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Abstract. This work focuses on synthesizing human poses from human-
level text descriptions. We propose a model that is based on a conditional
generative adversarial network. It is designed to generate 2D human
poses conditioned on human-written text descriptions. The model is
trained and evaluated using the COCO dataset, which consists of images
capturing complex everyday scenes with various human poses. We show
through qualitative and quantitative results that the model is capable of
synthesizing plausible poses matching the given text, indicating that it
is possible to generate poses that are consistent with the given semantic
features, especially for actions with distinctive poses.

1 Introduction

Given a text description like “A tennis player hitting a tennis ball with a rac-
quet”, we can directly imagine a human pose that matches the description.
Such ability would be useful for applications like retrieving images with seman-
tically similar poses or animating avatars based on text descriptions. Synthe-
sizing the human pose, however, is very difficult since the articulated body
pose is much more complex than rigid or nearly convex shapes like objects or
faces. Although previous works on synthesizing images from text describing a
scene [16,22,23,25,28,32,33] achieve astonishing results when the images con-
tain objects such as flowers, animals with small pose variations like birds or
general scenes such as mountains or playing fields, the synthesized humans in
these scenes appear quite unrealistic due to distorted or incorrect poses. This
failure is due to the uniqueness of the human pose which is highly articulated and
versatile. Conversely, most existing works for modeling humans rely on the pose
as part of the intermediate feature representation [12,18]. Synthesizing poses in
complex scenes is therefore an essential step towards synthesizing images with
realistic human poses.
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Fig. 1. The image on the left hand side shows an example from the COCO dataset
that is annotated by an image caption describing the image and the human pose. In
this work, we use only the image caption to generate the human pose.

In this work, we focus on synthesizing versatile human poses from text as
shown in Fig. 1. We examine how well the synthesized poses match the text
description and whether it is possible to achieve semantic consistency in their
feature spaces. To achieve this goal, we design a model based on Generative
Adversarial Networks (GANs) [6] to generate a single person pose conditioned
on a given human-level text description. In order to condition the network to gen-
erate a pose that matches the text, the text is first encoded into an embedding
using a pre-trained language model and then fed-forward through a convolu-
tional network. The generated and real poses will then be assessed by a critic
network whose objective is to maximize the earth mover’s distance between the
real and generated samples distributions. Similar to the pose representation in
detection-based human pose estimation [29], we represent the pose by a set of
heatmaps each corresponding to a body keypoint. Additionally, to resolve the
highly unstable nature of GAN training, we experiment with different GAN
models and loss functions and thoroughly evaluate their impact on the synthe-
sized poses. We evaluate the approach on the COCO dataset and show that it
is possible to generate human poses that are consistent with a given text.

2 Related Work

Generative models are a powerful tool for learning data distributions. Recent
advancements in deep network architectures have enabled modeling complex and
high-dimensional data such as images [27]. Examples of deep generative models
include Deep Belief Networks (DBNs) [10], Variational Autoencoder (VAEs) [11]
and the more recent approach of Generative Adversarial Networks (GANs) [6].
In the field of computer vision, GANs have been employed for different tasks for
content synthesis, including unconditional image synthesis [6,24], image synthe-
sis conditioned on text [13,14,16,22,23,25,28,32,33], generating text description
conditioned on images [5], style transfer between images [4], and transferring a
target pose to a given person’s pose in an image [19].
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Image synthesis conditioned on text has gained traction in computer vision
research recently. Motivations for such works include matching features between
the semantic and visual space. Reed et al. [25] combine a GAN with a deep sym-
metric structured text-image joint embedding to synthesize plausible images of
birds and flowers from human-written text descriptions. Zhang et al. [33] propose
a GAN composed of two stages and generate hierarchical representations that are
transferred between several stacked GANs. Reed et al. [25] and Zhang et al. [33]
also attempt to generalize their models to generate images with multiple types
of objects using the COCO dataset. However, their approaches do not directly
address the human pose, and the persons in the synthesized images have deformed
poses. In a subsequent work, Reed et al. [26] generate images based on text and
show that using a sparse set of keypoints allows for synthesizing a higher resolu-
tion image. Zhou et al. [35] alter the pose of a person in a given image based on a
text description. In the first stage they generate a pose by predicting a pose from
a set of pose clusters created from the training set. However, they use a pedes-
trian dataset in which the poses are simple and contain mainly small variations
of standing or walking persons. Since the approach assumes that all poses can be
represented by a small set of clusters, the approach cannot be applied to datasets
with versatile and highly articulated poses such as COCO. In a more recent work,
Xu et al. [32] proposed a more advanced attentional GAN, which is multi-stage and
attention-based, such that it can synthesize fine-grained details by paying atten-
tion to the relevant words in the text. Their model outperforms the previous works
but individuals still appear deformed in the generated images. Li et al. [14] pro-
pose an object-driven attention module that generates images conditioned on the
class label. However, they do not explicitly handle the human case and the humans
still look deformed despite improved results. In the fashion domain, Zhu et al. [36]
manipulate the clothing of a person in a given image based on a text description
without altering the pose. Other related works such as [7,9,15,34] deal with search-
ing for or synthesizing plausible human poses that match object affordances in a
given scene.

3 Generating Human Poses from Text

The goal of our approach is to generate human poses that match a textual
description as illustrated in Fig. 1. To this end, we use a conditional Wasserstein
GAN as shown in Fig. 2. The text description is first converted into a vector and
used to condition the GAN, which predicts heatmaps for each joint, which are
finally converted into a human pose. Before we discuss the network architecture
in Sect. 3.2, we discuss the representation of the text and the human pose.

3.1 Feature Representation

We need to define representations for the text description as well as the human
pose such that they can be used in a convolutional network. The text is encoded
by the mapping ϕ : T → R

300, which maps a text sequence into a 300 dimen-
sional embedding space. For the text embedding, we use fastText [2,20]. As is
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Fig. 2. The architecture of the proposed network. The generator G takes a noise vector
z ∈ R

128 and a text encoding vector h ∈ R
300 as input and generates a pose heatmap

G(z, h) ∈ R
J×64×64 where J is the number of keypoints. The discriminator D takes

a real or generated pose heatmap H and a text encoding vector h as input. The
discriminator predicts a single value D(x, h) ∈ R indicating its confidence about the
sample being real or generated. For upsampling, transposed convolution layers are used.

common for human pose estimation [31], we represent the human pose by a
heatmap x ∈ R

m×n for each joint j. The heatmaps are modeled by a Gaussian
distribution centered at the keypoint coordinate. Compared to a skeleton repre-
sentation based on joint coordinates, heatmaps allow for representing joints that
are invisible due to occlusion or truncation by setting the heatmaps to zero and
allow an implementation based on a convolutional network rather than a fully
connected one. The choice of the heatmap-based representation is also validated
by our experiments, in which we compare the proposed representation with a
skeleton representation that is regressed by a fully connected network. Given
these two representations for the text description and the human pose, we will
describe the network architecture that generates heatmaps from the embedded
text in the following section.

3.2 Architecture

In order to learn to predict plausible poses from text, we use adversarial training
as illustrated in Fig. 2. In our experiments, we show that a vanilla GAN performs
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poorly. We therefore use a Wasserstein GAN (WGAN), which is a more stable vari-
ant for training GANs with their continuous and nearly everywhere differentiable
loss functions [1].

The model consists of a conditional generator network G and a conditional
discriminator network D. The input to the generator is a concatenation of a noise
vector z ∼ N(0, I), where N denotes a normal distribution, with the embedded
text description h = ϕ(t) reduced by a layer from 300 to 128 dimensions. Given
z and h, the network infers J heatmaps with resolution m × n, i.e. G(z, h) ∈
R

J×m×n. The discriminator network takes either real or generated heatmaps
as input. Since our goal is to generate heatmaps or poses that match the text
description, we condition the network on the embedded text h = ϕ(t) as well.
Since the heatmaps have a higher dimensionality with J × 64 × 64 than h, we
first apply the inverse transformations of the generator until the resolution is
reduced to 4 × 4. We then concatenate the embedded text, by duplicating it 16
times after a layer that reduces the vector h from 300 to 128 dimensions. Both
networks are trained together where D’s objective is to maximize the distance
between the generated heatmaps G(z, h) and the real heatmaps x sampled from
the training dataset Pr. Unlike in the unconditional case, D has to distinguish
two types of errors: heatmaps that correspond to unrealistic human poses as well
as heatmaps that correspond to realistic poses, but the poses do not match the
text description. The two errors are penalized by the following two terms:

LD∗ = − E(x,h)∼Pr,z∼Pz
[D(x, h) − D(G(z, h), h)]

− E(x,h)∼Pr,ĥ∼Ph
[D(x, h) − D(x, ĥ)]

(1)

where (x, h) ∼ Pr is a pair of a heatmap and the corresponding text encoding
from the training set Pr and G(z, h) is the generated pose for the same text
embedding h and a random noise vector z. For the second term, we sample a
second text encoding ĥ from the training set independently of x, i.e. ĥ ∼ Ph.

In order to optimize the WGAN using the dual objective of Kantorovich-
Rubinstein [30], the discriminator network needs to be Lipschitz continuous, i.e.
|D(x2) − D(x1)| ≤ |x2 − x1| for any x1, x2. Enforcing the Lipschitz constraint
requires to constrain the gradient norm of the discriminator to 1. This can be
achieved in two ways. The first approach uses a Lipschitz penality (LP) [21]:

RLP = E(x̂,h)∼Px̂,h
[max(0, ‖∇x̂,hD(x̂, h)‖2 − 1)2]. (2)

The Lipschitz penalty term is one sided and it is only active if the gradient norm
is larger than 1. The second approach is termed Gradient Penalty (GP) [8]:

RGP = E(x̂,h)∼Px̂,h
[(‖∇x̂,hD(x̂, h)‖2 − 1)2] (3)

which prefers that the gradient is one. In both cases, we sample x̂ uniformly
along straight lines between a real heatmap x and a generated heatmap G(z, h)
conditioned on the matching text encoding h, i.e. x̂ = εx + (1 − ε) · G(z, h) where
ε is uniformly sampled in [0, 1]. In our experiments, we evaluate the model when
either of these terms is used. The loss function of D is therefore:
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LD = LD∗ + λR (4)

where R is either RLP or RGP , which are denoted by WGAN-LP or WGAN-GP,
respectively, and λ is the regularization parameter for the Lipschitz constraint.
To improve the training of G, a term with interpolated text encodings is added
to the standard loss of G:

LG = − Ez∼Pz,h∼Ph
[D(G(z, h), h)]

− Ez∼Pz,h1,h2∼Ph

[
D

(
G

(
z,

h1 + h2

2

)
,
h1 + h2

2

)]
.

(5)

Here, h, h1, h2 ∼ Ph are text encodings from the training set, and 1
2h1 + 1

2h2 is
an interpolated encoding between two training samples. The second term adds
many more text encoding samples that lie near the real distribution manifold
for G to learn [25].

To obtain poses from the J heatmaps generated by the model, we take the
point with the maximum activation in each channel as the location of the corre-
sponding keypoint j if its confidence value is above 0.2, otherwise we omit the
keypoint. This means that our model is not limited to generate full body poses,
but it can generate full body poses as well as poses of the upper body only as
shown in Fig. 3.

4 Dataset and Training

Dataset. We use the COCO (Common Objects in Context) [17] dataset for
training and evaluating the model. This dataset contains more than 100k anno-
tated images of everyday scenes and every image has five human-written text
descriptions describing the scene. Additionally, the persons are annotated by 17
body keypoints. In order to ensure that the text description refers to the per-
son, we only include images which contain a single person and at least 8 visible
keypoints.

Training. We first train an unconditional model, i.e. only pose heatmaps are used
while the text is excluded. In this way, we pre-train the model on all annotated
poses of COCO and we are not limited to the training samples where the text
refers to the annotated person, so that the model learns to generate realistic
pose. In this setting, the network parameters related to the text encoding are
set to zero, while the remaining network parameters are updated. The samples
are created by cropping each annotated person using the provided bounding box.
In total, there are 116, 021 annotated poses in the training set and 4, 812 poses
in the validation set. G is updated after every 5 iterations of updating D. We
use λ = 10 as weight for the regularizer in (4).

After pre-training, we train the conditional model using both the pose
heatmaps and the text from the images with a single person. For the second
stage, there are in total 17, 326 images with a single annotated person in the
training set and 714 images in the validation set. During training, we randomly
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Fig. 3. Examples of generated poses from text. The first row shows the ground-truth
pose from the validation set. The text on the top is the associated text. The three
poses below each ground-truth pose are synthesized by the model from the text on the
top with different noise vectors z. It can be seen that some poses such as ‘throwing’
(third column) are more distinct than others such as ‘holding’ (second column). For
throwing, we can see that the wrist joint is raised. For ‘working on the computer’ (fifth
column), we can see a sitting pose with the wrists extended appearing to be typing.

select one of the annotated captions per image. We apply an affine transforma-
tion such that the bounding box is located at the center of the image. At this
stage, all network parameters are updated and we increase the weight of λ to
150 due to the small number of training samples. To improve training, we also
perform some slight data augmentation on the heatmaps by randomly flipping
them horizontally and rotating them between −10◦ and +10◦ around the center.

5 Experiments

Qualitative Results. Figure 3 shows some qualitative poses generated by the
model, and the ground truth poses as reference. The captions used here are
randomly selected from the validation set. We can see that the text encodings
are indeed effectively guiding the synthesis of the poses, such that most of the
generated poses resemble the real pose and they can reflect the given text, in
particular for distinct actions.



152 Y. Zhang et al.

Fig. 4. Poses synthesized from text that is not part of the COCO dataset.

We also evaluated if the model overfits to the text description of the COCO
dataset or if it can as well generate plausible poses from other text descriptions
as well. Since we do not have any ground-truth poses, we used sentences that
relate to activities, such that it is rather clear what the target poses should look
like. The results appear in Fig. 4. As can be seen, the generated poses match the
input text well.

It is also interesting to see what the model can produce if we only feed it with
parts of a sentence. Figure 5 shows the results. It can be seen that specific verbs
and nouns like ‘playing’ and ‘tennis’ matter more in interpreting the context and
guiding the model in generating human poses although verbs such as ‘playing’
are generic and can map to various poses, unlike ‘ski’ for example.

Comparison to Regression. To demonstrate the benefit of representing human
poses by heatmaps, we also trained a WGAN-LP that uses a fully connected
network to regress the keypoint coordinates instead of a convolutional neural
network that predicts a heatmap for each keypoint. In addition to the coordinate
prediction, the generator predicts a probability value for the keypoint visibility.
For this, we use an additional entropy loss based on the ground truth visibility
flags of the training data. The regression approach is less intuitive than the
heatmap-based approach and it is more difficult to train. Figure 6 shows some
qualitative poses generated by the regression model. If we compare the poses
with Fig. 3, we clearly see that the regression approach generates less realistic
poses than the proposed approach that is based on heatmaps.

Quantitative Evaluation. In order to show that the model learned to generate
unseen samples that are close to the real distribution, we calculate the distance
of the nearest neighbor (NN) pose in the training set of each generated sample
conditioned on the text from the validation set and denote it by d̄pnn. This
distance is calculated by generating poses conditioned on the captions from the
validation set and then for each such generated pose, we take the distance to
its nearest neighbor and finally average the results over all the generated poses.
For comparison, in addition to training our algorithm with the Lipshitz-LP term
(WGAN-LP), we also train our model using the Lipschitz-GP term (WGAN-GP)
and the vanilla GAN.
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Fig. 5. Poses synthesized from parts of a sentence. The noise input in each row is fixed
and varies across the rows. Here what really made the pose unique are the words ‘tennis
game’ since the verb ‘playing’ can apply to many different poses.

Table 1 shows the results. The vanilla GAN has the largest distance and
we observed that a mode collapse occurs such that there were many repetitions
and unrealistic poses in the generated results. When the model is trained using
WGAN-GP or WGAN-LP, the NN distance is much smaller where WGAN-LP
performs slightly better than WGAN-GP. If a regression-based approach is used
instead of the heatmaps, the distance is much higher. The nearest neighbor
distance, however, measures only if the generated poses are plausible, but it
does not indicate if the generated pose matches the input text. Therefore, in
order to show that the text is guiding the pose generation, we calculate the
distance to the pose corresponding to the nearest training sample based on the
caption, which is obtained by the Euclidean distance in the text embedding
space. We denote this distance by d̄ptnn

. As for the other distance, WGAN-LP
performs slightly better than WGAN-GP and the vanilla GAN performs worst.
The regression-based approach performs also worse than the proposed method.
We also report the average distance to all poses of the training set, which we
denote by d̄pall. We provide additional qualitative results for the three approaches
in the supplementary material.

To further evaluate the conditional model using the poses in the validation
set, we propose the following conditional measure with respect to the validation
set. For a text encoding hi in the validation set, the model synthesizes k = 10
poses using k different noise vectors z. We then calculate three distances for each
of the k poses: the first, d̄pnn, is the distance to the nearest neighbor among poses
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Fig. 6. Examples of generated poses using a regression model. The first row shows the
ground-truth pose from the validation set. The text on the top is the associated text.
The three poses below each ground-truth pose are synthesized. The synthesized poses
of the regression model are clearly worse than the poses synthesized by the proposed
model shown in Fig. 3.

in the validation set; the second, d̄pgt, is the distance to the ground truth pose, and
the third, d̄pall, is the average distance to all poses in the validation set. Finally, we
average the distances over the generated k poses over all samples. The results are
reported in Table 2. As for the validation set, we observe that the vanilla GAN
struggles to generate realistic poses and WGAN-LP performs slightly better
than WGAN-GP. The regression of keypoint coordinates performs also worse
than the heatmap representation. Furthermore, we calculate the mean distance
in the text encoding space. To this end, we obtain for each generated pose the
nearest neighbor pose from the validation set. We then compute the distance
between the input text and the text of the corresponding nearest neighbor pose.
We average the distances over all generated poses. This measure is denoted by
d̄tpnn

. The differences are smaller compared to the pose distances, but it still
shows that the WGANs outperform the vanilla GAN.
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Table 1. Quantitative evaluation with respect to the training set. Regression indicates
that the keypoint coordinates are regressed instead of being detected using a heatmap
representation.

GAN model Pose distance

d̄pnn d̄ptnn
d̄pall

Vanilla GAN 205.2 344.9 351.1

WGAN-GP 82.9 260.5 293.8

WGAN-LP regression 98.0 268.1 291.1

WGAN-LP 77.2 253.6 287.2

Table 2. Quantitative evaluation with respect to the validation set. Regression indi-
cates that the keypoint coordinates are regressed instead of using a heatmap represen-
tation.

GAN model Pose distance Text distance

d̄pnn d̄pgt d̄pall d̄tpnn

Vanilla GAN 218.8 343.2 352.0 10.8

WGAN-GP 110.2 255.7 293.4 10.5

WGAN-LP regression 128.2 264.7 290.8 10.5

WGAN-LP 102.3 246.0 286.9 10.5

Interpolation Test. Another interesting qualitative measure is the interpolation
between two text descriptions and observing the generated poses. If the gener-
ated poses show smooth transitions between the interpolations, we can conclude
that the model learned a proper distribution instead of just having memorized
the training samples [3]. Given two embedded text descriptions h1 and h2, we
interpolate between them by ĥ = w·h1+(1−w)·h2 with w ∈ {1, 0.75, 0.5, 0.25, 0}.
For this experiment, we keep the noise z fixed. Figure 7 shows two interpolation
examples. In the first example, we interpolate between ‘The man is standing on
the beach’ and ‘The man is holding a surfboard’. We observe that the right arm
gradually moves up for the holding pose. We also observe that the full body pose
is generated at the beginning, but the camera gets closer on the right hand side
and only two-thirds of the person are visible. The second example interpolates
between ‘The boy has a tennis racket in his hands’ and ‘The boy is going to
serve the ball’.

User Study. For the subjective evaluation, we have designed an online question-
naire in which 20 text descriptions from the validation set are taken. For each
text description, a user is presented with two human poses, in which one is the
real pose matching the text, and the other is synthesized by the model condi-
tioned on this text. The 20 captions are randomly selected from the validation
set and the generated poses have not been cherry-picked. The user is asked to
choose which of the two poses matches the caption better or if they match the
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Fig. 7. Interpolation results of text encoding. In each row, the leftmost and rightmost
poses are synthesized from the captions. The three poses in the middle are synthesized
from interpolations of the encodings of the two captions while z is kept fixed.

Table 3. The percentage of the users choosing the matching pose as the real pose,
generated pose or “equally well”.

Real pose Generated pose Equally well

48.81% 35.31% 15.88%

text equally well. The results are summarized in Table 3. Eighty people in total
participated in the survey. The ratio between choosing generated and real poses
is around 5:7. And for more than 50% of the time, the users cannot correctly
distinguish the generated pose from the real one, i.e., they either choose the
generated pose or rate the poses equally well.

6 Conclusion

In this work, we have addressed the task of human pose synthesis from text
for highly complex poses. We have designed an effective model using a con-
ditional Wasserstein GAN that generates plausible matching poses from text
descriptions. We have demonstrated by qualitative and quantitative results on
the COCO dataset that the proposed approach is effective, and additionally
outperforms a vanilla GAN and a regression-based approach. We have also con-
ducted a user study that confirmed our results. The model was also able to
interpolate poses between two text descriptions. Furthermore, we have shown
that the model generalizes well and can additionally generate plausible poses for
unseen sentences that are not part of the COCO dataset.
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