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Abstract. Deep learning enables impressive performance in image
recognition using large-scale artificially-balanced datasets. However, real-
world datasets exhibit highly class-imbalanced distributions, yielding two
main challenges: relative imbalance amongst the classes and data scarcity
for mediumshot or fewshot classes. In this work, we address the problem
of long-tailed recognition wherein the training set is highly imbalanced
and the test set is kept balanced. Differently from existing paradigms
relying on data-resampling, cost-sensitive learning, online hard exam-
ple mining, loss objective reshaping, and/or memory-based modeling, we
propose an ensemble of class-balanced experts that combines the strength
of diverse classifiers. Our ensemble of class-balanced experts reaches
results close to state-of-the-art and an extended ensemble establishes a
new state-of-the-art on two benchmarks for long-tailed recognition. We
conduct extensive experiments to analyse the performance of the ensem-
bles, and discover that in modern large-scale datasets, relative imbalance
is a harder problem than data scarcity. The training and evaluation code
is available at https://github.com/ssfootball04/class-balanced-experts.

1 Introduction

In the past decades, deep learning has boosted success in image recognition to a
new level [14]. The availability of large-scale datasets with thousands of images in
each class [4,47] has been a major factor in this revolution. However, these datasets
are manually curated and artificially balanced, as opposed to real-world datasets
that exhibit a highly skewed and class-imbalanced distribution in a long-tailed
shape: a few common classes and many more rare classes. To address this practical
challenge, in this work, we focus on the problem of long-tailed recognition, wherein
datasets exhibit a natural power-law distribution [32], allowing us to assess model
performance on four folds: Manyshot classes (≥100 samples), Mediumshot classes
(20–100 samples), Fewshot classes (<20 samples), and All classes. Training data
follows a highly class-imbalanced distribution, and testing data is balanced so that
equally good performance over all classes is crucial [24].
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Fig. 1. Our pipeline for long-tailed recognition: an ensemble of experts trained on class-
balanced subsets of Manyshot, Mediumshot, and Fewshot data. We transfer knowledge
from Manyshot to Mediumshot and Fewshot classes by initialising experts with a Base-
line model trained on all the data. Expert models classify samples outside their subset
as out-of-distribution and output partial posteriors that are fused into a full posterior
to obtain the final prediction.

The twomain challenges for a long-tailed classificationmodel are relative imbal-
ance amongst the classes, and data scarcity or unobservable data modes [13].
Existing techniques for imbalanced classification have focused on data re-sampling
[6,13] and cost-sensitive learning [3,23] to re-weigh the loss objective or counter
relative imbalance, while techniques for fewshot learning have employed data aug-
mentation [7,36,40,41], classifier weight prediction [9,28,29], or prototype-based
non-parametric methods [24,30,33] to address data scarcity.

Unlike the aforementioned paradigms, we instead revisit the classic approach
of ensemble of experts [17,19,44] and adapt it to long-tailed recognition. We
first decompose the imbalanced classification problem into balanced classification
problems by splitting the long-tailed training classes into balanced subsets. Then
we train an expert on each balanced subset, so-called Manyshot, Mediumshot, or
Fewshot data, with out-of-distribution detection for samples outside an expert’s
class-balanced subset. This explicitly tackles the issue of relative imbalance, and
prevents competition between Manyshot and Fewshot classes during training.

Further, to use all available data for learning feature representations and
to transfer knowledge from Manyshot to Mediumshot and Fewshot classes, we
initialise the feature extractor of each expert using a Baseline model trained
on the entire dataset. This simple and effective approach reaches close to state-
of-the-art results without involving more complex models or sophisticated loss
objectives. Moreover, the decomposition into class-balanced subsets allows us
to analyse the upper bound on performance in each data regime. Specifically,
our experiments with an Oracle upper bound allow us to bring Fewshot and
Mediumshot accuracy on par with Manyshot accuracy, revealing that in modern
large-scale datasets the data scarcity for Mediumshot and Fewshot classes can be
effectively handled using knowledge transfer from Manyshot classes. Therefore,
relative imbalance is a more severe problem.
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We also leverage the flexibility and modularity of the ensemble framework
to create larger and more diverse ensembles using existing solutions for long-
tailed recognition. In particular, we involve the following methods in the solution
space: (1) a Baseline model without any bells or whistles; (2) feature learning
followed by classifier finetuning with uniform class sampling [31,41]; (3) data
augmentation using feature generation networks [7,36,41]; and (4) knowledge
transfer through prototype-based memory representation [24,30]. The extended
ensemble consisting of all these models outperforms the current state-of-the-art
on two benchmark datasets by a significant margin.

Our contributions in this work can be summarised as follows:

(1) We propose an effective and modular ensemble of experts framework for long-
tailed recognition that decomposes the imbalanced classification problem into
multiple balanced classification problems. Our framework utilises all available
data for learning feature representations and transfers this knowledge from
Manyshot to Mediumshot and Fewshot classes. The results of our ensemble
of class-balanced experts are close to the state-of-the-art performance on two
long-tailed benchmark datasets, ImageNet-LT and Places-LT [24].

(2) We enrich our ensemble with a diverse set of existing solutions for long-tailed
recognition, namely data re-sampling, data augmentation using synthesised
features, and prototype-based classification, and establish a new state-of-
the-art for long-tailed recognition.

(3) We analyse the upper bound performance of our approach in the following
manner: we assume Oracle access to the experts containing the ground truth
classes of the test samples in their class-balanced subsets. We discover that
data scarcity for rare classes is not a severe issue in modern large-scale
datasets. Rather, relative imbalance is the main bottleneck.

2 Related Work

Imbalanced Classification and Long-Tailed Recognition. There is a long
history of research in imbalanced classification [1,13,32], in binary and more
generally multi-class classification problems. Classic problems that naturally
encounter class imbalance are face attribute detection [18,26], object detec-
tion [23,48], and image defect detection [43]. Prior work on image classifica-
tion [37,38] deals with long-tailed datasets, but only recently a benchmark for
the problem on the ImageNet and Places dataset was proposed by [24]. They
also propose splits for open-world classification, but in this work we only con-
sider long-tailed recognition and we report the performance of our methods on
the proposed ImageNet-LT and Places-LT. We summarise below the existing
solutions for imbalanced classification and long-tailed recognition.

Data Re-sampling Heuristics and Cost-Sensitive Learning. These are
classic ways to tackle long-tailed recognition. A more balanced data distribu-
tion is achieved by randomly over-sampling fewshot classes or randomly under-
sampling of manyshot classes [6,13]. However, over-sampling suffers from over-
fitting on fewshot classes while under-sampling cannot take full benefit of avail-
able data for generalization on manyshot classes. Other work has focused on
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hard example mining [5] or cost-sensitive learning [3,23] reasoned from class fre-
quencies. Instead, to augment our ensemble of class-balanced experts, we use
a uniform class sampling procedure in mini-batch training for finetuning the
classifier after a representation learning phase, which has the advantage that all
data is used to learn representations while decision boundary learning takes class
imbalance into account. This has also been employed before in related zero-shot
learning [41] and fewshot learning [31] work.

Synthetic Data Augmentation. This is a classic technique that synthe-
sises features for minority classes based on feature space similarities [2,12].
More recently, generative models have been employed in zero-shot [7,40,41]
and fewshot learning [36] literature to automatically generate images or fea-
ture embeddings for data-starved classes. In this work, we use the f-VAEGAN-
D2 model from [41] that generates feature embeddings conditioned on available
class embeddings using a VAE-GAN model, and integrate it into our ensemble
of experts framework.

Prototype-Based Models and Knowledge Transfer. Prototype-based net-
works [30,33] maintain a memory module for all the classes such that each class
is equally represented regardless of sample frequency. In particular, Liu et al. [24]
learn prototype-based features on-the-fly to effectively transfer knowledge from
manyshot classes to fewshot classes. We integrate their model into our ensemble
due to its ability to perform consistently well across the entire class spectrum.
Transfer learning [27] addresses data imbalance by transferring abundant fea-
tures of manyshot classes to those of fewshot classes. Recent work includes
transferring the intra-class variance [42] and transferring semantic deep fea-
tures [24,46]. We instead transfer knowledge across the dataset by initialising
our expert models with a baseline model pre-trained on the entire dataset.

Ensemble Learning. Ensemble methods are a well-studied topic in machine
learning literature. In particular, a variety of ensemble-based methods using
boosting [11,34], bagging [8,20], stacking [35], and evolutionary selection of clas-
sifiers [21] have been employed for imbalanced datasets. However, they all con-
sider ensembles with the same kind of model and task. Our approach is related
to the work of Hinton et al. [17] who train an ensemble of experts over disjoint
semantically-close subsets of classes, thereby each expert deals with a differ-
ent classification task. We instead train our experts on subsets of classes that
are intrinsically balanced to counter relative imbalance and prevent competition
between manyshot and fewshot classes during training. Moreover, we integrate
a diverse set of models for long-tailed recognition into our ensemble of experts.

Out-of-Distribution Detection and Confidence Calibration. Modern
neural networks can function both as classification models and detectors for out-
of-distribution examples [15]. Recent works focus on adding small perturbations
in input space and applying temperature scaling [22], and adding loss terms to
push out-of-distribution examples towards uniform confidence [16]. Related work
on confidence calibration tries to fix overconfident predictions on in-distribution
data using temperature scaling [10]. We instead focus on learning an ensemble of
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class-balanced experts for long-tailed recognition, where the problem of out-of-
distribution detection arises when dealing with samples from outside an expert’s
subset, and jointly calibrate experts’ confidences to fuse their posteriors.

3 Method

We propose an ensemble of experts for solving the problem of long-tailed recog-
nition. We split the long-tailed dataset into (approximately) class-balanced sub-
sets, and a separate classification model, or expert, is trained for each subset.
Expert models identify samples belonging to classes outside their subset as out-
of-distribution; therefore we train them to produce low confidence predictions
on these samples. During inference, each classification model yields a partial
posterior distribution for test samples, the ensemble of which is fused to form
a complete posterior distribution. Our entire pipeline is depicted in Fig. 1. The
modularity of our framework allows us to explictly address the problem of rela-
tive imbalance, and moreover analyse the upper bounds for performance in each
data regime using Oracle access to experts containing ground truth classes of
test samples in their class-balanced subsets.

3.1 Long-Tailed Recognition Using Class-Balanced Experts

The task of long-tailed visual recognition is as follows: given class-imbalanced
training set DTrain = {(xi, yi)}ni=1 and class-balanced validation set DVal and
class-balanced test set DTest, the objective is to maximise test accuracy on four
folds, Manyshot classes (≥100 samples), Mediumshot classes (20–100 samples),
Fewshot classes (<20 samples), and All classes. This is a hard problem, since any
high performing model must deal with the two problems of relative imbalance
and data scarcity.

Fig. 2. Dataset splitting: We
decompose ImageNet-LT into (rel-
atively) class-balanced Manyshot,
Mediumshot, and Fewshot data
subsets.

Relative imbalance leads to biased classifi-
cation boundaries wherein accuracy on few-
shot samples is compromised in favor of
manyshot samples that dominate the train-
ing objective. Data scarcity leads to rep-
resentations that do not model unobserved
data modes and is more severe. To tackle
both these issues, we sort the class-imbalanced
training set DTrain according to class frequen-
cies and partition it into contiguous class-
balanced subsets DManyshot, DMediumshot and
DFewshot. This is visualised in Fig. 2.
For each subset, we train separate classifica-
tion models or experts, that are initialised
using a model pre-trained on the entire

dataset. Consequently we obtain the expert models EManyshot, EMediumshot and
EFewshot corresponding to each class-balanced subset. The feature extractor part
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of each expert model E is initialised using the Baseline model pre-trained on the
entire training setDTrain. This enables knowledge transfer fromManyshot toMedi-
umshot and Fewshot classes. In this work, the expert models E and the Baseline
model are deep fully convolutional neural networks with softmax classifiers.

3.2 Out-of-Distribution Detection for Experts

The expert models identify samples from classes outside their class-balanced
subset as out-of-distribution or OOD for short, therefore we train them using an
out-of-distribution detection strategy. Observe that this is a hard problem, since
here OOD examples come from within the same distribution albeit from extra
classes within the dataset, as opposed to standard out-of-distribution detection
wherein OOD samples come from an entirely different dataset.

Training with Reject Class. We add a reject class to the softmax classifier of
each expert. For instance, EManyshot treats samples from DMediumshot ∪ DFewshot

as a single reject class. This introduces imbalance since the reject class has far
more samples than any other class, therefore we undersample reject class samples
appropriately during training. We correct for the statistical bias by incrementing
its logit score by the log of the undersampling ratio. We note that samples in
the reject class have very high variance and are therefore hard to fit.

3.3 Fusing Expert Posteriors

We consider various baseline strategies and propose a novel joint calibration
module to fuse expert posteriors E (x) into a complete posterior distribution.
The final prediction and confidence scores are taken from this posterior, denoted
as q(x), using the argmax operation.

KL-Divergence Minimisation. We find the full posterior distribution for
each sample, by minimising its KL-divergence with all the partial posterior dis-
tributions predicted by the experts [17], that is,

min
q(x)

∑

E
KL(E (x)||q(x))

where q(x) is parameterised using logits z and a softmax function as q(x) =
softmax(z). Note that probabilities corresponding to out-of-distribution classes
for the expert E are summed up into one probability score in q(x) to align the
two distributions.
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Soft-Voting. We find the full posterior by summing up the partial posteriors
directly and normalising the sum to 1,

q(x) =

∑

E
g(E (x))

∑

E
1

Here g(.) is a function that converts an expert’s partial posterior into a full
posterior. Since experts are trained with a reject class, g(.) averages reject class
probability score across out-of-distribution classes corresponding to expert E .

Expert Selection. We train a 3-way classifier on the validation set, taking
the partial posterior vectors E (x) of each expert E as input, to predict for a
sample x the expert model E that contain’s the sample’s ground truth class
in its class-balanced subset. Thus, for instance, the classifier learns to predict
that a manyshot sample lies in the class-balanced subset of the manyshot expert
EManyshot. The full posterior q(x) is then given by g(E (x)) for the predicted
expert E , where g(.) is defined similarly as before.

Model Stacking. We train a single layer linear softmax classifier to predict
the full posterior q(x) from the partial posterior vectors E (x) of each expert E .
The vectors E (x) are concatenated to form a feature embedding for the softmax
classifier which is trained by optimising the cross entropy loss on the validation
set. This is a standard way for ensemble fusion known as model stacking [39].

Joint Calibration. We calibrate the partial posteriors E (x) by learning scaling
and shift parameters before adding up the posteriors similarly to soft-voting,

q(x) =

∑

E
g(σSM (wE � zE (x) + bE ))

Z

where σSM denotes the softmax operation, wE and bE are scale and shift param-
eters respectively, zE (x) denotes the logit scores of expert E for sample x, �
denotes elementwise multiplication of two vectors, Z is a normalisation factor,
and g(.) is defined as before. We learn scale and shift parameters by minimising
the cross entropy loss on the validation set. This module effectively learns the
right alignment for experts’ partial posteriors before performing soft-voting.

4 Experiments

Datasets. We use the object-centric ImageNet-LT and scene-centric Places-LT
datasets for long-tailed recognition, released by Liu et al. [24]. The training set
statistics are depicted in Table 1. ImageNet-LT has an imbalanced training set
with 115,846 images for 1,000 classes from ImageNet-1K [4].
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Table 1. Statistics for training sets in
ImageNet-LT and Places-LT.

Datasets Attributes Many Medium Few All

ImageNet-LT Classes 391 473 136 1,000

Samples 89,293 24,910 1,643 115,846

Places-LT Classes 132 162 71 365

Samples 52,862 8,834 804 62,500

The class frequencies follow a
natural power-law distribution [32]
with a maximum number of 1,280
images per class and a minimum
number of 5 images per class. The
validation and testing sets are bal-
anced and contain 20 and 50 images
per class respectively. Places-LT has

an imbalanced training set with 62,500 images for 365 classes from Places-2 [47].
The class frequencies follow a natural power-law distribution [32] with a max-
imum number of 4,980 images per class and a minimum number of 5 images
per class. The validation and testing sets are balanced and contain 20 and 100
images per class respectively.

Evaluation Metrics. We report average top-1 accuracy across the four folds,
Manyshot classes (≥100 samples), Mediumshot classes (20–100 samples), Few-
shot classes (<20 samples), and All classes. Since the test set is balanced across
all classes, the average accuracy and mean precision coincide. These four metrics
are important for fine-grained evaluation since high accuracy on All classes does
not imply high accuracy on Fewshot classes or Mediumshot classes.

Implementation Details. For the Baseline model, we take a Resnet-10 back-
bone for ImageNet-LT, following [24]. We initialise the model with Gaussian
weights, use an initial learning rate of 0.2, and train for 100 epochs with a cosine
learning rate schedule [25]. For Places-LT, we start with an ImageNet pre-trained
Resnet-152 model, and finetune it with 0.01 learning rate for the first 30 epochs
followed by 0.1 exponential decay in every 10 epochs. To train expert models, we
initialise the feature extractor of each expert E from the Baseline model, and
finetune it on its class-balanced subset. For EMediumshot and EFewshot, we freeze
the lower layers of the feature extractor and only learn the top few layers. The
number of learnable layers is a hyperparameter that is fixed by measuring per-
formance on the validation set. To train experts with the reject class, we fix the
undersampling ratio for samples from the reject class by measuring performance
on the validation set. Note that the classifier for each expert E is smaller than
the Baseline model; it equals the number of classes in the expert’s class-balanced
subset, plus an additional reject class.

4.1 Oracle Performance

To estimate the upper bound of our approach, we consider the performance with
Oracle access to expert selection information, that is, with apriori knowledge of the
expert E that contains the ground-truth class of a test sample in its class-balanced
subset. The results are depicted in Table 2 and Table 3. The Oracle outperforms
the Baseline by a significant margin on Mediumshot, Fewshot and All accuracy.
Moreover, it is significantly interesting to note that the Oracle accuracies onMedi-
umshot and Fewshot classes are on par with Manyshot accuracy. This illustrates
that performance drops on Mediumshot and Fewshot classes result from relative
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Table 2. Performance of Oracle vs
Baseline on ImageNet-LT.

Method Many Medium Few All

Baseline 54.3 26.2 5.8 34.4

Experts (Oracle) 54.2 43.3 45.7 47.9

Table 3. Performance of Oracle vs
Baseline on Places-LT.

Method Many Medium Few All

Baseline 45.4 25.6 9.0 29.5

Experts (Oracle) 47.3 46.1 46.5 46.6

imbalance rather than data scarcity. Therefore, in principle, it is possible for a clas-
sification model to matchFewshot andMediumshot accuracy withManyshot accu-
racy in modern large-scale datasets. It is also interesting to see that the Manyshot
accuracy does not improve much by using an Oracle, suggesting that Manyshot
accuracy is already saturated in the Baseline model.

4.2 Effect of Joint Calibration Module

We apply the methods outlined in Sect. 3.3 for fusing expert posteriors and com-
pare their performance on ImageNet-LT and Places-LT. The results are depicted
in Table 4 and Table 5. KL-div minimisation and Soft-voting yield the highest
Fewshot accuracy, however All accuracy is much lower than the other meth-
ods. Expert selection and Stacking are better than KL-div minimisation and
Soft-voting on Manyshot, Mediumshot and All accuracy, but worse on Fewshot
accuracy. The Joint-calibration module obtains the best Manyshot, Mediumshot
and All accuracy, even though Fewshot accuracy suffers.

Table 4. Effect of joint calibration
module for ImageNet-LT.

Module Many Medium Few All

KL-div min 25.3 20.5 39.1 21.9

Soft-voting 26.3 21.3 38.9 25.6

Expert selection 38.3 32.6 17.2 32.8

Stacking 28.1 27.5 33.8 28.6

Joint calibration 43.2 34.3 18.9 35.7

Table 5. Effect of joint calibration
module for Places-LT.

Module Many Medium Few All

KL-div min 30.2 31.7 28.9 30.4

Soft-voting 30.0 31.8 28.9 30.6

Expert selection 32.6 31.8 24.5 30.7

Stacking 28.2 36.0 26.2 31.3

Joint calibration 37.2 35.3 26.3 34.2

4.3 Diverse Ensembles with Experts

In this section, we extend our ensemble using existing long-tailed recognition
solutions and analyse the performance of various combinations of models in the
ensemble. We experiment with the following models: (i) The Baseline model, (ii)
The three expert models, EManyshot, EMediumshot and EFewshot fused using Soft-
voting, collectively referred to as Experts, (iii) Classifier finetuning with uniform
class sampling,wherein we freeze the feature extractor of the Baseline model and
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(a) ImageNet-LT: Base Models (b) ImageNet-LT: Take-One-Out Ensem-
bles

(c) Places-LT: Base Models (d) Places-LT: Take-One-Out Ensembles

Fig. 3. From L-R: Performance of - Base Models, and Take-One-Out ensembles. All
results are evaluated on the testing set. Top and bottom rows correspond to ImageNet-
LT and Places-LT respectively. Best viewed in color with zoom.

finetune the classifier with uniform class sampling. This is referred to as Uni-
form class sampling or Uniform, (iv) Data augmentation for Mediumshot and
Fewshot classes using a conditional generative model from class embeddings to
feature embeddings, denoted as GAN based augmentation or simply GAN, (v)
Knowledge transfer from Manyshot to Fewshot classes using a learned convex
combination of class prototypes from [24], denoted as Liu et al.. The perfor-
mances of these base models are depicted in Fig. 3a and Fig. 3c. Notice how the
performance of the Baseline model degrades from Manyshot to Mediumshot to
Fewshot accuracy. The Expert models give the highest accuracy on the Fewshot
classes, but are worse on Manyshot accuracy.

We combine all these models into a single ensemble, take one model out and
see the effect on the performance. To keep the analysis simple, we use Soft-voting
for fusing posteriors from all the models, since it doesn’t involve learning addi-
tional parameters. This ablation is depicted in Fig. 3b and Fig. 3d. As expected,
the diverse ensembles give higher All accuracy than the base models. Taking
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Experts out causes performance drop on Mediumshot, Fewshot and All accuracy,
and increase in accuracy on Manyshot classes. This suggests that the Experts are
important in the ensemble for high Mediumshot and Fewshot accuracy. On the
other hand, taking the Baseline model out of the ensemble causes an increase
in Fewshot accuracy while Manyshot accuracy drops. The ablation also reveals
the inherent trade-off between Manyshot and Fewshot accuracy; an appropriate
combination of models can tilt accuracy in favor of Manyshot or Fewshot classes.

4.4 Comparison to the State-of-the-Art

We now compare our ensemble of class-balanced experts and the diverse ensem-
ble described in the previous section to the state-of-the-art on the test set of
ImageNet-LT and Places-LT. All ensemble combinations use the joint calibra-
tion module to fuse model posteriors as it gives us the highest average accuracy.
The results are depicted in Table 6 and Table 7. We observe that Ours (Experts)
gives us close to state-of-the-art results, and Ours (All) establishes a new state-
of-the-art on both the benchmark datasets. This validates our hypothesis that
an ensemble of class-balanced expert models is a simple and effective strategy
for dealing with long-tailed datasets.

Table 6. Results on ImageNet-LT, using
backbone Resnet-10. *Results obtained
from the author’s code. ‡Results taken
directly from [24].

Methods Many Medium Few All

Lifted Loss‡ [26] 35.8 30.4 17.9 30.8

Focal Loss‡ [23] 36.4 29.9 16 30.5

Range Loss‡ [45] 35.8 30.3 17.6 30.7

FSLwF‡ [9] 40.9 22.1 15 28.4

Liu et al.‡ [24] 43.2 35.1 18.5 35.6

Baseline 54.3 26.2 5.7 34.4

Uniform 46.5 33.0 13.3 35.6

GAN 46.4 30.0 15.2 34.4

Liu et al.* [24] 40.8 33.3 16.6 33.9

Ours (Experts) 43.2 34.3 18.9 35.7

Ours (All) 48.2 37.0 21.5 39.2

Table 7. Results on Places-LT, using
backbone Resnet-152. *Results obtained
from the author’s code. ‡Results taken
directly from [24].

Methods Many Medium Fews All

Lifted Loss‡ [26] 41.1 35.4 24.0 35.2

Focal Loss‡ [23] 41.1 34.8 22.4 34.6

Range Loss‡ [45] 41.1 35.4 23.2 35.1

FSLwF‡ [9] 43.9 29.9 29.5 34.9

Liu et al.‡ [24] 44.7 37.0 25.3 35.9

Baseline 45.4 25.6 9.0 29.5

Uniform 41.3 35.5 25.2 35.6

GAN 42.7 33.3 22.5 34.6

Liu et al.* [24] 41.4 37.1 19.2 35.2

Ours (Experts) 37.2 35.3 26.3 34.2

Ours (All) 43.6 39.9 27.7 38.9

4.5 Discussion

There is significant difference between the results depicted in Table 2 and Table 3,
and Table 6 and Table 7. This shows that the various strategies used for fusing
expert posteriors are sub-optimal. To analyse the underlying cause, we take our
ensemble of class-balanced experts and plot a confusion matrix, each entry show-
ing the percentage of samples from dataset D that are classified by expert model
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E . For the preliminary analysis we use Soft-voting for fusing expert posteriors.
Figure 4a shows the result for Places-LT. The plot shows there is significant con-
fusion amongst experts; experts aren’t selected optimally for classes to which a
test sample belongs. We term this phenomenon as Expert collision.

Fig. 4. Top (bottom): Before (after) joint calibration. L-R: Expert confusion matrix,
confidence histograms of EManyshot for samples it correctly classifies in EManyshot, and
EFewshot for the same samples. All results on Places-LT. Joint calibration aligns experts’
confidences and decreases expert collision.

We further consider each expert’s confidence in its predictions. We take the
confidence or the maximum softmax probability (MSP) from the expert pos-
teriors and plot confidence histograms. We do this for EManyshot on its class-
balanced subset DManyshot, for samples from the test set it correctly classifies,
and for EFewshot on the same test samples from DManyshot. This is depicted in
Fig. 4b and Fig. 4c. The plots show that EManyshot has high confidence predic-
tions while EFewshot has low confidence predictions on these samples. However,
to avoid Expert collision both the confidence histograms should have a reason-
able margin in between and not overlap. Figure 4d and Fig. 4e, 4f respectively
show the confusion matrix and confidence histograms after joint calibration. It’s
essential to align confidences of the three experts correctly, and this is precisely
what joint calibration does by learning scale and shift parameters for each class.

5 Conclusion

This article presented an ensemble of class-balanced experts framework for
long-tailed recognition. Our effective and modular strategy explicitly tackles
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relative imbalance without resorting to complex models or sophisticated loss
objectives. We decompose the imbalanced classification problem into balanced
classification problems that are more tractable, and train separate expert mod-
els for Manyshot, Mediumshot and Fewshot subsets of the data with a reject
class for samples lying outside an expert’s class-balanced subset. We scale and
shift experts’ partial posteriors to jointly calibrate experts’ predictions, and our
ensemble of class-balanced experts reaches close to state-of-the-art performance
on two long-tailed benchmarks. We also extend our ensemble with diverse exist-
ing solutions for long-tailed recognition and establish a new state-of-the-art on
the two benchmark datasets. Moreover, our experiments with an Oracle upper
bound reveal that performance drops on Mediumshot accuracy and Fewshot
accuracy are caused by relative imbalance and not data scarcity for rare classes.
Therefore, it is possible to bring Mediumshot and Fewshot accuracy on par
with Manyshot accuracy by remedying relative imbalance in modern large-scale
datasets, which motivates further research in this direction.
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