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Abstract. Localizing objects in 3D space and understanding their asso-
ciated 3D properties is challenging given only monocular RGB images.
The situation is compounded by the loss of depth information during
perspective projection. We present Center3D, a one-stage anchor-free
approach and an extension of CenterNet, to efficiently estimate 3D loca-
tion and depth using only monocular RGB images. By exploiting the
difference between 2D and 3D centers, we are able to estimate depth
consistently. Center3D uses a combination of classification and regres-
sion to understand the hidden depth information more robustly than
each method alone. Our method employs two joint approaches: (1) LID:
a classification-dominated approach with sequential Linear Increasing
Discretization. (2) DepJoint: a regression-dominated approach with
multiple Eigen’s transformations [6] for depth estimation. Evaluating on
KITTI dataset [8] for moderate objects, Center3D improved the AP in
BEV from 29.7% to 43.5%, and the AP in 3D from 18.6% to 40.5%.
Compared with state-of-the-art detectors, Center3D has achieved a bet-
ter speed-accuracy trade-off in realtime monocular object detection.

1 Introduction and Related Work

3D object detection is currently one of the most challenging topics for both indus-
try and academia. Applications of related developments can easily be found in
the areas of robotics, autonomous driving [4,18,21] etc. The goal is to have
agents with the ability to identify, localize, react, and interact with objects in
their surroundings. 2D object detection approaches [11,17,26] achieved impres-
sive results in the last decade. In contrast, inferring associated 3D properties
from a 2D image turned out to be a challenging problem in computer vision,
due to the intrinsic scale ambiguity of 2D objects and the lack of depth infor-
mation. Hence many approaches involve additional sensors like LiDAR [20,23]
or radar [22] to measure depth. However, there are reasons to prefer monocular-
based approaches too. LiDAR has reduced range in adverse weather conditions,
while visual information of a simple RGB camera is more dense and also more
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robust under rain, snow, etc. Another reason is that cameras are currently signif-
icantly more economical than high precision LiDARs and are already available
in e.g. robots, vehicles, etc. Additionally, the processing of single RGB images is
much more efficient and faster than processing 3D point clouds in terms of CPU
and memory utilization.

These compelling reasons have led to research exploring the possibility of
3D detection solely from monocular images [1,2,9,12,14,16,19]. The network
structure of most 3D detectors starts with a 2D region proposal based (also
called anchor based) approach, which enumerates an exhaustive set of predefined
proposals over the image plane and classifies/regresses only within the region of
interest (ROI). MonoGRNet [16] consists of parameter-specific subnetworks. All
further regressions are guided by the detected 2D bounding box. M3D-RPN [1]
demonstrates a single-shot model with a standalone 3D RPN, which generates
2D and 3D proposals simultaneously. Additionally, the specific design of depth-
aware convolutional layers improved the network’s 3D understanding. With the
help of an external network, Multi-Fusion [24] estimates a disparity map and
subsequently a LiDAR point cloud to improve 3D detection. Due to multi-stage
or anchor-based pipelines, most of them perform slowly.

Most recently, to overcome thedisadvantages above, 2Danchor-free approaches
have been used by researchers [2,5,11,26]. They model objects with keypoints like
centers, corners or points of interest of 2D bounding boxes. Anchor-free approaches
are usually one-stage, thus eliminating the complexity of designing a set of anchor
boxes and fine tuning hyperparameters. Our paper is also an extension of one of
theseworksCenterNet:Objects asPoints [26], which proposed a possibility to asso-
ciate a 2D anchor free approach with a 3D detection.

Nevertheless, the performance of CenterNet is still restricted by the fact
that a 2D bounding box and a 3D cuboid are sharing the same center point.
In this paper we show the difference between the center points of 2D bounding
boxes and the projected 3D center points of objects, which are almost never at
the same image position. Comparing CenterNet, our main contributions are as
follows: 1. We additionally regress the 3D centers from 2D centers to locate the
objects in the image plane and in 3D space more properly. 2. By examining depth
estimation in monocular images, we show that a combination of classification
and regression explores visual clues better than using only a single approach.
An overview of our approach is shown in Fig. 1.

We introduce two approaches to validate the second conclusion: (1) Motivated
by DORN [7] we consider depth estimation as a sequential classification with
residual regression. According to the statistics of the instances in the KITTI
dataset, a novel discretization strategy is used. (2) We divide the complete depth
range of objects into two bins, foreground and background, either with overlap
or associated. Classifiers indicate which depth bin or bins the object belongs to.
With the help of Eigen’s transformation [6], two regressors are trained to gather
specific features for closer and farther away objects, respectively. For illustration
see the depth part in Fig. 1.

Compared to CenterNet, our approach improved the AP of easy, moderate,
hard objects in BEV from 31.5, 29.7, 28.1 to 56.7, 43.5, 41.2, in 3D space from
19.5, 18.6, 16.6 to 52.5, 40.5, 34.9, which is comparable with state-of-the-art
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Fig. 1. Overview of Center3D. A monocular input image is fed to the backbone DLA-
34, which generates feature maps. Heatmaps and 2D offset are subsequently used to
detect the 2D center [26]. The latter is relocated by 3D offset to propose the 3D
center, which is illustrated in the bottom-left of the figure. By applying a combination
of regression and classification, DepJoint or LID, Center3D is inferring the depth of the
associated 3D center. Depth, together with regressed dimensions, orientation, and 3D
center are finally used to propose the 3D BBox. Our contributions comparing CenterNet
are indicated in bold or with dashed lines.

approaches. Center3D achieves a better speed-accuracy trade-off on the KITTI
dataset in the field of monocular 3D object detection. Details are given in Table 1
and discussed in Sect. 3.

2 Center3D

2.1 CenterNet Baseline

The 3D detection approach of CenterNet described in [26] is the basis of our
work. It models an object as a single point: the center of its 2D bounding box.
For each input monocular RGB image, the original network produces a heatmap
for each category, which is trained with focal loss [13]. The heatmap describes
a confidence score for each location, the peaks in this heatmap thus represent
the possible keypoints of objects. All other properties are then regressed and
captured directly at the center locations on the feature maps respectively. For
generating a complete 2D bounding box, in addition to width and height, a
local offset will be regressed to capture the quantization error of the center
point caused by the output stride. For 3D detection and localization, the addi-
tional abstract parameters, i.e. depth, 3D dimensions and orientation, will be
estimated separately by adding a head for each of them. Following the output
transformation of Eigen et al. [6] for depth estimation, CenterNet converts the
feature output into an exponential area to suppress the depth space.

2.2 Regressing 3D Center Points

The 2D performance of CenterNet is very good, while the APs in 3D perform
poorly, as the first row shown in Table 1. This is caused by the difference between
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Fig. 2. 3D bounding box estimation on KITTI validation set. first row: the output of
CenterNet. Projected 3D bounding boxes located around estimated 2D centers. The
position of centers is generated by the peak of the Gaussian kernel on the heatmap.
second row: the ground truth of input images. Here the 2D (red) and 3D (green)
projected bounding boxes with their center points are shown. third row: the output
of Center3D. The 3D cuboid is based on 3D center points shifted from 2D space with
offset. More qualitative results can be found in the supplementary material. (Color
figure online)

the center point of the visible 2D bounding box in the image and the projected
center point of the complete object from physical 3D space. This is illustrated in
the first two rows of Fig. 2. A center point of the 2D bounding box for training
and inference is enough for detecting and decoding 2D properties, e.g. width and
height, while all additionally regressed 3D properties, e.g. depth, dimension and
orientation, should be consistently decoded from the projected 3D center of the
object. The gap between 2D and 3D center points decreases for faraway objects
and for objects which appear in the center area of the image plane. However the
gap becomes significant for objects that are close to the camera or on the image
boundary. Due to perspective projection, this offset will increase as vehicles get
closer. Close objects are especially important for technical functions based on
perception (e.g. in autonomous driving or robotics).

Hence we split the 2D and 3D tasks into separate parts, as shown in Fig. 1.
Assuming that the centers of 2D bounding boxes is ci2D = (xi

2D, yi
2D), and the

3D projected center points of cuboids from physical space is ci3D = (xi
3D, yi

3D).
We still locate an object with ci2D, which is definitively included in the image,
and determine the 2D bounding box of the visible part with wi and hi. For the
3D task we relocate ci3D by adding two head layers on top of the backbone and
regress the offset Δci = (xi

3D−xi
2D, yi

3D−yi
2D) from 2D to 3D centers. Given the

projection matrix P in KITTI, we now determine the 3D location C = (X,Y,Z)
by converting the transformation in homogeneous coordinates.
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SID from BEV

LID from BEV

Fig. 3. The comparison of the discretization strategies LID (first row) and SID (second
row) from BEV between 0 m and 54 m, with a setting of dmin = 1 m, dmax = 91 m
and N = 80. The solid red lines indicate the threshold of each bin, the solid rectan-
gles represent the ground truth vehicles in BEV, while blue rectangles represent the
estimations.

2.3 Enriching Depth Information

This section introduces two novel approaches to infer depth cues over monoc-
ular images: First, we adapt the advanced DORN [7] approach from pixel-wise
to instance-wise depth estimation. We introduce a novel linear-increasing dis-
cretization (LID) strategy to divide continuous depth values into discrete ones,
which distributes the bin sizes more evenly than spacing-increasing discretization
(SID) in DORN. Additionally, we employ a residual regression for refinement of
both discretization strategies. Second, with the help of a reference area (RA)
we describe the depth estimation as a joint task of classification and regression
(DepJoint) in exponential range.

LID Usually a faraway object with higher depth value and less visible features
will induce a higher loss, which could dominate the training and increases uncer-
tainty. On the other hand these targets are usually less important for functions
based on object detection. To this end, DORN solves the ordinal regression prob-
lem by quantizing depth into discrete bins with SID strategy. It discretizes the
given continuous depth interval [dmin, dmax] in log space and hence down-weight
the training loss in faraway regions with higher depth values, see Eq. 1. How-
ever, such a discretization often yields too dense bins within unnecessarily close
range, where objects barely appear (as shown in Fig. 3 first row). According
to the histogram in Fig. 4 most instances of the KITTI dataset are between
5 m and 80 m. Assuming that we discretize the range between dmin = 1 m and
dmax = 91 m into N = 80 sub-intervals, 29 bins will be involved within just 5 m.
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Fig. 4. left: Histogram of the depth. The analysis is based on instances in the KITTI
dataset. right: Transformation of Eigen et al. [6] according to depth estimation. The
x-axis indicates the feature output, and the y-axis is the depth output after transfor-
mation (given in meter).

Thus, we use the LID strategy to ensure the lengths of neighboring bins increase
linearly instead of log-wise. For this purpose, assume the length of the first bin is
δ. Then the length of the next bin is always δ longer than the previous bin. Now
we can encode an instance depth d in lint = �l� ordinal bins according to LID
and SID respectively. Additionally, we reserve and regress the residual decimal
part lres = l − lint for both discretization strategies:

SID: l = N
log d − log dmax

log dmax − log dmin
,

LID: l = −0.5 + 0.5

√
1 +

8(d − dmin)
δ

, δ =
2(dmax − dmin)

N(1 + N)
.

(1)

During the inference phase, DORN counts the number of activated bins with
probability higher than 0.5, as estimated by the ordinal label l̂int, and uses the
median value of the l̂int-th bin as the estimated depth in meters. The notation
of symbols with ·̂ denotes the output of estimation. However, relying on discrete
median values of bins only is not precise enough for instance localization. Hence
we modify the training to be a combination of classification and regression.
For classification we follow the ordinal loss with binary classification and add
a shared layer to regress the residuals lres additionally. Given an input RGB
image I ∈ R

W×H×3, where W represents the width and H the height of I, we
generate a depth feature map D̂ ∈ R

W
R ×H

R ×(2N+1), where R is the output stride.
Backpropagation is only applied on the centers of 2D bounding boxes located at
ĉi2D, where i ∈ {0, 1, ...,K−1} indicates the instance number of total K instances
over the image. The final loss Ldep is defined as the sum of the residual loss Li

res

and ordinal loss Li
ord:



Center3D 295

Ldep =
K−1∑
i=0

(Li
res + Li

ord), Li
res = SmL1(l̂ires, l

i
res),

Li
ord = −

⎛
⎝li−1∑

n=0

log Pi
n +

N−1∑
n=li

log(1 − Pi
n)

⎞
⎠ , Pi

n = P
(
l̂i > n

)
,

(2)

where Pi
n is the probability that the i-th instance is farther away than the n-th

bin, and SmL1 represents the smooth L1 loss function [15]. During inference,
the amount of activated bins will be counted up as l̂iint. We refine the result by
taking into account the residual part, l̂ = l̂iint + l̂ires, and decode the result by
inverse-transformation of Eq. 1.

DepJoint The transformation described by Eigen et al. [6] converts the output
depth to an exponential scale. It generates a depth feature map D̂ ∈ R

W
R ×H

R ×1.
The output d̂ at the estimated center point of a 2D bounding box ĉi2D is con-
verted to Φ(d̂) = e−d̂. This enriches the depth information for closer objects by
putting more feature values into smaller ranges. As shown on the right panel of
Fig. 4, the feature map values between −4 and 5 correspond to a depth up to
54.60 m, while feature values corresponding to more distant objects up to 148.41
m account for only 10% of the feature output range [−5, 5]. The transformation is
reasonable, since closer objects are of higher importance. Eigen’s transformation
shows an impressive precision on closer objects but disappoints on objects which
are farther away. To improve on the latter, we introduce the DepJoint approach,
which treats the depth estimation as a joint classification and regression. Com-
pared to using Eigen’s transformation solely, it also emphasizes the distant field.
DepJoint divides the depth range [dmin, dmax] in two bins with scale parameter
α and β:

Bin 1 = [dmin, (1 − α)dmin + αdmax],
Bin 2 = [(1 − β)dmin + βdmax, dmax].

(3)

Each bin will only be activated during training when the object lies within the
appropriate interval. The first bin is used to regress the absolute value of depth
di, while the second bin is used to regress the residual value of depth d̃i =
dmax −di. With this transformation, a larger depth value will be supported with
more features. We use the binary Cross-Entropy loss CEb(·) for classification of
each bin b and regress di and d̃i = dmax −di with L1 loss L1(·) subsequent to an
output transformation Φ(·). Hence the output of the depth head is D̂ ∈ R

W
R ×H

R ×6

and the loss for training is defined as:

Ldep =
K−1∑
i=0

(Li
cls + Li

reg

)
, Li

cls =
∑
b

CEb(di),

Li
reg = 11

(
di

) · L1
(
di, Φ

(
d̂i1

))
+ 12

(
di

) · L1
(
d̃i, Φ

(
d̂i2

))
,

(4)
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where d̂ib represents the regression output for the b-th bin and i-th instance.
The indicator function 1b

(
di

)
will only be activated, when di stays in b-th Bin.

Training is only applied on 2D centers of bounding boxes. During inference the
weighted average will be decoded as the final result:

d̂i = Pi
Bin 1

(
d̂i

)
· Φ

(
d̂i1

)
+ Pi

Bin 2

(
d̂i

)
·
(
dmax − Φ

(
d̂i2

))
, (5)

where P i
Bin b denotes the normalized probability of d̂i.

2.4 Reference Area

Conventionally the regressed values of a single instance will be trained and
accessed only on a single center point, which reduces the calculation. However, it
also restricts the perception field of regression and affects reliability. To overcome
these disadvantages, we apply the concept used by Eskil et al. [9] and Krishna
et al. [10]. Instead of relying on a single point, a Reference Area (RA) based
on the 2D center point is defined within the 2D bounding box, whose width and
height are set accordingly with a proportional value γ. All values within this
area contribute to regression and classification. If RAs overlap, the area closest
to the camera dominates, since only the closest instance is completely visible on
the monocular image. During inference all predictions in the related RA will be
weighted equally. Supplementary material contain additional details.

3 Experiments

3.1 Implementation Details

We performed experiments on the KITTI object detection benchmark [8], which
contains 7481 training images and 7518 testing images. All instances are divided
into easy, moderate and hard targets according to visibility in the image [8]. To
numerically compare our results with other approaches we use intersection over
union (IoU) based on 2D bounding boxes (AP), bounding boxes in Bird’s-eye
view (BEV AP) and in 3D space (3D AP). Most recently, the KITTI evaluation
benchmark has been using 40 instead of 11 recalls. However, many methods
only evaluated the average precision on 11 recalls (AP11) in percentage. For fair
comparison, we show here firstly AP11 on the validation set and then AP40 on
the official test set.

Like most previous works, and in particular CenterNet, we firstly only con-
sider the “Car” category and follow the standard training/validation split strat-
egy in [3], which leads to 3712 images for training and 3769 images for validation.
In particular, we keep the modified Deep Layer Aggregation (DLA)-34 [25] as
the backbone. Regarding different approaches, we add specific head layers, which
consist of one 3 × 3 convolutional layer with 256 channels, ReLu activation and
a 1×1 convolution with desired output channels at the end. We trained the net-
work from scratch in PyTorch [15] on 2 GPUs (1080Ti) with batch sizes 7 and
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Table 1. AP11(%) on KITTI validation set at 0.5 IoU threshold. We focus on the
car detection result here. RT indicates runtime in ms. ct3d denotes CenterNet with
3D center points instead of 2D center points. eigen represents the original Eigen’s
transformation in CenterNet, while lid refers to the LID and dj represents the DepJoint
approach. ra indicates a reference area supporting regression tasks. The best result is
marked in bold, the second best is underlined. E, M and H indicate Easy, Moderate
and Hard instances.

Approach
RT 2D AP BEV / 3D AP
(ms) E M H E M H

CenterNet [26] 43 97.1 87.9 79.3 31.5 / 19.5 29.7 / 18.6 28.1 / 16.6
CenterNet(ct3d) - 87.1 85.6 69.8 46.8 / 39.9 37.9 / 31.4 32.7 / 30.1

Mono3D [2] - 92.3 88.7 79.0 30.5 / 25.2 22.4 / 18.2 19.2 / 15.5
MonoGRNet [16] 60 - - - - / 50.5 - / 37.0 - / 30.8
Multi-Fusion [24] 120 - - - 55.0 / 47.9 36.7 / 29.5 31.3 / 26.4
M3D-RPN [1] 161 90.2 83.7 67.7 55.4 / 49.0 42.5 / 39.6 35.3 / 33.0

Center3D(+eigen) 47 96.7 88.0 79.4 47.6 / 38.0 37.6 / 30.8 32.4 / 29.4
Center3D(+lid) 53 96.9 87.5 79.0 51.3 / 44.0 39.3 / 35.0 33.9 / 30.6
Center3D(+dj) 54 96.1 86.8 78.2 55.4 / 49.7 41.7 / 38.1 35.6 / 32.9
Center3D(+dj+ra) 56 96.8 88.2 79.6 56.7/ 52.5 43.5/ 40.5 41.2/ 34.9

Table 2. AP40(%) on KITTI test set at 0.7 IoU threshold. We show the car, pedestrain
and cyclist detection results here. E, M and H indicate Easy, Moderate and Hard
instances.

Car

Approach
2D AP AOS BEV/3D AP

E M H E M H E M H

M3D-RPN [1] 89.0 85.1 69.3 88.4 82.8 67.1 21.0/14.8 13.7/9.7 10.2/7.4

Center3D 95.1 85.1 73.1 93.1 82.5 70.8 18.9/12.0 14.0/9.3 12.4/8.1

BEV/3D AP
Pedestrain Cyclist

E M H E M H

M3D-RPN [1] 5.7/4.9 4.1/3.5 3.3/2.9 1.3/0.9 0.8/0.7 0.8/0.5

Center3D 5.7/4.9 3.7/3.4 3.5/2.8 5.3/4.3 2.8/2.4 2.7/2.1

9. We trained the network for 70 epochs with an initial learning rate of 1.25e−4

or 2.4e−4, which drops by a factor of 10 at 45 and 60 epochs if not specified
otherwise.

3.2 Center3D

We can bridge the gap between 2D and 3D center points by adding 2 specific
layers to regress the offset Δci. For demonstration we perform an experiment,
which is indicated as CenterNet(ct3d) in Table 1. It models the object as a
projected 3D center point with 4 distances to boundaries. The visible object,
whose 3D center point is out of the image, is ignored during training. As Table 1
shows, for easy targets ct3d increases the BEV AP by 48.6% and the 3D AP by
104.6% compared to the baseline of CenterNet. This is achieved by the proper
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Table 3. Experimental results of LID. We show the comparison between SID and LID,
the influence of different bins. -res indicates no regression of residuals as an ablation
study. APs are given in percentage.

Bin BEV AP 3D AP

Easy Mode Hard Easy Mode Hard

Eigen – 47.6 37.6 32.4 38.0 30.8 29.4

SID 40 33.4 27.6 26.9 26.7 24.4 21.1

LID 40 31.5 25.6 24.9 24.7 22.7 19.4

SID 100 47.6 37.5 32.3 39.6 33.8 29.4

LID 100 50.2 39.2 33.9 41.5 35.6 31.3

SID 80 48.7 37.9 32.9 40.4 34.3 30.0

LID 80 51.3 39.3 33.9 44.0 35.0 30.6

LID/-res 80 37.1 33.0 29.2 31.9 26.7 25.8

decoding of 3D parameters based on an appropriate 3D center point. However,
simply modeling an object with a 3D center will hurt 2D performance, since
some 3D centers are not attainable, although the object is still partly visible in
the image.

In contrast, the Center3D approach is able to balance the trade-off between
a tightly fitting 2D bounding box and a proper 3D location. The regression of
offsets is regularizing the spatial center, while also preserving the stable precision
in 2D (the 7th row in Table 1). BEV AP for moderate targets improves from
29.7% to 37.6%, and 3D AP increases from 18.6% to 30.8%, which performs
comparably to the state of the art. Since Center3D is also the basis for all further
experiments, we treat the performance as our new baseline for comparison.

3.3 LID

We first implement and adjust the DORN [7] approach for depth estimation
instance-wise rather than pixel-wise. Following DORN we add a shift ξ to both
distance extremum d∗

min and d∗
max to ensure dmin = d∗

min + ξ = 1.0. In addition,
we perform experiments for our LID approach to demonstrate its effectiveness.
We set the number of bins to 80, and add a single head layer to regress the
residuals of the discretization. Hence, for depth estimation, we add head layers
to generate the output features D̂ ∈ R

W
R ×H

R ×161, while CenterNet generates an
output feature D̂ ∈ R

W
R ×H

R ×1. Here the depth loss weight λdep = 0.1 yields the
best performance. We compare the results with our new baseline Center3D with
the same learning rate of 1.25e−4. The best result is shown as Center3D(+lid)
in Table 1.

More detailed, Table 3 shows both LID and SID with different number of
bins improved even instance-wise with additional layers for ordinal classifica-
tion, when a proper number of bins is used. Our discretization strategy LID
shows a considerably higher precision in 3D evaluation, comprehensively when
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Table 4. Experimental results of DepJoint. The regression part of depth estimation
is supported by RA. The dependence on α/β is shown, which represents the threshold
scale of first/second bins regarding to dmax. The left column shows the results of asso-
ciated strategy, while the right column shows the results of overlapping strategy. APs
are given in percentage.

BEV AP 3D AP BEV AP 3D AP

α/β E M H E M H α/β E M H E M H

0.7/0.3 52.9 40.6 35.0 44.5 37.5 32.7 0.2/0.2 48.6 37.5 33.3 42.1 32.9 30.9

0.6/0.4 49.9 39.6 34.1 44.7 35.5 30.8 0.3/0.3 53.2 41.2 35.1 47.4 36.4 32.3

0.8/0.2 47.9 38.7 33.6 40.3 31.9 30.9 0.4/0.4 51.5 40.3 34.1 45.5 36.0 31.2
0.9/0.1 48.4 37.8 32.7 41.4 31.2 29.4 0.5/0.5 42.9 35.9 31.9 37.7 29.3 28.3

80 and 100 bins are used. A visualization of inferences of both approaches from
BEV is shown in Fig. 3. LID only preforms worse than SID in the 40 bin case,
where the number of intervals is not enough for instance-wise depth estimation.
Furthermore we verify the necessity of the regression of residuals by comparing
the last two rows in Table 3. The performance of LID in 3D will deteriorate
drastically if this refinement module is removed.

3.4 DepJoint and Reference Area

In this section, we evaluate the performance of DepJoint approach. Firstly, only
the regression part of depth estimation is supported by RA, which is sensitive
according to its size. We set γ = 0.4 as default for RA, which yields mostly the
best result. The supporting experimental results can be found in the supplemen-
tary material. Additionally, we apply dmin = 0m, dmax = 60m and λdep = 0.1
for all experiments. Table 4 shows the experimental results. As introduced in
Sect. 2.3, we can divide the whole depth range into two overlapping or asso-
ciated bins. For overlapping strategy, the overlapping area should be defined
properly. When the overlapping area is too small, the overlapping strategy actu-
ally converts to the associated strategy. On the other hand, if the overlapping
area is too wide, the two independent bins tend to capture the general feature
instead of specific feature of objects in panoramic depth. In that case, the two
bins would not focus on objects in foreground and background respectively any-
more, since the input objects during training for both bins are almost the same.
This can also explain why the threshold choices of 0.7/0.3 and 0.6/0.4 result
in a better accuracy in 3D space comparing with 0.9/0.1 and 0.8/0.2. For the
associated strategy, the thresholds α/β of 0.3/0.3 and 0.4/0.4 show the best per-
formance for the following reason: usually more distant objects show less visible
features in the image. Hence, we want to set both thresholds a little lower, to
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assign more instances to the distant bins and thereby suppress the imbalance of
visual clues between the two bins.

Furthermore, the ablation study (without RA) verifies the effectiveness of
DepJoint in comparison with Eigen’s transformation. For DepJoint approach,
α/β are set to 0.7/0.3 and λdep = 0.5. As Center3D(+eigen) and (+dj) shown
in Table 1, DepJoint approach has a considerably higher AP in both BEV and
3D space.

3.5 Comparison to the State of the Art

Table 1 shows the comparison with state-of-the-art monocular 3D detectors on
the validation dataset. Center3D(+lid) and (+dj) follow the settings described
above. However, Center3D(+dj+ra) is supported here by RA in the regression of
3D offset, dimension, rotation and 2D width/height comprehensively (γ = 0.4).
The corresponding loss weightings are all set to 0.1, except λdep = 0.5 and
λrot = 1. The learning rate is 2.4e−4.

As Table 1 shown, all Center3D models perform at comparable 3D perfor-
mance with respect to the best approaches currently available. Both LID and
DepJoint approach for depth estimation have a higher AP than simply applying
the Eigen’s transformation in 3D task. Especially, Center3D(+dj+ra) achieved
state-of-the-art performance with BEV APs of 56.7% and 43.5% for easy and
moderate targets, respectively. For hard objects in particular, it outperforms all
other approaches with BEV AP of 41.2% and with 3D AP of 34.9%.

Table 2 shows the AP40 of Center3D(+dj+ra) on the KITTI test set. In com-
parison with M3D-RPN, Center3D outperforms in 2D AP and average orienta-
tion similarity (AOS) obviously with comparable BEV and 3D APs. Besides,
Center3D performs particularly better for hard object detection and Cyclist
detection. More qualitative results can be found in the supplementary material.

Center3D preserves the advantages of an anchor-free approach. It performs
better than most other approaches in 2D AP, especially on easy objects. Most
importantly, it infers on the monocular input image with the highest speed
(around three times faster than M3D-RPN, which performs similarly to Cen-
ter3D in 3D). Therefore, Center3D is able to fulfill the requirement of a real-time
detection.

4 Conclusion

In this paper we introduced Center3D, a one-stage anchor-free monocular 3D
object detector, which models and detects objects with center points of 2D
bounding boxes. We recognize and highlight the importance of the difference
between centers in 2D and 3D by regressing the offset directly, which trans-
forms 2D centers to 3D centers. In order to improve depth estimation, we fur-
ther explored the effectiveness of joint classification and regression when only
monocular images are given. Both classification-dominated (LID) and regression-
dominated (DepJoint) approaches enhance the AP in BEV and 3D space. Finally,
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we employed the concept of RAs by regressing in predefined areas, to over-
come the sparsity of the feature map in anchor-free approaches. Center3D per-
forms comparably to state-of-the-art monocular 3D approaches with significantly
improved runtime during inference. Center3D achieved a better trade-off between
3D precision and inference speed.
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