
Context-Based Detection of GNSS
Position Spoofing for Smartphones

Francesco Formaggio, Silvia Ceccato, Nicola Laurenti, and Stefano Tomasin

In this chapter, following the trace of [1], we delve into three solutions to let
smartphones detect GNSS spoofing attacks. The first, and most simple, foresees the
analysis of the visible satellites and the corresponding navigation message, checking
both its integrity and its correctness. The second approach, first introduced in [2],
makes use of the network connectivity of the smartphone, which provides alternative
location information, in order to verify the consistency of the global navigation
satellite system (GNSS) measurements. Finally, with the third approach we process
the smartphone inertial measurements unit (IMU) data with a Kalman filter (KF) to
derive a suitable spoofing detection mechanism.

1 Literature Background

The spoofing attack is a well known threat, where a malicious entity forges fake
GNSS signals in order to trick a victim receiver into computing the desired
false position and/or time. An extensive literature has been produced on spoofing
detection for various use cases [3–17].

Spoofing detection in vehicular applications is investigated in [6], where a mobile
device is used for comparing the absolute value of linear and angular acceleration
with those obtained from GNSS. This approach avoids the calibration of inertial
measurements units (IMU) and is invariant to manipulations of the device initial
orientation. The automotive scenario is also the target application of [7], wherein the
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proposed solution integrates data from GNSS, IMU, and the odometer. Differently
from [10] and [6], the comparison metric is position rather than acceleration, and
the detection statistics are obtained as the norm of the difference between position
vectors (from GNSS and from IMU or odometer). The novelty in this approach is
the idea of performing GNSS-based sensor calibration at fixed time intervals only
when the GNSS signal is considered authentic.

Note that it is generally believed to be impractical for an attacker to spoof
a vehicle position without the end user detecting the inconsistency with the
surrounding environment. However, in [11] the adversary aims at luring a victim
receiver to a specific location, while maintaining the consistency between outside
environment and Google Maps’ trajectory. The spoofing optimization algorithm
searches for areas of the map that are topologically similar to the road shape in
the user real location. The spoofing signal then induces a jump to the user location,
eventually driving it to the selected fake position through a path that mimics on the
map the user actual trajectory, making it hard for the receiver to notice the attack.

In aviation, the authors of [10] identify high frequency acceleration components
as a suitable source of randomness for authentication purposes, similarly to [8].
The work targets an attacker with imperfect information on the precise aircraft
acceleration and develops a spoofing detection algorithm based on decoupling IMU
and GNSS positioning, providing a direct comparison of the acceleration for an
unlimited time window.

Other anti-spoofing techniques include cryptographic mechanisms applied to
the navigation message [12, 13], spreading code encryption [14], signal quality
monitoring techniques [15, 16], and physical-layer authentication schemes [17, 18].

Only in recent years the interest in anti-spoofing techniques has been extended
to mobile devices applications. As location-based services (LBS) are now deeply
integrated in billions of people everyday life, the security of positioning in mobile
phones has become a concern. The most popular application of LBS is navigation:
traffic monitoring, vehicle management, and road information are just some of the
services that exploit positioning information in smartphones, offering guidance in
unfamiliar environments and improving the overall traveling experience. LBS have
also spurred the development of taxi sharing platforms, (e.g., Uber and Lyft) that
have become a competitive alternative to other services, thanks to features such as
real time monitoring for both providers and customers. Several other fields now
benefit from LBS, such as emergency and disaster management, insurance and
financial applications, and production process support. Home banking, financial
transactions, mobile based transportation, goods delivery, and access control based
on location proximity are just some examples of services readily accessible from
our mobile device that could be compromised by spoofing attacks. Indeed, in [1]
evidence is provided that even modern smartphones are vulnerable to such security
threats. Table 1 (from [1]) shows the time needed to obtain a fix for various
smartphones models, under three spoofing attacks:

Exp. 1 Spoofing from the correct position (Padova, Italy) to the fake position
(New York, USA).
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Table 1 Navigation data spoofing: Experiment results, from [1]

Time to fix

Smartphone Exp. 1 Exp. 2 Exp. 3 Exp. 4

Apple iPhone 5 < 30 s < 60 s No fix No fix

Apple iPhone 6s < 120 s < 30 s No fix No fix

Apple iPhone SE < 60 s < 60 s No fix No fix

Asus Nexus 7 < 120 s < 30 s No fix No fix

Asus Zefone 2 < 30 s < 180 s < 30 s No fix

Google Pixel < 30 s < 60 s < 30 s No fix

HTC one M9 < 60 s No fix No fix No fix

Huawei Honor 8 < 30 s < 30 s < 30 s < 30 s

Huawei Honor 9 < 30 s < 30 s < 120 s < 120 s

Huawei p8 lite < 60 s < 180 s No fix No fix

Huawei p10 lite < 30 s < 120 s No fix No fix

LG Nexus 5 < 30 s < 30 s No fix No fix

LG Nexus 5x < 30 s < 60 s No fix No fix

LG G6 < 30 s < 60 s < 60 s No fix

LG G3 < 120 s < 120 s No fix No fix

Motorola Moto G < 30 s < 30 s No fix No fix

OnePlus 2 < 60 s < 120 s No fix No fix

OnePlus 5 < 60 s < 120 s No fix No fix

Samsung S6 Edge < 30 s < 30 s < 30 s < 30 s

Samsung S6 < 30 s < 60 s < 60 s < 240 s

Samsung S7 Edge < 60 s < 120 s < 60 s < 30 s

Xiaomi Mi 4c < 60 s < 120 s No fix No fix

Xiaomi Mi5 < 30 s < 30 s No fix No fix

Xiaomi Mi6 < 120 s No fix No fix No fix

Xiaomi Redmi Note 4x < 60 s < 120 s < 30 s No fix

Exp. 2 Spoofing from the Empire State Building to Canberra, Australia. In the
spoofed signal navigation data were erased, except for the telemetry word, the
handover word, and the time indicators. Old navigation data was used by the
smartphone.

Exp. 3 Spoofing from the Empire State Building to the New York airport. In the
spoofed signal all navigation data erased. Old navigation data was used by the
smartphone.

Exp. 4 Spoofing from the Empire State Building to Canberra, Australia. In the
spoofed signal all navigation data erased and all stored data in smartphone was
erased.

See [2] for more details on the experiments.
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2 Visible Satellites and Navigation Message

In this Section we present a client-server (CS) architecture designed to detect
specific spoofing attacks. This CS architecture was also implemented in the form
of an Android application (APP). In the context of GNSS spoofing, the client, or
user, is also the victim receiver, subject to the attacker’s GNSS signals. The server
instead is an external application, which we assume authentic and capable of reliable
communication with the user.

2.1 Attack Model

We consider spoofing attacks, wherein an attacker generates false GNSS signals and
sends them to the victim receiver with the intention to induce a position estimation
that does not correspond to the true user’s position.

The attacker chooses a fake position and the set of satellites, visible from the fake
position, that he intends to spoof. We then distinguish two attacks.

1. The attacker does not null the legitimate signals received by the user, while
instead he transmits a higher power spoofing signal. Note that nulling is
theoretically feasible, since for every time and every position it is possible to
predict the exact shape of any legitimate GNSS signal; therefore, the attacker
could send these signals with inverse polarity and cancel them at the victim
receiver. However, nulling requires the exact computation of the carrier phase
at each time instant, which is a demanding task, corroborating the significance of
this first attack model.

2. In this case, the attacker tampers also with the navigation message, modifying
its content or even completely deleting all information. This might not seem a
clever attack, since predicting the navigation message is not as difficult as the
carrier phase estimation problem for nulling. However, in [1] it is shown that
nowadays smartphones obtain positioning information even from GNSS signals
with incorrect or missing navigation message. Moreover, the attacker might want
to simply disrupt or destructively interfere with the GNSS services, making the
navigation message manipulation its very objective.

2.2 Client-Server Architecture

The proposed CS architecture is shown in Fig. 1, where, as previously mentioned,
the client represents the victim receiver, subject to the two attacks described in
Sect. 2.1.
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Fig. 1 CS architecture of the proposed spoofing detection strategy. The client queries the server
sending the computed position, and the server answers with a list of visible satellites, for which the
spoofing check is performed

The spoofing detection procedure starts with the GNSS module at the client
side, which provides an estimation of the user’s position. The client then queries
the server by sending the estimated position itself.

The server keeps an updated version of ephemeris data, which are typically
stored in institutional websites, such as [19] for GPS. Indeed, in Fig. 1 the current
ephemeris block is placed outside the server, because it represents already existing
information and the server needs only to retrieve it. With current ephemeris, current
time (also available at the server), and user’s position, the server builds a list of
satellites that are visible from the client’s position and sends it back to the client
itself. The list contains the satellites’ identifiers (IDs), which uniquely identify each
satellite by its spreading code number, and the satellite’s positions (azimuth and
elevation). Note that the server does not use any GNSS module to build the list,
therefore it is not subject to GNSS spoofing and the information sent to the user is
assumed authentic.

At the client’s side, another satellite list is produced, equivalent to the one at
the server, but this time the IDs and positions of satellites are computed directly by
the GNSS module, thus being prone to forgery. Indeed, the spoofing check consists
in comparing the satellite list produced by the client and the one coming from the
server, as shown in Fig. 1.

2.3 Spoofing Check

The spoofing detection at the client includes two checks against the two attacks of
Sect. 2.1.
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The first check needs actually only the satellites’ IDs retrieved by the client
through the GNSS module. Retrieving this information does not require the
decoding of the navigation message, since spreading codes are known, and the
visible IDs are available right after acquisition.

Let Su and Ss be the set of IDs retrieved by the user and the server, respectively.
Then the first spoofing check output is the Boolean results of the following
expression

Su ⊆ Ss. (1)

The spoofing check reports no spoofing when the user sees only satellites that are
supposed to be in view from his position. Otherwise, a flag is raised, meaning that
there might be an ongoing spoofing attack. Note that we use the subset operator
rather than equality, because even in nominal conditions some satellites may not be
in view due to physical obstacles, e.g., buildings or trees.

The spoofing check (1) is designed to tackle attack 1 of Sect. 2.1. If the attacker
does not null the legitimate signal (as discussed in the previous section), the user
may be able to acquire also the legitimate satellites, even if tracking and position
estimation are performed based on the more powerful spoofed satellites. Therefore,
this spoofing check detects attacks inducing a fake position for which the visible
satellites are different from those in view from the user true positions. If the true
and fake positions are close enough to yield the same set of visible satellites, the
attack goes undetected.

However, time also plays an important role, the satellites in view changes over
time, therefore the acquired satellites may be inconsistent with the time/position
spoofed by the attacker. Indeed, time spoofing is also an important attack to
smartphones, since system level applications may rely on the GNSS time output and
temporal inconsistencies can cause software failures (see [1]). Moreover, tampering
with the navigation message (attack 2) can also result in such timing difference,
triggering spoofing detection.

As previously mentioned, (1) can be evaluated without looking at the navigation
message, and the attack 2 of Sect. 2.1 can easily go undetected if induced position
and time satisfy the satellite visibility constraints. Therefore, to address navigation
message tampering we compare the azimuth and elevation angles of the two
satellites’ lists.

The second check procedure works as follows. For every ID in Su, retrieve
its corresponding element in the server’s list. If such element does not exist, the
first spoofing check detects spoofing. Otherwise, compare the satellite’s coordinates
in the two lists. If the difference is above a suitable threshold, raise a spoofing
warning, otherwise declare that no spoofing attack is occurring. Note that when
comparing the satellites’ coordinates, the threshold is needed whenever (as often
occurs) communications and data processing of the CS architecture introduce a
random delay. Indeed, even in nominal conditions, azimuth and elevation computed
by client and server will not be the same due to the different computation instants.
A timestamp sent by the user would solve the problem, but, at the same time, would
pave the way for time spoofing attacks.
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Unlike satellites’ IDs, both azimuth and elevation can only be computed after
decoding of the navigation message, therefore, attack 2 is immediately revealed
when the navigation message is absent or corrupted in the specific fields used to
compute the satellite position.

2.3.1 Stand-Alone Navigation Message Checks

Following the trace of the second proposed spoofing check, other integrity inspec-
tions aimed at verifying the compliance of the navigation message fields can be
considered.

Some compliance check do not require the CS architecture, and can be performed
offline. For example, navigation message specifications, are publicly available (e.g.,
see [20]), and some verification functions can be hard coded in the smartphone’s
software. Examples of compliance checks are:

• the week number filed must be equal for all satellites currently in view;
• the issue of data clock (IODC) and the issue of data ephemeris (IODE) are always

between 0 and 1023.

2.3.2 Remark

The proposed spoofing checks are specific against the considered attacks, while
more sophisticated attacks, e.g., a combination of GNSS spoofing and server hijack-
ing, may go undetected. However, when a user can rely on such CS architecture and
on the stand-alone techniques, the attacker’s degrees of freedom are significantly
reduced. Also, this approach assumes that the user has access to the server via a
network connection, which is quite reasonable, given the smartphone-oriented use
case.

2.4 Android Implementation

The architecture of Fig. 1 has been implemented, whereas the client is an Android
APP running on the user smartphone, and the server is a desktop application.

Figure 2 shows two screenshots of the Android APP. In Fig. 2a the client has
just acquired data from the GNSS module and the APP displays the list of visible
satellites together with information on the decoded navigation message. At this
stage, the APP shows the client’s satellite list of Fig. 1.

Then, by tapping on the Analyze button, the client queries the server, which
promptly answers with its own satellite list, and the spoofing checks is performed.
This corresponds to Fig. 2b, where in the first half of the screen the two satellite lists
are shown. The experiment has been carried out in nominal conditions, i.e., without
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Fig. 2 Screenshots of the developed APP: data acquisition and spoofing checks with the data
received from the server. (a) Acquisition of satellites at the client. (b) Spoofing checks on the
visible satellites

spoofing, and the results show that all azimuth and elevation values differ at most
by one degree, providing a design direction for the spoofing check threshold.

3 Network Connectivity

In this Section we report a novel technique that checks the consistency between the
position estimates obtained by GNSS and the cellular network, summarizing our
work [2]. For the latter estimate we propose two distinct solutions: one is based
on the position of the base stations (BSs) (see Sect. 3.1) and the other directly on
the smartphone position estimated by the cellular network (see Sect. 3.2). Both these
solutions assume that the user has access to the network, and rely also on its security.

We have also implemented the proposed techniques in an Android APP and
tested its effectiveness in detecting spoofing attacks.
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3.1 BS-Position-Based Solution

A first simple solution to detect a spoofing attack is checking the consistency
between the GNSS position and the region covered by the serving cell, as identified
by the BS connected to the smartphone. With this technique we need to know: the
position reported by the GNSS, the position of the serving BS, and its coverage area.
We observe that the BS position is available since the second generation of cellular
networks, i.e., with the global system for mobile communications (GSM); still, here
we focus on a forth generation network, and Android application programming
interface (API). By using the TelephonyManager class we obtain the cell ID
and the location area code (LAC), that provide a unique identification of the BS in
the network.

About the BS position, it can be easily retrieved by open databases available
on Internet, such as OpenCellId [21] or Mozilla Location Service [22]. Note that
a secure implementation of this solution would require secure communication with
these servers and the assurance that the stored data are correct. As a proof of concept,
the OpenCellId has been used in [2].

A third needed information is the coverage area. This is the most problematic
data, which is not provided by available databases with good precision. For example,
CellMapper [23] provides an approximated estimate of the coverage area, as
shown in Fig. 3. Due the absence of the accurate coverage area, only qualitative
information is obtained. A second option would be to model cells as Voronoi regions
around each BS. Thus, by using the information on the BS position provided by
OpenCellId, we can obtain the coverage information. Still, this procedure is based
on a relevant assumption, and again it is hard to determine the resulting false-alarm
and misdetection probabilities of spoofing detection.

Although this approach is very qualitative, it can protect against strong attacks to
which current smartphones are subject, where the fake position is set thousands of
kilometers from the true position (see [1, experiment 1]).

3.2 Network-Provided Position

A second, more accurate spoofing detection procedure checks the consistency
between the position provided by the GNSS device and that provided by the cellular
network. Indeed, from the 3rd generation of cellular systems, the network estimates
the user position by exploiting directly the cellular signals, without resorting to the
user GNSS device. In particular, we use the Android class LocationManager,
which reports the position as given by the network provider, denoted network
position (NP). By default, the NP is obtained by processing signals of WiFi
access points nearby to the user. At the time of writing this Chapter, there is no
clear distinction between the NP obtained only from cellular network signals and
that obtained also from WiFi signals, in the Android documentation. However,
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Fig. 3 Base stations and
estimated coverage area.
Screenshot from [23]

it is always possible to force the NP to rely only on the cellular network, by
switching off the WiFi module. If in the future it will be possible to distinguish
position estimations obtained from different signals (cellular network, WiFi, . . . ) the
technique presented in this section can be easily extended to these richer scenarios.

In [2] an analysis of this spoofing detection technique has been carried out,
exploiting the accuracy provided by the Android APIs on both GNSS position (GP)
and NP estimates. In particular, starting from the two hypotheses

{
H0 the GNSS module works correctly,

H1 the GNSS module is under spoofing,
(2)

the generalized likelihood ratio test (GLRT) has been derived, assuming a Gaussian
distribution of the positions under hypothesis H0, i, l.

Ĥ =
{
H0 if ||ĝ − n̂|| < γ

H1 if ||ĝ − n̂|| ≥ γ,
(3)

where γ is a threshold to be set for the desired false alarm probability, and ĝ and n̂

are the GP and NP, respectively.
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Fig. 4 α attack scenario,
under hypothesis H1

When assuming specific attacks, the likelihood ratio test can be performed,
which provides a more effective detection. In [2] two kinds of attacks have been
considered: the α attack and the border spoofing attacks.

The α attack induces a fake position that is at least at distance α from the true
one. In this scenario the measurement model under the two hypotheses is then

H0 : ĝ = g0 + ξGejθG, n̂ = p + ξNejθN , (4a)

H1 : ĝ = g1 + ξGejθG, n̂ = p + ξNejθN , (4b)

where g0 and g1 are the spoofed positions under H0 and H1, respectively, p is the
true position, and the other parameters model the estimation errors. Note that it can
also be g0 = p in the absence of spoofing. Due to the constraint on the distance of
the spoofed position with respect to the correct one we have

||p − g1|| ≥ α. (5)

Figure 4 shows the α attack scenario under hypothesis H1, where β is the attack
distance such that β ≥ α.

With the border spoofing attack the attacker aims at inducing a position that is
beyond a known border, or inside a specific region in space. For example, this attack
is meaningful against location-based services, where a service is granted only if the
user is in a specific area, and the attacker wants to induce a position inside the
specific area, in order to get access to the service. In [2] the specific area border
is approximated as piece-wise linear, and the line closer to the correct position has
known angular coefficient m and intercept q. The resulting scenario is shown in
Fig. 5, where d1 and d2 are the distances from the border of p and g, respectively.
In this case, the measurement model is

H0 : ĝ = p + ξGejθG, n̂ = p + ξNejθN , (6a)

H1 : ĝ = g + ξGejθG, n̂ = p + ξNejθN , (6b)

where g is the spoofed position under H1.
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Fig. 5 Border spoofing
scenario

While for a generic spoofing attack the GLRT uses the simple expression reported
in (3), for both the α and the border spoofing attack we can provide specific defences
requiring the following additional steps. First, the unknowns quantities (p,g0,g1)

of (4), and (p,g) of (6), are estimated via a maximum likelihood approach, using
the NP and GP measurements, as detailed in [2]. Then, the likelihood function can
be computed as

L(ĝ, n̂) = p(ĝ|H0)p(n̂|H0)

p(ĝ|H1)p(n̂|H1)
, (7)

where the conditional probability density function p(·|·) are derived from the
measurement models (4) and (6), and computed using the estimated parameters.
Finally, the detection test for both the α and the border spoofing attack is

Ĥ =
{
H0 if L(ĝ, n̂) ≥ γ ′,
H1 if L(ĝ, n̂) < γ ′,

(8)

where for each value of the threshold γ ′ we obtain different performance in terms
of false alarm and misdetection probability, i.e., the detection error tradeoff (DET).

3.3 Numerical Results

The idea of comparing the network-provided position with the GNSS position has
been tested through an Android APP. An example of screenshot of the APP, under
a spoofing attack is shown in Fig. 6: the two positions are shown, and a traffic light
(showing red in this case) indicates that a spoofing attack has been detected. We
recall that the two positions in Fig. 6 are the NP and the GP described in Sect. 3.2,
and the underlying spoofing detection strategy follows the GLRT in (3), where the
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Fig. 6 Screenshot taken from
our APP, under a spoofing
attack

threshold γ can be set by the user or it can be designed and hard coded, upon offline
testing, in order to meet a certain false-alarm probability.

The false position in Fig. 6 is set to Lat. 40.7484404◦, Long. −73.9878441◦, i.e.,
the Empire State Building in New York City, USA. Note that this is the same setting
of [1, Exp. 1]. Clearly our solution is able to detect the spoofing attacks where the
fake position is far away from the correct one, a situation that remains undetected in
nowadays smartphones, as shown in Table 1.

By collecting data from a measurement campaign, the APP has been tested and
the DET curve of Fig. 7 shows the misdetection probability as a function of the
false-alarm probability. The attack in this case is simulated by adding an offset
δ to the GNSS position measurements. Both the GLRT test for a generic attack
(continuous lines) and the test for α attack with α = 100 m (dashed lines) have
been performed. The continuous lines correspond to test (3) and, again, bigger δ

means better detection performance. The detection test used for the α attack is,
instead, given by (8). Note that in this case performance obtained with the two tests
is almost identical.

Simulations have also been conducted to test specific α and border attack. For
both attacks the detection test is given by (8), where however θ̃ changes with the
attack, as seen in Figs. 4 and 5. Figure 8 shows the DET for α attack, α = 100 m,
g0 = p, and different values of β. We observe that as the distance of the fake
position from the correct position increases, the spoofing detection mechanism is
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Fig. 7 DET on data from the measurement campaign, from [2]
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100

Fig. 8 DET for α attack and different values of β

more effective. For the border attack, Fig. 9 shows the DET for d2 = 0 m and
different values of d1. Also in this case we observe that performance improves for
attacks of more remote positions.
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Fig. 9 DET for border attack, d2 = 0 m and different d1

4 IMU Data

This section tackles the use of opportunity data collected from integrated IMU for
anti-spoofing purposes. This mechanism is well known in safety critical applications
such as aviation, where several works have investigated the security improve-
ment provided by high precision sensors, [8, 9]. Since raw GNSS measurements
are now available to Android smartphones applications [24], several works are
focusing on integrating GNSS and IMU measurements in mobile devices, not
only for performance improvement, but also for security enhancement. In [25]
a comparison of the performance improvement in the position, velocity, and
time (PVT) between loosely and tightly coupled GNSS/IMU is carried out and
compared to a system solely relying on GNSS. The result highlights how the
tightly-coupled implementation boosts performance. Some relevant implementation
issues are pointed out, such as the critical time synchronization between inertial-
sensor measurements and GNSS chip set, the problem of data latency, and the
management of different sampling frequencies. The authors of [26] and [10]
perform quality assessment of measurements taken with IMU and GNSS chip
sets in different mobile phone models. They point out how even measurements
from low-cost IMUs of mobiles provide useful data for navigation integration. The
performance of low-cost accelerometers for anti-spoofing in aviation is reviewed
in [10], where high-frequency acceleration components are identified as a suitable
source of randomness for authentication purposes, similarly to [8]. The work targets
an attacker with imperfect information on the precise aircraft acceleration and
develops a spoofing detection algorithm based on the decoupling of IMU and
GNSS acceleration, allowing a direct comparison of acceleration for an unlimited
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time window. The proposed detection algorithm is reviewed in different application
scenarios such as railways and automotive, wherein is found to be less effective due
to the lower intensity of high frequency components in the acceleration process.
Spoofing detection in vehicular applications is investigated in [6], where a mobile
device is used for comparing the absolute value of linear and angular acceleration
with those obtained from the GNSS solution. This approach avoids the calibration
of IMU and is invariant to manipulations to the device initial orientation. The
automotive scenario is also the target application of [7], wherein the proposed
solution integrates data from GNSS, IMU, and odometer. Differently from [10]
and [6], the comparison domain is position and not acceleration, and the detection
statistics are obtained as the norm of the difference between position vectors
(from GNSS and from IMU/odometer). The novelty in this approach is the idea
of performing GNSS based sensor calibration at fixed time intervals only if the
spoofing detection algorithm confirms that the GNSS solution is authentic.

Several works in the literature have investigated the problem of anti-spoofing via
integration and comparison with IMU data. The abundance of recent works on this
idea confirms the interest of the community towards this topic.

4.1 Inertial Measurement Units

An IMU is usually composed by a combination of multiple accelerometers and
gyroscopes that measure the force acting on them (and thus the resulting linear
acceleration) and it angular velocity, respectively [27]. Some IMUs also integrate a
magnetometer that measures the Earth magnetic field.

The general problem of navigation through sensor fusion, i.e., the integration of
multiple positioning sources to obtain a more accurate and robust PVT solution,
deals with data transformation between different coordinate frames. Following the
approach of [28]:

Body frame, b: is the reference frame for IMU outputs. Its origin is located in the
center of the accelerometer triad and the axes are generally aligned to the IMU
case.

Navigation frame, n: is the target local geographical frame, where we want to
measure the device PVT. In order to integrate the inertial IMU measurements
we need to know the position and orientation of the b-frame with respect to the
n-frame.

Inertial frame, i: is stationary with respect to the Earth. It has the origin in its
center and the axis aligned with the stars;

Earth frame, e: rotates with the Earth (origin in the Earth center and axis fixed
with respect to the Earth).

As reported in [28] the IMU outputs acceleration and angular velocity of the
body frame relative to the inertial frame, with measurements that are expressed in
the body frame (i.e., with the body frame as reference basis).
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4.1.1 Gyroscope Measurements

The gyroscope measures the angular velocity of the body frame relative to the
inertial frame, ω

(b)
ib , where superscript (b) indicates that the vector is expressed

through coordinates in the b-frame. For navigation purposes we are interested in
the angular velocity of the sensor relative to the navigation frame expressed in the
b-frame

ω
(b)
nb (t) = ω

(b)
ib (t) − R(bn)(t)(ω(n)

en (t) + ω
(n)
ie ), (9)

where R(bn) is the rotation matrix from the n-frame to the b-frame, ω(n)
(ie) (in rad/s) is

the angular velocity of the earth frame relative to the inertial frame, and ω
(n)
en is the

angular velocity of the n-frame relative to the e-frame.
In low grade applications it is customary to make the simplifying assumption that

the n-frame is stationary with respect to the Earth, thus ω
(n)
en = 0. Moreover, since

|ω(n)
ie | ≈ 7.29 ·10−5 rad/s, this contribution can also be assumed negligible. For ease

of notation, from (9), we define the time varying vector ω(t) as

ω(t) � ω
(b)
ib ≈ ω

(b)
nb . (10)

4.1.2 Accelerometer Measurements

The accelerometer measures the force acting on the sensor and computes the specific
force, that is

a
(b)
i (t) = R(bn)(t)(a

(n)
i (t) − g(n)), (11)

where g(n) is the gravitational acceleration and a
(n)
i (t) is the acceleration of the

device relative to the i-frame. For navigation purposes we are interested in a
(n)
n , the

acceleration of the device relative to the n-frame. The relationship between a
(n)
n and

a
(n)
i is [28]

a
(n)
i (t) = a(n)

n (t) + 2ω(n)
ei × v(t) + ω

(n)
ei × ω

(n)
ei × p(t), (12)

where p and v are the position and velocity of the device relative to the navigation
frame.

In (12) the angular velocity of the Earth is assumed constant and the navigation
frame is fixed to the Earth frame, which is reasonable when the travelled distance is
negligible with respect to the Earth radius. This formulation is derived by using the
relation between rotating coordinate frames. The last term of the sum represents the
centrifugal acceleration, while the second is the Coriolis acceleration. The former
is typically absorbed in the gravity vector and has a magnitude of around 3.39 ·
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10−2m/s2 while the latter depends on the velocity of the object on which the IMU
is mounted, and has a magnitude in the order of 10−3 for a speed of 120 km/h.

In order to simplify the model we assume these two terms to be negligible and
we define the time varying vector

a(t) � a(n)
n (t) ≈ a

(n)
i (t). (13)

The physical relationships between a, p, and v are

v(t) = ∂p(t)

∂t
, a(t) = ∂v(t)

∂t
. (14)

4.1.3 Representation of Orientation

The acceleration a(t) is not directly measured by the IMU. Indeed, the measured
acceleration ab(t) is expressed with respect to the body frame rather than the
navigation frame. In order to express a(t) as a function of ab(t), a rotation of the
former has to be performed and the entity and direction of this rotation is given by
the orientation of the navigation frame with respect to the body frame.

Orientation can be parametrized in different ways. We consider unit quaternions,
one of the most widely used orientation parametrization in estimation problems [28].
Unit quaternions are a 4-dimensional representation of orientation:

q = (q0, q1, q2, q3)
T =

(
q0

qv

)
, qv ∈ R

3, ||q||2 = 1. (15)

A rotation of a vector in R
3 is a change of its direction while its length remains

constant. The rotation of xa into xb can be expressed with unit quaternions as:

xb = qba � xa � (qba)c, (16)

where the � represents quaternion multiplication, that can be expressed in matrix
form (see [28] for the derivation).

Rotations in R
3 form the special orthogonal group, SO(3), that is a matrix

Lie group. As reported in [28], this allows to represent an orientation deviation
with an exponential map over rotation vectors. An orientation with respect to the
navigation frame, qnbt is thus represented in terms of a linearization point (q̃nbt ) and
an orientation deviation parametrized by a rotation vector, ηt , expressed in the body
frame as

qnbt = exp

(
η̄t

2

)
� q̃nbt , (17)

where η̄t = (0, ηt
T )T , and ηt = nα is a rotation vector, parametrized by a unit

vector, n and rotation Euler angles α. The exponential operation is defined as
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exp (η̄) = cos ||η||2 + η̄

||η̄|| sin ||η||2. (18)

In our case we are interested in expressing the orientation in time as a function of
the angular velocity and the initial orientation. Therefore, (17) will be used, where
the reference orientation q̃nbt is the initial orientation at time t0, and the rotation
vector is represented by the angle displacement, i.e., the time integral of the angular
speed

qnb(t) = exp

(
η̄(t)

2

)
� q̃nb(t0), (19)

with

η(t) =
∫ t

t0

ω(t)dt. (20)

The acceleration in the navigation frame can thus be expressed in the following
way with respect to the acceleration in the body frame and the relative orientation
of the two coordinate frames

an(t) = qnb(t) � ab(t) � (qnb(t))c. (21)

4.2 Measurement Error Models

Data from gyroscopes and accelerometers are corrupted by measurement noise. By
collecting data from a stationary IMU standing on a flat surface the gyroscope
is expected to measure only the earth rotation, while the accelerometers should
measure the resulting acceleration that accounts for gravity and the centrifugal force.
Over some tens of seconds the data seem to fit well a Gaussian distribution with
non-zero mean.

4.2.1 Gyroscope

In general the noise can be divided into two distinct contributions: a slowly time
varying bias δω,t and a white noise component eω,t ∼ N (0, 
ω), with 
ω a 3 ×
3 diagonal matrix. The subscript t denotes discrete time samples. Therefore, the
measures can be written as

yω,t = ω(nTω) + δω,t + eω,t , (22)

where Tω is the sampling period of the gyroscope.
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There are two main approaches to model the bias, which is considered either
constant or slowly time-varying in the time interval of the measurements. In the
latter case, the bias is modeled as a random walk

δω,t+1 = αδω,t + eδω,t ,t , (23)

with α ∈ (0, 1), eδω,t ,t ∼ N (
0, 
δω,t

)
and 
δω,t 3 × 3 diagonal.

This model fits well the experimental data and can be verified by the means of
the Allan variance.

4.2.2 Accelerometer

For the accelerometer the same observations of the gyroscope hold, and the noise
has two contributions: a bias that is slowly time varying and a white noise. The
measurement model for the accelerometer is:

ya,t = a
(b)
i (t) + δa,t + ea,t , (24)

where Ta is the sampling period of the accelerometer, and ea,t ∼ N (
0, 
δa,t

)
, with

again 
δa,t a 3 × 3 diagonal matrix.

4.2.3 GNSS Module

The lower level output of the GNSS module are the pseudorange measurements ρ
(s)
t

and carrier phase measurements φ
(s)
t , where the superscript s denotes the number

of satellites in view. From the raw measurements and the ephemeris data we can
compute PVT.

GNSS measurements are corrupted by additive noise, i.e.,

yp,t = p(nTp) + ep,t , (25)

where Tp is the sampling period of the GNSS module. A reasonable model for the
additive error process is a Gauss-Markov process defined as follows

ep,t+1 = exp(−βTp)ep,t + νt , (26)

where β is a parameter describing the correlation between successive samples, νt ∼
N (

0, 
p

)
. Parameters β, Tp, and 
p are tabulated in [29, 30].
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4.3 Extended Kalman Filter

The KF is an efficient approach to evaluate the state of a complex system, governed
by known laws and described by noisy measurements. In our problem, the system
under exam is a moving object and the laws that describe its state (position, velocity,
and time) are the physics laws of motion. The available measurements can be
used for state evaluation according to a known measurement model (described in
Sect. 4.2). The KF approach is based on the assumption that the noise corrupting
both the measurements and the state estimate is Gaussian and that the equations
describing the evolution of both the state and the measurements are linear. As the
motion of an accelerating object cannot be represented by linear equations (since the
object position is part of the state variables), it is customary to adopt the extended
Kalman filter (EKF) instead. The EKF exploits a linearization of the non-linear
equations that describe the state and measurement evolution through the Jacobian
of non-linear functions. While the KF provides an optimal estimate, the EKF uses
approximation and therefore it is not optimal. The EKF can be used to estimate the
PVT of a moving object through the iterative repetition of two steps:

time update: the motion model is used to “predict” the state of the next time step;
measurement update: the predicted state estimate is updated according to the

current measurement and the measurement model.

One of the most common implementations of EKF integrating GNSS and IMU
uses the measurements from the former in the measurement update step, while the
measurements from the latter are used in the time update step to predict the next
state value. A complete derivation of the EKF equations and matrices can be found
in [28].

4.4 Innovation Testing

Innovation testing is a spoofing detection approach that exploits the EKF designed
for sensor fusion and navigation. Typically, such EKF have position, velocity, and
orientation as state, and IMU and GNSS as measurements.

The innovation step (which is part of the measurement update step), in any linear
KF (a similar expression holds for EKF), is

ik = zk − H x̂k|k−1, (27)

where x̂k|k−1 is a prediction of the current state. The covariance matrix of i is known
[31] and denoted by Pk . Then, by normalizing ik by its covariance matrix, we obtain
the test statistic

βk = it
kPkik, (28)
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which can be shown to be Chi-squared distributed with as many degree of freedom
as the dimension of the measurement vector z [31].

Innovation testing for anti-spoofing leverages the fact that under spoofing, the
state prediction derived from the IMU measurements are likely to disagree with
the GNSS measurements (arbitrarily forged by the attacker). Therefore under attack

ˆxk|k−1 is no longer a good prediction of the state, causing the absolute value of the
innovation to increase. Then, under spoofing βk is no longer Chi-squared distributed
and the spoofing detection is performed, in the framework of binary hypothesis
testing (see also (2)), according to

Ĥ =
{
H0 βk ∼ χ2

H1 βk 
∼ χ2.
(29)

Innovation testing is common in the literature, especially in aviation scenarios [4, 9].
In order to evaluate the results of innovation testing on a simple, analytic

scenario, let us simulate a spoofing attack by designing a legitimate trajectory (LT),
i.e., the trajectory that the user physically follows, and a spoofing trajectory (ST),
i.e., the trajectory that the spoofer induces to the user. The corresponding IMU and
GNSS measurements have been generated according to the measurement model
described in Sect. 4.2. Let us recall that under H0 both GNSS and IMU follow
the LT, while under H1 the GNSS module follows the ST.

The ST initially matches the LT, but then diverges by an angle θ . This is done by
fixing 3 waypoints for the ST, w1,w2, and w3, such that

w1 = [0, 0, 0]t , (30)

w2 = [10, 3, 0]t , (31)

w3 = w2 + Rθw2, (32)

where Rθ is a rotation matrix that rotates any vector by an angle θ in the (x, y)

plane. We then create a temporal axis by fixing a time of arrival at each waypoint
and specifying a trajectory sampling time. A cubic interpolation generates the
intermediate points between waypoints using the time axis as interpolation query.
Velocity and acceleration profiles are computed by numerical derivation of position
vector.

Using the same time axis, we specify also an orientation profile, i.e., a quaternion
for each time instant describing the orientation of the body frame with respect to the
navigation frame. From the orientation profile we compute the angular velocity in
the body frame at each time instant, such that

ωb
t =

(
q

(nb)
t

)c � q
(nb)
t+1 . (33)

From angular velocity, acceleration and position profiles we can generate GNSS
and IMU measurements.
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Fig. 10 Simulation scenario. (a) Scatter plot of p[1] and p[2] of the spoofed and authentic
trajectory. θ = π/6. (b) p[2] of the spoofed and authentic trajectory, versus time. Thinner lines are
the corresponding measurements

Figure 10 shows the LT and the ST. Figure 10b shows a 2D scatter plot of
p, where divergence between LT and ST starts at point (10, 3) and θ = π/6.
Before diverging, the two trajectories are not exactly the same because of the cubic
interpolation that avoids singularities in later numerical derivations. Figure 10b
shows the same trajectories (only the second component of each 3D position vector)
as function of time together with the corresponding GNSS measurements, where the
velocity absolute value is constant.

4.4.1 Analytical Results

We expect that the test statistic β(coinciding with the normalized innovation) is Chi-
squared distributed with 3 degrees of freedom under H0, since the measurement
vector of the EKF is 3-dimensional. Hence we have

β ∼ χ2
3 , p(β|H0) = 1

23/2�(3/2)
β3/2−1e−β/2, (34)

where �(·) is the well-known gamma function. Figure 11a shows p̂(βk|H0) together
with p(β|H0) and we can see how the two distributions match, as expected. Then
we apply the EKF on the ST and Fig. 11b shows how in this case the innovation test
is not chi-squared distributed and hence spoofing detection can be performed.

The measurement frequency was set to 100 Hz for the IMU and 10 Hz for GNSS.
A window of 1 s worth of innovation values was used for detection purposes, with
varying the test instant t0 and the trajectory angle θ . The DET curves were derived
through Monte Carlo simulations, by collecting the statistics of the normalized
innovation at different time instants, both in the authentic and spoofing case. The



24 F. Formaggio et al.

Fig. 11 Histogram plots of βk under a LT and ST, i.e., under H0 and H1. (a) Histogram plot of
βk |H0. (b) Histogram plot of βk |H1
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Fig. 12 DET curves for spoofing detection with the EKF. (a) DET curves for different θ (t0 =
7.5s). (b) DET curves for different t0 (θ = π/6)

results are reported in Fig. 12. It is noticeable that, as expected, the more the two
trajectories diverge, the more effective is the spoofing detection.

4.4.2 Testing on Real World Data

In the following some results are presented from the processing of measurements
gathered from a Novatel sensor [32].

Figure 13a shows part of the LT and ST used for this experiment. The LT is taken
directly from the available GNSS measurements, while the ST was obtained from
the LT, such that the two trajectories diverge symmetrically. In both scenarios the
IMU measurements are the same.
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Fig. 13 Experimental scenario and innovation testing performance. (a) LT and ST example with
data from [32]. In both cases it is shown the position as estimated by the KF. (b) DET resulting
from the application of innovation testing the scenario of Fig. 13a

The spoofing detection experiment was performed by feeding the EKF with
the two trajectories and the IMU measurements. Figure 13a shows the position
estimates of the EKF in both cases, making it possible to see the effect of
measurement inconsistencies in the spoofing case. Figure 13b shows, instead, the
DET resulting from innovation testing. False alarm and misdetection probabilities
are estimated from 10 different portions of trajectory that are similar to the LT in
Fig. 13a, for a total of 4 × 104 IMU samples and 210 GNSS samples.

4.4.3 Testing on a Software Receiver

In the following we evaluate the performance of innovation testing by exploiting
the GNSS software receiver built by the University of Padova. The innovation
testing module has as input the position computed by the PVT module and
generates acceleration and gyroscope noisy measurements, according to the model
in Sect. 4.2. The GNSS signal that is fed as input to the software receiver is
generated with the c++ signal generator built by the University of Padova.

For both the nominal and the spoofing scenarios, 150 s worth of GNSS signal
were generated. This time in the nominal scenario the receiver is stationary,
therefore the IMU records only Gaussian noise. In the spoofing scenario the attacker
is assumed to fake a stationary position, while the receiver is actually moving with
constant acceleration. Indeed, the GNSS module computes a stationary position in
the spoofing scenario, while the IMU measures a constant acceleration of 3 m/s2 in
magnitude.

Performance in terms of DET is shown in Fig. 14. The results are in the same
order of magnitude of those in Fig. 13b.
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Fig. 14 DET resulting from innovation spoofing applied to the scenario described in Sect. 4.4.3

5 Conclusions

We have proposed various spoofing detection techniques to be applied on smart-
phones, using context information coming from other components, such as the
cellular network or the IMU, or through consistency-checks of the received signals.
All these techniques have been tested in APPs developed in Android and effects
of the detection parameters have been studied in order to achieve a desired trade-
off between false-alarm and misdetection probabilities. We have also shown the
effectiveness of these defence strategies against various attacks previously reported
in the literature.
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