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Abstract. A knowledge representation model is proposed to facilitate studies
on knowledge creation, usage, and evolution. The model uses a three-layer net-
work structure to capture citation relationships among papers, the internal concept
structure within individual papers, and the knowledge landscape in a domain. The
resulting model can not only reveal the path and direction of knowledge diffusion,
but also detail the content of knowledge transferred between papers, new knowl-
edge added, and changing knowledge landscape in a domain. A pilot experiment
is carried out using the PMC-OA dataset in the biomedical field. A case study on
one knowledge evolution chain of Alzheimer’s Disease demonstrates the use of
the model in revealing knowledge creation, usage, and evolution. Initial findings
confirm the feasibility of the model for its purpose. Limitations of the study are
discussed. Future work will try to address the recognized limitations and apply the
model to large scale automated analysis to understand the knowledge production
process.

Keywords: Knowledge representation model · Knowledge evolution · Full-text
citation analysis · Alzheimer’s Disease

1 Introduction

Scientific knowledge growth has become an interesting research topic in science. In
recent decades, the number of scientific publications has been soaring exponentially due
to the blooming of research activities and the advance of information technology [1]. The
large scale of scientific literature forms a treasurable knowledge vault, which records
the trajectory of knowledge creation, usage, and evolution. The availability of academic
resources has been dramatically improved as the development of scholarly databases,
such as Web of Science, Scopus, Google Scholar, etc. Many researchers have leveraged
these digital resources to investigate the usage and evolution of knowledge within and
across research domains.
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To study this problem, many researchers attempt to identify explicit and implicit
associations among the carriers of knowledge. Citations have long been recognized as
a way of symbolizing knowledge transfer, based on which citation networks can be
modeled to track the development of science [2]. A few methods and visualization
tools have been proposed to analyze the evolution of research topics, e.g., HistCite
[3] and CiteNetExplorer [4]. Citation relations do not solely demonstrate the content
of knowledge. Human interpretation of citation analysis results actually relies on the
context information of citations, such as the titles of citing and cited papers, although
only referred by experts. This methodology is well applied in many related studies.
However, it is imperative to integrate the context of citations formally into analytic
methods for reducing experts’ effort and subjective interference.

Alternatively, some content-based methods probe into knowledge evolution by
exploring content connections among the articles in different time periods. The rep-
resentations of content are different, which depend on the research purpose of specific
study. Well adopted are terms and topics in most current studies. The advantage of
content-based methods is that the knowledge representation is easy to interpret and the
change of knowledge could be measured at a given aggregation level (e.g. by term or by
topic). However, the connections among different terms/topics are not explicitly mod-
elled or manifested by exploiting observable evidence, e.g., citations. The details of
knowledge usage and evolution are often not disclosed by such methods.

A few recent studies have attempted to combine citation relations and knowledge
content that citations carry to investigate knowledge diffusion [5–7]. Their underlying
motivation is to identify what knowledge is spread along a citation bymatching the terms
in the citing and cited articles. It then enables tracing the diffusion paths of knowledge
units (i.e. terms). However, the context of citations they consider is of far distance,
rather than the surrounding sentences where the citations occur. It is necessary to further
improve the methodology for investigating not only knowledge diffusion, but also the
emergence of knowledge and the evolutionary relationship among different knowledge
units.

In this study, we propose a knowledge representation model to facilitate formal
studies on knowledge creation, usage, and evolution. The model captures the citation
relationship among papers, internal concept structure of papers, and domain knowledge
context. A multi-layer network model is used to integrate different relationships in one
knowledge representation model. Citation contexts are analyzed to ascertain the knowl-
edge usage between citing and cited papers. The model allows systematic analysis on
knowledge creation, usage, and evolution using principled network models and math-
ematical algorithms. This study contributes to the formal methodology of studying the
knowledge production process from a temporal perspective.

2 Literature Review

2.1 Knowledge Representation

LIS Perspectives. The field of Library and Information Science (LIS) has a long history
in studying knowledge representation in the subfield of knowledge organization. The
primary focus is on document representation since the field is specialized in managing
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recorded information [8]. A primary goal for knowledge representation in the LIS field
has been to support information retrieval. Therefore, the representation is generally
focused on the document content [9]. Rules and standards to describe and represent
documents include classification systems, subject headings, and other forms of metadata
[10]. The process is traditionally called cataloging in the context of library materials,
and more recently resource description in the broader context of the information world.
The results are bibliographic records or metadata records that contain essential features
of the original documents and serve as surrogates for information retrieval purposes.
Folksonomies and ontologies are additions to the traditional knowledge representation
tools in LIS [11].

Another related area of knowledge representation in LIS is informetric studies that
produce knowledge maps representing knowledge structures [12]. Knowledge maps at
different granularity levels havebeen created to illustrate knowledge structures, including
words, papers, journals, and disciplines. Common relationships used to create knowledge
maps include word co-occurrences, semantic similarity, citation relationships (includ-
ing co-citation and bibliographic coupling), and collaboration [13–17]. This subfield of
studies on knowledge maps aims to reveal the structures in scientific domains rather than
represent knowledge for information retrieval as in knowledge organization. Neverthe-
less, the maps are knowledge representations of domains. Effort has also been made to
study the evolution of knowledge from a longitudinal perspective [18].

Other Perspectives. Besides LIS, cognitive science has also delved into knowledge
representation, but more from the perspective of mental representation that focuses
on cognitive abilities [19]. The artificial intelligence community has also discussed
knowledge representation in the realm of logics, reasoning, and inferences [20].

2.2 Citation Theory

Citation relationship is widely used to reveal relationships among research work. Cita-
tions are also the foundation of many evaluative metrics for scholarly impact. Informa-
tion scientists have had lengthy discussions on what citations mean and represent [21].
An influential dichotomy is the normative view versus the social constructivist view of
citations [22], while the former emphasizes the intellectual functions of citations and
the latter emphasizes the social factors. The two views have important implications for
the use of citations because if the functions of citations are intellectual, then they can
be reliably used to measure the intellectual relationship among papers; while if cita-
tions are socially constructed, the reliability of them reflecting intellectual connections
becomes questionable. Empirical studies have been carried out to test the two views
[23, 24]. Recent development and discussion seem to acknowledge the various factors
influencing citing behaviors, but also confirm the intellectual functions of citations [25].

2.3 Citation Networks for Knowledge Evolution

The use of citation networks to describe the development of science is not new. Garfield,
Sher and Torpie [26] demonstrated the feasibility of using citation data for historical
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analysis of science, in the case of DNA discoveries. The idea was later developed into
the HistCite software that can produce an interconnected historiograph of highly cited
publications for a particular topic [3]. Hummon and Doreian [27] proposed a main
path analysis method to identify the mainstream of research in citation networks. The
method was used by Lucio-Arias and Leydesdorff [28] on HistCite output to highlight
significant paths in science development. As reviewed in [29], main path analysis and
citation networks have been widely used to map technological trajectories, exploring
scientific knowledge flows, and conducting literature reviews.

Despite its success in revealing the path of knowledge diffusion, citation data does not
shed light on the development of knowledge content and structure. It is not immediately
clear what knowledge is added to a field by a node in a citation chain/network and
what knowledge is transferred from a node to the next. The model proposed in this study
integrates both citation relationship and knowledge content. The use of citations is based
on the intellectual functions of citations to represent knowledge usage between citing
and cited papers. The model also captures the knowledge content in individual papers
and the development of knowledge in a broader context of a domain.

3 Model Description

The foundation of thismodel is built on citation theory [21].Apaper cites a previouswork
to acknowledge its influence on the current paper. In the meanwhile, a paper generally
covers several related concepts/entities and studies their relationships, or a paper may
introduce new concepts, theories, methods, or techniques, etc. A local concept level
captures the internal structure within the scope of a paper. The citation relationship
between papers can be further elaborated by concepts/entities in citation contexts [30].
In addition, a global context is representedby thedomain concept level that aggregates the
knowledge pieces in each paper and provides an overview of the knowledge landscape.

Most of the previous studies on knowledge creation, usage, and evolution are based
on single-layer networks, such as citation, collaboration, co-citation, coupling networks,
or the integration of multiple networks into a single-layer composite network [31–34].
However, some researchers argue that a single-layer network is a crude approximation of
reality, which ignores considerable important information existing in the corresponding
multi-layer network. Furthermore, numerous phenomena and dynamic behaviors only
emerge in multi-layer networks, but not in single-layer networks [35, 36]. Therefore, a
multi-layer network model is used in this study to represent relationships at different
levels as well as the cross connections between layers (Fig. 1).
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Fig. 1. A knowledge representation model (Different colored nodes in Local-concept-level and
Domain-concept-level represent different entity types. The boundary of a domain is left for the
users of the model to define.) (Color figure online)

4 Model Definition

According to the model description above, we construct a knowledge representation
model characterized by a three-layer scientific network to study the creation, usage, and
evolution of knowledge. This network is a pair M = (L, C) where L = {Lα , α ∈ {
PL (Paper level), LCL (Local concept level), DCL (Domain concept level)}} is a set
of layers, and C is the set of cross connections between different layers, which can be
formularized as:

C = {Eαβ ⊆ Lα × Lβ; α, β ∈ {PL, LCL, DCL}} (1)

In this paper, LPL represents the citation network, where the vertices in LPL are
scientific publications, and the edge between two publications indicates the citing rela-
tions. Therefore, LPL is a directed network without weights. LPL = (VPL,EPL), where
VPL = {vPL1 , · · · , vPLNPL

} is the vertex set of LPL, and NPL is the number of vertices in
LPL. EPL is the edge set of LPL, which can be described by the corresponding directed
adjacency matrix APL = (aPLij ) ∈ RNPL×NPL , where

aPLij =
{
1 if

(
vPLi , vPLj

)
∈ EPL, note that

(
vPLi , vPLj

)
�=

(
vPLj , vPLi

)
0 otherwise.

(2)

LLCL captures the internal concept structure within a publication and also specifies
the concepts in citation contexts. In order to reveal the relationship among the con-
cepts in a publication and that in different publications more clearly, we introduce the
hypergraph theory [37] and establish a hypernetwork to depict LLCL. The hypernetwork
LLCL = (VLCL, HLCL, ELCL), where VLCL = {vLCL1 , · · · , vLCLNLCL

} is the concept set
of LLCL, and NLCL is the number of unique concepts contained in all the publications.
HLCL = {HLCL

1 , · · · ,HLCL
NPL

} is a family of non-empty subset of VLCL. Each element

in HLCL, HLCL
γ (γ ∈ {1, · · · ,NPL}), can be characterized by a single-layer network,
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namely,HLCL
γ = (V LCL

γ ,ELCL
γ ), whereV LCL

γ ⊆ VLCL represents the internal concepts of
a publication γ. ELCL

γ represents the relation between two concepts discussed in a paper,
which can be operationalized by concept co-occurrences in a paragraph. The paragraph-
level co-occurrence is preferred over the traditional paper-level co-occurrence because
it reflects a more granular relationship of the concepts by utilizing the full-text informa-
tion [38]. For instance, a shorter distance between entities in an article suggests a higher
similarity between them [39]. ELCL

γ can be formularized by a weighted adjacency matrix

ALCL
γ = (aγ

ij ) ∈ RNγ ×Nγ , where

aγ
ij =

{
count

(
vγ
i , vγ

j

)
if

(
vγ
i , vγ

j

)
∈ Eγ ,

0 otherwise.
(3)

The connection between two hyperlinks (ELCL) indicates that there is a concep-
tual citation relationship between two papers, namely, one of the hyperlinks cites
another hyperlink because of a certain concept. Therefore, there are two necessary
conditions for this connection. The first condition is the citation relationship between
two publications corresponding to the two hyperlinks. The second condition is that
these two hyperlinks share some common concepts. We define this connection as
ELCL(co). To this extent ELCL(co) can be expressed by a weighted adjacency matrix
ALCL
HLCL

= (aHLCL
ij ) ∈ RNHLCL×NHLCL , where

aHLCL
ij =

{
aPLij × card

(
HLCL
i ∩ HLCL

j

)
ifHLCL

i ∩ HLCL
j �= φ,

0 otherwise.
(4)

LDCL is the third layer of the knowledge representation model that can reveal the
global relations among all concepts across papers. LDCL can be described by a weighted
network, LDCL = (VDCL, EDCL), where VDCL = {vDCL1 , · · · , vDCLNDCL

} is the collection of
concepts in a domain, and NDCL is the number of concepts. EDCL is the weighted edge
set that represents the co-occurrence frequency of two concepts from the entire domain,
which can be described by a weighted adjacency matrix ADCL = (aDCLij ) ∈ RNDCL×NDCL ,
where

aDCLij =
{
count(vDCLi , vDCLj ) if (vDCLi , vDCLj ) ∈ EDCL,

0 ohterwise.
(5)

Conceptually, cross connections mean the relationship between different layers of
a multi-layer network model. There are two types of cross connections between the
three layers in the proposed model. The first is the connections between the nodes in
the paper-level and the hyperlinks in the local-concept-level networks. It denotes the
correspondence between papers in the PL layer and the hyperlinks in HLCL . The second
is the connections between the nodes in the local-concept-level network and the domain-
concept-level network. It denotes the correspondence between the concepts in LCL layer
and those in DCL layer.
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5 Pilot Experiment

The operational definition of a knowledge unit in this study is a concept or a concept
relationship. The proposed model is expected to support studies on knowledge creation,
usage, and evolution because it incorporates both citation relationships between papers
and concept structures within individual papers and in a domain. In this study, we per-
formed a pilot experiment to investigate the creation, usage, and evolution process of the
knowledge about a well-known disease, Alzheimer’s Disease (AD). The same method
should apply to other concepts or concept relationships. Figure 2 shows the procedure
of the pilot experiment, which is divided into four primary steps.

Fig. 2. An overview of the experiment procedure

5.1 Data Preparation

PubMed Central was chosen as the source of our data since it provides full-text articles
in XML format, which is essential for extracting citations as well as their contextual
and positional information. We collected articles related to Alzheimer’s Disease from
PubMed Central Open Access Subset (PMC-OA) using keyword matching in titles and
abstracts (keyword = “Alzheimer’s Disease”). This resulted in 22,363 articles spanning
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from 1995 to 2020. The dataset was further augmented by adding the cited and cit-
ing papers of the initial articles if available in PMC-OA, resulting in 119,093 articles.
Biomedical entities and their relationships were considered the basic knowledge units in
this study. We performed a sentence-level mapping to the Pubtator Central system [40]
to identify the entities that belong to the category of disease, gene, and chemical in each
paper. Finally, a clean dataset was built by extracting the citation relationships among
papers, as well as the citation context and positional information.

5.2 Network Construction

Paper-level citation network was constructed by parsing the in-text citations and refer-
ence list of each paper. Then, PMIDs (PubMed IDs) were extracted and used to identify
the citing and cited papers in our dataset. Isolated papers that could not be connected
to any cited or citing papers in the collection were removed from the network. Since
we are interested in the knowledge relationship among papers, it is more convenient to
have the edges in our citation network go from the cited papers to the citing ones, the
same as the direction of knowledge diffusion. For each paper, an entity co-occurrence
network was established within the paper by tallying the entity co-occurrences in the
same paragraphs. The paragraph-level co-occurrence offers a more accurate measure of
entity relationship than a paper-level co-occurrence does. The entity co-occurrence net-
work is also called the knowledge network for each paper as it represents the knowledge
structure within the paper. To focus on the evolution of a specific knowledge unit (in our
case AD), ego-centric networks were analyzed.

5.3 Extraction of Knowledge Evolution Chains

Based on the paper-level citation network and the knowledge network in each paper,
we extracted the evolution chains for knowledge about AD. A knowledge evolution
chain is defined as an acyclic and unbranched path in the citation network, whose nodes
are papers containing specific knowledge as their major research objects and edges are
citations that also include the same knowledge in their context. In this study, the top ten
entities with the highest weights in the knowledge network of a paper and those that
appear in the title or abstract were considered its core concepts. Perfunctory citations
that do not contain any core concepts of the cited paper in their context were filtered. To
ensure knowledge evolution chains concentrate on AD, we retained only citations that
include the entity Alzheimer’s Disease in their citation context. Knowledge evolution
chains were then identified by traversing from all zero-in-degree nodes to zero-out-
degree nodes, that is, from the papers not citing any other papers (source of knowledge
evolution) to those not cited by any other papers in the collection (end of knowledge
evolution). Each chain depicts a distinct pathway of knowledge creation, usage, and
evolution process. In addition, the knowledge network of each paper in the chains can be
aggregated at the domain concept level, forming a unified entity co-occurrence network
that evolves with the accumulation of articles over time. In this pilot experiment, the ego-
centric networks of AD in chains were used to create the domain-concept-level network.
In the next section, the creation, usage, and evolution of knowledge are investigated
quantitatively and qualitatively by network and context analysis.
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6 Results

6.1 Descriptive Statistics

Overall, the papers in our dataset mention biomedical entities for 29,957,744 times in
their full texts, with 30.8%, 45.9%, and 23.3% for disease, gene, and chemical, respec-
tively. Among them, there are 7,569, 79,774 and 28,298 distinct diseases, genes, and
chemicals. The entities with the highest frequencies of the three categories are presented
in Table 1.

Table 1. High-frequency diseases, genes, and chemicals

Disease Gene Chemical

Alzheimer Disease Insulin (INS) Lipids

Neoplasms Superoxide dismutase 1 (SOD1) Glucose

Dementia Apolipoprotein E (APOE) Water

Parkinson Disease Toll-like receptor 4 (Tlr4) Reactive Oxygen Species

Diabetes Mellitus Membrane associated ring-CH-type finger 8
(MARCHF8)

Sodium Chloride

Table 2 shows somedescriptive statistics of thePaper-Level (PL) citation network and
the Local-Concept-Level (LCL) entity co-occurrence networks. The averaged statistics
of the LCL networks are presented since each paper has its own knowledge network. It is
shown that the PL network is extremely sparse with a low density and the average degree
of its nodes is 4.66. This is likely due to the restriction that both citing and cited articles
should be in the PMC-OA set. Within the scope of a single paper, about 50 knowledge
entities (i.e. diseases, genes, or chemicals) are mentioned in the full text. Each entity has
co-occurrence relationships with about 10 others on average.

Table 2. Statistics of the citation network and entity co-occurrence networks

Nodes Edges Density Average Degree

PL network 118,504 552,700 3.94 × 10–5 4.66

LCL network 49.61 (avg.) 345.18 (avg.) 0.26 (avg.) 10.49 (avg.)

On average, there are 1.89 entities in each citation context, represented as the sentence
of a citing paper where the citation locates, with 90% of the citation contexts containing
0 to 4 entities. Regarding the type of entities in a single citation context, 43.0% and
42.7% are diseases and genes, while the chemicals only account for 14.3%. This is
different from the distribution of entity types in the full text. By considering the entities
in citation contexts and the core concepts of the cited papers, we extracted 67,427
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knowledge evolution chains from the dataset, with 4,615 distinct source papers that do
not cite any other papers in our dataset. The ego-centric entity co-occurrence network,
whose ego node is the knowledge entity of interest (AD in this case), can be obtained
from the LCL knowledge network of each paper in the chain.

The descriptive statistics of knowledge evolution chains are presented in Table 3.
The average length of an evolution chain is 3.61, with about 143 entities in the Domain-
Concept-Level (DCL) ego-centric entity co-occurrence network it constructs and an
average time span of 7.98 years. It is also shown that the standard deviation is large for
these metrics, indicating the heterogeneity among evolution chains.

Table 3. Statistics of the knowledge evolution chains | N = 67,427

Mean SD Median Q1–Q3

Length 3.61 1.75 3.00 2.00–5.00

Time span (year) 7.98 3.33 8.00 6.00–10.00

Total distinct entities on a chain 142.97 79.12 135.00 81.00–193.00

To quantitatively understand the network evolving process, we proposed a metric to
capture the contribution made by each paper to the DCL network, namely Knowledge
Cumulation Speed (KCS). The KCS measures how many new entities or relationships
between entities are added to the DCL network constructed at three different levels,
including one single chain where the paper locates (single chain), all chains that contain
the paper (chain set), and all preceding papers from the domain (domain), by each paper.
This shows the contribution by each paper to the cumulative knowledge of a single chain,
all chains passing through it, and all preceding papers in the dataset.

As Table 4 shows, on average, a paper contributes 10.74 new entities and 50.1 new
relationships to the DCL network of a single chain. By excluding 2,669 review articles,
this number falls to 9.53 and 43.85 respectively. The standard deviation also slightly
decreases. This shows that review articles contribute a higher than average number of
new entities and relationships to a chain. This is likely the result of synthesizing entities
and relationships across articles frommultiple chains, which is referred to as the integra-
tor effect in [29]. However, a paper contributes fewer new entities and relationships to
the DCL network of the chain set, with 5.92 entities and 26.26 relationships. Regarding
contributions to the domain DCL network, this number decreases substantially to only
0.73 entities and 11.64 relationships, respectively. This means that an article is less novel
from a macro perspective (i.e. chain set and domain), compared with one single chain
where it locates. More intriguingly, the average contributions to the DCL network of
the chain set and domain increase after removing review articles. While review articles
are the knowledge integrator of a single evolution chain, they generally contribute fewer
novel entities to the domain. Instead, reviews may focus on organizing existing knowl-
edge so the average KCS (domain) - relationship is slightly higher (11.64 vs. 11.53) if
reviews are included.
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Table 4 Knowledge cumulation speed (KCS) at different levels

Mean SD Median Q1–Q3

Including reviews

KCS (single chain) - entity 10.74 8.57 9.00 5.21–13.95

KCS (chain set) - entity 5.92 6.27 4.00 1.00–8.00

KCS (domain) - entity 0.73 1.69 0.00 0.00–1.00

KCS (single chain) - relationship 50.10 53.09 40.00 15.00–65.10

KCS (chain set) - relationship 26.26 46.90 12.00 3.00–31.00

KCS (domain) - relationship 11.64 30.68 2.00 0.00–11.00

Excluding reviews

KCS (single chain) - entity 9.53 7.04 8.14 5.00–12.16

KCS (chain set) - entity 6.32 6.53 5.00 2.00–9.00

KCS (domain) - entity 0.79 1.78 0.00 0.00–1.00

KCS (single chain) - relationship 43.85 47.00 35.60 13.00–57.17

KCS (chain set) - relationship 27.06 47.73 12.00 3.00–32.00

KCS (domain) - relationship 11.53 30.29 2.00 0.00–11.00

6.2 Case Study

To investigate the knowledge creation, usage, and evolution process in depth, we showed
a case study on one knowledge evolution chain of AD. Figure 3 demonstrates the 3-layer
representation model applied to this chain. Paper level shows the citation relationships
between papers and the entities transferred through citations, whereas local concept
level and domain concept level present the AD knowledge structure within a paper
and the accumulated AD knowledge structure of this chain. For better readability and
visualization, the knowledge networks were filtered by edge weight (greater than 5).

The chain beginswith a paper (PMC161361) focusing on the importance of oxidative
stress in the pathogenesis of AD. The paper pointed out that iron and copper are likely
to be the source of oxidative stress. The LCL network of the first paper is on the link
between AD and iron. The second paper PMC4132486 also focused on AD pathology,
but with a different approach. They performed a differential network analysis on four
region-specific gene co-expression networks. With this novel method, they also reached
the conclusion that oxidative stress is a highlighted process in early AD. This paper
adds new entities hippocampus (HIP) and posterior cingulate cortex (PCC) to DCL,
which are the brain regions affected by AD. Similarly, the third paper PMC4718516
employed network topology analysis to identify genes related to AD, adding related
genes CD4, DCN, CXCL8, PSEN1 and BACE1 to the DCL of the knowledge chain.
The addition of the third paper enriches the connections between AD and related genes
in this chain. Based on the related genes, paper PMC5508523 further analyzed the
relationship betweenNRF2 (NFE2L2 officially) gene deficiency and increased oxidative
stress, which may lead to AD eventually. They conducted the experiments on a house
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Fig. 3. Knowledge representation of one knowledge evolution chain of AD. Paper level shows
the PMCID, title of each paper, and entities in the citation context. AD is the ego of the egocentric
networks in local and domain concept level, presented as a red rectangle node. Blue, green, and
red nodes denote chemicals, genes, and diseases, respectively. In domain concept level, nodes
appearing in the previous networks are grayed out in the current network (Color figure online)

mouse (Mus musculus). New genes, Nfe2l2 (house mouse) and NFE2L2 (human), are
added to DCL after the addition of PMC5508523 to the chain. Finally, PMC6977098 is
a review paper that summarized the neurodegenerative diseases related to NRF2 gene,
including AD, Parkinson’s disease, multiple sclerosis, and stroke. The review article
connects several diseases due to their common relationship with NRF2 genes.

Overall, this chain focuses on the mechanisms of AD and its pathogenesis, with a
common theme on oxidative stress and AD. It can be seen from Fig. 3 that the knowledge
networks in LCL reveal the prominent knowledge structure within a paper and DCL
depicts the accumulation of knowledge. The combined information from three layers
not only reveals the direction of knowledgeflowand evolution, but also details the content
of knowledge creation, usage, and evolution. It should be noted that this is only one of
the knowledge evolution chains extracted from the AD related literature in PMC-OA.
The new entities and relationships in this chain may have been covered by or imported
from other chains in the citation network. The representation of the model also allows
large scale automated analysis on multiple chains in addition to the demonstration of a
case here.

7 Discussion and Future Directions

The purpose of this study is to propose a knowledge representation model that facilitates
studies on knowledge creation, usage, and evolution. The three-layer network structure
of the model includes: 1) a Paper Level (PL) for the citation relationship, as well as
semantic relationship, among papers; 2) a Local Concept Level (LCL) for the internal
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concept structure within papers; 3) a Domain Concept Level (DCL) for accumulative
knowledge in a domain. The PL in our model is a citation network with added citation
contexts. It is comparable with what most existing studies use for main path analysis
to reveal knowledge development [29]. The uniqueness of the proposed model is to
integrate citation relationship and content in a multi-layer network model. The resulting
model not only allows to trace the knowledge flow between cited and citing papers, but is
able to specify how the knowledge content evolves as new papers are added to a citation
network. This becomes clear in the case demonstration where the PL shows the direction
and path of the knowledge diffusion, the LCL elaborates the content in each paper, and
the DCL documents the contribution of each paper to the accumulated knowledge in a
chain (in this case, the domain is defined narrowly to a chain). In addition, the principled
network model allows large scale automated analysis on knowledge creation, usage, and
evolution. The current study applies it on a data set in PMC-OA and shows a case of one
chain. It demonstrates the feasibility of the model and its possible use.

The model has implications for science of science studies [41] in that it is focused on
the knowledge production process, and themodel accommodates for large scale analysis.
In its current form, the model can be used to study formally documented flow of ideas
and idea interactions. This can help discover where novelty arises and what contributes
to the process. When combined with additional information on authors and institutions,
the model can help study the interaction between knowledge representations and social
structures.

7.1 Future Directions

In the process of carrying out this study, we have also recognized some limitations that
point out the future directions of the work: First, while Pubtator Central is the state-of-
the-art system to extract biomedical entities from PubMed articles, we still identified
several errors in our experiment. For example, a general word may be recognized as a
gene entity when it matches the abbreviation of a gene, such as tea and gene Slc7a2
(also known as Tea). Also, Pubtator Central only identifies biomedical entities that fall
in the category of gene, disease, chemical, mutation, species, and cell line. Some areas of
study, such as food and nutrition, are inadequately covered. Therefore, it is beneficial to
improve the accuracy and coverage of entity recognition in our future studies. Oneway to
do that is to integrate external knowledge systems, e.g. PubMed knowledge graph [42],
and develop in-house machine learning models. Second, we only calculated preliminary
network metrics on the knowledge evolution chains and chose one of them as a case
study. Future work will further investigate how to characterize knowledge creation,
usage, and evolution using quantitative measures to reveal patterns and regularities in
the knowledge production process. Third, while PMC-OA is an ideal dataset for full-text
mining, it is obvious that many citations are excluded since they point to articles outside
PMC-OA. The knowledge evolution pathways may be skewed due to the problem of
incomplete data. Over 90% of the referenced articles in PMC-OA have PMIDs, which
means that their abstracts and metadata are available from PubMed. However, how to
align these abstract-only articles with full-text articles and trim the current procedure to
identify conceptual citations from them remains a challenge.
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Despite the limitations, the proposed multi-layer knowledge representation model
serves as a powerful infrastructure for various applications. Thismodel also has an exten-
sible architecture that allows for different approaches to construct the inner networks.
For instance, we are working on a solution to refine the internal concept structure of
individual papers, which focuses on the main topics of the document and filters back-
ground and literature review that casts broad connections. This will result in more robust
LCL networks. Future studies could also seek an optimal network structure for their
applications, ranging from pathway analysis to network simulation.
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