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Abstract. Context - i.e. information not contained in a particular mea-
surement but in its spatial proximity - plays a vital role in the analysis
of images in general and in the semantic segmentation of Polarimetric
Synthetic Aperture Radar (PolSAR) images in particular. Nevertheless,
a detailed study on whether context should be incorporated implicitly
(e.g. by spatial features) or explicitly (by exploiting classifiers tailored
towards image analysis) and to which degree contextual information has
a positive influence on the final classification result is missing in the liter-
ature. In this paper we close this gap by using projection-based Random
Forests that allow to use various degrees of local context without chang-
ing the overall properties of the classifier (i.e. its capacity). Results on
two PolSAR data sets - one airborne over a rural area, one space-borne
over a dense urban area - show that local context indeed has substantial
influence on the achieved accuracy by reducing label noise and resolving
ambiguities. However, increasing access to local context beyond a certain
amount has a negative effect on the obtained semantic maps.

1 Introduction

Context refers to information not contained in an individual measurement but in
its local proximity or at a larger (even global) range. For image analysis, this can
refer to a spatial (i.e. pixels close to each other), temporal (measurements with a
small time difference), or spectral (measurements taken at similar wavelengths)
neighborhood. In this paper, context refers to the spatial neighborhood of a pixel.

In contrast to the (semantic) analysis of close-range photography, for a long
time context had played only a minor role in remote sensing, in particular for
data sources such as HyperSpectral Imagery (HSI) or Synthetic Aperture Radar
(SAR). One reason is the historical approach and the scientific communities that
pioneered in the analysis of images from both domains. The similarity of color
photographs to the early stages of the human visual cortex (e.g. being based
on angular measurements of the light intensity of primary colors), inspired to
model also subsequent stages according to this biological role model for which
it is well known that context (spatial as well as temporal) plays a vital role
for the understanding of the image input [21]. HSI and SAR images, on the
other hand, are too dissimilar to human perception to have inspired a similar
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Fig. 1. We investigate the role of (visual spatial) context by varying the size of the
spatial projections within the framework of projection-based Random Forests (pRFs),
i.e. the size rs and distance rd of regions sampled relative to the patch center and used
by the internal node tests of the decision trees to determine the semantic class.

approach during the early years of automated image analysis. On the contrary,
early attempts to remote sensing image interpretation were often carried out by
the same groups that built the corresponding sensors. Consequently, they took
a rather physics-based approach and developed statistical models that aim to
capture the complex relations between geo-physical and biochemical properties
of the imaged object and the measured signal. Even today, approaches that
aim to model the interaction of electro-magnetic waves with a scatterer with
certain geometric and electro-physical properties are still in use for SAR image
processing (see e.g. [7,10]). Another reason is that the information contained
in a single RGB pixel of a close-range photograph is rarely sufficient to make
any reliable prediction of the semantic class this pixel might belong to. On the
other hand, the information contained in a single HSI or PolSAR pixel does
allow to make such predictions with a surprisingly high accuracy if processed
and analysed correctly.

As a consequence, although there were early attempts to incorporate context
(see e.g. [24,28]) into the semantic analysis of remote sensing images, many
classification methods ignored relations between spatially adjacent pixels and
process each pixel independently (e.g. as in [6] for HSI and [16] for SAR data,
respectively). This means in particular, that a random permutation of all pixels
within the image would not effect classification performance during automatic
image interpretation (quite in contrast to a visual interpretation by humans).
However, neighboring pixels do contain a significant amount of information which
should be exploited. On the one hand, adjacent pixels are usually correlated due
to the image formation process. On the other hand, the depicted objects are
usually large (with respect to the pixel size) and often rather homogeneous.
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There are two distinct yet related concepts of context in images, i.e. visual
context and semantic context. Semantic context refers to relationships on
object level such as co-occurrence relations (e.g. a ship usually occurs together
with water) for example modelled via Latent Dirichlet Allocations [23] or con-
cept occurence vectors [27] and topological relations (e.g. trees are more likely
to be next to a road than on a road) capturing distances and directions (see
e.g. [2]). This type of context is usually exploited during the formulation of the
final decision rule, e.g. by applying a context-independent pixel-wise classifica-
tion followed by a spatial regularization of the obtained semantic maps [5] or
by applying Markov Random Fields (MRFs, see e.g. [11,25] for usage of MRFs
for the classification of SAR images). Visual context refers to relationships
on the measurement level allowing for example to reduce the noise of an indi-
vidual measurement (e.g. by local averaging) or to estimate textural properties.
For example, visual context is implicitly considered during SAR speckle filter-
ing. Another common example are approaches that combine spectral and spatial
information in a pixel-wise feature vector and then apply pixel-based classifica-
tion methods (e.g. [9,22]). More recent approaches move away from the use of
predefined hand-crafted features and use either variants of shallow learners that
have been tailored towards the analysis of image data (such as projection-based
Random Forests [12]) or deep neural networks. In particular the latter have
gained on importance and are often the method of choice for the (semantic)
analysis of remote sensing images in general (see e.g. [15] for an overview) and
SAR data in particular [31].

In this paper we address the latter type, i.e. visual context, for the special
case of semantic segmentation on polarimetric SAR images. In particular, we are
interested whether different data representations that implicitly integrate con-
text are helpful and in analysing how much local context is required or sufficient
to achieve accurate and robust classification results. To the best of the authors
knowledge, such an investigation is missing in the current literature of PolSAR
processing. Corresponding works either stop at low-level pre-processing steps
such as speckle reduction [4,8] or simply assume that any amount of available
contextual information leads to an improved performance.

Mostly to be able to efficiently vary available context information while keep-
ing model capacity fixed, we use projection-based Random Forests (pRFs, [12])
which are applied to image patches and apply spatial projections (illustrated in
Fig. 1) that sample regions of a certain size and distance to each other. Increas-
ing the region size allows to integrate information over larger areas and thus
adaptively reduce noise, while a larger region distance enables the RF to access
information that is further away from the patch center without increasing the
computational load (very similar to dilated convolutions in convolution networks
[30]). Thus, the contribution of this paper is three-fold: First, we extend the gen-
eral framework of [12] to incorporate node tests that can be directly applied to
polarimetric scattering vectors; Second, we compare the benefits and limitations
of using either scattering vectors or polarimetric sample covariance matrices for
the semantic segmentation of PolSAR images; and third, we analyse how much
context information is helpful to increase classification performance.
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2 Projection-Based Random Forests

Traditional machine-learning approaches for semantic segmentation of PolSAR
images either rely on probabilistic models aiming to capture the statistical char-
acteristics of the scattering processes (e.g. [3,29]) or apply a processing chain
that consists of pre-processing, extracting hand-crafted features, and estimat-
ing a mapping from the feature space to the desired target space by a suitable
classifier (e.g. [1,26]). Modern Deep Learning approaches offer the possibility to
avoid the computation of hand-crafted features by including feature extraction
into the optimization of the classifier itself (see e.g. [17–20]). These networks are
designed to take context into account by using units that integrate information
over a local neighborhood (their receptive field). In principle, this would allow
to study the role of context for the semantic segmentation of remotely sensed
images with such networks. However, an increased receptive field usually cor-
responds to an increase of internal parameters (either due to larger kernels or
deeper networks) and thus an increased capacity of the classifier.

This is why we apply projection-based Random Forests (pRFs [12]) which
offer several advantages for the following experiments: Similar to deep learning
approaches, pRFs learn features directly from the data and do not rely on hand-
crafted features. Furthermore, they can be applied to various input data without
any changes to the overall framework. This allows us to perform experiments
on PolSAR data which are either represented through polarimetric scattering
vectors s ∈ C

k or polarimetric sample covariance matrices C ∈ C
k×k

C = 〈ss†〉wC
(1)

where (·)† denotes conjugate transpose and 〈·〉wC
a spatial average over a wC ×

wC neighborhood.
Every internal node of a tree (an example of such a tree is shown in Fig. 2(a))

in a RF performs a binary test t : D → {0, 1} on a sample x ∈ D that has reached
this particular node and propagates it either to the left (t(x) = 0) or right child
node (t(x) = 1). The RF in [12] defines the test t as

t(x) =
{

0 if d(φ(ψ1(x)), φ(ψ2(x))) < θ,
1 otherwise. (2)

where ψ(·) samples a region from within a patch that has a certain size rs and
distance rd to the patch center, φ(·) selects a pixel within this region, d(·) is a
distance function, and θ is the split threshold (see Fig. 2(b) for an illustration).
Region size rs and distance rd to the patch center are randomly sampled from
a user defined range. They define the maximal possible patch size w = 2rd + rs
and thus the amount of local context that can be exploited by the test. To test
whether a multi-scale approach is beneficial for classification performance, we
allow the region distance to be scaled by a factor α which is randomly drawn by
a user defined set of possible scales.

The pixel selection function φ as well as the distance function are data type
dependent. The RF in [12] proposes test functions that apply to w × w patches
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(a) A typical decision tree
within a pRF (visualized via
[14]) that was trained on
the OPH data set (see Sec-
tion 3.1). Leaf colors represent
the dominant class in a leaf
(see Figure 3(c)); leaf size rep-
resents the number of samples
in this leaf.

(b) A node test t uses spa-
tial projections of a patch cen-
tered at x that sample regions
of size rs and distance rd to
the patch center via ψ() from
which φ() selects a single pixel.
The distance d between these
two pixel values is then com-
pared to the split threshold θ.

Fig. 2. Visualisation of a single decision tree of a trained pRF (left) as well as the
applied spatial node projections (right).

of polarimetric covariance matrices, (i.e. D = C
w×w×k×k). In this case, φ either

computes the average over the region or selects the covariance matrix within a
given region with minimal, maximal, or medium span rs, polarimetric entropy
H, or anisotropy A, i.e.

S =
k∑

i=1

λi , H =
k∑

i=1

λi

S
log

(
λi

S

)
, A =

λ2 − λ3

λ2 + λ3
(3)

where λ1 > λ2 > λ3 are the Eigenvalues of the covariance matrix. Note, that for
k = 2, i.e. dual-polarimetric data, the covariance matrix has only two Eigenvalues
which means that the polarimetric anisotropy cannot be computed.

Any measure of similarity between two Hermitian matrices P,Q (see [13] for
an overview) can serve as distance function d, e.g. the Bartlett distance

d(P,Q) = ln

( |P + Q|2
|P ||Q|

)
. (4)

We extend this concept to polarimetric scattering vectors s ∈ C
k by adjust-

ing φ to select pixels with minimal, maximal, or medium total target power
(
∑

i |si|). Note that polarimetric scattering vectors are usually assumed to fol-
low a complex Gaussian distribution with zero mean which means that the local
sample average tends to approach zero and thus does not provide a reasonable
projection. While it would be possible to use polarimetric amplitudes only, we
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want to work as closely to the data as possible. Extracting predefined features
and using corresponding projections is possible within the pRF framework but
beyond the scope of the paper. As distance d(p, q) we use one of the following
distance measures between polarimetric scattering vectors p, q ∈ C

k:

Span distance: d(p, q) =
k∑

i=1

|pi| −
k∑

i=1

|qi| (5)

Channel intensity distance: d(p, q) = |pi| − |qi| (6)
Phase difference: d(p, q) = arg(pi) − arg(qi) (7)

Ratio distance: d(p, q) =
∣∣∣∣log

( |pi|
|pj |

)∣∣∣∣ −
∣∣∣∣log

( |qi|
|qj |

)∣∣∣∣ (8)

Euclidean distance: d(p, q) =

√√√√ k∑
i=1

|pi − qi|2, (9)

where arg(z) denotes the phase of z.
An internal node creates multiple such test functions by randomly sampling

their parameters (i.e. which ψ defined by region size and position, which φ, and
which distance function d including which channel for channel-wise distances)
and selects the test that maximises the information gain (i.e. maximal drop of
class impurity in the child nodes).

3 Experiments

3.1 Data

We use two very different data sets to evaluate the role of context on the semantic
segmentation of PolSAR images. The first data set (shown in Fig. 3(a), 3(c)) is
a fully polarimetric SAR image acquired over Oberpfaffenhofen, Germany, by
the E-SAR sensor (DLR, L-band). It has 1390 × 6640 pixels with a resolution
of approximately 1.5 m. The scene contains rather large homogeneous object
regions. Five different classes have been manually marked, namely City (red),
Road (blue), Forest (dark green), Shrubland (light green), and Field (yellow).

The second data set (shown in Fig. 3(b)) is a dual-polarimetric image of size
6240 × 3953 acquired over central Berlin, Germany, by TerraSAR-X (DLR, X-
band, spotlight mode). It has a resolution of approximately 1 m. The scene con-
tains a dense urban area and was manually labelled into six different categories,
namely Building (red), Road (cyan), Railway (yellow), Forest (dark green), Lawn
(light green), and Water (blue) (see Fig. 3(d)).

The results shown in the following sections are obtained by dividing the
individual image into five vertical stripes. Training data (i.e. 50,000 pixels) are
drawn by stratified random sampling from four stripes, while the remaining
stripe is used for testing only. We use Cohen’s κ coefficient estimated from the
test data and averaged over all five folds as performance measure.
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(a) OPH image data
(E-SAR, DLR, L-Band)

(b) BLN image data
(TerraSAR-X, DLR, X-Band)

(c) OPH reference data:
City (red), Road (blue),
Forest (dark green), Shrub-
land (light green), Field
(yellow), unlabelled pixels
in white

(d) BLN reference data:
Building (red), Road (cyan), Railway (yel-
low), Forest (dark green), Lawn (light
green), Water (blue), unlabelled pixels in
white.

Fig. 3. False color composite of the used PolSAR data (top) as well as color-coded
reference maps (bottom) of the Oberpfaffenhofen (OPH, left) and Berlin (BLN, right)
data sets. Note: Images have been scaled for better visibility. (Color figure online)

3.2 Polarimetric Scattering Vectors

As a first step we work directly on the polarimetric scattering vectors by using the
projections described in Sect. 2 with rd, rs ∈ {3, 11, 31, 101}. Figure 4 shows the
results when using the polarimetric scattering vectors directly without any pre-
processing (i.e. no presumming, no speckle reduction, etc.). The absolute accu-
racy (in terms of the kappa coefficient) differs between the air- (κ ∈ [0.64, 0.80])
and space-borne (κ ∈ [0.29, 0.44]) PolSAR data. There are several reasons for this
difference. One the one hand, the OPH data was acquired by an fully-polarimetric
airborne sensor while the BLN data was acquired by a dual-polarimetric space-
borne sensor. As a consequence, the OPH data contains more information (one
more polarimetric channel) and has in general a better signal to noise ratio.
On the other hand, the scene is simpler in terms of semantic classes, i.e. the
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Fig. 4. Achieved κ (top) and prediction time (bottom) for OPH (left) and BLN (right)
using polarimetric scattering vectors. The solid lines denote the single scale (α = 1),
the dashed lines the multi-scale (α ∈ {1, 2, 5, 10}) case.

reference data contains less classes and object instances are rather large, homo-
geneous segments. In contrast, the BLN data contains fine grained object classes
such as buildings and roads in a dense urban area.

Despite the difference in the absolute values for both data sets, the relative
performance between the different parameter settings is very similar. In general,
larger region sizes lead to a better performance. While the difference between
3×3 and 11×11 regions are considerable, differences between 11×11 and 31×31
regions are significantly smaller. Large regions of 101 × 101 pixels lead to worse
results than moderate regions of 31×31. Larger regions allow to locally suppress
speckle and noise and are better able to integrate local context. However, beyond
a certain region size, the patches start to span over multiple object instances
which makes it impossible to distinguish between the different classes.

A similar although less pronounced effect can be seen for increasing region
distances. At first, performance does increase with larger distance. However, the
improvement soon saturates and for very large distances even deteriorates. This
effect is strongest in combination with small region sizes as the distance relative
to the region size is much smaller for tests with large regions, i.e. for a test with
a region distance of rd = 11, regions of rs = 31 still overlap.

The optimal parameter combination in terms of accuracy is rs = rd = 31,
i.e. patches with w = 93 (note, that this only determines the maximal patch size
while the actually used size depends on the specific tests selected during node
optimisation). Interestingly, this seems to be independent of the data set.

A large region size has the disadvantage of an increased run time during
training and prediction (the latter is shown in Fig. 4). The run time per node
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test increases quadratically with the region size rs but is independent of rd. The
overall run time also depends on the average path length within the trees which
might in- or decrease depending on the test quality (i.e. whether a test is able to
produce a balanced split of the data with a high information gain). In general, an
increased region size leads to a much longer prediction time, while an increased
region distance has only a minor effect. As a consequence, if computation speed
is of importance in a particular application, it is recommendable to increase
sensitivity to context by setting a larger region distance than increasing the
region size (at the cost of a usually minor loss in accuracy).

The dashed lines in Fig. 4 show the results when access to context is increased
beyond the current local region by scaling the region distance by a factor α which
is randomly selected from the set R = {1, 2, 5, 10} (e.g. if rd is originally selected
as rd = 5 and α is selected as α = 10, the actually used region distance is 50).
If the original region distance is set to a small value (i.e. rd = 3) using the
multi-scale approach leads to an increased performance for all region sizes. For
a large region size of rs = 101 this increase is marginal, but for rs = 3 the
increase is substantial (e.g. from κ = 0.64 to 0.72 for OPH). However, even for
medium region distances (rd = 11) the effect is already marginal and for large
distances the performance actually decreases drastically. The prediction time
is barely affected by re-scaling the region distance. In general, this reconfirms
the results of the earlier experiments (a too large region distance leads inferior
results) and shows that (at least for the used data sets) local context is useful
to solve ambiguities in the classification decision, but global context does rarely
bring further benefits. On the one hand, this is because local homogeneity is
a very dominant factor within remote sensing images, i.e. if the majority of
pixels in a local neighborhood around a pixel belong to a certain class, the
probability is high that this pixel belongs to the same class. On the other hand,
typical objects in remote sensing images (i.e. such as the here investigated land
cover/use classes) are less constrained in their spatial co-occurrence than close
range objects (e.g. a road can go through an urban area, through agricultural
fields as well as through forest or shrubland and can even run next to a river).

3.3 Estimation of Polarimetric Sample Covariance Matrices

In a second experiment, we use the projections described in Sect. 2, i.e. the RF is
applied to polarimetric sample covariance matrices instead of scattering vectors.
While in contrast to scattering vectors, covariance matrices can be locally aver-
aged, we exclude node tests that perform local averaging in order to be better
comparable to the experiments on scattering vectors.

As covariance matrices are computed by locally averaging the outer product
of scattering vectors, they implicitly exploit context. In particular distributed
targets can be statistically described only by their second moments. Another
effect is that large local windows increases the quality of the estimate consider-
ably. However, too large local windows will soon go beyond object borders and
include pixels that belong to a different physical process, i.e. in the worst case
to a different semantic class, reducing the inter-class variance of the samples.
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Fig. 5. Achieved κ (top) and prediction time (bottom) for OPH (left) and BLN (right)
using covariance matrices computed over local windows of size wC .

Figure 5 shows that performance barely changes for medium window sizes
but degrades drastically for larger windows. A reasonable choice is wC = 11,
which is used in the following experiments. Note that covariance matrices are
precomputed and thus do not influence computation times of the classifier.

3.4 Polarimetric Sample Covariance Matrices

In the last set of experiments, we fix the local window for computing the local
polarimetric covariance matrix to wC = 11 and vary region distance rd and
size rs in the same range as for the experiments based on the scattering vector, i.e.
rd, rs ∈ {3, 11, 31, 101}. The results are shown in Fig. 6. Compared to using scat-
tering vectors directly, the achieved performance increased from κ ∈ [0.64, 0.798]
to κ ∈ [0.786, 0.85] for OPH and from κ ∈ [0.288, 0.436] to κ ∈ [0.448, 0.508] for
BLN which demonstrates the benefits of speckle reduction and the importance
to use second-order moments. The relative performance among different set-
tings for region size and distance, however, stays similar. Large regions perform
in general better than small regions. An interesting exception can be observed
for rs = 3 and rs = 11: While for small distances (d ≤ 11) the larger rs = 11
leads to better results, the accuracy for rs = 3 surpasses the one for rs = 11
if rd = 31. In general the results follow the trend of the experiments based on
scattering vectors: First, the performance increases with increasing distance, but
then declines if the region distance is too large. This is confirmed as well by the
experiments with upscaled distances: While for rd = 3 the results of the scaled
distance is often superior to the results achieved using the original distance, the
performance quickly decreases for d > 11.
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3.5 Summary

Figure 7 shows qualitative results by using projections that allow 1) a minimal
amount of context (being based on scattering vectors with rd = rs = 3 and no
scaling), 2) the optimal (i.e. best κ in the experiments) amount of context (being
based on covariance matrices with rd = rs = 31 and no scaling); and 3) a large
amount of context (being based on covariance matrices with rd = 101, rs = 31
and scaling with α ∈ {1, 2, 5, 10}). There is a significant amount of label noise
if only a small amount of local context is included but even larger structures
tend to be misclassified if they are locally similar to other classes. By increas-
ing the amount of context, the obtained semantic maps become considerably
smoother. Note, that these results are obtained without any post-processing.
Too much context, however, degrades the results as the inter-class differences
decrease leading to misclassifications in particular for smaller structures.

Fig. 6. Achieved κ (top) and prediction time (bottom) for OPH (left) and BLN (right)
using polarimetric sample covariance matrices. The solid lines denote the single scale
(α = 1), the dashed lines the multi-scale (α ∈ {1, 2, 5, 10}) case.
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(a) Minimal context: Scattering vector, rd = rs = 3, α = 1

(b) Optimal context: Covariance matrix (wC = 11), rd = rs = 31, α = 1

(c) Maximal context: Covariance matrix (wC = 11), rd = 31, rs = 31,
α ∈ {1, 2, 5, 10}

Fig. 7. Obtained semantic maps (stitching of corresponding test sets) by exploiting
different amounts of spatial context. Note: Images have been scaled for better visibility.

4 Conclusion and Future Work

This paper extended the set of possible spatial projections of pRFs by exploit-
ing distance functions defined over polarimetric scattering vectors. This allows a
time- and memory efficient application of pRFs directly to PolSAR images with-
out any kind of preprocessing. However, the experimental results have shown
that usually a better performance (in terms of accuracy) can be obtained by
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using polarimetric sample covariance matrices. We investigated the influence of
the size of the spatial neighborhood over which these matrices are computed and
showed that medium sized neighborhoods lead to best results where the rela-
tive performance changes were surprisingly consistent between two very different
data sets. Last but not least we investigated the role context plays by varying the
region size and distance of the internal node projections of pRFs. Results show
that the usage of context is indeed essential to improve classification results but
only to a certain extent after which performance actually drastically decreases.

Future work will confirm these findings for different sensors, i.e. HSI and
optical images, as well as for different classification tasks. Furthermore, while
this paper focused on visual context (i.e. on the measurement level), semantic
context (i.e. on the level of the target variable) is of interest as well. On the one
hand, the test selection of the internal nodes of pRFs allows in principle to take
semantic context into account during the optimisation process. On the other
hand, post processing steps such as MRFs, label relaxation, or stacked Random
Forests should have a positive influence on the quality of the final semantic maps.
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