStA
have been used to formally model and analyze both the correctness and per-
formance of large transport protocols [23,39], state-of-the-art wireless sensor
network algorithms [21,40], and large cloud-based transaction systems such
as Google’s Megastore [18,19], Apache Cassandra [25], and others (see [6,41]
for an overview). Researchers at NASA have used Maude to verify pro-
grams written in NASA’s PLEXIL language for commanding and monitoring
autonomous systems [44]. In the biological and medical domains, rewriting
logic and Maude have been used to formalize and analyze cell biology [54]
and simple models of biochemical processes in the brain [4,5]. Maude has
also been used to reason about human cognition [11], in particular human
multitasking [8]. Th survey paper [31] gives a more comprehensive overview
of some applications of Maude as of 2012. My students may also be inspired
by the fact that two of my former TAs started a company with a product
written in Maude that is still thriving, more than 15 years later.

– Since Maude provides support for sockets, a Maude instance can communicate
with other Maude instances and with other external objects. In [26] this is
used to automatically generate correct-by-construction distributed implemen-
tations with decent performance from verified Maude models of distributed

70 P. C. Ölveczky

transaction systems. These implementations can then run on real workloads,
such as those generated by YCSB.

5.5 Overview of the Course and Its Textbook

Fig. 2. Course textbook

This section summarizes the content of
the course and its textbook, Designing
Reliable Distributed Systems: A Formal
Methods Approach Based on Executable
Modeling in Maude, which was published
in 2018 as a volume in Springer’s Under-
graduate Topics in Computer Science
series.

The course (and the textbook) are
divided into two parts: Part I shows how
to define data types in Maude, and gives
a quite standard introduction to algebraic
equational specifications and term rewrite
systems. Part II explains how the dynamic
behaviors of distributed systems can be
modeled and analyzed in Maude.

To give a flavor of the course, I also
give a few small examples of specification
and analysis in Maude. The section head-
ers show in parenthesis the number of 90-
minute lectures I devote to each topic.

Equational Specification in Maude (3.5 Lectures). This chapter intro-
duces equational specification of data types in Maude, starting with a “Hello
Word” example, a specification of the natural numbers with addition in a Peano
style:

Example 1. The following Maude functional module (fmod) defines a sort Nat
whose constructor ground terms 0, s(0), s(s(0)), . . . represent the natural
numbers 0, 1, 2, . . . , and defines the addition function on such (representations
of) natural numbers, where ‘_’ denotes the argument positions in “mix-fix” func-
tion symbols:

fmod NAT-ADD is

sort Nat .

op 0 : -> Nat [ctor] . vars M N : Nat .

op s : Nat -> Nat [ctor] . eq 0 + M = M .

op _+_ : Nat Nat -> Nat . eq s(M) + N = s(M + N) .

endfm

Maude’s reduce (red) command can then be used to compute the value of 3+2:

Teaching Formal Methods Using Rewriting Logic 71

Maude> red s(s(s(0))) + s(s(0)) .

...

result Nat: s(s(s(s(s(0))))) �

In this way, we define data types such as lists, multisets, binary trees, graphs,
and so on, in rewriting logic/Maude. “Syntactic subtypes” can be defined using
subsorts, and “semantic subtypes” can be defined by membership axioms. A
(binary) function/operator can be declared to be associative (assoc), commu-
tative (comm), and/or to have an identity element t (id: t), so that matching is
performed modulo these properties.

Example 2. Combining subsorts and operator attributes, we can define lists and
non-empty lists (of natural numbers) as follows:

fmod LIST is

protecting NAT .

sorts List NeList . subsorts Nat < NeList < List .

op nil : -> List .

op _:_ : List List -> List [ctor assoc id: nil] .

op _:_ : NeList NeList -> NeList [ctor assoc id: nil] .

endfm

The list 〈2, 8, 5, 3〉 is then represented as the term 2 : 8 : 5 : 3 of sort NeList;
since NeList is a subsort of the sort List, this term is also a term of sort List.

We can then define the insertion sort algorithm, which sorts a list by inserting
the elements, one by one, in the right place in the sorted list of the elements
that have already been treated. In the auxiliary function, the first argument is
the elements that have not yet been inserted into the sorted (sub)list, and the
second argument is the sorted list of elements that have already been treated:

fmod INSERTION-SORT is protecting LIST .

op insertionSort : List -> List .

op insertionSort : List List -> List .

vars L L2 L3 : List . vars M N K : Nat .

eq insertionSort(L) = insertionSort(L, nil) .

eq insertionSort(M : L, nil) = insertionSort(L, M) .

ceq insertionSort(M : L, N : L2) = insertionSort(L, M : N : L2) if M <= N .

ceq insertionSort(M : L, L2 : N) = insertionSort(L, L2 : N : M) if M > N .

ceq insertionSort(M : L, L2 : K : N : L3)

= insertionSort(L, L2 : K : M : N : L3) if M > K and M <= N .

eq insertionSort(nil, L) = L .

endfm

Maude> red insertionSort(8 : 5 : 12 : 2 : 45 : 3 : 45 : 46 : 47) .

...

result NeList: 2 : 3 : 5 : 8 : 12 : 45 : 45 : 46 : 47 �

72 P. C. Ölveczky

Multisets (of, say, natural numbers) can be defined equally easily using an
associative and commutative multiset union operator (which we denote by empty
syntax: _ _):

fmod MULTISET-NAT is protecting NAT .

sort Mset . subsort Nat < Mset .

op none : -> Mset [ctor] .

op __ : Mset Mset -> Mset [ctor assoc comm id: none] .

endfm

As examples, and to “sneak-introduce” classic NP-complete problems, the
book introduces and defines functions solving problems such as subset sum,
Hamiltonian circuit, (integer) knapsack, and the traveling salesman problem.

Example 3. The subset sum problem, where the question is to decide whether
it is possible to pick a subset of numbers with sum K from a given multiset
M of natural numbers, can be solved as follows (where sd denotes symmetric
difference (“minus”) on natural numbers):

op subsetSum : Mset NzNat -> Bool .

vars N : Nat . var NZ : NzNat . var REST : Mset .

eq subsetSum(none, NZ) = false .

eq subsetSum(N REST, NZ)

= if N > NZ then subsetSum(REST, NZ)

else (if N < NZ then subsetSum(REST, sd(NZ,N)) or subsetSum(REST, NZ)

else true fi) fi . --- N == NZ �

Finally, the book discusses parametrized modules in Maude, which are not taught
in class, and the Bergstra-Tucker meta-theorem that any computable data type
can be defined by a terminating and confluent equational specification.

Operational Semantics (Half a Lecture), Termination (1–2 Lectures),
and Confluence (1 Lecture). This part defines the operational semantics
of equational specifications (by rewriting). Since this is an introductory text-
book, all treatment of theoretical issues is restricted to one-sorted unconditional
theories without operator attributes such associativity and commutativity.

Since Maude assumes the equations to be terminating and (ground) con-
fluent, we must be able to reason about termination and confluence. The book
gives a proof for the undecidability of termination using Turing machines. It then
shows how “weight” functions, where each ground term is assigned a weight in
a well-founded strict partial order, can be used to prove termination. The book
then explains the elegant theory of simplification orders, which leads to the lex-
icographic and multiset path orders (lpo and mpo, respectively). I used to teach
the theory of simplification orders, but now omit it for the second-year students
(who must learn temporal logic instead). The book contains lots of examples
and exercises, including indicating how the techniques also can be applied to

Teaching Formal Methods Using Rewriting Logic 73

imperative programs. One exercise is to implement lpo, which can be done very
elegantly in Maude, and which also implicitly introduces meta-programming.

A chapter on checking confluence leads to the critical-pair algorithm for
checking confluence in terminating specifications.

Equational Logic (1 Lecture). To introduce students to fundamentals such
as proof systems, proof theory, and logics, the course introduces equational logic
(again, in its basic unsorted version), with its deduction rules, and basic results
such as undecidability of equality in the general case, and decidability when the
specification is terminating and confluent. The second part of that chapter deals
with inductive theorems, and includes an explanation of how it follows from
the negative solution to Hilbert’s Tenth Problem that there is no finitary sound
and complete proof system for inductive theorems. This part also presents the
general “constructor induction” scheme for proving inductive theorems, applied
to simple equalities for lists and binary trees, and shows how Maude in some
cases can prove inductive theorems automatically.

Models of Equational Specifications. The chapter on the model theory
for algebraic specifications gives the basics: σ-algebras, term algebras, (Σ,E)-
algebras, quotient algebras, the algebra TΣ,E , proof of the soundness and com-
pleteness of equational logic, and explains how initial algebras are the intended
models that satisfy expected properties. This chapter is not taught in the course.

Rewriting Logic and Executing Rewrite Theories in Maude (1 Lec-
ture). In rewriting logic, data types are defined as equational specifications,
and dynamic behavior is modeled by labeled rewrite rules l : t −→ t′ if cond,
where l is a label, and t and t′ are terms that should be seen as state fragments,
parametrized by the variables that appear in the rule. The key point is that
the rewrite rules, modeling dynamic behaviors, need not be terminating and/or
confluent. This chapter introduces rewriting logic and its deduction rules, as well
as how to reason logically about which steps can be performed concurrently.

In Maude, a rewrite rule is executed by first reducing the state to its equa-
tional normal form, and then applying the rewrite rule to simulate one step of
the system. Maude’s rewrite (rew) command simulates one of the behaviors from
a given initial state. Maude’s search command performs breadth-first search to
check whether a given state pattern is reachable from a given initial state. We
apply Maude to model and analyze small games and populations of humans,
simulating Turing machines, and exhibiting solutions to NP-complete problems
such as knapsack and traveling salesman.

Example 4. In the blackboard game, a bunch of natural numbers are written on
a blackboard. In each step of the game, any two numbers on the blackboard can
be replaced with their arithmetic mean. This exciting game can be modeled as
follows in Maude, where the blackboard is represented as a multiset of numbers:

74 P. C. Ölveczky

mod BLACKBOARD-GAME is including MULTISET-NAT .

vars M N : Nat .

rl [replace] : M N => (M + N) quo 2 .

endm

We can simulate one behavior of this game from the blackboard 98 2 4 56 7:

Maude> rew 98 2 4 56 7 .

result NzNat: 64

and can check whether it is possible to reach a state where the blackboard only
has a single number, which, in addition, is less than 15:

Maude> search [1] 98 2 4 56 7 =>* N such that N < 15 .

Solution 1 (state 156)

N --> 14 �

Object-Oriented Specification in Maude (1 Lecture). A convenient way
to represent the state of a distributed system is as a multiset of objects and
messages traveling between the objects. Objects and messages can be any terms;
a convenient notation we use is that the term

< o : C | att1 : val1, ..., attn : valn >

denotes an object o of class C, with attributes att1 to attn, whose current values
are val1 to valn, resp. A message is a term of sort Msg which in this course has
the form msg content from o1 to o2.

Full Maude is an extension of Maude, specified in Maude, that provides
convenient syntax for object-based specification, as well as support for sub-
classes. In Full Maude, a class is declared class C | att1 : s1, ..., attn : sn .
This chapter illustrates object-oriented specification not only with populations
of humans, but also with the dining philosophers problem and with blackjack,
where we use Maude’s random function to draw cards pseudo-randomly and to
simulate the outcome of playing blackjack with different strategies.

Modeling Communication and Transport Protocols (1 Lecture). The
book then explains how different forms of communication, including synchronous
communication, (unordered) unicast, multicast, and broadcast, message loss
and duplication, ordered unicast, wireless broadcast, and communication using
“shared variables” can be abstractly modeled in Maude.

This enables us to start modeling and analyzing some of the most well-
known and key distributed algorithms/protocols, and we start by modeling and
analyzing classic transport protocols such as TCP, the alternating bit protocol,
and different versions of the sliding window protocol.

Teaching Formal Methods Using Rewriting Logic 75

Distributed Algorithms (1 Lecture). The chapter which shows how Maude
can be used to formalize and analyze central algorithms in distributed systems
is an important chapter in the book. The algorithms were selected as follows:

– A professor colleague in Oslo from the database community challenged me to
model and analyze the two-phase commit (2PC) protocol.

– A professor teaching distributed systems at the University of Illinois suggested
some key algorithms in distributed systems.

– When I was part of the University of Illinois Center for Assured Cloud Com-
puting, I noticed that 2PC and distributed consensus algorithms (in particu-
lar various flavors of Paxos) show up as key components in many cloud-based
systems, such as Google’s Megastore and UC Berkeley’s RAMP transactions.

– It is easy to motivate the selected algorithms with simple use cases.

The chapter first treats the two-phase commit (2PC) protocol, admittedly
a simple protocol, which is nevertheless much used. It is also easy to motivate:
a transaction today is typically a multi-site transaction. For example, a travel
agent may sell a trip with both hotel room and plane ticket included. Such
a transaction involves at least three different sites: the flight reservation sys-
tem, the hotel reservation system, and the payment processing system. If one of
the operations fails (there are no flights or no hotel rooms, or the payment is
unsuccessful), the whole transaction must be aborted. Modern systems replicate
data for availability and disaster tolerance; therefore, two different replicating
sites/servers may sell the same seat on a flight (or the same unique ebay item) to
two different persons at the same time. 2PC solves the problems by aborting the
transaction unless all servers agree to commit the transaction (which they will
not do if there are double bookings, or if the payment (or the hotel reservation
or the flight reservation) fails).

The part on 2PC also discusses techniques for injecting faults into the system.
Distributed mutual exclusion algorithms are also easy to motivate (e.g., to

avoid lost updates in a distributed setting, or to disallow that the same flight seat
can be accessed (and hence sold) by different servers at the same time). We model
and analyze the central server, the token ring, and the Maekawa distributed
mutual exclusion algorithms. Exam problems have asked students to model and
analyze Lamport’s bakery algorithm and the Suzuki-Kasami algorithm.

Instead of canceling both transactions when the same seat is sold to two per-
sons, it would be much better if the sites can agree (i.e., reach consensus) on
one person to sell the ticket to. This leads to distributed consensus algorithms,
which typically include distributed leader election algorithms as key compo-
nents. We study a distributed token ring leader election algorithm, as well as
a spanning-tree-based leader election algorithm that is the basis of many wire-
less algorithms. The book also discusses distributed consensus and gives a very
abstract description of Paxos, but does not provide details.

Example 5. In the token ring distributed mutual exclusion algorithm, the nodes
form a ring. Each node executes forever, alternating between executing outside
its critical section and executing inside its critical section. There is one token

76 P. C. Ölveczky

that the nodes send along the ring; a node can only execute inside its critical
section when it holds the token.

This algorithm can be specified in (Full) Maude as follows:

load full-maude

(omod TOKEN-RING-MUTEX is

sort Status MsgContent .

ops outsideCS waitForCS insideCS : -> Status [ctor] .

op msg_from_to_ : MsgContent Oid Oid -> Msg [ctor] .

op token : -> MsgContent [ctor] .

class Node | next : Oid, status : Status .

vars O O1 O2 : Oid .

rl [wantToEnterCS] :

< O : Node | status : outsideCS >

=>

< O : Node | status : waitForCS > .

rl [rcvToken1] :

(msg token from O1 to O)

< O : Node | status : waitForCS >

=>

< O : Node | status : insideCS > .

rl [rcvToken2] :

(msg token from O1 to O)

< O : Node | status : outsideCS, next : O2 >

=>

< O : Node | >

(msg token from O to O2) .

rl [exitCS] :

< O : Node | status : insideCS, next : O2 >

=>

< O : Node | status : outsideCS >

(msg token from O to O2) .

endom)

The first line starts Full Maude. The class declaration declares a class Node
with two attributes. The attribute status shows the “execution status” of the
node, i.e., whether the node is executing outside its critical section (outsideCS),
is waiting to access its critical section (waitForCS), or is executing inside its
critical section (insideCS). The attribute next points to the object identifier of
the next node in the ring.

In rule wantoToEnterCS, a node that is executing outside its critical section
needs to enter its critical section, and starts waiting for the token. In rule

Teaching Formal Methods Using Rewriting Logic 77

rcvToken1, such a waiting node receives the token (message), and starts exe-
cuting inside its critical section (i.e., changes its status to insideCS). In rule
rcvToken2, a node that is executing outside its critical section receives the token,
and just sends the token (message) to the next node in the ring. Finally, in rule
exitCS, a node ends its execution inside its critical section and sends the token
to the next node in the ring.

The following module defines a suitable initial state init consisting of four
nodes, named a, b, c, and d, and where the token is “on the way” to node a:

(omod INITIAL is including TOKEN-RING-MUTEX .

ops a b c d : -> Oid [ctor] . --- object names

op init : -> Configuration . --- initial state

eq init

= (msg token from d to a)

< a : Node | status : outsideCS, next : b >

< b : Node | status : outsideCS, next : c >

< c : Node | status : outsideCS, next : d >

< d : Node | status : outsideCS, next : a > .

endom)

We can then simulate 100 steps of this (nonterminating) algorithm:

Maude> (frew [100] init .)

...

result Configuration :

< a : Node | next : b, status : insideCS >

< b : Node | next : c, status : waitForCS >

< c : Node | next : d, status : waitForCS >

< d : Node | next : a, status : outsideCS >

The main invariant that the algorithm should satisfy is that two nodes never
execute inside the critical section at the same time. We check this invariant by
searching for a reachable state where two objects both have status insideCS
(variables in search patterns are given as var:sort):

Maude> (search [1] init =>* REST:Configuration

< O1:Oid : Node | status : insideCS >

< O2:Oid : Node | status : insideCS > .)

No solution.

Finally, we check whether it is possible to reach a deadlock (=>!) from init:

Maude> (search [1] init =>! SYSTEM:Configuration .)

No solution. �

78 P. C. Ölveczky

Modeling and Breaking Cryptographic Protocols (1 Lecture). One cha-
pter of the textbook gives a basic introduction to cryptography (public/private-
key cryptography, shared-key cryptography, digital signatures, and so on),
and shows how the well-known Needham-Schroeder public-key (NSPK) mutual
authentication protocol can be modeled and broken using the Maude techniques
that the students have learnt.

Yes, NSPK is a standard example, but it should be inspiring for the students.
I use it in the beginning of the course to motivate formal methods:

– NSPK is an excellent example for the need for formal methods. It was a
well-known and well-studied protocol from 1978. The Handbook of Applied
Cryptography from 1996 discusses it without mentioning any flaws. The key
(pardon the pun) thing is that it was broken by Gavin Lowe in 1995 using
exhaustive analysis of a formal model, which is exactly what we are doing.
That is, the flaw in NSPK went undiscovered for 17 years until formal analysis
found a successful attack on NSPK.

– NSPK is a prime example of the complexity of distributed systems: the whole
protocol is described in three lines, yet it is so hard to really understand that
the flaw was not found for 17 years.

– More or less all our use of computers (email, social media, online shopping and
banking, etc.) is based on our ability to authenticate ourselves to a service,
so this is an absolutely crucial problem.

– I guess that security is a popular topic with students, and using NSPK allows
me to both show the use of formal methods on a sexy topic, as well as to give
the students the briefest of crash courses on cryptography.

The NSPK protocol is usually described in standard crypto-protocol notation as
follows, where A (the initiator) and B (the responder) are two agents who want
to authenticate themselves to each other.

Message 1. A → B : A .B . {Na . A}PKB

Message 2. B → A : B .A . {Na . Nb}PKA

Message 3. A → B : A .B . {Nb}PKB

In the first step, A generates the nonce (“fresh random number”) Na, adds her
identity A, encrypts this concatenation Na . A with the public key of B, and sends
this encrypted message, together with her own and B’s name (unencrypted) to
B. When B receives this first message, he decrypts the encrypted part using his
private key to obtain the nonce Na. The responder B then generates his own
nonce Nb, and returns the nonce Na along with the new nonce Nb, encrypted
with the public key of A. When A receives this Message 2 she decrypts it with
her private key to read both Na and Nb, and sends the nonce Nb, encrypted with
B’s public key, back to B. It should be (and for many years was) obvious that
after the three messages have been successfully read and decrypted, that A and
B really wanted to participate in a protocol run with each other.

I do not show the declaration of the messages in Maude, but refer to the
book [42] for details. For example, a Message 1 can be modeled as the term

Teaching Formal Methods Using Rewriting Logic 79

msg (encrypt (nonce(A, 3) ; A) with pubKey(B)) from A to B.

where nonce(A, 3) is the third nonce generated by A. Our model allows multiple
runs of the protocol with multiple participants. An initiator is an object of class

class Initiator | initSessions : InitSessions, nonceCtr : Nat .

where nonceCtr is a counter for generating nonces, and initSessions is a mul-
tiset of elements of the following kinds:

– notInitiated(B) indicates that A wants to initiate contact with B but has
not yet done so;

– initiated(B,N) indicates that A has sent Message 1 to B with nonce N
and is waiting for Message 2 from B; and

– trustedConnection(B) indicates that A has established (what she thinks is)
an authenticated connection with B.

The following two rewrite rules model the behavior of initiator nodes. The rule
send-1 models sending Message 1. The agent A has notInitiated(B) in its
initSessions attribute, which means that it wants to establish a connection
with B. The agent A generates a fresh nonce nonce(A, N) and sends the cor-
responding Message 1 to B. Agent A must also remember that it has initiated
contact with B using nonce nonce(A, N) and must increase its nonce counter:

rl [send-1] :

< A : Initiator | initSessions : notInitiated(B) IS,

nonceCtr : N >

=>

< A : Initiator | initSessions : initiated(B, nonce(A, N)) IS,

nonceCtr : N + 1 >

msg (encrypt (nonce(A, N) ; A) with pubKey(B)) from A to B .

In rule read-2-send-3 an agent A receives a Message 2 from B. If the first
nonce (NONCE) in the message received (and decrypted) by A is the same as the
nonce stored in A’s initSessions attribute for B, then agent A figures out that
it has established an authenticated connection with B, and sends Message 3 (B’s
nonce (NONCE’) encrypted with B’s public key) to B:

rl [read-2-send-3] :

(msg (encrypt (NONCE ; NONCE’) with pubKey(A)) from B to A)

< A : Initiator | initSessions : initiated(B, NONCE) IS >

=>

< A : Initiator | initSessions : trustedConnection(B) IS >

msg (encrypt NONCE’ with pubKey(B)) from A to B .

Responders are modeled by two similar rewrite rules (modeling receiving
Message 1 and sending Message 2, and receiving Message 3). Some nodes may
be both initiators and responders (in different runs of the protocol). They are
modeled as subclasses of both Initiator and Responder, and therefore inherit
the attributes and rewrite rules of both superclasses:

80 P. C. Ölveczky

class InitAndResp .

subclass InitAndResp < Initiator Responder .

“Dolev-Yao” intruders are modeled by specifying their capabilities, and by
in each step also storing any new agent names, nonces, or encrypted messages
whose content it cannot understand:

class Intruder | initSessions : InitSessions,

respSessions : RespSessions, nonceCtr : Nat,

agentsSeen : OidSet,

noncesSeen : NonceSet,

encrMsgsSeen : EncrMsgContentSet .

Rules then model the intruder participating in normal protocol runs (and
storing the obtained information), intercepting and stealing messages, and send-
ing any kind of fake messages, using information it has gathered. For example,
in the following rule, an intruder sends out a completely random Message 2:

crl [send-2-fake] :

< I : Intruder | agentsSeen : A ; B ; OS,

noncesSeen : NONCE NONCE’ NSET >

=>

< I : Intruder | >

(msg (encrypt (NONCE ; NONCE’) with pubKey(A)) from B to A)

if A =/= B /\ A =/= I .

We then define the following initial state intruderInit:

op intruderInit : -> Configuration .

eq intruderInit

= <"Scrooge" : Initiator |

initSessions : notInitiated("BeagleBoys"), nonceCtr : 1 >

< "Bank" : Responder |

respSessions : emptySession, nonceCtr : 1 >

< "BeagleBoys" : Intruder |

initSessions : emptySession, respSessions : emptySession,

nonceCtr : 1, agentsSeen : "Bank" ; "BeagleBoys",

noncesSeen : emptyNonceSet, encrMsgsSeen : emptyEncrMsg > .

The Beagle Boys do not know any other agent, except the bank, but hope to be
contacted by some rich guys after creating an enticing web site promising
. . . Indeed, Scrooge wants to contact the Beagle Boys but not the bank. Therefore,
if it is possible to reach a state where the bank thinks that it has established an
authenticated connection with Scrooge, then the protocol is broken, and Scrooge’s
wealth canbe transferred to theBeagleBoys.The following search commandchecks
whether such an undesired state is reachable from intruderInit:

Maude> (search [1] intruderInit =>*

C:Configuration

< "Bank" : Responder | respSessions :

trustedConnection("Scrooge") RS:RespSessions > .)

Teaching Formal Methods Using Rewriting Logic 81

This Maude search actually finds such a bad state where the Bank thinks
that is has a connection with Scrooge:

Solution 1

...

Maude can then output the path leading from the initial state to this bad
state, and this behavior indeed corresponds to a real attack on NSPK.

System Requirements (1 Lecture). Whereas up to this point, the course
has dealt with formalizing the behaviors of the system, this and the follow-
ing chapter deals with the requirements that the system should satisfy. I first
introduce state-based and action-based properties, and then classes of proper-
ties, such as invariants, reachability, “guarantee” (“something good must even-
tually happen”), response properties, stability, and so on. I also discuss fairness
assumptions, which are often needed to have liveness/guarantee properties, and
how invariants can be proved inductively.

Formalizing and Model Checking Requirements Using Temporal Logic
(1 Lecture). Maude is equipped with a linear temporal logic (LTL) model
checker. Atomic propositions are terms of sort Prop, and LTL formulas are con-
structed (as terms of sort Formula) in the usual way. One chapter of the book
introduces LTL and Maude’s LTL model checker, and explains how various
requirements, including fairness assumptions, can be formalized in LTL, and how
crucial requirements of the distributed algorithms in the book can be analyzed.

Example 6. Consider the token-ring mutual exclusion algorithm in Example 5.
The key liveness property we want to prove is that each node executes in its
critical section infinitely often. This cannot be proved using search, but can easily
be done using LTL model checking. We define a parametric atomic proposition
inCS(o) to hold if node o is currently executing inside its critical section:

(omod MODEL-CHECK-MUTEX is protecting INITIAL . including MODEL-CHECKER .

subsort Configuration < State .

op inCS : Oid -> Prop [ctor] .

var REST : Configuration . var S : Status . var O : Oid .

eq REST < O : Node | status : S > |= inCS(O) = (S == insideCS) .

endom)

We check if each node in init executes infinitely often in its critical section:5

Maude> (red modelCheck(init, ([] <> inCS(a)) /\ ([] <> inCS(b)) /\

([] <> inCS(c)) /\ ([] <> inCS(d))) .)

result ModelCheckResult : counterexample(...)

5 ‘[]’ and ‘<>’ denote the temporal operators � and ♦, respectively, and ‘/\ and ‘->’
denote logical conjunction and implication.

82 P. C. Ölveczky

The property does not hold: the model checker returns a counterexample where
node d never starts waiting to enter its critical section. We therefore add the
following justice fairness assumption for the first rule: for each node o, if, from
some point on, the first rule is continuously enabled for o (that is, o’s status
is outsideCS), then the first rule must also be taken infinitely often for o (i.e.,
o’s status must be waitForCS). We add the following declarations to the above
module to define the formula justAll that encodes this justice assumption:

ops waiting outside : Oid -> Prop [ctor] .

eq REST < O : Node | status : S > |= waiting(O) = (S == waitForCS) .

eq REST < O : Node | status : S > |= outside(O) = (S == outsideCS) .

op just : Oid -> Formula .

op justAll : -> Formula .

eq just(O) = (<> [] outside(O)) -> ([] <> waiting(O)) .

eq justAll = just(a) /\ just(b) /\ just(c) /\ just(d) .

We can check whether the justice fairness assumption justAll implies the
desired property:

Maude> (red modelCheck(init, justAll ->

(([] <> inCS(a)) /\ ([] <> inCS(b)) /\

([] <> inCS(c)) /\ ([] <> inCS(d)))) .)

result Bool : true �

Real-Time and Probabilistic Systems (Not Taught). Up to this point, the
models have been untimed. However, these days the performance of a system is
also an important metric, whose analysis requires modeling time. Furthermore,
fault-tolerant systems must detect message losses and node crashes, which is
impossible in untimed asynchronous distributed systems. Therefore, most larger
system these days are real-time systems, whose modeling and analysis in Maude
is supported by the Real-Time Maude tool [36,38]. The course textbook briefly
introduces how real-time systems can be modeled and analyzed in Maude, and
also mentions timed extensions of temporal logics.

Randomized simulations, such that those performed simulating playing black-
jack with each card drawn pseudo-randomly, do not provide performance esti-
mates with mathematical guarantees. I need more solid guarantees to quit my
day job and move to Las Vegas. My textbook therefore indicates how probabilis-
tic systems can be modeled in rewriting logic as probabilistic rewrite theories [2].
Such probabilistic models can then be subjected to statistical model checking
(SMC) using Maude-connected tools such as PVeStA [3] and MultiVesta [51],
which estimate the expected value of a path expression up to certain confidence
intervals. Although, in contrast to precise probabilistic model checking, SMC does
not give absolute guarantees, it is considered to be a scalable formal method,
which, since it is based on simulating single paths until the desired confidence
level has been reached, can be easily parallelized.

PVeStA analysis showed that if I start with $1000 and play 20 $100-rounds
of blackjack, then with 99% statistical confidence, I am expected to walk home

Teaching Formal Methods Using Rewriting Logic 83

with between $875 and $877, and that the expected probability that I can walk
out of the casino with $1200 or more is a promising 31%.

In contrast to the other chapters in the book, the book only gives a flavor
of these subjects, and does not give details about how to run Real-Time Maude
or PVeStA. I have sometimes taught this part to fourth-year students, but do
not currently teach it to second-year students.

Using Maude on Cloud Systems and the Use of Formal Methods at
Amazon (1 Lecture). To give students the impression that Maude can be
applied to analyze industrial designs, in the last lecture I give an overview of the
use of Maude (and PVeStA) to model and analyze both the correctness and per-
formance of cloud transaction systems such as Google’s Megastore (which runs,
e.g., Gmail and Google AppEngine), Apache Cassandra (developed at Facebook
and used by, e.g., Amadeus, CERN, Netflix, Twitter), and the academic P-Store
design, as well as our own extensions of these designs (see [6] for an overview).

The last lecture should summarize the course: What have you learnt? What
is it useful for? Instead of singing the praises of formal methods myself, I sum-
marize the course by quoting the experiences of engineers at Amazon Web Ser-
vices, who used formal methods while developing their Simple Storage System
and DynamoDB data store, which are key components of Amazon’s profitable
cloud computing business (which is much more profitable than Amazon’s retail
business). The engineers at Amazon used Lamport’s TLA+ formalism with its
model checker TLC. They report that formal methods have been a big success
at Amazon, and describe their experiences in the previously mentioned paper
“How Amazon Web Services Uses Formal Methods” [35] as follows:

– Formal methods found serious “corner case” bugs in the systems that were
not found with any other method used in industry.

– A formal specification is a valuable precise description of an algorithm, which,
furthermore, can be directly tested.

– Formal methods can be learnt by engineers in short time and give good return
on investment.

– Formal methods makes it easy to quickly explore design alternatives and
optimizations.

It is worth remarking that both the TLA+ efforts at Amazon and Maude as
taught in this course use model checking. There is no evidence that Amazon
formally verified their algorithms: model checking gave them enough confidence.

My textbook does not contain a chapter on the topics covered in this lecture.

6 Evaluation

The fact that I think that the course described above should be fun is irrelevant.
What do the students think? Unfortunately, I have not solicited their feedback.
Ideally, I should have asked: all students in the “Programming” program who
did not take the course why they did not take it; all students who signed up for

84 P. C. Ölveczky

the course but did not finish it why they did not finish it; and all students who
did finish it what they thought about the course.

Instead, at the end of each semester, the department sends an email to all
students, making them aware of the possibility of providing feedback to courses
signed up for. Most students typically do not bother to do this. Therefore,
although I am trying to summarize the students’ experiences the best I can,
this evaluation is unscientific and anecdotal.

In addition to the random collection of students who answer the call to
provide course feedback in the middle of the summer, there are many other
variables as well, such as the quality of the lecturer and the TA, time of lectures
(avoid Friday afternoons!), pandemics, and so on. Bonus tip: Giving good grades
to many students seems to improve student satisfaction.

The course has changed a lot since its embryonic first version was given in
2002, but has stabilized since the textbook was published in 2018. Until 2018,
it was taught to third-year and fourth-year students. In 2019 and 2020 it was
taken by second-year students.

6.1 Summary of Student Feedback

I have gathered anonymous student feedback, administered by the department,
from 2007. In general, only 10%–15% of the invited students submit responses,
and those include students who quit the course during the semester.

The following tables show the cumulated response to the all-important ques-
tions “How do you rate this course in general?”6 and “How do you rate the level
(difficulty) of the course?” Since 2019 was the first time the course was given at
the second-year level, I also show the results from 2019 in separate columns.

How do you rate this course in general?

2007–2019 2019

Exceptionally good 15 4

Very good 23 3

Good 8 0

OK (neither good nor bad) 6 1

Not that good 1 0

Not good 0 0

Difficulty/level of the course

2007–2019 2019

Too difficult 1 0

Somewhat difficult 38 4

OK/Average 38 4

Easy 0 0

Too easy 0 0

6 This general question did not appear in the evaluation form the first couple of years.

Teaching Formal Methods Using Rewriting Logic 85

An overwhelming majority (75–80%) of the student report that the workload
is “OK” (or average) for the number of credits (10) given.

Oddly enough, none of the 30 questions in the 2018 and 2019 evaluation
forms concerned the quality of the course textbook, so I cannot report on the
students’ impressions of my book.

6.2 Selected Student Comments

The evaluation form allows students to comment on the course in free-text. Below
I quote some student opinions about the course content from 2015 to 2019. What
students liked about the course:

– “Very interesting course where we learnt a lot. A unique course at the bachelor
level in informatics in Norway.”

– “Different and powerful method for system analysis. Creative textbook.”
– “Learn a different kind of programming language. Learn about algorithms,

and how to model them to check security vulnerabilities. After finishing the
course you have relevant knowledge that some of the world’s leading compa-
nies are looking for.”

– “Programming was fun.”
– “Introduction to a different programming paradigm.”
– “Interesting, but not too extensive, curriculum.”
– “Fun curriculum.”
– “Course content.”
– “IN2100 is the best course I have taken at the University of Oslo. [...] The

funniest lecturer in Norway.”
– “Showed the importance of the topic.”
– “Interesting topic.”
– “It allows to develop complex systems, and test safety and security of critical

systems as well.”
– “Strong foundations, applicable to real systems, useful for developing robust

systems.”
– “All in all I think this was a very fun course, clearly one of those I remember

the most from my bachelor. Maude essentially worked well, and even though
I don’t think that I will ever use it after the course, I have learnt a lot by
using it.”

– “I did not choose this course [...] but I loved every week and content.”
– “The assignments are really well balanced between theory and the entertain-

ing Maude programming parts.”

What the students liked less:

– “Language that is not used much or at all.”
– “Course might be difficult for many of us.”
– “Need more real world critical systems for analysis. [...] Lack of applicability

in industry.”

86 P. C. Ölveczky

Other complaints concern Full Maude and its “peculiarities” (lack of robust-
ness and good error messages) and that there are not too many resources about
Maude. From earlier years, I also remember complaints about Full Maude, and,
as always, a number of students do not understand why they need to learn a
programming language that is not widely used.

6.3 Other Issues

Temporal Logic. I was afraid that introducing temporal logic to second-year
students is recipe for a disaster, especially since only one lecture is devoted to
the topic (and one lecture is devoted to classes of requirements). I am very
surprised to observe that students seem to master temporal logic pretty well:
Their exam solutions show that they understand temporal logic formulas and
can judge whether such a formula holds in a system.

Industrial Impact. I have no idea whether the students who have taken the
course will ever use Maude or formal methods again. What I know is that two
former students and TAs in my course started a company based on a product
programmed in Maude. That company is still doing well after 15 years, and
sometimes hires my better master’s students.7 Another alumnus of the course
started a company on security analysis using Maude a few years ago; I believe
that the company still exists.

Popularity of the Course. I have discussed in Sect. 2 the difficulties of attracting
students to formal methods courses. In 2019, when the course for the first time
became a fourth-semester course, and one of three elective courses that semester,
around 20 students took the exam. This year, 48 students finished all three
mandatory assignments, and 42 students submitted solutions to the exam.

Level. As mentioned, until 2018, the course was a third/fourth-year course. The
move to a second-year course in 2019 was risky, also since my textbook had then
been published and I could therefore not simplify it much (if replacing simplifi-
cation orders and Turing machines with temporal logic counts as simplification).
My experiences so far are positive. The grades in 2019 were significantly better
than most years, although I think that the exam might have been slightly easier.
The students follow the course very well, and, if anything, seem more enthusias-
tic than their older precursors. I am so far very happy with my decision to move
the course down to the fourth semester.

6.4 Weaknesses

The course has a number of weaknesses. First and foremost, although I still teach
Full Maude for its interface that supports elegant modeling of object-oriented

7 Coincidentally, my son’s teacher recommended me to use their Maude product to
teach my son mathematics during the home schooling caused by the corona virus.

Teaching Formal Methods Using Rewriting Logic 87

systems, Full Maude is frustrating, with its lack of (informative) error messages
and its lack of robustness. This makes even small modeling tasks a frustrating
experience for the students. Most people working with objects in Maude therefore
do it all at the (core) Maude level, which requires cluttering the rewrite rules
with variables capturing the “remaining attributes” of the objects in the rewrite
rules, and which makes it much harder to use subclasses.

Another issue is that Maude, at least as taught in the course, relies on
explicit-state model checking. Even though the state space is significantly
reduced by the fact that the states are E-equivalence classes of terms modulo
the equational theory E (or, equivalently, the states are E-normal-forms), such
explicit-state model checking nevertheless encounters the state space explosion
problem pretty early. In this course, with its small- and medium-sized models
and modest initial states, this is not a significant problem. I actually want the
students to experience having to wait a few minutes for a (model checking)
execution to end, which I do not think they have experienced before.

Every formal methods researcher who reads this paper will miss a lot of
her favorite things in the course. Notable omissions include: SMT solving and
symbolic methods, higher-order logics, and tool-assisted theorem proving.

The course focuses on modeling and analyzing designs, and does not discuss
software/code analysis. However, as mentioned above, Maude and Grigore Rosu’s
rewriting-logic-based K framework have been used to provide the most complete
formal semantics of languages like C and Java, and have successfully been applied
to verify source and virtual machine code.

7 Concluding Remarks

Although the value of formal methods for mainstream software development is
increasingly realized in industry, trying to introduce formal methods to under-
graduate students is challenging. The main challenges, I believe, is that students
consider computer science education as job training instead of as a science, and
therefore prefer more “practical” courses (computer networks, security, machine
learning, databases, software engineering, . . .), and that our colleagues do not
see the need for something they think “requires huge effort to verify a tiny piece
of straight-forward code” and therefore relegate formal methods to the hidden
corners of course plans—far away from the mandatory courses—where they have
to compete with sexy-sounding topics for the few spare slots available. In the
face of these challenges, the best approach to make students take formal methods
courses is to make them “fun,” motivating, and industry-relevant.

In this paper, I have distilled some requirements for an undergraduate course
introducing formal methods in a fun and motivating way. Some of these are: use
few, but simple yet expressive and executable, formalisms; study relevant and
motivating problems, for example from other CS courses; focus on automatic
analysis; and demonstrate industrial relevance.

When I was an undergraduate student, I thought that functional program-
ming was the most “fun” style of programming. I therefore suggest rewriting

88 P. C. Ölveczky

logic, with its fairly mature simulation and model checking tool Maude, as a suit-
able formal method for an introductory formal methods course. What is unique
about Maude compared to other formalisms used for formal methods education
(such as different kinds of transition systems, (timed) automata, functional pro-
gramming, HOL/Coq/Isabelle, Z, B, Event-B, Hoare logic or other logics on
imperative programs, and so on8) is the combination of:

– (modeling in a) functional programming (style),
– object-based executable modeling,
– focus on distributed systems, and
– model checking.

Thanks to the intuitive and expressive formalism, even in my fourth-semester
undergraduate course, students can model and analyze a wide range of key dis-
tributed algorithms in computer science. I give an overview of that course and
its accompanying textbook [42] in this paper.

Exam results show that second-year students indeed can formally model and
analyze textbook cryptographic protocols, transport protocols, and distributed
mutual exclusion and leader election algorithms. What surprises me more is that
they also understand temporal logic formulas quite well. I have summarized
students’ feedback to the course, since I believe that the only way to attract
students to study formal methods, unless it is made mandatory, is the hard way:
by word-of-mouth from student to student. Preliminary results are promising:
42 students took the exam in 2020, which is almost twice as many as in 2019.

Acknowledgments. I am grateful to Antonio Cerone and Markus Roggenbach for
inviting me to give a talk at FMfun 2019, and for patiently waiting for this paper to
be finished.

References

1. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Teaching concurrency: theory
in practice. In: Gibbons, J., Oliveira, J.N. (eds.) TFM 2009. LNCS, vol. 5846, pp.
158–175. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04912-
5 11

2. Agha, G.A., Meseguer, J., Sen, K.: PMaude: rewrite-based specification language
for probabilistic object systems. Electr. Notes Theor. Comput. Sci. 153(2), 213–239
(2006)

3. AlTurki, M., Meseguer, J.: PVeStA: a parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) CALCO
2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22944-2 28

4. Anastasio, T.J.: Computer modeling in neuroscience: from imperative to declara-
tive programming: Maude modeling in neuroscience. In: Mart́ı-Oliet, N., Ölveczky,
P.C., Talcott, C. (eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp.
97–113. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23165-5 4

8 See https://fme-teaching.github.io/courses/ for a list of formal methods courses.

https://doi.org/10.1007/978-3-642-04912-5_11
https://doi.org/10.1007/978-3-642-04912-5_11
https://doi.org/10.1007/978-3-642-22944-2_28
https://doi.org/10.1007/978-3-642-22944-2_28
https://doi.org/10.1007/978-3-319-23165-5_4
https://fme-teaching.github.io/courses/

Teaching Formal Methods Using Rewriting Logic 89

5. Bentea, L., Ölveczky, P.C., Bentea, E.: Using probabilistic strategies to formalize
and compare α-synuclein aggregation and propagation under different scenarios.
In: Gupta, A., Henzinger, T.A. (eds.) CMSB 2013. LNCS, vol. 8130, pp. 92–105.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40708-6 8

6. Bobba, R., et al.: Survivability: design, formal modeling, and validation of cloud
storage systems using Maude. In: Assured Cloud Computing, chap. 2, pp. 10–48.
Wiley-IEEE Computer Society Press (2018)

7. Bogdănaş, D., Roşu, G.: K-Java: a complete semantics of Java. In: Proceedings of
POPL 2015. ACM (2015)

8. Broccia, G., Milazzo, P., Ölveczky, P.C.: Formal modeling and analysis of safety-
critical human multitasking. Innovations Syst. Softw. Eng. 15(3–4), 169–190 (2019)

9. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theoret. Comput. Sci. 360(1–3), 386–414 (2006)

10. Cerone, A., Roggenbach, M., Schlingloff, H., Schneider, G., Shaikh, S.: Teaching
formal methods for software engineering - ten principles. In: Proceedings of Fun
With Formal Methods (a CAV 2013 Workshop) (2013)

11. Cerone, A.: A cognitive framework based on rewriting logic for the analysis of inter-
active systems. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol. 9763, pp.
287–303. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41591-8 20

12. Clarke, E., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(1999)

13. Clavel, M., et al.: All About Maude - A High-Performance Logical Framework.
LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
71999-1

14. Clavel, M., et al.: Maude Manual (Version 3.0) (2020). http://maude.cs.illinois.edu
15. Curzon, P., McOwan, P.W.: Teaching formal methods using magic tricks (2013).

Paper presented at the Workshop “Fun with formal methods” at CAV 2013
16. Durán, F., et al.: Programming and symbolic computation in Maude. J. Log.

Algebr. Meth. Program. 110, 100497 (2020)
17. Ellison, C., Rosu, G.: An executable formal semantics of C with applications. In:

Proceedings of POPL 2012. ACM (2012)
18. Grov, J., Ölveczky, P.C.: Formal modeling and analysis of Google’s Megastore

in Real-Time Maude. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification,
Algebra, and Software. LNCS, vol. 8373, pp. 494–519. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54624-2 25

19. Grov, J., Ölveczky, P.C.: Increasing consistency in multi-site data stores:
Megastore-CGC and its formal analysis. In: Giannakopoulou, D., Salaün, G. (eds.)
SEFM 2014. LNCS, vol. 8702, pp. 159–174. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10431-7 12

20. Kasampalis, T., et al.: IELE: a rigorously designed language and tool ecosystem
for the blockchain. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019.
LNCS, vol. 11800, pp. 593–610. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30942-8 35

21. Katelman, M., Meseguer, J., Hou, J.: Redesign of the LMST wireless sensor pro-
tocol through formal modeling and statistical model checking. In: Barthe, G., de
Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 150–169. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-68863-1 10

22. Krings, S., Körner, P.: Prototyping games using formal methods. In: Proceedings
of FMfun 2019. CCIS, Springer, pp. 124–142 (2020)

23. Lien, E., Ölveczky, P.C.: Formal modeling and analysis of an IETF multicast pro-
tocol. In: Proceedings of SEFM 2009. IEEE Computer Society (2009)

https://doi.org/10.1007/978-3-642-40708-6_8
https://doi.org/10.1007/978-3-319-41591-8_20
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
http://maude.cs.illinois.edu
https://doi.org/10.1007/978-3-642-54624-2_25
https://doi.org/10.1007/978-3-319-10431-7_12
https://doi.org/10.1007/978-3-319-10431-7_12
https://doi.org/10.1007/978-3-030-30942-8_35
https://doi.org/10.1007/978-3-030-30942-8_35
https://doi.org/10.1007/978-3-540-68863-1_10

90 P. C. Ölveczky

24. Liu, S., Takahashi, K., Hayashi, T., Nakayama, T.: Teaching formal methods in
the context of software engineering. ACM SIGCSE Bull. 41(2), 17–23 (2009)

25. Liu, S., Ganhotra, J., Rahman, M.R., Nguyen, S., Gupta, I., Meseguer, J.: Quanti-
tative analysis of consistency in NoSQL key-value stores. LITES 4(1), 03:1–03:26
(2017)

26. Liu, S., Sandur, A., Meseguer, J., Ölveczky, P.C., Wang, Q.: Generating correct-by-
construction distributed implementations from formal Maude designs. In: Lee, R.,
Jha, S., Mavridou, A., Giannakopoulou, D. (eds.) NFM 2020. LNCS, vol. 12229,
pp. 22–40. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55754-6 2

27. Lutz, R.R.: Analyzing software requirements errors in safety-critical embedded
systems. In: IEEE International Symposium on Requirements Engineering, San
Diego, CA, pp. 126–133, January 1993

28. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theor.
Comput. Sci. 96, 73–155 (1992)

29. Meseguer, J.: Membership algebra as a logical framework for equational specifica-
tion. In: Presicce, F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer,
Heidelberg (1998). https://doi.org/10.1007/3-540-64299-4 26

30. Meseguer, J., Rosu, G.: The rewriting logic semantics project. Theor. Comput. Sci.
373(3), 213–237 (2007)

31. Meseguer, J.: Twenty years of rewriting logic. J. Log. Algebraic Methods Program
81(7–8), 721–781 (2012)

32. Meseguer, J., Roşu, G.: The rewriting logic semantics project: a progress report.
Inf. Comput. 231, 38–69 (2013)

33. Meseguer, J., Sasse, R., Wang, H.J., Wang, Y.: A systematic approach to uncover
security flaws in GUI logic. In: 2007 IEEE Symposium on Security and Privacy
(S&P 2007). IEEE Computer Society (2007)

34. Moller, F., O’Reilly, L., Powell, S.: Teaching them early: formal methods in school.
In: Proceedings of FMfun 2019. CCIS, Springer, pp. 173–190 (2020)

35. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How Amazon Web Services uses formal methods. Commun. ACM 58(4), 66–73
(2015)

36. Ölveczky, P.C.: Real-Time Maude and its applications. In: Escobar, S. (ed.) WRLA
2014. LNCS, vol. 8663, pp. 42–79. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-12904-4 3

37. Ölveczky, P.C., Meseguer, J.: Specification of real-time and hybrid systems in
rewriting logic. Theor. Comput. Sci. 285, 359–405 (2002)

38. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude. High.
Order Symb. Comput. 20(1–2), 161–196 (2007)

39. Ölveczky, P.C., Meseguer, J., Talcott, C.L.: Specification and analysis of the
AER/NCA active network protocol suite in Real-Time Maude. Formal Methods
Syst. Des. 29(3), 253–293 (2006)

40. Ölveczky, P.C., Thorvaldsen, S.: Formal modeling, performance estimation, and
model checking of wireless sensor network algorithms in Real-Time Maude. Theor.
Comput. Sci. 410(2–3), 254–280 (2009)

41. Ölveczky, P.C.: Design and validation of cloud storage systems using formal meth-
ods. In: Mousavi, M.R., Sgall, J. (eds.) TTCS 2017. LNCS, vol. 10608, pp. 3–8.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68953-1 1

42. Ölveczky, P.C.: Designing Reliable Distributed Systems: A Formal Methods App-
roach Based on Executable Modeling in Maude. Undergraduate Topics in Com-
puter Science. Springer, London (2017). https://doi.org/10.1007/978-1-4471-6687-
0

https://doi.org/10.1007/978-3-030-55754-6_2
https://doi.org/10.1007/3-540-64299-4_26
https://doi.org/10.1007/978-3-319-12904-4_3
https://doi.org/10.1007/978-3-319-12904-4_3
https://doi.org/10.1007/978-3-319-68953-1_1
https://doi.org/10.1007/978-1-4471-6687-0
https://doi.org/10.1007/978-1-4471-6687-0

Teaching Formal Methods Using Rewriting Logic 91

43. Park, D., Zhang, Y., Saxena, M., Daian, P., Roşu, G.: A formal verification tool for
Ethereum VM bytecode. In: Proceedings of ESEC/FSE 2018, pp. 912–915. ACM
(2018)

44. Rocha, C., Cadavid, H., Muñoz, C., Siminiceanu, R.: A formal interactive verifi-
cation environment for the Plan Execution Interchange Language. In: Derrick, J.,
Gnesi, S., Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 343–357.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30729-4 24

45. Rocha, C., Meseguer, J.: Proving safety properties of rewrite theories. In: Corra-
dini, A., Klin, B., Ĉırstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 314–328.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22944-2 22

46. Roşu, G.: Matching logic. Logical Methods Comput. Sci. 13(4), 1–61 (2017)
47. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. J. Logic

Algebraic Program. 79(6), 397–434 (2010)
48. Rushby, J.: Mechanized formal methods: progress and prospects. In: Chandru, V.,

Vinay, V. (eds.) FSTTCS 1996. LNCS, vol. 1180, pp. 43–51. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-62034-6 36

49. Rushby, J.M.: New challenges in certification for aircraft software. In: Proceedings
of EMSOFT 2011. ACM (2011)

50. Schlingloff, H.: Teaching model checking via games and puzzles. In: Proceedings of
FMfun 2019. CCIS, Springer, pp. 143–158 (2020)

51. Sebastio, S., Vandin, A.: Multivesta: statistical model checking for discrete event
simulators. In: ValueTools, pp. 310–315. ICST/ACM (2013)

52. Skeirik, S., Stefanescu, A., Meseguer, J.: A constructor-based reachability logic for
rewrite theories. In: Fioravanti, F., Gallagher, J.P. (eds.) LOPSTR 2017. LNCS,
vol. 10855, pp. 201–217. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-94460-9 12

53. Spichkova, M., Zamansky, A.: Teaching of formal methods for software engineering.
In: Proceedings of ENASE 2016. SciTePress (2016)

54. Talcott, C.L.: The Pathway Logic formal modeling system: diverse views of a formal
representation of signal transduction. In: Proceedings of IEEE International Con-
ference on Bioinformatics and Biomedicine, BIBM 2016. IEEE Computer Society
(2016)

55. Wing, J.M.: Weaving formal methods into the undergraduate computer science
curriculum (extended abstract). In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816,
pp. 2–7. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45499-3 2

https://doi.org/10.1007/978-3-642-30729-4_24
https://doi.org/10.1007/978-3-642-22944-2_22
https://doi.org/10.1007/3-540-62034-6_36
https://doi.org/10.1007/978-3-319-94460-9_12
https://doi.org/10.1007/978-3-319-94460-9_12
https://doi.org/10.1007/3-540-45499-3_2

Fun with Formal Methods for Better
Education

Nikolay V. Shilov(B) , Evgeniy Muravev, and Svetlana Shilova

Innoplolis University, 1, Universitetskaya Str., Innopolis 420500, Russia
shiloviis@mail.ru

Abstract. Is there a need to popularize Formal Methods in Software
Engineering? Maybe industrial demand in Formal Methods is the best
way to explain their utility and importance? – We try to argue edu-
cational and emotional role of popularization for a better comprehen-
sion and a positive attitude to Formal Methods and discuss several
Math Olympiad problems that can be solved using Formal Methods
(while, unfortunately, Mathematical education suffers of lack of Theo-
retical Computer science curricular) .

Keywords: Formal Methods · Popularization · Puzzles ·
Gamification · Education · Mathematical Olympiad and contests ·
Ontological argument · Fibonacci words · Operational, denotational
and axiomatic semantics · Esoteric languages · Recursion elimination ·
Algorithm transformation · Partial and total correctness

1 Introduction

1.1 A Semiannual Anniversary

Fifty two years have passed since Robert Floyd had published a paper Assigning
Meaning to Programs, a pioneering research on Formal Methods [6], fifty – since
C.A.R. Hoare published a paper An axiomatic basis for computer programming
[10], the first paper on axiomatic of program correctness. During these years
people frequently questioned the efficiency, the utility, the industrial strength,
the educational value, the understandability of Formal Methods (FM).

For example, in 2010 David Parnas published a very polemical article Really
Rethinking “Formal Methods” [20]; in particular, he wrote in the article that
there are much more FM academic experts than industrial developers using FM,
and analyzed the reasons why FM have not became a common practice in Soft-
ware Engineering.

We believe that this sad picture is not true. Indeed, ACM Turing Prize in
2007 was awarded to Edmund M. Clarke, E. Allen Emerson and Joseph Sifakis
for their role in developing Model-Checking into a highly effective verification
technology that is widely adopted in the hardware and software industries [29].
Later in years 2007-12 model checking was successfully used for verification of
on-board software of Mars-rover Curiosity [11].
c© Springer Nature Switzerland AG 2021
A. Cerone and M. Roggenbach (Eds.): FMFun 2019, CCIS 1301, pp. 92–105, 2021.
https://doi.org/10.1007/978-3-030-71374-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71374-4_4&domain=pdf
http://orcid.org/0000-0001-7515-9647
https://doi.org/10.1007/978-3-030-71374-4_4

Fun with Formal Methods for Better Education 93

We also think that academic theory and/or industrial practice aren’t the
only dimensions for Formal Methods, there exists (at least) one more aspect—
education. In the next paragraph we explain how we understand education and
what role FM may/should play in Software Engineering education.

There exists an opinion (sometimes attributed to Karl Weierstrass) that the
education should bring up minds, not just trains skills. Also we would like to
quote an aphorism (commonly attributed to Mikhailo Lomonosov) that mathe-
matics should be learned just because it disciplines minds. By citing these maxims
we wouldn’t like to claim that the purpose of education is bringing up minds, or
that the utility of Mathematics is restricted by mind discipline. We just would
like to emphasize a value of Formal Methods for Software Engineering education:
to bring up and discipline minds of the future engineers and developers.

1.2 Fun for Better Education

A part of the reason why the Formal Methods moves slowly from the academy
to industry is FM education, a “transmission”: some students consider FM too
poor (inefficient), other students consider FM too pure. We need to improve
transmission, i.e. to improve FM education.

Ascending approach (from simple and easy to the most complex and com-
plicated) is a common practice in education. Nobody starts teaching arithmetic
with Peano axioms and formal derivation of formal statements like (for instance)
addition associativity ∀x.∀y.∀z : ((x + y) + z) = (x + (y + z)); instead the
education/teaching starts with elementary exercises/problems like the follow-
ing: Dad gave Peter 5 apples and then Peter passes 2 apples to a sister; how
many apples Peter has after that?

If educator would like to engage students with a topic then fun and amuse-
ment may be very important and helpful ingredients (maybe, a lubricating oil
for the transmission). Even a simple joke can help! (For example, if you think
that the answer for the above problem about apples is 3 then you are not right,
because the correct answer depends on initial number of apples that Peter had
before his Dad gave him these 5 apples;-)

Same should be true for FM education: it should start with simple and easy
examples/problems, exploit jokes, fun and amusement for engagement and pop-
ularization. Many FM educators use ascending approach altogether with fun
and amusement in their educational practice. – Just for example, a very con-
cise, sound and comprehensive textbook [12] on model checking with SPIN is
illustrated by many puzzles solved by model checking. (Of course, a renowned
Cabbage, Goat and Wolf is one of the puzzles used in this book.) But we question
is: how common is this practice to engage students with FM via fun, puzzles,
games and entertainment?

1.3 FWFM Workshop Series

The primary purpose of the workshop series on Fun With Formal Methods
(FWFM) was (and still is) to popularize and disseminate the best practice of

94 N. V. Shilov et al.

popularization of Formal Methods. Not an exhaustive list of topics of FWFM
follows:

– fascinating examples of use of FM in SE;
– simple but interesting educational examples of FM;
– FM for puzzles, games and entertainment;
– FM and programming contests and Olympiads;
– FM elsewhere (outside software and hardware);
– anything and everything related to popularization of FM.

History of the workshop is depicted in brief in the Fig. 1 and explained below in
the next paragraphs.

Fig. 1. History of the FWFM workshop series.

The workshops from FWFM series ware organized twice in the years 2013 [30]
and 2014 [31] but (for fun!) the same day both times – July 13 – and both times—
in affiliation with the International Conference on Computer Aided Verification
(CAV). Both workshops were successful because of number of submissions, good
quality of selected papers and a high attendance.

Then there was non-successful attempt to organize the third workshop in the
year 2018 [32]. The attempt had the same affiliation (CAV), but was scheduled
for another day then two previous workshops — July 19 instead of July 13.
This shift was not fun, it has led to few submissions and cancellation of the
workshop. – Of course, we are kidding about the role of the day and its influence
on the number of submissions; maybe the main reason of the deficit of interest
to the FWFM-2018 was publication policy of the first two workshops: no formal
proceedings of the FWFM-2013 and FWFM-2014 have been published.

After an epic failure in 2018, we attempted to revive FWFM series in year
2019 [33]. Because of this intention we had decided to give up fixed affiliation
(CAV), fixed day (July 13), and presentation “in person” (offline) policy. (By
the way, this online move has been implemented months before the outbreak of
COVID-19 [34] and hadn’t been motivated by the epidemic situation. Maybe,
it (the move) had much more in common with climate change concern recently
stressed in [28].) In the year 2019 the workshop was organized as a satellite event

Fun with Formal Methods for Better Education 95

of another conference TOOLS 50+1: Technology of Object-Oriented Languages
and Systems, distance (online) presentations (via Skype) were allowed, and live
streaming video of the workshop was organized and recorded [35]. – Maybe it
is too early to say that the workshop was successful, but it is right time to say
that we had the workshop and the FWFM series is alive!

The problem that FWFM-series needs to solve is a proper publication of the
workshop proceedings. If not to solve but to compensate a publication deficit,we
would like to present in brief in the next section the following 5 talks from
FWFM-2013 and FWFM-2014:

– The Ontological Argument in PVS: What Does This Really Prove? (John
Rushby, FWFM-2013);

– Tackling Fibonacci words puzzles by finite countermodels (Alexei Lisitsa,
FWFM-2013);

– Teaching Formal Methods using Magic Tricks (Paul Curzon and Peter Mc-
Owan, FWFM-2013);

– Chekofv: Crowd-sourced Formal Verification (Heather Logas et al., FWFM-
2014);

– Using Esoteric Language for Teaching Formal Semantics (Nikolay Shilov,
FWFM-2014).

1.4 Structure of the Paper

In the next Sect. 2 we give a brief overview of selected talks from FWFM-
2013 and FWFM-2014. Then in the Sect. 3 we just sketch the programme of
FWFM-2019 but present (some) details solutions (with aid of Formal Methods)
of two problems from the 60th International Mathematical Olympiad IMO-2019.
Finally, we conclude in the last Sect. 4 by summing-up our arguments for pop-
ularization of Formal Methods and discussing challenges of further integration
of Formal Methods and Artificial Intelligence – Computer Science in general –
with Mathematics.

2 FWFM13-14 in Brief: From Ontological Argument
to Esoteric Languages

2.1 The Ontological Argument in PVS

An ontological argument is a tradition to prove that God existence using ontol-
ogy. One of known ontological arguments was formulated by Anselm of Can-
terbury in 1078 in work Proslogion. Anselm defined God as “that than which
nothing greater can be thought”. He suggested that, if the greatest possible exists
in the mind, it must also exists in reality and proved it by contradiction: if the
greatest possible does exist just in the mind, then an even greater must exists in
the mind—one which is greater both in the mind and in reality; therefore, this
the greatest possible being must do exist in reality.

96 N. V. Shilov et al.

Please refer [21] for a formalization and verification of the Ontological Argu-
ment in PVS [36]. Although the formalization is consistent, the formal veri-
fication doesn’t compel the Ontological Argument. The educational value of
the formalization and verification of the Ontological Argument with PVS is an
opportunity to use it as a case study in graduate programs at Philosophy and
Humanities Departments for teaching automated theorem proving.

2.2 Countermodels for Fibonacci Words

An infinite sequence of Fibonacci words w0, w1, . . . is defined [17] very similar as
the infamous sequence of Fibonacci numbers: let a and b be two distinguishable
symbols; then w0 = b, w1 = a, and wi+2 = wiwi+1 for all i ≥ 0. It is easy to
see that the sequence of Fibonacci words stars as b; a; ba; aba; baaba; ababaaba;
baabaababaaba.

One can observe that none of the first 7 Fibonacci words listed above contains
two b’s or three a’s in a row (i.e. no sub-words bb or aaa). This observation leads
to a hypothesis that all Fibonacci words contain neither two b’s nor three a’s in a
row. But then the next question arises: how to prove (ore refute) the hypothesis?

A particular way to prove the hypothesis presented in [17] comprises two
steps:

1. first-order sound axiomatization of algebraic systems (first-order models)
where all elements of the domain may be generated using Fibonacci words

2. and then automatic generation of finite countermodels that meet the axioma-
tization but refute that some element may be generated using two b’s or three
a’s in a row.

Surprisingly, the countermodels for each of these properties are quite small,—just
5 elements to refute a possibility of two b’s and 11 element to refute a possibility
three a’s in a row [17].

The educational value of the case-study is popularization of non-standard
models for proving properties of the standard (“default” or assumed) models
and tools like finite model generators for first-order theories.

2.3 Learning Loop Invariant via Card Magic

After great publications by Martin Gardner like Mathematics, Magic, and Mys-
tery (1956) or Mathematical Puzzles (1961), it is hard to engage magic tricks
with any other discipline than Mathematics. But still many magic tricks are
much more dynamic and algorithmic in nature than static and Mathematical.
Hence many magic tricks can/may be used to teach Computer Science and For-
mal Methods.

Some examples of engagement of card magic with CS and FM can be found in
paper [1] that summarizes some experience accumulated in the science-popular
project cs4fn (Computer Science for Fun) [37]. Below we present in brief one
example of a card magic (borrowed from [1]) and discuss educational value of
the example.

Fun with Formal Methods for Better Education 97

1. Take 10 cards consisting of a series of 5 cards of a suit followed by the same
5 cards of a different suit placed in the same order.

2. Fan the cards to show that you have a mix of cards and then turn the pack
over, face down and ask a volunteer to touch the back of any card. Cut the
pack at this point, putting the top half to the bottom and fan the cards again.
Repeat this several times until the audience becomes happy that the cards
are sufficiently mixed.

3. Count out 5 cards into a pile on the table, reversing their order as you do
so. Place the remaining 5 cards straight down to make a second pile (non-
reversed).

4. Give a volunteer 4 coins and ask to put each down on one of the two piles (i.e.
the volunteer may spread coins between the two piles arbitrary). Once coins
are placed you now do the same number of moves on a pile as the number
of coins on the pile. (A move consists just of moving a card from the top to
the bottom of the pile.) Then take the resulting top card of each pile and
place them together (face down) at the side together with one coin (from 4
that you use). Repeat the same with the remaining 3 (instead of 4) coins and
remaining two piles (each with 4 instead of 5 cards), then – with 2 coins and
piles with 3 cards each, and finally – with the last coin and piles with 2 cards
each.

5. Turn over all pairs of cards and demonstrate to the audience that cards in
pairs match each other!

The correctness of the magic trick can be explained in terms of partial cor-
rectness of the non-deterministic algorithm presented above using pre-conditions,
invariants and post-conditions:

– Precondition of the first non-deterministic loop on step 2 is formulated in step
1: the first 5 cards of one suit are followed by the same 5 cards of another suit
in the same order.

– The invariant and the post-condition of the first loop is very similar to the
pre-condition: the first 5 cards are followed by the same 5 cards in the same
order.

– Pre-condition for the loop on steps 4 results from post-condition for step 2
after implementing step 3: the order of 5 cards in the first pile is reverse of
the order of the 5 cards in the second pile.

– The invariant of the second loop is closely related to the pre-condition: the
order of cards in the first pile is reverse of the order of the cards in the second
pile and cards in pairs that are put aside match each other.

– The post-condition is what we want to demonstrate to the audience: cards in
pairs match each other.

So, Formal Method’s classics is a magic!

2.4 Gamification and Crowd-Sourcing Loop Invariants

Chekofv [18,19] is a system for crowd-sourced formal verification. It starts with
an attempt to verify a given C program using the source code analysis platform

98 N. V. Shilov et al.

Frama-C. Every time the analysis needs a loop invariant (like in the previous sub-
section) Chekofv translates the problem into a puzzle game Xylem and presents
it to players.

Xylem [19] is an iPad game where players make mathematical observations
about synthetic plants, which are turned into predicates used for the construc-
tion of loop invariants. The game is a logical induction puzzle game where the
player plays a botanist exploring and discovering new forms of plant life on a
mysterious island. The player observes patterns in the way a plant grows, and
then constructs mathematical equations to express the observations. These equa-
tions are considered as candidates for loop invariants and must be verified by
any proof-assistance (PVS in particular).

2.5 Formal Semantics Though an Esoteric Language

Teaching different types of formal semantics (at undergraduate level especially)
is not a trivial task. A gentleman’s set should include some variants of operation-
al, denotational and axiomatic semantics. A common approach to teaching the
topics consists in use of toy programming languages. Instead, [23,24] presented
an approach with use of an esoteric language [38].

Every language (artificial or natural) may be characterized by its syntax,
semantics, and pragmatics. For example, in one of the 56 Sherlock Holmes short
stories, The Adventure of the Dancing Men, written by Arthur Conan Doyle,
Mr. Hilton Cubitt gives Sherlock Holmes a piece of paper with this mysterious
sequence of stick figures of dancing men that had driven driving his young wife
Elsie to distraction. Holmes realizes that it is a substitution cipher, cracks the
code by frequency analysis and realizes that the syntax was just as in English
with dancing men instead of letters, the semantics was provided by transforma-
tion to English, pragmatics (usage) of the language was to serve as a cryptogra-
phy for Chicago gangsters.

Toy Esoteric Language (TEL) is not a programming language at all since it
is not design for data processing. Its pragmatics is to introduce and explain what
different types of formal semantics are, namely: what are operational, denota-
tional, axiomatic, second-order and game semantics and how they may relate
to each other. TEL syntax is easy to explain: correct words look like bodies of
structured Pascal programs (with integer variables exclusively). TEL informal
semantics can be defined as follows. Since every correct TEL word looks like an
iterative program, one can draw a flowchart of this program. Every flowchart
is a graph with assignments and conditions as nodes and control passing as
edges. Let us count length of a path between nodes in a flowchart by number of
assignments in this path (i.e. we do not count conditions at all). Then seman-
tics of a correct TEL “program” is the shortest length of a path through the
corresponding flowchart (i.e. from start to finish).

Fun with Formal Methods for Better Education 99

3 How FM and Math Can Help and Boost Each-Other?

3.1 FWFM-2019 in Brief

The programme of FWFM-2019 [33,35] comprises the following 5 talks:

1. Do we need Fun with Formal Methods? (Nikolay Shilov and Evgeiy Muravev);
2. Cables, Trains and Types (Simon Gay);
3. On programming content of Math contests (Nikolay Shilov and Svetlana

Shilova);
4. Towards a Broader Acceptance of Formal Varication Tools (Mansur Khazeev

et al.);
5. Fun with Formal Methods: teaching unambiguous English to avoid confusions

(Maya Stoyanova).

The first talk presented a tool to play with the axiomatic semantics for the
esoteric language TEL from papers [23,24].

The second talk presented a dependent type system for cables and toy rail-
road, a background paper is available [8] and is under publication right now.

The third talk addressed relations between Mathematics and Theory of Pro-
gramming, its content has not been published anywhere else and because of it
is discussed in the following subsections of this paper.

The forth talk presented results of in-class study how a small group of master
students in Software Engineering accept formal verification tools in general and
AutoProof system [7] in particular, a background paper has been published in
arXiv [13].

The last talk was English-language experience report how to teach future
software developers and engineers to speak and write in unambiguous way (espe-
cially when it concerns technical writing and specifications in English).

The workshop FWFM-2019 was concluded by a discussion moderated by
Hamna Aslam. The topics of the discussion included (but were not limited by)
the following questions:

– Who should not be teaching Math & FM?
– Which Math & FM book(s) are not recommended to be proposed as a text-

book for freshmen?
– How to promote Math & FM group learning among students?
– How to teach Math & FM to students in their language?

(The purpose of the “negative” questions wasn’t to exclude someone or some
book as but to learn student’s opinions about a “good” and a “bad” education
practice.)

3.2 On Relations Between Program Theory and Mathematics

A discourse about historical, cultural, educational relations and connections be-
tween Mathematics and Science and Art of Programming (exactly Programming
not Computer Science) is quite old: it originated in early days of computing

100 N. V. Shilov et al.

machinery more than 70 years ago (since, at least, since ENIAC was completed
and first put to work in 1945). Many programming pioneers—e.g. Edsger W.
Dijkstra, Andrey P. Ershov, Donald E. Knuth—had published their reflections
on this topic [2–4,14]. (Unfortunately, we are not aware about reflections of
mathematicians on this topic while we know and highly recommend a book of
outstanding Russian mathematician Vladimir A. Uspensky [27] where he had
promoted and advocated a view on Mathematics as a humanitarian science.)

In the talk On programming content of Math contests we drew attention to
the importance of introduction of programming art and science [5,9,15,16] to
mathematical education not just because of industrial demand and/or employ-
ment opportunities for graduates but because of a need of programming culture
for solving mathematical problems. We would like to advocate this claim by
analysis of the problem set [40] of the most recent International Mathematical
Olympiad [39] (which was the 60th in the series).

The Olympiad set [40] comprises 6 problems from which 1.5 (exactly one
and a half) are good examples to demonstrate programming art and science.
Namely, we speak about the following problems from the set.

[Problem IMO-19-1]. Let Z be the set of integers. Determine all functions
f : Z → Z such that, for all integers a and b, f(2a) + 2f(b) = f (f(a + b)).

[Problem IMO-19-5]. The Bank of Bath issues coins with an H on one side
and a T on the other. Harry has n of these coins arranged in a line from left to
right. He repeatedly performs the following operation: if there are exactly k >
0 coins showing H, then he turns over the kth coin from the left; otherwise,
all coins show T and he stops. For example, if n = 3 the process starting with
the configuration THT would be THT → HHT → HTT → TTT , which
stops after three operations.

a) Show that, for each initial configuration, Harry stops after a finite number
of operations.

b) For each initial configuration C, let L(C) be the number of operations
before Harry stops. For example, L(THT) = 3 and L(TTT) = 0. Deter-
mine the average value of L(C) over all 2n possible initial configurations.

The problem IMO-19-1 can serve as an example of recursion elimination
[15,22] using reduction of a monadic recursion to a tail recursion, we discuss
this programming technique and its application to the problem IMO-19-1 in the
next subsection. (A pure mathematical solution can be found at [40] in the orig-
inal Problems (with solutions) provided by the 60th International Mathematical
Olympiad, and watched at [41] among other Math videos by Presh Talwalkar.)

The problem IMO-19-5(a) is a “typical” problem on algorithm termination
to be solved by Floyd method [9,25] (but this time some preliminary equivalent
algorithm transformations are required), we present a programming solution of
the problem in the subsection after the next one.

Fun with Formal Methods for Better Education 101

3.3 Problem IMO-19-1 via Recursion Elimination

A classic example monadic recursion elimination by reduction to the tail recur-
sion is a so-called John McCarthy function M91 : N → N [15,22] that is defined
as follows below:

M91(n) = if n > 100 then (n − 10) else M91 (M91(n + 11)).

It turns out that M91(n) = if n > 101 then (n − 10) else 91. A key
idea in recursion elimination is move from a monadic function M91 : N → N

to a binary function M2 : N × N → N such that M2(n, k) = (M91)k(n) for all
n, k ∈ N (where (M91)k(n) is k-time application of the function, i.e. (M91)k(n) =

k
︷ ︸︸ ︷

M91 (. . .M91(n) . . .)); of course, M2(n, 0) = (M91)0(n) = n for every n ∈ N.
Let us apply the idea presented in the previous paragraph to the problem 1.

Since f(2a) + 2f(b) = f (f(a + b)) is true for all a, b ∈ Z, then f(0) + 2f(b) =
f(f(b)) for all b ∈ Z. Let us define a binary function F : Z × N → Z such that
F (b, k) = fk(b) and F (b, 0) = f0(b) = b for all a ∈ Z and k ∈ N. Then for all
a ∈ Z and k ∈ N

F (b, (k + 1)) = 2F (b, k) + f(0) = 2 (2F (b, (k − 1)) + f(0)) + f(0) = . . .

= 2(k+1)F (b, 0) + (2(k+1) − 1)f(0) = 2(k+1)b + (2(k+1) − 1)f(0),

and, hence, f(b) = f1(b) = F (b, 1) = 2b+ f(0) and thus the problem 1 is solved!

3.4 Problem IMO-19-5(a) via Proving Algorithm Termination

Let us start with the following formalization (in pseudo-code) of the algorithm
specified in the problem statement 5:

var W: a word in the alphabet {T,H};
var k: a natural number;
while H exists in W
do k:= number of H in W;

if W[k] = T then W[k]:= H else W[k]:= T
od

Because of the loop condition while H exists in W, the only thing we need
to prove is the loop termination.

For this purpose, let us transform the above algorithm as follows:

var W: a word in the alphabet {T,H};
var k, i: natural numbers;
while H exists in W
do k:= number of H instances in W;

i:= k;
while W[i] = T

102 N. V. Shilov et al.

do W[i]:= H; i:= i+1 od;
while W[i] = H

do W[i]:= T; i:= i-1 od;
od

This transformed algorithm is equivalent to the original one because it first
serializes conversions of T to H and then serializes conversions of H to T. Remark
that the conjunction of the following three clauses

– the number of H in W is i;
– k ≤ i ≤ the index of the rightmost instance of H in W;
– W[k..(i-1)] consists of H only (i.e. hasn’t any instance of T)

forms an invariant [9] of each of both internal loops (i.e. if the conjunction is
true before any exercise of a loop body then it remains true after the exercise).
It implies that for each legal iteration of the external loop (i.e. when W has any
instance of H)

the number of instances of H in W
before the loop body exercise
(that is the value of k)

is positive and greater than
the number of instances of H in W

after the loop body exercise
(that is the final value of i);

in other words, the number of instances of H in W decreases on each legal iteration
of the external loop. Hence, the number of instances of H in W is the loop variance
and (according to Floyd method of proving termination [9]) the transformed
algorithm as well as the original one always terminates.

4 Conclusion: What Else and Next?

Fun, jokes, puzzles, games and entertainment in teaching is not the unique ingre-
dient needed to improve Formal Method education (more general — Computer
Science and Software Engineering education). All these should be used to engage
(undergraduate) students with learning/study/comprehension/mastering For-
mal Methods. We believe that experience of individual educators and expertise of
research groups in the field of Formal Method popularization deserves a positive
attitude from Computer Science and Software Engineering academic community
and industry.

Another opportunity to engage students is a competitive spirit that is so
appropriate to young people (in particular — to students of CS and SE depart-
ments). International competitions between FM tools (e.g. automated theorem
provers and satisfiability solvers) are popular, useful and valuable from industrial
and research perspectives, but not from undergraduate education perspective.
Unfortunately, competitions especially designed for (undergraduate) students

Fun with Formal Methods for Better Education 103

(like Collegiate Programming Contest [42]) are still not involved into education
process in general and in FM education in particular. We hope that competitions
of this kind may be used better for engaging students with Theory of Computer
Science and Formal Methods in Software Engineering [26].

We would like to conclude by drawing attention to a so-called IMO Grad
Challenge [43]:

The International Mathematical Olympiad (IMO) is perhaps the most cel-
ebrated mental competition in the world and as such is among the ultimate
grand challenges for Artificial Intelligence (AI).
The challenge: build an AI that can win a gold medal in the competition .
To remove ambiguity about the scoring rules, we propose the formal-to-
formal (F2F) variant of the IMO: the AI receives a formal representation
of the problem (in the Lean Theorem Prover), and is required to emit
a formal (i.e. machine-checkable) proof. We are working on a proposal
for encoding IMO problems in Lean and will seek broad consensus on the
protocol.
. . .
Challenge. The grand challenge is to develop an AI that earns enough
points in the F2F version of the IMO (described above) that, if it were a
human competitor, it would have earned a gold medal.

So, it is a high time for mathematicians not only to learn the art and the
science of programming, but technologies and tools of the Artificial Intelligence!

References

1. Curzon, P., McOwan, P.: Teaching formal methods using magic tricks. In: Con-
tributed talk at the CAV Workshop Fun With Formal Methods, St.Petersburg,
Russia, 13 July 2013. http://www.chi-med.ac.uk/publicdocs/WP122.pdf. Accessed
20 Jan 2020

2. Dijkstra, E.W.: On a cultural gap. Math. Intell. 8(1), 48–52 (1986). https://doi.
org/10.1007/BF03023921

3. Ershov, A.P.: Aesthetics and the human factor in programming. Commun. ACM
15(7), 501–505 (1972)

4. Ershov, A.P.: Programming as the second literacy (1980) (In Russian). http://
ershov.iis.nsk.su/ru/second literacy/article. Accessed 20 Jan 2020

5. Ershov, A.P., Knuth, D.E. (eds.): Algorithms in Modern Mathematics and Com-
puter Science. LNCS, vol. 122. Springer, Heidelberg (1981). https://doi.org/10.
1007/3-540-11157-3

6. Floyd, R.W.: Assigning Meaning to Programs. In: Proceedings of Symposium on
Applied Mathematics, vol 19, pp. 19–32. Amer. Math. Soc. (1967)

7. Furia, C.A., Nordio, M., Polikarpova, N., Tschannen, J.: AutoProof: auto-active
functional verification of object-oriented programs. Int. J. Softw. Tools Technol.
Transfer 19(6) 697–716 (2017)

8. Gay, S.J.: Cables, trains and types. In: Chris Hankin’s Festschrift (to appear).
http://www.dcs.gla.ac.uk/∼simon/publications/CablesTrainsTypes.pdf. Accessed
20 Jan 2020

http://www.chi-med.ac.uk/publicdocs/WP122.pdf
https://doi.org/10.1007/BF03023921
https://doi.org/10.1007/BF03023921
http://ershov.iis.nsk.su/ru/second_literacy/article
http://ershov.iis.nsk.su/ru/second_literacy/article
https://doi.org/10.1007/3-540-11157-3
https://doi.org/10.1007/3-540-11157-3
http://www.dcs.gla.ac.uk/~simon/publications/CablesTrainsTypes.pdf

104 N. V. Shilov et al.

9. Gries, D.: The Science of Programming. Monographs in Computer Science.
Springer-Verlag, New York (1981). https://doi.org/10.1007/978-1-4612-5983-1

10. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

11. Holzmann, G.J.: Mars code. Commun. ACM 57(2), 64–73 (2014)
12. Karpov, Y.G.: Model checking: verification of concurrent and distributed systems.

BHV-Petersburg (2010) (In Russian)
13. Khazeev, M., Mazzara, M., De Carvalho, D., Aslam, H.: Towards a broader accep-

tance of formal verification tools: the role of education. arXiv:1906.01430 [cs.SE].
https://arxiv.org/abs/1906.01430. Accessed 20 Jan 2020

14. Knuth, D.E.: Computer science and its relation to mathematics. Am. Math. Mon.
81(4), 323–343 (1974)

15. Knuth, D.E.: Textbook Examples of Recursion. https://arxiv.org/pdf/cs/9301113.
pdf (1991). Accessed 20 Jan 2020

16. Knuth, D.E.: The Art of Computer Programming, Volumes 1–3 Boxed Set, 2nd
edn. Addison-Wesley, Reading (1998)

17. Lisitsa, A.: Tackling Fibonacci words puzzles by finite countermodels. In: Con-
tributed talk at the CAV Workshop Fun With Formal Methods, St.Petersburg,
Russia, 13 July 2013. http://cgi.csc.liv.ac.uk/ alexei/Fibonacci Challenge/fun
2013.pdf. Accessed 20 Jan 2020

18. Logas, H., Kirchner, F., Murray, J., Schaf, M., Whitehead, E.J. (Jr.): Chekofv:
crowd-sourced formal verification. In: Contributed talk at the CAV Workshop Fun
With Formal Methods, Vienna, Austria, 13 July 2014

19. Murray, J., Whitehead, J., Kirchner, F.: Crowd-sourced help with emergent knowl-
edge for optimized formal verification (CHEKOFV). SRI INTERNATIONAL,
March 2016, FINAL TECHNICAL REPORT. https://users.soe.ucsc.edu/∼ejw/
papers/Chekofv%20Final%20Report%20Part%20A.pdf. Accessed 20 Jan 2020

20. Parnas, D.L.: Really rethinking “Formal Methods”. IEEE Comput. 43(1), 28–34
(2010)

21. Rushby, J.: The ontological argument in PVS. In: Invited talk at the CAV Work-
shop Fun With Formal Methods, St.Petersburg, Russia, 13 July 2013. http://www.
csl.sri.com/users/rushby/papers/ontological.pdf. Accessed 20 Jan 2020

22. Shilov, N.V.: Etude on recursion elimination. Model. Anal. Inf. Syst. 25(5), 549–
560 (2018)

23. Shilov, N.V.: Using esoteric language for teaching formal semantics. Contributed
talk at the CAV Worthe same languagekshop Fun With Formal Methods, Vienna,
Austria, 13 July 2014

24. Shilov, N.V.: Make formal semantics popular and useful. Bull. Novosibirsk Comput.
Center Ser. Comput. Sci. IIS Special Issue 32, 107–126 (2011)

25. Shilov, N.V., Shilova, S.O.: On mathematical contents of computer science contests.
In: Enhancing University Mathematics: Proceedings of the First KAIST Interna-
tional Symposium on Teaching. American Society, CBMS Issues in Mathematics
Education, vol. 14, 193–204 (2007)

26. Shilov, N.V., Yi, K.: Engaging students with theory through ACM collegiate pro-
gramming contests. Commun. ACM 45(9) (2002)

27. Uspensky, A.V.: Mathematics Apology. Amphora, Sant-Petersburg (2009) (In Rus-
sian)

28. Vardi, M.Y.: Publish and Perish. Commun. ACM 63(1), 7 (2020)

https://doi.org/10.1007/978-1-4612-5983-1
http://arxiv.org/abs/1906.01430
https://arxiv.org/abs/1906.01430
https://arxiv.org/pdf/cs/9301113.pdf
https://arxiv.org/pdf/cs/9301113.pdf
http://cgi.csc.liv.ac.uk/~alexei/Fibonacci_Challenge/fun2013.pdf
http://cgi.csc.liv.ac.uk/~alexei/Fibonacci_Challenge/fun2013.pdf
https://users.soe.ucsc.edu/~ejw/papers/Chekofv%20Final%20Report%20Part%20A.pdf
https://users.soe.ucsc.edu/~ejw/papers/Chekofv%20Final%20Report%20Part%20A.pdf
http://www.csl.sri.com/users/rushby/papers/ontological.pdf
http://www.csl.sri.com/users/rushby/papers/ontological.pdf

Fun with Formal Methods for Better Education 105

29. A.M. Turing Award Winners. http://amturing.acm.org/award winners/clarke 116
7964.cfm, http://amturing.acm.org/award winners/emerson 1671460.cfm. http://
amturing.acm.org/award winners/sifakis 1701095.cfm. Accessed 20 Jan 2020

30. Fun With Formal Methods (2013). http://www.iis.nsk.su/fwfm2013. Accessed 20
Jan 2020

31. Fun With Formal Methods (2014). http://www.easychair.org/smart-program/
VSL2014/FWFM-cfp.html. Accessed 20 Jan 2020

32. Fun With Formal Methods (2018). https://persons.iis.nsk.su/en/FWFM2018.
Accessed 20 Jan 2020

33. Fun With Formal Methods (2019). https://persons.iis.nsk.su/en/FWFM19.
Accessed 20 Jan 2020

34. COVID-19 pandemic. https://en.wikipedia.org/wiki/COVID-19 pandemic.
Accessed 15 June 2020

35. Tools 50+1 conference. Day 3. Fun With Formal Method Workshop. https://www.
youtube.com/watch?v=QqLRUWD9Ngg. Accessed 20 Jan 2020

36. PVS specification and verification system. https://github.com/SRI-CSL/PVS/.
Accessed 20 Jan 2020

37. CS4F. www.cs4fn.org. Accessed 20 Jan 2020
38. Esoteric Programming Languages. https://en.wikipedia.org/wiki/Esoteric

programming language. Accessed 20 Jan 2020
39. International Mathematical Olympiad. https://www.imo-official.org/default.aspx.

Accessed 20 Jan 2020
40. Problems (with solutions). In: 60th International Mathematical Olympiad. Bath

- UK, 11th-22nd July 2019. https://www.imo2019.uk/wp-content/uploads/2018/
07/solutions-r856.pdf. Accessed 20 Jan 2020

41. Solving An Insanely Hard Problem For High School Students. MindYourDe-
cisions - Math videos by Presh Talwalkar. https://www.youtube.com/watch?
v=uJqbHaFqjmI. Accessed 15 June 2020

42. ICPC. International Colegiate Programming Contest. https://icpc.baylor.edu/.
Accessed 20 Jan 2020

43. IMO Grand Challenge. https://imo-grand-challenge.github.io/. Accessed 20 Jan
2020

http://amturing.acm.org/award_winners/clarke_1167964.cfm
http://amturing.acm.org/award_winners/clarke_1167964.cfm
http://amturing.acm.org/award_winners/emerson_1671460.cfm
http://amturing.acm.org/award_winners/sifakis_1701095.cfm
http://amturing.acm.org/award_winners/sifakis_1701095.cfm
http://www.iis.nsk.su/fwfm2013
http://www.easychair.org/smart-program/VSL2014/FWFM-cfp.html
http://www.easychair.org/smart-program/VSL2014/FWFM-cfp.html
https://persons.iis.nsk.su/en/FWFM2018
https://persons.iis.nsk.su/en/FWFM19
https://en.wikipedia.org/wiki/COVID-19_pandemic
https://www.youtube.com/watch?v=QqLRUWD9Ngg
https://www.youtube.com/watch?v=QqLRUWD9Ngg
https://github.com/SRI-CSL/PVS/
www.cs4fn.org
https://en.wikipedia.org/wiki/Esoteric_programming_language
https://en.wikipedia.org/wiki/Esoteric_programming_language
https://www.imo-official.org/default.aspx
https://www.imo2019.uk/wp-content/uploads/2018/07/solutions-r856.pdf
https://www.imo2019.uk/wp-content/uploads/2018/07/solutions-r856.pdf
https://www.youtube.com/watch?v=uJqbHaFqjmI
https://www.youtube.com/watch?v=uJqbHaFqjmI
https://icpc.baylor.edu/
https://imo-grand-challenge.github.io/

Adapting to Different Types of Target
Audience in Teaching Formal Methods

Antonio Cerone1(B) and Karl Reiner Lermer2

1 Department of Computer Science, Nazarbayev University, Nur-Sultan, Kazakhstan
antonio.cerone@nu.edu.kz

2 Department of Computer Science, ZHAW Zurich University of Applied Sciences,
Winterthur, Switzerland

lrka@zhaw.ch

Abstract. Formal methods can be considered as the area of computer
science that most effectively bridges the gap between mathematics and
computer science. They are potentially a great educational tool for fos-
tering mathematical reasoning skills and problem-solving abilities in a
very wide audience of potential learners from university, industry, school
and research.

Unfortunately, this great potential is not exploited in reality. Formal
methods are taught only in a limited number of computer science univer-
sity programmes, mainly at postgraduate level, and are usually presented
as such a difficult topic that university students keep away from them and
the industry, in general, does not consider them as a worthy research and
development investment. Even worse, most of the technicians (electrical
or machine engineering) who design and build safety critical systems
never had a course in formal methods during their studies.

In this paper we draw upon our experience in teaching formal methods
to the heterogeneous audience of potential learners. We report on how
teaching methods and materials must be adapted to the specific type
of target audience to effectively produce learning outcomes. We observe
that motivation, fun and practice are essential dimensions of such an
adaptive approach.

Keywords: Formal methods · Teaching approach · Target audience

1 Introduction

There is a widespread misconception that mathematics and computer science
are two independent, fully distinct disciplines, with the fact that computers
can be used to perform complex mathematical calculations being the only per-
ceived connection between the two disciplines. This misconception determined

Work partly funded by Seed Funding Grant, Project SFG 1447 “Formal Analysis and
Verification of Accidents”, University of Geneva, Switzerland.

c© Springer Nature Switzerland AG 2021
A. Cerone and M. Roggenbach (Eds.): FMFun 2019, CCIS 1301, pp. 106–123, 2021.
https://doi.org/10.1007/978-3-030-71374-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71374-4_5&domain=pdf
http://orcid.org/0000-0003-2691-5279
https://doi.org/10.1007/978-3-030-71374-4_5

Adapting to Different Types of Target Audience in Teaching FM 107

a large gap between computer science and mathematics, mainly in educational
and industrial contexts, and partly also in the context of scientific research.

The source of this misconception is that computer science is normally identi-
fied with programming, and programming is seen more like a kind of art rather
than an applied science. This widespread perception of computer science has
its roots in people’s common beliefs as well as in school education. Program-
mers are normally considered like weird people, fully immersed in their work
activities and in some sense detached from the real world, just like artists. Even
those who see programmers somehow as scientists, actually identify them with
‘crazy scientists’, in fact, with ‘gits’, namely unpleasant or contemptible people.
This stereotype is so widely accepted that Linus Torvald used the word ‘git’ to
name his versioning system, i.e. Git, apparently with the motivation that this
was a way he saw himself [2]. Ironically, as a result, the Git-based platform that
collects most of nowadays open source software projects, to which programmers
contribute in their free time, almost addictively and mostly without been paid,
is called GitHub.

The gap between computer science and mathematics led to a debate on
the centrality of mathematics and logic in computer science curricula: on the
one side the claim that rigorous mathematical knowledge is not necessary for
computer science practitioners [21] and, on the other side, the belief [39,40] and
the empirical evidences [31,36] that learning rigorous discrete mathematics and
formal methods has an important impact on problem-solving and programming
skills and is perceived by students as useful in practical problems and helpful in
improving their mental processes [42].

In the last two decades computers have been heavily introduced in schools. In
many schools computer science has even been introduced as a new, stand-alone
subject. However, this has been normally done without connecting computer
science with mathematics but, instead, by seeing computer science as a “service
subject”, whose only scope is that of providing tools that facilitate the students in
carrying out their homework and class projects [12,20]. The teaching of computer
science to school pupils tends, therefore, to focus on using office-oriented tools
to write documents, prepare presentations and organise data in spreadsheets.

1.1 Formal Methods and Its Potential Audience

Formal methods is one of the most challenging areas of computer science. It
has at least four distinctive aspects that make it unique in several respects.
We believe that these distinctive aspects originates from the fact that formal
methods is the area that most effectively bridges the gap between mathemat-
ics and computer science. From a theoretical point of view we can say that a
formal model is a mathematical representation of a computer program, namely
a mathematical object that we can manipulate with potentially infinite mathe-
matical tools. Thus, moving from computer programs to formal models through
an abstraction process allows us to exploit the power of mathematics in order to
understand what the program does, namely its semantics, reason about it, and
analyse it statically in a precise way.

108 A. Cerone and K. R. Lermer

Therefore, formal methods, on the one hand, foster those mathematical rea-
soning skills that are essential in producing correct, effective software and, on the
other hand, make computer science, in some way independent of computers. A
third distinctive aspect of formal methods, one with very practical consequences,
is its potential to provide an effective way to analyse a large number of criti-
cal, non-functional properties of software, including safety, security, reliability
and usability. In trying to deal with such critical properties software engineering
principles, guidelines and methodologies have always been struggling and never
managed to fully provide assurance. Meeting these properties is necessary for the
most critical and innovative technology in use today and represents a present
and future challenge for the exponential increase in system complexity deter-
mined by ubiquitous computing and the internet of things. Finally, the fourth
distinctive aspect is that formal methods can be applied, beyond computer sci-
ence and technology, to several disciplines, including physics, chemistry, biology,
ecology, psychology, cognitive science and economics.

We can thus claim that formal methods have the potential to address a very
wide audience, which comprises

University students in computer science, who need to develop abstraction and
reasoning skills needed to produce, understand and analyse software;

School pupils in order to allow them to establish the mathematical problem-
solving bases that can enable them to succeed in scientific and technology-
oriented university programmes;

Research being formal methods applicable to a wide range of domains, espe-
cially to innovative technologies, they must adapt to continuoulsly evolv-
ing technologies and to the heterogenuous needs of interdisciplinary research
teams.

Industry not only in the software area but also in a number of technology sec-
tors, either safety-critical, such as transportation, avionics, aerospace, chem-
ical plants, nuclear power plants, medical devices, or security-citical, such as
e-commerce and defence, and to complex systems encountered in chemistry,
biology, ecology, psychology and economics;

Given such a large potential audience, why then aren’t formal methods widely
taught in universities and schools as well as in industrial training? Why aren’t
they widely accepted and used in industrial contexts and fully recognised in
research areas such as software engineering and human-computer interaction?

1.2 Structure of the Paper

In this paper, after describing our backgrounds and the settings in which we
carried out teaching, student supervision, research and collaboration with indus-
try (Sect. 2), we give an account of our experience in teaching formal methods
and identify and discuss a number of dimensions that drove the development of
our engagement strategy through the years (Sect. 3). Section 4 illustrates how
engagement strategy may be adapted to various kinds of audience. Section 5
concludes the paper.

Adapting to Different Types of Target Audience in Teaching FM 109

2 Authors’ Background and Formal-Methods-Related
Activities

The authors of this paper have backgrounds in computer science and math-
ematics, respectively. They have several years of experience in teaching and
supervising students in their respective areas, both at the undergraduate and
post-graduate level. They also carry out research in the area of formal methods,
especially in terms of applications to safety-critical systems and in the mod-
elling and analysis of complex systems within the domains of biology, ecology
and psychology.

Both authors worked several years at the Software Verification Research Cen-
tre (SVRC), a special research centre of the Australian Research Council, which
was active during 1993–2003 in the areas of formal methods tool development
and formal verification of industrial software. The authors were employed in
a 50-50 research and technology transfer programme. In addition to carry out
research in the area of formal methods, as SVRC employees, they provided con-
sultancy services to several organisations and companies, including DSTO (now
DST – Defence Science and Technology), British Aerospace, Foxboro, Computer
Science Corporation and Santos, as well as training in form of short intensive
courses.

The first author then moved to the International Institute for Software Tech-
nology of the United Nations University (UNU-IIST), which was located in
Macao SAR, China, where for almost 10 years he continued to carry out research
in the area of formal methods and was particularly involved in the diffusion of
software technology and formal methods in developping countries through the
delivery of short intensive courses and supervision of graduate fellows and PhD
students. He has also taught Master and PhD courses in formal methods at
UNU-IIST, the University of Pisa, IMT Lucca and Nazarbayev University.

The second author moved to Zurich where he took up a lecturer position
at the Zurich University of Applied Sciences (ZHAW). As a member of the
University’s Safety Critical Systems Research Lab he is doing active research
and technology transfer in formal methods in various industrial projects. Under
a recently funded University project he developed E-Learning materials to enrich
and improve the Bachelor education in mathematics.

3 A Multi-dimensional Engagement Strategy
in Formal-Methods Education

This section discusses the lessons learned during the authors’ teaching, super-
vision and consultancy activities in the area of formal methods. Since formal
methods are not well received by both the academic and industrial audience
[34], the main challenge was to develop a strategy to reverse this trend and keep
the learner continuously motivated and engaged in order to retain any acquired
form of interest. In the process, we identified a number of dimensions of this
engagement strategy, which we illustrate in Sect. 3.1, 3.2, 3.3, 3.4 and 3.5.

110 A. Cerone and K. R. Lermer

3.1 Motivations

Given the widespread reluctance to learn formal methods, the simple strategy of
providing potential learners with a list of reasons for being interested in this area
would not be effective. We experienced that a better strategy is, instead, that of
enabling learners to build themselves their intrinsic and extrinsic motivations.
We have identified a number of tools to achieve this objective:

Start With the General Context Rather Than the Foundations
A typical mistake in teaching or even just advertising a challenging subject
is that of starting from theoretical foundations and basic technical aspects.
Such an approach appears dry and non motivating to potential learners.
The result is that the least skilled potential learners will get scared and run
away and the most skilled ones will get bored and find little interest in the
subject. In our view, based on our experience, motivations can be enabled
through an initial, broad presentation of the general context in which formal
methods are successfully applied, but without actually putting any emphasis
on formal methods themselves and leaving out all technical details. Moreover,
when technical details are introduced, in a soft, incremental way, they must
always be referred to this motivational context and possibly contribute to
extend it. We will present some examples of this approach in Sect. 4.

Present Specific Success Stories and Showcases
In spite of industry’s general reluctance in accepting formal methods, some
companies have actually used them in research projects or in the verification
of their software products or deployed systems. There is a number of success
stories that could be presented to potential formal methods learners. Pref-
erence should be given to popular companies and the success stories should
be presented using high-level descriptions, normally available in newspapers,
magazine, short communications or internet resources rather than technical
journal papers. However, the success story should not be an unrealistic cel-
ebration of a panacea approach but, to be credible, should describe a global
positive outcome that includes both pros and cons. A good example in this
sense could be the use of formal methods at Amazon Web Services, which is
reported as big success but with some remaining caveats [28].

Consider and Incorporate Current Trends
In terms of extrinsic motivation it is important to connect formal methods
to the most trendy areas of the moment, which are seen as a must in the job
market, a hot topic in research and an essential tool in industrial production,
thus appealing to the entire potential audience from students to researcher
and industry. A today’s example is represented by the hot area of data science
and its subdisciplines. Providing the intuition on how formal methods connect
to data science, using examples on current work [4,15] as well as ideas for
future research, is necessary to boost strong intrinsic motivations.

Start Education in Formal Methods Early Enough
The absence of the appropriate mathematical background is the biggest bar-
rier for potential formal methods learners. A common belief is that formal

Adapting to Different Types of Target Audience in Teaching FM 111

methods are very far from people’s normal way of thinking and reasoning.
Actually, the opposite is true. The same problem-solving and reasoning skills
needed in real-life can be used to solve problems in the area of formal meth-
ods. The only difference is that the reasoning object is not a concrete fact,
but an abstract model. Abstraction skills are what enables us to move from
the reality to its models, to which formal methods can be applied.
Unfortunately, the current status of mathematics teaching around the world
is not addressing abstraction skills [20]. In fact, mathematics should be taught
using a mathematical problem-solving approach since the early school years
[6,22,35], in which it is already possible to introduce formal methods [12,20],
and continuing with such an approach during the university years. The oppo-
site seems, instead, to happen in the last years, with schools emphasising on
calculation rather than reasoning abilities or on repeated pattern recognition
problems that are never finalised to a successful abstraction process [20].
Even at the university level, a fundamental mathematics subject like calcu-
lus, which was recognised in the past as the best tool to develop abstraction
and reasoning skills through the development of proofs in the real spirit of
mathematical analysis, is now restricted to the teaching of mere calcula-
tion techniques. In fact, the use of calculators and iPads is in the focus of
modern calculus teaching. For instance, openly discussed is to remove essen-
tial mathematical theories like solving differential equations from engineering
postgraduate math courses.
In addition, programming is decoupled from mathematics in many respects
and is often taught as a sort of unsystematic,’artistic’ skill of syntactic manip-
ulation, within a trial-and-error rather than logical approach. For instance,
the formal semantics of programming languages is no longer taught in the
early programming courses, which nowadays just focus on syntax.
In such an unfavorable situation, in addition to try to propose innovative
approaches to be carried out globally, starting from the early school years,
we claim the importance of introducing formal methods already at undergrad-
uate level, both in core subjects, such as programming, software engineering
and operating systems as well as in elective subjects, such as human-computer
interaction, information security and project-based electives. We will discuss
these proposals in Sect. 4.1 and 4.2.

3.2 Fun

One important aspect of formal methods is the possibility of combining notations
that support problem specification with powerful tools that, given the specifica-
tion as an input, provide problem solutions almost automatically. The authors
are always impressed by the combined feeling of surprise, happiness and sense of
achievement externalised by learners when they realise that their specifications
actually “work” with the tool.

Moreover, formal methods can be applied to a large range of problems, basi-
cally any problem, well beyond the domain of computer science. In fact, in
addition to classical computer science problems, such as the dining philosopher,

112 A. Cerone and K. R. Lermer

communication and cryptographic protocols and distributed algorithms, we have
a huge range of candidates among classical mathematical puzzles as well as pop-
ular games and even video games.

Mathematical puzzles that can be visually represented, such as the “river
crossing puzzle” [5], present an easy way to approach formal methods; they allow
learners to gradually move from the graphical representation to a mathematical
notation. This kind of problems, which have a clear visual representation, are
particularly suitable in school and early undergraduate courses [19].

Other more complex mathematical puzzles and popular games, such as
sudoku and card games, have the potential to strongly engage learners [18].
At the end of a midtem examination that consisted in the modelling and formal
analysis of a card game, the author of this paper had the nice experience to hear
a student saying: “This examination was real fun!”

One approach used by the authors is that of providing learners with exam-
ples of formal methods descriptions of video games and invite them to create
formal models of their favourite video games. This kind of tasks appeared to be
very engaging and can be successfully carried out even in high school and early
undergraduate courses. In this context, it is particularly important to blur the
distinction between learner and instructor by letting the learners drive the choice
of exercises and use their creativity to identify and specify potential problems
and invent new games.

In general, we can claim that, if “motivation” is the dimension that allows
learners to build up interest in formal methods, “fun” is actually the essential
dimension to keep learners continuously engaged, thus assuring the retention
and possibly increase of their interest over the time [9,14].

3.3 Which Formal Methods?

In our teaching and supervision activities our students have been exposed to
a large variety of formal methods including the Z specification language, the
refinement calculus, Petri nets, process algebras, and several logic systems, from
rewriting logic to temporal logic. And this has been done both theoretically and
practically using theorem-proving and model-checking tools.

From our experience we observed that the choice of which formal methods
to present to the learners mostly depends on three parameters:

1. The age, level and background of the learners;
2. The application domain, which may be identified with the taught subject in

the case of university students;
3. The availability and features of software tools.

Some specific discussion on Parameter 1 will be presented in Sect. 3.4 and 4.
Parameter 3 will be discussed in Sect. 3.5.

Unfortunately, we cannot establish general rules for using such parameters
to drive our choice, which actually depends not only on the characteristics of
the learners, but also on the preference, background and skills of the instruc-
tor. Therefore, we limit the discussion in this section to the account of the first

Adapting to Different Types of Target Audience in Teaching FM 113

author’s experience in teaching several variants of a postgraduate course in for-
mal methods to a variety of audiences at postgraduate level

– in several developing countries as part of the United Nations University train-
ing programme;

– in PhD courses in Macao SAR (at UNU-IIST) and Italy (at the University
of Pisa and at the IMT School for Advanced Studies Lucca); and

– in Master Courses at Nazarbayev University, Kazakstan.

Teaching to university lecturers and postgraduate students in developing coun-
tries was very challenging. In addition to the logistic and infrastructural prob-
lems of such in-house courses, the biggest challenge was the limited mathematical
background of the learners, but still with a large variability, which could not pre-
dicted a priori. The strategy for dealing with this challenge was an on-the-fly
adaptability of such courses, which definitely contributed to the development of
the proposals and approaches illustrated in this paper. Being these teaching con-
texts very specific, a detailed account on such experiences is beyond the scope
of this paper.

Three different formal methods approaches used in the course were

– RAISE (Rigorous Approach to Industrial Software Engineering) and its spec-
ification language (RSL) and associated tools [29];

– the CSP (Communicating Sequential Processes) process algebra [3,23,33],
initially with the support of the CWB-NC (Concurrency Workbench of the
New Century) tool [17], later replaced by PAT (Process Analysis Toolkit)
[27,37,38];

– rewriting logic and the Maude language and model checker [16,26,30].

The use of RAISE was soon abandoned due to the difficulties encountered by the
students in producing consistent specifications and to the poor usability of the
associated tools. Therefore, we only compare the process algebra and rewriting
logic approaches.

In the PhD course taught at IMT during the academic year 2014–2015,
both formal methods approaches were introduced and specifically applied to
the modelling of interactive systems. The translations of a description language
for human behaviour tasks to both formal methods were presented during the
course. However, the way that course was conducted does not reflect the app-
roach proposed in this paper. In fact, the first part of the course was devoted to
the theoretical presentation of the two formal methods approaches and to pen
and paper modelling exercises. Only in the second part of the course the PAT
and Maude tools were introduced. At the end of the first part of the course,
students were asked three questions:

1. “In which of the two approaches did you find easier to get the model right?”
2. “Which of the two translations is more elegant?”
3. “In which of the two approaches the resultant behaviour is easier to guess?”

114 A. Cerone and K. R. Lermer

The PhD students unanimously answered “the rewriting logic approach” to
Questions 1 and 3, and “the process algebra approach” to Question 2. It is
interesting to observe that, in spite of finding the process algebra approach more
difficult, the student unanimously agreed that it is more elegant. These answers,
as well as further remarks and opinions that emerged in an open discussion that
followed, are an indicator that students have a strong interest for solutions that
are concise, elegant and abstract, and that they are happy to tackle challenging
problems in order to look for elegant rather than easy, but somehow messy solu-
tions. In this specific case, the “elegant challenge” was the use of concurrency
in modelling the system in a compositional way, whereas the “easy but messy
solution” was the monolithic modelling of the global system using rewrite rules.
Given the small number of students and the absence of research design we cannot
draw empirical conclusions from the students’ answers and remarks, although
these appear to be in line with the results of previous research [42].

With respect to Parameter 2 above, the students’ answers seem to suggest
that rewriting logic is more suitable than process algebra and other approaches
based on parallel composition to model human behaviour. As we will see in
Sect. 3.5 this cannot be a definite conclusion.

3.4 Textual Versus Visual Notations

In the case of school children simple, visual notations, such as Petri nets and finite
state machines are obviously the best choices for introducing formal methods.
Several formal methods concepts, such as refinement, abstraction and concur-
rency, can be directly identified on the visual representation, in most cases with
no recourse to formal mathematical representations. The important thing for
school children is the discovery and internalisation of such concepts rather then
their representations in some dry textual notation [12].

Visual notations also help a lot in the case of undergraduate students, but
need to be finalised to the “discovery” of the formal semantics and its possible
representations in mathematical notations. For example, Petri nets can be first
introduced visually together with an informal presentation of their semantics, or
actually their possible semantics. Then the students can be guided to represent
such semantics in a mathematical way that can be used to calculate the future
behaviour of the system. In the case of Petri nets students may visually identify
and represent the semantics by

1. decomposing the net to represent each arc in terms of its sources and target;
2. decomposing the net to represent each transition in terms of its sources and

targets;
3. drawing a table transitions × places for the entire net;
4. analising for each transition all markings enabling it.

Students would also observe that places may have their tokens produced by
different transitions and that different places may cooperate to the firing of the
same transition. Thus it does not make sense to represent a place in terms of

Adapting to Different Types of Target Audience in Teaching FM 115

the transitions that separately produce token in it and the transition that may
separately consume tokens from it. The three representations above correspond
respectively to

1. a flow relation, which can be expressed as two boolean functions on incoming
and outgoing arcs;

2. the pre-set of post-set of each transition;
3. an incidence matrix;
4. a partial function from a marking to a set of markings, one for each enabled

transition.

As the next step, depending on which the four representations above they have
worked out, the students can be guided to discover the way to calculate the
future behaviour, that is, the formal semantics of the Petri net. Finally, the
equivalence of the various representations can be discussed.

3.5 Practice and Tools

In Sect. 3.3 we have reported students’ opinions in the comparison of parallel
composition and rewriting logic in modelling interactive systems, specifically
human behaviour tasks. These opinions were collected after introducing the the-
ory but before introducing the tools and starting using them. However, at the
end of the course, after using both PAT and Maude, the opinions of the students
were substantially unchanged.

More recently, at Nazarbayev University, the two approaches were used in the
same postgraduate course on formal methods and applications as well as sepa-
rately in two distinct instances of the undergraduate course on human-computer
interaction. In these cases the approaches have been introduced together with
the usage of the tools. In fact, the tools were used to introduce the language con-
structs and their semantics. Although a complete comparison cannot be carried
out for the undergraduate courses since each students was exposed to only one of
the two approaches, a better performance was achieved by the students exposed
to the process algebra approach. Moreover, the postgraduate students found
easier to use the process algebra approach than the rewriting logic approach.

The general lessons learned from these experiences are that [14]

1. instead of tediously going through the semantics of each construct in a formal
language, students should be allowed to experiment with an appropriate tool
to discover the semantics by themselves;

2. tools for simulation visualisation are essential to allow students to understand
the behaviour associated with their models.

In fact, the introduction and usage of tools appear beneficial only if done early
enough. If tools start to be used only after introducing the theory, it is difficult
to reverse students’ negative opinions and feelings.

Moreover, in general, in order to be beneficial to formal methods learners,
tools should not require additional learning time and should, instead, facilitate

116 A. Cerone and K. R. Lermer

the learning process. Thus they have to be easy to learn, at least in their basic
features, documented in a concise but well-organised way and equipped with
visual interfaces.

MAUDE and PAT are somehow complementary in terms of presentation of
results, also due to the different characteristics of the formal methods on which
they are based. MAUDE does not support any form of graphical representation
but, through the use ‘auxiliary’ rewrite rules, allows the designer to filter the
output and easily track which rewrite rule is applied and check the content of
all data structures, thus tracking the behaviour back to the architectural view.
PAT facilitates the visual representations of the global behaviour in terms of
finite state machines, but the form of abstraction introduced by the CSP hiding
operator is not very effective due to the possible introduction of nondetermin-
ism, while the represented behaviour does not reflect the structure, in terms of
concurrent components and synchronisations, from which the global behaviour
has been attained. However, the use of both these tools in our course has allowed
students to make use of complementary presentation features: visualisation from
PAT and behaviour tracking from MAUDE. Moreover, in our class discussions,
students showed the perception that the fact that the two tools are based on
two distinct modelling paradigms contributed to stimulate and develop their
abstraction and problem solving skills.

MAUDE documentation is well-written and presented at three levels: a
primer [26], which allows a user to be able to effectively use the tool within
a short time, a textbook [30] specifically designed for an undergraduate course,
but also appropriate for postgraduate courses, and a comprehensive manual [16]
for consultation and for acquiring a more advanced level of expertise. PAT docu-
mentation is unsatisfactory, especially for a novice. It consists of a poorly organ-
ised manual [27], several research papers, several talk presentations, materials
on experiments and a couple of advertising videos. None of this material is really
suitable for a learner.

4 Types of Target Audience

4.1 University Students

University students require a good balance between intrinsic and extrinsic moti-
vations. We have discussed in Sect. 3.1 that motivations can be enabled through
an initial, broad presentation of the general context in which formal methods
are successfully applied. For university students this can be done at two levels:

1. Sparsely in core subjects, such as programming, software engineering and
operating systems, and in elective subjects, such as human-computer inter-
action and information security.

2. In a focussed way, within a specific formal-methods-related subject.

Level 1 is the most effective in boosting early intrinsic motivations, which can
play a decisive role later at the time of choosing elective subjects and thesis top-
ics. In fact at this level, the presentation of the context in which to apply formal

Adapting to Different Types of Target Audience in Teaching FM 117

methods should be very broad, e.g. the integration of formal verification within
the software life-cycle, in a software engineering course, or the simulation and
formal analysis of human behaviour, in a human-computer interaction course.
Showing the “pleasant aspects” of using formal methods is the actual objec-
tive at this level. For example, students of a software engineering undergraduate
core subject are more likely to enjoy building a concise formal specification, with
which they can also play using a tool, rather than writing a long, verbose and
certainly boring specification document. Students of a human-computer interac-
tion undergraduate elective subject taught by the first author enjoyed the formal
modelling and analysis of a variety of small human tasks, including classical ones
such as the interaction with an ATM (automatic teller machine) and the general
car driver’s behaviour, but also a number of fun, in some respect even hilarious,
examples such as failing a driving test and baking a cake.

Of course, the feasibility, simplicity and fun of the tasks proposed by the
teacher or, better, agreed between students and teacher, are essential for deter-
mining a pleasant rather than frustrating experience. In fact, although formal
methods tend to be time consuming when applied to large systems, for several
classes of small examples (e.g. the ones that can be systematically decomposed or
are naturally recursive) they are indeed effective in saving time and reducing the
workload, thus also boosting extrinsic motivations. However, in our experience
among the motivations generated at this level, intrinsic motivation are probably
going to be more long-lasting, especially for junior students. Future references to
these contexts within the same subjects or even in other subjects would normally
bring back intrinsic motivations. Senior students, who are often already looking
for a job, are instead also very much affected by extrinsic motivations.

When dealing with specific formal-methods subject (level 2 above), the pre-
sentation of the context in which to apply formal methods should be more
focussed on the learning objectives of the course. In the Master course on ‘for-
mal methods and applications’ at Nazarbayev University, formal methods were
first presented in the general context of the software life cycle, then in terms
of more specific domain-oriented development, specifically their application to
interactive systems, and finally in the light of synergetic approaches with trendy
areas such as data science.

As a final remark concerning the use of tools, we would like to add that,
from the perspective of a university student, it is important to see simulation
and model-checking results directly on the low-level semantic structures underly-
ing high-level domain structures. This is, in fact, an effective way for the student
to understand and internalise the semantics of the language. Moreover, in the
students’ perspective, the presentation of results must aim at highlighting rela-
tions between behaviour and semantics. In fact, such a capability to output
only relevant states and/or events is beneficial in stimulating and developping
students’ abstraction and problem solving skills.

118 A. Cerone and K. R. Lermer

4.2 School Pupils

For primary school pupils only intrinsic motivations make sense. In intermediate
and high school, instead, also extrinsic motivation start to play a significant role.

Although in teaching to school pupils our experience is limited to research
projects and practice with our own children, we agree with Gibson [20] about
the importance of using formal methods to allow school pupils to establish early
enough the mathematical problem-solving bases that can enable them to succeed
in scientific and technology-oriented university programmes. Of course this has
to be done at the right level and with the appropriate learning objectives [12].

The main challenge in teaching computer-science-related skills to school
pupils is to make them aware that such skills have a general value, which is
independent of the use of computers. For this reason we support an “unplugged
approach” to teaching formal methods to school pupils, using activities that fos-
ter children reasoning and do not require the use of a computer [6]. In fact, this
should be done in a multidisciplinary context; teaching formal methods should
build on all school subjects, which, in the world of the school pupil, represent the
most natural reality to be modelled formally. Obviously, mathematics should be
the first subject to provide materials to manipulate in a formal fashion. However,
all other subjects have also plenty of materials on which students may carry out
modelling and analysis [12].

Moreover, as we discussed in Sect. 3.4, the emphasis should be on the discov-
ery of concepts through the use of visual representations and the visual manipula-
tion of such concepts aiming at their internalisation rather than their translation
into some dry textual notation. If fact, we note that it would be pointless to just
provide children with the definitions of new notions, concepts and processes,
such as algorithms, and hope they understand them, remember them and are
then able to apply them to practical situations. Children learn best if they are
actively involved in the process through problem-solving [35].

4.3 Industry

The most natural use of formal methods should be in the area of industrial
software verification. There are a number of recent academic publications that
support the need for an extensive use of formal methods in industry [32,34,41].
However, given the high cost required by the use of formal methods, in terms
of human and economic resources as well as time, the software development
industry partly accepts the use of formal methods only for safety-critical systems.
This partial acceptance is often not even a choice but the legal need to comply
with the standards (e.g. IEC 61508 [24]) that suggest the use of formal methods
for the most dependable software integrity level (SIL). Although no standard
prescribes the use of formal methods as mandatory, the appeal to standards’
recommendations is an effective incentive to offer practical courses on formal
methods to industries working in the area of safety-critical systems. Additional
enablers for extrinsic motivations for industry are success stories and showcases
as we described in Sect. 3.1.

Adapting to Different Types of Target Audience in Teaching FM 119

Moreover, rather than proposing or, even worse, imposing formal methods
as a new approach, a better strategy is to present formal methods as integrated,
or integrable, within a context which industry is familiar with. For example,
ZHAW provides training and consultancy to safety-critical systems industry,
such as railway, process industry, pharmaceutical industry, nuclear power plants
and transportation, using STAMP (System-Theoretic Accident Model and Pro-
cesses), a model-based approach centred on system theory to analyse accidents
[25]. STAMP has been developed by Nancy Leveson as a model for safety engi-
neering along with the System Theoretic Process Analysis (STPA) method, a
hazard analysis method for finding inadequate design. This powerful top-down
hazard analysis methodology has proven to be applicable in various industrial
applications, including automotive, avionics, health care, power plant, railway,
and many others [1]. It has also been successfully applied in the planning and
technical system development and to already existing systems. The ZHAW Safety
Critical Systems Research Lab experiences a growing demand for STPA analysis
in a widespread variety of industrial areas, such as power plants, railway, health
care and automotive.

In STPA, safety is viewed as a control problem, which is actually the natural
way nuclear power and transportation engineers use to describe problems, and is
managed by a control structure embedded in an adaptive socio-technical system
and acting as constraints on the system. Therefore, STAMP models, being at
the socio-technical system level can be clearly understood by engineers and other
domain and safety experts.

The project “Formal Analysis and Verification of Accidents”, a collaboration
between the ZHAW Zurich University of Applied Sciences, Winterthur, Switzer-
land, and Nazarbayev University, Nur-Sultan, Kazakhstan, aims at the combi-
nation of a cognitive architecture for the formal analysis of human-computer
interaction [10] and its associated description language, the Behaviour and Rea-
soning Description Language (BRDL) [11], with the STAMP approach. The
cognitive architecture has been implemented using a formal methods approach
based on Maude [8,13], which supports formal verification using model checking.
The basic idea is to identify the steps in the STPA method that are suitable for
formalisation, develop analysis engines based on model-checking and encapsulate
them within tools equipped with high-level editors and interfaces appropriate for
the usage by engineers and domain experts. The final objective of the project is
to allow our industrial partners to use STPA-based tools, which also provide, in
an unintrusive way, automated formal verification capabilities.

Finally, in terms of tools, we observe that the perspective of industry prac-
titioner is very different from that of university students: they prefer tools that
hide the formal semantic structures underlying domain structures.

4.4 Interdisciplinary Research Teams

Formal methods methodologies and tools can potentially be applied to several
disciplines, not just computer science and the area of sofware-critical systems [7].
Formal modelling and analysis can be potentially exploited as effective research

120 A. Cerone and K. R. Lermer

tools in many disciplines such as physics, chemistry, biology, ecology, psychol-
ogy, cognitive science and economics. Unfortunately, formal methods experts
are often so much focussed on the investigation of theoretical aspects of formal
notations rather than on their applications to real problems, that they often
neglect the needs of practitioners from applicative domains. The result is that
methodologies and tools have limited usability for non computer scientists.

This problem has become very actual nowadays, with the launching of large
interdisciplinary research projects, especially in areas such as biology, ecology
and cognitive science. Different categories of experts within the same interdis-
ciplinary research team may experience difficulties in understanding each other
and share thoughts, due to both the different technical languages they use and
their different way of reasoning. In research projects involving the application of
formal methods to systems biology, ecosystem modelling and analysis of human
behaviour and human errors, it is normally the formal methods expert who make
the effort to understand the application domain, whereas the domain experts
tend to act just as data providers or, in the best case, as consultants. And too
often this leads to the development of unrealistic models and analysis tools with
limited scope.

There is a need to change this situation. The most effective effort from the for-
mal methods expert should actually be a technology transfer to domain experts
in a form suitable to them. The embedding of formal methods within domain
specific languages [11] and domain specific tools [13] represents an essential step
in this direction. In fact, with this kind of audience it is necessary to use method-
ologies and tools that support domain specific notations, human-oriented proof
and checking techniques, and domain-related formulation of properties. In this
sense we could speak of human-oriented formal methods [9].

5 Conclusion and Future Work

In this paper we gave an account of our experience in teaching formal methods
to various kinds of audience and identified and discussed a number of dimensions
that drove the development of our engagement strategy. We observed that, on the
one hand, these dimensions apply to such various kinds of audience differently.
For example, the use of tools is not recommended for school pupils, is essential for
university students in understanding and internalising semantic aspects, requires
the hiding of the formal semantic structures underlying domain structures for
industry practitioners and applicative domain researcher and, for the latter, also
requires domain-specific notations and domain-related formulation of properties.
On the other hand, we observed that, for any kind of audience, motivation is the
dimension that allows learners to build up interest in formal methods, while fun
is actually the essential dimension to keep learners continuously engaged, thus
assuring the retention and possibly increase of their interest over the time.

In terms of future work we plan to develop teaching-oriented formal meth-
ods tools appropriate to difference audiences and, within the “Formal Analysis
and Verification of Accidents” project the embedding of formal methods within
methodologies that are widely accepted in industrial contexts (e.g. STPA).

Adapting to Different Types of Target Audience in Teaching FM 121

References

1. Partnership for systems approaches to safety and security (PSASS). http://psas.
scripts.mit.edu/home/materials/

2. Why the ‘git’ name? FAQ web page of the Git Wiki. https://git.wiki.kernel.org/
index.php/Git FAQ#Why the.27Git.27 name.3F. Accessed 23 June 2020

3. Abdallah, Ali E., Jones, Cliff B., Sanders, Jeff W. (eds.): Communicating Sequen-
tial Processes. The First 25 Years. LNCS, vol. 3525. Springer, Heidelberg (2005).
https://doi.org/10.1007/b136154

4. Aibassova, A., Cerone, A., Tashkenbayev, M.: An instrumented mobile language
learning application for the analysis of usability and learning. In: Sekerinski, E.,
et al. (eds.) FM 2019. LNCS, vol. 12232, pp. 170–185. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-54994-7 13

5. Ascher, M.: A river-crossing problem in cross-cultural perspective. Math. Mag.
63(1), 26–29 (1990)

6. Bell, T.: A low-cost high-impact computer science show for family audiences. In:
23rd Australian Computer Science Conference, pp. 10–16. ACM (2000)

7. Bowman, H., (ed.) Proceedings of “Formal Methods Elesewhere”. Electronic Notes
in Theoretical Computer Science, vol. 43. Elesevier (2000)

8. Cerone, A.: A cognitive framework based on rewriting logic for the analysis of inter-
active systems. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol. 9763, pp.
287–303. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41591-8 20

9. Cerone, A.: Human-oriented formal modelling of human-computer interaction:
practitioners’ and students’ perspectives. In: Milazzo, P., Varró, D., Wimmer, M.
(eds.) STAF 2016. LNCS, vol. 9946, pp. 232–241. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-50230-4 17

10. Cerone, A.: Towards a cognitive architecture for the formal analysis of human
behaviour and learning. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF 2018.
LNCS, vol. 11176, pp. 216–232. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-04771-9 17

11. Cerone, A.: Behaviour and reasoning description language (BRDL). In: Camara,
J., Steffen, M. (eds.) SEFM 2019. LNCS, vol. 12226, pp. 137–153. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-57506-9 11

12. Cerone, A.: From stories to concurrency: how children can play with formal meth-
ods. In: Cerone, A., Roggenbach, M. (eds.) FMFun 2019. CCIS, vol. 1301, pp.
191–207. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71374-4 10

13. Cerone, A., Ölveczky, P.C.: Modelling human reasoning in practical behavioural
contexts using real-time Maude. In: Sekerinski, E., et al. (eds.) FM 2019. LNCS,
vol. 12232, pp. 424–442. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-54994-7 32

14. Cerone, A., Roggenbach, M., Schlingloff, B.-H., Schneider, G., Shaikh, S.: Teaching
formal methods for software engineering – ten principles. In: Informatica Didactica,
p. 9 (2015)

15. Cerone, A., Zhexenbayeva, A.: Using formal methods to validate research hypothe-
ses: The Duolingo case study. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF
2018. LNCS, vol. 11176, pp. 163–170. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-04771-9 13

16. Clavel, M., et al.: The Maude 2.0 system. In: Nieuwenhuis, R. (ed.) RTA 2003.
LNCS, vol. 2706, pp. 76–87. Springer, Heidelberg (2003). https://doi.org/10.1007/
3-540-44881-0 7

http://psas.scripts.mit.edu/home/materials/
http://psas.scripts.mit.edu/home/materials/
https://git.wiki.kernel.org/index.php/Git_FAQ#Why_the.27Git. 27_name.3F
https://git.wiki.kernel.org/index.php/Git_FAQ#Why_the.27Git. 27_name.3F
https://doi.org/10.1007/b136154
https://doi.org/10.1007/978-3-030-54994-7_13
https://doi.org/10.1007/978-3-319-41591-8_20
https://doi.org/10.1007/978-3-319-50230-4_17
https://doi.org/10.1007/978-3-319-50230-4_17
https://doi.org/10.1007/978-3-030-04771-9_17
https://doi.org/10.1007/978-3-030-04771-9_17
https://doi.org/10.1007/978-3-030-57506-9_11
https://doi.org/10.1007/978-3-030-71374-4_10
https://doi.org/10.1007/978-3-030-54994-7_32
https://doi.org/10.1007/978-3-030-54994-7_32
https://doi.org/10.1007/978-3-030-04771-9_13
https://doi.org/10.1007/978-3-030-04771-9_13
https://doi.org/10.1007/3-540-44881-0_7
https://doi.org/10.1007/3-540-44881-0_7

122 A. Cerone and K. R. Lermer

17. Cleaveland, R., Li, T., Sims, S.: The Concurrency Workbench of the New Century
(Version 1.2) – User’s Manual. SUNY at Stony Brook, July 2000

18. Ferreira, J.F., Mendes, A.: The magic of algorithm design and analysis: teaching
algorithmic skills using magic card tricks. In: Proceedings of ITiCSE 2014. ACM
(2014)

19. Ferreira, J.F., Mendes, A.: Open and interactive learning resources for algorithmic
problem solving. In: Sekerinski, E., et al. (eds.) FM 2019. LNCS, vol. 12233, pp.
200–208. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-54997-8 13

20. Gibson., J.P.: Formal methods: never too young to start. In: FORMED 2008, pp.
151–160, Budapest, Hungary, March 2008

21. Glass, R.L.: A new answer to “how important is mathematics to the software
practitioner?”. IEEE Softw. 17(6), 136–136 (2000)

22. Hilton, P.: The mathematical component of a good education. In: Hilton, P., Hirze-
bruch, F., Remmert, R. (eds.) Miscellanea Mathematica, pp. 145–154. Springer,
Berlin, Heidelberg (1991). https://doi.org/10.1007/978-3-642-76709-8 9

23. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Upper Saddle
River (1985)

24. IEC 61508–1. Functional safety of electrical/electronic/programmable electronic
safety-related systems – Part 1: General requirements, 2.0 edition, April 2010

25. Leveson, N.: A new accident model for engineering safer systems. Saf. Sci. 42(2),
237–270 (2004)

26. McCombs, T.: Maude 2.0 Primer (Version 1.0). University of Illinois at Urbana-
Champaign, August 2004. http://maude.cs.illinois.edu/w/images/6/63/Maude-
primer.pdf

27. National University of Singapore. Process Analysis Toolkit (PAT) 3.5 User Manual.
https://www.comp.nus.edu.sg/∼pat/OnlineHelp/

28. Newcombe, C., Rath, T., Zhang, F., Munteanu, B., Brooker, M., Deardeuff, M.:
How amazon web services uses formal methods. Commun. ACM 58(4), 66–73
(2015)

29. Nielsen, M., Havelund, K., Wagner, K.R., George, C.: The RAISE language,
method and tools. Formal Aspects Comput. 1, 85–114 (1989)

30. Ölveczky, P.C.: Designing Reliable Distributed Systems. A Formal Methods App-
roach Based on Executable Modeling in Maude. UTCS. Springer, London (2017).
https://doi.org/10.1007/978-1-4471-6687-0

31. Page, R.L.: Software in discrete mathematics. In: Proceedings of ICFP 2003, vol.
38 of ACM Sigplan Notices, pp. 79–86. ACM (2003)

32. Quinton, S.: Evaluation and comparison of real-time systems analysis methods and
tools. In: Howar, F., Barnat, J. (eds.) FMICS 2018. LNCS, vol. 11119, pp. 284–290.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00244-2 19

33. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, Upper
Saddle River (1997)

34. Schlick, R., et al.: A proposal of an example and experiments repository to foster
industrial adoption of formal methods. In: Margaria, T., Steffen, B. (eds.) ISoLA
2018. LNCS, vol. 11247, pp. 249–272. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03427-6 20

35. Schoenfeld, A.H.: Mathematical Problem Solving. Academic Press, Orlando (1985)
36. Sobel, A.E.K., Clarkson, M.R.: Formal methods application: an empirical tale of

software development. IEEE Trans. Softw. Eng. 28(3), 308–320 (2002)

https://doi.org/10.1007/978-3-030-54997-8_13
https://doi.org/10.1007/978-3-642-76709-8_9
http://maude.cs.illinois.edu/w/images/6/63/Maude-primer.pdf
http://maude.cs.illinois.edu/w/images/6/63/Maude-primer.pdf
https://www.comp.nus.edu.sg/~pat/OnlineHelp/
https://doi.org/10.1007/978-1-4471-6687-0
https://doi.org/10.1007/978-3-030-00244-2_19
https://doi.org/10.1007/978-3-030-03427-6_20
https://doi.org/10.1007/978-3-030-03427-6_20

Adapting to Different Types of Target Audience in Teaching FM 123

37. Sun, J., Liu, Y., Dong, J.S.: Model checking CSP revisited: introducing a process
analysis toolkit. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp.
307–322. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88479-
8 22

38. Sun, J., Liu, Y., Dong, J.S., Chen, C.: Integrating specifications and programs for
system specification and verification. In: Proceedings of TASE 2009, pp. 127–135.
IEEE Computer Society (2009)

39. Wing, J.M.: Teaching mathematics to software engineers. In: Alagar, V.S., Nivat,
M. (eds.) AMAST 1995. LNCS, vol. 936, pp. 18–40. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60043-4 44

40. Wing, J.M.: Invited talk: weaving formal methods into the undergraduate computer
science curriculum (extended abstract). In: Rus, T. (ed.) AMAST 2000. LNCS, vol.
1816, pp. 2–7. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45499-
3 2

41. Xua, L.D., Xub, E.L., Lia, L.: Industry 4.0: state of the art and future trends. Int.
J. Prod. Res. 56(8), 2941–2962 (2018)

42. Zamansky, A., Farchi, E.: Exploring the role of logic and formal methods in infor-
mation systems education. In: Bianculli, D., Calinescu, R., Rumpe, B. (eds.) SEFM
2015. LNCS, vol. 9509, pp. 68–74. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-49224-6 7

https://doi.org/10.1007/978-3-540-88479-8_22
https://doi.org/10.1007/978-3-540-88479-8_22
https://doi.org/10.1007/3-540-60043-4_44
https://doi.org/10.1007/3-540-45499-3_2
https://doi.org/10.1007/3-540-45499-3_2
https://doi.org/10.1007/978-3-662-49224-6_7
https://doi.org/10.1007/978-3-662-49224-6_7

Prototyping Games Using Formal
Methods

Sebastian Krings1(B) and Philipp Körner2

1 Institute for Information Security, Niederrhein University of Applied Sciences,
Mönchengladbach, Germany

sebastian@krin.gs
2 Institut für Informatik, Heinrich-Heine-Universität, Düsseldorf, Germany

p.koerner@uni-duesseldorf.de

Abstract. Courses on formal methods are often based on examples and
case studies, which are supposed to show students how to apply for-
mal methods in practice. However, examples often fall into one of two
categories: First, many are artificial and thus do not relate to practice.
Second, other examples are based on projects of industry partners and
therefore often are too involved for students to understand them.

In this paper, we present a different approach. By formalizing the
rules of commonly known games, we achieve examples both engaging
and suited for students. Furthermore, we broaden the horizon of formal
methods, driving research at the same time: we present extensions such
as playable visualizations and explore the relationship between game AIs
and model checking heuristics.

1 Introduction

Rather than purely focusing on the mathematical foundations, courses on formal
methods are often based on examples and case studies, supposed to show stu-
dents how to apply formal methods in practice. However, the examples used are
often quite artificial and do not relate to practice. At the same time, examples
based on projects of industry partners are rooted in practice but often are way
too involved for students to understand.

In this paper, we present a different approach, relying on games as exam-
ples for formal models. The models discussed are used in teaching and have
been developed by students both during courses and theses. We deem games
particularly suited as teaching examples for two reasons:

1. The games we use are well-known to the students. We can thus focus on
the modeling and proving as well as on methodology, rather than having to
discuss intended properties of our models. Essentially, reducing the amount
of requirements engineering we have to perform by using common examples
allows us to focus on the formal method itself.

2. Modern computer games are among the most sophisticated examples of soft-
ware systems. Due to the high complexity, implementations of game seman-
tics, e.g., rules of movement, can often only be tested scarcely and are thus
naturally suited for applying formal methods.

c© Springer Nature Switzerland AG 2021
A. Cerone and M. Roggenbach (Eds.): FMFun 2019, CCIS 1301, pp. 124–142, 2021.
https://doi.org/10.1007/978-3-030-71374-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71374-4_6&domain=pdf
http://orcid.org/0000-0001-6712-9798
http://orcid.org/0000-0001-7256-9560
https://doi.org/10.1007/978-3-030-71374-4_6

Prototyping Games Using Formal Methods 125

As a simple example, consider the board game checkers. If an implementation
somehow allowed moving a piece onto a white field, no valid moves would be
defined afterwards. Arbitrary successor states might occur, or the game might
never be over, as no other piece can capture it or vice versa. If the invalid move
is only seldom possible, it might not be hit be testing procedures.

In the following, we will use the B-method [1] and its successor Event-B [2].
Both represent state-based formal methods used for modeling software and sys-
tems and proving their correctness. Models written in B or Event-B can be
animated and model checked using ProB [24–26]. Additionally, we discuss the
tools used in the development of our prototypes in Sect. 3.

Apart from teaching, using formal methods to prototype games has several
advantages for game development itself: First, creation of a working prototype
is often faster in B, due to the high level of abstraction1. Furthermore, step-wise
refinement allows focusing on certain parts of a game. In consequence, our case
studies contribute both to teaching and research.

2 A Primer on B and the B-Method

The formal specification language B [1], its successor Event-B [2] and the B-
method [1] follow the correct-by-construction approach. Their models consist of
a set of machines, which itself contain constants and variables together with cor-
responding type definitions. A predicate (which might have multiple solutions)
is used to describe the initial states.

Different means of composing machines are available. Furthermore, the B-
method heavily relies on abstraction, i.e., the step-wise refinement of very
abstract machines towards more concrete implementations. In addition to
machines, Event-B features contexts, supposed to hold static information.

Machine operations (or events, in case of Event-B) are used to specify tran-
sitions between states. A machine operation has a unique name and consists
of B substitutions defining the state after execution. An operation can have a
precondition allowing or prohibiting execution based on the current state. Oper-
ations can be non-deterministic and might be nested. Furthermore, B features a
multitude of different substitutions, including if-then-else constructs and while
loops. Event-B’s events are considerably simpler and can only include guards for
execution and variable assignments.

To ensure correctness of a specification, the user can define machine invari-
ants, i.e., safety properties that have to hold in every state. Depending on the
tool used, these properties can be verified either by formal proof or using model
checking. In addition, LTL properties can be specified to verify temporal behav-
ior.

Besides using the types explicitly provided by the B language specification,
one can introduce used-defined types in the form of sets. A set is defined by a
unique name and may be initialized by a finite enumeration of distinct elements.
1 Regarding the trade-off between ease of implementation and efficient execution see

[16] for a general point of view and [22] for a perspective on B and Event-B.

126 S. Krings and P. Körner

Sets not defined by enumeration are called deferred sets and are assumed to be
non-empty and finite.

3 Software Used

Both for our courses and the case studies presented below we rely on three tools
for development and verification of formal models. Each supports different verifi-
cation techniques, such as model checking and proof. When writing specifications
in Event-B, one often combines all of them instead of using only a single veri-
fication tool. Consequently, integrations into one another have been developed.
In detail, the tools we use are:

– ProB [24–26], a constraint solver, model finder and model checker for the
B family of languages. One of the key features of ProB is fully automatic
animation of specifications, i.e., the user can traverse the state space without
having to supply values for variables or parameters. In addition, ProB incor-
porates different model checking techniques, including explicit state and sym-
bolic ones [17]. Both model checking and animation are driven by a backend
written in SICStus Prolog [6], relying mainly on its constraint logic program-
ming based solving library [7]. The Prolog kernel is supported by integrating
SMT solvers [18] and SAT solvers [31] via Kodkod [34]. ProB supports LTL
model checking using a tableau-based algorithm as outlined in [11,30].

– Rodin [3] is an IDE for Event-B implemented on top of Eclipse. It features
generation of proof obligations, e.g., for invariant preservation, and can be
combined with different provers for discharging them. In particular, one can
connect the Atelier-B provers [8] and SMT solvers [12,13]. Rodin does not
directly support visualization of models. Instead, ProB is provided as a plu-
gin [5].

– BMotionWeb [20,21] is a tool for the rapid creation of formal prototypes on
top of B and Event-B machines. While ProB supports basic visualizations of
formulas, individual states and the state space, more involved visualizations
and software prototypes are realized using BMotionWeb. In particular, it
allows linking a graphical user interface to a formal specification animated by
ProB.

Below, we present three case studies in which we applied the formal approach
of [20] to prototyping games. In Sect. 4, we present a prototype of Pac-Man, while
in Sect. 5, we are modeling chess. Afterwards, in Sect. 6, a version of Lightbot
is presented. The case studies outline the broad applicability of formal methods
to games: with Pac-Man, we have a game featuring continuous and simulta-
neous movement. In contrast, chess represents turn-based board games where
players move in succession. Finally, the Lightbot game presents how stack-based
programming languages can be implemented.

Prototyping Games Using Formal Methods 127

4 Pac-Man

As a first case study, we use the well-known classic arcade game Pac-Man. We
will start with the set of requirements to be verified in our model in Sect. 4.1.
The requirements are posed to the students in the same way, e.g., as a practical
specification task.

The Event-B model2 is discussed in Sect. 4.2. On top of the model, we used
visualization techniques to implement an interactive and playable prototype as
discussed in Sect. 4.3. In the background, the model checker drives a simple
artificial intelligence controlling the ghosts as described in Sect. 4.4.

4.1 Requirements

We try to keep the set of requirements simple and easy to grasp to help students
focus on applying the formal method rather than spending time on implementa-
tion or specification details. Furthermore, we abstract further from the original
Pac-Man: Instead of being continuous, movement is made discreet, i.e., Pac-Man
and ghosts move on a grid of fields.

rq1 Pac-Man can only be moved from one field of the grid to a direct neighbor
field. This implies that it cannot jump to another position in the level.

rq2 Each ghost can only be moved from one field to a direct neighbor field.
rq3 Pac-Man can only be moved when every ghost, that already left the ghost’s

den, has moved at least once after the last movement of Pac-Man.
rq4 Pac-Man can be moved through a tunnel.
rq5 The first two ghosts must start before Pac-Man starts.
rq6 The third/fourth ghost must start as soon as 30/180 dots are collected.
rq7 Each dot can only be collected once.
rq8 If Pac-Man and a ghost are on the same field, one must catch the other.
rq9 If a ghost catches Pac-Man, the player loses a life.

4.2 Model and Refinement Hierarchy

The model of Pac-Man is split into different refinement levels, each introducing
additional detail to the game. The first refinement level adds Pac-Man’s move-
ment, the second deals with collecting as well as scoring dots and the third and
fourth refinement levels consider moving the ghosts and hunting.

Pac-Man’s Movement. Initially, on the first refinement level, we specify the
movement of Pac-Man, focusing on requirements containing constraints imme-
diately applicable to movement: rq1 and rq4.

The maze in which Pac-Man moves is encoded as a set containing the coordi-
nates of each field. We use two variables to store Pac-Man’s position, one for its
2 A full version of the model can be found at:

https://github.com/pkoerner/EventBPacman-Plugin/tree/master/eventb.

https://github.com/pkoerner/EventBPacman-Plugin/tree/master/eventb

128 S. Krings and P. Körner

current and one for its prior location. Both are members of the set of fields in the
maze as stated using type invariants inv101 and inv102 shown below. Combined,
the invariants state that Pac-Man never leaves the maze.

The last position is kept track of in order to add an invariant inv103a: it can
be used to prohibit jumping over squares. This is sufficient to verify rq1. Using
LTL rather than state invariants, the requirement could also be checked without
introducing an additional variable.

inv101: pos ∈ maze // current position

inv102: prior pos ∈ maze // last position

inv103a: (prj1(pos) − prj1(prior pos) ∈ {2,−2} ∧ prj2(pos) = prj2(prior pos))∨
(prj2(pos) − prj2(prior pos) ∈ {2,−2} ∧ prj1(pos) = prj1(prior pos))

Additionally, the model includes two Boolean variables indicating whether Pac-
Man was moved in the last event and whether it was moved at all. The latter
will allow us to verify rq5 later on. Furthermore, we can already specify that
Pac-Man may move through a tunnel to the opposite side of the grid. This is
done by introducing another Boolean variable, which indicates whether the last
movement was through the tunnel. We add this variable as a guard to invariant
inv103a resulting in inv103 to allow jumps in case of tunnel traversal. We also
state that if the tunnel is used, Pac-Man has to appear on the other side in
inv107.

inv106: tunneled ∈ BOOL // last movement was through tunnel

inv103: (moving = � ∧ tunneled = ⊥) ⇒
((prj1(pos) − prj1(prior pos) ∈ {2,−2} ∧ prj2(pos) = prj2(prior pos))∨
(prj2(pos) − prj2(prior pos) ∈ {2,−2} ∧ prj1(pos) = prj1(prior pos)))

inv107: tunneled = � ⇔ {pos, prior pos} = tunnel

An example of an Event-B event concerned with movement is shown below.

Event move up 〈ordinary〉 =̂
any

p
where

grd101: p ∈ accessible

grd102: (prj1(position) = prj1(p)) ∧ (prj2(position) − prj2(p)) = 2

grd103: position ∈ tunnel ⇒ p /∈ tunnel
then

act101: position before := position

act102: position := p

act103: moving := �
act104: tunneled := ⊥
act105: moved := �

end

Prototyping Games Using Formal Methods 129

Collecting Dots. In a second refinement, we introduce how collecting dots and
thus scoring points works. The corresponding requirements are rq6 and rq7. In
this step, we also add the four super pills which enable Pac-Man to catch ghosts.
Furthermore, we add distinct events for moving Pac-Man to an empty field or
to a dot.

The first three invariants introduced in this refinement state that the score
is a natural number (inv201 and inv202) and, furthermore, that it can only be
increased by either 10 or 200 points or remain the same value (inv203).

inv201: score ∈ N // current score

inv202: score before ∈ N // last score

inv203: score − score before ∈ {0, 10, 200} // possible values for increment

inv204: scoredots current ∈ P(scoredots) // uncollected small dots

inv205: superpills current ∈ P(superpills) // uncollected super pills

inv206: counter scored = card(scoredots) − card(scoredots current) // dots

collected

Invariants inv204 and inv205 give type information for the collectible dots.
Additionally, we count the amount of dots collected in counter scored. Then,
inv206 ensures that no dots get lost, i.e., that every collected dot is awarded to
the player’s score.

The Ghosts, Lives and Hunting. After movement and scoring, a third refine-
ment is used to add the ghosts. This includes their movement as well as catching
Pac-Man. Variables, invariants and events corresponding to the ones we added
for Pac-Man’s rules of movement are added for each ghost as well.

This refinement step satisfies rq2 in the same way rq1 was implemented
earlier. Additional invariants are used to ensure rq6. Again, we can check rq5
with an LTL formula: for all possible paths through the state space, the ghosts
have to move before the Pac-Man can start. In another refinement step, we
introduce that ghosts can be hunted when Pac-Man collects a super pill: once
collected, all ghosts are added to a set of currently catchable ghosts. Once caught,
they are removed from this set. Additional guards are added to the movement
events to ensure only huntable ghosts can actually be caught. Otherwise, the
ghost will catch Pac-Man. Furthermore, we added the lives the player has and
that he loses one if he gets caught. Invariant inv402 ensures that Pac-Man cannot
gain an infinite amount of lives. Moreover, inv404 implies that Pac-Man cannot
gain an additional life and only can lose at most one life at a time. Furthermore,
in this refinement step, we can check both rq8 and rq9 using LTL formulas.

inv402: lives ≤ start lives // current lives

inv404: lives old − lives ∈ {0, 1} // at most one life is removed

inv406: chased ghosts ⊆ {ghost 1, ghost 2, ghost 3, ghost 4} // hunted ghosts

The last refinement step adds further movement rules. These rules enforce the
order of movement, e.g., that the second ghost moves after the first. Additionally,
to satisfy rq3, Pac-Man can only be moved once all ghosts have been moved.

130 S. Krings and P. Körner

Fig. 1. Pac-Man visualization

4.3 Visualization

After the model is initialized, the visualization depicted in Fig. 1 shows the maze
and Pac-Man as well as the ghosts shortly after their initial positions. In addition,
the score value is shown together with the three small Pac-Mans representing
the lives of the player. The visualization reacts to changes of the model using
the observer pattern of BMotionWeb, i.e., we register observers for the variables
and define how the elements of the visualization react to state space changes.

Usually, events are executed by the user by selecting them from a list of
enabled events. To get closer to a playable prototype, we added four arrow
buttons. We registered all events to move the Pac-Man in a direction to each of
the corresponding arrow buttons. When the user clicks on one of the buttons,
BMotionWeb executes the event if it is enabled in the current state.

Additionally, we implemented a listener for key events, enabling the user to
play the model just like the real game by using arrow keys.

Prototyping Games Using Formal Methods 131

4.4 Adding a Simple Game AI on Top of Formal Models

Pac-Man also served as a playground for two novel research directions:

– Can the prototypical model made playable without further code generation,
i.e., by executing it directly using the model checker? In particular, we were
interested to see how user interaction could be designed and what level of
responsiveness could be reached. This line of research later lead to a general
implementation of runtime usage of B models [19].

– Furthermore, Pac-Man allowed us to experiment with state-space search algo-
rithms beyond simple depth-first or breath-first traversal.

To gain a test-bed for both questions, we use the Groovy API of BMotionWeb
in order to implement a simple AI that is able to control the Pac-Man and the
four ghosts. It supports three different modes of operation: First, if the user
plays with the arrow keys, the AI lets Pac-Man move in the given direction until
it hits a wall and moves the ghosts each tick. Secondly, the user may click the
Play!-button and the AI plays the game against itself. This means the Pac-Man
and the ghosts are completely controlled by the AI. Lastly, the AI can be used
in order to move the ghosts automatically after the user moved the Pac-Man.

In the first two cases, we run a loop in a thread until the user stops it or the
game is over. It moves both the Pac-Man and each of the ghosts. While in the
first case, the Pac-Man simply follows its current direction, in the second case
the AI decides where Pac-Man should turn. As a heuristic, we use a breadth-first
search in order to find the nearest dot to score. This directly corresponds to the
search strategy used in the underlying model checker.

In the last case, the model checkers search strategy is only used to control
how the four ghosts are moved. After a specific operation is executed by the
used controlling Pac-Man, we again use breadth-first search to identify possible
paths for the ghosts.

5 Chess

As a second case study, we implemented the well-known board game chess in
B3. Again, we will discuss our model and the set of requirements and continue
with visualization and the integration of a game-playing AI in our model.

5.1 Requirements

When posed as a specification task to students, we usually provide the following
set of requirements, leading to a prototype that can be considered playable:

rq1: Pieces can only be moved in their specific way (e.g., a king can only move
exactly one field into any direction).

3 The main B machine can be found at:
https://github.com/pkoerner/b-chess-example/blob/master/b/board.mch.

https://github.com/pkoerner/b-chess-example/blob/master/b/board.mch

132 S. Krings and P. Körner

rq2: If the king is in check, only moves getting the king out of check are per-
mitted.

rq3: No piece can be moved outside the 8 × 8 board.
rq4: Special moves (Castling, En Passant and Promotion) follow the rules.
rq5: If the king cannot be defended immediately, the game is lost.
rq6: If no legal move is possible for one player, the game is considered as a

draw.
rq7: Both players have the same set of pieces and the white player has the first

move.

5.2 Model and Refinement Hierarchy

Rather than relying on refinement as done with the Event-B specification of
Pac-Man, we use the modularization capabilities of classical B and split our
model into a model containing the board, another for visualization and a third
containing basic variables and sets.

There are two different ways to specify the board: A piece-centric approach
associates all pieces with the field they occupy, e.g., white king → e1. In con-
trast, a square-centric approach maps each field on the board to the piece on
it. This could be done using a partial function (to avoid mapping empty files
to placeholders) or using a total function (which can be beneficial for constraint
solving and visualization). In this case study, we opted for a square-centric repre-
sentation using a total function. We accept the corresponding overhead in order
to find empty fields more easily.

Movement. Moving pieces is encoded using B operations, i.e., each move results
in a state transition. Four different B operations are introduced: movement for
black and white pieces each and taking a piece, again with individual operations
for black and white. Special moves, such as castling, En Passant or promoting
a pawn are added to the model in further refinement steps. Their preconditions
share common predicates, checking if the figure/field combination exists, if a
movement path is feasible and if the player is not in chess.

grd tuple: x ∈ dom(board) // Field x exists in board and it maps to a white or

black piece

grd check: not in check(new board) // The player is not in check after the move

Furthermore, operations have to distinguish between moving and taking a piece:
When taking a piece, it suffices to check whether the movement is valid, i.e.,
according to the rules and all fields in between are empty. Simply moving a
piece, however, requires an additional precondition to check whether the target
field is empty.

grd move: move white piece(piece,x,y,take,board) // move respects movement rules

grd fields: ∀field ∈ between(x, y).free(field) // fields on the way and target are

empty

grd take: take = 1 ⇒ board(y) = opponent piece // if taking: there is an opponent

piece

Prototyping Games Using Formal Methods 133

Fig. 2. Chess visualization

Check, Checkmate and Draw. In order to implement check, one needs to
look one step ahead to find out if an opponent piece could take the king. This
impacts performance, as for every possible move every possible opponent move
might have to be calculated twice: first, when checking whether the move should
be enabled or not and again after executing the operation. Additionally, we
decided to encode checkmate as an invariant violation. One of the invariants
claims that one white king and one black king are part of the match at all times.
If one of them is taken, the invariant is violated and model checking stops.

A draw can be reached in various ways:

– both players agree,
– 50 moves have passed without moving a pawn or taking a piece,
– the situation on the board is deadlocked and the same position is reached too

often.

While the number of moves can be tracked using an integer variable, keep-
ing track of all prior positions leads to a combinatorial explosion, effectively
rendering model checking impossible.

5.3 Visualization

To visualize the chess board and let the user play, we again rely on BMotionWeb.
On the left side of Fig. 2, the visualization itself is placed. Clicking on a piece
and a target field triggers the corresponding operation.

134 S. Krings and P. Körner

An operation can be evaluated manually by clicking on one of those listed
inside the events window on the right-hand side. The history of executed events
is shown below, the user can return to a former state by clicking on one of
the operations listed there. By doing so, the trace rolls back to state after the
operation was executed.

5.4 Minimax as Model Checking Heuristic

Minimax is a game-independent algorithm, i.e., its implementation only differs
in the game-specific evaluation functions used to determinate a value for each
leaf node. For chess, we could consider the number of pieces left for each player
or the value of own pieces compared to opponent pieces (e.g., a queen is more
valuable than a pawn). Furthermore, one could evaluate the number of reachable
fields or movability.

While using as much information as possible in general leads to a stronger AI,
it also renders computing the evaluation function more difficult. As a tradeoff,
we decided on the following information and weights:

– Values of figures residing on the board following the valuation by Shannon E.
Claude [33].

– Number of pawns in desired positions, e.g., passed pawns as well as number
of pawns in undesired positions, e.g., doubled pawns.

– The number of semi-open files, i.e., the number of rows or columns the player’s
rooks can move at least five fields into one direction on. This is a measure
rock movability, which indicates how well players can bring their rooks into
play. We multiply the measure with a weight of 2.

– We count how well the fields adjacent to the own king are guarded, again
applying a weight of 2.

– We measure to what extent a player controls the four squares in the center of
the field. As they are usually crucial to winning the game, we apply a weight
of 3.

To prevent the model checker from running too long, a relatively small search
depth is set. Essentially, this is done by performing a depth-limited exploration of
the state space and applying the evaluation function of Minimax to the reached
states. The highest ranking states are then explored further, effectively driving
the model checker along the path a depth-restricted Minimax would have taken.
As commonly done in chess engines, paths which might yield a better situation
but are too long are not considered further. At the same time, the value of a state
is only influenced by the best movements the opponent can make, i.e., Minimax
implicitly follows the best strategy of both players and thus is not influenced by
good states that have a single bad successor state.

Since a lost game results in an invariant violation, we can now use model
checking to find a playing strategy. Using ProB, we try to find a path leading to
a checkmate and, in consequence, a win. Due to the inherent combinatorial com-
plexity of chess, state spaces are usually too large to be explored exhaustively.
In the future, we want to study the effect of state space reduction techniques
such as partial order reduction on the performance of game prototypes.

Prototyping Games Using Formal Methods 135

6 Lightbot

Lightbot4 is not as universally known as Pac-Man or chess: It is an educational
puzzle game with the aim of programming a robot so that it follows a specific
path through a grid. On its way, it has to light up several tiles of the grid to
reach the overall objective.

The instruction set to control the robot is fairly small, i.e. moving and turning
the robot, letting the robot jump upwards or downwards, toggling special fields
and calling specified procedures. However, this small instruction set is sufficient
to implement recursive programs as well as loops and builds a Turing-complete
language.

While the two former case studies have been created during Bachelor and
Master theses, we have used Lightbot as a mandatory assignment in our course
on safety critical systems several times. Usually, students had to specify a formal
model of Lightbot including a (playable) visualization to be allowed to take the
final exam. In particular, we required the model to be parametric, in the sense
that it should be possible to add and change the robot’s programming during
execution. More general, this implies that students had to specify a model of the
interpreter of Lightbot’s programming language.

6.1 Requirements

The rules of the game can be best explained in form of requirements:

rq1: The robot moves on a three-dimensional board.
rq2: The game is generic, i.e., different levels (boards) are supported and can

be provided and switched in some way.
rq3: The robot supports all moves (forward, toggle light, left/right turn, jump-

ing and entering one of two sub-procedures).
rq4: The robot starts execution in the main-procedure.
rq5: A program stack is required to execute the user-defined sub-routines, as the

may be mutually recursive. Again, this underlines the idea that students
do in fact specify the internal workings of an interpreter.

rq6: The lowest elevation level is 1.
rq7: Starting position and the tiles the robot has to light up to complete the

level are described in the level itself, not hard-coded in the interpreter.

6.2 Refinement Hierarchy

As we expect our students to follow the formal modeling process as a whole, we
do not provide a particular refinement hierarchy upfront.

Our reference specification5 however starts with modeling a two-dimensional
grid that the robot moves upon. In that stage, moving up, down, left and right

4 https://lightbot.com/.
5 Available at: https://www3.hhu.de/stups/models/fmfun19/lb.zip.

https://lightbot.com/
https://www3.hhu.de/stups/models/fmfun19/lb.zip

136 S. Krings and P. Körner

is allowed if the robot faces the corresponding direction. It is also possible to
turn the robot, and to light up specific tiles.

The second refinement steps adds a third dimension. This adds two different
aspects to the game. First, simple movement is now blocked in case the elevation
of the adjacent square is different. Second, a new kind of movement is introduced
as the robot has to jump in order to move vertically. This refinement level com-
pletes the basic execution engine. It is possible to execute all enabled commands
whenever one likes, with no constraints concerning a program counter or limited
amount of memory.

The third refinement level is used to introduce the actual programming of
the robot. We use an Event-B context to describe the level (elevation and tiles to
light up), as well as the starting position of the robot and the direction it faces.
Additionally, the context is used to constrain how large individual procedures
implemented by the player may be.

The corresponding Event-B machine specifies how programs are specified
and executed, i.e., the program has to be written beforehand and, upon inter-
pretation, only operations at the current program counter may be executed.
Additionally, a program stack is added that stores the program counters once
sub-procedures are called and resumes execution upon returning.

6.3 Visualization

As with chess and Pac-Man, the current state of the game can be immediately
identified when looking at a visualization instead of pretty prints of the under-
lying data structures. The visualization in Fig. 3 also relies on BMotionWeb.

On the top left, the grid with the robot and tiles that are to be switched
on (blue) and the ones already lit (yellow) is shown. Underneath, all available
commands are given next to each other. Again, the game is fully playable using
the visualization, e.g., one can select a procedure to add instructions to and
modify it at will. The current code of the main procedure and all sub-procedures
is given below.

The history Event-B events executed by the model checker (both during the
construction and execution of the program) as well as all events that can be
executed in the current state are shown on the right-hand side. As with the
original game, once the robot begins executing the player-given code, only two
Events are still permitted to be executed: fetching the next instruction and
executing it.

Our reference specification and its visualization can be used in order to
explain the game to the students, before they have to implement it on their
own. As it is much easier to reason about a concept that one is familiar with
rather than something given from an informal text-based representation, this
assists students a lot in the early phase.

Prototyping Games Using Formal Methods 137

Fig. 3. Lightbot visualization (Color figure online)

6.4 Models of Virtual Machines

The original game is an educational game on coding. It is used in order to teach
basic programming concepts, such as function calls, recursion and loops.

Following this idea, writing a specification of the game itself (as opposed
to a specification of the player-given code to solve a level) teaches the same
aspects on a meta-level, i.e., how to model and verify function calls, recursion
and loops. Thus, students learn how to model programming languages and their
interpreters.

The same concept could later be applied to “real” programming languages
with more sophisticated semantics.

7 Related Work

In his literature review on the state of teaching formal methods in academia, Zhu-
magambetov identifies several challenges in teaching formal methods [35]. First,
students are often skeptical of the usefulness of formal methods. We believe,
that our programming projects can help overcome this scepticism by stressing
the value of formal methods for implementing games, in particular for getting

138 S. Krings and P. Körner

the game mechanics right. Second, the steep learning curve and little feedback
of formal method tools is discussed. Again, we believe our strong focus on visu-
alization and immediately playability of prototypes helps overcome this burden.
In general, Zhumagambetov suggests to use real-life examples and gamification
to improve formal methods courses, which both can easily be achieved following
our approach to teaching [35].

At FMFun 2019, Schlingloff suggested to teach model checking by referencing
games and puzzles [32]. In particular, he also used chess as an example for
motivation model checking.

Teaching formal methods concepts by relying on card games and card tricks
rather than artificial examples has been considered by Curzon and McOwan [9].
They discuss numerous tricks and small games that visualize the concept of
invariants, etc.

In his dissertation [27], Timo Nummenmaa already considered implementing
game prototypes using formal software development techniques. Both in the
dissertation and in the related publications [28,29] the possible impact of using
formal methods for game development are discussed. In particular, the authors
especially mention the benefit of executable formal models, as we provide by
the combination of B and ProB. We were able to extend upon the former work
thanks to BMotionWeb: we can provide richer and more interactive visualization,
closer to the intended game design itself.

Formal verification of properties of checkers has been considered in [4]. The
authors encode the game as a finite state system and search for winning strategies
using symbolic model checking. In contrast to our work, the focus is on properties
of the game itself, rather than creating playable prototypical implementations.
However, [4] underlines that state spaces of (albeit simple) board games can be
handled by current model checkers.

In [15], the author uses the HOL4 theorem prover [14] to verify chess endgame
databases. To do so, an encoding of possible moves similar to the one in Sect. 5 is
used. Instead of using a model checker to find and evaluate possible moves, the
correctness of predefined move sequences given in endgame databases is verified.

Instead of using verification techniques to encode games, [10] considers the
opposite way: Verification tasks are encoded as games, that could later be solved
by people unaccustomed to software verification. Software and security con-
straints are represented by a simple puzzle-like game, which solution represents
either failure or successful verification.

Directed model checking using different heuristics has been considered in the
context of ProB in [23]. Comparable to the approach used in Sect. 5, the authors
use state properties to control which state ProB’s model checker expands next.
However, heuristics are not as involved as the Minimax algorithm employed in
this paper.

8 Conclusions and Future Work

In summary, our three case studies have shown both advantages and shortcom-
ings of the tools introduced in Sect. 3:

Prototyping Games Using Formal Methods 139

– ProB (or any model checker with animation capabilities) is very important
during development. (Bounded) model checking of the specification usually
gives fast feedback about the correctness of a specification or an implementa-
tion. Animation, in particular with an added visualization on top, allows reas-
suring a developer that changes made to the specification behave as intended.
Sometimes, the tool cannot cope with the entire state spaces though: e.g.,
assumptions about chess based on the rules cannot be model-checked, as the
state space is way too large.

– Student feedback concerning Rodin is rather negative: while it provides a type
checker, a proof obligation generator and proof system with some automated
proof rules, usability is lacking. Sometimes, Rodin is in an inconsistent state
where, e.g., POs are not generated as they should be and a cleaning mecha-
nism has to be invoked. Also, as Event-B files are not plain text, structural
editors are default. Many students find it uncomfortable to switch between
text boxes in the IDE rather than navigating with arrow keys. Furthermore,
some functions such as removing certain elements are hidden in context menus
that only pop up when right-clicking on very specific positions. Finally, the
files do not integrate well with version control systems such as git.

– BMotionWeb is a great tool in order to explain specifications to domain
experts or students, once the visualization and the model are complete. An
application based entirely on web technologies proved to be hard to use
though. When errors occur, it is not clear in which layer the cause is located
in: is it an error in the B model? Is an SVG file broken? Is the config file incor-
rect? Is there a bug in the JavaScript code? As some errors are not reported,
development can be cumbersome if one is not an expert in all technologies
that are used by BMotionWeb.

When applied to the development of game prototypes, they support using
classic formal proof and model checking to verify the correctness of game imple-
mentations. In particular, we have proven both high-level properties about the
game’s implementation itself and the correct representation of the rules of a
game.

As we mentioned in Sect. 4.2, playability of game prototypes is limited,
because it is hard to achieve continuous movement in an Event-B model. Nev-
ertheless, they make for easy to understand and highly motivating examples for
students trying to work their way into formal methods. Turn-based games how-
ever, such as chess or Lightbot, are a great match for “slower” execution due to
interpretation overhead and can be fun and engaging to interact with.

Using BMotionWeb, we have the possibility to animate and visualize our pro-
totypes. As we have shown, BMotionWeb is able to produce playable prototypes
of both real-time and round-based games. However, the visualization behaves
quite slow and is thus not usable in presence of time limits. While this is less
critical for teaching and for implementing board games like chess, it limits the
applicability of our approach to games in general.

140 S. Krings and P. Körner

8.1 Impact on Student Learning

It is hard to measure the influence on how interest, attention and understanding
is enabled for students. There is no clear trend that correlates with introduction
of games as examples: overall student feedback remained the same. The aver-
age grades improved significantly after introducing mandatory projects based
on Lightbot. However, in the following years, exams fell off in quality without
changing the contents. Upon introduction of other examples, the average grade
improved significantly again.

It may be that breaking the routine of the teaching personnel is more engag-
ing for students. It also is possible that some versions of the projects were shared
between students over years, and parts were copied, resulting in students missing
crucial learning outcomes.

Overall, we conclude that teaching – as well as learning – formal methods
is hard. Thus, efforts should be taken to improve student engagements. Using
games as examples is only one of several possible methodologies.

Acknowledgement. We thank Christoph Heinzen who created several versions of the
Pac-Man case study, as well as Philip Höfges for the chess model, AI and GUI.

References

1. Abrial, J.-R.: The B-Book. Cambridge University Press, Cambridge (1996)
2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge

University Press, Cambridge (2010)
3. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:

an open toolset for modelling and reasoning in Event-B. STTT 12(6), 447–466
(2010)

4. Baldamus, M., Schneider, K., Wenz, M., Ziller, R.: Can American checkers be
solved by means of symbolic model checking? Electron. Notes Theoret. Comput.
Sci. 43, 3–17 (2000)

5. Bendisposto, J., Leuschel, M., Ligot, O., Samia, M.: La validation de modèles
Event-B avec le plug-in ProB pour RODIN. TSI 27(8), 1065–1084 (2008)

6. Carlsson, M., Mildner, P.: SICStus Prolog-the first 25 years. TPLP 12(1–2), 35–66
(2012)

7. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint
solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292,
pp. 191–206. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0033845

8. ClearSy. Atelier B, User and Reference Manuals (2016). http://www.atelierb.eu/
9. Curzon, P., McOwan, P.W.: Teaching formal methods using magic tricks. In: Fun

with Formal Methods: Workshop at the 25th International Conference on Com-
puter Aided Verification, Number 122 (2013)

10. Dietl, W., et al.: Verification games: making verification fun. In: Proceedings FTfJP
2012, pp. 42–49. ACM (2012)

11. Dobrikov, I., Leuschel, M., Plagge, D.: LTL model checking under fairness in ProB.
In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol. 9763, pp. 204–211.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41591-8 14

https://doi.org/10.1007/BFb0033845
http://www.atelierb.eu/
https://doi.org/10.1007/978-3-319-41591-8_14

Prototyping Games Using Formal Methods 141

12. Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: SMT solvers for Rodin. In: Der-
rick, J., et al. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 194–207. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-30885-7 14

13. Déharbe, D., Fontaine, P., Guyot, Y., Voisin, L.: Integrating SMT solvers in Rodin.
Sci. Comput. Program. 94, 130–143 (2014). Part 2(0)

14. Gordon, M.J.C.: HOL: a proof generating system for higher-order logic. In:
Birtwistle, G., Subrahmanyam, P.A. (eds.) VLSI Specification, Verification and
Synthesis. SECS, vol. 35, pp. 73–128. Springer, Boston (1988). https://doi.org/10.
1007/978-1-4613-2007-4 3

15. Hurd, J.: Formal verification of chess endgame databases. Technical report, Oxford
University Computing Laboratory (2005)

16. Kennedy, K., Koelbel, C., Schreiber, R.: Defining and measuring the productivity
of programming languages. Int. J. High Perform. Comput. Appl. 18(4), 441–448
(2004)

17. Krings, S., Leuschel, M.: Proof assisted symbolic model checking for B and Event-
B. In: Butler, M., Schewe, K.-D., Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS,
vol. 9675, pp. 135–150. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
33600-8 8

18. Krings, S., Leuschel, M.: SMT solvers for validation of B and Event-B models.
In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 361–375.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0 23

19. Körner, P., Bendisposto, J., Dunkelau, J., Krings, S., Leuschel, M.: Integrating
formal specifications into applications: the ProB Java API. Form. Methods Syst.
Des. (2020). https://doi.org/10.1007/s10703-020-00351-3

20. Ladenberger, L.: Rapid creation of interactive formal prototypes for validating
safety-critical systems. Ph.D. thesis, Heinrich-Heine-Universität Düsseldorf (2017)

21. Ladenberger, L., Leuschel, M.: BMotionWeb: a tool for rapid creation of formal
prototypes. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol. 9763, pp.
403–417. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41591-8 27

22. Leuschel, M.: The high road to formal validation. In: Börger, E., Butler, M., Bowen,
J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 4–23. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-87603-8 2

23. Leuschel, M., Bendisposto, J.: Directed model checking for B: an evaluation and
new techniques. In: Davies, J., Silva, L., Simao, A. (eds.) SBMF 2010. LNCS, vol.
6527, pp. 1–16. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
19829-8 1

24. Leuschel, M., Bendisposto, J., Dobrikov, I., Krings, S., Plagge, D.: From animation
to data validation: the ProB constraint solver 10 years on, Chap. 14. In: Boulanger,
J.-L. (ed.) Formal Methods Applied to Complex Systems: Implementation of the
B Method, pp. 427–446. Wiley ISTE (2014)

25. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2 46

26. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
STTT 10(2), 185–203 (2008)

27. Nummenmaa, T.: Executable formal specifications in game development. Disser-
tation, University of Tampere (2013)

28. Nummenmaa, T., Berki, E., Mikkonen, T.: Exploring games as formal models. In:
Proceedings SEEFM 2009, pp. 60–65 (2009)

https://doi.org/10.1007/978-3-642-30885-7_14
https://doi.org/10.1007/978-1-4613-2007-4_3
https://doi.org/10.1007/978-1-4613-2007-4_3
https://doi.org/10.1007/978-3-319-33600-8_8
https://doi.org/10.1007/978-3-319-33600-8_8
https://doi.org/10.1007/978-3-319-33693-0_23
https://doi.org/10.1007/s10703-020-00351-3
https://doi.org/10.1007/978-3-319-41591-8_27
https://doi.org/10.1007/978-3-540-87603-8_2
https://doi.org/10.1007/978-3-642-19829-8_1
https://doi.org/10.1007/978-3-642-19829-8_1
https://doi.org/10.1007/978-3-540-45236-2_46

142 S. Krings and P. Körner

29. Nummenmaa, T., Kuittinen, J., Holopainen, J.: Simulation as a game design tool.
In: Proceedings ACE 2009, pp. 232–239. ACM (2009)

30. Plagge, D., Leuschel, M.: Seven at one stroke: LTL model checking for high-level
specifications in B, Z, CSP, and more. Int. J. Softw. Tools Technol. Transf. 12(1),
9–21 (2010)

31. Plagge, D., Leuschel, M.: Validating B, Z and TLA+ using ProB and Kodkod.
In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 372–386.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9 31

32. Schlingloff, B.-H.: Teaching model checking via games and puzzles. In: Pre-
proceedings FMFUN 2019 (2019)

33. Shannon, C.E.: Programming a computer for playing chess. In: Levy, D. (ed.)
Computer Chess Compendium, pp. 2–13. Springer, New York (1988). https://doi.
org/10.1007/978-1-4757-1968-0 1

34. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-71209-1 49

35. Zhumagambetov, R.: Teaching formal methods in academia: a systematic literature
review. In: Pre-proceedings FMFUN 2019 (2019)

https://doi.org/10.1007/978-3-642-32759-9_31
https://doi.org/10.1007/978-1-4757-1968-0_1
https://doi.org/10.1007/978-1-4757-1968-0_1
https://doi.org/10.1007/978-3-540-71209-1_49

Teaching Model Checking via Games
and Puzzles

Bernd-Holger Schlingloff1,2(B)

1 Humboldt-Universität zu Berlin, Berlin, Germany
hs@informatik.hu-berlin.de

2 Fraunhofer FOKUS, Berlin, Germany

Abstract. Puzzles and games give a strong motivation for humans to
deal with formal objects: people spend hours and hours in seemingly
useless board games, moving pebbles or cards according to prescribed
rules, trying to beat their opponent in a game or just solving a puzzle.
In this position paper we show how to use this human obsession in order
to teach students formal methods, in particular, SAT solving and model
checking.

Keywords: Model checking · Puzzles · Games · Formal methods ·
Education

1 Introduction

From an evolutionary point of view, being able to plan ahead and foresee a
sequence of events is an essential survival skill. By considering different alterna-
tives and their outcome, thinking beings are able to accomplish complex tasks
and outperform competitors. Games and puzzles are mental exercises which train
and improve the planning capacities of the human brain. Winning a game or solv-
ing a puzzle triggers a neural reward system, which reinforces the interest in the
game or in similar puzzles. Therefore, humankind has always been interested in
games. The earliest board games have been dated back to 2600 BC, with the
oldest written rule set recorded in 177 BC [BrMus]. Being able to play board
games like Chess and Go has been a criterion for machine intelligence at least
since 1950, when Turing suggested a simple chess problem as a question in his
imitation game [Tur 50]. Currently, the best computer programs for these games
play better than any human opponent [SHS+ 17].

We want to demonstrate how the interest in games and puzzles can be used
in a graduate course on automated verification, on advanced bachelor’s or mas-
ter’s level (3rd to 5th year in computer science). We suggest to represent widely-
known challenges as input for verification tools, and to have the students explore
the capabilities and limitations of the tools via these examples. For specific
model checkers and challenges, this suggestion has been made before (see, e.g.,
[SY01,vDR07,EJV05] for a certain coin game, an epistemic riddle, and an ele-
vator problem). Here, we claim that this approach can be used systematically to
c© Springer Nature Switzerland AG 2021
A. Cerone and M. Roggenbach (Eds.): FMFun 2019, CCIS 1301, pp. 143–158, 2021.
https://doi.org/10.1007/978-3-030-71374-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71374-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-71374-4_7

144 B.-H. Schlingloff

introduce various modelling formalisms (propositional logic, labelled transition
systems and concurrent game structures) as well as specification languages (tem-
poral and strategic logics). The proposed method has been tried in the classroom
by the author; however, this paper is not an “experience report”. It rather gives
concrete suggestions how to teach modelling and model checking on the gradu-
ate level in an interesting and intriguing way. Of course, to avoid the impression
that formal methods have been invented to solve games, the playful examples
presented here should be accompanied by appropriate examples from different
industrial domains (which are, however, outside the scope of this paper).

The paper is structured as follows. Section 2 contains some general remarks
of modelling puzzles and games with states and transitions. In Sect. 3, we model
the well-known Sudoku puzzle with propositional logic and show how to use
SAT-solving to find a solution. Section 4 introduces labelled transition systems
for modelling and solving solitaire puzzles such as crossing a river and sliding
blocks. In Sect. 5, we extend our teaching approach to concurrent game structures
for modelling board games such as Tic-tac-toe. As a more scalable example, we
introduce Tourality, which is a competitive rally game for two or more players.
Finally, in Sect. 6 we conclude with ideas how to extend the approach to SMT
modelling, discrete Markov chains, and epistemic structures.

Note: All code used in this paper can be downloaded from the following location.
https://osf.io/jxra3/ (Date: 28.11.2019)

2 Modelling Puzzles and Games

The notion of a state-transition system is fundamental for many formal meth-
ods. State-transition systems are the basis for finite automata, Kripke struc-
tures, labelled transition systems, and many other formalisms. Basically, a state-
transition system is a graph consisting of nodes (i.e., states) and edges (i.e.,
transitions), where each edge connects two nodes. Alternatively, the set of tran-
sitions can be introduced as a relation between states. But what is a state? In
the most general setting, a state of a system is defined to be a complete descrip-
tion of the system, consisting of the value of all parameters that determine the
properties of the system. For a computer program, its state consists of the values
of all variables or memory locations at some point in time. During a computa-
tion, a computer program passes through several states, by assigning values to
variables. The verification task often amounts to showing that certain states are
(un-)reachable. For example, we might want to show that a certain error state
never occurs during execution, or that every computation leads to a state where
the correct result has been calculated. For distributed systems, we might want
to show that the interaction of the programs behaves correctly, i.e., that either
no unwanted global state or some desired system goal state is reached, or that
the system behaves correctly even in the presence of an intruder.

Many logical puzzles and games can be described as state-transitions systems.
Puzzle or game elements are jigsaw pieces, letters, cards, pebbles, pegs, dice,
etc. The state variables describe the current distribution of elements on the

https://osf.io/jxra3/

Teaching Model Checking via Games and Puzzles 145

table or amongst the players. The game ends or the puzzle is solved, if a certain
configuration is reached. In a multi-player game, usually the game ends if one of
the player has reached a winning state.

Thus, both computations and games can be modelled in terms of states
and transitions. This viewpoint is useful to convey the ideas underlying formal
verification methods and model checking to graduate students. Subsequently, we
show how to teach (some parts of) program verification and formal methods via
puzzles and games.

3 Combinatorial Puzzles and SAT Solving

SAT solving is a technique which can be readily used to solve a certain class
of combinatorial puzzles. We demonstrate this with the well-known example of
Sudoku. This puzzle is given on a square board of 9 × 9 fields, which is divided
into nine 3 × 3 sub-squares. Some of these fields are marked with a digit from 1
to 9, some are empty. The challenge is to fill the empty fields with digits (1 to
9) such that

1. each row of the board contains each digit exactly once,
2. each column of the board contains each digit exactly once, and
3. each sub-square contains each digit exactly once.

For any given marking of the field, there may exist no, exactly one, or more than
one solution. Usually, the given marking is constructed such that there is exactly
one solution. An example of a Sudoku puzzle and its solution is given in Fig. 1.

In a classroom, one could discuss strategies for solving such a puzzle after
presenting the problem. There are various methods, ranging from the identi-
fication of unique candidate digits for a certain field, via placement of digits
with backtracking, to various heuristic and brute force methods. Here, one could
discuss the complexities of various methods.

We assume that the students have a basic understanding of propositional
logic and the notion of satisfiability. Probably it is a good idea to remind them
that SAT is the generic NP-complete problem. With this harness, it is possible
to describe the problem of finding a solution for a given Sudoku puzzle as a

Fig. 1. A Sudoku puzzle and its solution [Wiki1]

146 B.-H. Schlingloff

boolean satisfiability problem. The following encoding is inspired by the Sudoku
web page and interactive Java applet by Ivor Spence [Spence].

We construct a boolean formula which is satisfiable if and only if the Sudoku
puzzle has a solution. Assume that the rows and columns of the board are
numbered from 1 to 9. In our formula, there are nine propositions per field:
Proposition p[i,j,k] indicates that the field on row i and column j contains
digit k. Thus, in the above example, p[1,1,5] is TRUE, and p[1,1,1] is FALSE.
Since there are 9 × 9 = 81 fields, this gives 729 propositions in total.

Obviously, it is tedious to write boolean formulas with these many vari-
ables explicitly. Therefore, we use an array notation p[i,j,k] together with
finite quantification forall i=1..9 and exists i=1..9 as abbreviations for
the respective conjunction and disjunction, respectively. For example, exists
k=1..9 (p[1,1,k]) is short for (p[1,1,1] | p[1,1,2] | p[1,1,3] | p[1,1,4]
| p[1,1,5] | p[1,1,6] | p[1,1,7] | p[1,1,8] | p[1,1,9])1. It is easy to write
an appropriate pre-processor which expands formulas containing these finite
quantifications into purely propositional formulas.
The following formula asserts that each field contains exactly one digit:

(forall i=1..9 forall j=1..9 exists k=1..9 (p[i,j,k]) &
forall i=1..9 forall j=1..9 forall k=1..9 forall l=1..9, l�=k:

!(p[i,j,k] & p[i,j,l]))
The following formula asserts that each digit is contained in each row at least
once:

(forall i=1..9 forall k=1..9 exists j=1..9 (p[i,j,k]))
Similarly, it can be formulated that each digit is contained in each column at
least once:

(forall j=1..9 forall k=1..9 exists i=1..9 (p[i,j,k]))
The formula for the sub-squares looks slightly more complex, but its boolean
expansion is not:

(forall s=0..2 forall t=0..2 forall k=1..9
exists i=1..3 exists j=1..3 (p[(3*s+i),(3*t+j),k]))

Recall that the expansion of this formula is as follows:
(p[1,1,1] | p[1,2,1] | p[1,3,1] | p[2,1,1] | ... | p[3,3,1]) &
(p[1,1,2] | p[1,2,2] | p[1,3,2] | p[2,1,2] | ... | p[3,3,2]) &

... &
(p[1,1,9] | p[1,2,9] | p[1,3,9] | p[2,1,9] | ... | p[3,3,9]) &
(p[1,4,1] | p[1,5,1] | p[1,6,1] | p[2,4,1] | ... | p[3,6,1]) &

... &
(p[7,7,9] | p[7,8,9] | p[7,9,9] | p[8,7,9] | ... | p[9,9,9])

Even though this may look like a long formula, it contains only 93 = 729 literals.
Finally, the value of pre-filled fields can be easily expressed by fixing the values
of the respective propositions. For the above example, this gives
1 In this paper, we use the symbols |, & and ! for logical disjunction, conjunction, and

negation.

Teaching Model Checking via Games and Puzzles 147

p[1,1,5] & p[1,2,3] & p[1,5,7] & p[2,1,6] & ... & p[9,9,9].
Now, the Sudoku puzzle is solvable if and only if the conjunction of the

above formulas is satisfiable, i.e., if there exists an assignment of truth values to
propositional variables such that the whole formula becomes true. Modern SAT
solver like miniSAT are able to find such an assignment, if it exists, within a few
seconds. The above formula contains 729 propositions and approximately 9.000
literals. For such a problem size, satisfiability is decided within a few seconds.
Each satisfying model gives a solution of the puzzle, since it determines the value
of all propositions in the formula.

It is important to remark that the formula is just a representation of the
problem; solving the problem is completely done within the SAT solver. We did
not suggest or implement any heuristic or systematic way to solve the puzzle.
Therefore, this approach is applicable for a large range of similar examples, where
the task is to construct a certain state. However, if the problem size increases,
it may be of advantage to explore different strategies implemented within the
specific SAT solver which is used. For this, various extensions of the problem
(an n × n board with increasing n, additional conditions on the solution, latin
squares, etc.) can be analysed.

Thus, in a verification course, SAT procedures and heuristics for SAT solv-
ing can be discussed starting with this example. Furthermore, the behaviour of
different SAT solvers on various examples can be measured and discussed.

4 Solitaire Puzzles and Model Checking

A somewhat more intricate sort of puzzles is asking not for a single goal state,
but for a sequence of states leading to a certain outcome. In a solitaire game, a
single player has to construct this sequence. The case when there is more than
one player will be covered in the next section.

A classical example from the late 9th century is the ‘wolf, goat and cabbage’
problem. It is originally described as follows (see [AoY]): “A certain man needed
to take a wolf, a she-goat and a load of cabbage across a river. However, he could
only find a boat which would carry two of these [at a time]. Thus, what rule did
he employ so as to get all of them across unharmed?”

This puzzle is excellent to introduce the notion of a labelled transition system.
If we assume that the man and the boat are always at the same side of the
river, then there are four state variables indicating the position of the items:
p man, p wolf, p goat, p cabb. Each of these state variables can be FALSE
(indicating that the respective subject is still on the original side of the river), or
TRUE (indication that the river has been crossed). Thus, there are 24 = 16 states
in the labelled transition system. These are depicted in Fig. 2, where each node
label gives the values of p man, p wolf, p goat, p cabb. For example, node
label 1100 means that man and wolf have crossed the river, whereas goat and
cabbage are still on the original side. Labels w, g, c, and n indicate a crossing
of the river by the ferryman with wolf, goat, cabbage, or no load, respectively.

148 B.-H. Schlingloff

Fig. 2. Labelled transition system for the wolf-goat-cabbage problem

We want to model the problem in SMVL, the input language of the nuSMV
model checker (see [CCGR 00]). As SMVL does not allow labels on transitions,
we introduce an additional state variable boat, which can take any of the values
{w, g, c, n}. With this, the transition relation is described as follows:

init(p man) := FALSE;
init(p wolf):= FALSE;
init(p goat):= FALSE;
init(p cabb):= FALSE;

next(p man):= ! p man ;
next(p wolf):= case

p wolf = p man & boat = w : !
p wolf;

TRUE : p wolf; esac;
next(p goat):= case

p goat = p man & boat = g : !
p goat;

TRUE : p goat;
esac;
next(p cabb):= case

p cabb = p man & boat = c : !
p cabb;

TRUE : p cabb;
esac;

Here are some explanations on this definition. Initially, all state variables
are FALSE, and the variable boat has an arbitrary value. The variable p man
oscillates between TRUE and FALSE; we assume, that the ferryman crosses the

Teaching Model Checking via Games and Puzzles 149

river in every step. The next position of the wolf is determined as follows: If the
wolf is on the same side as the man, and the boat variable indicates that the
wolf is to be taken, then in the next state the wolf will be on the other side.
In all other cases, the wolf has to remain where it is, i.e., the variable does not
change. The same explanation holds for the lines concerning goat and cabbage.

In order to solve the puzzle automatically, we need to express the fact that
certain of the states are “harmful”. This can be conveniently done by a boolean
formula on the state variables:

wolf eats goat := ((p wolf = p goat) & (p man != p wolf));
goat eats cabb := ((p goat = p cabb) & (p man != p goat));
harmful := (wolf eats goat | goat eats cabb);

This reflects the fact that the wolf can eat the goat, if they are both on the same
side, and the ferryman is on the other side; and likewise for goat and cabbage.
Furthermore, we can characterize the goal state(s):

all crossed := (p man & p wolf & p goat & p cabb);
The task is completed if all three objects have crossed the river. Now we can ask
nuSMV for the solution of the puzzle:

SPEC E [!harmful U all crossed]
E [ϕ U ψ] is the CTL existential-until operator. Thus, the formula can be read
as “there is a path from an initial state to a state where all items have crossed
which passes no harmful state.” The model checker immediately confirms that
this is the case. However, this is not very helpful, as we would like to know an
example for such a path. Therefore, we ask for the negation of the formula:

SPEC !E [!harmful U all crossed]
As expected, the model checker confirms that this formula is false and delivers
as proof a counterexample, i.e., a sequence of eight steps falsifying the formula
and thus demonstrating our original aim (Fig. 3).

Fig. 3. nuSMV solution for the wolf-goat-cabbage problem

150 B.-H. Schlingloff

The above example has the disadvantage that it is not easy to extend the
problem size. Grid-based games and puzzles like Sudoku are better suited to
explore the abilities and limits of verification tools. A well-known example of
this kind, allegedly invented by Sam Loyd in the 1870s, is the Fifteen-puzzle, It
consists of a h×v grid in which there are (h ·v)−1 numbered tiles and one blank
space. Originally, h = v = 4, hence the name of the puzzle. A move consists in
moving any tile into the position of the blank. The goal is to achieve a certain
predetermined order on the tiles (usually ascending).

In contrast to Sudoku, this puzzle can not directly be coded as a boolean
satisfiability problem. The set of states is given by the distribution of the tiles
on the grid. Similar as in the previous example, solving the puzzle must be done
by constructing a sequence of states, where each next state is reachable from the
current state via a legal move (Fig. 4).

3 4 5

876

21

4

8 7

1

6

5 3

2

Fig. 4. The 3 × 3–Fifteen-puzzle: Start- and end-state [CS01]

This puzzle can be described by a state-transition system as follows. For each
tile there is a program variable which notes its horizontal and vertical position.
Furthermore, there is a program variable move indicating whether the next move
will be a shift up, down, left or right of the blank space. If the move would bring
it out of the borders, nothing is changed; otherwise, its position is swapped with
the respective adjacent tile.

The SMV code corresponding to this description2 is shown below.
For h = 3 and v = 3, the internal representation of the transition relation uses

440.419 nodes. There are 4 · (h · v)! = 1.4 · 106 states, of which 50% are reachable
from an initial state. (Note that there are four initial states, since we did not fix
the initial value for variable move.) As in the previous example, the specification
claims that a certain final state is not reachable; the model checker contradicts
this claim by showing a sequence of moves (ddrruullddrruullddrruullddrr) which
gives a solution to the puzzle. The solution is found within a few seconds.

2 As above, in the actual SMV code, variable array bounds or indices, e.g., vpos[i],
are not allowed and have to be replaced by the respective constant values
vpos[1],vpos[2],....

Teaching Model Checking via Games and Puzzles 151

MODULE main
DEFINE h := 3; v := 3;
VAR move: {u,d,l,r};

hpos: array 0..(h*v-1) of 1..h;
vpos: array 0..(h*v-1) of 1..v;

ASSIGN
next(vpos[0]) := case

(move=l) & !(vpos[0]=1) : vpos[0] - 1;
(move=r) & !(vpos[0]=v) : vpos[0] + 1;
1: vpos[0]; esac;

next(hpos[0]) := case
(move=u) & !(hpos[0]=1) : hpos[0] - 1;
(move=d) & !(hpos[0]=h) : hpos[0] + 1;
TRUE: hpos[0]; esac;

forall i=0..8:
next(vpos[i] := case

(move=l) & !(vpos[0]=1) & hpos[i]=hpos[0] & vpos[i]=vpos[0]-1 |
(move=r) & !(vpos[0]=v) & hpos[i]=hpos[0] &

vpos[i]=vpos[0]+1 : vpos[0];
TRUE: vpos[i]; esac;

next(hpos[i]) := case
(move=u) & !(hpos[0]=1) & vpos[i]=vpos[0] & hpos[i]=hpos[0]-1 |
(move=d) & !(hpos[0]=h) & vpos[i]=vpos[0] &

hpos[i]=hpos[0]+1 : hpos[0];
TRUE: hpos[i]; esac;

init(vpos[i]) := i div v; init(hpos[i]) := i mod v;
DEFINE goal := (vpos[i] = 3 - (i div v) & hpos[i] = 3 - (i mod v));
SPEC !EF goal

For h = 4, v = 3, there are approximately 109 reachable states. Although
the symbolic model checker detects rather quickly that some solution must exist,
for the construction of a concrete solution sequence the state space has to be
partitioned into strongly connected components. This requires significant CPU
time and memory. Thus, this example is well-suited to discuss complexity and
try the many options which nuSMV offers. In particular, a teacher can explain
the idea of bounded model checking, thereby relating solitaire games to SAT
solving.

There are several other, comparable puzzles of this type which can be treated
in classroom exercises. An example similar to river crossing is the ‘water pouring
puzzle’ from the 17th century, where the objective is to reach a certain distribu-
tion of water in three jugs [Bac 1612]. Various sliding block puzzles like Klotski
or Sokoban can be treated similar to the ‘Fifteen-puzzle’. Another example is peg
solitaire, where the objective is to empty a board of pegs [JMMT 06]. It would
also be interesting to model 3D-objects like Rubik’s Magic, Clock or Cube.

152 B.-H. Schlingloff

5 Board Games and Strategic Logics

In the previous section, we considered puzzles and solitaire games, which are well-
suited of demonstrating the computing paradigm of reactive systems. A single
player reacts to a challenge posed by the environment. The situation changes
if we consider interactive systems, where two or more players interact, and the
actions of the players are mutually dependent. Interactive systems have been
researched under different names: Distributed computing systems, Multi-agent
systems, Cyber-physical systems, Multi-player games, and others.

For modelling interactive systems, concurrent game structures (CGS) are
being used. Basically, a concurrent game structure for n players is an n-tuple of
labelled transition systems. Formally, a CGS is a structure (Agt, S, Act, π, δ, s0),
where Agt = {a1, ..., an} is a finite set of agents, S = S1 × · · · × Sn is a finite set
of global states (and each global state s is a tuple 〈s1, ..., sn〉 of local states), Act
is a finite set of actions, π : Agt × S �→ 2Act is the protocol function indicating
which actions are available to an agent is a certain state, δ : S × Actn × S is
the evolution function (i.e., transition relation) indicating how the global state
changes if the agents each perform a certain action, and s0 ⊆ S are the initial
states of the structure. The evolution function gives a successor state only for
those combination of actions which are available to the agents in a state (i.e.,
(s, 〈e1, ..., en〉, s′) ∈ δ implies that ei ∈ π(ai, s) for all i ≤ n, and if ei ∈ π(ai, s)
for all i ≤ n, then there is exactly one s′ such that (s, 〈e1, ..., en〉, s′) ∈ δ).

A strategy is a plan which tells an agent which of the available actions to
choose in a certain situation. Often, the strategy is used to reach a designated
goal state, or to stay within a set of safe states. Formally, a strategy σi for agent
ai ∈ Agt is a function σi : S �→ Act, such that σi(s) ∈ π(sai, s). Given strate-
gies σ1, ..., σn for all players of a CGS, there is exactly one execution sequence
following all these strategies.

Strategic logics like the alternating temporal logic ATL have been proposed
to reason about interactive systems modelled by concurrent game structures.
ATL is an extension of CTL which allows quantification on strategies. Formula
〈A〉ϕ expresses that there exists a strategy for the players a ∈ A such that they
can force the temporal logic formula ϕ to hold, no matter what the other players
do, This is convenient to express the fact that a player has a winning strategy
in a game.

Fig. 5. A Tic-tac-toe game [Wiki2]

As a simple example, we use the classic game of Tic-tac-toe, also called
‘Noughts and crosses’ or ‘Three in a row’. It is played on a 3 × 3 grid on paper,

Teaching Model Checking via Games and Puzzles 153

where two players take turn marking the fields with X and O. The player who
first has three of her/his symbols horizontally, vertically or diagonally in a row
wins. For an example game, consider Fig. 5.

In contrast to solitaire games, in two-player games the actions of each player
depend on the actions of the opponent. Thus, to construct a winning strategy
one has to consider all potential strategies of the opponent. This makes strategic
model checking often much more complex than reachability analysis.

Such games can be analyzed via strategic model checkers such as MCMAS
(see [LQR 09]). Subsequently, we formalize the rules of Tic-tac-toe in (a language
similar to)3 ISPL, which is the input language for MCMAS.

Agent Environment
Obsvars:

turn: {nought, cross}; -- variable indicating who’s turn it is
b[1..3][1..3]: {x, o, b}; -- the board markings; b means blank

end Obsvars
Evolution:

-- turn switches between every two moves
turn=nought if turn=cross; turn=cross if turn=nought;
-- board is marked according to the move
forall i=1..3 forall j=1..3

b[i][j] = o if turn = nought & Nought.Action = a_ij;
forall i=1..3 forall j=1..3

b[i][j] = x if turn = cross & Cross.Action = a_ij;
end Evolution

end Agent

Agents Nought, Cross
Actions = {a_ij | i=1..3, j = 1..3};
Protocol: -- Action a_ij is available if Board b[i][j] is blank:

forall i=1..3 forall j=1..3 (b[i][j]=b : {a_ij});
end Protocol

end Agent

Evaluation
noughtwins if

(exists i=1..3 b[i][1]=o & b[i][2]=o & b[i][3]=o) |
(exists i=1..3 b[1][i]=o & b[2][i]=o & b[3][i]=o) |
b[1][1]=o & b[2][2]=o & b[3][3]=o |
b[3][1]=o & b[2][2]=o & b[1][3]=o;

crosswins if
-- similar, =x instead of =o

end Evaluation

3 ISPL does not admit arrays, these must be expanded by a suitable pre-processor.
Furthermore, ISPL has some syntactic peculiarities which do not contribute to the
goals of this article and, thus, are left out. The full code of all examples in this article
can be obtained from the author.

154 B.-H. Schlingloff

InitStates
(forall i=1..m forall j=1..n b[i][j]=b) & (turn = cross);

end InitStates

Formulae
<Cross> F crosswins;
<Nought> F noughtwins;

end Formulae

Perhaps surprisingly, the model checker reports that the first formula is TRUE
and the second one FALSE. This is because agent Cross indeed has a strategy to
reach three x in a row if it does not care whether agent Nought reaches three o
in a row first. Thus we have to ask whether one of the following formulas is true:

<cross> F (crosswins & ! noughtwins);
<nought> F (noughtwins & ! crosswins);

This is indeed not the case, as the model checker confirms in 0.372 s.
Tic-tac-toe can be easily generalized to the (m, n, k)-game, where two players

compete to place k symbols in a row on an m × n grid. This generalization is
mathematically interesting, as it quickly leads to open questions: For example,
for k ≥ 9 it can be shown that even on an infinite board there is no winning
strategy for the first player. However, for k = 6 or k = 7 it is not known
whether there are m and n such the first player has a winning strategy in the
(m, n, k)-game. Consequently, the complexity of model checking quickly grows
with increasing m, n and k: Already for the (4, 4, 3)-game there are more than
107 reachable states, and it takes more than 4 min to find a winning strategy for
agent Cross.

Thus, for use in a model checking course, we prefer other examples. Subse-
quently, we describe a location-based game which has been called Tourality4. It
is played by two players and resembles the classical computer game PacMan,
but without the real-time aspect.

The game is played on an 8 × 8 droughts/checkers board, with some set-
up of black and white tiles. Black tiles are obstacles, which remain in position
throughout the game. White tiles are rewards, which are collected by the players.
In one corner of the board there is a red peg, and in the opposite corner a blue
peg. One player sets up the board, the other one chooses whether to play red
or blue. Players take turn moving their peg to an (horizontally or vertically)
adjacent field on the board. It is not allowed to move onto a field occupied by an
obstacle or the other player’s peg. If a player moves the peg onto a field where
there is a reward, it is collected. Red begins. The game ends when all rewards
are collected, and the player who has collected most rewards wins.

4 Actually, Tourality is a GPS-based treasure hunt where real people are trying to
outperform each other in reaching certain locations. We use a card-board abstraction
of this game which was introduced in a German national competition for computer
science education.

Teaching Model Checking via Games and Puzzles 155

Fig. 6. Three different Tourality set-ups (Color figure online)

Tourality can be easily modelled by a concurrent game structure. For space
reasons we give only the main constituents, again in “not quite” ISPL.

Agent Environment
Obsvars:

turn : {red, blu}; xred, yred, xblu, yblu : 1..8;
reward[1..5] : {avail, taken}; -- for example, 5 rewards
points_red, points_blu: 0..5;
constant b[1..8][1..8] : {empty, block}; -- the board
constant xreward[1..5], yreward[5]: [1..5]; -- positions of the rewards

end Obsvars
Evolution:

-- turn switches between every two moves
turn=red if turn=blu; turn=blu if turn=red;
-- positions are updated according to the move
yred=yred-1 if turn = red & Red.Action=up;
yred=yred+1 if turn = red & Red.Action=dn;
-- and similar for other actions and player Blu;
-- board and points are updated according to the moves of the players:
for 1=1..5: reward[i] = taken if reward[i] = avail &

(turn = blu & xred = xreward[i] & yred = yreward[i] |
turn = red & xblu = xreward[i] & yblu = yreward[i]);

for 1=1..5: points_red=points_red+1 if reward[i] = avail &
turn = blu & xred = xreward[i] & yred = yreward[i];

for 1=1..5: points_blu=points_blu+1 if reward[i] = avail &
turn = red & xblu = xreward[i] & yblu = yreward[i];

end Evolution
end Agent

Agent Red
Actions = { up, dn, lt, rt };
Protocol:

-- if it is red’s turn and at position i,j and target field is not blocked
-- and target field is not occupied, then the movement action is available
for some x=1..8: for some y=1..7:

xred=x & yred=y & b[x,y+1]=empty & !(xblu=x & yblu=y) : { dn };
for some x=1..8: for some y=2..8:

xred=x & yred=y & b[x,y-1]=empty & !(xblu=x & yblu=y) : { up };
for some x=1..7: for some y=1..8:

156 B.-H. Schlingloff

xred=x & yred=y & b[x+1,y]=empty & !(xblu=x & yblu=y) : { rt };
for some x=2..8: for some y=1..8:

xred=x & yred=y & b[x-1,y]=empty & !(xblu=x & yblu=y) : { rt };
end Protocol

end Agent

Agent Blu
-- similar

end Agent

InitStates
b = [[empty, empty, block, empty, block, empty, empty, empty], ...] &
xreward=[3,2,5,4,3], yreward=[2,5,7,1,4] &
xred = 1 & yred = 1 & xblu = 8 & yblu = 8 & turn = red &
for i=1..5: reward[i] = avail & points_red = 0 & points_blu = 0;

end InitStates

Formulae
<Red> F (points_red >= 3); -- has Red a winning strategy?

end Formulae

MCMAS can check the example set-ups in Fig. 6 within a few seconds (for
the first and third board) and a few minutes (for the second one). As can be
seen by these examples, already the normal rules of the game allow for many
variants. One can arrange the obstacles such that they form a maze, or such that
they block certain parts of the board. This can drastically reduce the number of
reachable states. Alternatively, one can have few or many rewards on the board,
thereby decreasing or increasing the number of possible strategies. Already a
few experiments show this effect very clearly: whereas the first example setup in
Fig. 6 has 7 × 105 reachable states and uses 3.5 s, the third one has only 3 × 105
states, but needs 12 s. Adding more rewards yields an exponential blowup, e.g.,
the middle setup in Fig. 6 with 9 rewards has 2 × 107 reachable states and uses
6 m, with 10 rewards the size of the reachable state space is 108 and uses 15 m.
and with 11 rewards there are 109 reachable states calculated in 150 m.

However, in a computer based version of the game, it is also possible to vary
other parameters of the game. For example, the vicinity relation can be changed
to allow also horizontal moves. Alternatively, one can allow only moves according
to the knight’s movement in chess. Furthermore, one can replace the turn-based
move by concurrent moves of the player. It is also possible to introduce more
than two players, and to allow coalitions and competition between them. It is
fun to play around with these alternatives and see how the game changes and
how the model checker behaves. This can be useful to explain the potential of
strategic model checking.

Other locality-based games are likewise well-suited to motivate this tech-
nique. For example, formalising the rules of Nine Men’s Morris is an interesting
exercise. A more challenging task would be to ask students to model and solve
end games in chess.

Teaching Model Checking via Games and Puzzles 157

6 Conclusion

In this paper, we have shown how to use puzzles and games to demonstrate
the potential and limitations of model checking in a graduate-level course. We
used SAT solving for Sudoku, model checking for the ‘wolf, goat and cabbage’
problem and the Fifteen-puzzle, and strategic model checking for Tic-tac-toe
and Tourality.

There are many extensions to the ideas presented here. SMT solving (satisfia-
bility modulo theories) can be used for problems involving integers. An example
are alphametic puzzles, where an arithmetic problem is given with letters in
place of the digits, and the challenge is to deduce which digit corresponds to
each letter.

Discrete Markov chains and probabilistic model checking (e.g., with the
PRISM model checker) can be explained with the help of dice games.

An extension to model checking of multi-player games with perfect informa-
tion is the case of imperfect information. To model such situations, epistemic
concurrent game structures have been proposed. MCMAS is able to encode indi-
vidual knowledge of the agents in the epistemic accessibility relation between
states. Furthermore, formulas containing epistemic modalities E, C, and D can
be checked. Epistemic logics are often introduced via artificial set-ups such as
dining cryptographers (“Who knows what about the payment?”), muddy chil-
dren (“Who has a spot on the forehead?”), detective puzzles (“Does the murderer
know that the detective knows that ...”), or similar. We prefer to use simplified
versions of common card games like Bridge, Poker, or Blackjack, where each
player has some private knowledge, and additionally there is public knowledge
about the distribution of cards. However, a strong factor in these games is the
probabilistic aspect brought in by the random distribution of cards. Unfortu-
nately, to our knowledge there are no logics and tools combining probabilistic
analysis with strategic and epistemic reasoning. This could turn out to be a
fruitful research topic.

Thus, our considerations are not only useful for education. Since games and
puzzles often are just abstract representations of real-life challenges, they may
give directions on how to further evolve the formal methods tools. As another
example, we would like to be able to use strategic model checking in an on-line
fashion, to enable the synthesis of controllers for embedded systems which have
to react in real time.

Acknowledgements. The author wishes to thank Damian Kurpiewski for helpful
discussions on MCMAS, and Stephan Merz for discussions on the game-based approach
to model checking education. This research was supported by the German BMBF
project “CrESt” on collaborative embedded systems, FKZ 01|S16043G/E.

158 B.-H. Schlingloff

References

[BrMus] British Museum: The Royal Game of Ur ∼2600/∼2400.
https://artsandculture.google.com/asset/the-royal-game-of-ur/
MwE2MMZNSKiTwQ. Clay cuneiform tablet. https://www.
britishmuseum.org/research/collection online/collection object details.
aspx?objectId=796973&partId=1. Accessed 13 Nov 2019

[Tur 50] Turing, A.: Computing machinery and intelligence. Mind 59, 433–460
(1950)

[SHS+ 17] Silver, D., et al.: Mastering chess and shogi by self-play with a general rein-
forcement learning algorithm. arXiv:1712.01815v1 [cs.AI] (2017). https://
arxiv.org/pdf/1712.01815.pdf. Accessed 13 Nov 2019

[SY01] Shilov, N.V., Yi, K.: Puzzles for learning model checking, model
checking for programming puzzles, puzzles for testing model check-
ers. Electron. Notes Theoret. Comput. Sci. 43, 34–49 (2001).
http://www.elsevier.nl/locate/entcs/volume43.html. Accessed 13 Nov
2019

[vDR07] van Ditmarsch, H., Ruan, J.: Model checking logic puzzles (2007).
https://www.researchgate.net/publication/29646125 Model Checking
Logic Puzzles. Accessed 13 Nov 2019

[EJV05] Eskildsen, J., Jensen, L.H., Vester, B.M.: Symbolic model check-
ing in puzzle games - automated reachability analysis. Aalborg
Universitet, DAT4, May 2005. https://pdfs.semanticscholar.org/1783/
d58420fd6a05b90dc29bbba5fc2cd9e3a113.pdf. Accessed 13 Nov 2019

[Wiki1] Wikipedia: Sudoku. https://en.wikipedia.org/wiki/Sudoku. Puzzle drawn
by Tim Stellmach, CC0. https://commons.wikimedia.org/w/index.php?
curid=57831926. Solution drawn by en:User:Cburnett, CC BY-SA 3.
https://commons.wikimedia.org/w/index.php?curid=57831971. Accessed
13 Nov 2019

[Spence] Spence, I.: The SuDoku puzzle as a satisfiability problem. http://www.cs.
qub.ac.uk/∼I.Spence/SuDoku/SuDoku.html. Accessed 13 Nov 2019

[AoY] Alcuin of York: Propositiones ad Acuendos Juvenes, Problem XVIII.
Propositio de homine et capra et lupo. 9th century a.D., Translation by
Burkholder, P. http://www.math.muni.cz/∼sisma/alcuin/anglicky1.pdf.
Accessed 13 Nov 2019

[CCGR 00] Cimatti, A., Clarke, E., Giunchiglia, F., Roveri, M.: NuSMV: a new sym-
bolic model verifier. Int. J. STTT 2(4), 410–425 (2000)

[Bac 1612] Bachet, C.-G.: Problemes plaisans et delectables, Published by P. Rigaud,
Lyon (1612). Text available at https://www.loc.gov/resource/rbc0001.
2009gen48833/. See also https://en.wikipedia.org/wiki/Water pouring
puzzle. Accessed 13 Nov 2019

[JMMT 06] Jefferson, C., Miguel, A., Miguel, I., Tarim, S.A.: Modelling and solving
English Peg Solitaire. Comput. Oper. Res. 33(10), 2935–2959 (2006)

[CS01] Clarke, E.M., Schlingloff, H.: Model checking. In: Handbook of Automated
Reasoning. Elsevier Science Publishers (2001)

[Wiki2] Wikipedia: Tic-tac-toe. https://en.wikipedia.org/wiki/Tic-tac-toe. Draw-
ing by User: Stannered - en:Image:Tic-tac-toe-game-1.png, CC BY-SA 3.0.
https://commons.wikimedia.org/w/index.php?curid=1866155. See also
https://en.wikipedia.org/wiki/M,n,k-game. Accessed 13 Nov 2019

[LQR 09] Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: a model checker for the
verification of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.)
CAV 2009. LNCS, vol. 5643, pp. 682–688. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02658-4 55

https://artsandculture.google.com/asset/the-royal-game-of-ur/MwE2MMZNSKiTwQ
https://artsandculture.google.com/asset/the-royal-game-of-ur/MwE2MMZNSKiTwQ
https://www.britishmuseum.org/research/collection_online/collection_object_details.aspx?objectId=796973&partId=1
https://www.britishmuseum.org/research/collection_online/collection_object_details.aspx?objectId=796973&partId=1
https://www.britishmuseum.org/research/collection_online/collection_object_details.aspx?objectId=796973&partId=1
http://arxiv.org/abs/1712.01815v1
https://arxiv.org/pdf/1712.01815.pdf
https://arxiv.org/pdf/1712.01815.pdf
http://www.elsevier.nl/locate/entcs/volume43.html
https://www.researchgate.net/publication/29646125_Model_Checking_Logic_Puzzles
https://www.researchgate.net/publication/29646125_Model_Checking_Logic_Puzzles
https://pdfs.semanticscholar.org/1783/d58420fd6a05b90dc29bbba5fc2cd9e3a113.pdf
https://pdfs.semanticscholar.org/1783/d58420fd6a05b90dc29bbba5fc2cd9e3a113.pdf
https://en.wikipedia.org/wiki/Sudoku
https://commons.wikimedia.org/w/index.php?curid=57831926
https://commons.wikimedia.org/w/index.php?curid=57831926
https://commons.wikimedia.org/w/index.php?curid=57831971
http://www.cs.qub.ac.uk/~I.Spence/SuDoku/SuDoku.html
http://www.cs.qub.ac.uk/~I.Spence/SuDoku/SuDoku.html
http://www.math.muni.cz/~sisma/alcuin/anglicky1.pdf
https://www.loc.gov/resource/rbc0001.2009gen48833/
https://www.loc.gov/resource/rbc0001.2009gen48833/
https://en.wikipedia.org/wiki/Water_pouring_puzzle
https://en.wikipedia.org/wiki/Water_pouring_puzzle
https://en.wikipedia.org/wiki/Tic-tac-toe
https://commons.wikimedia.org/w/index.php?curid=1866155
https://en.wikipedia.org/wiki/M,n,k-game
https://doi.org/10.1007/978-3-642-02658-4_55

Cybersecurity Education and Formal
Methods

James H. Davenport1(B) and Tom Crick2

1 Mathematical Foundations Group, Department of Computer Science,
University of Bath, Bath, UK

masjhd@bath.ac.uk
2 Department of Computer Science, Swansea University, Swansea, UK

thomas.crick@swansea.ac.uk

Abstract. Formal methods have been largely thought of in the context
of safety-critical systems, where they have achieved major acceptance.
Tens of millions of people trust their lives every day to such systems,
based on formal proofs rather than “we haven’t found a bug” (yet!); but
why is “we haven’t found a bug” an acceptable basis for systems trusted
with hundreds of millions of people’s personal data?

This paper looks at some of these issues in cybersecurity, and the
extent to which formal methods, ranging from “fully verified” to better
tool support, could help. More importantly, recent policy reports and
curricula initiatives appear to recommended formal methods in the lim-
ited context of “safety critical applications”; we suggest this is too limited
in scope and ambition. Not only are formal methods needed in cyber-
security, the repeated and very public weaknesses of the cybersecurity
industry provide a powerful motivation for formal methods.

Keywords: Formal methods · Cybersecurity · Curricula

1 Introduction

Formal methods, when they have been thought of at all, have been largely
thought of in the context of safety-critical systems, where they have achieved
major acceptance in what is, alas, an unsung area of software development. Tens
of millions of people trust their lives every day to such systems, but nearly all are
unaware of these systems, and the extent to which they are enormous successes.
Even people “who ought to know better” don’t. One of the authors quoted the
Paris Métro Ligne 14 performance figures (software shipped in 1999 and no bugs
reported [1]) to a major figure in the commercial software industry, to be told
that he was lying, as this was utterly impossible.

Formal methods ought to be much more widely used in the cybersecurity
industry. This is much more visible (because it has many conspicuous fail-
ures) than the largely invisible safety-critical industry. However, formal meth-
ods are not currently widely adopted here, and hence there is tremendous scope
for growth and adoption of formal methods. In addition, as the cybersecurity
c© Springer Nature Switzerland AG 2021
A. Cerone and M. Roggenbach (Eds.): FMFun 2019, CCIS 1301, pp. 159–172, 2021.
https://doi.org/10.1007/978-3-030-71374-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71374-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-71374-4_8

160 J. H. Davenport and T. Crick

industry and its failures are much more visible, emphasising the relevance of
formal methods to the cybersecurity industry should encourage more interest at
universities.

2 Cybersecurity

Cybersecurity1 failures abound, and the number of people that can be affected
by even a single failure is amazing—148 million for Equifax [2] and probably
more for the Starwood2 breach: a number [3] “downgrades” to 383 million. The
financial costs can be substantial: bankruptcy in the case of American Medical
Collection Agency [4] and a provisional £183M fine for British Airways [5]. These
problems have attracted attention at the highest scientific levels [6].

There are many reasons for cybersecurity failures, and even a given failure
may have multiple causes. For example, the U.S. Government investigation [7]
into Equifax states “Equifax’s investigation of the breach identified four major
factors3 including identification, detection, segmenting of access to databases,
and data governance that allowed the attacker . . . ”. However, none of these
would have been triggered had it not been for the original bug in the Apache
code [9], which was of the well-known (Number 1 Application Security Risk in
[10]) family of “Injection” (or “Remote Code Execution”) attacks, and which
would probably have been detected by an automatic taint analysis tool such
as [11].

Though attributing causes at scale is difficult, a well-known textbook [12]
claims that about 50% of security breaches are caused by coding errors. Hence it
behoves security practitioners to look seriously at coding errors, while recognising
that this is only one facet of the problem. This is taken up by the Payments Card
Industry in [13], essentially the only world-wide mandatory security standard, in
two sub-requirements of “Requirement 6: Develop and maintain secure systems
and applications”.

6.5 Address common coding vulnerabilities in software-development processes
as follows:
− Train developers at least annually in up-to-date secure coding tech-

niques, including how to avoid common coding vulnerabilities;
− Develop applications based on secure coding guidelines.

1 The precise definition of cybersecurity is debatable: we can take is as failures of
security, generally defined as “preserving the CIA—Confidentiality, Integrity and
Availability” of digital information, where computer system played a critical part in
the failure.

2 Generally called “Marriott”, but in fact due to the Starwood chain before Marriott
took it over.

3 In military parlance, Equifax is being found not to have “defence in depth”. Defence
in depth is certainly valuable: [8] described how Google was saved from the conse-
quences of an ‘awesome’ attack on gmail by defence in depth. But the front line is
still the first defence: in this case correct code.

Cybersecurity Education and Formal Methods 161

6.6 For public-facing web applications, address new threats and vulnerabilities
on an ongoing basis and ensure these applications are protected against
known attacks by either of the following methods:
− Reviewing public-facing web applications via manual or automated

application vulnerability security assessment tools or methods, at least
annually and after any changes;

− Installing an automated technical solution that detects and prevents
web-based attacks (for example, a web-application firewall [WAF]) in
front of public-facing web applications, to continually check all traffic.

∗ The authors note that many sites go for the second option, as it’s easy to
“tick the box” Indeed [14] finds that 34% of customers regard compliance
as the main function of their firewall, rather than security. Apart from
the fact that firewalls can be misconfigured, as in the Capital One attack
[15], they can also be placed in “detect-only” mode and ignored4.

• A further challenge to the PCI DSS model is provided by the modern
“Magecart” attacks, such as that against British Airways [17]: here the
JavaScript that is downloaded to the customer’s browser is corrupted,
and this leaks the data directly, without going near the WAF. This raises
the challenge of JavaScript verification Sect. 5.4.

It is noteworthy that, despite apparently insisting on secure coding in 6.5,
they require the additional defences in 6.6, realising that errare humanum est,
and the 6.5-developed code may not actually be secure. Is it possible (the authors
think so, but the experiment has yet to be performed) that adding formal meth-
ods to 6.5 would render 6.6 redundant, or at least mean that 6.6 should be
restricted to finding design errors, rather than debugging 6.5 failures? Full for-
mal verification of a complete system should certainly suffice.

Complete formal verification is the only known way to guarantee that
a system is free of programming errors. [18, describing seL4: a verified
operating system]

Such a verified operating system has been used in medical devices, but proba-
bly not sufficiently widely, as 500,000 already-fitted pacemakers have had to be
upgraded through security weaknesses [19], and insulin pumps are also vulnera-
ble [20], as many others [21,22]. See [23] for a recent update on seL4. However,
most of us do not have the opportunity to start from scratch, and have to live
on top of imperfect, unverified systems, interoperating with other systems via
large, generally unverified, or at least under-verified, protocols, such as TLS [24].

3 Agile Versus Secure

“Agile Development” [25] is a major theme in software development. Mark
Zuckerberg can be said to have taken this theme to the extreme in 2009.
4 [16]: “Midsize and small companies frequently install WAFs just to satisfy a com-

pliance requirement. They don’t really care about practical security, and obviously
won’t care about maintaining their WAF.” This is backed up by [14], whose survey
states “43% run their WAF in alert-only mode!”.

162 J. H. Davenport and T. Crick

“Move fast and break things” is Mark’s prime directive to his developers
and team. “Unless you are breaking stuff,” he says, “you are not moving
fast enough.” [26]

In both safety-critical and security-conscious programming, “breaking things”
comes with a very high price. Aeroplanes can’t be uncrashed, and data can’t be
unleaked.

The problems with using “Agile” methods in security are well-documented,
at practitioner level, e.g. a recent “Security + Agile = FAIL” presentation [27],
in many theoretical analyses as well as the interview-based research in [28] for
small teams and [29] for large multi-team projects. Both mention team expertise
in security as a significant problem.

From [28] The overall security in a project depends on the security expertise of
the individuals, either on the customer or developer side. This corresponds
to the agile value of “individuals and interaction over processes and tools”
[25, Value 1].

From [29] The interviewees generally agree that more could be done to provide
security education and training to employees. Without prompting, several
interviewees mentioned training as an important factor for increasing security
awareness and expertise.

It is very hard to take security seriously in this setting.

From [28] security “is only of interest [to the customer] when money-aspects
are concerned”.

From [29] One Test Manager articulated his team view that “security is not
currently seen as part of working software, it only costs extra time and it
doesn’t provide functionality”. With less focus on providing extensive (secu-
rity) documentation typical for agile, ineffective knowledge sharing between
security officers and agile team members is especially problematic.

From [30] (A more general survey, but many papers surveyed were “Agile”)
“Security is often referred to as a NFR [non-functional requirement] in that
it is expected to be included as part of high quality code development, but
is rarely listed as an explicit requirement. As a result, developers prioritise
security below more-visible functional requirements or even easy-to-measure
activities such as closing bug tracking tickets.”

It would be tempting to conclude that “Agile” and “Secure” are, or at least
are close to being, mutually contradictory. But there has been some analysis of
the same apparent contradiction in the safety-critical industry [31]. Other than
“Embedded Systems”5 [31, Sect. 3.6], this analysis of the problems is fairly close
to the practitioner view in [27], and we could reasonably ask what lessons could
be carried across.

5 Actually, Embedded Systems are a comparatively neglected, but important, cyber-
security area. See, for example, [32] for a description of a pervasive design fault in
the “home security” market.

Cybersecurity Education and Formal Methods 163

4 The Need for Tools

There are two key points.

From [31, Sect. 4.1] Strong static verification tools tend to complement (not
replace) human-driven review6. The tools are very good at some problems
(e.g. global data flow analysis, theorem proving) where humans are hopeless,
and vice versa. If we do the static verification first, then we can adjust manual
review processes and check-lists to take advantage of this.

From [31, Sect. 6] The sixty-four-million-dollar-question, it seems, is how much
“up-front” work is “just right” for a particular project. We doubt there’s
a one-size-fits-all approach, but surely the answer should be informed by
disciplined requirements engineering of non-functional properties (e.g. safety,
security and others) that can inform the design of a suitable architecture and
its accompanying satisfaction argument.

Facebook grew, security (and “product quality” in general: it is not clear
whether security was the main driver here) became more important, and by
2014 Zuckerberg had changed his views.

“Move fast with stable infrastructure.” It “may not be quite as catchy as
‘move fast and break things,” Zuckerberg said with a smirk. “But it’s how
we operate now.” [34]

One might think his views were converging with the views of [31]. However,
the Heartbleed story [35] should remind us that the fact that a modification
“has no new security considerations” as designed [36] doesn’t mean that an
implementation of that idea has no new security considerations. Hence the call
in [31, Sect. 4.1] for strong static verification tools. Such tools are generally seen
as expensive and slowing down the development process, but [37] shows that
they need not be. In particular, they show that, for a real application (890,000
physical lines of Ada code), the cost of incremental verification can be reduced
from “nightly” to “coffee”, and hence can reasonably form part of a continuous
integration toolchain, as is done at the company studied in [37]. Readers might
comment that their own applications are not in Ada, but [38, Sect. 5.6] discusses
mixed-language programming, especially with C. A similar point is made in
[39], describing the Infer tool running on Java/Objective C/C++, where moving
from overnight reporting to near real-time reporting moved the fix rate from 0%
to 70%.

That these techniques are reaching the mainstream of cybersecurity can be
seen from Amazon Web Services adoption of them [40], Google [41], Facebook
[39], and the recent DefectDojo release by OWASP [42].

5 The Scope of Tools and Formal Methods

There is a substantial range of tools, and degrees of formality, and [31, Sect. 6]
is probably correct in saying “We doubt there’s a one-size-fits-all approach”. At
6 A point made in the context of XP and Agile in 2004 [33].

164 J. H. Davenport and T. Crick

one extreme, there are the humble, but still surprisingly effective, lint and its
equivalents, looking, essentially, for dangerous or dubious, though legal, syntax.

5.1 Ada and SPARK

At the other extreme, there are languages, such as the SPARK Ada subset [38]
designed with verification in mind and heavily employed in the safety-critical
sector such as railways and air traffic control, which can also be deployed for
demanding secure applications, such as an RFC4108-compliant secure download
system for embedded systems [43].

5.2 C/C++

There is, however, a large middle ground between these two extremes. Even if the
application is required to be in C or C++, there is a lot to be said for sticking to
a safer (even if not provably safe) subset of the language and associated libraries,
such as eschewing strcpy in favour of strncpy. This can often be enforced by
static verification tools. We note that Google’s “Zero Day” project reports [44]
that 68% of all such zero-day exploits (i.e. exploits discovered in the wild first)
were caused by memory corruption errors, and Microsoft report a very similar
story [45].

There is a good survey of such subsets and standards in [46, Appendix F].
As that notes, the ISO standard for secure C coding [47] has the unusual (for
this middle ground) but important concept of “taint analysis” (as in [11]): input
data should be considered “tainted” until it has been sanitised. This is partic-
ularly important for network-oriented applications, where it is natural for the
programmer to believe that the other party is behaving correctly (as in Heart-
bleed [35]).

After this paper was presented, [48] appeared. That paper’s authors had for-
mally proved properties of non-trivial parts of Amazon’s core C library. “We
proved that key components of AWS C Common are memory safe, i.e. do not
suffer from issues such as buffer overflow, use after free, or invalid pointer derefer-
ences. Memory safety errors are routinely listed among the most critical security
concerns by industry groups monitoring CVEs”.

5.3 Java

Closer to the SPARK Ada end of the spectrum we find Safety-Critical Java
[49]. The authors do not have enough experience with this to comment directly.
However, the Java ecosystem (Stack Overflow etc.) is far from security-aware
[50]. The fact that an application is in Java doesn’t mean it’s free from security
coding errors: see [51] for a recent example.

There is a static analysis security tool for Java described in [11]. As with
[47], this has “taint analysis” as its major feature, and at the time it spotted
some significant-seeming problems.

Cybersecurity Education and Formal Methods 165

5.4 JavaScript

JavaScript is a particular problem for Security. There are some verification tools,
e.g. GATEKEEPER as described in [52]. However, even if it were possible to
guarantee a particular piece of stand-alone JavaScript, that is not how the cur-
rent paradigm operates. As [53] writes:

Much of the power of modern Web comes from the ability of a Web page to
combine content and JavaScript code from disparate servers on the same
page. While the ability to create such mash-ups is attractive for both
the user and the developer because of extra functionality, code inclusion
effectively opens the hosting site up for attacks and poor programming
practices within every JavaScript library or API it chooses to use.

Though not explicit in this statement, an additional weakness is that this combi-
nation is dynamic. The obvious solution would be some kind of sandboxing of the
external resources relied upon, but the nature of JavaScript makes this difficult.
[54] describe one such sandboxing, but it only works for a subset of JavaScript
and relies on a combination of filtering, rewriting and wrapping to guarantee
security. That it can do so at all is a remarkable feat of formal methods, given
that previous attempts such as Facebook’s FBJS have subtle flaws [55], and that
the formal semantics of JavaScript being relied upon are very much a piece of
reverse engineering.

In fact the dynamic loading from multiple sites is often not good for perfor-
mance, and web performance engineers recommend tools to bundle the pages:
this could usefully be combined with the sort of protection described by [54].

An alternative solution is suggested by Google, who are introducing a form
of taint analysis into Chrome [56] through run-time typing. When enabled, this
means that the 60+ dangerous DOM API functions can only be called with argu-
ments whose type is that emitted by TrustedTypes functions. Google expects
that these functions would be manually verified, but this does open the door to
formal verification of certain security policies in what is currently a very chal-
lenging environment for formal methods. However, these checks can be easily
fudged, and the authors foresee examples of this on StackOverflow analogous to
the csrf().disable() “suggestion” described below in point 3.

6 Education

[13, Requirement 6.5] called for education of developers. Education of main-
stream programmers, as opposed to cybersecurity specialists, in cybersecurity
has been neglected until recently, and this neglect has been lamented as far as
the Harvard Business Review [57]. Developments in school curricula [58], major
national initiatives [59], pedagogy and practice [60–62], and professional accred-
itation are changing this [63,64]. However, there are limitations, even beyond
errare humanum est, in relying on education.

166 J. H. Davenport and T. Crick

1. There is experimental evidence that both trained students [65] and pro-
fessional developers [66] will ignore security considerations unless explicitly
instructed to take them into account. Lest this be thought to be a purely
academic exercise with little relevance to the real world, consider the recent
Y55M password problem described in [67].

2. There is field evidence that explicit requirements such as [13] are ignored in
practice, e.g. the Forever 21 breach [68], or Macy’s [69]. They may also not be
communicated down the software supply chain, as in the Ticketmaster case
[70].

3. Many educational resources, both formal textbooks [71] and informal
resources such as Stack Overflow [72], pay very little attention to security,
and indeed can be positively harmful. The discussion in Stack Overflow (anal-
ysed in [50, Sect. 4.3.1]) of cross-site request forgery (CSRF—this was in
the OWASP top 10 in 2013 [73], but dropped from [10] “as many frame-
works include CSRF defenses”) is especially worrying. By default, Spring
implicitly enables protection against this. But all the accepted answers to
CSRF-related failures simply suggested disabling the check. There were no
negative comments about this, and indeed a typical response is “Adding
csrf().disable() solved the issue!!! I have no idea why it was enabled by
default”.

As we have noted, [13] both mandates education and does not rely solely on it.
However, as the safety-critical community laments (at least in the U.K. and

U.S.A.: cultures do differ here), there is very little training in formal methods
for most undergraduates, and hence it is unrealistic to expect most of those to
whom PCI DSS applies to transition suddenly to formal methods: there is a
supply/demand “Catch-22” situation here.

7 Conclusions

As the media never tire of saying, there are far too many security breaches,
and, though they have multiple causes, [12] claims that about 50% of security
breaches are caused by coding errors. There appears to be a culture of accepting
these, with the U.S. Government investigation [7] into Equifax blaming many
factors but not the actual bug, and [13] taking a “necessary but not sufficient”
approach to education in secure coding.

Education Could certainly do better [57], though there are encouraging signs
that more cybersecurity, though not necessarily formal methods, is being
taught [63] and useful ideas when it comes to improving informal resources
[74]. However, informal resources can be dangerous when it comes to security,
and [63] recommends giving all students the advice in [75]: “If you pick up a
SSL/TLS answer from Stack Overflow, there’s a 70% chance it’s insecure”.
More training in formal methods would be welcomed, at least in those cul-
tures where it is lacking.

Cybersecurity Education and Formal Methods 167

Customers/Managers need to be much more upfront about security require-
ments [65,66], and enforce (e.g. by requiring tool support during any CI/CD
process, such as [37] describe) at least “middle ground” requirements. In the
case of outsourced development, explicit penalty clauses for failing penetra-
tion tests should concentrate the developers’ minds.

C/C++ people These programmers should be much more aware of techniques
for secure coding, such as those described in [46, Appendix F], and the various
tools for static analysis.

Java people In view of the significance of injection attacks (Number 1 in [10]),
programmers should be aware of taint analysis, as in [11].

JavaScript people There are some techniques, such as [54], for protecting
JavaScript applications, but they are not deployable in the typical JavaScript
“dynamic loading web page” environment. Furthermore this environment is
basically antithetical to security, as British Airways is learning to the cost of
£183M [5].
(1) Hence the first real challenge of JavaScript lies with the tool makers:

there are, as far as the authors know, no JavaScript verifiers in existence,
and no page-bundler that checks for version drift, or does incremental
verification (which might be comparatively cheap, as in [37]).

(2) An alternative approach might be to change the JavaScript model. This
is advocated in [76], based on their analysis of what third-party scripts
do in the wild. This is not a completely radical idea: Google is testing
its TrustedTypes feature [56], with the motivation “The DOM API is
insecure by default and requires special treatment to prevent XSS”.

Empirical Research There is not much analysis of the efficacy of various tech-
niques in security programming. [77] compares various techniques, and states
the following.

Based on our case study [of two large programs], the most efficient
vulnerability discovery technique is automated penetration testing.
Static analysis finds more vulnerabilities but the time it takes to clas-
sify false positives makes it less efficient than automated testing.

This assumes that “false positives” are acceptable, a debatable point of view.
It would be good to have more such research.

Tool developers there is a lack of tools (or at least a lack of awareness of tools)
that can be neatly integrated into a security programming toolchain in the
way such tools are integrated in safety-critical toolchains [37].

Acknowledgements. A predecessor of this paper was given at the 2019 Working
Formal Methods Symposium (FROM2019) in Timis,oara, Romania. The authors are
grateful to the referees and audiences of FROM2019 and FMFun2019 for useful com-
ments. The first author is grateful to the Fulbright Programme for a Cybersecurity
Scholarship at New York University in 2017, and to many correspondents and discus-
sions, notably Alastair Irons, Tom Prickett and Tim French. This paper was partially
supported by the Institute of Coding, which received £20m of funding from the Office
for Students (OfS), as well as support from the Higher Education Funding Council for
Wales (HEFCW).

168 J. H. Davenport and T. Crick

References

1. Jacquel, M., Berkani, K., Delahaye, D., Dubois, C.: Verifying B proof rules using
deep embedding and automated theorem proving. In: Barthe, G., Pardo, A., Schnei-
der, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 253–268. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24690-6 18

2. Bloomberg: Equifax Hack Lasted for 76 Days, Compromised 148 Million People,
Government Report Says (2018). http://fortune.com/2018/12/10/equifax-hack-
lasted-for-76-days-compromised-148-million-people-government-report-says/

3. Irwin, L.: Marriott downgrades severity of 2018 data breach: 383 mil-
lion customers affected (2019). https://www.itgovernance.co.uk/blog/marriott-
downgrades-severity-of-2018-data-breach-383-million-customers-affected

4. Ford, N.: Medical debt collection agency files for bankruptcy protection
after data breach (2019). https://www.itgovernance.co.uk/blog/medical-debt-
collection-agency-files-for-bankruptcy-protection-after-data-breach

5. The Guardian: BA faces & #x00A3;183m fine over passenger data breach (2019).
https://www.theguardian.com/business/2019/jul/08/ba-fine-customer-data-
breach-british-airways

6. Royal Society: Progress and research in cybersecurity: supporting a resilient and
trustworthy system for the UK (2016). http://royalsociety.org/cybersecurity

7. United States Government Accountability Office: Actions Taken by Equifax and
Federal Agencies in Response to the 2017 Breach (2018). https://www.gao.gov/
assets/700/694158.pdf

8. Osborne, C.: Google patches ‘awesome’ XSS vulnerability in Gmail dynamic
email feature (2019). https://www.zdnet.com/article/google-patches-awesome-
xss-vulnerability-in-gmail/

9. Lenart, L.: Security Bulletin S2-045 (2017). https://cwiki.apache.org/confluence/
display/WW/S2-045

10. Open Web Application Security Project (OWASP): The Ten Most Critical Web
Application Security Risks (2017). https://www.owasp.org/index.php/Category:
OWASP Top Ten Project#tab=Main

11. Livshits, V., Lam, M.: Finding security vulnerabilities in Java applications with
static analysis. In: Proceedings USENIX Security Symposium, pp. 271–286 (2005)

12. McGraw, G.: Software Security—Building Security In. Addison-Wesley, Boston
(2006)

13. Payment Card Industry Security Standards Council (PCI SSC): Require-
ments and Security Assessment Procedures Version 3.2.1 (2018). https://www.
pcisecuritystandards.org/documents/PCI DSS v3-2-1.pdf

14. Ponemon Institute: The State of Web Application Firewalls. Ponemon Institute
(2019)

15. Krebs, B.: What We Can Learn from the Capital One Hack (2019). https://
krebsonsecurity.com/tag/capital-one-breach/

16. Kolochenko, I.: Web Application Firewall: a must-have security control or an
outdated technology? (2016). https://www.csoonline.com/article/3032743/web-
application-firewall-a-must-have-security-control-or-an-outdated-technology.html

17. Barth, B.: No fly-by-night operation: Researchers suspect Magecart group behind
British Airways breach (2018). https://www.scmagazine.com/home/security-
news/no-fly-by-night-operation-researchers-suspect-magecart-group-behind-
british-airways-breach/

https://doi.org/10.1007/978-3-642-24690-6_18
http://fortune.com/2018/12/10/equifax-hack-lasted-for-76-days-compromised-148-million-people-government-report-says/
http://fortune.com/2018/12/10/equifax-hack-lasted-for-76-days-compromised-148-million-people-government-report-says/
https://www.itgovernance.co.uk/blog/marriott-downgrades-severity-of-2018-data-breach-383-million-customers-affected
https://www.itgovernance.co.uk/blog/marriott-downgrades-severity-of-2018-data-breach-383-million-customers-affected
https://www.itgovernance.co.uk/blog/medical-debt-collection-agency-files-for-bankruptcy-protection-after-data-breach
https://www.itgovernance.co.uk/blog/medical-debt-collection-agency-files-for-bankruptcy-protection-after-data-breach
https://www.theguardian.com/business/2019/jul/08/ba-fine-customer-data-breach-british-airways
https://www.theguardian.com/business/2019/jul/08/ba-fine-customer-data-breach-british-airways
http://royalsociety.org/cybersecurity
https://www.gao.gov/assets/700/694158.pdf
https://www.gao.gov/assets/700/694158.pdf
https://www.zdnet.com/article/google-patches-awesome-xss-vulnerability-in-gmail/
https://www.zdnet.com/article/google-patches-awesome-xss-vulnerability-in-gmail/
https://cwiki.apache.org/confluence/display/WW/S2-045
https://cwiki.apache.org/confluence/display/WW/S2-045
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=Main
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=Main
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.pdf
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-2-1.pdf
https://krebsonsecurity.com/tag/capital-one-breach/
https://krebsonsecurity.com/tag/capital-one-breach/
https://www.csoonline.com/article/3032743/web-application-firewall-a-must-have-security-control-or-an-outdated-technology.html
https://www.csoonline.com/article/3032743/web-application-firewall-a-must-have-security-control-or-an-outdated-technology.html
https://www.scmagazine.com/home/security-news/no-fly-by-night-operation-researchers-suspect-magecart-group-behind-british-airways-breach/
https://www.scmagazine.com/home/security-news/no-fly-by-night-operation-researchers-suspect-magecart-group-behind-british-airways-breach/
https://www.scmagazine.com/home/security-news/no-fly-by-night-operation-researchers-suspect-magecart-group-behind-british-airways-breach/

Cybersecurity Education and Formal Methods 169

18. Klein, G., et al.: seL4: formal verification of an OS kernel. In: Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, pp. 207–220
(2009)

19. The Guardian: Hacking risk leads to recall of 500,000 pacemakers due to
patient death fears (2017). https://www.theguardian.com/technology/2017/aug/
31/hacking-risk-recall-pacemakers-patient-death-fears-fda-firmware-update

20. Newman, L.: Hackers Made an App That Kills to Prove a Point (2019). https://
www.wired.com/story/medtronic-insulin-pump-hack-app

21. Evans, M., Loftus, P.: Rattled by Cyberattacks, Hospitals Push Device Makers to
Improve Security (2019). https://www.wsj.com/articles/rattled-by-cyberattacks-
hospitals-push-device-makers-to-improve-security-11557662400

22. Food and Drug Administration: FDA Informs Patients, Providers and Man-
ufacturers About Potential Cybersecurity Vulnerabilities in Certain Medical
Devices with Bluetooth Low Energy (2020). https://www.fda.gov/news-events/
press-announcements/fda-informs-patients-providers-and-manufacturers-about-
potential-cybersecurity-vulnerabilities-0

23. Heiser, G.: What’s new in the world of seL4 (2019). https://archive.fosdem.org/
2019/schedule/event/world of sel4/

24. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC-8446
(2018)

25. Beck, K., et al.: The Agile Manifesto (2001). http://agilemanifesto.org/
26. Blodget, H.: Mark Zuckerberg on Innovation (2009). https://www.businessinsider.

com/mark-zuckerberg-innovation-2009-10
27. Lane, A.: Security + Agile = FAIL (2018). https://securosis.com/assets/library/

presentations/Security/AgileFAIL OWASP.ppt .pdf
28. Bartsch, S.: Practitioners’ perspectives on security in agile development. In: Inter-

national Conference on Availability Reliability and Security, pp. 479–484 (2011)
29. van der Heijden, A., Broasca, C., Serebrenik, A.: An empirical perspective on

security challenges in large-scale agile software development. In: Proceedings of
the 12th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, ESEM 2018, pp. 45:1–45:4. ACM, New York (2018)

30. Tahaei, M., Vaniea, K.: A Survey on Developer-Centred Security (2019). https://
groups.inf.ed.ac.uk/tulips/papers/A Survey on Developer Centred Security.pdf

31. Chapman, R.: Industrial experience with Agile in high-integrity software develop-
ment. In: Parsons, M., Anderson, T. (eds.) Developing Safe Systems: Proceedings
of the Twenty-fourth Safety-critical Systems Symposium, Safety-Critical Systems
Club, pp. 143–154 (2016)

32. O’Connor, T., Enck, W., Reaves, B.: Blinded and confused: uncovering systemic
flaws in device telemetry for smart-home Internet of Things. In: Proceedings of
the 12th Conference on Security and Privacy in Wireless and Mobile Networks,
pp. 140–150 (2019)

33. Wäyrynen, J., Bodén, M., Boström, G.: Security engineering and eXtreme pro-
gramming: an impossible marriage? In: Zannier, C., Erdogmus, H., Lindstrom, L.
(eds.) XP/Agile Universe 2004. LNCS, vol. 3134, pp. 117–128. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-27777-4 12

34. Statt, N.: Zuckerberg: ‘Move fast and break things’ isn’t how Facebook operates
anymore (2014). https://www.cnet.com/news/zuckerberg-move-fast-and-break-
things-isnt-how-we-operate-anymore/

35. Salz, R.: Software engineering and OpenSSL is not an oxymoron (presentation
at Real World Cryptography 2017) (2017). https://rwc.iacr.org/2017/Slides/rich.
saltz.pdf

https://www.theguardian.com/technology/2017/aug/31/hacking-risk-recall-pacemakers-patient-death-fears-fda-firmware-update
https://www.theguardian.com/technology/2017/aug/31/hacking-risk-recall-pacemakers-patient-death-fears-fda-firmware-update
https://www.wired.com/story/medtronic-insulin-pump-hack-app
https://www.wired.com/story/medtronic-insulin-pump-hack-app
https://www.wsj.com/articles/rattled-by-cyberattacks-hospitals-push-device-makers-to-improve-security-11557662400
https://www.wsj.com/articles/rattled-by-cyberattacks-hospitals-push-device-makers-to-improve-security-11557662400
https://www.fda.gov/news-events/press-announcements/fda-informs-patients-providers-and-manufacturers-about-potential-cybersecurity-vulnerabilities-0
https://www.fda.gov/news-events/press-announcements/fda-informs-patients-providers-and-manufacturers-about-potential-cybersecurity-vulnerabilities-0
https://www.fda.gov/news-events/press-announcements/fda-informs-patients-providers-and-manufacturers-about-potential-cybersecurity-vulnerabilities-0
https://archive.fosdem.org/2019/schedule/event/world_of_sel4/
https://archive.fosdem.org/2019/schedule/event/world_of_sel4/
http://agilemanifesto.org/
https://www.businessinsider.com/mark-zuckerberg-innovation-2009-10
https://www.businessinsider.com/mark-zuckerberg-innovation-2009-10
https://securosis.com/assets/library/presentations/Security/AgileFAIL_OWASP.ppt_.pdf
https://securosis.com/assets/library/presentations/Security/AgileFAIL_OWASP.ppt_.pdf
https://groups.inf.ed.ac.uk/tulips/papers/A_Survey_on_Developer_Centred_Security.pdf
https://groups.inf.ed.ac.uk/tulips/papers/A_Survey_on_Developer_Centred_Security.pdf
https://doi.org/10.1007/978-3-540-27777-4_12
https://www.cnet.com/news/zuckerberg-move-fast-and-break-things-isnt-how-we-operate-anymore/
https://www.cnet.com/news/zuckerberg-move-fast-and-break-things-isnt-how-we-operate-anymore/
https://rwc.iacr.org/2017/Slides/rich.saltz.pdf
https://rwc.iacr.org/2017/Slides/rich.saltz.pdf

170 J. H. Davenport and T. Crick

36. Seggelmann, R., Tuexen, M., Williams, M.: Transport Layer Security (TLS) and
Datagram Transport Layer Security (DTLS) Heartbeat Extension (2012). https://
tools.ietf.org/html/rfc6520

37. Brain, M., Schanda, F.: A lightweight technique for distributed and incremental
program verification. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE 2012.
LNCS, vol. 7152, pp. 114–129. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-27705-4 10

38. Chapman, R., Moy, Y.: AdaCore Technologies for Cyber Security (2018). https://
www.adacore.com/books/adacore-tech-for-cyber-security

39. Distefano, D., Fähndrich, M., Logozzo, F., O’Hearn, P.: Scaling static analyses at
Facebook. Commun. ACM 62, 62–70 (2019)

40. Vogels, W.: Proving security at scale with automated reasoning (2019).
https://www.allthingsdistributed.com/2019/05/proving-security-at-scale-with-
automated-reasoning.html

41. Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushion, L., Jaspan, C.: Lessons
from building static analysis tools at Google. Commun. ACM 61(4), 58–66 (2018)

42. Open Web Application Security Project (OWASP): DefectDojo: OpenSource
Application Security Management (2019). https://www.defectdojo.org

43. Chapman, R.: Development and Formal Verification of Secure Updates
for Embedded Systems (slides from Verification 2018) (2018). http://www.
testandverification.com/conferences/verification-futures/vf2018/

44. Google (Project Zero): 0day “In the Wild” (2019). https://googleprojectzero.
blogspot.com/p/0day.html

45. Thomas, G.: A proactive approach to more secure code (2019). https://msrc-blog.
microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/

46. Centre for the Protection of National Infrastructure: Rail Code of Practice for
Security-Informed Safety. CPNI (2019)

47. ISO/IEC: TS 17961:2013, Information technology—Programming languages, their
environments & system software interfaces—C Secure Coding Rules (2013).
https://www.iso.org/standard/61134.html

48. Chong, N., et al.: Code-level model checking in the software development workflow.
In: ICSE-SEIP 2020 (2020, to appear)

49. Cavalcanti, A., Miyazawa, A., Wellings, A., Woodcock, J., Zhao, S.: Java in the
safety-critical domain. In: Bowen, J.P., Liu, Z., Zhang, Z. (eds.) SETSS 2016.
LNCS, vol. 10215, pp. 110–150. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56841-6 4

50. Meng, N., Nagy, S., Yao, D., Zhuang, W., Arango Argoty, G.: Secure coding prac-
tices in Java: challenges and vulnerabilities. In: 2018 IEEE/ACM 40th Interna-
tional Conference on Software Engineering (ICSE), pp. 372–383 (2018)

51. Google (Chris Povirk): Denial of Service vulnerability for servers that use Guava
and deserialize attacker data (2018). https://groups.google.com/forum/#!topic/
guava-announce/xqWALw4W1vs/discussion

52. Guarnieri, S., Livshits, B.: GATEKEEPER: mostly static enforcement of security
and reliability policies for JavaScript code. In: USENIX Security Symposium, vol.
10, pp. 76–85 (2009)

53. Meyerovich, L., Livshits, B.: ConScript: specifying and enforcing fine-grained secu-
rity policies for JavaScript in the browser. In: 2010 IEEE Symposium on Security
and Privacy, pp. 481–496. IEEE (2010)

54. Maffeis, S., Mitchell, J.C., Taly, A.: Isolating JavaScript with filters, rewriting, and
wrappers. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 505–
522. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04444-1 31

https://tools.ietf.org/html/rfc6520
https://tools.ietf.org/html/rfc6520
https://doi.org/10.1007/978-3-642-27705-4_10
https://doi.org/10.1007/978-3-642-27705-4_10
https://www.adacore.com/books/adacore-tech-for-cyber-security
https://www.adacore.com/books/adacore-tech-for-cyber-security
https://www.allthingsdistributed.com/2019/05/proving-security-at-scale-with-automated-reasoning.html
https://www.allthingsdistributed.com/2019/05/proving-security-at-scale-with-automated-reasoning.html
https://www.defectdojo.org
http://www.testandverification.com/conferences/verification-futures/vf2018/
http://www.testandverification.com/conferences/verification-futures/vf2018/
https://googleprojectzero.blogspot.com/p/0day.html
https://googleprojectzero.blogspot.com/p/0day.html
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://www.iso.org/standard/61134.html
https://doi.org/10.1007/978-3-319-56841-6_4
https://doi.org/10.1007/978-3-319-56841-6_4
https://groups.google.com/forum/#!topic/guava-announce/xqWALw4W1vs/discussion
https://groups.google.com/forum/#!topic/guava-announce/xqWALw4W1vs/discussion
https://doi.org/10.1007/978-3-642-04444-1_31

Cybersecurity Education and Formal Methods 171

55. Maffeis, S., Taly, A.: Language-based isolation of untrusted JavaScript. In: Pro-
ceedings 22nd IEEE Computer Security Foundations Symposium, pp. 77–91 (2009)

56. Kotowicz, K.: Trusted Types help prevent Cross-Site Scripting (2019). https://
developers.google.com/web/updates/2019/02/trusted-types

57. Cable, J.: Every Computer Science Degree Should Require a Course in Cyber-
security (2019). https://hbr.org/2019/08/every-computer-science-degree-should-
require-a-course-in-cybersecurity

58. Brown, N.C.C., Sentance, S., Crick, T., Humphreys, S.: Restart: the resurgence of
computer science in UK schools. ACM Trans. Comp. Sci. Edu. 14(2), 1–22 (2014).
https://doi.org/10.1145/2602484

59. Davenport, J.H., Crick, T., Hourizi, R.: The institute of coding: a university-
industry collaboration to address the UK’s digital skills crisis. In: Proceedings
of IEEE Global Engineering Education Conference, pp. 1400–1408. IEEE Press
(2020). https://doi.org/10.1109/EDUCON45650.2020.9125272

60. Davenport, J.H., Hayes, A., Hourizi, R., Crick, T.: Innovative pedagogical prac-
tices in the craft of computing. In: Proceedings of 4th International Conference on
Learning and Teaching in Computing and Engineering (2016). https://doi.org/10.
1109/LaTiCE.2016.38

61. Murphy, E., Crick, T., Davenport, J.H.: An analysis of introductory programming
courses at UK universities. Art Sci. Eng. Prog. 1(2), 18 (2017). https://doi.org/
10.22152/programming-journal.org/2017/1/18

62. Crick, T., Davenport, J.H., Hanna, P., Irons, A., Prickett, T.: Overcoming the
challenges of teaching cybersecurity in UK computer science degree programmes.
In: Proceedings of 50th Annual Frontiers in Education Conference, IEEE Press
(2020). https://doi.org/10.1109/FIE44824.2020.9274033

63. Crick, T., Davenport, J., Irons, A., Prickett, T.: A UK case study on cybersecurity
education and accreditation. In: Proceedings of FIE 2019 (2019)

64. Crick, T., Davenport, J.H., Hanna, P., Irons, A., Pearce, S., Prickett, T.: Reposi-
tioning BCS degree accreditation. ITNOW 62(1), 50–51 (2020). https://doi.org/
10.1093/itnow/bwaa023

65. Naiakshina, A., Danilova, A., Tiefenau, C., Smith, M.: Deception task design in
developer password studies: exploring a student sample. In: Fourteenth Symposium
on Usable Privacy and Security (SOUPS 2018), pp. 297–313. USENIX Association
(2018)

66. Naiakshina, A., Danilova, A., Gerlitz, E., von Zezschwitz, E., Smith, M.: “If you
want, I can store the encrypted password”: a password-storage field study with
freelance developers. In: Proceedings of the 2019 CHI Conference on Human Fac-
tors in Computing Systems, pp. 140:1–140:12. ACM (2019)

67. Cimpanu, C.: 7-Eleven Japanese customers lose $500,000 due to mobile app flaw
(2019). https://www.zdnet.com/article/7-eleven-japanese-customers-lose-500000-
due-to-mobile-app-flaw/

68. Biscoe, C.: MyFitnessPal data breach: 150 million app users affected (2018).
https://www.itgovernance.co.uk/blog/myfitnesspal-data-breach-150-million-app-
users-affected/

69. Blackmon, A.: Macy’s hit by data breach (2018). https://eu.freep.com/story/
money/business/2018/07/06/macys-data-breach-online/763074002/

70. Inbenta (CEO): Inbenta and the Ticketmaster Data Breach (2018). http://web.
archive.org/web/20181121184620/

https://developers.google.com/web/updates/2019/02/trusted-types
https://developers.google.com/web/updates/2019/02/trusted-types
https://hbr.org/2019/08/every-computer-science-degree-should-require-a-course-in-cybersecurity
https://hbr.org/2019/08/every-computer-science-degree-should-require-a-course-in-cybersecurity
https://doi.org/10.1145/2602484
https://doi.org/10.1109/EDUCON45650.2020.9125272
https://doi.org/10.1109/LaTiCE.2016.38
https://doi.org/10.1109/LaTiCE.2016.38
https://doi.org/10.22152/programming-journal.org/2017/1/18
https://doi.org/10.22152/programming-journal.org/2017/1/18
https://doi.org/10.1109/FIE44824.2020.9274033
https://doi.org/10.1093/itnow/bwaa023
https://doi.org/10.1093/itnow/bwaa023
https://www.zdnet.com/article/7-eleven-japanese-customers-lose-500000-due-to-mobile-app-flaw/
https://www.zdnet.com/article/7-eleven-japanese-customers-lose-500000-due-to-mobile-app-flaw/
https://www.itgovernance.co.uk/blog/myfitnesspal-data-breach-150-million-app-users-affected/
https://www.itgovernance.co.uk/blog/myfitnesspal-data-breach-150-million-app-users-affected/
https://eu.freep.com/story/money/business/2018/07/06/macys-data-breach-online/763074002/
https://eu.freep.com/story/money/business/2018/07/06/macys-data-breach-online/763074002/
http://web.archive.org/web/20181121184620/
http://web.archive.org/web/20181121184620/

172 J. H. Davenport and T. Crick

71. Taylor, C., Sakharkar, S.: ’);DROP TABLE textbooks;–: an argument for SQL
injection coverage in database textbooks. In: Proceedings of the 50th ACM Tech-
nical Symposium on Computer Science Education (SIGCSE 2019), pp. 191–197.
ACM (2019)

72. Fischer, F., et al.: Stack overflow considered harmful? The impact of copy&paste on
Android application security. In: 38th IEEE Symposium on Security and Privacy
(SP), pp. 121–136 (2017)

73. Open Web Application Security Project (OWASP): The Ten Most Critical Web
Application Security Risks (2013). https://www.owasp.org/images/f/f8/OWASP
Top 10 - 2013.pdf

74. Fischer, F., et al.: Stack overflow considered helpful! Deep learning security nudges
towards stronger cryptography. In: 28th USENIX Security Symposium (USENIX
Security 2019), pp. 339–356 (2019)

75. Chen, M., Fischer, F., Meng, N., Wang, X., Grossklags, J.: How reliable is the
crowdsourced knowledge of security implementation? https://arxiv.org/abs/1901.
01327 (2019)

76. Zhang, M., Meng, W., Lee, S., Lee, B., Xing, X.: All Your Clicks Belong to Me:
Investigating Click Interception on the Web (2019). https://www.microsoft.com/
en-us/research/uploads/prod/2019/03/zhang-observer.pdf

77. Austin, A., Williams, L.: One technique is not enough: a comparison of vulner-
ability discovery techniques. In: Proceedings 2011 International Symposium on
Empirical Software Engineering and Measurement, pp. 97–106 (2011)

https://www.owasp.org/images/f/f8/OWASP_Top_10_-_2013.pdf
https://www.owasp.org/images/f/f8/OWASP_Top_10_-_2013.pdf
https://arxiv.org/abs/1901.01327
https://arxiv.org/abs/1901.01327
https://www.microsoft.com/en-us/research/uploads/prod/2019/03/zhang-observer.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2019/03/zhang-observer.pdf

Teaching Them Early: Formal Methods
in School

Faron Moller(B) , Liam O’Reilly , Stewart Powell , and Casey Denner

Swansea University, Swansea, UK
{F.G.Moller,L.P.OReilly}@swansea.ac.uk,

{Stewart.Powell,Casey.Denner}@technocamps.com

Abstract. In this paper, we describe a programme of school engagement
aimed at instilling a discipline of computational thinking within pupils
before they embark on a university course. The workshops we deliver are
designed mainly to increase the pipeline of school leavers going on to
study computer science or software engineering, specifically by changing
perceptions on what this means amongst the vast majority – particularly
girls – who think it is just a geeky topic for boys.

Over the past number of years, student enrollment has been increas-
ing dramatically in our university’s undergraduate computer science and
software engineering degree programmes. Also, the performance of the
students on first-year formal methods modules – which has historically
been poor – has risen substantially. Whilst there are many influences
contributing towards these trends, we present evidence that our efforts
with school engagement has to a non-trivial extent contributed towards
these: both through the way the undergraduate programme has been
adapted to incorporate the Technocamps approach, and through provid-
ing a pipeline of students who understand the principles of computational
thinking.

Keywords: Formal methods · School engagement · Computer science
education · Pedagogy

1 Introduction

A typical 1st-year undergraduate student likes writing computer programs as
this provides instant gratification: the computer does what you tell it to do.
This is often why they choose to do computer science at university. As they
proceed through their undergraduate education, they learn how to be more and
more creative and to get the computer to do more and more exciting things.

For most of these students, however, stopping to think about whether the
things that they make the computer do are in fact the right things to do – both
technically as well as ethically – is often unattractive. Unwelcome digressions
into mathematics are required to learn how to make your programs do what
you want them to do – and to even formulate the specifications of what they

c© Springer Nature Switzerland AG 2021
A. Cerone and M. Roggenbach (Eds.): FMFun 2019, CCIS 1301, pp. 173–190, 2021.
https://doi.org/10.1007/978-3-030-71374-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71374-4_9&domain=pdf
http://orcid.org/0000-0001-9535-8053
http://orcid.org/0000-0002-4894-2158
http://orcid.org/0000-0002-9220-8807
http://orcid.org/0000-0003-0640-7728
https://doi.org/10.1007/978-3-030-71374-4_9

174 F. Moller et al.

should do. Unwelcome digressions into philosophy are required to understand
the ethical implications of the programs that they write.

It is generally accepted that the typical modern computer science student is
less mathematically minded than a generation ago, and the reasons for this are
now understood. Moller and Crick [12] give a detailed account of the history of
computing education in UK schools: from a strong position in the 1980s with
the introduction of the BBC Micro into every school along with a curriculum
for teaching the fundamentals of programming including hardware, software,
Boolean logic and number representation; through the 1990s and beyond where
the emergence of pre-installed office productivity software led to the computing
curricula being permeated – and overwritten – by basic IT skills; “death-by-
PowerPoint” became a common epithet for the subject. Beyond the arguments
and references provided in [12], we can note a trend towards omitting mathe-
matics as a prerequisite subject for studying computer science: of the 164 under-
graduate computer science programmes offered by 105 universities in the UK,
over 60% of these do not require mathematics as a school prerequisite [7].

There is a recognised digital skills shortage providing a high demand for
computer science graduates [8], and an eagerness on the part of universities
to fill places. However, with ever more students declaring on their applications
that they are choosing to study computer science due to an affection for digital
devices rather than an affection for the subject – and thus ever less prepared
for the intellectual, logical and mathematical problem-solving challenges this
entails – it can be a challenge in making some of the mathematical content
(the formal methods) of the curriculum palatable. This is especially true in the
current climate where student satisfaction is a key indicator which universities
are required by law in the UK to publish in their recruitment and marketing.

Our thesis is simple: if we instil within pupils in schools the discipline of
computational thinking and problem solving before and alongside their learning
of how to write programs, we can deter them from forming a hacker’s mentality of
“program first, think later”, and thus prevent habits forming which invite failures
in software quality due, for example, to unintended consequences. Finding a
means of doing this, however, is not straightforward; engaging the pupils in
thought experiments before they get onto the computer requires an approach
which is inspiring, creative and fun.

In this paper, we report on how we have addressed this issue in schools,
and the impact that this has had on our university programme – both in the
nature of the students entering the programme as well as on how we teach the
syllabus. The structure of the paper is as follows. In Sect. 2 we reflect further on
the background to the issues we address. In Sect. 3 we describe our programme
of school and pupil engagement, in particular reflecting on our computational
thinking and problem solving workshops. In Sect. 4 we describe how first year
formal methods has changed in our university since we’ve started our school
engagement activity. Finally, in Sect. 5 we provide some concluding remarks,
and identify related activities.

Teaching Them Early: Formal Methods in School 175

2 Background

The nature of computer science education is changing, reflecting the increasing
ubiquity and importance of its subject matter. In the last decades, computational
methods and tools have revolutionised the sciences, engineering and technology.
Computational concepts and techniques are starting to influence the way we
think, reason and tackle problems; and computing systems have become an inte-
gral part of our professional, economic and social lives. The more we depend on
these systems – particularly for safety-critical or economically-critical applica-
tions – the more we must ensure that they are safe, reliable and well designed,
and the less forgiving we can be of failures, delays or inconveniences caused by
the notorious “computer glitch.”

Unlike for traditional engineering disciplines, the mathematical foundations
underlying computer science are often not afforded the attention they deserve.
The civil engineering student learns exactly how to define and analyse a math-
ematical model of the components of a bridge design so that it can be relied
on not to fall down, and the aeronautical engineer learns exactly how to define
and analyse a mathematical model of an aeroplane wing for the same purpose.
However, software engineers are typically not as robustly drilled in the use of
mathematical modelling tools. In the words of the eminent computer scientist
Alan Kay [9], “most undergraduate degrees in computer science these days are
basically Java vocational training.” But computing systems can be at least as
complex as bridges or aeroplanes, and a canon of mathematical methods for mod-
elling computing systems is therefore very much needed. “Software’s Chronic
Crisis” was the title of a popular and widely-cited Scientific American article
from 1994 [6] – with the dramatic term “software crisis” coined a quarter of
a century earlier by Fritz Bauer [14] – and, unfortunately, its message remains
valid a quarter of a century later.

University computer science departments face a sociological challenge posed
by the fact that computers have become everyday, deceptively easy-to-use
objects. Today’s students – born directly into the heart of the computer era –
have grown up with the Internet, a billion dollar computer games industry, and
mobile phones with more computing power than the space shuttle. They often
choose to study computer science on the basis of having a passion for using com-
puting devices throughout their everyday lives, for everything from socialising
with their friends to enjoying the latest films and music; and they often have
less regard than they might to the considerations of what a university computer
science programme entails, that it is far more than just using computers. In our
experience, many of these students are easily turned off the subject when first
faced with formal methods through a traditional course in discrete mathematics.

This has motivated us as a university department to reflect on our presen-
tation of first-year formal methods, as well as explore means by which we can
inform and educate pupils in schools as to the true nature of computer science
before they become university students.

176 F. Moller et al.

3 The Technocamps School Engagement Programme

Technocamps1 is a pan-Wales schools outreach programme based at Swansea
University but with hubs in the computer science department of every univer-
sity across Wales. It was founded in 2003 to address the issues of computer
science education in the context of the specific challenges posed in Wales. The
portfolio of activities carried out by Technocamps is described and discussed
in detail in [4], framed by the key educational challenges that exist in Wales,
along with an evaluation of Technocamps interventions. In this paper, we will
consider specifically the ways in which Technocamps workshops introduce and
reinforce computational thinking and problem solving; how this has impacted
on the uptake of computing; and how it has influenced the way in which the
subject is delivered in our undergraduate programme.

Within classrooms throughout Wales, teachers are struggling to deliver the
current computer science curriculum. This is unsurprising given that less than
40% of the teachers leading these classes have any training in ICT let along
computer science [5]. The result is that pupils typically experience a lacklustre
delivery focused on basic coding to solve the problem specified on the scheme
of work in a very specific way according to the teacher’s limited understanding,
rather than exploring generic computational problem solving strategies to break
down the problem and develop a solution.

As part of the varied offerings of the Technocamps programme, we have devel-
oped and delivered a series of computational problem solving workshops which
explore the fundamentals of computational thinking – abstraction, algorithms,
pattern recognition and decomposition – providing an accessible (if somewhat
covert) introduction to formal methods. Suitable workshops are provided to the
whole range of school classes from early primary through to late secondary.
Our workshops for the youngest participants, which we deliver as part of our
Playground Computing programme for primary schools, are mainly “unplugged”
workshops – i.e., not involving a computer – typically carried out in the school
gymnasium. Figure 1 depicts a scene from a Playground Computing workshop
where the children are following instructions, whilst blindfolded, to solve tasks.
By being blindfolded, they readily understand the need for absolute precision
both in specifying solutions as well as in the instructions for carrying out these
solutions.

Within these workshops – be they Playground Computing workshops for pri-
mary children or Technocamps workshops for late secondary students – pupils
are challenged to approach problem solving in a way that is very different to
what they have experienced. Rather than exploring problems through a series of
steps which translate directly into lines of code, we use problems that are derived
from puzzles and riddles, and have the pupils model the problems using state
transition systems as a formalism. Again, these are very much unplugged exer-
cises, though computer software is ultimately used to facilitate the modelling.
We present here two classic riddles that feature in Technocamps Workshops.

1 technocamps.com.

Teaching Them Early: Formal Methods in School 177

Fig. 1. A Technocamps Playground Computing Workshop in action

3.1 The Man-Wolf-Goat-Cabbage Riddle

The following riddle was posed by Alcuin of York in the 8th century, and more
recently tackled by Homer Simpson in a 2009 episode of The Simpsons titled
Gone Maggie Gone (which provides the ideal way to introduce the problem).

A man needs to cross a river with a wolf, a goat and a cabbage. His boat is
only large enough to carry himself and one of his three possessions, so he
must transport these items one at a time. However, if he leaves the wolf
and the goat together unattended, then the wolf will eat the goat; similarly,
if he leaves the goat and the cabbage together unattended, then the goat will
eat the cabbage. How can the man get across safely with his three items?

Pupils are challenged to first think logically about how to solve the problem,
often through trial-and-error, which we enable through a collection of supportive
tools2 – developed in Scratch3 – which allow pupils to explore the puzzles in an
interactive way. A more systematic approach is then presented by suggesting
to pupils that they should “model” the scenario by abstracting away the non-
important information and presenting the problem as a sequence of states. Pupils
are encourage to think about what constitutes a state, and what actions might
occur that would result in a transition from one state to another.

Figure 2 gives a taste of how this is presented to the class. Having introduced
the problem, it is represented by a picture which captures the essential infor-
mation (which side of the river each of the four entities lies). The participants
are then encouraged to consider what actions may occur, and how these actions
would change the picture – that is, how the state of the world would change.
This introduces and reinforces the notions of abstraction – identifying the rel-
evant information and disregarding anything irrelevant – and decomposition –

2 bit.ly/Technothink.
3 https://scratch.mit.edu.

http://bit.ly/technothink
https://scratch.mit.edu

178 F. Moller et al.

Visualising the Problem

Using abstraction we can simplify the problem to only the
necessary details.

M
W
G
C

Labelled Transition System

Mapping out the steps of the puzzle using the different states is
called a Labelled Transition System (LTS). It is made up of states
and transitions.

M
W
G
C

W

C

M

G
g

?States

Transitions

Fig. 2. Introducing modelling using transition systems

breaking down a problem and solving it by solving smaller problems. Getting
the participants to depict the occurrence of actions by arrows between states,
they are naturally introduced to the notion of a labelled transition system (LTS).
Through exploring transitions – by hand and using simulation tools – the par-
ticipants are asked to find a sequence of actions which will solve the problem.
Figure 3 shows this problem being solved in a workshop.

Fig. 3. LTS modelling in the classroom

The labelled transition system which the students are developing is depicted
in Fig. 4. A state of the LTS represent the current position (left or right bank)
of the four entities (man, wolf, goat, cabbage); and there are four actions repre-
senting the four possible actions that the man can take:

• m = the man crosses the river on his own;
• w = the man crosses the river with the wolf;
• g = the man crosses the river with the goat; and
• c = the man crosses the river with the cabbage.

Teaching Them Early: Formal Methods in School 179

WGC : M

MWGC :

WC : MG

MWC : G

C : MWG W : MCG

MGC : W MWG : C

G : MWC

MG : WC

: MWGC

M : WGC

GC : MW

MC : WG

WG : MC

MW : GC

m

g

m

m

g

m

w c

c w

w c

g g

c w

m

m

m

m

Fig. 4. The Man-Wolf-Goat-Cabbage LTS.

The initial state is MWGC : (meaning all are on the left bank of the river), and
the goal is to find a sequence of actions which will lead to the state : MWGC

(meaning all are on the right bank of the river). However, we want to avoid going
through any of the six dangerous (red) states:

WGC : M GC : MW WG : MC MC : WG MW : GC M : WGC

There are several possibilities (all involving at least 7 crossings), for example:

g, m, w, g, c, m, g.

3.2 The Water Jugs Riddle

In the 1995 film Die Hard: With a Vengeance, New York detective John McClane
(played by Bruce Willis) and Harlem dry cleaner Zeus Carver (played by Samuel
L. Jackson) had to solve the following problem in order to prevent a bomb from
exploding at a public fountain. (Again, this provides the ideal means to introduce
the problem to a class.)

180 F. Moller et al.

Fig. 5. Solving the water jug puzzle in Computational Thinking workshops

Given only a five-gallon jug and a three-gallon jug, neither with any mark-
ings on them, fill the larger jug with exactly four gallons of water from the
fountain, and place it onto a scale in order to stop the bomb’s timer and
prevent disaster.

This riddle – and many others like it – was posed by Abbot Albert in the 13th
Century, and can be solved using an LTS. A state of the system underlying
this riddle consists of a pair of integers (i, j) with 0 ≤ i ≤ 5 and 0 ≤ j ≤ 3,
representing the volume of water in the 5-gallon and 3-gallon jugs A and B,
respectively. The initial state is (0, 0) and the final state you wish to reach is
(4, 0).

There are six moves possible from a given state (i, j):

• (0, j)
fillA

−−−−−→ (5, j) • (i, j)
emptyA
−−−−−→ (0, j) if i > 0

• (i, 0)
fillB

−−−−−→ (i, 3) • (i, j)
emptyB
−−−−−→ (i, 0) if j > 0

• (i, j)
AtoB−−−−−→ (

max(0, i + j − 3),min(3, i + j)
)

if i > 0 and j < 3

• (i, j)
BtoA−−−−−→ (

min(5, i + j),max(0, i + j − 5)
)

if i < 5 and j > 0

Drawing out the LTS (admittedly a daunting task in this instance yet a useful
exercise), we get the following 7-step solution:

(0, 0)
fillA

−−−−−→ (5, 0)
AtoB−−−−−→ (2, 3)

emptyB
−−−−−→ (2, 0)

AtoB−−−−−→ (0, 2)
fillA

−−−−−→ (5, 2)
AtoB−−−−−→ (4, 3)

emptyB
−−−−−→ (4, 0).

In Fig. 5 we can see a school workshop in action. We use blue sand rather
than water in these workshops to avoid the obvious risk of creating a wet chaos.
Through experimenting, the participants inevitably stumble upon a solution; but
charged with the task of explaining their solution step-by-step, they naturally
arrive at a solution which they describe using the language and notation of
labelled transition systems. Arriving at a complete solution does not require the

Teaching Them Early: Formal Methods in School 181

class to find and express the most general rules as presented above. However, for
older groups, finding these rules provides an interesting challenge in numeracy.

These types of riddles and puzzles allow pupils to easily grasp and under-
stand the powerful concept of labelled transition systems. After seeing only a
few examples, they are able to model straightforward systems by themselves
using LTSs. Once an intuitive understanding has been established, the task of
understanding the mathematics behind LTSs becomes less foreboding.

3.3 Feedback from the Workshops

Technocamps has been successfully delivering these workshops to school groups
since 2003, on university campuses and in schools as well as elsewhere in the
community. In particular, in the Learning in Digital Wales project for Welsh
Government’s Department of Education, Technocamps delivered an average of
9.8 h of interactive workshops across every secondary school throughout Wales
over an 18-month period during 2014–2016. For the purposes of this paper, we
reflect on a recent programme of engagement.

During the Summer term of 2019, Technocamps delivered its computational
problem solving workshops to 424 pupils, aged between 12–15, within the South
Wales region as part of a series of STEM Enrichment Programmes. Of those
who answered the feedback questionnaire, feedback was significantly positive
with over 86% of pupils rating the workshop overall as Great/Good as well as
its subject content.

The Technocamps goal of changing perceptions about computer science as
a subject worth studying is reflected in its activity. Since 2011, 50,000 young
people – over 7% of the Welsh population who are today aged 5–24 – have
participated in Technocamps Workshops; a full 43% of these have been girls, and
these girls are 25% more likely than the boys to return for follow-on workshops.

4 First-Year Formal Methods

We have replicated the Technocamps approach to introducing formal methods for
our first-year university computer science students. Our efforts in this direction
have been nothing short of remarkable. By adopting and adapting our approach
over the past twenty years from a traditional starting point, we have substantially
increased the success rate – and substantially decreased the failure rate – of our
students. Figure 6 shows how the percentage of students attaining a 1st-class
grade (a grade over 70%) rose from 2% in 2000–2001 to over 60% in 2017–2018
and 2018–2019, whilst those failing the course (by attaining a grade under 40%)
dropped over the same time frame from 56% to under 2%. The figure also shows
the class sizes which have more than tripled over the most recent five years
which explains a noticeable dip in attainment which, as we explain below, was
remedied by further tweaking of our delivery model. The fact that this success is
based on our approach is borne out by reflecting on annual student feedback for
the various modules which students take across their programme of study; our

182 F. Moller et al.

Fig. 6. Trends of students achieving 1st-class and failing results; and class sizes.

delivery model is contrasted favourably against traditional approaches used in
other modules taken by the same students, and recorded attendance (and hence
engagement) is highest in this module.

Through years of reflecting on how to successfully present formal methods
to beginning computer science students, we have identified the following key
considerations, all of which we have gleaned – and from which we have learned
– from student feedback.

• Do not call it (discrete) mathematics. A simple change of name from “dis-
crete mathematics for computer science” to “modelling computing systems”
in 2010–2011 was enough for us to witness a substantially increased level of
engagement and attainment with the course, as made evident in Fig. 6. There
was no other change that year to add to the cause of this effect.

• Do not formalise early on. The standard approach to, e.g., propositional logic
is to present the formal syntax and semantics of the logic and emphasise the
precise form and function of the connectives. The approach we have adopted
is to stress the careful use of English, and to introduce logical symbols as
mere shorthand for writing out English sentences. Formalism becomes far
easier to adapt to if and once the students are comfortable with working with
the concepts.

• Exploit riddles and games. As described above, riddles and games provide
an effective way to instil the rigours of computational thinking. These were
incorporated more and more from 2010 onwards, resulting in the year-on-year
improvement in attainment reflected in Fig. 6.

Teaching Them Early: Formal Methods in School 183

• Use regular interactive small-group problem sessions. We supplement three
hours of weekly whole-class lectures with a one-hour small-group problem
session (of 30–50 students) in which the emphasis is on the students carrying
out computational problem-solving tasks, typically in pairs. We are confident
in our thesis that this matters, as tweaking the sizes and regularity of these
groups through the years coincides with peaks and dips in the attainment
graphs. In particular, see the next consideration.

• Keep these problem session groups small. As can be seen in Fig. 6, attainment
dropped between 2014 and 2017 as class sizes grew, but more than recovered
in 2017–2018 despite a huge increase in the overall class size. This was due to
an increase in the number of problem session groups; whilst the whole-class
lectures became far less personable due to the huge numbers, the decrease
in the sizes of the problem session groups resulted in much better results.
Again, this being the only substantive change to delivery, we are confident in
attributing the positive effect to this.

It is worth stressing that throughout the years, entrance requirements have
not changed to admit only stronger applicants. On the contrary, pressures to
increase student numbers (i.e., fees income) have meant that academically-
weaker students (those with lower school grades) are being admitted in greater
numbers. Also, neither the content of the course nor the way it is assessed has
gotten easier. Again, quite to the contrary, the topics covered in the first-year
formal methods modules have expanded to include the coinductive concept of
bisimulation equivalence, a topic which even postgraduate research students find
challenging, but which we successfully present as outlined in the next section.

4.1 Verification via Games

Having introduced a formalism for representing and simulating (the behaviour
of) a system, the next question to explore is: Is the system correct? In its most
basic form, this amounts to determining if the system matches its specification,
where we assume that both the system and its specification are given as states of
some LTS. For example, consider the two vending machines V1 and V2 depicted
in Fig. 7, where V1 is taken to represent the specification of the vending machine
while V2 is taken to represent its implementation. Clearly the behaviour of V1

is somehow different from the behaviour of V2: after twice inserting a 10p coin
into V1, we are guaranteed to be able to press the coffee button; this is not true
of V2. The question is: How do we formally distinguish between processes?

4.2 The Formal Definition of Equivalence

A traditional approach to this question relies on determining if these two states
are related by a bisimulation relation, which is a binary relation R over its states
in which whenever (x, y) ∈ R:

184 F. Moller et al.

V1

10p
10p

coffee

tea

collect

V2

10p
10p

10p

coffee

tea

collect

Fig. 7. Two Vending Machines.

• if x > ax′ for some x′ and a, then y > ay′ for some y′ such that (x′, y′) ∈ R;
• if y > ay′ for some y′ and a, then x > ax′ for some x′ such that (x′, y′) ∈ R.

Simple inductive definitions already represent a major challenge for undergrad-
uate university students; so it is no surprise that this coinductive definition of
a bisimulation relation is incomprehensible even to some of the brightest post-
graduate students – at least on their first encounter with it. It thus may seem
incredulous to consider this to be a first-year discrete mathematics topic, even
if it is a perfect application for exploring equivalence relations as taught earlier
in the course. However, there is a straightforward way to explain the idea of
bisimulation equivalence to first-year students – a way which they can readily
grasp and are happy to explore and, indeed, play with. The approach is based
on the following game.

4.3 The Copy-Cat Game

This game is played between two players, typically referred to as Alice and Bob.
We start by placing tokens on two states of an LTS, and then proceed as follows.

1. Alice moves either of the two tokens forward along an arrow to another state;
if this is impossible (that is, if there are no arrows leading out of either node
on which the tokens sit), then Bob is declared to be the winner.

2. Bob must move the other token forward along an arrow which has the same
label as the arrow used by Alice; if this is impossible, then the Alice is declared
to be the winner.

This exchange of moves is repeated for as long as neither player gets stuck. If
Bob ever gets stuck, then Alice is declared to be the winner; otherwise Bob is
declared to be the winner (in particular, if the game goes on forever).

Teaching Them Early: Formal Methods in School 185

Alice, therefore, wants to show that the two states holding tokens are some-
how different, in that there is something that can happen from one of the two
states which cannot happen from the other. Bob, on the other hand, wants to
show that the two states are the same: that whatever might happen from one of
the two states can be copied by the other state.

It is easy to argue that two states should be considered equivalent exactly
when Bob has a winning strategy in this game starting with the tokens on the
two states in question; and indeed this is taken to be the definition of when two
states are equal, specifically, when an implementation matches its specification.

As an example, consider playing the game on the LTS depicted in Fig. 8.

U

V

W

Z Y X

a

a

b

c

c

b a

Fig. 8. A simple LTS.

Starting with tokens on states U and X, Alice has a winning strategy:

• Alice can move the token on U along the a-transition to V .
• Bob must respond by moving the token on X along the a-transition to Y .
• Alice can then move the token on Y along the c-transition to Z.
• Bob will be stuck, as there is no matching c-transition from V .

This example is a simplified version of the vending machine example; and
a straightforward adaptation of the winning strategy for Alice will work in the
game starting with the tokens on the vending machine states V1 and V2. We thus
have an argument as to why the two vending machines are different.

4.4 Relating Winning Strategies to Equivalence

Whilst this notion of equality between states is particularly simple, and even
entertaining to explore, it coincides precisely with the complicated coinductive
definition of when two states are bisimulation equivalent. Seeing this is the case
is almost equally straightforward.

• Suppose we play the copy-cat game starting with the tokens on two states x
and y which are related by some bisimulation relation R. It is easy to see that
Bob has a winning strategy: whatever move Alice makes, by the definition of
a bisimulation relation, Bob will be able to copy this move in such a way that

186 F. Moller et al.

the two tokens will end up on states x′ and y′ which are again related by R;
and Bob can keep repeating this for as long as the game lasts, meaning that
he wins the game.

• Suppose now that R is the set of pairs of states of an LTS from which Bob
has a winning strategy in the copy-cat game. It is easy to see that this is a
bisimulation relation: suppose that (x, y) ∈ R:

– if x > ax′ for some x′ and a, then taking this to be a move by Alice in
the copy-cat game, we let y > ay′ be a response by Bob using his winning
strategy; this would mean that Bob still has a winning strategy from the
resulting pair of states, that is (x′, y′) ∈ R;

– if y > ay′ for some y′ and a, then taking this to be a move by Alice in the
copy-cat game, we let x > ax′ be a response by Bob using his winning
strategy; this would mean that Bob still has a winning strategy from the
resulting pair of states, that is (x′, y′) ∈ R.

We have thus taken a concept which baffles postgraduate research students, and
presented it in a way which is well within the grasp of first-year undergraduate
students.

4.5 Determining Who Has the Winning Strategy

Once the notion of equivalence is understood in terms of winning strategies in the
copy-cat game, the question then arises as to how to determine if two particular
states are equivalent, i.e., if Bob has a winning strategy starting with the tokens
on the two given states. This isn’t generally a simple prospect; games like chess
and go are notoriously difficult to play perfectly, as you can only look ahead a
few moves before getting caught up in the vast number of positions into which
the game may evolve.

Here again, though, we have a straightforward way to determine when two
states are equivalent. Suppose we could paint the states of an LTS in such a
way that any two states which are equivalent – that is, from which Bob has a
winning strategy – are painted the same colour. The following property would
then hold.

If any state with some colour C has a transition leading out of it into a
state with some colour C ′, then every state with colour C has an identically-
labelled transition leading out of it into a state coloured C ′.

That is, if two tokens are on like-coloured states (meaning that Bob has a winning
strategy) then no matter what move Alice makes, Bob can respond in such a
way as to keep the tokens on like-coloured states (ie, a position from which he
still has a winning strategy). We refer to such a special colouring of the states
as a game colouring .

Teaching Them Early: Formal Methods in School 187

To demonstrate, consider the following LTS.

1

3

2

45 6

a

a

a

a

a

a

a

a

b

a

a

a

a

a

At the moment, all states are coloured white, and we might consider whether
this is a valid game colouring. It becomes readily apparent that it is not, as
the white state 4 can make a b-transition to the white state 5 whereas none of
the other white states (1, 2, 3, 5 and 6) can do likewise. In fact, in any game
colouring, the state 4 must have a different colour from 1, 2, 3, 5 and 6. Hence
we paint it a different colour from white; say blue:

1

3

2

45 6

a

a

a

a

a

a

a

a

b

a

a

a

a

a

We again consider whether this is now a valid game colouring. Again it becomes
apparent that it is not, as the white states 3 and 6 have a-transitions to a blue
state, whereas none of the other white states 1, 2 and 5 do. And in any game
colouring, the states 3 and 6 must have a different colour from 1, 2 and 5. Hence
we paint these a different colour from white and blue; say yellow:

188 F. Moller et al.

1

3

2

45 6

a

a

a

a

a

a

a

a

b

a

a

a

a

a

We again consider whether this is now a valid game colouring. This time we
find that it is, as every state can do exactly the same thing as every other state
of the same colour:

• every white state has an a-transition to a white state and an a-transition to
a yellow state;

• every yellow state has an a-transition to a yellow state and an a-transition to
a blue state;

• every blue state has a b-transition to a white state.

At this point we have a complete understanding of the game, and can say
with certainty which states are equivalent to each other. This is an exercise
which first-year students can happily carry out on arbitrarily-complicated LTSs,
which again gives testament to the effectiveness of using games to great success
in imparting difficult theoretical concepts to first-year students – in this case the
concept of partition refinement.

While students take turns playing each other in the copy-cat game, they
develop an intuitive understanding of winning strategies: that the first player
must play correctly, and the second player – no matter how well they play –
can never win. They even have fun doing it! This allows them to argue when
two systems are different (or the same) and even paves the way for other more
advanced formal verification techniques such as observational equivalence.

5 Conclusions

As with any topic, teaching formal methods – even to school children – is most
successful when done in a way which nurtures their willingness to engage. Appeal-
ing to their existing understand of how the world works, using puzzles as a
medium, students can quickly become comfortable using mathematical concepts
such as labelled transition systems. A similar lesson is learnt when it comes
to teaching verification: starting with the formal definition of bisimulation (or
similar) is an uphill battle from the start, even for postgraduate research stu-
dents. However, starting from games like the copy-cat game, such topics become
immediately accessible.

Teaching Them Early: Formal Methods in School 189

We have used this approach for over a decade to teach discrete mathemat-
ics incorporating the modelling and verification of computing systems as part
of our first-year undergraduate programme. With the fine-tuning of our app-
roach, and abiding by the considerations outlined in Sect. 4, we have succeeded
in maximising attainment levels of the students through active and interested
engagement.

Of course, problem solving through recreational mathematics – which is
ultimately what we are exploiting in our approach – has very many propo-
nents, and there is a long and extensive history of books marketed towards the
mathematically-inquisitive. We are by no means alone in recognising the power
of applying recreational mathematics to the development of computational prob-
lem solving skills; as relevant exemplars we note Averbach and Chein’s Problem
Solving Through Recreational Mathematics [1], Backhouse’s Algorithmic Prob-
lem Solving [2], Levitin and Levitin’s Algorithmic Puzzles [10]; and Michalewicz
and Michalewicz’s Puzzle-Based Learning [11]. What we propose in particular is
an embedding of the approach from before a student’s undergraduate journey, in
particular to engage them in a topic – discrete mathematics – that they typically
struggle with, both academically and in terms of recognising its relevance in the
subject. In this sense, we are closely related to the various approaches that have
been developed of late for introducing school-aged audiences to computational
thinking. In this vein we note the CS Unplugged4 and the CS4FN5 initiatives.

The “informal” way in which we approach the teaching of formal methods
has many parallels with Morgan’s (In)Formal Methods: The Lost Art [13]. The
course described in this report is for upper-level computer science students who
are already adept at writing programs who are studying software development
methods. Nonetheless, many of its findings – in particular as reflected in the
student feedback – are replicated in our own activity, where positive feedback is
provided on: the interactive and hands-on approach; the amusing exercises and
assignments; the class room style teaching; the overall teaching methodology
with dedicated tutors; and the means by which the relevance of the course is
stressed.

As a final note, many of the considerations that we have identified as being
important in teaching mathematics to computing students are reflected by Bet-
teridge et al. [3] as being useful and thus adopted in their novel approach to
teaching computing to mathematics students.

References

1. Averbach, B., Chein, O.: Problem Solving Through Recreational Mathematics.
Dover, Mineola (1980)

2. Backhouse, R.: Algorithmic Problem Solving. Wiley, New York (2011)
3. Betteridge, J., et al.: Teaching of computing to mathematics students. In: Proceed-

ings of the 3rd Conference on Computing Education Practice, CEP 2019, Durham,
UK, 9 Jan 2019, pp. 12:1–12:4 (2019)

4 csunplugged.org.
5 cs4fn.org.

https://csunplugged.org/en/
http://www.cs4fn.org/

190 F. Moller et al.

4. Crick, T., Moller, F.: Technocamps: advancing computer science education in wales.
In: Proceedings of WiPSCE: The 10th Workshop in Primary and Secondary Com-
puting Education, pp. 121–126. ACM (2015)

5. Education Workforce Council (EWC): Annual statistics digest (2019). https://
www.ewc.wales/site/index.php/en/documents/research-and-statistics/annual-
statistics-digest/archived-annual-statistics-digests/1895-2017.html

6. Gibbs, W.W.: Software’s chronic crisis. Sci. Am. 271(3), 86–95 (2004)
7. Higher Education Statistics Agency (HESA): Recruitment data for computer sci-

ence courses in the UK (2019). https://www.hesa.ac.uk
8. House of Commons Science and Technology Committee: Digital skills crisis: Second

Report of Session 2016–2017 (2016)
9. Kay, A.: A conversation with Alan Kay. ACM Queue 2(9), 20–30 (2004)

10. Levitin, A., Levitin, M.: Algorithmic Puzzles. Oxford University Press, New York
(2011)

11. Michalewicz, Z., Michalewicz, M.: Puzzle-Based Learning. Hybrid Publishers, Mel-
bourne (2010)

12. Moller, F., Crick, T.: A university-based model for supporting computer science
curriculum reform. J. Comput. Educ. 5(4), 415–434 (2018)

13. Morgan, C.: (In-)Formal methods: the lost art. In: Liu, Z., Zhang, Z. (eds.) SETSS
2014. LNCS, vol. 9506, pp. 1–79. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-29628-9 1

14. Naur, P., Randell, B. (eds.): Software Engineering: Report of a Conference Spon-
sored by the NATO Science Committee, Garmisch, Germany, 7–11 Oct 1968.
NATO Scientific Affairs Division (1969)

https://www.ewc.wales/site/index.php/en/documents/research-and-statistics/annual-statistics-digest/archived-annual-statistics-digests/1895-2017.html
https://www.ewc.wales/site/index.php/en/documents/research-and-statistics/annual-statistics-digest/archived-annual-statistics-digests/1895-2017.html
https://www.ewc.wales/site/index.php/en/documents/research-and-statistics/annual-statistics-digest/archived-annual-statistics-digests/1895-2017.html
https://www.hesa.ac.uk
https://doi.org/10.1007/978-3-319-29628-9_1
https://doi.org/10.1007/978-3-319-29628-9_1

From Stories to Concurrency: How
Children Can Play with Formal Methods

Antonio Cerone(B)

Department of Computer Science, Nazarbayev University, Nur-Sultan, Kazakhstan
antonio.cerone@nu.edu.kz

https://cs-sst.github.io/faculty/cerone

Abstract. This position paper presents an unplugged, problem-solving-
based approach for teaching computer science to children. Our approach
is based on story telling, where each story consists of parallel parts, and
aims at developing children’s observation and reasoning skills. The aim
is to understand the global plot by identifying the interaction occurring
among different characters in terms of synchronisation, collaboration and
information sharing. In this sense we focus on concurrency, a very chal-
lenging computer science area, to show that children aged 7–14 can be
exposed to real-life instantiations of a number of computer science con-
cepts, understand them and even apply them in modelling and analysis
contexts.

Keywords: Children Education · Problem-solving · Computer
science · Concurrency · Finite State Machines

1 Introduction

Computer science lectures tend to point out that their first year students have
poor mathematical skills. It is important to stress that mathematics should not
be confused with elementary arithmetics and mathematical skills should not be
confused with the ability to quickly perform complex calculations mentally [7].
It is emblematic that the ability to mentally perform complex calculations was
portrayed by the idiot-savant protagonist of the famous film “The Rain Man”,
who was an autistic person rather than a genius of mathematics.

In fact, when lecturers describe their students’ poor mathematical skills,
they do not refer to mere calculation skills, but to the large amount of reasoning
skills that enable us to solve general problems, within and outside the domain
of mathematics [6]. An essential, though non exhaustive list of such skills is:

– be able to abstract away from irrelevant details (abstraction) and model the
reality in a symbolic/visual way (modelling), not necessarily on paper but
even just mentally;

Work partly funded by Seed Funding Grant, Project SFG 1447 “Formal Analysis and
Verification of Accidents”, University of Geneve, Switzerland.

c© Springer Nature Switzerland AG 2021
A. Cerone and M. Roggenbach (Eds.): FMFun 2019, CCIS 1301, pp. 191–207, 2021.
https://doi.org/10.1007/978-3-030-71374-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71374-4_10&domain=pdf
http://orcid.org/0000-0003-2691-5279
https://doi.org/10.1007/978-3-030-71374-4_10

192 A. Cerone

– understand the difference between a visual description (a sort of formal syn-
tax) and the reality it represents (its semantics);

– find similarities between a problem with a known solution and a new, unsolved
problem (analogy);

– reduce a complex problem to a smaller, easier one (divide et impera, leading
to the concept of recursion);

– reason top-down from a model to a more articulated, efficient solution (refine-
ment);

– reason bottom-up from observed specific cases and pattens to a general law
(induction or generalisation);

– compose components, possibly modifying them to achieve compositionality ;
– move from causes to consequences (deduction);
– distinguish between efficient and inefficient solutions (complexity);
– understand the difference between a solution of a problem and the proof that

such a solution is correct, as well as develop the abilities to perform such
proofs and describe them to others.

A number of these skills will be extensively addressed in this paper.
Given that computers have been heavily introduced in schools with the expec-

tation of having a positive impact on the students’ computer science skills, the
fact that this expectation has not been met at all, as observed by many uni-
versity lecturers, sounds like a paradox [6]. In many schools computer science
has even been introduced as a new, stand-alone subject. However, there are two
fundamental problems in this innovative process:

1. computer science is often seen as a “service subject”, namely to provide tools
that are supposed to enhance learning by facilitating the students in carrying
out their homework and class projects;

2. computer science is normally seen as intrinsically tied to the use of computers.

We do not consider here the most extreme, but not uncommon situation in which
computer science is taught, either as part of another subject or as a stand-alone
subject, by unwilling teachers who did not undergo a proper training.

As a consequence of Problem 1, the teaching of computer science tends to
focus on using office-oriented tools to write documents, prepare presentations,
organise data in spreadsheets. There is no need here to mention the names of
the most taught tools.

In this sense the relation of the subject “computer science” with other sub-
jects is only in one direction. It is, in fact, the other direction, the one normally
neglected, that should be taken. Computer science should build on other school
subjects, which, in the world of the school pupil, represent the most natural real-
ity to be modelled formally. Obviously, mathematics should be the first subject
to provide materials to manipulate in a computer science fashion. However, all
other subjects also have plenty of materials on which students may carry out
modelling and analysis.

From Stories to Concurrency: How Children Can Play with Formal Methods 193

Problem 2 created the misconception of a computer scientist as a program-
mer. This attitude also contributed to create the belief that computer science
does not require mathematical skills. As a consequence, high school students
who are not skilled in mathematics and are aware of this, are still confident to
pursue a computer science degree.

In this paper we adopt an “unplugged approach” to teaching computer sci-
ence [1,2], presenting activities that foster children reasoning and do not require
the use of a computer. In fact, we show how, starting from what at first sight
appears as a purely literary and linguistic exercise, namely story telling, chil-
dren carry out observations and perform reasoning leading to the acquisition of
important aspects of concurrency, develop a formal model of the story, which
allows them to solve the puzzle embedded in the story, and are even enabled
to describe the reasoning process that led to the solution as a formal proof.
We consider children between 7 and 14 years old and propose slightly differ-
ent approaches for the two age groups, 7–10, approximately corresponding to
primary school, and 11–14, approximately corresponding to middle school.

It is pointless to just provide children with the definitions of new notions, con-
cepts and processes, such as algorithms, and hope they understand them, remem-
ber them and are then able to apply them to practical situations. Children learn
best if they are actively involved in the process through problem-solving [14].
This is the main idea of constructivism, which suggests that humans construct
knowledge and meaning from their experiences [4,5]. And to engage children,
experiences have to be fun and challenging. Learning from experience means
that children have to discover an algorithm, starting from a game, and progres-
sively perfect their discovery through further experiences in a fashion similar to
iterative refinement.

However, in mathematics, it is essential to find appropriate challenges for
the age and cognitive development of the child to avoid loss of interest or even
frustration, with the consequent end of the fun. Mathematical puzzles are in
general very motivating, but may have the drawback to degenerate in frustration.
It is also important to make sure that the higher the effort needed to solve a
puzzle, the greater the learning outcome.

Moreover, although some form of competition is necessary for keeping the
children involved, the competition must be in the game itself, not in the mathe-
matical skill the game addresses. It is fundamental that the competition does not
appear to children as an assessment of their skills. There are plenty of evidences
in psychology research that assessments increase anxiety in children and hinder
their learning [12]. One way to overcome this problem is to organise competitions
among teams rather than between individuals, with a balanced composition of
the teams and a frequent mixing of the members, and trying to make the winning
objective as much as possible distinct from the winning skills.

Although the author aims to test the approached proposed by this paper in a
real classroom context, this has not been possible yet due to the lengthy ethical
clearance processes as well as the difficulty in finding a willing hosting school.
Therefore, the author experimented his approach with his own children, Claudio
and Chiara, respectively 9 years old and 13 years old at the moment when the

194 A. Cerone

paper was written. All the drawings presented in the paper are by Claudio and
Chiara.

1.1 Playing with Concurrency

Concurrency [9–11] is a challenging topic even for postgraduate students. Under-
standing the global behaviour of two or more synchronising processes may not
be intuitive also for simple models. It is therefore very important to develop
the skills that allow us to visualise and then understand and model concurrent
behaviour.

Children are very much interested in complex stories acted by many char-
acters, who have their own personal stories, but also interact and synchronise
on specific situations, collaborate to solve mysteries and fight together to defeat
antagonists. The fact that children can follow and enjoy such articulated stories
is evidence that they can make sense of the composition of individual stories and
understand the resultant global plot. They can, therefore, visualise and under-
stand concurrent behaviour. We aim at exploiting these abilities and prompt
children with questions that enable them to reason about the composition of
parallel stories, to understand how two or more characters may agree or collab-
orate, by sharing information and sychronising their decisions and behaviour in
specific situations. In this way children can become aware of important aspects
of concurrency.

Many children can naturally solve complex problems but, when they are
asked about how they achieved the solution, they normally have difficulties in
explaining their reasoning process. Formal methods [15] provide rigorous ways
of describing problems normally occurring in computer science contexts and
they are also very effective in making the reasoning processes that lead to the
discovery of the solutions explicit. Among the computer science sub-disciplines,
concurrency is probably the one that relies most on formal methods.

In our work we are inspired by the Choose Your Own Adventure series of
children’s gamebooks. The concept underlying this book series was created by
Edward Packard, who published the first book in 1976 [13]. In Packard’s books,
stories are written from a second-person point of view and require the reader
to impersonate the protagonist by making choices among a number of differ-
ent alternatives. It is thus the reader who actually determines the character’s
behaviour and drives the story plot.

In our approach we consider two parallel stories, whose protagonists are the
reader and a friend. We believe that the use of the second-person point of view
in both the person’s and friend’s stories increases the involvement of the child,
fosters the expression of personal opinions and the realistic making of informed
decisions.

1.2 Structure of the Paper

In Sect. 2 we start from the example of a story featuring one single character,
who can choose among various alternatives. We then add a parallel story, whose

From Stories to Concurrency: How Children Can Play with Formal Methods 195

single character is a friend of the character of the previous story (Sect. 2.1), and
we make the children reason about the knowledge acquired by the two characters,
how it may affect their decisions and how combining what the two characters
know allows us to predict the outcome of each decision.

In Sect. 3 we introduce interactions between the protagonists of the two sto-
ries and guide the children to reason about the impact of such interactions on
the global plot. We also make important considerations on the teacher’s role and
the learning outcome of this exercise (Sect. 3.1).

In Sect. 4 we investigate how to enable children to visually model stories in a
sort of formal way and, especially the ones in the age group 10–14, to get familiar
at an intuitive and visual way with some important aspects of the modelling and
analysis of concurrent systems (Sects. 4.1–4.3).

In Sect. 5, we show how children can be guided to use the models they devel-
oped to find solutions of a problem and, most important, to prove the correctness
of such solutions. Section 6 concludes the paper.

2 Choose Your Own Adventure

Let us consider the following story.

You are looking for a treasure hidden in an abandoned castle. You enter
the castle and you have in front of you a long corridor with many windows
on the right side. At the end of the corridor there is a large door guarded
by two parrots on their tripods. They both speak but you understand only
the one on the left. The other parrot speaks a language unknown to you.
The parrot on the left tells you that behind the large door there is a wide
room with three small doors of different colours: the green and blue doors
are not locked and you can open them and go through; the red door is
locked and you do not have the key. The parrot also tells you that one
of the two unlocked doors safely leads to the treasure and that if you go
through the other unlocked door you will certainly die without finding the
treasure.

After the story is presented to the class, children are then asked a number of
questions, such as:

1. Which are your possible choices?
2. Which of these choices will certainly lead you to death?
3. Which are your reasonable choices?
4. Which choice would you make?

The questions are put to the entire class through a discussion session that aims at
unfolding the logic of the story and understanding which decisions are favourable
to the protagonist among the set of possible decisions. New, unplanned questions
are likely to be raised during the discussion.

For children between 7 and 10 years old it is important to give a multidis-
ciplinary flavour to the discussion by considering also literary and linguistic
aspect of the story. In fact, the logical analysis of the text also contributes to
these aspects.

196 A. Cerone

2.1 Parallel Adventures

We add now the following story in parallel to the one presented in Sect. 2.

Your friend is also looking for the treasure. You both start at the same
time but following different paths and getting to the castle at different
times. Your friend understands only the parrot on the right of the large
door. The other parrot speaks a language unknown to your friend. The
parrot on the right tells your friend that inside the vase next to the last
window of the corridor your friend can find the key that opens the red
door. In addition, the parrot tells your friend that going through the green
unlocked door will certainly lead to death without finding the treasure and
that, regarding the other two doors, one will safely lead to the treasure and
the other will certainly lead to death. Obviously you do not know what the
parrot on the right tells your friend and your friend does not know what
the parrot on the left tells you. Moreover, neither you nor your friend are
aware of each other search for the treasure.

Children are again asked the questions from Sect. 2, this time obviously referred
to their friend. In discussing and answering the questions, the children should
not take into account what they know about the first story. Although this could
be effectively achieved with a variant of the game in which the two stories are
told to two distinct groups of children, for simplicity we assume that the entire
class is told the two stories in sequence.

In a second phase of the discussion the children are urged to combine the
information of the two stories. Typical questions during this phase could be:

1. Is the key needed to reach the treasure?
2. Which door leads to the treasure?
3. Can you be sure that you reach the treasure without dying?

However, such questions should not be provided by the teacher and the expec-
tation is that they are raised spontaneously (and correctly answered) during the
discussion. The teacher’s role in leading the discussion with no coercion or bias
is central here, as we will discuss in Sect. 3.1.

Most children, independently of the age group, would find the solution fol-
lowing a sort of deductive approach by considering the two persons’ options,
extracting a person’s knowledge about the negative outcome, and using it to
rule out one of the other person’s possible options, thus leaving the other option
as the globally positive outcome. In our simple story example, the child can
exploit the information known by the protagonist’s friend that the green door
leads to death to rule out such a door in the protagonist’s options and leave the
blue door as the solution.

It is always important to urge the children to describe the reasoning process
they followed to find the solution of a problem. We will illustrate in Sect. 4 how
children can develop a formal model of a problem and in Sect. 5 how they can
use and enrich the model to represent a formal proof.

From Stories to Concurrency: How Children Can Play with Formal Methods 197

Some Children aged 11–14, who possibly had been trained to develop tabular
representations of problems and their solutions, may perform a systematic anal-
ysis of the global plot using tools similar to Table 1. In fact, from the contents of
Table 1 it is immediate to deduce that the blue door leads to the treasure from
the premises that the green door leads to death and either the green or the blue
door leads to the treasure.

Table 1. Knowledge of the two protagonists

door −→ green door blue door red door
↓ person (unlocked) (unlocked) (locked)

I one of the two leads to the treasure not
(without the key) and the other leads to death accessible

My friend it leads one of the two leads to the treasure
(with the key) to death and the other leads to death

The discussion on parallel adventures should provide answers to questions 1
and 2. Question 3 may or may not be raised during the discussion, but cannot
have a positive answer at this stage. In fact, the two friends are not aware of
each other looking for the treasure. However, at this point, the discussion may
spontaneously identify the possibility of a collaboration between the two friends
and investigate how to enable and carry out such a collaboration. One problem is
that the two friends arrive at the castle at different times, thus they are unlikely
to meet each other unless they deliberately wait for each other. But they would
be willing to wait for each other only if they were aware of each other looking for
the treasure and they knew that sharing the information they know will enable
them to safely get to the treasure. This leads to Sect. 3.

3 Synchronisation Through Collaboration and Agreement

If the children identify the possibility of a collaboration between the two friends,
the discussion can be finalised to discover ways to change the story to make this
collaboration as a possible decision. Otherwise the teacher will need to explicitly
introduce in the story new conditions.

An example of conditions that enable collaborations is:

The parrot on the left also tells you that your friends knows
– which between the green and the blue door will certainly lead to death,

and
– that what you know contains the additional information your friend

needs in order to be sure to safely reach the treasure.

198 A. Cerone

Children are asked once again to answer the four questions from Sect. 2, first
referred to themselves, then referred to their friend. They will now notice that
they will need to wait for their friend or be sure to find their friend waiting for
them in order to be able to restrict the number of reasonable choices. However,
this would mean to share the treasure with their friend. Therefore it might be
reasonable to take the risk to die aiming to own the entire treasure. Some children
might be willing to take this risk, others might not, but both the risky and the
safe alternatives should be considered reasonable.

Some temporal reasoning can be carried out at this point. The children will
have already identified their two possible decisions:

1. wait for their friend, unless their friend is already waiting for them, and use
the combined information to choose the right door (which will appear to be
the blue one);

2. randomly choose one between the green and blue doors.

At this point the children will be asked how many and which the outcomes of
each of such decisions are.

For Decision 1 they would normally identify (1.1) finding the treasure and
sharing it with the friend as the unique outcome. However, what if they decide
to wait for their friend, but their friend does not? The friend might have already
arrived and proceeded through one of the doors alone. Then (1.2) the friend
would be waited for forever. This is actually a typical concurrency problem
known as starvation. The other possibility is (1.3) that the friend arrives later
but does not agree on sharing the treasure. Here a lot of potential alternatives
are possible for what is going to happen, but discussing them is outside the scope
of this paper, although it might be worthy from a didactical point of view.

For Decision 2 the children would normally identify two possible outcomes,
(2.1) finding the treasure when going through the blue door, thus opening a
number of alternatives for the friend, and (2.2) dying when going through the
green door. In fact, it is likely that the children implicitly assume that they
arrive at the castle before their friend. Thus, they may neglect the fact that if
the friend reaches the castle before them, they might choose the blue door that
definitely allows them to avoid dying but (2.3) they might no longer find the
treasure, if this has already been taken away by their friend, or (2.4) they may
find it, if their friend has gone through the deadly door. Finally, symmetric to
the previous decision case, there is a further alternative: (2.5) the friend arrives
later, which is a case of starvation, this time for the friend.

As a conclusion of this discussion, we can introduce the concept of assump-
tion: when the number of possible decisions is too big, and even unclear as in
alternative 1.3 above, we can assume only the most plausible alternatives. In
our story, we could actually assume that the two friends decide to wait for each
other, which, in fact, was probably the implicit assumption of most children.
Some care is important here, since we should take into account the children’s
opinions and not making assumptions that might upset any of them. Note that
a majority vote might not be always be the best in this case. Common sense and
knowledge of the children’s personalities are essential in this situation.

From Stories to Concurrency: How Children Can Play with Formal Methods 199

3.1 Teacher’s Role and Learning Outcome

All questions considered in Sects. 2–3 should be put to the entire class rather
than individually and should result in a discussion in which children can freely
express their opinions and show their attitudes as risk takers or safe players. Here
the teacher needs to play a neutral role, as a moderator who accepts all opinions
and attitudes, possibly helping children to provide justification and rationale
but without expressing any form of judgement. Furthermore, as we have noted
at the end of Sect. 3 concerning assumptions, not everything can be planned in
advance and common sense should be used in choosing the next steps of the
game.

The aim of the exercise carried out in Sect. 3 is for the children to understand
that collaboration and agreement are important in solving problems and achiev-
ing objectives, although they may require some form of compromise leading, in
general, to approximate solutions of the problem or to the partial achievement of
the objective (in our story the partial objective is that of getting only half of the
treasure). However, the possibility of collaboration does not preclude indepen-
dent actions, which might lead to better but uncertain results. The uncertainty
may be not only due to randomness but also to timing issues. In computer science
this is the case of real-time and time-critical systems.

The broad learning outcome we described goes well beyond mathematics and
computer science, but it is definitely worthy that the class discussion covers such
general, interdisciplinary aspects, although this may result in lengthy digressions.
After all computer science is both a theoretical and practical/applied science
with also philosophical and ethical consequences, and it is important to expose
children to the practical aspects and consequences of using computer science
and, more important, computer science theory and principles.

From a technical point of view, the two parallel stories are actually two
concurrent processes, which may evolve independently (without collaboration)
or synchronise (through collaboration).

As a final note to this section, the number of possible contexts and variations
of stories is infinite. The same concepts can be illustrated through completely
different story settings, as the result of the teacher’s creativity or, even better,
produced by the children through class discussions or working groups.

4 Modelling Stories

Throughout the discussion described in Sects. 2–3 children should be invited to
illustrate the story in a visual form. This should happen with an interdisciplinary
approach and may also involve visual arts, especially for the age group 7–10.

We have to note that the stories include a large number of details that are
irrelevant for the offered choices. The presence of such details is important to
make the stories realistic and engaging. In addition, these “literary” details offer
an important context for developing abstraction and modelling skills.

Some guidance is needed to enable the children to identify the appropriate
representation, namely the appropriate visual formalism, with which to create

200 A. Cerone

Fig. 1. Story models of reasonable choices from your perspective and your friend’s
perspective.

the model. The model in Fig. 1 is a typical representation for children aged
7–14. It may still contain some irrelevant details. For example, the reason why
a door is not chosen, whether because it is locked and I do not have the key or
because I know that it will lead me to death, is irrelevant, but it is likely that
the child would still depict such details. In fact, these semantic details represent
the concrete rationale for the choice, which otherwise might lose meaning in
the child’s mind. That is why some children may still keep such details in their
models. However, more irrelevant details, such as the corridor, the vase where
the key is normally hidden and even the “enchanting” detail of the two parrots
are likely to be abstracted away, though this may require a number of iterations.

Some children, especially in the age group 7–9, may focus on the solution
and provide a concise, abstract model, in which the relation between the person
and the door, expressed by arrows in Fig. 1, is not represented. This is the case
of Claudio, 9 years old, whose models for himself and his friend are given in
Fig. 2(a). Chiara, 13 years old, instead, explicitly includes arrows from her to the
doors. Her models for herself and her friend are given in Fig. 3(a).

4.1 Finite State Machines, Composition and Complexity

The age group 11–14 children should be also guided to come out with a more
formal model such as the finite state machine [8] in Fig. 4.

In fact, for this age group, it is also important to enable the child to under-
stand that concurrency may quickly increase the complexity of the modelled
system. Children should be guided to combine the two models in Fig. 4, The
result should be something like the finite state machine in Fig. 5. Although chil-
dren of this age should be able to develop this model, they are likely to feel
that it is useless, due to the spaghetti-like interwinding of arrows. This is a good
chance to show that, even with small systems as the ones in Fig. 4, concurrent

From Stories to Concurrency: How Children Can Play with Formal Methods 201

(a) Models of Claudio’s and his friend’s perspectives. (b) Combined model of the two pespectives.

(c) Claudio’s proof.

Fig. 2. Claudio’s drawings.

composition may lead to a very complex global finite state machine. Depending
on the interest expressed by the children, their previous knowledge and their
reactions throughout the exercise, the discussion may now more deeply involve
the notion of complexity. This may involve algorithmic complexity and/or the
state explosion problem.

However, we must always avoid that the children become frustrated in unsuc-
cessfully trying to develop the global finite state machine. If children are lost in
the complexity of arrows, the teacher should help them to reach the solution in
Fig. 5.

202 A. Cerone

(a) Models of Chiara’s and her friend’s
perspectives.

(b) Chiara’s proof.

Fig. 3. Chiara’s drawings.

4.2 Temporal Reasoning Using Finite State Machines

A number of observations and exercises may be carried out on the complex visual
representation depicted in Fig. 5:

1. The model illustrates all possible temporal orderings in which the two friends
arrive at the castle and choose the door.

2. Some children might note the fact that the model does not capture the case
that the two friends arrive at the castle at the same time, with further ques-
tions arised
(a) how to modify the finite state machine to cover this case?
(b) how much the complexity would increase after such a modification?
(c) is such a modification necessary? if so, why?
and the chance to introduce and discuss the difference between true concur-
rency and interleaving.

3. The model can be enriched with further information, for example by colouring
the states (the circles) in which a certain property is true. (Examples of
properties are: you find the treasure, your friend finds the treasure, you die,
your friend dies, or a combination of some of them using logical connectives
‘or’ or ‘and’.)

4. Perform a temporal analysis on the model coloured as in Item 3 to find out
whether, starting from the initial state, a property is true [3]
(a) for some state (temporal modality: ∃♦);
(b) for all states (temporal modality: ∀�);

From Stories to Concurrency: How Children Can Play with Formal Methods 203

�����
Y

� �You go through
the green door ����

YG

� �You go through
the blue door ����

YB

You

�����
F0

� �Your friend goes
through the blue door����

FB

� �Your friend goes
through the red door ����

FR

Your Friend

Fig. 4. Age group 11–14: Story models of reasonable choices from your perspective and
your friend’s perspective using finite state machines.

(c) for all states along some path (temporal modality: ∃�);
(d) for some states along each path (temporal modality: ∀♦).

If the discussion covers the difference between true concurrency and interleaving,
it may be worthy to note that the model in Fig. 5 is based on interleaving.

Furthermore, as a result of the temporal reasoning carried out in Sect. 3, we
can observe that the models in Figs. 4 and 5 do not carry any information about
the story outcomes in terms of finding the treasure or die.

4.3 Refinement and Formal Verification

A next step for the children is to add final states to the models in Fig. 4 to
describe the problem possible outcomes: you find the treasure (YT), you do not
find the treasure and you do not die (YN), you die (YD), your friend finds the
treasure (FT), your friend does not find the treasure and does not die (FN) and
your friend dies (FD). This is clearly a form of model refinement.

Here the issue is whether states YN and FN are needed. After all, in our
story, the parrot on the left side tells you that one of the two unlocked doors
safely leads to the treasure and the other leads to death. Can we avoid death
but not find the treasure? We have seen in Sect. 3 that alternatives 2.1 and 2.3
allow for this situation. However, the point to be made here is that this situation
was observed only when we tried to compose the two stories. There is a double
moral here.

On the one hand, refinement is not an easy task and it is likely to miss some
essential behaviour while refining a model. In fact, there are normally many
possible refinements, but in order to get a correct refinement we need to choose
one of those that allow us to achieve our objective. Furthermore, it is important
to choose the best refinement among all correct refinements. What is “best” is
then a matter of efficiency and other non-functional system properties. But we
are now going too far.

On the other hand, a missing requirement of a component can be identified
when analysing the global behaviour through formal verification.

204 A. Cerone

��	

�
Y F

 �You go through
the green door

YGF

� �You go through
the blue door

YBF

� �Your friend goes
through the blue door

Y FB

� �Your friend goes
through the red door

Y FR

�	

�

�	

�

�	

�

�	

�

�Your friend goes
through the red door �	

�
YGFR

	

�

You go through
the green door

� �Your friend goes
through the blue door �	

�
YGFB

 �

�

You go through
the green door

�
�

Your friend goes
through the blue door

�	

�
YBFB

��You go through
the blue door

 �You go through
the blue door �	

�
YBFR

��

� �Your friend goes
through the red door

�

Fig. 5. Age group 11–14: Global model of the two independent perspectives.

After this discussion we ask the children to compose the two new, extended
finite state machines into a global one, observing that this can be carried out
by just modifying the finite state machine in Fig. 5 through the addition of the
appropriate composition of the final states. The spaghetti-like interwinding of
arrows makes the model unreadable, but the children would still be able to build
it. Trying to compose together the new, refined finite state machine components
directly would actually be impossible, whereas adding the composition of the
refined parts to the global machine is actually feasible. The moral here is that
refinement makes the building of complex systems feasible.

The discussion considered in this section has not taken into account syn-
chronisation yet. Once we reduce the number of reasonable choices with the
additional conditions introduced in Sect. 3 by synchronising on the blue door
through collaboration, then the age group 11–14 should come out with the use
of a direct arc between state Y FR and state YBFB , as shown in Fig. 6, to be
added to the finite state machine in Fig. 5.

Both age groups can also work with the component models in Fig. 1 and come
out with something like the representation in Fig. 7. If the discussion context is

From Stories to Concurrency: How Children Can Play with Formal Methods 205

� Y F �Both go through
the blue door

YBFB

Fig. 6. Age group 11–14: Global model of the two synchronised perspectives.

Fig. 7. Age group 7–10: Global model of the two synchronised perspectives.

appropriate, a final observation here may be that the model in Fig. 7 is based on
true concurrency, in contrast to the finite state machine model in Fig. 5, which
was based on interleaving.

It is important to note that when Claudio was asked to draw the global
model, he realised that his models of the two separate perspectives, given in
Fig. 2(a), were inadequate to be combined into a global model. In order to make
his models compositional, he replaced the markers � and × on the doors with
arrows between persons and doors, thus getting the global model in Fig. 2(b),
which is very similar with the expected model given in Fig. 7.

5 Representing Proofs

When Claudio was asked to show the solution of the problem he came up with
the three marked doors in the top left corner of Fig. 2(c). A discussion followed
to understand how he obtained such a solution. When asked to show the way he
reached the solution he was initially puzzled. Then following the suggestion to
use his previous models (drawings), combining them in some way and showing
on them his reasoning, Claudio worked out the proof illustration in Fig. 2(c). It
is interesting to note that some of the information abstracted in the models in
Fig. 2(a) and 2(b), namely the padlock and the key, reappear in this representa-
tion of the proof.

A final note is that proofs developed by children of the age group 7–10 nor-
mally have purely visual representations, whereas children of the age group 11–14

206 A. Cerone

can already articulate reasoning in a textual form. Their proof are likely to be
in a hybrid visual and textual form as the one in Fig. 3(b), which was developed
by Chiara.

6 Conclusion and Future Work

In this paper we have adopted an “unplugged approach” in teaching computer
science to children [1,2] and taken inspiration from the Choose Your Own Adven-
ture series of children’s gamebooks, in which the reader may experience various
alternatives about the characters’ actions. We used the example of a story con-
sisting of two parallel parts and made the children reason about the knowledge
acquired by the protagonists of the two parts. Then we showed how to guide
the children, on the one hand, to combine what the two protagonists know in
order to predict the outcome of each decision and, on the other hand, to explore
how the plot would evolve in the absence or in the presence of collaboration and
information sharing between the two protagonists.

In this exploratory process, children have been exposed to real-life instanti-
ations of a number of computer science concepts, especially from the theory of
concurrency. Instances of concepts, such has synchronisation, assumption, star-
vation, complexity, state explosion, true concurrency, interleaving, refinement,
correctness, efficiency, property and formal verification have been observed in
the story plot. Such observations have been used to foster discussion and debate
among the children, and enable reasoning, modelling as well as awareness and
externalisation of their reasoning process throughout some form of written proof.

Three fundamental remarks are:

– The fact that we use a single example to explore a large variety of con-
cepts through the paper is purely illustrative. In real classroom work a single,
sequential or parallel story would probably be used to introduce one concept
or a few strictly related concepts in a very targeted way. Obviously stories
can also be revisited, expanded and compared at a later stage.

– Although for the benefit of the teacher, who might pursue a deeper under-
standing of the concepts underlying the observations, we have introduced
technical computer science terminology, such a technical jargon should be
avoided with the children, unless it is important for future topics or may
appear curious or interesting for the children (e.g. the use of the word “star-
vation”).

– The focus on concurrency has been used to show that an unplugged, problem-
based approach can successfully work well beyond the most basic mathemat-
ical and computer science concepts, and cover one of the most challenging
areas of computer science. It is by no means our intention to propose a chil-
dren’s course on “formal methods for concurrency” but, instead, to integrate
the approach we presented within a more general unplugged, problem-based
approach to be used in an interdisciplinary way.

We recall that the author experimented the approach presented in this paper
with his own children, Claudio and Chiara, respectively 9 years old and 13 years

From Stories to Concurrency: How Children Can Play with Formal Methods 207

old at the moment when the paper was written. Some aspects of the approach,
especially the development of problem-solving skills, however, have been used
with both children since they were 5–6 years old. Obviously, due to the lack of
a “neutral” relationship between the children and researcher in this study, we
cannot advance any claim on the validity of the approach we presented. Therefore
this work has to be intended as a position paper proposing a methodology which
still requires validation.

As future work we plan to experiment our proposal as part of a general
unplugged, problem-based approach in a real classroom context thus providing
reasonably sized, unbiased case studies.

Acknowledgments. Many thanks to my children Claudio and Chiara who repre-
sented the age groups 7–10 and 11–14, respectively, in carrying out the activities
described in this paper. A special thank to my friend and colleague Karl Lermer whose
conversations with his talkative parrots and with myself inspired the children story
presented in this paper. Karl also hosted me in Zurich during my visit at ZAHW, when
I was writing this paper.

References

1. Computer science without a computer. https://www.csunplugged.org/en/
2. Bell, T.: A low-cost high-impact computer science show for family audiences. In:

23rd Australian Computer Science Conference, pp. 10–16. ACM (2000)
3. Ben-Ari, M., Pnueli, Z.M.A.: The temporal logic of branching time. In: POPL

1981, pp. 164–176. ACM (1981)
4. Brainerd, C.J.: Piaget’s Theory of Intelligence. Prentice Hall, Englewood Cliffs

(1978)
5. Bruner, J.S.: Toward a Theory of Instruction. Bwelknap Press, Cambridge (1966)
6. Gibson, J.P.: Formal methods: never too young to start. In: FORMED 2008,

Budapest, Hungary, pp. 151–160 (2008)
7. Hilton, P.: The mathematical component of a good education. In: Miscellanea

Mathematica, pp. 145–154 (1991)
8. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and

Computation. Addison-Wesley, Reading (1979)
9. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.

Commun. ACM 21(7), 558–565 (1978)
10. Lamport, L.: Turing lecture: “The computer science of concurrency: The early

years”. Commun. ACM 58(6), 71–76 (2015)
11. Magee, J., Kramer, J.: Concurrency: State Models and Java Programs. Wiley, New

York (2006)
12. Murphy Paul, A.: Researchers Find That Frequent Tests Can Boost Learning.

Scientific American (2015)
13. Packard, E.: Sugarcane Island. Vermont Crossroads Press (1976)
14. Schoenfeld, A.H.: Mathematical Problem Solving. Academic Press, New York

(1985)
15. Wang , J., Tepfenhart, W.: Formal Methods in Computer Science. Chapman and

Hall/CRC, Boca Raton (2019)

https://www.csunplugged.org/en/

When the Student Becomes the Teacher

Marie Farrell1(B) and Hao Wu2

1 Department of Computer Science, University of Liverpool, Liverpool, UK
marie.farrell@liverpool.ac.uk

2 Department of Computer Science, Maynooth University, Maynooth, Ireland

Abstract. Making formal methods accessible and appealing to future
software engineers is vital to promote their uptake in industry and to
increase participation in formal methods research. In this paper, we
report on our initial experience of both studying and, subsequently,
teaching the same software verification module at Maynooth Univer-
sity, Ireland. By analysing on our own teaching and learning experiences
along with the students’ grades from the 2018–2019 academic year, we
present our four initial observations and two hypotheses that we intend
to investigate during the 2019–2020 academic year.

1 Introduction

Encouraging students to take an interest in formal methods has generally been
perceived as a difficult task [4,5,8–10,18]. Though there has been some success in
convincing software developers to use formal methods, it is still quite challenging
[20]. In order to increase the uptake of formal methods in industry, we believe
that we must first begin by convincing our students that formal methods are
useful and relevant for industrial use [4,10,13,17].

In this short paper, we report on our experiences of both studying and teach-
ing the Software Verification module at Maynooth University. We provide some
analysis and discussion which we use as a basis for identifying ways to improve
this module and to capture the students’ interests.

We summarise our contributions as follows:

1. We report on our experience of studying, during our time as undergradu-
ates, and subsequently, teaching a formal methods module to undergraduate
students at Maynooth University. To this end, we analyse and discuss this
module in light of the associated exam results from the 2018–2019 academic
year.

2. We present our observations and form two hypotheses to be further investi-
gated to improve both the teaching and learning experience for this module.

The remainder of this paper is structured as follows. In Sect. 2, we provide
an overview of the formal verification module that we both studied and taught

This work is partially supported through EPSRC Hubs for Robotics and AI in Haz-
ardous Environments: EP/R026092 (FAIR-SPACE).

c© Springer Nature Switzerland AG 2021
A. Cerone and M. Roggenbach (Eds.): FMFun 2019, CCIS 1301, pp. 208–217, 2021.
https://doi.org/10.1007/978-3-030-71374-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71374-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-71374-4_11

When the Student Becomes the Teacher 209

at Maynooth University. We describe the assessment process for this module in
Sect. 3 where we briefly analyse the exam results from the 2018–2019 academic
year. In Sect. 4, we reflect upon our own experience both as students and as
teachers of this module. We make four observations about the module’s current
status by combining our reflection with the analysis of the exam results described
in Sect. 3. Based on these observations, we form two hypotheses in Sect. 4.3 to
be investigated during the current (2019–2020) academic year. Finally, Sect. 5
concludes and outlines future research directions.

2 Module Overview

The Software Verification module (CS357) at Maynooth University aims to pro-
vide students with an understanding of both the theoretical and practical appli-
cations of formal software verification techniques1. The majority of the students
taking this module are third-year (Bachelor’s degree) students studying Com-
puter Science. For these students, and those studying for the Computational
Thinking Bachelor’s degree (usually approx. 10 students), this module is com-
pulsory. This module is optional for those studying General Science where Com-
puter Science is a chosen subject. This module assumes that the students have
already taken modules in basic Java programming and discrete mathematics (or
equivalent).

This module runs over 12 weeks (2 lecture hours and 2 laboratory hours per
week) and covers a wide range of different topics. The topics that are covered
and the duration spent on each is outlined below:

1. Design by Contract (1 week) [15]
2. Natural Deduction Proofs and the Coq theorem prover (3 weeks) [3]
3. Hoare Logic (2 weeks) [12]
4. Spec# (2 weeks) [1]
5. SAT/SMT (2 weeks) [7]
6. Model Checking (2 weeks) [12]

Upon successful completion of this module, the students should be able to:

1. Explain the role of verification in software engineering.
2. Create mathematically precise specifications.
3. Prove the correctness of programs using Hoare logic.
4. Use different tools to analyse and verify properties of specifications.

These four learning objectives are reflected in the exam structure and con-
tinuous assessment (CA) that we describe in the next section.

1 Full module description is available at: http://apps.maynoothuniversity.ie/courses/?
TARGET=MODULE&MODE=VIEW&MODULE CODE=CS357&YEAR=2020.

http://apps.maynoothuniversity.ie/courses/?TARGET=MODULE&MODE=VIEW&MODULE_CODE=CS357&YEAR=2020
http://apps.maynoothuniversity.ie/courses/?TARGET=MODULE&MODE=VIEW&MODULE_CODE=CS357&YEAR=2020

210 M. Farrell and H. Wu

Table 1. There are four questions on the exam and each reflects different aspects of
the module as outlined in Sect. 2. These questions are designed to assess the learning
objectives described in Sect. 2.

Question Examined topics Weight
(marks)

Q1 Design by contract

Propositional and predicate logic 25

Natural deduction proofs

Q2 Satisfiability

CNF Translation 25

DPLL (Pure literal, Unit clause and Unit propagation)

Q3 Hoare Logic 25

Q4 Basic SMT encoding

Spec# Programming (Pre/Post conditions, Loop invariants) 25

Linear temporal logic encoding

3 Assessment

In this section, we describe how this module is assessed. In particular, each
student’s final grade consists of 30% for continuous assessment (CA) with 70%
for the final examination. To obtain CA, each student is required to attend one 2-
hour laboratory session every week in order to complete their weekly assignment
and to get it graded by one of the tutors. These assignments, 11 in total, are based
on the material covered during the lectures each week. The first 3 assignments
focus on assessing basic understanding of natural deduction proofs using the
Coq theorem prover. The next 2 assignments are based on Hoare Logic. The
remaining ones examine a range of verification tools such as Spec# and Z3. At
the end of term, the students must complete their final exam.

3.1 Exam Structure

The final exam is 2-h long and pen & paper based. For full marks, students
must correctly answer three out of four questions on the paper. In the case
that a student answers all four questions, the best three are combined for their
final grade. The overall exam structure is outlined in Table 1. Each question
is weighted equally (25 marks) and focuses on examining a different topic. For
example, Q2 in Table 1 is designed to examine the basic knowledge of two algo-
rithms: Tseitin transformation [19] and DPLL [6], while Q3 is designed to exam-
ine Hoare Logic [11].

3.2 Exam Results

Overall, a total of 92 students, during the 2018–2019 academic year, participated
in the module. In total, 23 of them failed resulting in a 25% failure rate. We

When the Student Becomes the Teacher 211

(a) Mark distribution for Question 1. (b) Mark distribution for Question 2.

(c) Mark distribution for Question 3. (d) Mark distribution for Question 4.

Fig. 1. Marks distribution for four questions in Table 1.

analyse the exam results on a per question basis as illustrated in Fig. 1. For
each of these graphs, we plot the mark range (x-axis) against the percentage of
students that answered this particular question in the exam (y-axis).

We can see from Fig. 1 that the students performed the best on Q2. In fact,
Q2 was the most popular question with 88 out of 92 students attempting it. We
believe that this is due to the mechanical nature of Q2. Once a student masters
applying the corresponding rules, he/she is able to solve the basic problems on
the fly. Hence, Q2 was the most popular and highest scoring out of the four exam
questions.

Conversely, Q4 was the least popular. Only 24 out of 92 students attempted
this question. Q4 was designed to challenge students on the following topics:

– Encode a simple specification into SMT formulas.
– Write a Spec# program with the appropriate specifications corresponding to

a simple C# function that computes the sum of an integer array.
– Show basic SAT-encodings for reachability, safety and liveness properties.

212 M. Farrell and H. Wu

We believe that this question was the least popular because it requires students to
understand low-level SAT/SMT encoding plus writing specifications for a piece
of code. In general, this type of question was not appealing to the students and
this was also observed by the tutors during the weekly laboratory assignments.

4 Reflecting on Teaching and Learning

In this section, we outline our own experience as both student and educator. We
reflect on this experience in light of the above examination results and outline
our observations. Based on these observations we develop two hypotheses in
relation to making this module more accessible and enjoyable from the students’
perspective.

4.1 Our Experience

We summarise our own experience of learning (from our time as students study-
ing this module) and our experience of teaching this module below. We note
that the content of this module has not changed significantly in the time that
has passed since we originally studied it during our undergraduate degrees.

Learning:

– The content of this module is generally challenging for students. Particularly,
identifying loop invariants, presenting Hoare logic proofs and understanding
low-level SAT/SMT encodings.

– Verification tools in general are not very reliable and the online versions of
the tools frequently stopped responding during the lab sessions. Furthermore,
the feedback from the tools is normally not very helpful in terms of figuring
out what to prove or where one went wrong in the specification.

– Practical applications of formal verification are not very clear to the students.

Teaching:

– It is very difficult to help the students to see the value in the module since
lots of these techniques are not widely used in industry.

– Many tools are not scalable for real-world examples and this makes it difficult
to demonstrate their usefulness to students.

– It is necessary to use a combination of slides and manually working through
examples on the whiteboard to explain the detailed computation steps (e.g.
Hoare Logic) to the students.

We studied this module ourselves some years ago as students, and upon
reflection, we believe that the content of this module has always been quite chal-
lenging. Our experience of teaching this module (both as lab tutor and lecturer),

When the Student Becomes the Teacher 213

interacting with the students and students’ feedback forms2 have revealed that
this perception has not changed. Therefore, to encourage students, it is necessary
to make improvements to this module. In order to identify such improvements
we first outline four observations and then form two hypotheses in the next
subsections.

4.2 Observations

By combining the examination results (Sect. 3) and our own experiences above,
we make the following four observations:

Observation 1. Automated verification tools are not appealing to the students
even though we described real world disasters that could have been avoided
by using formal methods [14]. The tools that we use in this module for auto-
mated reasoning are Spec# [1] and Z3 [7]. The students use the online versions
of Spec#3 and Z34 as part of their practical lab work. In the beginning, the
students found the click-button and go style interesting. However, they subse-
quently discovered that the feedback from the tool was not usually helpful for
fixing bugs in the source code. We believe that this makes the tools harder to
use and causes the students to lose interest. This also explains the reason for so
few students, 24 out of 92, attempting Q4 as described in Table 1.

Observation 2. Most of the students performed reasonably well on natural
deduction proofs but not using the Coq interactive theorem prover [3]. For nat-
ural deduction proofs, most of the students have already studied the material
from their discrete structures module. However, they feel that it is difficult to
find connections between the proofs worked out on a piece of paper and the cor-
responding sequence of Coq commands although multiple live Coq proof sessions
are given throughout the lectures.

Observation 3. The verification tools and techniques that we have developed
during our research were not integrated into this module. As such, the stu-
dents were not given the opportunity to learn about our work. A portion of
our research focuses on using SAT/SMT solving techniques to tackle problems
from software engineering domains which is particularly relevant for this module
[21,22]. Unfortunately, we never had the chance to present our work due to time
constraints.

2 At the end of the semester, the university distributes feedback forms for the students
to fill in for each module that they have taken. It is not compulsory for the students
to complete them and they ask broad, non module specific questions. We received a
small number of responses and have used these to inform our discussion but we rely
more heavily on the exam results and our interactions with the students.

3 https://rise4fun.com/SpecSharp.
4 https://rise4fun.com/Z3.

https://rise4fun.com/SpecSharp
https://rise4fun.com/Z3

214 M. Farrell and H. Wu

Observation 4. In general, the students had mixed reactions to the Hoare logic
part of the module. In particular, the worked out whiteboard examples showing
how to discover loop invariants were difficult to digest for some students. This
usually involved interactive sessions during the lectures where the lecturer and
students worked together to solve the problems. Others found the whiteboard
examples to be extremely helpful when studying Hoare Logic. These students
typically had a strong background in mathematics. We speculate that these
students were accustomed to whiteboard style teaching whereas pure computer
science students were more likely familiar with electronic slides.

These four observations reveal a number of shortcomings for this module.
In particular, Observations 1 and 2 point to a lack of tool usability. This is a
challenge for the formal methods community at large and can also hinder the
uptake of formal methods in industry. Observation 4 noted that the students
generally found Hoare logic difficult to grasp but this may also be exacerbated
by the students’ difficulty in using tools such as Spec#.

As a result of Observation 3, we have already started to integrate our research
tool into current teaching. For example, we introduced our own tool, MaxUSE
[21,22]5, into one of the classes and showed the students how to use it to find
conflicting class invariants for a UML class diagram. A number of students clearly
showed interest in the tool and would like to know more about its underlying
algorithms and theories.

Based on these observations, we derive two hypotheses for improving this
module in the next subsection.

4.3 Hypotheses

In this subsection, we develop two hypotheses that are based on the observations
derived in the previous subsection. We intend to use these hypotheses to guide
future improvements to be made to this module that we plan to investigate dur-
ing the current (2019–2020) academic year.

Hypothesis 1. The development of an online repository that contains a collec-
tion of real world examples would be useful for both teaching and illustrating
industrial uses of formal methods to the students. These examples could be
proved by either using automated or interactive verification tools such as Z3 and
Coq. We believe that this would create a strong connection between the theory
taught in the class and practical, real world applications. However, the challenge
here is that the examples collected or manually created should be small, but
detailed enough to be suitable for educational use. One way to begin is to design
and distribute a survey among the past students in order to identify the most
interesting and educational examples to be used in the class.

5 https://github.com/classicwuhao/maxuse.

https://github.com/classicwuhao/maxuse

When the Student Becomes the Teacher 215

Hypothesis 2. A platform such as Tarski’s world that turns different kinds
of logical reasoning proofs into games would increase the interactions between
lecturers and students [2]. Hence, we believe that this is a good way to attract
students to formal methods. For example, a live coding session that works with
the students using SMT solvers to solve a Sudoku puzzle would be much more
enjoyable and interesting than simply elaborating on different SMT constructs
in the slides. However, there are two primary challenges that arise from this: (1)
it may not be possible for each student to bring a laptop to the lecture, and,
(2) students who miss the pre-setup steps may break the pace of a lecture. One
potential solution is for the lecturer to show the code (solving games) running
on their own machine and to upload the source code after the lecture so that
the students can try it in their own time. However, in this way the interactions
between the lecturers and students might be significantly reduced.

We have derived these hypotheses from our own experiences and the obser-
vations that we have made. We intend to investigate these hypotheses as future
work to see if they improve the student experience and the exam results.

5 Conclusions and Future Work

Teaching formal methods is quite challenging and making formal methods
appealing to younger generations is very important for continuously expanding
the formal methods community in both industry and academia. In this paper,
we discuss our own experience of both studying and teaching the same software
verification module at Maynooth University. Based on our experiences and anal-
ysis of the exam results from the 2018–2019 academic year, we have derived four
key observations in Sect. 4.2, from which we construct two hypotheses (Sect. 4.3)
that we will investigate during the current (2019–2020) academic year.

Furthermore, we plan to work with the education research group within the
department (at Maynooth University) to design interesting experiments in order
to figure out the best way of teaching formal methods and to let students have
fun with it. These experiments include interviewing students about specific top-
ics covered during the lectures, gathering and analysing real feedback from the
current academic year and using game based strategies to teach students to use
different verification tools [16]. We believe that these experiments can help us to
encourage the students to use formal methods/verification tools in their careers
after their university studies.

Since Maynooth University also offers a similar module at Master’s level, we
plan to investigate the corresponding exam results and compare them with those
presented in this paper. Furthermore, a much more detailed student feedback
form will be distributed at the end of the module for further analysis.

216 M. Farrell and H. Wu

References

1. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: an
overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30569-9 3

2. Barwise, J., Etchemendy, J.: Tarski’s World: Version 4.0 for Macintosh (Center for
the Study of Language and Information - Lecture Notes). Center for the Study of
Language and Information/SRI (1993)

3. Bertot, Y., Castran, P.: Interactive Theorem Proving and Program Development:
Coq’Art The Calculus of Inductive Constructions, 1st edn. Springer (2010)

4. Cataño, N.: Teaching formal methods: lessons learnt from using event-B. In: Don-
gol, B., Petre, L., Smith, G. (eds.) FMTea 2019. LNCS, vol. 11758, pp. 212–227.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32441-4 14

5. Creuse, L., Dross, C., Garion, C., Hugues, J., Huguet, J.: Teaching deductive veri-
fication through Frama-C and SPARK for non computer scientists. In: Dongol, B.,
Petre, L., Smith, G. (eds.) FMTea 2019. LNCS, vol. 11758, pp. 23–36. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32441-4 2

6. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving.
Commun. ACM 5(7), 394–397 (1962)

7. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

8. Dean, C.N., Hinchey, M.G.: Teaching and Learning Formal Methods. Morgan Kauf-
mann, San Francisco (1996)

9. Gallardo, M.M., Panizo, L.: Teaching formal methods: from software in the small
to software in the large. In: Dongol, B., Petre, L., Smith, G. (eds.) FMTea 2019.
LNCS, vol. 11758, pp. 97–110. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-32441-4 7

10. Gibson, J.P., Méry, D.: Teaching formal methods: lessons to learn. In: IWFM.
Citeseer (1998)

11. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

12. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning About
Systems. Cambridge University Press (2004)

13. Jaume, M., Laurent, T.: Teaching formal methods and discrete mathematics. In:
1st Workshop on Formal Integrated Development Environment, vol. 149, pp. 30–
43. EPTCS (2014)

14. Jazequel, J., Meyer, B.: Design by contract: the lessons of Ariane. Computer 30(1),
129–130 (1997)

15. Meyer, B.: Object-Oriented Software Construction, 1st edn. Prentice-Hall (1988)
16. Moller, F., O’Reilly, L.: Teaching discrete mathematics to computer science stu-

dents. In: Dongol, B., Petre, L., Smith, G. (eds.) FMTea 2019. LNCS, vol. 11758,
pp. 150–164. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32441-
4 10

17. Oliveira, J.N.: A survey of formal methods courses in European higher education.
In: Dean, C.N., Boute, R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 235–248.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30472-2 16

18. Rozier, K.Y.: On teaching applied formal methods in aerospace engineering. In:
Dongol, B., Petre, L., Smith, G. (eds.) FMTea 2019. LNCS, vol. 11758, pp. 111–
131. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32441-4 8

https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-030-32441-4_14
https://doi.org/10.1007/978-3-030-32441-4_2
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-32441-4_7
https://doi.org/10.1007/978-3-030-32441-4_7
https://doi.org/10.1007/978-3-030-32441-4_10
https://doi.org/10.1007/978-3-030-32441-4_10
https://doi.org/10.1007/978-3-540-30472-2_16
https://doi.org/10.1007/978-3-030-32441-4_8

When the Student Becomes the Teacher 217

19. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Stud.
Math. Math. Logic 2, 115–125 (1968)

20. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: practice
and experience. ACM Comput. Surveys (CSUR) 41(4), 19 (2009)

21. Wu, H.: Finding achievable features and constraint conflicts for inconsistent meta-
models. In: Anjorin, A., Espinoza, H. (eds.) ECMFA 2017. LNCS, vol. 10376, pp.
179–196. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61482-3 11

22. Wu, H.: MaxUSE: a tool for finding achievable constraints and conflicts for incon-
sistent UML class diagrams. In: Polikarpova, N., Schneider, S. (eds.) IFM 2017.
LNCS, vol. 10510, pp. 348–356. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66845-1 23

https://doi.org/10.1007/978-3-319-61482-3_11
https://doi.org/10.1007/978-3-319-66845-1_23
https://doi.org/10.1007/978-3-319-66845-1_23

Teaching Formal Methods in Academia:
A Systematic Literature Review

Rustam Zhumagambetov(B)

Nazarbayev University, Nur-Sultan 010000, Kazakhstan
rustam.zhumagambetov@nu.edu.kz

Abstract. The amount of literature on teaching formal methods has
been growing. However, there is a lack of attempts to systematically
review existing practices. This study attempts to identify challenges
related to teaching formal methods by examining the literature on this
topic. The literature review categorizes and systematizes the existing
experience of teaching formal methods to students at universities. It
presents obstacles reported as well as the strategies to deal with them
that are expected to help current practitioners.

Keywords: Formal methods · Education · Programming · Teaching

1 Introduction

Current practices of developing software include its testing. However, from a
formal point of view, it is not feasible to cover every possible piece of software
functionality with tests. Especially this concern relates to safety or mission crit-
ical software, such as software for medical machines and satellites.

Formal methods in software engineering address this problem by utilizing
mathematical frameworks of reasoning about programs, which is hard to under-
stand for the majority of students. Courses that involve formal methods become
the most unpopular.

To the best knowledge of the author, there exists no systematic literature
review that addresses challenges of teaching formal methods. One of the notable
works that addresses challenges of teaching formal methods is the survey by
Spichkova and Zamansky [24]. However, this survey is not comprehensive as it
lacks the papers from the conferences on teaching formal methods. Thus, there
is a need for systematic synthesis of the literature on the practices of teaching
formal methods.

Despite the importance of formal methods for testing and verification of
critical software, universities fail in teaching this aspect of computer science to
students. This systematic literature review will categorize and systematize the
existing experience of teaching formal methods to students at the university
level.

c© Springer Nature Switzerland AG 2021
A. Cerone and M. Roggenbach (Eds.): FMFun 2019, CCIS 1301, pp. 218–226, 2021.
https://doi.org/10.1007/978-3-030-71374-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71374-4_12&domain=pdf
http://orcid.org/0000-0002-8061-4904
https://doi.org/10.1007/978-3-030-71374-4_12

Teaching Formal Methods in Academia: A Systematic Literature Review 219

2 Review Questions

To carry out this systematic literature review a number of activities, including
database search, quality assessment as well as data extraction and synthesis,
were conducted to formulate a conclusion.

The objective of this study is to identify the struggles that educators
encounter during teaching formal methods in the higher education. A partic-
ular interest is strategies that used to overcome the struggles.

So, to achieve the objective the following research questions were formulated:

– RQ1. What are the challenges of teaching formal methods in the universities?
– RQ2. What are the strategies used to deal with these challenges?

3 Review Methods

According to Kitchenham and Charters [11], the following review components
should be present to establish replicability of the review:

– Study search strategy
– Study selection criteria
– Study quality assessment
– Data extraction strategy

3.1 Study Search Strategy

Based on the objective of the paper, the following search query was used for the
search: “teaching” AND “formal methods”. The terms were matched to titles,
abstracts and keywords.

The following databases were used for search:

– IEEEXplore (https://ieeexplore.ieee.org/)
– ACM Digital library (https://dl.acm.org/)
– Elsevier Science Direct (https://www.sciencedirect.com/)

The author has decided to include papers from conference proceedings. Pro-
ceedings of the following conferences were included:

– TFM 2009
– FMET 2008
– TFM 2006
– FMED 2006

As can be seen in Fig. 1, the primary search have found 151 studies.

https://ieeexplore.ieee.org/
https://dl.acm.org/
https://www.sciencedirect.com/

220 R. Zhumagambetov

Fig. 1. A flowchart that represents research protocol

3.2 Study Selection Criteria

After the initial review of the queries, some keywords were identified as irrelevant
to the study. Here is the list of excluded keywords: statistic, statistics, Grammar,
Second Language Learning, formal methods of estimation, Economics education,
Law students, Physical education, Physicians, Emergency Medicine Education.
Other criteria for selection are papers should be published not later than 2001
and be written in English language. Number of studies at this stage is 53.

After keywords exclusion, all papers were reviewed by the author to perform
third stage of selection. During this stage we filtered papers based on their
relevance to the research questions.

Then, papers were filtered based on title and abstract. During this filtering
process studies that claimed to teach formal methods outside of universities,
presented formal methods in other contexts were excluded. For example, title of
[25] states about experience in middle school and [7] about formal methods in
electronic government. At this stage the number of papers was reduced to 43.

3.3 Study Quality Assessment

In this stage rest of the papers were read and assessed on how they answer at
least one of the research questions. At this stage, primary targets for filtering out
were papers that have not neither evidence nor opinion regarding how challenges
of teaching formal methods or what strategies were used improve experience of
the students that participate in the course. Examples of the filtered out papers
are [18] and [15]. The former paper mostly consists of anecdotes that are aimed
to motivate anyone, who reads them, to use formal methods. The latter paper
is the one, which focused more on the tool, rather then how the tool solves
the problem of students. The final number of papers used to answer research
questions is 22.

Teaching Formal Methods in Academia: A Systematic Literature Review 221

3.4 Data Extraction Strategy

The resulting set of the papers is a mixture of teaching experience that was
recorded either through a session or within a certain period, when course was
offered. Other papers demonstrate the use of software or teaching approaches to
solve general or a particular problem along with student’s feedback.

Due to the nature of the “raw” material, structured data extraction becomes
either very difficult or impossible to conduct in the objective manner. So the
author used a word processor to identify some of the themes presented in the
studies, grouping them as necessary.

4 Results

In this section we report findings about research questions. The purpose is to
provide themes discovered in the studies.

4.1 What Are the Challenges of Teaching Formal Methods?

We found 17 studies that identified 3 main themes that answer this question:
students scepticism, difficulties with auxiliary software and challenges with mate-
rials.

Students’ Scepticism. This is one of the biggest challenges identified by
majority of researchers. Throughout the literature there were two prominent
problems that are related: student’s scepticism about formal methods as well as
isolation of formal methods from application in other courses.

Students Are Skeptical About the Usefulness of Formal Methods. This is the
major problem identified in 8 studies [2–4,6,9,17,19,26]. Blanco et al. [2] dis-
cusses how program verification is viewed by students as a “an additional bur-
den”. Brakman et al. [4] perceives that students see little practicality in use of
formal methods.

Isolation of Formal Methods from Application in Other Courses. Boute [3]
observes often such behavior is motivated by little exposure to formal meth-
ods across curriculum. Supporting, Sekerinski [22], reporting his experience of
teaching a course on software design with formal methods, identifies an isolated
use of formal methods as a main obstacle that prevents its flourishing.

Difficulties with Auxiliary Software. Another theme that was identified
throughout review is difficulties with tools that are used to teach formal methods.
Steep learning curve and bad user experience are major challenges that support
the theme.

222 R. Zhumagambetov

Steep Learning Curve for Tools. Lipaczewski and Ortmeier [13] recognized a
steep learning curve as one of the failures of tools that use formal methods.
Schreiner [21] supports them adding that teaching time is too scarce to consider
teaching how to use this “difficult to learn and/or inconvenient to use” software.

Tools Give Little Feedback. In their course Bayley, Lightfoot and Martin [1]
avoid using software tools, because tools can “produce a fairly cryptic and dis-
couraging response”. Gopalakrishnan [9] observed that most tools lack a good
user experience and failing do not provide insight at why they fail.

Challenges with Course Materials. The third theme that was common to
a number of studies is challenges with course materials. Such challenges include
dryness of the course, diversity of materials, lack of comprehensive textbook and
course require students to have better mathematical knowledge than they have.

Dryness of the Course. Two studies, [4] and [19] identified dryness of the course
as a problem of teaching formal methods. In particular, Brakman et al. [4] reports
that “lack of visualization” is the primary reason of ineffectiveness of teaching
formal methods.

Diversity of Materials. Gopalakrishnan [9] notes that there are a variety of
tools that use formal methods; however, there are few initiatives to adopt them.
These tools “face the uphill battle of vying for attention and commitment from
teachers” [9]. In other word, there are plenty of resources on formal methods
that are yet to be adopted by educators.

No Comprehensive Textbook. While there exists a diversity of materials, some
authors find it difficult to navigate through them. In particular, Kofroň, Paŕızek
and Šerý [12] report that they were not satisfied with comprehensiveness of one
of the textbooks used for one of their courses.

Inadequate Background in Mathematics. Several authors [8,14,16,23] report
students that take courses in formal methods often do not know a certain con-
cepts that are used in the course. Consequently, such inadequacy requires inclu-
sion of additional materials into the course.

4.2 What Are the Strategies Used to Deal with These Challenges?

We have found 15 papers and 4 major themes that answer this question that
are formulated as a form of advice: practice, engage students, avoid isolation of
formal methods and simplify material.

Practice. This advice was formulated because several authors attributed the
success of the formal methods courses they ran to the extensive practice. They
provided a large number of examples to the students to facilitate the ingestion
of theoretical and practical components of formal methods.

Teaching Formal Methods in Academia: A Systematic Literature Review 223

Use a Lot of Examples. Aceto et al. [6] report that they avoid presenting gen-
eral theory, preferring investigation of particular instances. They declare that
examples play “primary role” in their practice.

Real-life Examples and Projects. Some practitioners [4,5,20] make stronger
claims by saying that examples should involve “real-life”, not artificial instances
of the problem. For instance, Brakman et al. [4] discusses how presenting verifi-
cation of Bluetooth protocol as a course project helped their students to increase
understanding of formal methods.

Engage Students. This strategy was devised to describe several reported prac-
tices that increased engagement and motivation of the students with formal
methods.

Gamify. Prasetya et al. [19] presents a game, FormalZ, that presents concepts
of formal methods in fun and engaging manner. It also introduces a competitive
environment by introducing a leaderboard, a ranking list. Their preliminary
results show positive feedback from students.

Use Electronic Voting systems. Miller and Cutts [16] introduce an electronic
voting system (EVS) to help students to actively participate. EVS often consists
of a several buttons that represent answer choices and a display that presents
a question. Often EVS are anonymous and are instruments to increase student
engagement rather than test of the knowledge. Miller and Cutts [16] report use
of EVS increased confidence of student to “to answer questions within the class”.

Avoid Isolation of Formal Methods. This direction came from several stud-
ies that report an underrepresentation of the formal methods across curricula.
Such situation leads to formal methods looking esoteric, decreasing student’s
motivation [3,22].

Start Early in Introductory Course. Blanco et al. [2] reports that the course on
introductory programming that was based on formal methods was helpful for
students to learn appreciation of formal methods. They report that the course
had lasting effect based on “the optional courses they choose later on in the
programmes, and the topics they choose for their final projects” [2].

Use a Combination of Formal Techniques. Some educators claim that they
achieve best results when they explain several formal techniques. Hallerstede
and Leuschel [10] utilize combination of “formal proof, model-checking, and ani-
mation” to improve accuracy of a formal model.

Juxtapose of Taught Formal Methods with Other Methodologies. To overcome
students’ scepticism about formal methods Catano and Rueda [6] ask students
throughout the course to reflect upon pros and cons of the formal methods
compared to the already learned traditional approaches.

224 R. Zhumagambetov

Simplify Material. This strategy is intended to simplify not formal methods,
but the material used to deliver the lesson. While it is difficult, or impossible to
make formal methods accessible for everyone, some educators have found ways
of making their delivery friendlier to the listeners.

Use Another, Simpler Tool. Some studies [13,21] suggest that to overcome chal-
lenges associated with software, which uses formal methods, it is the best to use
other, simpler tools. For example, Lipaczewski and Ortmeier [13] propose SAML
with its plugins for IDE and web-based user interface. SAML is intended as tool
for building models that are more friendly to the user than existing alternatives.

Use Common Languages that Have Built-in Expressivity. Another study avoids
specialized formal methods software and languages. Instead, Gopalakrishnan [9]
uses a general purpose language, like Python, for “Models of Computation”
course. It has features, like list comprehension that helps writing definitions
with mathematical notation.

Use Less Formal Testing as a Medium for Teaching Some of the Formal Meth-
ods. Utting and Reeves [26] suggest that interweaving of traditional testing
approach and elements of formal methods helped their students to have a better
satisfaction with using formal methods.

5 Discussion

This systematic review have demonstrated that there is a number of challenges,
like students’ scepticism, difficulties with computer-aided assistants and chal-
lenges with the course materials. There are a few practices that can help to
overcome these challenges, like use of examples, gamification, teaching of combi-
nation of formal methods and simplification of the delivery. The author believes
that some of the discovered challenges are valid and hope that provided strategies
will help to overcome them.

5.1 Limitations

Even though this literature review attempts to be objective, there is no ideal,
objective criteria that would quantify success or failure of the provided solu-
tions. Most of the researchers relied on the students feedback, course enrollment
number or their own senses to draw a conclusion about usefulness of certain
techniques.

6 Conclusion

A systematic literature review was performed on 22 papers that report practices
of teaching formal methods in universities. The aim of this review was to identify
the struggles that educators encounter while teaching formal methods, as well
as exploring strategies that are used to deal with these struggles. The findings
allowed to formulate 8 themes of challenges that were further grouped into 3.
We have found 11 themes of strategies that were grouped into 4.

Teaching Formal Methods in Academia: A Systematic Literature Review 225

References

1. Bayley, I., Lightfoot, D., Martin, C.: Teaching the Oxford Brookes formal specifi-
cation module. In: Teaching Formal Methods, p. 5 (2006)

2. Blanco, J., Losano, L., Aguirre, N., Novaira, M.M., Permigiani, S., Scilingo, G.: An
introductory course on programming based on formal specification and program
calculation. SIGCSE Bull. 41(2), 31–37 (2009). https://doi.org/10.1145/1595453.
1595459

3. Boute, R.: Teaching and practicing computer science at the university level.
SIGCSE Bull. 41(2), 24–30 (2009). https://doi.org/10.1145/1595453.1595458

4. Brakman, H., Driessen, V., Kavuma, J., Bijvank, L.N., Vermolen, S.: Supporting
formal method teaching with real-life protocols. In: Formal Methods in the Teach-
ing Lab: Examples, Cases, Assignments and Projects Enhancing Formal Methods
Education, pp. 59–68 (2006)

5. Catano, N.: An empirical study on teaching formal methods to millennials. In:
2017 IEEE/ACM 1st International Workshop on Software Engineering Curricula
for Millennials (SECM), pp. 3–8. IEEE, Buenos Aires, Argentina (2017). https://
doi.org/10.1109/SECM.2017.1

6. Catano, N., Rueda, C.: Teaching formal methods for the unconquered territory. In:
Gibbons, J., Oliveira, J.N. (eds.) TFM 2009. LNCS, vol. 5846, pp. 2–19. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04912-5 2

7. Davies, J., Gibbons, J.: Formal methods for future interoperability. ACM Inroads
41(2), 60–64 (2009). https://doi.org/10.1145/1595453.1595463

8. Feinerer, I., Salzer, G.: Automated tools for teaching formal software verification.
In: Teaching Formal Methods, p. 5 (2006)

9. Gopalakrishnan, G.: Formal methods for surviving the jungle of heterogeneous
parallelism. In: 2012 IEEE 26th International Parallel and Distributed Processing
Symposium Workshops & PhD Forum, pp. 1321–1324. IEEE, Shanghai, China
(2012). https://doi.org/10.1109/IPDPSW.2012.164

10. Hallerstede, S., Leuschel, M.: How to explain mistakes. In: Gibbons, J., Oliveira,
J.N. (eds.) TFM 2009. LNCS, vol. 5846, pp. 105–124. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-04912-5 8

11. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature
reviews in software engineering (2007)

12. Kofroň, J., Paŕızek, P., Šerý, O.: On teaching formal methods: behavior models and
code analysis. In: Gibbons, J., Oliveira, J.N. (eds.) TFM 2009. LNCS, vol. 5846, pp.
144–157. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04912-
5 10

13. Lipaczewski, M., Ortmeier, F.: Teaching and training formal methods for safety
critical systems. In: 2013 39th Euromicro Conference on Software Engineering and
Advanced Applications, pp. 408–413. IEEE, Santander, Spain (2013). https://doi.
org/10.1109/SEAA.2013.54

14. Loukanova, R.: Teaching formal methods for computational linguistics at uppsala
university. In: Teaching Formal Methods, p. 6 (2006)

15. Méry, D.: A simple refinement-based method for constructing algorithms. SIGCSE
Bull. 41(2), 51–59 (2009). https://doi.org/10.1145/1595453.1595462

16. Miller, A., Cutts, Q.: The use of an electronic voting system in a formal methods
course. In: Formal Methods in the Teaching Lab: Examples, Cases, Assignments
and Projects Enhancing Formal Methods Education. A Workshop at the Formal
Methods 2006 Symposium, Hamilton, Ontario, Canada, 26 Aug 2006, pp. 3–8.
McMaster University, Hamilton (2006)

https://doi.org/10.1145/1595453.1595459
https://doi.org/10.1145/1595453.1595459
https://doi.org/10.1145/1595453.1595458
https://doi.org/10.1109/SECM.2017.1
https://doi.org/10.1109/SECM.2017.1
https://doi.org/10.1007/978-3-642-04912-5_2
https://doi.org/10.1145/1595453.1595463
https://doi.org/10.1109/IPDPSW.2012.164
https://doi.org/10.1007/978-3-642-04912-5_8
https://doi.org/10.1007/978-3-642-04912-5_10
https://doi.org/10.1007/978-3-642-04912-5_10
https://doi.org/10.1109/SEAA.2013.54
https://doi.org/10.1109/SEAA.2013.54
https://doi.org/10.1145/1595453.1595462

226 R. Zhumagambetov

17. Ölveczky, P.C.: Teaching formal methods based on rewriting logic and Maude. In:
Gibbons, J., Oliveira, J.N. (eds.) TFM 2009. LNCS, vol. 5846, pp. 20–38. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-04912-5 3

18. Parnas, D.L., Eng, P., Soltys, M.: Basic science for software developers (2006)
19. Prasetya, W., et al.: Having fun in learning formal specifications. In: 2019

IEEE/ACM 41st International Conference on Software Engineering: Software Engi-
neering Education and Training (ICSE-SEET), pp. 192–196. IEEE, Montreal
(2019). https://doi.org/10.1109/ICSE-SEET.2019.00028

20. Roychoudhury, A.: Introducing model checking to undergraduates. In: Formal
Methods Education Workshop, pp. 9–15 (2006)

21. Schreiner, W.: The RISC ProofNavigator: a proving assistant for program verifi-
cation in the classroom. Formal Aspects Comput. 21(3), 277–291 (2009). https://
doi.org/10.1007/s00165-008-0069-4

22. Sekerinski, E.: Teaching the mathematics of software design. In: Formal Methods
in the Teaching Lab, p. 53 (2006)

23. Shilov, N.V.: Kwangkeun Yi: engaging students with theory through ACM colle-
giate programming contests. Commun. ACM 45(9), 98–101 (2002)

24. Spichkova, M., Zamansky, A.: Teaching of formal methods for software engineer-
ing. In: Proceedings of the 11th International Conference on Evaluation of Novel
Software Approaches to Software Engineering, pp. 370–376. SCITEPRESS - Sci-
ence and and Technology Publications, Rome (2016). https://doi.org/10.5220/
0005928503700376

25. Spies, K., Schätz, B.: A playful approach to formal models a field report on teaching
modeling fundamentals at middle school. In: Formal Methods in the Teaching Lab,
p. 45 (2006)

26. Utting, M., Reeves, S.: Teaching formal methods lite via testing. Softw. Test. Verif.
Reliab. 11(3), 181–195 (2001). https://doi.org/10.1002/stvr.223

https://doi.org/10.1007/978-3-642-04912-5_3
https://doi.org/10.1109/ICSE-SEET.2019.00028
https://doi.org/10.1007/s00165-008-0069-4
https://doi.org/10.1007/s00165-008-0069-4
https://doi.org/10.5220/0005928503700376
https://doi.org/10.5220/0005928503700376
https://doi.org/10.1002/stvr.223

Author Index

Cerone, Antonio 1, 106, 191
Crick, Tom 159

Davenport, James H. 1, 159
Denner, Casey 1, 173

Farrell, Marie 1, 208

Haveraaen, Magne 1, 27

Körner, Philipp 1, 124
Krings, Sebastian 1, 124

Lermer, Karl Reiner 106

Moller, Faron 1, 173
Muravev, Evgeniy 92

O’Reilly, Liam 173
Ölveczky, Peter Csaba 1, 58

Powell, Stewart 173

Roggenbach, Markus 1

Schlingloff, Bernd-Holger 1, 143
Shilov, Nikolay V. 1, 92
Shilova, Svetlana 92

Wu, Hao 208

Zhumagambetov, Rustam 1, 218

	Preface
	Organization
	Contents
	Rooting Formal Methods Within Higher Education Curricula for Computer Science and Software Engineering — A White Paper —
	1 Introduction
	2 Challenges in Teaching Formal Methods
	2.1 .28em plus .1em minus .1emOn the Absence of Formal Methods from Computer Science and Software Engineering Curricula
	2.2 Students' Perception of Formal Methods
	2.3 Limited Visibility of Formal Methods in Media and Industry
	2.4 Students' Mathematical Background
	2.5 Personal Statements
	2.6 A Student's Personal Statement

	3 Teaching Formal Methods — the Fun Way
	3.1 Summarizing the Ideas

	4 .26em plus .1em minus .1emIncreasing Visibility of Formal Methods Throughout the Curriculum
	5 Syllabus of a Compulsory Formal Methods Course
	6 How to Assess Our Teaching Efforts?
	6.1 Summarizing the Ideas

	7 Conclusion and Outlook
	References

	Axiom Based Testing for Fun and Pedagogy
	1 Introduction
	2 Axiom Based Testing and Liskov Substitution Principle
	2.1 Axiom Based Testing
	2.2 Behavioural Subtyping and Axioms

	3 Behavioural Subtyping – Java Style
	3.1 Java Class Requirements – HashMap
	3.2 Orderable Data – TreeMap
	3.3 Discussion

	4 Computer Integers
	4.1 Ring Properties
	4.2 Total Order Properties
	4.3 Ordered Ring
	4.4 Integer Types and Test Data
	4.5 Narrowing and Widening Computer Integers
	4.6 Discussion

	5 Floating Point Numbers
	6 Summary and Conclusion
	References

	Teaching Formal Methods for Fun Using Maude
	1 Introduction
	2 Making Students Study Formal Methods: Challenges
	3 Making Formal Methods Teaching Fun
	4 How to Teach Formal Methods?
	4.1 Related Work
	4.2 What to Teach?
	4.3 Summarizing the Requirements

	5 Teaching Introductory Formal Methods Using Rewriting Logic
	5.1 Course Setting
	5.2 Formalism Used: Rewriting Logic
	5.3 Language and Tool Used: Maude
	5.4 Why Maude?
	5.5 Overview of the Course and Its Textbook

	6 Evaluation
	6.1 Summary of Student Feedback
	6.2 Selected Student Comments
	6.3 Other Issues
	6.4 Weaknesses

	7 Concluding Remarks
	References

	Fun with Formal Methods for Better Education
	1 Introduction
	1.1 A Semiannual Anniversary
	1.2 Fun for Better Education
	1.3 FWFM Workshop Series
	1.4 Structure of the Paper

	2 FWFM13-14 in Brief: From Ontological Argument to Esoteric Languages
	2.1 The Ontological Argument in PVS
	2.2 Countermodels for Fibonacci Words
	2.3 Learning Loop Invariant via Card Magic
	2.4 Gamification and Crowd-Sourcing Loop Invariants
	2.5 Formal Semantics Though an Esoteric Language

	3 How FM and Math Can Help and Boost Each-Other?
	3.1 FWFM-2019 in Brief
	3.2 On Relations Between Program Theory and Mathematics
	3.3 Problem IMO-19-1 via Recursion Elimination
	3.4 Problem IMO-19-5(a) via Proving Algorithm Termination

	4 Conclusion: What Else and Next?
	References

	Adapting to Different Types of Target Audience in Teaching Formal Methods
	1 Introduction
	1.1 Formal Methods and Its Potential Audience
	1.2 Structure of the Paper

	2 Authors' Background and Formal-Methods-Related Activities
	3 A Multi-dimensional Engagement Strategy in Formal-Methods Education
	3.1 Motivations
	3.2 Fun
	3.3 Which Formal Methods?
	3.4 Textual Versus Visual Notations
	3.5 Practice and Tools

	4 Types of Target Audience
	4.1 University Students
	4.2 School Pupils
	4.3 Industry
	4.4 Interdisciplinary Research Teams

	5 Conclusion and Future Work
	References

	Prototyping Games Using Formal Methods
	1 Introduction
	2 A Primer on B and the B-Method
	3 Software Used
	4 Pac-Man
	4.1 Requirements
	4.2 Model and Refinement Hierarchy
	4.3 Visualization
	4.4 Adding a Simple Game AI on Top of Formal Models

	5 Chess
	5.1 Requirements
	5.2 Model and Refinement Hierarchy
	5.3 Visualization
	5.4 Minimax as Model Checking Heuristic

	6 Lightbot
	6.1 Requirements
	6.2 Refinement Hierarchy
	6.3 Visualization
	6.4 Models of Virtual Machines

	7 Related Work
	8 Conclusions and Future Work
	8.1 Impact on Student Learning

	References

	Teaching Model Checking via Games and Puzzles
	1 Introduction
	2 Modelling Puzzles and Games
	3 Combinatorial Puzzles and SAT Solving
	4 Solitaire Puzzles and Model Checking
	5 Board Games and Strategic Logics
	6 Conclusion
	References

	Cybersecurity Education and Formal Methods
	1 Introduction
	2 Cybersecurity
	3 Agile Versus Secure
	4 The Need for Tools
	5 The Scope of Tools and Formal Methods
	5.1 Ada and SPARK
	5.2 C/C++
	5.3 Java
	5.4 JavaScript

	6 Education
	7 Conclusions
	References

	Teaching Them Early: Formal Methods in School
	1 Introduction
	2 Background
	3 The Technocamps School Engagement Programme
	3.1 The Man-Wolf-Goat-Cabbage Riddle
	3.2 The Water Jugs Riddle
	3.3 Feedback from the Workshops

	4 First-Year Formal Methods
	4.1 Verification via Games
	4.2 The Formal Definition of Equivalence
	4.3 The Copy-Cat Game
	4.4 Relating Winning Strategies to Equivalence
	4.5 Determining Who Has the Winning Strategy

	5 Conclusions
	References

	From Stories to Concurrency: How Children Can Play with Formal Methods
	1 Introduction
	1.1 Playing with Concurrency
	1.2 Structure of the Paper

	2 Choose Your Own Adventure
	2.1 Parallel Adventures

	3 Synchronisation Through Collaboration and Agreement
	3.1 Teacher's Role and Learning Outcome

	4 Modelling Stories
	4.1 Finite State Machines, Composition and Complexity
	4.2 Temporal Reasoning Using Finite State Machines
	4.3 Refinement and Formal Verification

	5 Representing Proofs
	6 Conclusion and Future Work
	References

	When the Student Becomes the Teacher
	1 Introduction
	2 Module Overview
	3 Assessment
	3.1 Exam Structure
	3.2 Exam Results

	4 Reflecting on Teaching and Learning
	4.1 Our Experience
	4.2 Observations
	4.3 Hypotheses

	5 Conclusions and Future Work
	References

	Teaching Formal Methods in Academia: A Systematic Literature Review
	1 Introduction
	2 Review Questions
	3 Review Methods
	3.1 Study Search Strategy
	3.2 Study Selection Criteria
	3.3 Study Quality Assessment
	3.4 Data Extraction Strategy

	4 Results
	4.1 What Are the Challenges of Teaching Formal Methods?
	4.2 What Are the Strategies Used to Deal with These Challenges?

	5 Discussion
	5.1 Limitations

	6 Conclusion
	References

	Author Index

