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Abstract. Camera calibration is a prerequisite for many computer
vision applications. While a good calibration can turn a camera into
a measurement device, it can also deteriorate a system’s performance if
not done correctly. In the recent past, there have been great efforts to
simplify the calibration process. Yet, inspection and evaluation of cali-
bration results typically still requires expert knowledge.

In this work, we introduce two novel methods to capture the fun-
damental error sources in camera calibration: systematic errors (biases)
and remaining uncertainty (variance). Importantly, the proposed meth-
ods do not require capturing additional images and are independent of
the camera model. We evaluate the methods on simulated and real data
and demonstrate how a state-of-the-art system for guided calibration can
be improved. In combination, the methods allow novice users to perform
camera calibration and verify both the accuracy and precision.

1 Introduction

In 2000 Zhang published a paper [19] which allowed novice users to perform
monocular camera calibration using only readily available components. Sev-
eral works, including systems for guided calibration, improved upon the original
idea [10,12,13]. However, we believe that a central building block is still miss-
ing: a generic way to evaluate the quality of a calibration result. More precisely,
a way to reliably quantify the remaining biases and uncertainties of a given
calibration. This is of critical importance, as errors and uncertainties in calibra-
tion parameters propagate to applications such as visual SLAM [9], ego-motion
estimation [3,17,20] and SfM [1,4]. Despite this importance, typical calibration
procedures rely on relatively simple metrics to evaluate the calibration, such
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Fig. 1. Proposed camera calibration procedure, including the detection of systematic
errors (biases) and the prediction of the expected mapping error.

as the root mean squared error (RMSE) on the calibration dataset. Further-
more, many frequently used metrics lack comparability across camera models
and interpretability for non-expert users.

In general, the error sources of camera calibration can be divided into under-
fit (bias) and overfit (high variance). An underfit can be caused by a camera
projection model not being able to reflect the true geometric camera charac-
teristics, an uncompensated rolling shutter, or non-planarity of the calibration
target. An overfit, on the other hand, describes that the model parameters can-
not be estimated reliably, i.e. a high variance remains. A common cause is a lack
of images used for calibration, bad coverage in the image, or a non-diversity in
calibration target poses. In this paper, we address the challenge of quantifying
both types of errors in target-based camera calibration, and provide three main
contributions:

– A method to detect systematic errors (underfit) in a calibration. The method
is based on estimating the variance of the corner detector and thereby disen-
tangles random from systematic errors in the calibration residual (Fig. 1).

– A method to predict the expected mapping error (EME) in image space,
which quantifies the remaining uncertainty (variance) in model parameters in
a model-independent way. It provides an upper bound for the precision that
can be achieved with a given dataset (Fig. 1).

– The application of our uncertainty metric EME in calibration guidance, which
guides users to poses that lead to a maximum reduction in uncertainty.
Extending a recently published framework [10], we show that our metric leads
to further improvement of suggested poses.

In combination, these methods allow novice users to perform camera calibration
and verify both the accuracy and precision of the result. Importantly, the work
presented here explicitly abstracts from the underlying camera model and is
therefore applicable in a wide range of scenarios. We evaluate the proposed
methods with both simulations and real cameras.



32 A. Hagemann et al.

2 Fundamentals

Camera Projection Modeling. From a purely geometric point of view, cam-
eras project points in the 3D world to a 2D image [6]. This projection can be
expressed by a function p : R3 → R

2 that maps a 3D point x = (x, y, z)T from
a world coordinate system to a point ū = (ū, v̄)T in the image coordinate sys-
tem. The projection can be decomposed into a coordinate transformation from
the world coordinate system to the camera coordinate system x → xc and the
projection from the camera coordinate system to the image pC : xc → ū:

ū = p(x,θ,Π) = pC (xc ,θ) = pC (Rx + t,θ), (1)

where θ are the intrinsic camera parameters and Π and are the extrinsic
parameters describing the rotation R and translation t. For a plain pinhole
camera, the intrinsic parameters are the focal length f and the principal point
(ppx,ppy), i.e. θ = (f,ppx,ppy). For this case, the projection pC (xc ,θ) is given
by u = f/zc ·xc +ppx, v = f/zc ·yc +ppy. In the following, we will consider more
complex camera models, specifically, a standard pinhole camera model (S) with
radial distortion θS = (fx, fy,ppx,ppy, r1, r2), and the OpenCV fisheye model
(F) θF = (fx, fy,ppx,ppy, r1, r2, r3, r4) [8].

Calibration Framework. We base our methods on target-based camera cal-
ibration, in which planar targets are imaged in different poses relative to the
camera. Without loss of generality, we assume a single chessboard-style calibra-
tion target and a single camera in the following. The calibration dataset is a set
of images F = {framei}NF

i=1. The chessboard calibration target contains a set of
corners C = {corneri}NC

i=1. The geometry of the target is well-defined, thus the 3D
coordinates of chessboard-corner i in the world coordinate system are known as
xi = (xi, yi, zi)T . The image coordinates ui = (ui, vi)T of chessboard-corners are
determined by a corner-detector with noise σd. Thus, the observed coordinates
ui are assumed to deviate from the true image points ūi by an independent
identically distributed (i.i.d.) error εd ∼ N (0, σd). Estimation is performed by
minimizing a calibration cost function, typically defined by the quadratic sum
over reprojection errors

ε2res =
∑

j∈F

∑

i∈C
||uij − p(xij ,θ,Πj)||2. (2)

For the sake of simplicity, we present formulas for non-robust optimization here.
Generally, we advise robustification, e.g. using a Cauchy kernel. Optimization
is performed by a non-linear least-squares algorithm, which yields parameter
estimates (θ̂, Π̂) = argmin(ε2res).

A common metric to evaluate the calibration is the root mean squared error
(RMSE) over all N individual corners coordinates (observations) in the calibra-
tion dataset F [6, p. 133]:

RMSE =
√

1
N

∑

j∈F

∑

i∈C
||uij − p(xij , θ̂, Π̂j)||2, (3)
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The remaining uncertainty in estimated model parameters θ̂, Π̂ is given by the
parameter’s covariance matrix Σ. The covariance matrix can be computed by
backpropagation of the variance of the corner detector σ2

d:

Σ = (JT
calibΣ

−1
d Jcalib)−1 = σ2

d(JT
calibJcalib)−1, (4)

where Σd = σ2
dI is the covariance matrix of the corner detector and Jcalib

is the Jacobian of calibration residuals [6]. The covariance matrix of intrinsic
parameters Σθ can be extracted as a submatrix of the full covariance matrix.

3 Related Work

Approaches to evaluating camera calibration can be divided into detecting sys-
tematic errors and quantifying the remaining uncertainty in estimated model
parameters. Typical choices of uncertainty metrics are the trace of the covari-
ance matrix [10], or the maximum index of dispersion [13]. However, given the
variety of camera models, from a simple pinhole model with only three parame-
ters, up to local camera models, with around 105 parameters [2,15], parameter
variances are difficult to interpret and not comparable across camera models. To
address this issue, the parameter’s influence on the mapping can be considered.
The metric maxERE [12] quantifies uncertainty by propagating the parameter
covariance into pixel space by means of a Monte Carlo simulation. The value of
maxERE is then defined by the variance of the most uncertain image point of a
grid of projected 3D points. The observability metric [16] weights the uncertainty
in estimated parameters (here defined by the calibration cost function’s Hessian)
with the parameters’ influence on a model cost function. Importantly, this model
cost function takes into account a potential compensation of differences in the
intrinsics by adjusting the extrinsics. The observability metric is then defined by
the minimum eigenvalue of the weighted Hessian.

While both of these metrics provide valuable information about the remaining
uncertainty, there are some shortcomings in terms of how uncertainty is quanti-
fied. The observability metric does not consider the whole uncertainty, but only
the most uncertain parameter direction. Furthermore, it quantifies uncertainty
in terms of an increase in the calibration cost, which can be difficult to interpret.
maxERE quantifies uncertainty in pixel space and is thus easily interpretable.
However, it relies on a Monte Carlo Simulation instead of an analytical app-
roach and it does not incorporate potential compensations of differences in the
intrinsics by adjusting the extrinsics.

The second type evaluation metrics aims at finding systematic errors. As
camera characteristics have to be inferred indirectly through observations, there
is a high risk of introducing systematic errors in the calibration process by choos-
ing an inadequate projection model, neglecting rolling-shutter effects, or using
an out-of-spec calibration target, to give a few examples. If left undetected, these
errors will inevitably introduce biases into the application.

Historically, one way to detect systematic errors is to compare the resulting
RMSE or reconstruction result against expected values obtained from earlier
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calibrations or textbooks [7]. However, these values vary for different cameras,
lenses, calibration targets, and marker detectors and, hence, only allow capturing
gross errors in general. Professional photogrammetry often makes use of highly
accurate and precisely manufactured 3D calibration bodies [11]. Images captured
from predefined viewpoints are then used to perform a 3D reconstruction of the
calibration body. Different length ratios and their deviation from the ground
truth are then computed to assess the quality of the calibration by comparing
against empirical data. While these methods represent the gold standard due
to the accuracy of the calibration body and repeatability, they are often not
feasible or too expensive for typical research and laboratory settings and require
empirical data for the camera under test. The methods presented in the following
relax these requirements but can also be seen as a complement to this standard.

4 Detecting Systematic Errors

In the following, we derive the bias ratio (BR), a novel metric for quantifying the
fraction of systematic error contribution to the mean squared reprojection error
(MSE). Following the assumptions made in Sect. 2 one finds that asymptotically
(by augmentation of [6, p. 136])

MSEcalib = σ2
d(1 − NP

N
)

︸ ︷︷ ︸
random error

+ ε2bias︸ ︷︷ ︸
systematic error contribution

, (5)

where NP is the total number of free intrinsic and extrinsic parameters and
εbias denotes the bias introduced through systematic errors. The variance σ2

d is
generally camera dependent and not known a priori. To disentangle stochastic
and systematic error contributions to the MSE, we need a way to determine
σ2

d independently: The rationale behind many calibration approaches, and in
particular guided calibration, is to find most informative camera-target configu-
rations (cf. Fig. 1). For bias estimation, we propose the opposite. We explicitly
use configurations which are less informative for calibration but at the same
time also less likely to be impacted by systematic errors. More specifically, we
decompose the calibration target virtually into several smaller calibration tar-
gets V = {targeti}NV

i=1, usually consisting of exclusive sets of the four corners of
a checker board tile (cf. Fig. 2a). The poses of each virtual calibration target
in each image are then estimated individually while keeping the camera intrin-
sic parameters fixed. Pose estimation is overdetermined with a redundancy of
two (four tile corners and six pose parameters). From the resulting MSE values,
MSEv with v ∈ V, we compute estimates of σ2

d via (5) assuming the bias is
negligible within these local image regions

σ̂2
dv

=
MSEv

1 − 6
8

= 4 MSEv. (6)
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Fig. 2. Detecting systematic errors. a Illustration of the virtual decomposition of the
calibration target into smaller targets used to estimate the corner detector variance. b
Exemplary image of the same scene with the two test cameras. c Results of the bias
ratio (BR) and the robust estimate of the RMSE (MAD) for one simulated and the
two real cameras, using models of different complexities. For details see Sect. 7.

To obtain an overall estimate of σ̂2
d, we compute the MSE in (6) across the

residuals of all virtual targets, using the MAD as a robust estimator1. Finally,
we use σ̂2

d to determine ε2bias using (5) and compute the bias ratio as

BR =
ε2bias

MSEcalib
. (7)

The bias ratio is zero for unbiased calibration and close to one if the results
are dominated by systematic errors. The bias ratio is an intuitive metric that
quantifies the fraction of bias introduced by systematic errors. A bias ratio below
a certain threshold τBR is a necessary condition for a successful calibration and
a precondition for uncertainty estimation.2 Generally, this kind of analysis can
be performed for any separable3 calibration target.

Practical Implementation. Computation of the bias ratio for target-based
calibration procedures:
1 Here, we assume the underlying distribution is Gaussian but might be subject to

sporadic outliers. The MAD multiplied by a factor of 1.4826 gives a robust estimate
for the standard deviation [14].

2 To choose a threshold, it can be used that 1
1−BR

is approximately F-distributed,
representing the ratio of the residual sum of squares (SSE) of the calibration over
the SSE of the virtual targets, weighted by their respective degrees of freedom.
However, this only holds approximately, as the datapoints are not independent. We
therefore use an empirical threshold of τBR = 0.2, allowing for small biases.

3 The decomposition of the target must lead to an overdetermined estimation problem.
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1. Perform robust camera calibration and extract a robust estimate of MSEcalib

and the optimal parameters θ̂ and Π̂.
2. Compute the residuals for all v ∈ V:

– Decompose the calibration targets found in each image into a total of NV
exclusive virtual calibration targets.

– Optimize their pose independently leaving θ̂ unchanged.
3. Compute a robust estimate of the MSE over all residuals and determine σ̂2

d

using (6).
4. Use σ̂2

d to determine the bias contribution ε2bias via (5).
5. Finally, compute the bias ratio as BR = ε2bias/MSEcalib and test the result

against the threshold τBR.

5 The Expected Mapping Error (EME)

The second type of error source, in addition to biases, is a high remaining uncer-
tainty in estimated model parameters. We will now derive a novel uncertainty
metric, the expected mapping error (EME), which is interpretable and compara-
ble across camera models. It quantifies the expected difference between the map-
ping of a calibration result pC (x; θ̂) and the true (unknown) model pC (x; θ̄).

Inspired by previous works [5,12], we quantify the mapping difference in
image space, as pixel differences are easily interpretable: we define a set of points
in image space G = {ui}NG

i=1, which are projected to space via the inverse projec-
tion pC

−1(ui; θ̄) using one set of model parameters and then back to the image
using the other set of model parameters [2]. The mapping error is then defined as
the average distance between original image coordinates ui and back-projected
image points pC (xi; θ̂) (see Fig. 3):

K̃(θ̂, θ̄) =
1
N

∑

i∈G
||ui − pC (pC

−1(ui ; θ̄); θ̂)||2, (8)

where N = 2NG is the total number of image coordinates. Since small deviations
in intrinsic parameters can oftentimes be compensated by a change in extrinsic
parameters [16], we allow for a virtual compensating rotation R of the viewing
rays. Thus, we formulate the effective mapping error as follows:

K(θ̂, θ̄) = min
R

1
N

∑

i∈G
||ui − pC (R pC

−1(ui; θ̄); θ̂)||2. (9)

We now show that for an ideal, bias-free calibration, the effective mapping error
K(θ̂, θ̄) can be predicted by propagating parameter uncertainties. Note that the
following derivation is independent of the particular choice of K, provided that
we can approximate K with a Taylor expansion around θ̂ = θ̄ up to second
order:

K(θ̂, θ̄) ≈ K(θ̄, θ̄) + grad(K)Δθ +
1
2
ΔθT HKΔθ

≈ 1
N

ΔθT (Jres
T Jres)Δθ

≈ ΔθT HΔθ,

(10)
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of the derived uncertainty metric EME = trace(Σθ

1/2HΣθ
1/2). b Evaluation in sim-

ulation and experiments. The simulation results validate the derived relation (5). For
real cameras, the EME is a lower bound to the error, as non-ideal behavior can lead
to higher absolute errors. Error bars are 95% bootstrap confidence intervals.

where Δθ = θ̄ − θ̂ is the difference between true and estimated intrinsic param-
eters, resi(θ̂, θ̄) = ui − pC (R pC

−1(ui; θ̄); θ̂) are the mapping residuals and
Jres = dres/dΔθ is the Jacobian of the residuals. Furthermore, we defined the
model matrix H := 1

N Jres
T Jres. For a more detailed derivation of the second

step in (10), see Supplementary.
Estimated model parameters θ̂ obtained from a least squares optimization are

a random vector, asymptotically following a multivariate Gaussian with mean
μθ = θ̄ and covariance Σθ [18, p. 8]. Likewise, the parameter error Δθ = θ̄ − θ̂
follows a multivariate Gaussian, with mean μΔθ = 0 and covariance ΣΔθ = Σθ .
We propagate the distribution of the parameter error Δθ to find the distribution
of the mapping error K(θ̂, θ̄). In short, we find that the mapping error K(θ̂, θ̄)
can be expressed as a linear combination of χ2 random variables:

K(θ̂, θ̄) = ΔθT HΔθ

=
Nθ∑

i=1

λiQi, with Qi ∼ χ2(1).
(11)
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The coefficients λi are the eigenvalues of the matrix product Σθ
1/2HΣθ

1/2 and
Nθ is the number of eigenvalues which equals the number of parameters θ. The
full derivation of relation (11) is shown in the Supplementary. Importantly, based
on expression (11), we can derive the expected value of K(θ̂, θ̄):

E[K(θ̂, θ̄)] = E[
Nθ∑

i=1

λiQi] =
Nθ∑

i=1

λiE[Qi] =
Nθ∑

i=1

λi

= trace(Σθ
1/2HΣθ

1/2),

where we used that the χ2-distribution with n degrees of freedom χ2(n) has
expectation value E[χ2(n)] = n. We therefore propose the expected mapping
error EME = trace(Σθ

1/2HΣθ
1/2) as a model-independent measure for the

remaining uncertainty.

Practical Implementation. The expected mapping error EME can be deter-
mined for any given bundle-adjustment calibration:

1. Run the calibration and extract the RMSE, the optimal parameters θ̂ and
the Jacobian Jcalib of the calibration cost function.

2. Compute the parameter covariance matrix Σ = σ2
d(JT

calibJcalib)−1 and
extract the intrinsic part Σθ .

3. Determine the model matrix H:
– Implement the mapping error (Eq. (9)) as a function of the parameter

estimate θ̂ and a parameter difference Δθ.
– Numerically compute the Jacobian Jres = dres/dΔθ at the estimated

parameters θ̂ and compute H = 1
N Jres

T Jres.
4. Compute EME = trace(Σθ

1/2HΣθ
1/2).

6 Experimental Evaluation

Simulations. We simulated 3D world coordinates of a single planar cali-
bration target in different poses relative to the camera (random rotations
ϕx, ϕy, ϕz ∈ [−π

4 , π
4 ], translations tz ∈ [0.5 m, 2.5 m], tx, ty ∈ [−0.5 m, 0.5 m]).

We then computed the resulting image coordinates using different camera mod-
els. To simulate the detector noise, we added Gaussian noise with σd = 0.1 px to
all image coordinates. To validate the bias ratio, we simulated a pinhole camera
with two radial distortion parameters, but ran calibrations with different models,
including insufficiently complex models (underfit). To validate the uncertainty
measure EME = trace(Σθ

1/2HΣθ
1/2), we ran calibrations with different num-

bers of simulated frames (NF ∈ [3, 20]) and nr = 50 noise realizations for each
set of frames. After each calibration, we computed the true mapping error K
with respect to the known ground-truth (Eq. 9) and the EME.
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Evaluation with Real Cameras. We tested the metrics for two different real
cameras (see Fig. 2b). For each camera, we collected a total of n = 500 images
of a planar calibration target. As reference, we performed a calibration with all
500 images. To test the bias metric, we ran calibrations with camera models
of different complexities (Fig. 2c). To test the uncertainty metric EME, we ran
calibrations with different numbers of randomly selected frames (NF ∈ [3, 20],
50 randomly selected datasets for each NF ). For each calibration, we computed
both the true mapping error K with respect to the reference and the EME.

7 Results

Validating the Bias Ratio. Figure 2c shows the robust estimate of the RMSE
(median absolute deviation, MAD) and the bias ratio for the calibrations of three
cameras (one simulated camera and the two real cameras shown in Fig. 2b)
for varying numbers of non-zero intrinsic calibration parameters, representing
different camera models. In detail, the individual parameter sets are θS(3) =
(f,ppx,ppy), θS(4) = (fx, fy,ppx,ppy), θS(5) = (fx, fy,ppx,ppy, r1), θS(6) =
(fx, fy,ppx,ppy, r1, r2), and θF (8) = (fx, fy,ppx,ppy, r1, r2, r3, r4) (cf. Sect. 2).

For all cameras, the MAD and BR can be reduced by using a more complex
camera model which is to be expected, since the projections are not rectilinear
and thus necessitate some kind of (nonlinear) distortion modeling. For the sim-
ulated camera and camera 1, a bias ratio below τBR = 0.2 is reached using the
standard camera model (S) with two radial distortion parameters. For camera
2, a low bias ratio cannot be reached even when using OpenCV’s fisheye camera
model with 8 parameters. This highlights the advantage of the bias ratio over
the RMSE: the low RMSE could wrongfully be interpreted as low bias – the bias
ratio of BR ≈ 0.6, however, demonstrates that some sort of systematic error
remains and a more complex model should be tried.

Validating the Uncertainty Metric. To validate the uncertainty metric EME
in simulations, we ran calibrations with different numbers of images using a
pinhole with radial distortion S(6) and a fisheye camera F(8). Figure 3b shows the
uncertainty metric EME = trace(Σθ

1/2HΣθ
1/2) and the real average mapping

error. Consistent with Eq. (5), the EME predicts the average mapping error.
For the real camera, the EME is highly correlated with the true mapping error,
however the absolute values of the real errors are higher, which is to be expected
in practice. It reflects that (i) the ground-truth is only approximated by the
reference calibration, (ii) deviations from the ideal assumptions underlying the
covariance matrix (Eq. (4)), and (iii) deviations from the i.i.d. Gaussian error
assumption. This limitation affects all metrics that are based on the covariance
matrix computed via Eq. (4). The EME therefore provides an upper bound to
the precision that can be achieved for a given dataset.

Comparison with State-of-the-Art. We compare the EME with the other
state-of-the-art uncertainty metrics introduced in Sect. 3. We focus on trace(Σθ ),
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error bars are 95% bootstrap confidence intervals.

maxERE [12] and observability [16], as these are the metrics closest to ours
(Fig. 4). All metrics provide information about the remaining uncertainty and
are correlated with the true error. However, the metrics quantify uncertainty in
very different ways: trace(Σθ ) quantifies the uncertainty in model parameters,
and thus inherently differs depending on the camera model. The observability
metric accounts for the parameter’s effect of the mapping and for compensations
via different extrinsics. However, it does not incorporate the full uncertainty,
but just the least observable direction. Furthermore, the absolute values are
comparatively difficult to interpret, as they measure an increase in the calibration
cost. maxERE quantifies the maximum expected reprojection error in image
space and is therefore easily interpretable. Similar to maxERE, the EME predicts
the expected error in image space and is therefore easily interpretable. Instead of
a maximum error, the EME reflects the average error. In contrast to maxERE,
the EME does not require a Monte Carlo simulation. Furthermore, the EME
can account for a compensation via different extrinsics, which we consider a
reasonable assumption in many scenarios.

8 Application in Calibration Guidance

To demonstrate the practical use of the EME, we apply it in calibration guid-
ance. Calibration guidance refers to systems that predict most informative next
observations to reduce the remaining uncertainty and then guide users towards
these measurements. We choose an exitisting framework, called calibration wiz-
ard [10] and extend it with our metric. Calibration wizard predicts the next
best pose by minimizing the trace of the intrinsic parameter’s covariance matrix
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trace(Σθ ). However, depending on the camera model, parameters will affect the
image in very different ways. High variance in a given parameter will not nec-
essarily result in a proportionally high uncertainty in the image. To avoid such
an imbalance, we suggest to minimize the uncertainty in image space, instead of
parameters, i.e. to replace trace(Σθ ) with trace(Σθ

1/2HΣθ
1/2).

To compare the methods, we use images of camera 1 (see Fig. 2b). Start-
ing with two random images, the system successively selectes the most infor-
mative next image with (i) the original metric trace(Σθ ), (ii) our metric
trace(Σθ

1/2HΣθ
1/2) and (iii) randomly. Using the pinhole model with radial

distortion, the poses suggested by trace(Σθ ) and trace(Σθ
1/2HΣθ

1/2) are sim-
ilarly well suited, both leading to a significantly faster convergence than random
images (Fig. 5). However, when changing the camera model, e.g. by param-
eterizing the focal length in millimeters instead of pixels, simulated here by
a division by 100 (f → 0.01 · f), the methods differ: the poses proposed by
trace(Σθ

1/2HΣθ
1/2) reduce uncertainty significantly faster than trace(Σθ ).

This can be explained by the fact that when minimizing trace(Σθ ), the vari-
ance of less significant parameters will be reduced just as much as the variance
of parameters with large effect on the mapping. This example shows that the
performance of trace(Σθ ) can be affected by the choice of the model, while
trace(Σθ

1/2HΣθ
1/2) remains unaffected.

9 Conclusion and Future Research

In this paper, we proposed two metrics to evaluate systematic errors and the
remaining uncertainty in camera calibration. We have shown that the bias ratio
(BR) reliably captures underfits, which can result from an insufficiently complex
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model. Furthermore, we have shown that it is possible to predict the expected
mapping error (EME) in image space, which provides an upper bound for the
precision that can be achieved with a given dataset. Both metrics are model-
independent and therefore widely applicable. Finally, we have shown that the
EME can be applied for calibration guidance, resulting in a faster reduction in
mapping uncertainty than the existing parameter-based approach.

In future, we will extend the metrics to multi-camera systems and extrinsic
calibration. Furthermore, we would like to incorporate an analysis of the coverage
of the camera field of view into our evaluation scheme.
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