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Preface

It was our honor and pleasure to organize the 42nd German Conference on Pattern
Recognition (DAGM GCPR 2020), held virtually between September 28th and
October 1st, 2020. For the first time, DAGM GCPR was held in parallel with the 25th
International Symposium on Vision, Modeling, and Visualization (VMV 2020) and the
10th Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM
2020). All three meetings shared organizational support. DAGM GCPR 2020 had 289
participants from 21 countries.

Originally, DAGM GCPR 2020 was planned to take place in Tübingen, located in
central Baden-Württemberg in southwest Germany and home to one of Europe’s oldest
universities. However, holding the conference in person was not possible due to the
COVID-19 pandemic, which placed strict restrictions on travel and meetings. Like
many other conferences in 2020, DAGM GCPR was thus held fully virtually.

The call for papers for DAGM GCPR 2020 resulted in 89 submissions from 22
countries. As in previous years, DAGM GCPR 2020 offered special tracks on the topics
of Computer vision systems and applications (chaired by Bodo Rosenhahn and Carsten
Steger), Pattern recognition in the life- and natural sciences (chaired by Joachim
Denzler and Xiaoyi Jiang), and Photogrammetry and remote sensing (chaired by
Helmut Mayer and Uwe Sörgel). Each paper was subject to a double-blind review
process and was reviewed by three reviewers. One of the reviewers acted as a
meta-reviewer for the paper, led the discussion of the paper once all reviews were
available, and made a publish/reject recommendation to the Program Chairs. For the
special track papers, the track chairs acted as meta reviewers.

As in previous years, DAGM GCPR 2020 also welcomed submissions to the Young
Researcher Forum (YRF). The YRF is meant to promote promising young researchers,
i.e., students who recently finished their Master, and to provide visibility to them. The
requirement for the YRF submissions was that the submission had to be based on a
Master thesis, with the Master student being the first author of the submission.

Out of the 89 submissions, 20 papers were submitted to the special tracks (14
submissions for the Computer vision systems and applications track, 5 submissions for
the Pattern recognition in the life- and natural sciences track, and 1 submission for the
Photogrammetry and remote sensing track) and 7 were submitted to the Young
Researcher Forum. The Program Chairs decided to reject 5 submissions before review
due to violation of the double-blind review process, missing files, etc. Of the remaining
submissions, 35 high-quality papers were selected for publication (39% acceptance
rate), with one paper being withdrawn later by the authors due to issues with their
funding source. Among these 35 accepted papers, 5 were YRF submissions. 4 papers
were chosen for oral sessions held jointly with the other two meetings, 10 were selected
as DAGM GCPR orals, and 21 were selected for spotlight presentations. All accepted
papers were presented live via talks given by one of their authors. These talks were



live-streamed on YouTube and remain publicly accessible there. Discussions took
place after the sessions through the Discord platform.

Overall, the accepted papers covered a wide spectrum of topics from the areas of
pattern recognition, machine learning, image processing, and computer vision. Among
the accepted non-YRF papers, 5 papers were nominated for the GCPR best paper
award. The papers were selected based on the scores provided by the reviewers and
meta-reviewers. A committee consisting of two Program Chairs and four
meta-reviewers of the nominated papers selected the best paper and two honorable
mentions among the 5 nominees.

Besides the accepted papers, which were presented in a single-track program,
DAGM GCPR 2020 featured a day of invited talks and three keynotes, the latter of
which were shared with the other two meetings. We are thankful to the seven inter-
nationally renowned researchers who accepted our invitations to give invited talks:
Matthias Bethge (University of Tübingen, Germany), Sabine Süsstrunk (EPFL,
Switzerland), Vittorio Ferrari (Google, Switzerland), Bernt Schiele (MPI, Germany),
Siyu Tang (ETH Zurich, Switzerland), Christoph Lampert (IST Austria, Austria), and
Davide Scaramuzza (University of Zurich, Switzerland). The keynote talks were given
by Vladlen Koltun (Intel), Jan Kautz (NVIDIA), and Hans-Christian Hege (Zuse
Institute Berlin). In addition, DAGM GCPR 2020 provided two industry talks, which
were delivered by Michael Hirsch (Amazon) and Alexey Dosovitskiy (Google AI
Brain).

The success of DAGM GCPR 2020 would have been impossible without the efforts
and support of many people and institutions. We thank all the authors for their sub-
missions to DAGM GCPR 2020 and all the reviewers for their commitment and quality
of work. We also like to thank our sponsors Amazon (Gold Sponsor), Google (Bronze
Sponsor), KAUST (Academic Sponsor), Daimler (Best Paper/Award Sponsor), MVTec
Software GmbH (Best Paper/Award Sponsor), and COGNEX (Best Paper/Award
Sponsor). We are very grateful for the support from our partners, Eberhard Karls
Universität Tübingen, Informatik Forum Stuttgart, Deutsche Arbeitsgemeinschaft für
Mustererkennung e.V. (DAGM), and Gesellschaft für Informatik. Special thanks go to
all the organizers and the technical team supporting the three meetings. All credit for
making DAGM GCPR a successful virtual conference on short notice goes to them.
Additionally, we are grateful to Springer for giving us the opportunity to continue
publishing the DAGM GCPR proceedings as part of their LNCS series and for a special
issue of IJCV dedicated to the best papers from the conference.

As a reader, we hope you will enjoy the proceedings of DAGM GCPR 2020. We
hope to see you again at the next DAGM GCPR in Bonn.

October 2020 Zeynep Akata
Andreas Geiger
Torsten Sattler
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Characterizing the Role of a Single
Coupling Layer in Affine Normalizing

Flows

Felix Draxler1,2,3(B) , Jonathan Schwarz1,3 , Christoph Schnörr1,3 ,
and Ullrich Köthe1,2

1 Heidelberg Collaboratory for Image Processing, Heidelberg University,
Heidelberg, Germany

felix.draxler@iwr.uni-heidelberg.de
2 Visual Learning Lab, Heidelberg University, Heidelberg, Germany

3 Image and Pattern Analysis Group, Heidelberg University, Heidelberg, Germany

Abstract. Deep Affine Normalizing Flows are efficient and powerful
models for high-dimensional density estimation and sample generation.
Yet little is known about how they succeed in approximating complex
distributions, given the seemingly limited expressiveness of individual
affine layers. In this work, we take a first step towards theoretical under-
standing by analyzing the behaviour of a single affine coupling layer
under maximum likelihood loss. We show that such a layer estimates
and normalizes conditional moments of the data distribution, and derive
a tight lower bound on the loss depending on the orthogonal transfor-
mation of the data before the affine coupling. This bound can be used to
identify the optimal orthogonal transform, yielding a layer-wise training
algorithm for deep affine flows. Toy examples confirm our findings and
stimulate further research by highlighting the remaining gap between
layer-wise and end-to-end training of deep affine flows.

1 Introduction

Affine Normalizing Flows such as RealNVP [4] are widespread and success-
ful tools for density estimation. They have seen recent success in generative
modeling [3,4,9], solving inverse problems [1], lossless compression [6], out-of-
distribution detection [12], better understanding adversarial examples [7] and
sampling from Boltzmann distributions [13].

These flows approximate arbitrary data distributions μ(x) by learning an
invertible mapping T (x) such that given samples are mapped to normally dis-
tributed latent codes z := T (x). In other words, they reshape the data density
μ to form a normal distribution.

While being simple to implement and fast to evaluate, affine flows appear not
very expressive at first glance. They consist of invertible layers called coupling
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-71278-5 1) contains supplementary material, which is avail-
able to authorized users.

c© Springer Nature Switzerland AG 2021
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2 F. Draxler et al.

blocks. Each block leaves half of the dimensions untouched and subjects the
other half to just parameterized translations and scalings.

Explaining the gap between theory and applications remains an unsolved
challenge. Taking the problem apart, a single layer consists of a rotation and
an affine nonlinearity. It is often hand-wavingly argued that the deep model’s
expressivity comes from the rotations between the couplings by allowing different
dimensions to influence one another [4].

In this work, we open a rigorous branch of explanation by characterizing the
normalizing flow generated by a single affine layer. More precisely, we contribute:

– A single affine layer under maximum likelihood (ML) loss learns first- and
second-order moments of the conditional distribution of the changed (active)
dimensions given the unchanged (passive) dimensions (Sect. 3.2).

– From this insight, we derive a tight lower bound on how much the affine non-
linearity can reduce the loss for a given rotation (Sect. 3.3). This is visualized
in Fig. 1 where the bound is evaluated for different rotations of the data.

– We formulate a layer-wise training algorithm that determines rotations using
the lower bound and nonlinearities using gradient descent in turn (Sect. 3.4).

– We show that such a single affine layer under ML loss makes the active inde-
pendent of the passive dimensions if they are generated by a certain rule
(Sect. 3.5).

Finally, we show empirically in Sect. 4 that while improving the training of shal-
low flows, the above new findings do not yet explain the success of deep affine
flows and stimulate further research.

Fig. 1. An affine coupling layer pushes the input density towards standard normal. Its
success depends on the rotation of the input (top row). We derive a lower bound for
the error that is actually attained empirically (center row, blue and orange curves).
The solution with lowest error is clearly closest to standard normal (bottom row, left).
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2 Related Work

The connection between affine transformations and the first two moments of a
distribution is well-known in the Optimal Transport literature. When the func-
tion space of an Optimal Transport (OT) problem with quadratic ground cost is
reduced to affine maps, the best possible transport matches mean and covariance
of the involved distributions [17]. In the case of conditional distributions, affine
maps become conditional affine maps [16]. We show such maps to have the same
minimizer under maximum likelihood loss (KL divergence) as under OT costs.

It has been argued before that a single coupling or autoregressive block [14]
can capture the moments of conditional distributions. This is one of the moti-
vations for the SOS flow [8], based on a classical result on degree-3 polynomials
by [5]. However, they do not make this connection explicit. We are able to give
a direct correspondence between the function learnt by an affine coupling and
the first two moments of the distribution to be approximated.

Rotations in affine flows are typically chosen at random at initialization and
left fixed during training [3,4]. Others have tried training them via some param-
eterization like a series of Householder reflections [15]. The stream of work most
closely related to ours explores the idea to perform layer-wise training. This
allows an informed choice of the rotation based on the current estimate of the
latent normal distribution. Most of these works propose to choose the least Gaus-
sian dimensions as the active subspace [2,11]. We argue that this is inapplicable
to affine flows due to their limited expressivity when the passive dimensions are
not informative. To the best of our knowledge, our approach is the first to take
the specific structure of the coupling layer into account and derive a tight lower
bound on the loss as a function of the rotation.

3 Single Affine Coupling Layer

3.1 Architecture

Normalizing flows approximate data distributions μ available through samples
x ∈ R

D ∼ μ by learning an invertible function T (x) such the latent codes
z := T (x) follow an isotropic normal distribution z ∈ R

D ∼ N (0,1). When such
a function is found, the data distribution μ(x) can be approximated using the
change-of-variables formula:

μ(x) = N (T (x))|detJ| =: (T−1
� N )(x), (1)

where J = ∇T (x) is the Jacobian of the invertible function, and “·�” is the
push-forward operator. New samples x ∼ μ can be easily generated by drawing z
from the latent Gaussian and transporting them backward through the invertible
function:

z ∼ N (0,1) ⇐⇒ x =: T−1(z) ∼ μ(x). (2)

Affine Normalizing Flows are a particularly efficient way to parameterize such
an invertible function T : They are simple to implement and fast to evaluate in
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both directions T (x) and T−1(z), along with the Jacobian determinant detJ [1].
Like most normalizing flow models, they consist of the composition of several
invertible layers T (x) = (TL ◦ · · · ◦ T1)(x). The layers are called coupling blocks
and modify the distribution sequentially. We recursively define the push-forward
of the first l blocks as

μl = (Tl)�μl−1, μ0 = μ. (3)

Each block Tl, l = 1, . . . , L contains a rotation Ql ∈ SO(D) and a nonlinear
transformation τl:

xl = Tl(xl−1) = (τl ◦ Ql)(xl−1), x0 = x. (4)

The nonlinear transformation τl is given by:

τl(y) = τl

([
p
a

])
=

[
p

a � esl(p) + tl(p)

]
=:

[
p
a′

]
= y′. (5)

Here, y = Qlxl−1 ∼ (Ql)�μl−1 is the rotated input to the nonlinearity (dropping
the index l on y for simplicity) and � is element-wise multiplication. An affine
nonlinearity first splits its input into passive and active dimensions p ∈ R

DP and
a ∈ R

DA . The passive subspace is copied without modification to the output of
the coupling. The active subspace is scaled and shifted as a function of the passive
subspace, where sl and tl : RDP → R

DA are represented by a single generic feed
forward neural network [9] and need not be invertible themselves. The affine
coupling design makes inversion trivial by transposing Ql and rearranging terms
in τl.

Normalizing Flows, and affine flows in particular, are typically trained using
the Maximum Likelihood (ML) loss [3]. It is equivalent to the Kullback-Leibler
(KL) divergence between the push-forward of the data distribution μ and the
latent normal distribution [10]:

DKL(T�μ||N ) = −H[μ] +
D

2
log(2π) + Ex∼μ

[
1
2

∥∥T (x)
∥∥2 − log |detJ(x)|

]
(6)

= −H[μ] +
D

2
log(2π) + ML(T�μ||N ), (7)

The two differ only by terms independent of the trained model (the typically
unknown entropy H[μ] and the normalization of the normal distribution).

It is unknown whether affine normalizing flows can push arbitrarily complex
distributions to a normal distribution [14]. In the remainder of the section, we
shed light on this by considering an affine flow that consists of just a single
coupling as defined in Eq. (5). Since we only consider one layer, we’re dropping
the layer index l for the remainder of the section. In Sect. 4, we will discuss how
these insights on isolated affine layers transfer to deep flows.
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3.2 KL Divergence Minimizer

We first derive the exact form of the ML loss in Eq. (6) for an isolated affine
coupling with a fixed rotation Q as in Eq. (4).

The Jacobian for this coupling has a very simple structure: It is a triangular
matrix whose diagonal elements are Jii = 1 if i is a passive dimension and
Jii = exp(si(p)) if i is active. Its determinant is the product of the diagonal
elements, so that detJ(x) > 0 and log detJ(x) =

∑DA

i=1 si(p). The ML loss thus
reads:

ML(T�μ||N ) = Ep,a∼Q�μ

⎡
⎣1

2
‖p‖2 +

1
2

∥∥∥a � es(p) + t(p)
∥∥∥2

−
DA∑
i=1

si(p)

⎤
⎦. (8)

We now derive the minimizer of this loss:

Lemma 1 (Optimal single affine coupling). Given a distribution μ and
a single affine coupling layer T with a fixed rotation Q. Like in Eq. (5), call
(a,p) = Qx the rotated versions of x ∼ μ. Then, at the unique minimum of
the ML loss (Eq. (8)), the functions s, t : R

DP → R
DA as in Eq. (4) take the

following value:

esi(p) =
1√

Varai|p[ai]
= σ−1

Ai|p, (9)

ti(p) = −Eai|p[ai]esi(p) = −mAi|p
σAi|p

. (10)

We derive this by optimizing for s(p), t(p) in Eq. (8) for each value of p sepa-
rately. The full proof can be found in Appendix A.1.

We insert the optimal s and t to find the active part of the globally optimal
affine nonlinearity:

τ(a|p) = a � es(p) + t(p) =
1

σA|p
� (a − mA|p). (11)

It normalizes a for each p by shifting the mean of μ(a|p) to zero and rescaling
the individual standard deviations to one.

Example 1. Consider a distribution where the first variable p is uniformly dis-
tributed on the interval [−2, 2]. The distribution of the second variable a is
normal, but its mean m(p) and standard deviation σ(p) are varying depending
on p:

μ(p) = U([−2, 2]), μ(a|p) = N (m(p), σ(p)). (12)

m(p) =
1
2

cos(πp), σ(p) =
1
8
(3 − cos(8π/3 p)). (13)

We call this distribution “W density”. It is shown in Fig. 2a.
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Fig. 2. (a) W density contours. (b) The conditional moments are well approximated
by a single affine layer. (c, d) The learnt push-forwards of the W (Example 1) and
WU (Example 2) densities remain normal respectively uniform distributions. (e) The
moments of the transported distributions are close to zero mean and unit variance,
shown for the layer trained on the W density.

We now train a single affine nonlinearity τ by minimizing the ML loss, setting
Q = 1. As hyperparameters, we choose a subnet for s, t with one hidden layer
and a width of 256, a learning rate of 10−1, a learning rate decay with factor 0.9
every 100 epochs, and a weight decay of 0. We train for 4096 epochs with 4096
i.i.d. samples from μ each using the Adam optimizer.

We solve s, t in Lemma 1 for the estimated mean m̂(p) and standard deviation
σ̂(p) as predicted by the learnt ŝ and t̂. Upon convergence of the model, they
closely follow their true counterparts m(p) and σ(p) as shown in Fig. 2b.

Example 2. This example modifies the previous to illustrate that the learnt con-
ditional density τ�μ(a|p) is not necessarily Gaussian at the minimum of the loss.

The W density from above is transformed to the “WU density” by replacing
the conditional normal distribution by a conditional uniform distribution with
the same conditional mean m(p) and standard deviation σ(p) as before.

μ(p) = U([−2, 2]), (14)

μ(a|p) = U([m(p) −
√

3σ(p),m(p) +
√

3σ(p)]). (15)

One might wrongly believe that the KL divergence favours building a distribu-
tion that is marginally normal while ignoring the conditionals, i.e. τ�μ(p) =
N . Lemma 1 predicts the correct result, resulting in the following uniform
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push-forward density depicted in Fig. 2d:

T�μ(p) = μ(p) = U([−2, 2]), (16)

T�μ(a|p) = U([−
√

3,
√

3]). (17)

Note how τ�μ(a|p) does not depend on p, which we later generalize in Lemma 2.

3.3 Tight Bound on Loss

Knowing that a single affine layer learns the mean and standard deviation of
μ(ai|p) for each p, we can insert this minimizer into the KL divergence. This
yields a tight lower bound on the loss after training. Even more, it allows us to
compute a tight upper bound on the loss improvement by the layer, which we
denote Δ ≥ 0. This loss reduction can be approximated using samples without
training.

Theorem 1 (Improvement by single affine layer). Given a distribution
μ and a single affine coupling layer T with a fixed rotation Q. Like in Eq. (5),
call (a,p) = Qx the rotated versions of x ∼ μ. Then, the KL divergence has the
following minimal value:

DKL(T�μ||N ) = DKL(μP ||N ) + Ep

⎡
⎣DA∑

i=1

H[N (0, σAi|p)] − H[μ(a|p)]

⎤
⎦ (18)

= DKL(μ||N ) − Δ. (19)

The loss improvement by the optimal affine coupling as in Lemma1 is:

Δ =
1
2

DA∑
i=1

Ep[m2
Ai|p + σ2

Ai|p − 1 − log σ2
Ai|p]. (20)

To proof, insert the minimizer s, t from Lemma 1 into Eq. (8). Then evaluate
Δ = DKL(μ||N )−DKL(T�μ||N ) to obtain the statement. The detailed proof can
be found in Appendix A.2.

The loss reduction by a single affine layer depends solely on the moments
of the distribution of the active dimensions conditioned on the passive sub-
space. Higher order moments are ignored by this coupling design. Together with
Lemma 1, this paints the following picture of an affine coupling layer: It fits a
Gaussian distribution to each conditional μ(ai|p) and normalizes this Gaussian’s
moments. The gap in entropy between the fit Gaussian and the true conditional
distribution cannot be reduced by the affine transformation. This makes up the
remaining KL divergence in Eq. (18).

We now make the connection explicit that a single affine layer can only
achieve zero loss on the active subspace iff the conditional distribution is Gaus-
sian with diagonal covariance:
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Corollary 1. If and only if (Q�μ)(a|p) is normally distributed for all p with
diagonal covariance, that is:

μ(a|p) =
DA∏
i=1

N (ai|mAi|p, σAi|p), (21)

a single affine block can reduce the KL divergence on the active subspace to zero:

DKL((T�μ)(a|p)||N ) = 0. (22)

The proof can be found in Appendix A.3.

Example 3. We revisit the Examples 1 and 2 and confirm that the minimal loss
achieved by a single affine coupling layer on the W-shaped densities matches the
predicted lower bound. This is the case for both densities. Figure 3 shows the
contribution of the conditional part of the KL divergence DKL((T�μ)(a|p)||N )
as a function of p:

For the W density, the conditional μ(a|p) is normally distributed. This is the
situation of Corollary 1 and the remaining conditional KL divergence is zero. The
remaining loss for the WU density is the negentropy of a uniform distribution
with unit variance.

Fig. 3. Conditional KL divergence before (gray) and after (orange) training for W-
shaped densities confirms lower bound (blue, coincides with orange). The plots show
the W density from Example 1 (left) and the WU density from Example 2 (right).
(Color figure online)

3.4 Determining the Optimal Rotation

The rotation Q of the isolated coupling layer determines the splitting into active
and passive dimensions and the axes of the active dimensions (the rotation within
the passive subspace only rotates the input into s, t and is irrelevant). The bounds
in Theorem 1 heavily depend on these choices and thus depend on the chosen
rotation Q. This makes it natural to consider the loss improvement as a function
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of the rotation: Δ(Q). When aiming to maximally reduce the loss with a single
affine layer, one should choose the subspace maximizing this tight upper bound
in Eq. (20):

arg max
Q∈SO(D)

Δ(Q). (23)

We propose to approximate this maximization by evaluating the loss improve-
ment for a finite set of candidate rotations in Algorithm 1 “Optimal Affine
Subspace (OAS)”. Note that Step 5 requires approximating Δ from samples. In
the regime of low DP , one can discretize this by binning samples by their passive
coordinate p. Then, one computes mean and variance empirically for each bin.
We leave the general solution of Eq. (23) for future work.

Algorithm 1. Optimal Affine Subspace (OAS).
1: Input: Q = {Q1, . . . ,QC} ⊂ SO(D), (xj)

N
j=1 i.i.d. samples from μ.

2: for candidate Qc ∈ Q do
3: Rotate samples: yj = Qcxj .
4: for each active dimension i = 1, . . . , DA do
5: Use (y)N

j=1 to estimate the conditional mean mAi|p and variance σAi|p as a
function of p. {Example implementation in Example 4}

6: end for
7: Compute Δc := 1

2

∑N
j=1

∑DA
i=1(m

2
Ai|pj

+σ2
Ai|pj

−1− log σ2
Ai|pj

) {Equation (20)}.
8: end for
9: Return: arg maxQc∈Q Δc.

Example 4. Consider the following two-component 2D Gaussian Mixture Model:

μ =
1
2
(N ([−δ; 0], σ) + N ([δ; 0], σ)

)
. (24)

We choose δ = 0.95, σ =
√

1 − δ2 = 0.3122... so that the mean is zero and
the standard deviation along the first axis is one. We now evaluate the loss
improvement Δ(θ) in Eq. (20) as a function of the angle θ with which we rotate
the above distribution:

μ(θ) := Q(θ)�μ, [p, a] = Q(θ)x ∼ μ(θ). (25)

Analytically, this can be done pointwise for a given p and then integrated numer-
ically. This will not be possible for applications where only samples are available.
As a proof of concept, we employ the previously mentioned binning approach. It
groups N samples from μ by their p value into B bins. Then, we compute mA|pb

and σA|pb
using the samples in each bin b = 1, . . . , B.

Figure 4 shows the upper bound as a function of the rotation angle, as
obtained from the two approaches. Here, we used B = 32 bins and a maximum
of N = 213 = 8192 samples. Around N ≈ 256 samples are sufficient for a good
agreement between the analytic and empiric bound on the loss improvement and
the corresponding angle at the maximum.
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Fig. 4. Tight upper bound given by Eq. (20) for two-component Gaussian mixture as
a function of rotation angle θ, determined analytically (blue) and empirically (orange)
for different numbers of samples. The diamonds mark the equivalent outputs of the
OAS Algorithm 1. (Color figure online)

Note: For getting a good density estimate using a single coupling, it is crucial
to identify the right rotation. If we naively or by chance decide for θ = 90◦, the
distribution is left unchanged.

3.5 Independent Outputs

An important step towards pushing a multivariate distribution to a normal distri-
bution is making the dimensions independent of one another. Then, the residual
to a global latent normal distribution can be solved with one sufficiently expres-
sive 1D flow per dimension, pushing each distribution independently to a normal
distribution. The following lemma shows for which data sets a single affine layer
can make the active and passive dimensions independent.

Lemma 2. Given a distribution μ and a single affine coupling layer T with a
fixed rotation Q. Like in Eq. 5, call (a,p) = Qx the rotated versions of x ∼ μ.
Then, the following are equivalent:

1. a′ := τ(a|p) ⊥ p for τ(a|p) minimizing the ML loss in Eq. (8),
2. There exists n ⊥ p such that a = f(p) + n � g(p), where f, g : RDP → R

DA .

The proof can be found in Appendix A.4.
This results shows what our theory can explain about deep affine flows: It

is easy to see that D − 1 coupling blocks with DA = 1,DP = D − 1 can make
all variables independent if the data set can be written in the form of xi =
f(x�=i) + xig(x �=i). Then, only the aforementioned independent 1D flows are
necessary for a push-forward to the normal distribution.
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Example 5. Consider again the W-shaped densities from the previous Exam-
ples 1 and 2. After optimizing the single affine layer, the two variables p, a′ are
independent (compare Fig. 2c, d):

Example 1: a′ ∼ N (0, 1) ⊥ p, (26)

Example 2: a′ ∼ U([−
√

3,
√

3]) ⊥ p, (27)

4 Layer-Wise Learning

Do the above single-layer results explain the expressivity of deep affine flows? To
answer this question, we construct a deep flow layer by layer using the optimal
affine subspace (OAS) algorithm Algorithm 1. Each layer l being added to the
flow is trained to minimize the residuum between the current push-forward μl−1

and the latent N . The corresponding rotation Ql is chosen by maximizing Δ(Ql)
and the nonlinearities τl are trained by gradient descent, see Algorithm 2.

Algorithm 2. Iterative Affine Flow Construction.
1: Initialize T (0) = id.
2: repeat
3: Compute Ql via OAS (Algorithm 1), using samples from T

(l−1)
� μ.

4: Train τl on samples y = Ql · T (l−1)(x) for x ∼ μ.
5: Set Tl = τl ◦ Ql.
6: Compose T (l) = Tl ◦ T (l−1).
7: until convergence, e.g. loss or improvement threshold, max. number of layers.
8: return Final transport T (L).

Can this ansatz reach the quality of end-to-end affine flows? An analytic
answer is out of the scope of this work, and we consider toy examples.

Example 6. We consider a uniform 2D distribution μ = U([−1, 1]2). Figure 5
compares the flow learnt layer-wise using Algorithm 2 to flows learnt layer-
wise and end-to-end, but with fixed random rotations. Our proposed layer-wise
algorithm performs on-par with end-to-end training despite optimizing only the
respective last layer in each iteration, and beats layer-wise random subspaces.

Example 7. We now provide more examples on a set of toy distributions. As
before, we train layer-wise using OAS and randomly selected rotations, and end-
to-end. Additionally, we train a mixed variant of OAS and end-to-end: New
layers are still added one by one, but Algorithm 2 is modified such that iteration
l optimizes all layers 1 through l in an end-to-end fashion. We call this training
“progressive” as layers are progressively activated and never turned off again.

We obtain the following results: Optimal rotations always outperform random
rotations in layer-wise training. With only a few layers, they also outperform end-
to-end training, but are eventually overtaken as the network depth increases.
Progressive training continues to be competitive also for deep networks.
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Fig. 5. Affine flow trained layer-wise “LW”, using optimal affine subspaces “OAS” (top)
and random subspaces “RND” (middle). After a lucky start, the random subspaces do
not yield a good split and the flow approaches the latent normal distribution signif-
icantly slower. End-to-end training “E2E” (bottom) chooses a substantially different
mapping, yielding a similar quality to layer-wise training with optimal subspaces.

Fig. 6. Affine flows trained on different toy problems (top row). The following rows
depic different training methods: layer-wise “LW” (rows 2 and 3), progressively
“PROG” (rows 4-5) and end-to-end “E2E” (last row). Rotations are “OAS” when
determined by Algorithm 1 (row 2 and 4) or randomly selected “RND” (rows 3, 5 and
6).

Figure 6 shows the density estimates after twelve layers. At this point, none
of the methods show a significant improvement by adding layers. Hyperparame-
ters were optimized for each training configuration to obtain a fair comparison.
Densities obtained by layer-wise training exhibit significant spurious structure
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for both optimal and random rotations, with an advantage for optimally chosen
subspaces.

5 Conclusion

In this work, we showed that an isolated affine coupling learns the first two
moments of the conditioned data distribution μ(a|p). Using this result, we
derived a tight upper bound on the loss reduction that can be achieved by such
a layer. We then used this to choose the best rotation of the coupling.

We regard our results as a first step towards a better understanding of deep
affine flows. We provided sufficient conditions for a data set that can be exactly
solved with layer-wise trained affine couplings and a single layer of D independent
1D flows.

Our results can be seen analogously to the classification layer at the end of a
multi-layer classification network: The results from Sect. 3 directly apply to the
last coupling in a deep normalizing flow. This raises a key question for future
work: How do the first L − 1 layers prepare the distribution μL−1 such that the
final layer can perfectly push the data to a Gaussian?
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Abstract. Today’s deep learning systems deliver high performance
based on end-to-end training but are notoriously hard to inspect. We
argue that there are at least two reasons making inspectability challeng-
ing: (i) representations are distributed across hundreds of channels and
(ii) a unifying metric quantifying inspectability is lacking. In this paper,
we address both issues by proposing Semantic Bottlenecks (SB), inte-
grated into pretrained networks, to align channel outputs with individual
visual concepts and introduce the model agnostic AUiC metric to mea-
sure the alignment. We present a case study on semantic segmentation
to demonstrate that SBs improve the AUiC up to four-fold over regular
network outputs. We explore two types of SB-layers in this work: while
concept-supervised SB-layers (SSB) offer the greatest inspectability, we
show that the second type, unsupervised SBs (USB), can match the
SSBs by producing one-hot encodings. Importantly, for both SB types,
we can recover state of the art segmentation performance despite a dras-
tic dimensionality reduction from 1000s of non aligned channels to 10s
of semantics-aligned channels that all downstream results are based on.

1 Introduction

While end-to-end training is key to top performance of deep learning – learned
intermediate representations remain opaque to humans with typical training
methods. Furthermore, assessing inspectability has remained a fairly elusive con-
cept since its framing has mostly been qualitative (e.g. saliency maps). Given the
increasing interest in using deep learning in real world applications, inspectabil-
ity and a quantification of such is critically missing.

Goals for Inspectability. To address this, prior work on inspectability has
proposed to improve the spatial coherency of activation maps [36] or to cluster
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Fig. 1. Semantic Bottleneck (SB) layers can be integrated into any model – aligning
channels with semantic concepts (top) while regular deep representations are highly
distributed and hard to inspect (bottom). SBs act as basis for all subsequent layers.

representations to acquire outputs of low dimensionality either with supervi-
sion [6] or without [8,33]. In contrast, we demand information in each channel
to be represented by a single semantic (sub-)concept. This is derived from a
simple observation: distributed representations do not lend themselves to triv-
ial interpretation (see bottom of Fig. 1). In order to reduce distributedness we
propose to adapt deep networks via three criteria. (i) Reduce the number of
channels to a minimum, (ii) associate them with semantic (sub-)concepts, and,
at the same time, (iii) aim to lose as little overall performance as possible. In our
view such semantics based inspectability can be seen as a way towards achieving
true interpretability of deep networks.

Our Contributions are three-fold. Firstly, we introduce two network layers we
term Semantic Bottlenecks (SB) based on linear layers to improve alignment with
semantic concepts by (i) supervision to visual concepts and (ii) regularizing the
output to be one-hot encoded to restrict distributedness. Secondly, we show SBs
can be integrated into a state-of-the-art model without impairing performance,
even when reducing the number of channels from 4096 to 30. Finally, we introduce
the novel AUiC metric to quantify alignment between channel outputs and visual
concepts for any model and show our SBs improve the baselines up to four-fold.

2 Related Work

Asargued inpriorwork [23], interpretability canbe largely approached in twoways.
The first being post-hoc interpretation, for which we take an already trained and
well performing model and dissect its decisions a-posteriori to identify important
input features via attribution [2,18,27,28,30,40] or attempt to assign meaning to
groups of features [3,9,17,29,34,35]. The second approach involves constructing
inherently interpretable models – supervised or unsupervised.

Inspectability Without Supervision. Similar to our USBs, [1,21,26,33] and
[8] embed an interpretable layer into the network using unsupervised metrics.
[1,12,26] base their method on a reconstruction loss that regularizes a latent
code, that is used to reconstruct the input, to be more interpretable. Such
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approaches are based on the successes of VAE [19] based frameworks and their
recent successes on learning visual concepts from simple datasets [7,14,16] but
have the issue that reconstruction is more challenging than classification itself.
Furthermore, they have not yet been shown to work on large scale datasets.

Inspectability with Supervision. Literature on supervised improvements has
focused on embedding predefined semantic concepts [6,20,22,25] enabling layers
with improved transparency. While [6] proposes a model based on natural lan-
guage features, [25] performs pretraining on semantic (sub-)concepts and train a
secondary model on top for a related task. Our approach constructs a semanti-
cally inspectable layer by mapping original representations of a well performing
network to a semantically aligned space. This renders our method modular and
allows integration into pretrained models.

Quantification of Concept Alignment. In order to investigate the inspectabil-
ity of deep networks, Bau et al. proposed NetDissect – a method counting number
of channels assignable to single visual (sub-)concepts [3]. Here, edges of a bipar-
tite graph, connecting channels and concepts, are weighted by measuring over-
lap between activation map and pixel annotations. Two additional variants enable
(sub-)concept association by combining channels [4,13]. Our AUiC metric lever-
ages the ideas of NetDissect and extends it to satisfy three criteria we deem impor-
tant for measuring inspectability – which NetDissect does not satisfy.

In contrast to existing literature, we propose semantic bottlenecks which are
easy to integrate in any architecture and offer inspectable outputs while retaining
performance on a dense prediction task. Additionally, we introduce the model
agnostic AUiC metric enabling benchmarking of inspectability.

3 Semantic Bottlenecks

To approach more inspectable intermediate representations we demand informa-
tion in each channel to be represented by a single semantic (sub-)concept1. We
propose two variants to achieve this goal: (i) supervise single channels to rep-
resent unique concepts and (ii) enforce one-hot outputs to encourage concept-
aligned channels and inhibit distributed representations. We construct both vari-
ants as layers that can be integrated into pretrained models, mapping non-
inspectable representations to an inspectable semantic space. We name these
supervised and unsupervised Semantic Bottlenecks (SB).

Case Study. To show the utility of SBs, we choose street scene segmentation on
the Cityscapes dataset [11] since it is a difficult task that traditionally requires
very large models and has a practical application that has direct benefits from
inspectability: autonomous driving. Cityscapes consists of 19 different classes,
2, 975 training images and 500 validation images, both densely labeled. We use
PSPNet [37] based on ResNet-101 [15], due to its strong performance and because
residual networks are abundantly used in computer vision tasks today.

1 For brevity we call all types of concepts simply: concept.
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3.1 Supervised Semantic Bottlenecks (SSBs)

Variant (i) supervises each SB channel to represent a single semantic concept
using additional concept annotations. Ideally, we possess pixel-annotations for an
exhaustive set of subordinate concepts like colors, textures and parts to decide
which are required to recover performance on particular tasks. Yet, we show
that an encouragingly small task-specific selection is sufficient to satisfy both
desiderata of performance and inspectability. We follow Fig. 2a which shows the
structure of an SSB. One (or multiple) linear layers (blue trapezoids) receive the
distributed input from a pretrained model and are supervised by an auxiliary
loss to map them to target concepts (colored boxes). Given the dense prediction
task of our case study, we use 1×1-conv modules to retain the spatial resolution.

1x1 
conv

concat

SSB Module

1x1 
conv

1x1 
conv

Distributed
input

Aligned
output

(a) Supervised SB Module

1x1 
conv

concat

USB Module

1x1 
conv

1x1 
conv

Distributed
input

Aligned
output

(b) Unsupervised SB Module

Fig. 2. Schematics for the integration of both Semantic Bottleneck (SB) layer types
into an existing architecture. To handle independent semantic spaces (e.g. objects,
materials), SBs can include parallel bottlenecks. (Color figure online)

block2 block3 block4 block5 classification

py
ra

m
id

Fig. 3. Simplified PSPNet architecture indicating residual blocks. A detailed overview
is presented in the supplement.

Choosing Concepts for Cityscapes. For our supervised SB-layer we choose
concepts based on task relevancy for Cityscapes. Broden+ [31] is a recent collec-
tion of datasets which serves as a starting point for the concept annotations we
require for the SSBs. It offers thousands of images for objects, parts, materials
and textures for which the first three types come with pixel level annotations.
Here, a pixel can have multi-label annotations. Based on the 377 part and mate-
rial concepts available (351 parts sourced from ADE [39] and Pascal-Part [10]
and 26 materials sourced from OpenSurfaces [5]), we compile a subset of 70
Cityscapes-relevant concepts (see detailed list in the supplement).

Implementation Details. Since the Broden concepts are not defined on the
Cityscapes domain, we train the SSB in a separate step. First, we train the model
without bottleneck on Cityscapes. Secondly, the SSB is integrated into the model
as additional layer and is trained on Broden while all other parameters are kept
fix. To ensure matching dimensionality between SSB and the subsequent layer,
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we replace it with a new layer of same the type. Finally, all layers after the
SSBs are finetuned until convergence following the training in [37], with small
adjustments due to restrictions of our hardware resources (stated in supplement).
We embed two concept classifier bottlenecks (parts and material) in each SSB,
trained independently with cross entropy loss. Given the residual architecture
of PSPNet, we integrate SSBs after residual blocks to avoid treatment of skip
connections. To cover early as well as late layers we place SSBs after three
different locations: block3, block4 and the pyramid module (see Fig. 3). We skip
block5, as its output is already integral part of the pyramid module output.

Table 1. Segmentation results on Cityscapes
validation set for different placements of SSB.
PSPNet‡ is our reference model trained with
smaller batchsize.

Configuration #concepts

(materials, parts)

mIoU

PSPNet‡ N/A 76.2

SSB@block3 (512

input feat.)

70 (11, 59) 73.1

SSB@block4 (1024

input feat.)

70 (11, 59) 76.2

SSB@pyramid

(4096 input feat.)

70 (11, 59) 72.8

Recovering Performance Using
SSBs. As one of our 3 goals
for inspectable deep networks, we
strive to lose as little performance
as possible. We test our SSB-
augmented PSPNets on the original
Cityscapes task and compare mIoUs
(see Table 1). We denote an SSB
after blockX as SSB@blockX. Given
our PSPNet baseline mIoU of 76.2%,
SSB@block4 is able to recover the
full performance, while the applica-
tions to block3 and the pyramid layer result in a slight decrease (73.1% and
72.6% respectively). Our quantification of inspectability (Sect. 4 and 5) will
enable reasoning on these performance drops. Regardless, the reduction in the
number of channels is substantial (e.g. 1024 reduced to 70 for block4), indicat-
ing room to render complex networks more inspectable. This addresses point
1 of our 3 goals (channel reduction). We additionally train SSBs with fewer
concepts and a selection of task-irrelevant concepts and find that our choice of
relevant concepts outperforms choices containing less relevant concepts. We refer
the interested reader to the supplement.

3.2 Unsupervised Semantic Bottlenecks (USBs)

Clearly, the requirement for additional annotation and uncertainty regarding
concept choice is a limitation of SSBs. To address this, we investigate the use of
annotation free methods to (i) reduce number of channels, (ii) increase semantic
association and (iii) lose as little performance as possible. Similar to SSBs, we
address point (i) by integrating layers with low dimensionality. To address (ii)
we propose to enforce non-distributed representations by approaching one-hot
encodings, which we implement using softmax and appropriate regularization.

Construction of USBs. As for SSBs, we integrate the USB into a pretrained
model. While the SSBs have no activation function, we use softmax for the USBs
(see Fig. 2b). We regularize its output-entropy to approach near one-hot outputs
during training. We identify two different approaches for regularization. Firstly,
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the entropy of the softmax output can be minimized via an additional loss.
Secondly, parameterizing softmax with the temperature parameter T , allows
approaching arg max in the limit when T = 0. Since one-hot encodings are
severely limiting information throughput, we explore the use of N parallel bot-
tlenecks to acquire N -hot encodings. Softmax application. Assume we have
N parallel bottlenecks, each having K channels. During inference, we want each
spatial location (or pixel) to only have N active output values in total – one
per bottleneck during inference. Consequently, we apply softmax for each bot-
tleneck and pixel independently. One-hot regularization. We investigate two
approaches: adding an additional entropy loss or utilize a parameterization
with temperature T . For the first, we calculate the average entropy of softmax
probabilities per bottleneck and pixel and optimize it as additional loss jointly
with the classification loss. For the second, we utilize the softmax temperature
parameter, which we anneal during training. Starting with a high temperature,
e.g. T0 = 1 it is reduced quickly in τ training iterations to approach arg max.
We define T at timestep t with polynomial decay: Tt = T0 +(T0 −Tτ ) ·(1 − t

τ

)γ ,
where γ specifies how quickly T is decaying.

Implementation Details. In contrast to training SSBs, we finetune the USB
parameters jointly with the downstream network while keeping all layers before
fixed. Entropy regularization is scaled with factor 0.1 while T is kept at 1.0. For
annealing we set T0 = 1.0, Tτ = 0.01 and γ = 10.0 for rapid decay. During infer-
ence, we compute arg max instead of softmax to acquire one-hot encodings.

Table 2. USB performance for two different
one-hot regularizations. Annealing during training
enables the use of arg max on inference to acquire
one-hot outputs without performance loss.

loc One-hot
regularization

#channels
N × K

Σ: active
channels

mIoU
soft

mIoU
hard

Block3 Entropy loss 2 × 87
5 × 87

19
57

73.0
74.0

0.1
36.7

Temperature
annealing

4 × 50
2 × 50

60
33

69.5
67.3

69.5
67.3

Block4 Entropy loss 2 × 87 93 75.7 32.9

Temperature
annealing

2 × 10
2 × 50

18
97

75.1
75.8

75.1
75.8

Pyramid Temperature
annealing

2 × 10
2 × 50

20
96

71.5
75.5

71.5
75.5

Recovering Performance
Using USBs. Here we show
that introducing USBs result
in little to no performance
impact while drastically reduc-
ing number of channels. Addi-
tionally, we show that one-
hot encodings can be achieved
with appropriate regulariza-
tion. We report regularization
technique, dimensions of the
bottlenecks, average entropy
across channels as well as active
channels for USB applications to layer block3, block4 and the pyramid layer in
Table 2. The active channels (Σ) column is counting the channels which are
active at least once on the Cityscapes validation set. Given the two evaluated
regularizations, we anticipate to find a method retaining mIoU performance
when replacing softmax with arg max during inference. We observe in compar-
ing the two rightmost columns, that only temperature annealing satisfies this
goal. Concluding these results, we identify annealing as the best method. Disad-
vantageously, it does not recover the mIoU on block3 fully. It appears to be more
difficult to learn non-distributed representations early on. Due to arg max, we
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find that some channels are never active during evaluation (compare columns
active channels and #channels). This resembles results from recent work on
differential architecture search also utilizing softmax [24,32].

Furthermore, we conducted an exhaustive study on performance when vary-
ing number of channels and parallel bottlenecks. Results are presented in the
supplement section 2.1. We find that using 3 parallel bottlenecks with K = 10
is able to retain performance while having the least total number of channels.
However, even a single bottleneck with K = 50 is able to reach 75% mIoU.

4 Quantification of Layer Output Inspectability

We present the AUiC metric enabling model agnostic benchmarking, measuring
alignments between channels and visual concepts. We specify three criteria that
AUiC has to satisfy: (i) it must be a scalar measuring the alignment between
visual concepts and channel outputs. 0 must indicate no alignment is possible
and 1 perfect overlap. (ii) The metric must be model agnostic to allow compar-
isons between two different activation functions. (iii) The quantification must be
computed unbiased w.r.t. the concept area in the image. The fundamental ideas
inspiring our metric are based on the frequently cited NetDissect method [3]. To
highlight the differences to our metric we will end this section with a discussion.

4.1 AUiC Metric

Our proposed metric involves three steps. Channel-Concept Matching: As
first step, each channel needs to be identified as detector for a single concept.
Given dataset X containing annotations for concept set C, we compare channel
activations Ak and pixel annotations Lc, where c ∈ C. Since a channel output Ak

is continuous, it needs to be binarized with a threshold θk acquiring binary mask
Mk ≡ M(k, θk) = Ak > θk. Comparison can subsequently be quantified with a
metric like IoU(x) = |Mk∩Lc|

|Mk∪Lc| , | · | being cardinality of a set. A few things need to
be considered w.r.t. to our criteria. Firstly, the metric must be unbiased w.r.t.
size. IoU penalizes small areas more than large ones, since small annotations
are disproportionally more susceptible to noise. Consider an annotation of 2
pixels and one false plus one true positive. The IoU scores 1/3, pulling down
the average over all samples. This would become an issue later on when we
optimize θ. Here, a bias would lead to wrong identifications. We address this
issue using the mean IoU of positive and negative responses to balance the label
area by its complement: mIoU(x) = 1

2

(
|Mk∩Lc|
|Mk∪Lc| + |Mk∩Lc|

|Mk∪Lc|

)
. Mk and Lc are the

complements to the binary activation mask and annotation respectively. The
alignment score between channel and concept is subsequently defined over the
whole dataset X:

mIoUk,c(X) =
1

2

(
Σx∈X|Mk ∩ Lc|
Σx∈X|Mk ∪ Lc| +

Σx∈X|Mk ∩ Lc|
Σx∈X|Mk ∪ Lc|

)
. (1)
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We sum over all samples before computing the fraction to include samples not
containing concept c. Secondly, the alignment between channel and concept is
sensitive to θk. We keep the determination of θk agnostic to the activation distri-
bution by finding critical point θ∗

k,c – now per channel and concept – maximizing
mIoUk,c(X, θk,c) – now parameterized with the threshold:

θ∗
k,c = arg max

θk,c

mIoUk,c(X, θk,c). (2)

This leaves |C| concepts per channel, for which we identified the best thresholds.
The final assignment is done in a last step, choosing concept c∗ maximizing mIoU

c∗ = arg max
c

mIoUk,c(X, θ∗
k,c). (3)

Each concept can be assigned to multiple channels, but not vise versa.

Table 3. Channel identification comparison for
SSB@pyramid using either IoU or mIoU. The
latter reducing size bias substantially enable
accurate identifications.

Channel Trained
concept

IoU assignment Our mIoU
assignment

16 Person/hair Torso (0.07)
Painted (0.06)

Person (0.57)
Hair (0.55)

32 Lamp/shade Painted (0.07)
Brown (0.06)

Shade (0.58)
Lamp (0.53)

18 Person/foot Torso (0.07)
Black (0.05)

Person (0.53)
Foot (0.53)

69 Wood
material

Brown (0.07)
Painted (0.07)

Wood (0.53)
Floor (0.52)

Scalar Quantity. The second
step involves summarizing the
identifiability to a scalar value –0
indicating no channel can be iden-
tified and 1 all. Given a global
mIoU threshold ξ we can deter-
mine the fraction of channels hav-
ing a greater mIoU. In order to
keep the metric agnostic to the
choice of ξ, we define the final
AUiC as the AUC under the indi-
cator function – counting identifi-
able channels – for all ξ ∈ [0.5, 1]:

AUiC = 2

∫ 1

0.5

1

K

K∑
k=1

1mIoUk,c∗ ≥ξ dξ. (4)

Since AUiC is determined for fraction of channels ranging from 0 to 1 over mIoU
ranging from 0.5 to 1 (0.5 is chance). Integration results in a value in range 0 to
0.5, which is normalized to 1.

Stability w.r.t. θ∗
k,c. Since we still choose a single θ∗

k,c to compute our metric,
we introduce a second scalar quantity measuring stability when varying θk,c. For
a channel k we retain the selected c∗ and marginalize θ out of mIoUk,c. This
results in the area under the mIoU curve when varying the threshold:

Δk,c∗ =

∫ max Ak

min Ak

mIoUk,c∗(X, θ) dθ. (5)

The ideal inspectable channel consistently responds with perfect overlap only
to concept c∗. In that case Δk,c∗ will be equal to mIoUk,c∗(X, θ∗

k,c∗) implying
maximal stability. In the general case though, a channel may also respond to
other concepts but with smaller activations. This results in an inequality Δk,c∗ <
mIoUk,c∗(X, θ∗

k,c∗), indicating lower stability. Subsequently, the quotient between
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these two terms enables the quantification of stability. We define this quantity
S aggregating all channels as the fraction between AUC under Δ and AUiC:

S =
2

∫ 1

0.5
1
K

∑K
k=1 1Δk,c∗ ≥ξ dξ

AUiC
. (6)

4.2 Discussion

We conclude by showing that AUiC satisfies our three criteria and delineate it
to the NetDissect-measure. Further comparisons are in the supplement Sect. 4.

Clear Definition in [0, 1]. 0 must indicate no channel alignment –1 perfect
alignment for all channels. AUiC satisfies this criteria as it integrates over all
mIoU thresholds. NetDissect instead chooses a specific IoU threshold ξ = 0.04
that results in fuzzy scores at the bounds. At 1, NetDissects measure gives a
false sense of security since all channels only require to pass an IoU of 0.04.

Agnostic to Network Architecture. To enable comparison across diverse
types of models, we require a metric agnostic to the distribution of the channel
outputs. Our AUiC metric satisfies this criteria since it considers the threshold
θ∗

k,c that maximizes mIoU. In NetDissects measure in contrast, the activation
binarization threshold θk is chosen based on the top quantile level of activations
ak ∈ Ak such that P (ak > θk) = 0.005. This 0.005 percentile choice is sensitive
to the underlying activation distribution, failing for non-Gaussian distributions
– e.g. bi-modals and Bernoulli (USBs have 0/1 outputs), for which θk could
wrongly be set to 1. This results in Mk being always 0.

Insensitivity to Size of Concept. To show size bias using IoU, we con-
duct a comparison between IoU and mIoU. We compare concept assignments on
SSB@pyramid since the channels are pre-assigned. Table 3 presents the assign-
ments of both methods (columns) for 4 channels (rows). mIoU assignments are
consistent with the trained concepts, even identifying concept wood. Using IoU
instead, concepts like painted, black or brown are among the identified. These
concepts cover large areas in Broden images making them less susceptible to
noise. The average pixel portion per image of painted for example is 1087.5,
resulting in an IoU of 0.06, while hair has only 93.8 pixels on average and does
not show up when using IoU. mIoU on the other hand computes a score for hair
of 0.55 for channel 16, which is trained for hair. NetDissects metric also utilizes
IoU, for which the authors manually adjusted the threshold to make it unbi-
ased [38] (identifications listed in supplement). Since this adjustment is done for
normal distributions, it’s not guaranteed to be unbiased for others.

5 Results

Section 3 showed drastically reduced channel numbers while retaining perfor-
mance – achieving goal (i) and (iii). To assess the semantic alignment of channels
(goal (ii)) we utilize our AUiC metric to show improved inspectability.
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5.1 Setup

Datasets. We compare alignments with 3 different datasets to cover a wide
range of concepts from different domains. The broadest dataset we evaluate is
Broden [3] which covers 729 various concepts of objects, parts, materials, textures
and colors (skipping scene concepts). Since the Broden images are mostly out of
domain w.r.t. Cityscapes, we evaluate Cityscapes-Classes and Cityscapes-Parts,
a dataset we introduce to include subordinate concepts to the 19 classes. The
new dataset includes 11 coarsely annotated images covering 38 different concepts.
Annotated images are presented in section 5.1 of the supplement.

Compared Models. From all USB models trained, we select one per net-
work location that strikes the best balance between mIoU and AUiC: block3
- USB4x50, block4 - USB1x50, pyramid - USB1x50. We additionally compare
our SBs with simple bottlenecks, having no activation function or supervision.
This enables to investigate the impact of channel reduction on inspectability.

5.2 Quantitative Improvements with SBs

Fig. 4. AUiC - inspectability scores for SSBs (yellow), USBs (blue) and baselines (red).
Higher values are better, 1 being perfect channel-concept alignment. SBs substantially
improve that alignment and thus: inspectability. Σ indicates number of channels. (Color
figure online)

We compare vanilla PSPNet with SSBs and USBs and do so for outputs of
block3, block4 and the pyramid layer. AUiCs are collectively shown per layer in
three columns in Fig. 4. Each row shows results for a different dataset in this
order: Cityscapes-Classes, Cityscapes-Parts and Broden. PSPNet outputs are
indicated by color red, SSBs by yellow and USBs by blue.

SSBs Enable Inspection for Subordinate Concepts. On each layer and
dataset except Cityscapes-Classes, SSBs outperform baselines. Most encourag-
ingly, SSBs improve the AUiCs on Cityscapes-Parts from under 0.1 to over 0.3 for
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both block4 and pyramid making a big leap forward towards inspectable repre-
sentations. It is particularly noteworthy, that even a naive choice of task related
concepts for supervision can be delineated from distributed, seemingly random
representations. We can subsequently conclude that it is feasible to make the
information in a deep net much more inspectable by introducing a supervised
mapping onto a semantic space. Without supervision, a simple bottleneck having
similar mIoU with only 25 channels offers an AUiC of only 0.2 for Cityscapes-
Parts on block4 (SSB: 0.3) and 0.04 for Broden (SSB improves three fold: 0.12).
Note that SSBs have with 70 channels nearly 3 times as many, such that reducing
the channels alone is not sufficient to substantially improve on inspectability.

Table 4. Averaged stabilities
over datasets.

Stability S Block3 Block4 Pyramid

Original 0.034 0.077 0.099

Bottleneck 0.004 0.069 0.082

SSB 0.047 0.099 0.099

USB 0.938 0.945 0.947

USBs Align with Cityscapes-Classes. In
comparison to SSBs, USBs align much better
with Cityscapes-Classes than subordinate con-
cepts. We see here the greatest increase in AUiC,
e.g. from 0.05 to 0.4 on block4. On block4 we also
report greater inspectability than for regular bot-
tlenecks (0.4 vs 0.2).

USBs Offer High Stability. Shown in Table 4, we see USBs offering a clear
advantage since their outputs are one-hot encoded: alignments are very stable.
SSBs on the other hand report only slight stability improvements over baselines.
To answer, whether softmax enables greater stability by default (SSBs have
no non-linearity), we measure AUiC and S for SSB with softmax. Measuring
with softmax T = 1, we find a 2-fold increase of stability to 0.20 but a 3-fold
decrease in AUiC to 0.07. While softmax alone increases stability, it does not
improve AUiC by default. As noted in Sect. 4, a channel is stable if it responds
consistently to the same concept no matter the activation value (argmax USBs
have only two states). This is not the case for a regular block4 and SSB channel,
for which the same channel may be active for multiple concepts albeit with
low activation. By our definition, this can be inspectable but is not stable. We
conclude that the linear SSB-layer is sufficient to align with semantic concepts
yet unable to increase stability by a large margin by default. Note that simple
bottlenecks show consistently reduced stability (e.g. 0.069 vs 0.077 for bottleneck
vs original on block4).

Representations at Block3 are Difficult to Align. Comparing the AUiC
scores between block3 and other locations, it becomes evident that only SSBs
improve inspectability. This indicates an intrinsic difficulty in aligning individual
channels with semantics that early and could imply a necessity for distributed
representations. We leave this as a challenge for future work.

Conclusion. Both SSBs and USBs offer clear advantages over baselines. SSBs
are semantically supervised and thus can offer the greatest improvements in
AUiC. USBs do not require concept supervision, yet form channels that are well
aligned with Cityscapes classes offering a different dimension of inspectability.
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5.3 Qualitative Improvements with SBs

To support our quantitative results we compare visualizations of SB-layers
and baselines. We show that SB outputs offer substantially improved spatial
coherency and consistency. Top-20 Channels. To enable comparison between
1000s and 10s of channels, we utilize the mIoU scoring of our AUiC to rank
channels. We show the top-20 channels, assigning each a unique color and plot-
ting the arg max per location. Based on our discussion of inspectable channels,
this will result in coherent activations for unique concepts if a channel is aligned.
Visualizations are presented for two images in Fig. 6 for all tested layer locations.
4 additional images are shown in Fig. 5 for the pyramid only.

Fig. 5. Top-20 Broden aligned channels only for
the pyramid layer from SSB-, USB- and vanilla
PSPNet outputs.

PSPNet outputs in the first
row (Vanilla) show the diffi-
culty in interpreting them, since
they are highly distributed across
channels (also indicated by [13]).

SSB and USB Outputs.
Attending to the first image on
the left half of Fig. 6, we see spa-
tial coherency greatly improved
for SSB and USB outputs over
baseline. In particular, note the
responses for SSB@block4 which
show a distinction into wheels (blue color), car windows (dark orange color) and
person-legs (light gray color). In relation, the USBs appear to form representa-
tions that are early aligned with the output classes, which is especially evident
for USB@pyramid. Since it is unsupervised, the USBs offer easy access into what
concepts have been learned automatically.

Fig. 6. Top-20 Broden aligned channels from SSB-, USB- and vanilla PSPNet outputs.
Each color is mapped to a single output channel. (Color figure online)
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6 Conclusion

We proposed supervised and unsupervised Semantic Bottlenecks (SBs) to render
deep representations more inspectable by semantic alignment. Additionally, we
introduced the AUiC metric quantifying such alignment to enable model agnostic
benchmarking and showed that SBs improve baseline scores up to four fold
while retaining performance. We identified SSBs offering best semantic alignment
while USBs offer greatest alignment stability while requiring no supervision. Our
SBs demonstrate that simultaneous performance and inspectability are not a
chimera.
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Abstract. Camera calibration is a prerequisite for many computer
vision applications. While a good calibration can turn a camera into
a measurement device, it can also deteriorate a system’s performance if
not done correctly. In the recent past, there have been great efforts to
simplify the calibration process. Yet, inspection and evaluation of cali-
bration results typically still requires expert knowledge.

In this work, we introduce two novel methods to capture the fun-
damental error sources in camera calibration: systematic errors (biases)
and remaining uncertainty (variance). Importantly, the proposed meth-
ods do not require capturing additional images and are independent of
the camera model. We evaluate the methods on simulated and real data
and demonstrate how a state-of-the-art system for guided calibration can
be improved. In combination, the methods allow novice users to perform
camera calibration and verify both the accuracy and precision.

1 Introduction

In 2000 Zhang published a paper [19] which allowed novice users to perform
monocular camera calibration using only readily available components. Sev-
eral works, including systems for guided calibration, improved upon the original
idea [10,12,13]. However, we believe that a central building block is still miss-
ing: a generic way to evaluate the quality of a calibration result. More precisely,
a way to reliably quantify the remaining biases and uncertainties of a given
calibration. This is of critical importance, as errors and uncertainties in calibra-
tion parameters propagate to applications such as visual SLAM [9], ego-motion
estimation [3,17,20] and SfM [1,4]. Despite this importance, typical calibration
procedures rely on relatively simple metrics to evaluate the calibration, such
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Fig. 1. Proposed camera calibration procedure, including the detection of systematic
errors (biases) and the prediction of the expected mapping error.

as the root mean squared error (RMSE) on the calibration dataset. Further-
more, many frequently used metrics lack comparability across camera models
and interpretability for non-expert users.

In general, the error sources of camera calibration can be divided into under-
fit (bias) and overfit (high variance). An underfit can be caused by a camera
projection model not being able to reflect the true geometric camera charac-
teristics, an uncompensated rolling shutter, or non-planarity of the calibration
target. An overfit, on the other hand, describes that the model parameters can-
not be estimated reliably, i.e. a high variance remains. A common cause is a lack
of images used for calibration, bad coverage in the image, or a non-diversity in
calibration target poses. In this paper, we address the challenge of quantifying
both types of errors in target-based camera calibration, and provide three main
contributions:

– A method to detect systematic errors (underfit) in a calibration. The method
is based on estimating the variance of the corner detector and thereby disen-
tangles random from systematic errors in the calibration residual (Fig. 1).

– A method to predict the expected mapping error (EME) in image space,
which quantifies the remaining uncertainty (variance) in model parameters in
a model-independent way. It provides an upper bound for the precision that
can be achieved with a given dataset (Fig. 1).

– The application of our uncertainty metric EME in calibration guidance, which
guides users to poses that lead to a maximum reduction in uncertainty.
Extending a recently published framework [10], we show that our metric leads
to further improvement of suggested poses.

In combination, these methods allow novice users to perform camera calibration
and verify both the accuracy and precision of the result. Importantly, the work
presented here explicitly abstracts from the underlying camera model and is
therefore applicable in a wide range of scenarios. We evaluate the proposed
methods with both simulations and real cameras.
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2 Fundamentals

Camera Projection Modeling. From a purely geometric point of view, cam-
eras project points in the 3D world to a 2D image [6]. This projection can be
expressed by a function p : R3 → R

2 that maps a 3D point x = (x, y, z)T from
a world coordinate system to a point ū = (ū, v̄)T in the image coordinate sys-
tem. The projection can be decomposed into a coordinate transformation from
the world coordinate system to the camera coordinate system x → xc and the
projection from the camera coordinate system to the image pC : xc → ū:

ū = p(x,θ,Π) = pC (xc ,θ) = pC (Rx + t,θ), (1)

where θ are the intrinsic camera parameters and Π and are the extrinsic
parameters describing the rotation R and translation t. For a plain pinhole
camera, the intrinsic parameters are the focal length f and the principal point
(ppx,ppy), i.e. θ = (f,ppx,ppy). For this case, the projection pC (xc ,θ) is given
by u = f/zc ·xc +ppx, v = f/zc ·yc +ppy. In the following, we will consider more
complex camera models, specifically, a standard pinhole camera model (S) with
radial distortion θS = (fx, fy,ppx,ppy, r1, r2), and the OpenCV fisheye model
(F) θF = (fx, fy,ppx,ppy, r1, r2, r3, r4) [8].

Calibration Framework. We base our methods on target-based camera cal-
ibration, in which planar targets are imaged in different poses relative to the
camera. Without loss of generality, we assume a single chessboard-style calibra-
tion target and a single camera in the following. The calibration dataset is a set
of images F = {framei}NF

i=1. The chessboard calibration target contains a set of
corners C = {corneri}NC

i=1. The geometry of the target is well-defined, thus the 3D
coordinates of chessboard-corner i in the world coordinate system are known as
xi = (xi, yi, zi)T . The image coordinates ui = (ui, vi)T of chessboard-corners are
determined by a corner-detector with noise σd. Thus, the observed coordinates
ui are assumed to deviate from the true image points ūi by an independent
identically distributed (i.i.d.) error εd ∼ N (0, σd). Estimation is performed by
minimizing a calibration cost function, typically defined by the quadratic sum
over reprojection errors

ε2res =
∑

j∈F

∑

i∈C
||uij − p(xij ,θ,Πj)||2. (2)

For the sake of simplicity, we present formulas for non-robust optimization here.
Generally, we advise robustification, e.g. using a Cauchy kernel. Optimization
is performed by a non-linear least-squares algorithm, which yields parameter
estimates (θ̂, Π̂) = argmin(ε2res).

A common metric to evaluate the calibration is the root mean squared error
(RMSE) over all N individual corners coordinates (observations) in the calibra-
tion dataset F [6, p. 133]:

RMSE =
√

1
N

∑

j∈F

∑

i∈C
||uij − p(xij , θ̂, Π̂j)||2, (3)
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The remaining uncertainty in estimated model parameters θ̂, Π̂ is given by the
parameter’s covariance matrix Σ. The covariance matrix can be computed by
backpropagation of the variance of the corner detector σ2

d:

Σ = (JT
calibΣ

−1
d Jcalib)−1 = σ2

d(JT
calibJcalib)−1, (4)

where Σd = σ2
dI is the covariance matrix of the corner detector and Jcalib

is the Jacobian of calibration residuals [6]. The covariance matrix of intrinsic
parameters Σθ can be extracted as a submatrix of the full covariance matrix.

3 Related Work

Approaches to evaluating camera calibration can be divided into detecting sys-
tematic errors and quantifying the remaining uncertainty in estimated model
parameters. Typical choices of uncertainty metrics are the trace of the covari-
ance matrix [10], or the maximum index of dispersion [13]. However, given the
variety of camera models, from a simple pinhole model with only three parame-
ters, up to local camera models, with around 105 parameters [2,15], parameter
variances are difficult to interpret and not comparable across camera models. To
address this issue, the parameter’s influence on the mapping can be considered.
The metric maxERE [12] quantifies uncertainty by propagating the parameter
covariance into pixel space by means of a Monte Carlo simulation. The value of
maxERE is then defined by the variance of the most uncertain image point of a
grid of projected 3D points. The observability metric [16] weights the uncertainty
in estimated parameters (here defined by the calibration cost function’s Hessian)
with the parameters’ influence on a model cost function. Importantly, this model
cost function takes into account a potential compensation of differences in the
intrinsics by adjusting the extrinsics. The observability metric is then defined by
the minimum eigenvalue of the weighted Hessian.

While both of these metrics provide valuable information about the remaining
uncertainty, there are some shortcomings in terms of how uncertainty is quanti-
fied. The observability metric does not consider the whole uncertainty, but only
the most uncertain parameter direction. Furthermore, it quantifies uncertainty
in terms of an increase in the calibration cost, which can be difficult to interpret.
maxERE quantifies uncertainty in pixel space and is thus easily interpretable.
However, it relies on a Monte Carlo Simulation instead of an analytical app-
roach and it does not incorporate potential compensations of differences in the
intrinsics by adjusting the extrinsics.

The second type evaluation metrics aims at finding systematic errors. As
camera characteristics have to be inferred indirectly through observations, there
is a high risk of introducing systematic errors in the calibration process by choos-
ing an inadequate projection model, neglecting rolling-shutter effects, or using
an out-of-spec calibration target, to give a few examples. If left undetected, these
errors will inevitably introduce biases into the application.

Historically, one way to detect systematic errors is to compare the resulting
RMSE or reconstruction result against expected values obtained from earlier
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calibrations or textbooks [7]. However, these values vary for different cameras,
lenses, calibration targets, and marker detectors and, hence, only allow capturing
gross errors in general. Professional photogrammetry often makes use of highly
accurate and precisely manufactured 3D calibration bodies [11]. Images captured
from predefined viewpoints are then used to perform a 3D reconstruction of the
calibration body. Different length ratios and their deviation from the ground
truth are then computed to assess the quality of the calibration by comparing
against empirical data. While these methods represent the gold standard due
to the accuracy of the calibration body and repeatability, they are often not
feasible or too expensive for typical research and laboratory settings and require
empirical data for the camera under test. The methods presented in the following
relax these requirements but can also be seen as a complement to this standard.

4 Detecting Systematic Errors

In the following, we derive the bias ratio (BR), a novel metric for quantifying the
fraction of systematic error contribution to the mean squared reprojection error
(MSE). Following the assumptions made in Sect. 2 one finds that asymptotically
(by augmentation of [6, p. 136])

MSEcalib = σ2
d(1 − NP

N
)

︸ ︷︷ ︸
random error

+ ε2bias︸ ︷︷ ︸
systematic error contribution

, (5)

where NP is the total number of free intrinsic and extrinsic parameters and
εbias denotes the bias introduced through systematic errors. The variance σ2

d is
generally camera dependent and not known a priori. To disentangle stochastic
and systematic error contributions to the MSE, we need a way to determine
σ2

d independently: The rationale behind many calibration approaches, and in
particular guided calibration, is to find most informative camera-target configu-
rations (cf. Fig. 1). For bias estimation, we propose the opposite. We explicitly
use configurations which are less informative for calibration but at the same
time also less likely to be impacted by systematic errors. More specifically, we
decompose the calibration target virtually into several smaller calibration tar-
gets V = {targeti}NV

i=1, usually consisting of exclusive sets of the four corners of
a checker board tile (cf. Fig. 2a). The poses of each virtual calibration target
in each image are then estimated individually while keeping the camera intrin-
sic parameters fixed. Pose estimation is overdetermined with a redundancy of
two (four tile corners and six pose parameters). From the resulting MSE values,
MSEv with v ∈ V, we compute estimates of σ2

d via (5) assuming the bias is
negligible within these local image regions

σ̂2
dv

=
MSEv

1 − 6
8

= 4 MSEv. (6)
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Fig. 2. Detecting systematic errors. a Illustration of the virtual decomposition of the
calibration target into smaller targets used to estimate the corner detector variance. b
Exemplary image of the same scene with the two test cameras. c Results of the bias
ratio (BR) and the robust estimate of the RMSE (MAD) for one simulated and the
two real cameras, using models of different complexities. For details see Sect. 7.

To obtain an overall estimate of σ̂2
d, we compute the MSE in (6) across the

residuals of all virtual targets, using the MAD as a robust estimator1. Finally,
we use σ̂2

d to determine ε2bias using (5) and compute the bias ratio as

BR =
ε2bias

MSEcalib
. (7)

The bias ratio is zero for unbiased calibration and close to one if the results
are dominated by systematic errors. The bias ratio is an intuitive metric that
quantifies the fraction of bias introduced by systematic errors. A bias ratio below
a certain threshold τBR is a necessary condition for a successful calibration and
a precondition for uncertainty estimation.2 Generally, this kind of analysis can
be performed for any separable3 calibration target.

Practical Implementation. Computation of the bias ratio for target-based
calibration procedures:
1 Here, we assume the underlying distribution is Gaussian but might be subject to

sporadic outliers. The MAD multiplied by a factor of 1.4826 gives a robust estimate
for the standard deviation [14].

2 To choose a threshold, it can be used that 1
1−BR

is approximately F-distributed,
representing the ratio of the residual sum of squares (SSE) of the calibration over
the SSE of the virtual targets, weighted by their respective degrees of freedom.
However, this only holds approximately, as the datapoints are not independent. We
therefore use an empirical threshold of τBR = 0.2, allowing for small biases.

3 The decomposition of the target must lead to an overdetermined estimation problem.
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1. Perform robust camera calibration and extract a robust estimate of MSEcalib

and the optimal parameters θ̂ and Π̂.
2. Compute the residuals for all v ∈ V:

– Decompose the calibration targets found in each image into a total of NV
exclusive virtual calibration targets.

– Optimize their pose independently leaving θ̂ unchanged.
3. Compute a robust estimate of the MSE over all residuals and determine σ̂2

d

using (6).
4. Use σ̂2

d to determine the bias contribution ε2bias via (5).
5. Finally, compute the bias ratio as BR = ε2bias/MSEcalib and test the result

against the threshold τBR.

5 The Expected Mapping Error (EME)

The second type of error source, in addition to biases, is a high remaining uncer-
tainty in estimated model parameters. We will now derive a novel uncertainty
metric, the expected mapping error (EME), which is interpretable and compara-
ble across camera models. It quantifies the expected difference between the map-
ping of a calibration result pC (x; θ̂) and the true (unknown) model pC (x; θ̄).

Inspired by previous works [5,12], we quantify the mapping difference in
image space, as pixel differences are easily interpretable: we define a set of points
in image space G = {ui}NG

i=1, which are projected to space via the inverse projec-
tion pC

−1(ui; θ̄) using one set of model parameters and then back to the image
using the other set of model parameters [2]. The mapping error is then defined as
the average distance between original image coordinates ui and back-projected
image points pC (xi; θ̂) (see Fig. 3):

K̃(θ̂, θ̄) =
1
N

∑

i∈G
||ui − pC (pC

−1(ui ; θ̄); θ̂)||2, (8)

where N = 2NG is the total number of image coordinates. Since small deviations
in intrinsic parameters can oftentimes be compensated by a change in extrinsic
parameters [16], we allow for a virtual compensating rotation R of the viewing
rays. Thus, we formulate the effective mapping error as follows:

K(θ̂, θ̄) = min
R

1
N

∑

i∈G
||ui − pC (R pC

−1(ui; θ̄); θ̂)||2. (9)

We now show that for an ideal, bias-free calibration, the effective mapping error
K(θ̂, θ̄) can be predicted by propagating parameter uncertainties. Note that the
following derivation is independent of the particular choice of K, provided that
we can approximate K with a Taylor expansion around θ̂ = θ̄ up to second
order:

K(θ̂, θ̄) ≈ K(θ̄, θ̄) + grad(K)Δθ +
1
2
ΔθT HKΔθ

≈ 1
N

ΔθT (Jres
T Jres)Δθ

≈ ΔθT HΔθ,

(10)
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Fig. 3. Predicting the mapping error based on parameter uncertainties. a Schematic
of the derived uncertainty metric EME = trace(Σθ

1/2HΣθ
1/2). b Evaluation in sim-

ulation and experiments. The simulation results validate the derived relation (5). For
real cameras, the EME is a lower bound to the error, as non-ideal behavior can lead
to higher absolute errors. Error bars are 95% bootstrap confidence intervals.

where Δθ = θ̄ − θ̂ is the difference between true and estimated intrinsic param-
eters, resi(θ̂, θ̄) = ui − pC (R pC

−1(ui; θ̄); θ̂) are the mapping residuals and
Jres = dres/dΔθ is the Jacobian of the residuals. Furthermore, we defined the
model matrix H := 1

N Jres
T Jres. For a more detailed derivation of the second

step in (10), see Supplementary.
Estimated model parameters θ̂ obtained from a least squares optimization are

a random vector, asymptotically following a multivariate Gaussian with mean
μθ = θ̄ and covariance Σθ [18, p. 8]. Likewise, the parameter error Δθ = θ̄ − θ̂
follows a multivariate Gaussian, with mean μΔθ = 0 and covariance ΣΔθ = Σθ .
We propagate the distribution of the parameter error Δθ to find the distribution
of the mapping error K(θ̂, θ̄). In short, we find that the mapping error K(θ̂, θ̄)
can be expressed as a linear combination of χ2 random variables:

K(θ̂, θ̄) = ΔθT HΔθ

=
Nθ∑

i=1

λiQi, with Qi ∼ χ2(1).
(11)
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The coefficients λi are the eigenvalues of the matrix product Σθ
1/2HΣθ

1/2 and
Nθ is the number of eigenvalues which equals the number of parameters θ. The
full derivation of relation (11) is shown in the Supplementary. Importantly, based
on expression (11), we can derive the expected value of K(θ̂, θ̄):

E[K(θ̂, θ̄)] = E[
Nθ∑

i=1

λiQi] =
Nθ∑

i=1

λiE[Qi] =
Nθ∑

i=1

λi

= trace(Σθ
1/2HΣθ

1/2),

where we used that the χ2-distribution with n degrees of freedom χ2(n) has
expectation value E[χ2(n)] = n. We therefore propose the expected mapping
error EME = trace(Σθ

1/2HΣθ
1/2) as a model-independent measure for the

remaining uncertainty.

Practical Implementation. The expected mapping error EME can be deter-
mined for any given bundle-adjustment calibration:

1. Run the calibration and extract the RMSE, the optimal parameters θ̂ and
the Jacobian Jcalib of the calibration cost function.

2. Compute the parameter covariance matrix Σ = σ2
d(JT

calibJcalib)−1 and
extract the intrinsic part Σθ .

3. Determine the model matrix H:
– Implement the mapping error (Eq. (9)) as a function of the parameter

estimate θ̂ and a parameter difference Δθ.
– Numerically compute the Jacobian Jres = dres/dΔθ at the estimated

parameters θ̂ and compute H = 1
N Jres

T Jres.
4. Compute EME = trace(Σθ

1/2HΣθ
1/2).

6 Experimental Evaluation

Simulations. We simulated 3D world coordinates of a single planar cali-
bration target in different poses relative to the camera (random rotations
ϕx, ϕy, ϕz ∈ [−π

4 , π
4 ], translations tz ∈ [0.5 m, 2.5 m], tx, ty ∈ [−0.5 m, 0.5 m]).

We then computed the resulting image coordinates using different camera mod-
els. To simulate the detector noise, we added Gaussian noise with σd = 0.1 px to
all image coordinates. To validate the bias ratio, we simulated a pinhole camera
with two radial distortion parameters, but ran calibrations with different models,
including insufficiently complex models (underfit). To validate the uncertainty
measure EME = trace(Σθ

1/2HΣθ
1/2), we ran calibrations with different num-

bers of simulated frames (NF ∈ [3, 20]) and nr = 50 noise realizations for each
set of frames. After each calibration, we computed the true mapping error K
with respect to the known ground-truth (Eq. 9) and the EME.
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Evaluation with Real Cameras. We tested the metrics for two different real
cameras (see Fig. 2b). For each camera, we collected a total of n = 500 images
of a planar calibration target. As reference, we performed a calibration with all
500 images. To test the bias metric, we ran calibrations with camera models
of different complexities (Fig. 2c). To test the uncertainty metric EME, we ran
calibrations with different numbers of randomly selected frames (NF ∈ [3, 20],
50 randomly selected datasets for each NF ). For each calibration, we computed
both the true mapping error K with respect to the reference and the EME.

7 Results

Validating the Bias Ratio. Figure 2c shows the robust estimate of the RMSE
(median absolute deviation, MAD) and the bias ratio for the calibrations of three
cameras (one simulated camera and the two real cameras shown in Fig. 2b)
for varying numbers of non-zero intrinsic calibration parameters, representing
different camera models. In detail, the individual parameter sets are θS(3) =
(f,ppx,ppy), θS(4) = (fx, fy,ppx,ppy), θS(5) = (fx, fy,ppx,ppy, r1), θS(6) =
(fx, fy,ppx,ppy, r1, r2), and θF (8) = (fx, fy,ppx,ppy, r1, r2, r3, r4) (cf. Sect. 2).

For all cameras, the MAD and BR can be reduced by using a more complex
camera model which is to be expected, since the projections are not rectilinear
and thus necessitate some kind of (nonlinear) distortion modeling. For the sim-
ulated camera and camera 1, a bias ratio below τBR = 0.2 is reached using the
standard camera model (S) with two radial distortion parameters. For camera
2, a low bias ratio cannot be reached even when using OpenCV’s fisheye camera
model with 8 parameters. This highlights the advantage of the bias ratio over
the RMSE: the low RMSE could wrongfully be interpreted as low bias – the bias
ratio of BR ≈ 0.6, however, demonstrates that some sort of systematic error
remains and a more complex model should be tried.

Validating the Uncertainty Metric. To validate the uncertainty metric EME
in simulations, we ran calibrations with different numbers of images using a
pinhole with radial distortion S(6) and a fisheye camera F(8). Figure 3b shows the
uncertainty metric EME = trace(Σθ

1/2HΣθ
1/2) and the real average mapping

error. Consistent with Eq. (5), the EME predicts the average mapping error.
For the real camera, the EME is highly correlated with the true mapping error,
however the absolute values of the real errors are higher, which is to be expected
in practice. It reflects that (i) the ground-truth is only approximated by the
reference calibration, (ii) deviations from the ideal assumptions underlying the
covariance matrix (Eq. (4)), and (iii) deviations from the i.i.d. Gaussian error
assumption. This limitation affects all metrics that are based on the covariance
matrix computed via Eq. (4). The EME therefore provides an upper bound to
the precision that can be achieved for a given dataset.

Comparison with State-of-the-Art. We compare the EME with the other
state-of-the-art uncertainty metrics introduced in Sect. 3. We focus on trace(Σθ ),
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Fig. 4. Comparison of state-of-the-art metrics for real camera 1. On average, the true
error K decreases with the number frames. For comparability with maxERE, we show√
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EME in units of pixels. All metrics are correlated with the true error, but
absolute values and the scaling differ. Values are medians across 50 random samples,
error bars are 95% bootstrap confidence intervals.

maxERE [12] and observability [16], as these are the metrics closest to ours
(Fig. 4). All metrics provide information about the remaining uncertainty and
are correlated with the true error. However, the metrics quantify uncertainty in
very different ways: trace(Σθ ) quantifies the uncertainty in model parameters,
and thus inherently differs depending on the camera model. The observability
metric accounts for the parameter’s effect of the mapping and for compensations
via different extrinsics. However, it does not incorporate the full uncertainty,
but just the least observable direction. Furthermore, the absolute values are
comparatively difficult to interpret, as they measure an increase in the calibration
cost. maxERE quantifies the maximum expected reprojection error in image
space and is therefore easily interpretable. Similar to maxERE, the EME predicts
the expected error in image space and is therefore easily interpretable. Instead of
a maximum error, the EME reflects the average error. In contrast to maxERE,
the EME does not require a Monte Carlo simulation. Furthermore, the EME
can account for a compensation via different extrinsics, which we consider a
reasonable assumption in many scenarios.

8 Application in Calibration Guidance

To demonstrate the practical use of the EME, we apply it in calibration guid-
ance. Calibration guidance refers to systems that predict most informative next
observations to reduce the remaining uncertainty and then guide users towards
these measurements. We choose an exitisting framework, called calibration wiz-
ard [10] and extend it with our metric. Calibration wizard predicts the next
best pose by minimizing the trace of the intrinsic parameter’s covariance matrix
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Fig. 5. Application of EME for calibration guidance. a For the original model, both
metrics lead to a similarly fast reduction in uncertainty. Rescaling the model to a
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trace(Σθ

1/2HΣθ
1/2) remains unaffectd. Uncertainty is quantified by the average of the

uncertainty map proposed by calibration wizard [10]. b Examples of suggested poses.

trace(Σθ ). However, depending on the camera model, parameters will affect the
image in very different ways. High variance in a given parameter will not nec-
essarily result in a proportionally high uncertainty in the image. To avoid such
an imbalance, we suggest to minimize the uncertainty in image space, instead of
parameters, i.e. to replace trace(Σθ ) with trace(Σθ

1/2HΣθ
1/2).

To compare the methods, we use images of camera 1 (see Fig. 2b). Start-
ing with two random images, the system successively selectes the most infor-
mative next image with (i) the original metric trace(Σθ ), (ii) our metric
trace(Σθ

1/2HΣθ
1/2) and (iii) randomly. Using the pinhole model with radial

distortion, the poses suggested by trace(Σθ ) and trace(Σθ
1/2HΣθ

1/2) are sim-
ilarly well suited, both leading to a significantly faster convergence than random
images (Fig. 5). However, when changing the camera model, e.g. by param-
eterizing the focal length in millimeters instead of pixels, simulated here by
a division by 100 (f → 0.01 · f), the methods differ: the poses proposed by
trace(Σθ

1/2HΣθ
1/2) reduce uncertainty significantly faster than trace(Σθ ).

This can be explained by the fact that when minimizing trace(Σθ ), the vari-
ance of less significant parameters will be reduced just as much as the variance
of parameters with large effect on the mapping. This example shows that the
performance of trace(Σθ ) can be affected by the choice of the model, while
trace(Σθ

1/2HΣθ
1/2) remains unaffected.

9 Conclusion and Future Research

In this paper, we proposed two metrics to evaluate systematic errors and the
remaining uncertainty in camera calibration. We have shown that the bias ratio
(BR) reliably captures underfits, which can result from an insufficiently complex
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model. Furthermore, we have shown that it is possible to predict the expected
mapping error (EME) in image space, which provides an upper bound for the
precision that can be achieved with a given dataset. Both metrics are model-
independent and therefore widely applicable. Finally, we have shown that the
EME can be applied for calibration guidance, resulting in a faster reduction in
mapping uncertainty than the existing parameter-based approach.

In future, we will extend the metrics to multi-camera systems and extrinsic
calibration. Furthermore, we would like to incorporate an analysis of the coverage
of the camera field of view into our evaluation scheme.
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Abstract. Video representation learning has recently attracted atten-
tion in computer vision due to its applications for activity and scene
forecasting or vision-based planning and control. Video prediction mod-
els often learn a latent representation of video which is encoded from
input frames and decoded back into images. Even when conditioned on
actions, purely deep learning based architectures typically lack a phys-
ically interpretable latent space. In this study, we use a differentiable
physics engine within an action-conditional video representation net-
work to learn a physical latent representation. We propose supervised
and self-supervised learning methods to train our network and identify
physical properties. The latter uses spatial transformers to decode phys-
ical states back into images. The simulation scenarios in our experiments
comprise pushing, sliding and colliding objects, for which we also analyze
the observability of the physical properties. In experiments we demon-
strate that our network can learn to encode images and identify physical
properties like mass and friction from videos and action sequences in the
simulated scenarios. We evaluate the accuracy of our supervised and self-
supervised methods and compare it with a system identification baseline
which directly learns from state trajectories. We also demonstrate the
ability of our method to predict future video frames from input images
and actions.

1 Introduction

Video representation learning is a challenging task in computer vision which has
applications in scene understanding and prediction [19,20] or vision-based con-
trol and planning [9,10,12]. Such approaches can be distinguished into supervised
or self-supervised methods, the latter typically based on recurrent autoencoder
models which are trained for video prediction.

Typical architectures of video prediction models first encode the image in a
low dimensional latent scene representation. This latent state is predicted for-
ward eventually based on actions and finally decoded into future frames. Neural
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-71278-5 4) contains supplementary material, which is avail-
able to authorized users.

c© Springer Nature Switzerland AG 2021
Z. Akata et al. (Eds.): DAGM GCPR 2020, LNCS 12544, pp. 44–57, 2021.
https://doi.org/10.1007/978-3-030-71278-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71278-5_4&domain=pdf
http://orcid.org/0000-0001-5814-8137
http://orcid.org/0000-0002-9079-593X
http://orcid.org/0000-0002-0492-6527
http://orcid.org/0000-0002-2328-4363
https://doi.org/10.1007/978-3-030-71278-5_4
https://doi.org/10.1007/978-3-030-71278-5_4
https://doi.org/10.1007/978-3-030-71278-5_4


Learning to Identify Physical Parameters Using Differentiable Physics 45

network based video prediction models like [4,10,23] perform these steps implic-
itly and typically learn a latent representation which cannot be directly inter-
preted for physical quantities such as mass, friction, position and velocity. This
can limit explainability and generalization for new tasks and scenarios. Analyti-
cal models like [3,8,17] in contrast structure the latent space as an interpretable
physical parameterization and use analytical physical models to forward the
latent state.

In this paper we study supervised and self-supervised learning approaches
for identifying physical parameters of objects from video. Our approach encodes
images into physical states and uses a differentiable physics engine [3] to forward
the physical scene state based on latent physical scene parameters. For self-
supervised learning, we apply spatial transformers [14] to decode the predicted
physical scene states into images based on known object models. We evaluate our
approach in various simulation scenarios such as pushing, sliding and collision of
objects and analyze the observability of physical parameters in these scenarios.
In our experiments, we demonstrate that physical scene encodings can be learned
from video and interactions through supervised and self-supervised training. Our
method allows for identifying the observable physical parameters of the objects
from the videos. In summary, we make the following contributions in this work

– We propose supervised and self-supervised learning approaches to learn to
encode scenes into physical scene representations of objects. Our novel archi-
tecture integrates a differentiable physics engine as a forward model. It uses
spatial transformers to decode the states back into images for self-supervised
learning.

– We analyse the observability of physical parameters in pushing, sliding and
collision scenarios. Our approach simultaneously identifies the observable
physical parameters during training while learning the network parameters
of the encoder.

– We evaluate our approach on simulated scenes and analyse its accuracy in
recovering object pose and physical parameters.

1.1 Related Work

Neural Video Prediction. Neural video prediction models learn an embed-
ding of video frames into a latent representation using successive neural net-
work operations such as convolutions, non-linearities and recurrent units. Sri-
vastava et al. [23] embed images into a latent representation recurrently using
long short term memory (LSTM [13]) cells. The latent representation is decoded
back using a convolutional decoder. Video prediction is achieved by propagating
the latent representation of the LSTM forward using predicted frames as inputs.
Finn et al. [10] also encode images into a latent representation using successive
LSTM convolutions [22]. The decoder predicts motion kernels (5× 5 pixels) and
composition masks for the motion layers which are used to propagate the input
images.

A typical problem of such architectures is that they cannot capture multi-
modal distributions on future frames well, for example, in the case of uncertain
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interactions of objects, which leads to blurry predictions. Babaeizadeh et al. [4]
introduce a stochastic latent variable which is inferred from the full sequence
at training time and sampled from a fixed prior at test time. Visual interac-
tion networks explicitly model object interactions using graph neural networks
in a recurrent video prediction architecture [25]. However, these approaches do
not learn a physically interpretable latent representation and cannot be used to
infer physical parameters. To address this shortcomings, Ye et al. [26] train a
variational autoencoder based architecture in a conditional way by presenting
training data with variation in each single specific physical property while hold-
ing all but a few latent variables fixed. This way, the autoencoder is encouraged
to represent this property in the corresponding part of the latent vector. The
approach is demonstrated on videos of synthetic 3D scenes with colliding shape
primitives. Zhu et al. [27] combine disentangled representation learning based on
total correlation [5] with partial supervision of physical properties. These purely
deep learning based techniques still suffer from sample efficiency and require
significant amounts of training data.

Physics-Based Prediction Models. Several works have investigated differ-
entiable formulations of physics engines which could be embedded as layers in
deep neural networks. In [8] an impulse-based velocity stepping physics engine
is implemented in a deep learning framework. Collisions are restricted to sphere
shapes and sphere-plane interactions to allow for automatic differentiation. The
method is used to tune a deep-learning based robot controller but neither demon-
strated for parameter identification nor video prediction.

Belbute-Peres et al. [3] propose an end-to-end differentiable physics engine
that models frictions and collisions between arbitrary shapes. Gradients are
computed analytically at the solution of the resulting linear complementarity
problem (LCP) [1]. They demonstrate the method for including a differentiable
physics layer in a video prediction network for modelling a 2D bouncing balls
scenario with 3 color-coded circular objects. Input to the network are the color
segmented images and optical flow estimated from pairs of frames. The network
is trained in a supervised way using ground-truth positions of the objects. We
propose to use spatial transformers in the decoder such that the network can
learn a video representation in a self-supervised way. We investigate 3D scenarios
that include pushing, sliding, and collisions of objects and analyze observability
of physical parameters using vision and known forces applied to the objects. A
different way of formulating rigid body dynamics has been investigated in [11]
using energy conservation laws. The method is demonstrated for parameter iden-
tification, angle estimation and video prediction for a 2D pendulum environment
using an autoencoder network. Similar to our approach, [15] also uses spatial
transformers for the decoder. However, differently the physics engine only mod-
els gravitational forces between objects and does not investigate full 3D rigid
body physics with collision and friction modelling and parameter identification.

Recently, Runia et al. [21] demonstrated an approach for estimating physical
parameters of deforming cloth in real-world scenes. The approach minimizes
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distance in a contrastively learned embedding space which encodes videos of the
observed scene and rendered scenes generated with a physical model based on
the estimated parameters. In our approach, we train a video embedding network
with the physical model as network layer and identify the physical parameters
of observed rigid objects during training.

2 Background

2.1 Unconstrained and Constrained Dynamics

The governing equation of unconstrained rigid body dynamics in 3D can be
written as

f = Mξ̇ + Coriolis forces (1)

where f : [0,∞[ → R
6 is the time-dependent torque-force vector, M ∈ R

6×6 is
the mass-inertia matrix and ξ̇ : [0,∞[ → R

6 is the time-derivative of the twist
vector ξ =

(
ω�,v�)� stacking rotational and linear velocities ω,v : [0,∞[→

R
3 [7]. In our experiments we do not consider rotations between two or more

frames of reference, therefore we do not have any Coriolis forces. Most of the
real world rigid body motions are constrained. To simulate those behaviors we
need to constrain the motion with joint, contact and frictional constraints [7].

The force-acceleration based dynamics which we use in Eq. (1) does not work
well for collisions since there is a sudden change in the direction of velocity in
infinitesimal time [7]. Therefore we use impulse-velocity based dynamics, where
even the friction is well-behaved [7], i.e., equations have a solution at all con-
figurations. We discretize the acceleration using the forward Euler method as
ξ̇ = (ξt+h − ξt)/h, where ξ̇t+h and ξ̇t are the velocities in successive time steps
at times t + h and t, and h is the time-step size. Equation (1) now becomes

Mξt+h = Mξt + f · h. (2)

Constrained Dynamics: The joint constraints are equality constraints and
they restrict degrees of freedom of a rigid body. Mathematically this can be
written as Jeξt+h = 0 where Je is the equality Jacobian which gives the direc-
tions in which the motion is restricted. The joint constraints exert constraint
forces which are solved using Euler-Lagrange equations by solving for the joint
force multiplier λe.

The contact constraints are inequality constraints which prevent bodies from
interpenetration. This ensures that the minimum distance between two bodies
is always greater than or equal to zero. The constraint equations can be written
using Newton’s impact model [7] as Jcξt+h ≥ −kJcξt. The term kJcξt can be
replaced with c which gives Jcξt+h ≥ −c, where k is the coefficient of restitution,
Jc is the Jacobian of the contact constraint function at the current state of the
system and λc is the contact force multiplier. Since it is an inequality constraint
we introduce slack variables a, which also gives us complementarity constraints
[18].
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The friction is modeled using a maximum dissipation energy principle since
friction damps the energy of the system. In this case we get two inequality
constraints since frictional force depends on normal force [2,24]. They can be
written as Jfλf + γ ≥ 0 and μλc ≥ Eλf where μ is the friction coefficient,
Jf is the Jacobian of the friction constraint function at the current state of
the system, E is a binary matrix which ensures linear independence between
equations at multiple contacts, and λf and γ are frictional force multipliers.
Since we have two inequality constraints we have two slack variables σ, ζ and
two complementarity constraints.

In summary, all the constraints that describe the dynamic behavior of the
objects we consider in our scene can be written as the following linear comple-
mentarity problem (LCP),

⎛
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⎜
⎜
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⎝

0
0
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⎞
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subject to
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T ⎛
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γ

⎞

⎠ = 0.

The above LCP is solved using a primal-dual algorithm as described in [18].
It is embedded in our deep neural network architecture in a similar way as in [1]
and [3], which facilitates backpropagation of gradients at its solution.

3 Method

We develop a deep neural network architecture which encodes images into phys-

ical states si =
(
x�
i , ξ�

)�
where xi =

(
q�
i ,p�

i

)� with orientation qi ∈ S
3 as

unit quaternion and position pi ∈ R
3 of object i. We propagate the state using

the differentiable physics engine which is integrated as layer on the encoding in
the deep neural network. For self-supervised learning, a differentiable decoder
subnetwork generates images from the integrated state representation of the
objects.

We aim to learn the system’s dynamics by regressing the state trajectories
and learning the physical parameters of the objects. These parameters can be
the masses of the bodies and the coefficient of friction between two bodies. We
initialize the objects at certain locations in the scene with some velocity and start
the simulation by applying forces. In the following, we will detail our network
architecture and training losses.
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3.1 Network Architecture

Encoder. For supervised learning experiments, we use convolutional layers fol-
lowed by fully connected layers with exponential linear units (ELU) [6] to encode
poses from images. The encoder receives the image It and is encoded as pose xt.
We need at least two images to infer velocities from images. For self-supervised
learning experiments, we use a variational encoder [16] with the same base archi-
tecture as in the supervised case. Here, the encoder receives the image It and out-
puts the mean and log variance of a Gaussian hidden state distribution p(zt | It).
A latent space sample is obtained using the reparameterization trick [16], and
the pose xt is regressed from it using a fully connected layer.

We use three images so that we can average out the velocities in case of
collisions when the two frames are collected just before and after collision. We
use the difference in poses to estimate velocity instead of directly training the
network to output velocities. This gives us the average velocity, not the final
velocity. For example in 1D, when a block of mass m is acting under an effective
force feff between times t0 and t1, the velocity at time t1 is given by

v(t1) =
p(t1) − p(t0)

t1 − t0︸ ︷︷ ︸
average velocity

+
1
2

feff

m
(t1 − t0) (4)

If we would let the network learn the velocities, it would require to implicitly
learn the physics which we want to avoid by the use of the differentiable physics
engine. The encoded states are provided as input to the differentiable physics
engine.

Trajectory Integration. We integrate a trajectory of poses from the initial
pose estimated by the encoder and the velocity estimates by the differentiable
physics engine. In each time step, we calculate the new pose of each object
x =

(
q�,p�)� where q ∈ S

3 is a unit quaternion representing rotation and

p ∈ R
3 is the position from the resulting velocities of the LCP ξt =

(
ω�

t ,v�
t

)�

by
pt = pt + vt · h

qt = qt × quat(e0.5ω th)
(5)

where quat(·) is an operator which converts a rotation matrix into a quaternion.

Decoder. We use a spatial transformer network layer [14] to decode object poses
into images. These transformations provide structure to the latent space and thus
allow the network to train in a self-supervised way. The poses estimated by the
physics engine or inferred by the encoder are given as inputs to the network
along with content patches of the objects and the background. The content
patches and the background are assumed known and extracted from training
images using ground-truth masks. The spatial transformer renders these objects
at appropriate locations on the background assuming the camera intrinsics, its
view pose in the scene and parameterization of the plane are known.



50 R. Kandukuri et al.

3.2 Training Losses

Supervised Learning. For supervised learning, we initialize the physics engine
with inferred poses xenc

1:N,i for each object i from the encoder where N is the
(video) sequence length. Estimated poses x̂1:N,i by the physics engine as well as
the inferred poses by the encoder are compared with ground truth poses xgt

1:N,i

to infer physical parameters,

Lsupervised =
∑

i

e(xgt
1:N,i,x

enc
1:N,i) + αe(xgt

1:N,i, x̂1:N,i),

e(x1,x2) :=
1
N

N∑

t=1

∥
∥ln(q−1

2,tq1,t)
∥
∥2

2
+ ‖p2,t − p1,t‖2

2 ,

(6)

where α is a weighting constant α = 0.1 in our experiments), t is the time
step and i indexes objects. We use the quaternion geodesic norm to measure
differences in rotations.

Self-supervised Learning. For self-supervised learning, we initialize the
physics engine with inferred poses xenc

1:N from the encoder. Both estimated poses
by the physics engine and the inferred poses are reconstructed into images Îrec1:N

and Irec1:N using our decoder, respectively. The images are compared to input
frames Igt1:N to identify the physical parameters and train the network. We impose
a KL divergence loss between the inferred encoder distribution p(zt | It) and the
standard normal distribution prior p(zt) = N (0, I),

Lself-supervised =
1
N

∥
∥Igt1:N − Irec1:N

∥
∥2

2
+

α

N

∥
∥
∥Igt1:N − Îrec1:N

∥
∥
∥

2

2
(7)

+
N∑

t=1

KL (p(zt | It)‖p(zt)) .

System Identification. For reference, we also directly optimize for the phys-
ical parameters based on the ground-truth trajectories pgt

1:N without the image
encoder. For this we use the first state as an input to the differentiable physics
engine. In this case, the loss function is Lsys-id =

∑
i e(x

gt
i , x̂i).

4 Experiments

We evaluate our approach in 3D simulated scenarios including pushing, sliding
and collision of objects (see Fig. 1).

4.1 Simulated Scenarios and Observability Analysis

In this section, we discuss and analyze the different scenarios for the observability
of physical parameters. To this end, we simplify the scenarios into 1D or 2D
scenarios where dynamics equations are simpler to write.
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Fig. 1. 3D visualization of the simulated scenes. Top: block pushed on a flat plane.
Middle: block colliding with another block. Bottom: block falling and sliding down on
an inclined plane.
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Fig. 2. 1D/2D sketches of scenarios. Top left: block pushed on a flat plane. Bottom
left: block colliding with another block. Right: block sliding down on an inclined plane.

Block Pushed on a Flat Plane. In this scenario, a block of mass m, lying on
a flat plane is pushed with a force fext at the center of mass as shown in Fig. 2
(top left). In this 1D example, since we only have a frictional constraint we can
use Eq. (2) in combination with the frictional force f = μN to describe the
system, where μ is the coefficient of friction, g = 9.81m/s2 is the acceleration
due to gravity and N = mg is the normal force since the body has no vertical
motion. The velocity vt+h in the next time step hence is

vt+h = vt +
fext
m

h − μgh (8)

We observe that only either one of mass or friction can be inferred at a time.
Thus, in our experiments we fix one of the parameters and learn the other.
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Block Colliding with Another Block. To learn both mass and coefficient
of friction simultaneously, we introduce a second block with known mass (m2)
made of the same material like the first one. This ensures that the coefficient of
friction (μ) between the plane and the two blocks is same. Since we are pushing
the blocks, after collision, both blocks move together. In the 1D example in Fig. 2
(bottom left), when applied an external force (fext), the equation to calculate
the linear velocities v1/2,t+h of both objects in the next time step becomes

v1,t+h = v1t
+

fext

m1
h − μgh, v2,t+h = v2t

+
f ′

m2
h − μgh, (9)

where μgm1 and μgm2 are frictional forces acting on each block and f ′ is the
equivalent force on the second body when moving together. Now, in our experi-
ments we can learn both mass and coefficient of friction together given the rest
of the parameters in the equation.

Block Freefall and Sliding Down on an Inclined Plane. In this scenario
the block slides down the inclined plane after experiencing a freefall as shown in
Fig. 2 (right). In the 1D example, since the freefall is unconstrained (ignoring
air resistance), the velocity update is given by vt+h = vt + gh. For block sliding
down on an inclined plane, the equation to calculate velocity in the next time is
vt+h = vt + g(sin θ −μ cos θ) h, where θ is the plane inclination. We can see that
we can only infer the coefficient of friction μ and due to the free fall we do not
need to apply additional forces.

4.2 Results

We simulated the scenarios in 3D using the bullet physics engine using PyBullet1.
Note that the bullet physics engine is different to the LCP physics engine in our
network and can yield qualitatively and numerically different results. The bodies
are initialized at random locations to cover the whole workspace. Random forces
between 1–10 N are applied at each time step. These forces are applied in +x,
−x, +y and −y directions which are chosen at random but kept constant for a
single trajectory while the magnitude of the forces randomly varies in each time
step. In total, 1000 different trajectories are created with 300 time steps each
for each scenario. We render top-down views at 128 × 128 resolution. Training
and test data are split with ratio 9:1. For evaluation we show the evolution of
the physical parameters during the training. We also give the average relative
position error by the encoder which is the average of the difference between
ground truth positions and estimated poses divided by object size.

System Identification Results. As a baseline result, system identification
(see Sect. 3.2) can be achieved within 200 epochs with an average position error

1 https://pybullet.org.

https://pybullet.org


Learning to Identify Physical Parameters Using Differentiable Physics 53

Table 1. Supervised learning results for the 3 scenarios. The physical parameters are
well identified (blue lines) close to the ground truth values (red lines).

Inference
Block Pushed On a
Flat Plane

Block Sliding Down
the Inclined Plane

Block Colliding With
Another Block

Mass

position inference error: 4%

Not feasible

position inference error: 8%

Coefficient
of friction

position inference error: 2% position inference error: 5% rotation inference error: 8◦

for all the scenarios between 0.7–1.2%. The physical parameters reach nomi-
nal values with high accuracy. Detailed results are given in the supplementary
material.

Supervised Learning Results. We train our network using the supervised loss
in Sect. 3.2. We warm up the encoder by pre-training with ground truth poses
so that when optimizing for physics parameters the training of the encoder is
stable. We then continue training the encoder on the full supervised loss. From
Table 1, we observe that all the learned physical parameters (in blue) slightly
oscillate around the ground truth values (in red). The average inferred position
error for all the scenarios is between 2–8% and the average inferred rotation
error for the collision scenario is 8◦. The parameter learning seems to be robust
to this degree of accuracy in the estimated initial states.

Self-supervised Learning Results. Now, we train the network in a self-
supervised way (see Sect. 3.2). In this experiment, we generate sequences where
the objects start at random locations with zero initial velocity, since the initial
velocity estimate is ambiguous for our self-supervised learning approach. We
obtain average velocities from the estimated poses (Eq. (4)). Since the pose
estimation error is high in self-supervised experiments, the accuracy in velocity
especially at the beginning of training is not sufficient for self-supervised learning.
We pre-train the encoder in an encoder-decoder way so that when optimizing for
physics parameters the training is stable. We continue training the encoder on
the full self-supervised loss. To provide the network with gradients for localizing
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Table 2. Self-supervised learning results for the pushing and collision scenarios. While
the encoder error is slightly higher than in the supervised learning case, the physical
parameters are identified (blue lines) close to the ground truth values (red lines).

Inference
Block Pushed On a Flat
Plane

Block Colliding With An-
other Block

Mass

position inference error: 7% position inference error: 12%

Coefficient
of friction

position inference error: 8% rotation inference error: 8◦

the objects, we use Gaussian smoothing on the input and reconstructed images
starting from kernel size 128 and standard deviation 128, and reducing it to
kernel size 5 and standard deviation 2 by the end of training. From Table 2,
we observe that our approach can still recover the physical parameters at good
accuracy. Expectably, they are less accurate than in the supervised learning
experiment. The average inferred position error for all the scenarios is between
7–12% and the average inferred rotation error for the collision scenario is 8◦.
Through the use of spatial transformers our approach is limited to rendering
top-down views and cannot handle 3D translation and rotation in our third
scenario.

4.3 Qualitative Video Prediction Results

The learned model in Sect. 4.2 can be used for video prediction. The images in
the top row in Figs. 3(a) and 3(b) are the ground truth, the images in the middle
row are the reconstructions from the predicted trajectories by our network and
the images in the bottom row are the difference images. We roll out a four second
trajectory. We can observe that the positions of the objects are well predicted by
our approach, while the approach yields small inaccuracies in predicting rotations
which occur after the collision of the objects. Further video prediction results
are included in the supplementary material.
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Fig. 3. Qualitative video prediction results for block pushing (left) and collision sce-
narios (right) with our method. Top: simulated images (from left to right frames 0, 30,
60, 120, 180). Middle: predicted images by our approach. Bottom: difference images.

4.4 Discussion and Limitations

Our approach achieves good results for supervised and self-supervised learning
in the evaluated scenarios. We have studied observability and feasibility of learn-
ing physical parameters and video embedding by our approach. At its current
stage, our architecture makes several assumptions on the scenes which could be
addressed in future research. Our approach for using 2D spatial transformers
for image generation restricts the self-supervised learning approach to known
object shape and appearance and top down views. For real scenes our methods
needs information about the applied forces which can be obtained from a known
dynamics model (e.g. of a robot) or force sensors. For self-supervised learning,
methods for bridging the sim-to-real domain gap have to be investigated.

5 Conclusion

In this paper we study supervised and self-supervised learning approaches to
learn image encodings and identify physical parameters. Our deep neural net-
work architecture integrates differentiable physics with a spatial transformer
network layer to learn a physical latent representation of video and applied
forces. For supervised learning, an encoder regresses the initial object state from
images. Self-supervised learning is achieved through the implementation of a
spatial transformer which decodes the predicted positions by the encoder and
the physics engine back into images. This way, the model can also be used for
video prediction with known actions by letting the physics engine predict posi-
tions and velocities conditioned on the actions. We evaluate our approach in
scenarios which include pushing, sliding and collision of objects. We analyze the
observability of physical parameters and assess the quality of the reconstruction
of these parameters using our learning approaches. In future work we plan to
investigate further scenarios including learning the restitution parameter and
extend our self-supervised approach to real scenes and full 3D motion of objects.



56 R. Kandukuri et al.

Acknowledgements. We acknowledge support from Cyber Valley, the Max Planck
Society, and the German Federal Ministry of Education and Research (BMBF) through
the Tuebingen AI Center (FKZ: 01IS18039B). The authors thank the International
Max Planck Research School for Intelligent Systems (IMPRS-IS) for supporting Jan
Achterhold.

References

1. Amos, B., Kolter, J.Z.: Optnet: differentiable optimization as a layer in neural
networks. In: International Conference on Machine Learning, pp. 136–145 (2017)

2. Anitescu, M., Potra, F.A.: Formulating dynamic multi-rigid-body contact problems
with friction as solvable linear complementarity problems. Nonlinear Dyn. 14, 231–
247 (1997)

3. de Avila Belbute-Peres, F., Smith, K., Allen, K., Tenenbaum, J., Kolter, J.Z.:
End-to-end differentiable physics for learning and control. In: Advances in Neural
Information Processing Systems, pp. 7178–7189 (2018)

4. Babaeizadeh, M., Finn, C., Erhan, D., Campbell, R., Levine, S.: Stochastic varia-
tional video prediction. In: Proceedings of the International Conference on Learning
Representations (2018)

5. Chen, R.T.Q., Li, X., Grosse, R.B., Duvenaud, D.K.: Isolating sources of disentan-
glement in variational autoencoders. In: Advances in Neural Information Process-
ing Systems, pp. 2610–2620 (2018)

6. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network
learning by exponential linear units (ELUs). In: Proceedings of the International
Conference on Learning Representations (2016)

7. Cline, M.B.: Rigid body simulation with contact and constraints. Ph.D.
thesis (2002). https://doi.org/10.14288/1.0051676. https://open.library.ubc.ca/
collections/ubctheses/831/items/1.0051676

8. Degrave, J., Hermans, M., Dambre, J., Wyffels, F.: A differentiable physics engine
for deep learning in robotics. Front. Neurorobotics 13 (2016). https://doi.org/10.
3389/fnbot.2019.00006

9. Finn, C., Levine, S.: Deep visual foresight for planning robot motion. In: Interna-
tional Conference on Robotics and Automation, pp. 2786–2793 (2017)

10. Finn, C., Goodfellow, I.J., Levine, S.: Unsupervised learning for physical inter-
action through video prediction. In: Advances in Neural Information Processing
Systems, pp. 64–72 (2016)

11. Greydanus, S., Dzamba, M., Yosinski, J.: Hamiltonian neural networks. In:
Advances in Neural Information Processing Systems, pp. 15379–15389 (2019)

12. Hafner, D., et al.: Learning latent dynamics for planning from pixels. In: Interna-
tional Conference on Machine Learning, pp. 2555–2565 (2019)

13. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9,
1735–80 (1997)

14. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer
networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025
(2015)

15. Jaques, M., Burke, M., Hospedales, T.M.: Physics-as-inverse-graphics: joint unsu-
pervised learning of objects and physics from video. In: Proceedings of the Inter-
national Conference on Learning Representations (2020)

16. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Proceedings of
the International Conference on Learning Representations (2014)

https://doi.org/10.14288/1.0051676
https://open.library.ubc.ca/collections/ubctheses/831/items/1.0051676
https://open.library.ubc.ca/collections/ubctheses/831/items/1.0051676
https://doi.org/10.3389/fnbot.2019.00006
https://doi.org/10.3389/fnbot.2019.00006


Learning to Identify Physical Parameters Using Differentiable Physics 57

17. Kloss, A., Schaal, S., Bohg, J.: Combining learned and analytical models for pre-
dicting action effects. CoRR abs/1710.04102 (2017)

18. Mattingley, J., Boyd, S.: CVXGEN: a code generator for embedded convex opti-
mization. Optim. Eng. 13 (2012). https://doi.org/10.1007/s11081-011-9176-9

19. Mottaghi, R., Bagherinezhad, H., Rastegari, M., Farhadi, A.: Newtonian scene
understanding: unfolding the dynamics of objects in static images. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (2016)

20. Mottaghi, R., Rastegari, M., Gupta, A., Farhadi, A.: “What happens if...” learning
to predict the effect of forces in images. In: European Conference on Computer
Vision (2016)

21. Runia, T.F.H., Gavrilyuk, K., Snoek, C.G.M., Smeulders, A.W.M.: Cloth in the
wind: a case study of estimating physical measurement through simulation. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2020)

22. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolu-
tional LSTM network: a machine learning approach for precipitation nowcasting.
In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

23. Srivastava, N., Mansimov, E., Salakhutdinov, R.: Unsupervised learning of video
representations using lstms. In: International Conference on Machine Learning
(2015)

24. Stewart, D.: Rigid-body dynamics with friction and impact. SIAM Rev. 42, 3–39
(2000). https://doi.org/10.1137/S0036144599360110

25. Watters, N., Zoran, D., Weber, T., Battaglia, P., Pascanu, R., Tacchetti, A.: Visual
interaction networks: learning a physics simulator from video. In: Advances in
Neural Information Processing Systems (2017)

26. Ye, T., Wang, X., Davidson, J., Gupta, A.: Interpretable intuitive physics model.
In: European Conference on Computer Vision (2018)

27. Zhu, D., Munderloh, M., Rosenhahn, B., Stückler, J.: Learning to disentangle latent
physical factors for video prediction. In: German Conference on Pattern Recogni-
tion (2019)

https://doi.org/10.1007/s11081-011-9176-9
https://doi.org/10.1137/S0036144599360110


Assignment Flow for Order-Constrained
OCT Segmentation

Dmitrij Sitenko(B), Bastian Boll, and Christoph Schnörr
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Abstract. At the present time Optical Coherence Tomography (OCT)
is among the most commonly used non-invasive imaging methods for
the acquisition of large volumetric scans of human retinal tissues and
vasculature. Due to tissue-dependent speckle noise, the elaboration of
automated segmentation models has become an important task in the
field of medical image processing.

We propose a novel, purely data driven geometric approach to order-
constrained 3D OCT retinal cell layer segmentation which takes as input
data in any metric space. This makes it unbiased and therefore amenable
for the detection of local anatomical changes of retinal tissue structure.
To demonstrate robustness of the proposed approach we compare four
different choices of features on a data set of manually annotated 3D OCT
volumes of healthy human retina. The quality of computed segmentations
is compared to the state of the art in terms of mean absolute error and
Dice similarity coefficient.

1 Introduction

Overview. Optical Coherence Tomography (OCT) is a non-invasive imaging
technique which measures the intensity response of back scattered light from
millimeter penetration depth. We focus specifically on the application of OCT
in ophthalmology for aquisition of high-resolution volume scans of the human
retina. This provides information about retinal tissue structure in vivo to under-
stand human eye functionalities. OCT devices record multiple two-dimensional
B-scans in rapid succession and combine them into a single volume in a sub-
sequent alignment step. Taking an OCT scan only takes minutes and can help
detect symptoms of pathological conditions such as glaucoma, diabetes, multiple
sclerosis or age-related macular degeneration.

The relative ease of data aquisition also enables to use multiple OCT vol-
ume scans of a single patient over time to track the progression of a pathology
or quantify the success of therapeutic treatment. To better leverage the avail-
ability of raw OCT data in both clinical settings and empirical studies, much
work has focused on automatic extraction of relevant information, in particular
automatic cell layer segmentation, detection of fluid and reconstruction of vas-
cular structures. The difficulty of these tasks lies in challenging signal-to-noise
c© Springer Nature Switzerland AG 2021
Z. Akata et al. (Eds.): DAGM GCPR 2020, LNCS 12544, pp. 58–71, 2021.
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ratio which is influenced by multiple factors including mechanical eye movement
during registration and the presence of speckle.

Related Work. Effective segmentation of OCT volumes is a very active area
of research. Several methods for segmenting human retina were proposed in
[11,12,16] and [2] which rely on graphical models. To increase robustness, the
retina segmentation approaches proposed in [23] and [9] employ shape priors
using soft constraints. In [19] Rathke first introduced a parallelizable segmenta-
tion method based on probabilistic graphical models with global low-rank shape
prior. Variational approaches given in [8,26] and [18] model retina layers by
zero level sets with properly chosen functionals including soft constraints. Much
recent work has focused on the use of deep learning to address the task of cell
layer segmentation in a purely data driven way. Methods presented in [17,21]
rely on the U-net architecture [20] which yields good predictive performance in
settings with limited availability of training data. To enforce global order of cell
layers along a spatial axis as well as additional regularization, local predictions
have been tied together through graph-based methods [10] or through a second
machine learning component [14]. However, if global context is already used in
feature extraction, the risk of overfitting remains and unseen pathologies may
result in unpredictable behavior.

Approach. Our segmentation approach is a smooth image labeling algorithm
based on geometric numerical integration on an elementary statistical mani-
fold. It can work with input data from any metric space, making it agnostic to
the choice of feature extraction and suitable as plug-in replacement in diverse
pipelines. In addition to respecting the natural order of cell layers, our segmenta-
tion process has a high amount of built-in parallelism such that modern graphics
acceleration hardware can easily be leveraged. We evaluate the effectiveness of
our novel approach for a selection of input features ranging from traditional
covariance descriptors to convolutional neural networks.

Contribution. We propose a geometric assignment approach that extends the
approach introduced by [4] to retinal layer segmentation with the following novel
characteristics:

(i) By leveraging a continuous characterization of layer ordering, our method is
able to simultaneously perform local regularization and to incorporate the
global topological ordering constraint in a single smooth labeling process.
The segmentation is computed from a distance matrix containing pairwise
distances between data for each voxel and prototypical data for each layer
in some feature space. This highlights the ability to extract features from
raw OCT data in a variety of different ways and to use the proposed seg-
mentation as a plug-in replacement for other graph-based methods.

(ii) Computationally fast and high-quality cell layer segmentations of OCT vol-
umes are obtained by using only local features for each voxel. This is in
contrast to competing deep learning approaches which commonly use infor-
mation from an entire B-scan as input. In addition, the exclusive use of local
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features combats bias introduced through limited data availability in train-
ing and enables the incorporation of three-dimensional information without
compromising runtime scalability.

(iii) The highly parallelizable segmentation approach with global voxel interac-
tion enables robust cell layer segmentation of entire OCT volumes without
using any prior knowledge other than local regularity and order of cell lay-
ers. In particular, no global shape prior is used as opposed to segmentation
methods relying on graphical models like, e.g., [19]. Figure 1 shows a typi-
cal result obtained with our novel approach after segmenting healthy retina
tissues with labels specified in (Fig. 2).

Organization. Our paper is organized as follows. The assignment flow app-
roach is briefly summarized in Sect. 2 and extended in Sect. 4 in order to take
into account the order of layers as a global constraint. In Sect. 3, we consider
the Riemannian manifold Pd of positive definite matrices as a suitable feature
space for local OCT data descriptors. The resulting features are subsequently
compared to local features extracted by a convolutional network in Sect. 5. The
evaluation of performance measures for OCT segmentation of our novel app-
roach are reported in Sect. 5 and compared to the state-of-the-art method given
in [16].

Fig. 1. From left to right: 3D OCT volume scan dimension 512 × 512 × 256 of healthy
human retina with ambiguous locations of layer boundaries. The resulting segmenta-
tion of 11 layers expressing the order preserving labeling of the proposed approach.
Illustration of boundary surfaces between different segmented cell layers.

2 Assignment Flow

We summarize the assignment flow approach introduced by [4] and refer to the
recent survey [22] for more background and a review of recent related work.

Assignment Manifold. Let (F , dF ) be a metric space and Fn = {fi ∈ F : i ∈
I}, |I| = n given data. Assume that a predefined set of prototypes F∗ = {f∗

j ∈
F : j ∈ J }, |J | = c is given. Data labeling denotes assignments j → i, f∗

j → fi

to be determined in a spatially regularized fashion. The assignments at each
pixel i ∈ I are encoded by assignment vectors Wi = (Wi1, . . . , Wic)� ∈ S in the
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relative interior S = rintΔc of the probability simplex, that becomes a Rieman-
nian manifold (S, g) endowed with the Fisher-Rao metric g from information
geometry. The assignment manifold (W, g), W = S × · · · × S (n = |I| factors)
is the product manifold whose points encode the label assignments at all pixels.

Assignment Flow. Based on the given data and prototypes, the distance vec-
tor field DF ;i =

(
dF (fi, f

∗
1 ), . . . , dF (fi, f

∗
c )

)�
, i ∈ I is well defined. This data

representation is lifted to the assignment manifold by the likelihood map and the
likelihood vectors, respectively,

Li : S → S, Li(Wi) =
Wie

− 1
ρ DF;i

〈Wi, e
− 1

ρ DF;i〉
, i ∈ I. (2.1)

This map is based on the affine e-connection of information geometry and the
scaling parameter ρ > 0 is used for normalizing the a-prior unknown scale of the
components of DF ;i that depends on the specific application at hand. The like-
lihood vectors are spatially regularized by the similarity map and the similarity
vectors, respectively,

Si : W → S, Si(W ) = ExpWi

( ∑

k∈Ni

wik Exp−1
Wi

(
Lk(Wk)

))
, i ∈ I, (2.2)

where Expp(v) = pev/p

〈p,ev/p〉 is the exponential map corresponding to the e-
connection and positive weights ωik, k ∈ Ni, that sum up to 1 on every patch
around pixel i indexed by Ni, determine the regularization properties.

The assignment flow is induced on the assignment manifold W by the locally
coupled system of nonlinear ODEs

Ẇi = RWi
Si(W ), Wi(0) = 1S , i ∈ I, (2.3)

where the map Rp = Diag(p) − pp�, p ∈ S turns the right-hand side into a
tangent vector field and 1W ∈ W denotes the barycenter of the assignment
manifold W. The solution W (t) ∈ W is numerically computed by geometric
integration [27] and determines a labeling W (T ) for sufficiently large T after
a trivial rounding operation. Convergence and stability of the assignment flow
have been studied by [28].

3 OCT Data Representation by Covariance Descriptors

In this section, we briefly sketch the basic geometric notation for representation
of OCT data in terms of covariance descriptors fi ∈ Fn [25] and identify the
metric data space (F , dF ) underlying (2.1).

The Manifold Pd. The Riemannian manifold (Pd, g) of positive definite matri-
ces of dimension (d+1)(d)

2 and the Riemannian metric are given by

Pd = {S ∈ R
d×d : S = S�, S is positive definite} (3.1a)

gS(U, V ) = tr(S−1US−1V ), U, V ∈ TSPd = {S ∈ R
d×d : S� = S}. (3.1b)
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The Riemannian distance is given by

dPd
(S, T ) =

( ∑

i∈[d]

(
log λi(S, T )

)2)1/2

, (3.2)

whereas the globally defined exponential map reads

expS(U) = S
1
2 expm(S− 1

2 US− 1
2 )S

1
2 , (3.3)

with expm(·) denoting the matrix exponential. Given a smooth objective func-
tion J : Pd → R, the Riemannian gradient is given by

grad J(S) = S
(
∂J(S)

)
S ∈ TSPd, (3.4)

where the symmetric matrix ∂J(S) is the Euclidean gradient of J at S.

Region Covariance Descriptors. To apply the introduced geometric frame-
work, we model each OCT volume by a mapping I : D → R+ where D ⊂ R

3 is
an underlying spatial domain.

To each voxel v ∈ D, we associate the local feature vector f : D → R
10,

f(v) := (I(v),∇xI(v),∇yI(v),∇zI(v),
√

2∇xyI(v), . . . ,∇zzI(v))� (3.5)

assembled from the raw intensity value I(v) as well as first- and second-order
responses of derivatives filters capturing information from larger scales following
[13]. By introducing a suitable geometric graph spanning D, we can associate
a neighborhood N (i) of fixed size with each voxel i ∈ I as in (2.2). For each
neighborhood, we define the regularized region covariance descriptor Si as

Si :=
∑

j∈N (i)

θij(fj − fi)(fj − fi)T + εI, fi =
∑

k∈N (i)

θikfk, (3.6)

as a weighted empirical covariance matrix with respect to feature vectors fj . The
small value 1 	 ε > 0 acts as a regularization parameter enforcing positive def-
initeness of Si. In the following, we use the shorthand notation [n] = {1, . . . , n}
for natural numbers n.

Computing Prototypical Covariance Descriptors. Given a set of covari-
ance descriptors

SN = {(S1, ω1), . . . , (SN , ωN )} ⊂ Pd (3.7)

together with positive weights ωi, we next focus on the solution of the problem

S = arg min
S∈Pd

J(S;SN ), J(S;SN ) =
∑

i∈[N ]

ωid
2
Pd

(S, Si), (3.8)

with the distance dPd
given by (3.2). From (3.3), we deduce

U = exp−1
S ◦ expS(U) = S

1
2 logm

(
S− 1

2 expS(U)S− 1
2
)
S

1
2 (3.9)
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with the matrix logarithm logm = expm−1 [15, Section 11]. The efficient mean
retrieval of (3.8) regarding the evaluation of (3.2) requires a nontrivial matrix
decomposition that has to be applied multiple times to every voxel (vertex) of a
3D gridgraph. This results in an overall quite expensive approach in particular
for a large data set. Therefore we reduce the computational costs by relying on
an approximation of the Riemannian mean by employing surrogate metrics and
distances introduced below.

Log-Euclidean Distance and Means. A computationally cheap approach
was proposed by [3] (among several other ones). Based on the operations

S1 � S2 = expm
(
logm(S1) + logm(S2)

)
, (3.10a)

λ · S = expm
(
λ logm(S)

)
, (3.10b)

the set (Ps,�, ·) becomes isomorphic to the vector space where � plays the role
of addition. Consequently, the mean of the data SN given by (3.7) is defined
analogous to the arithmetic mean by

S = expm
( ∑

i∈[N ]

ωi logm(Si)
)
. (3.11)

While computing the mean is considerably cheaper than integrating the flow
induced by (3.4) with respect to objective (3.8), the geometry (curved structure)
of the manifold Pd is ignored. Therefore, in the next section, we additionally
consider another approximation of the Riemannian mean that better respects
the underlying geometry but can still be evaluated efficiently.

S-Divergence and Means. For an approximation of the objective function
(3.8), we replace the Riemannian d2g(p, q) distance by the Stein divergence pro-
posed by Sra [24]

Ds(S1, S2) = log det
(S1 + S2

2

)
− 1

2
log det(S1S2), S, S1, S2 ∈ Pd, (3.12)

and avoid involved generalized eigenvalue problem for evaluation of (3.2) by
replacing (3.8) with

S = arg min
S∈Pd

Js(S;SN ), Js(S;SN ) =
∑

i∈[N ]

ωiDs(S, Si). (3.13)

We refer to, e.g., [5,6] for a more complete exposition of divergence functions.
The Riemannian gradient flow for this specific problem reads

Ṡ = − grad Js(S;SN )
(3.4)
= −S∂J(S;SN )S (3.14a)

= −1
2
(
SR(S;SN )S − S

)
, R(S;SN ) =

∑

i∈[N ]

ωi

(S + Si

2

)−1

. (3.14b)
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Discretizing the flow using the geometric explicit Euler scheme with step size h
yields,

S(t+1) = expS(t)

(−h grad Js(S(t);SN )
)

(3.15a)

(3.3)
= S

1
2
(t) expm

(h

2
(
I − S

1
2
(t)R(S(t);SN )S

1
2
(t)

))
S

1
2
(t). (3.15b)

Using as initial point S(0) the log-Euclidean mean (3.11) defines the following
algorithm that we use for mean retrieval throughout the present paper.

Algorithm 1: Geometric Matrix Mean Based on the S-divergence.
Initialization, ε (termination threshold)
t = 0, S(0) solves (3.11)
ε0 > ε (any value ε0)
while εt > ε do

LL� = S(t)

LiL
�
i =

S(t)+Si

2
for i ∈ [N ]

U = I − S
1
2
(t)

( ∑
i∈[N ] ωi(LiL

�
i )−1

)
S

1
2
(t)

S(t+1) = S
1
2
(t) expm(h

2
U)S

1
2
(t)

εt+1 := ‖U‖F , t ← t + 1

4 Ordered Layer Segmentation

In this section, we work out an extension of the assignment flow (Sect. 2) which
is able to respect the order of cell layers as a global constraint while remaining in
the same smooth geometric setting. In particular, existing schemes for numerical
integration still apply to the novel variant.

4.1 Ordering Constraint

With regard to segmenting OCT data volumes, the order of cell layers is crucial
prior knowledge. Figure 2 illustrates for a schematic OCT volume acquisition
of 11 retina layers and 3 separating membranes (ILM, ELM, BM) and typical
scan notations used throughout the paper. To incorporate this knowledge into
the geometric setting of Sect. 2, we require a smooth notion of ordering which
allows to compare two probability distributions. In the following, we assume
prototypes f∗

j ∈ F , j ∈ [n] in some feature space F to be indexed such that
ascending label indices reflect the physiological order of cell layers.
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Fig. 2. OCT volume acquisition: 1© is the A-scan axis (single A-scan is marked yellow).
Multiple A-scans taken in rapid succession along axis 2© form a two-dimensional B-scan
(single B-scan is marked blue). The complete OCT volume is formed by repeating this
procedure along axis 3©. A list of retina layers and membranes we expect to find in
every A-scan is shown on the left. (Color figure online)

Definition 1 (Ordered Assignment Vectors). A pair of voxel assignments
(wi, wj) ∈ S2, i < j within a single A-scan is called ordered, if wj − wi ∈ K =
{By : y ∈ R

c
+} which is equivalent to Q(wj − wi) ∈ R+ with the matrices

Bij :=

⎧
⎪⎨

⎪⎩

−1 if i = j

1 if i − j = 1
0 else

, Qi,j =

{
1 if i ≥ j

0 else
(4.1)

4.2 Ordered Assignment Flow

Likelihoods as defined in (2.1) emerge by lifting − 1
ρDF regarded as Euclidean

gradient of − 1
ρ 〈DF ,W 〉 to the assignment manifold. It is our goal to encode

order preservation into a generalized likelihood matrix Lord(W ). To this end,
consider the assignment matrix W ∈ SN for a single A-scan consisting of N
voxels. We define the related matrix Y (W ) ∈ R

N(N−1)×c with rows indexed by
pairs (i, j) ∈ [N ]2, i = j in fixed but arbitrary order. Let the rows of Y be given
by

Y(i,j)(W ) =

{
Q(wj − wi) if i > j

Q(wi − wj) if i < j
. (4.2)

By construction, an A-scan assignment W is ordered exactly if all entries of
the corresponding Y (W ) are nonnegative. This enables to express the ordering
constraint on a single A-scan in terms of the energy objective

Eord(W ) =
∑

(i,j)∈[N ]2, i �=j

φ(Y(i,j)(W )) . (4.3)
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where φ : Rc → R denotes a smooth approximation of δRc
+
. In our numerical

experiments, we choose

φ(y) =
〈

γ exp
(

− 1
γ

y

)
,1

〉
(4.4)

with a constant γ > 0. Suppose a full OCT volume assignment matrix W ∈ W
is given and denote the set of submatrices for each A-scan by C(W ). Then order
preserving assignments consistent with given distance data DF in the feature
space F are found by minimizing the energy objective

E(W ) = 〈DF ,W 〉 +
∑

WA∈C(W )

Eord(WA) . (4.5)

We consequently define the generalized likelihood map

Lord(W ) = expW

(−∇E(W )
)

= expW

(
−1

ρ
DF −

∑

WA∈C(W )

∇Eord(WA)
)

(4.6)

and specify a corresponding assignment flow variant.

Definition 2 (Ordered Assignment Flow). The dynamical system

Ẇ = RW S(Lord(W )), W (0) = 1W (4.7)

evolving on W is called the ordered assignment flow.

By applying known numerical schemes [27] for approximately integrating the flow
(4.7), we find a class of discrete-time image labeling algorithms which respect
the physiological cell layer ordering in OCT data. In Sect. 5, we benchmark
the simplest instance of this class, emerging from the choice of geometric Euler
integration.

5 Experimental Results and Discussion

OCT-Data. In the following sections, we describe experiments performed on
a set of volumes with annotated OCT B-scans extracted by a spectral domain
OCT device (Heidelberg Engineering, Germany). Further, we always assume an
OCT volume in question to consist of NB B-scans, each comprising NA A-scans
with N voxels.

While raw OCT volume data has become relatively plentiful in clinical set-
tings, large volume datasets with high-quality gold-standard segmentation are
not widely available at the time of writing. By extracting features which rep-
resent a given OCT scan locally as opposed to incorporating global context at
every stage, it is our hypothesis that superior generalization can be achieved in
the face of limited data availability. This is most expected for pathological cases
in which global shape of cell layers may deviate drastically from seen examples in



Assignment Flow for Order-Constrained OCT Segmentation 67

the training data. Our approach consequently differs from common deep learn-
ing methods which explicitly aim to incorporate global context into the feature
extraction process. Utilization of shape prior limits the methods ability to gen-
eralize to unseen data if large deviation from the expected global shape seen in
training is present.

Prototypes onPd. For applying the framework introduced in Sect. 2, we inter-
pret covariance features (3.6) as data points fi ∈ Fn evolving on the natural
metric space (3.1a) and model each retina tissue indexed by l ∈ {1, . . . , C} with
a random variable Sl taking values {Sk

l }Nl

k=1. To generalize the retina layer detec-
tion to multiple OCT data sets instead of just using a single prototype (3.13),
we partition the samples {Sk

l }Nl

k=1 into Kl disjoint sets {Sl
1, . . . , S

l
Kl

} with rep-
resentatives {S̃1

l , . . . , S̃Kl

l }. These are serving as prototypes f∗
j , j ∈ J which are

determined offline for each l ∈ {1, . . . , 14} as the minimal expected loss measured
by the Stein divergence (3.12) according to K-means like functional

Epl
(Sl) =

Kl∑

j=1

p(j)
∑

Si∈Sj

p(i|j)
p(j)

DS(Si
l , S̃

j
l ), p(i, j) =

1
Nl

, p(j) =
Nj

Nl
, (5.1)

with marginals pl(j) =
∑Nj

i=1 pl(j|Si
l ) and using Algorithm 1 for mean retrieval.

The experimental results discussed next illustrate the relative influence of the
covariance descriptors and regularization property of the ordered assignment
flow, respectively. Throughout, we fixed the grid connectivity Ni for each voxel
i ∈ I to 3 × 5 × 5. Figure 3, second row, illustrates a typical result of nearest
neighbor assignment and the volume segmentation without ordering constraints.
As the second raw shows, the high texture similarity between the choroid and
GCL layer yields wrong predictions resulting in violation of biological retina
ordering through the whole volume which cannot be resolved with the based
assignment flow approach given in Sect. 2. In third row of Fig. 3, we plot the
ordered volume segmentation by stepwise increasing the parameter γ defined
in (4.4), which controls the ordering regularization by means of the novel gen-
eralized likelihood matrix (4.6). The direct comparison with the ground truth
remarkably shows how the ordered labelings evolve on the assignment manifold
while simultaneously giving accurate data-driven detection of RNFL, OPL, INL
and the ONL layer. For the remaining critical inner layers, the local prototypes
extracted by (5.1) fail to segment the retina properly, due to the presence of
vertical shadow regions originating from the scanning process of the OCT-data.

CNN Features. In addition to the covariance features in Sect. 3, we compare
a second approach to local feature extraction based on a convolutional neural
network architecture. For each node i ∈ [n], we trained the network to directly
predict the correct class in [c] using raw intensity values in Ni as input. As
output, we find a score for each layer which can directly be transformed into a
distance vector suitable as input to the ordered assignment flow (4.7) via (4.6).
The specific network used in our experiments has a ResNet architecture compris-
ing four residually connected blocks of 3D convolutions and ReLU activation.
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Fig. 3. From top to bottom. 1st row: One B-scan from OCT-volume showing the
shadow effects with annotated ground truth on the right. 2nd row: Nearest neighbor
assignment based on prototypes computed with Stein divergence and result of the
segmentation returned by the basic assignment flow (Sect. 2) on the right. 3rd row:
Illustration of the proposed layer-ordered volume segmentation based on covariance
descriptors with ordered volume segmentation for different γ = 0.5 on left and γ = 0.1
on the right (cf. Eq. (4.4)). 4th row: Illustration of local rounding result extracted
from Res-Net and the result of ordered flow on the right.

Model size was hand-tuned for different sizes of input neighborhoods, adjusting
the number of convolutions per block as well as corresponding channel dimen-
sions. In particular, labeling accuracy is increased for detection of RPE and PR2
layers, as illustrated in the last raw of Fig. 3.

Evaluation. To assess the segmentation performance of our proposed approach,
we compared to the state of the art graph-based retina segmentation method of
10 intra-retinal layers developed by the Retinal Image Analysis Laboratory at
the Iowa Institute for Biomedical Imaging [1,11,16], also referred to as the IOWA
Reference Algorithm. We quantify the region agreement with manual segmen-
tation regarded as gold standard. Specifically, we calculate the DICE similarity
coefficient [7] and the mean absolute error for segmented cell layer within the
pixel size of 3.87 µm compared to human grader on an OCT volume consisting
of 61 B-scans reported in Table 1. To allow a direct comparison to the proposed
segmentation method, the evaluation was performed on layers summarized in
Table 1. We point out that in general our method is not limited to any number
of segmented layers if ground truth is available and further performance evalu-
ations though additional comparison with the method proposed in [19] will be
included in the complete report of the proposed approach which is beyond scope
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of this paper. The OCT volumes were imported into OCTExplorer 3.8.0 and
segmented using the predefined Macular-OCT IOWA software.

Both methods detect the RNFL layer with high accuracy whereas for the
underlying retina tissues the automated segmentation with ordered assignment
flow indicates the smallest mean absolute error and the highest Dice similarity
index underpinning the superior performance of order preserving labeling in view
of accuracy.

Fig. 4. Visualization of segmented intraretinal surfaces: Left: IOWA layer detection
of 10 boundaries, Middle: Proposed labeling result based on local features extraction,
Right: Ground truth. For a quantitative comparison: see Table 1.

Table 1. Mean absolute error measures are given in pixels (1 pixel = 3.87 µm). Left:
Dice and mean absolute error of the proposed approach. Right: Resulting metrics
achieved by IOWA reference algorithm. All numbers demonstrate the superior perfor-
mance of our novel order-preserving labeling approach.

OAF DICE index Mean absolute error

RNFL 0.9962 3.5920

GCL 0.8390 1.3091

IPL 0.8552 4.0340

INL 0.8714 6.0180

OPL 0.8886 4.5345

ONL+ELM+PR1 0.9070 1.9550

PR2+RPE 0.9784 2.6511

IOWA DICE index Mean absolute error

RNFL 0.9906 2.8290

GCL 0.7933 2.1063

IPL 0.7148 5.0753

INL 0.7696 6.0090

OPL 0.8510 5.4852

ONL+ELM+PR1 0.8374 7.0928

PR2+RPE 0.9006 12.4891

6 Conclusion

In this paper we presented a novel, fully automated and purely data driven app-
roach for retina segmentation in OCT-volumes. Compared to methods [9,16] and
[19] that have proven to be particularly effective on tissue classification with a
priory known retina shape orientation, our ansatz merely relies on local features
and yields ordered labelings which are directly enforced through the underly-
ing geometry of statistical manifold. Consequently, by building on the feasible
concept of spatially regularized assignment [22], the ordered flow (Definition 2)
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possesses the potential to be extended towards the detection of pathological
retina changes and vascular vessel structure, which is the objective of our cur-
rent research.
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Abstract. Various hand-crafted feature representations of bio-signals
rely primarily on the amplitude or power of the signal in specific fre-
quency bands. The phase component is often discarded as it is more
sample specific, and thus more sensitive to noise, than the amplitude.
However, in general, the phase component also carries information rel-
evant to the underlying biological processes. In fact, in this paper we
show the benefits of learning the coupling of both phase and ampli-
tude components of a bio-signal. We do so by introducing a novel self-
supervised learning task, which we call phase-swap, that detects if bio-
signals have been obtained by merging the amplitude and phase from
different sources. We show in our evaluation that neural networks trained
on this task generalize better across subjects and recording sessions than
their fully supervised counterpart.

1 Introduction

Bio-signals, such as Electroencephalograms and Electrocardiograms, are multi-
variate time-series generated by biological processes that can be used to assess
seizures, sleep disorders, head injuries, memory problems, heart diseases, just
to name a few [19]. Although clinicians can successfully learn to correctly inter-
pret such bio-signals, their protocols cannot be directly converted into a set of
numerical rules yielding a comparable assessment performance. Currently, the
most effective way to transfer this expertise into an automated system is to
gather a large number of examples of bio-signals with the corresponding label-
ing provided by a clinician, and to use them to train a deep neural network.
However, collecting such labeling is expensive and time-consuming. In contrast,
bio-signals without labeling are more readily available in large numbers.

Recently, self-supervised learning (SelfSL) techniques have been proposed to
limit the amount of required labeled data. These techniques define a so-called
pretext task that can be used to train a neural network in a supervised manner
on data without manual labeling. The pretext task is an artificial problem, where
a model is trained to output what transformation was applied to the data. For
instance, a model could be trained to output the probability that a time-series
had been time-reversed [25]. This step is often called pre-training and it can be
c© Springer Nature Switzerland AG 2021
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carried out on large data sets as no manual labeling is required. The training of
the pre-trained neural network then continues with a small learning rate on the
small target data set, where labels are available. This second step is called fine-
tuning, and it yields a substantial boost in performance [21]. Thus, SelfSL can
be used to automatically learn physiologically relevant features from unlabelled
bio-signals and improve classification performance.

SelfSL is most effective if the pretext task focuses on features that are relevant
to the target task. Typical features work with the amplitude or the power of the
bio-signals, but as shown in the literature, the phase carries information about
the underlining biological processes [2,15,20]. Thus, in this paper, we propose a
pretext task to learn the coupling between the amplitude and the phase of the
bio-signals, which we call phase swap (PS). The objective is to predict whether
the phase of the Fourier transform of a multivariate physiological time-series
segment was swapped with the phase of another segment.

We show that features learned through this task help classification tasks
generalize better, regardless of the neural network architecture.

Our contributions are summarized as follows

– We introduce phase swap, a novel self-supervised learning task to detect the
coupling between the phase and the magnitude of physiological time-series;

– With phase swap, we demonstrate experimentally the importance of incorpo-
rating the phase in bio-signal classification;

– We show that the learned representation generalizes better than current state
of the art methods to new subjects and to new recording sessions;

– We evaluate the method on four different data sets and analyze the effect of
various hyper-parameters and of the amount of available labeled data on the
learned representations.

2 Related Work

Self-supervised Learning. Self-supervised learning refers to the practice of
pre-training deep learning architectures on user-defined pretext tasks. This can
be done on large volumes of unlabeled data since the annotations can be auto-
matically generated for these tasks. This is a common practice in the Natural
Language Processing literature. Examples of such works include Word2Vec [17],
where the task is to predict a word from its context, and BERT [3], where the
model is pretrained as a masked language model and on the task of detect-
ing consecutive sentences. The self-supervision framework has also been gaining
popularity in Computer Vision. Pretext tasks such as solving a jigsaw puzzle
[21], predicting image rotations [5] and detecting local inpainting [11] have been
shown to be able to learn useful data representations for downstream tasks.
Recent work explores the potential of self-supervised learning for EEG signals
[1] and time series in general [10]. In [1], the focus is on long-term/global tasks
such as determining whether two given windows are nearby temporally or not.

Deep Learning for Bio-signals. Bio-signals include a variety of physiological
measures across time such as: Electroencephalogram (EEG), Electrocardiogram
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Fig. 1. Illustration of the phase-swap operator Φ. The operator takes two signals as
input and then combines the amplitude of the first signal with the phase of the second
signal in the output.

(ECG), Electromyogram (EMG), Electrooculography (EOG), etc. These signals
are used by clinicians in various applications, such as sleep scoring [18] or seizure
detection [23]. Similarly to many other fields, bio-signals analysis has also seen
the rise in popularity of deep learning methods for both classification [7] and
representation learning [1]. The literature review [22] showcases the application
of deep learning methods to various EEG classification problems such as brain
computer interfaces, emotion recognition and seizure detection. The work by
Banville et al. [1] leverages self-supervised tasks based on the relative temporal
positioning of pairs/triplets of EEG segments to learn a useful representation
for a downstream sleep staging application.

Phase Analysis. The phase component of bio-signals has been analyzed before.
Busch et al. [2] show a link between the phase of the EEG oscillations, in the
alpha (8–12 Hz) and theta (4–8 Hz) frequency bands, and the subjects’ ability to
perceive the flash of a light. The phase of the EEG signal is also shown to be more
discriminative for determining firing patterns of neurons in response to certain
types of stimuli [20]. More recent work, such as [15], highlights the potential link
between the phase of the different EEG frequency bands and cognition during
proactive control of task switching.

3 Learning to Detect the Phase-Amplitude Coupling

In this section, we define the phase swap operator and the corresponding SelfSL
task, and present the losses used for pre-training and fine-tuning.

Let DW
i,j = {(xi,j,k, yi,j,k)}Nk=1 be the set of samples associated with the i-

th subject during the j-th recording session. Each sample xi,j,k ∈ RC×W is a
multivariate physiological time-series window where C and W are the number of
channels and the window size respectively. yi,j,k is the class of the k-th sample.
Let F and F−1 be the Discrete Fourier Transform operator and its inverse,
respectively. These operators will be applied to a given vector x extracted from
the bio-signals. In the case of multivariate signals, we apply these operators
channel-wise.
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Fig. 2. Illustration of the PS operator on a pair of 1.25 s segments taken from the
Fpz-Cz channel in the SC data set [18]. The original signals are x1 and x2.

Fig. 3. Training with either the self-supervised or the supervised learning task.

For the sake of clarity, we provide the definitions of the absolute value and the
phase element-wise operators. Let z ∈ C, where C denotes the set of complex
numbers. Then, the absolute value, or magnitude, of z is denoted |z| and the
phase of z is denoted �z. With such definitions, we have the trivial identity
z = |z|�z.

Given two samples xi,j,k, xi,j,k′ ∈ DW
i,j , the phase swap (PS) operator Φ is

Φ
(
xi,j,k, xi,j,k′

)
.= F−1

[∣∣F (
xi,j,k

)∣∣ � �F
(
xi,j,k′

)]
= xi,j,k

swap, (1)

where � is the element-wise multiplication (see Fig. 1). Note that the energy per
frequency is the same for both xi,k

swap and xi,k and that only the phase, i.e., the
synchronization between the different frequencies, changes. Examples of phase
swapping between different pairs of signals are shown in Fig. 2.

Notice how the shape of the oscillations change drastically when the PS
operator is applied and no trivial shared patterns seem to emerge.

The PS pretext task is defined as a binary classification problem. A sample
belongs to the positive class if it is transformed using the PS operator, otherwise
it belongs to the negative class. In all our experiments, both inputs to the PS
operator are sampled from the same patient during the same recording session.
Because the phase is decoupled from the amplitude of white noise, our model
has no incentive to detect noise patterns. On the contrary, it will be encouraged
to focus on the structural patterns in the signal in order to detect whether the
phase and magnitude of the segment are coupled or not.

We use the FCN architecture proposed by Wang et al. [24] as our core neural
network model E : RC×W → RH×W/128. It consists of 3 convolutions blocks
using a Batch Normalization layer [8] and a ReLU activation followed by a
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pooling layer. The output of E is then flattened and fed to two Softmax layers
CSelf and CSup, which are trained on the self-supervised and supervised tasks
respectively.

Instead of a global pooling layer, we use an average pooling layer with a
stride of 128. This allows us to keep the number of weights of the supervised
network CSup ◦E constant when the self-supervised task is defined on a different
window size. The overall framework is illustrated in Fig. 3. Note that the encoder
network E is the same for both tasks.

The loss function for training on the SelfSL task is the cross-entropy

LSelf

(
ySelf , E,CSelf

)
= − 1

N

∑N
i=1

∑KSelf

k=1 ySelf
i,k log (CSelf ◦ E(xi))k , (2)

where ySelf
i,k and (CSelf ◦ E(xi))k are the one-hot representations of the true

SelfSL pretext label and the predicted probability vector respectively. We opti-
mize Eq. (2) with respect to the parameters of both E and CSelf . Similarly, we
define the loss function for the (supervised) fine-tuning as the cross-entropy

LSup

(
ySup, E,CSup

)
= − 1

N

∑N
i=1

∑KSup

k=1 ySup
i,k log (CSup ◦ E(xi))k , (3)

where ySup
i,k denotes the label for the target task. The y

Sup/Self
i,k vectors are in

RN×KSup/Self , where N and KSup/Self are the number of samples and classes
respectively. In the fine-tuning, E is initialized with the parameters obtained
from the optimization of Eq. (2) and CSup with random weights, and then they
are both updated to optimize Eq. (3), but with a small learning rate.

4 Experiments

4.1 Data Sets

In our experiments, we use the Expanded SleepEDF [6,12,18], the CHB-MIT
[23] and ISRUC-Sleep [13] data sets as they contain recordings from multiple
patients. This allows us to study the generalization capabilities of the learned
feature representation to new recording sessions and new patients. The Expanded
SleepEDF database contains two different sleep scoring data sets

– Sleep Cassette Study (SC) [18]: Collected between 1987 and 1991 in order
to study the effect of age on sleep. It includes 78 patients with 2 recording
sessions each (3 recording sessions were lost due to hardware failure).

– Sleep Telemetry Study (ST) [12]: Collected in 1994 as part of a study of
the effect of Temazepam on sleep in 22 different patients with 2 recordings
sessions each.

Both data sets define sleep scoring as a 5-way classification problem. The 5
classes in question are the sleep stages: Wake, NREM 1, NREM 2, NREM 3/4,
REM. The NREM 3 and 4 are merged into one class due to their small number
of samples (these two classes are often combined together in sleep studies).
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The third data set we use in our experiments is the CHB-MIT data set
[23] recorded at the Children’s Hospital Boston from pediatric patients with
intractable seizures. It includes multiples recording files across 22 different
patients. We retain the 18 EEG channels that are common to all recording files.
The sampling rate for all channels 256 Hz. The target task defined on this data
set is predicting whether a given segment is a seizure event or not, i.e., a binary
classification problem. For all the data sets, the international 10–20 system [16]
was adopted for the choice of the positioning of the EEG electrodes.

The last data set we use is ISRUC-Sleep [13], for sleep scoring as a 4-way
classification problem. We use the 14 channels extracted in the Matlab version
of the data set. This data set consists of three subgroups: subgroups I and II
contain respectively recordings from 100 and 8 subjects with sleep disorders,
whereas subgroup III contains recordings from 10 healthy subjects. This allows
us to test the generalization from diagnosed subjects to healthy ones.

For the SC, ST and ISRUC-sleep data sets we resample the signals to
102.4 Hz. This resampling allows us to simplify the neural network architec-
tures we use, because in this case most window sizes can be represented by a
power of 2, e.g., a window of 2.5 s corresponds to 256 samples. We normalize
each channel per recording file in all data sets to have zero mean and a standard
deviation of one.

4.2 Training Procedures and Models

In the supervised baseline (respectively, self-supervised pre-training), we train
the randomly initialized model CSup ◦ E (respectively, CSelf ◦ E) on the labeled
data set for 10 (respectively, 5) epochs using the Adam optimizer [14] with a
learning rate of 10−3 and β = (0.9, 0.999). We balance the classes present in
the data set using resampling (no need to balance classes in the self-supervised
learning task). In fine-tuning, we initialize E’s weights with those obtained from
the SelfSL training and then train CSup ◦ E on the labeled data set for 10
epochs using the Adam optimizer [14], but with a learning rate of 10−4 and
β = (0.9, 0.999). As in the fully supervised training, we also balance the classes
using re-sampling. In all training cases, we use a default batch size of 128.

We evaluate our self-supervised framework using the following models

– PhaseSwap: The model is pre-trained on the self-supervised task and fine-
tuned on the labeled data;

– Supervised: The model is trained solely in a supervised fashion;
– Random: CSup is trained on top of a frozen randomly initialized E;
– PSFrozen: We train CSup on top of the frozen weights of the model E pre-

trained on the self-supervised task.

4.3 Evaluation Procedures

We evaluate our models on train/validation/test splits in our experiments. In
total we use at most 4 sets, which we refer to as the training set, the Validation
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Set, the Test set A and the Test set B. The validation set and test set A and
the training set share the same patient identities, while B contains recordings
from other patients. The validation set and test set A use distinct recording
sessions. Validation Set and the training set share the same patient identities
and recording sessions with a 75% (for the training set) and 25% (Validation
Set) split. We use each test set for the following purposes

– Validation Set: this set serves as a validation set;
– Test set A: this set allows us to evaluate the generalization error on new

recording sessions for patients observed during training;
– Test set B: this set allows us to evaluate the generalization error on new

recording sessions for patients not observed during training.

We use the same set of recordings and patients for both the training of the
self-supervised and supervised tasks. For the ST, SC and ISRUC data sets we
use class re-balancing only during the supervised fine-tuning. However, for the
CHB-MIT data set, the class imbalance is much more extreme: The data set
consists of less than 0.4% positive samples. Because of that, we under-sample
the majority class both during the self-supervised and supervised training. This
prevents the self-supervised features from completely ignoring the positive class.
Unless specified otherwise, we use WSelf = 5 s and WSup = 30 s for the ISRUC,
ST and SC data sets, WSelf = 2 s and WSup = 10 s for the CHB-MIT data set,
where WSelf and WSup are the window size for the self-supervised and supervised
training respectively. For the ISRUC, ST and SC data sets, the choice of WSup

corresponds to the granularity of the provided labels. For the CHB-MIT data set,
although labels are provided at a rate 1 Hz, the literature in neuroscience usually
defines a minimal duration of around 10 s for an epileptic event in humans [4],
which motivates our choice of WSup = 10 s.

Evaluation Metric. As an evaluation metric, we use the balanced accuracy

AccBalanced(y, ŷ) =
1
K

K∑
k=1

∑N
i=1 ŷi,kyi,k∑N

i=1 yi,k
, (4)

which is defined as the average of the recall values per class, where K, N , y and
ŷ are respectively the number of classes, the number of samples, the one-hot
representation of true labels and the predicted labels.

4.4 Generalization on the Sleep Cassette Data Set

We explore the generalization of the self-supervised trained model by varying
the number of different patients used in the training set for the SC data set. The
rtrain is the percentage of patient identities used for training, in Validation Set
and in Test set A. In Table 1, we report the balanced accuracy on all test sets for
various values of rtrain. The self-supervised training was done using a window
size of WSelf = 5 s. We observe that the PhaseSwap model performs the best
for all values of rtrain. We also observe that the performance gap between the
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Table 1. Comparison of the performance of the PhaseSwap model on the SC data
set for various values of rtrain. For rtrain = 100%∗ we use all available recordings for
the training and the Validation sets. Results with different rtrain are not comparable.

rtrain Experiment Validation set Test set A Test set B

20% PhaseSwap 84.3% 72.0% 69.6%

20% Supervised 79.4% 67.9% 66.0%

50% PhaseSwap 84.9% 75.1% 73.3%

50% Supervised 81.9% 71.7% 69.4%

75% PhaseSwap 84.9% 77.6% 76.1%

75% Supervised 81.6% 73.7% 72.8%

100%* PhaseSwap 84.3% – –

100%* Supervised 83.5% – –

PhaseSwap and Supervised models is narrower for larger values for rtrain.
This is to be expected since including more identities in the training set allows
the Supervised model to generalize better. For rtrain = 100%∗ we use all
recording sessions across all identities for the training set and in the Validation
Set (since all identities and sessions are used, the Test sets A and B are empty).
The results obtained for this setting show that there is still a slight benefit with
the PhaseSwap pre-training even when labels are available for most of the data.

4.5 Generalization on the ISRUC-Sleep Data Set

Using the ISRUC-Sleep data set [13], we aim to evaluate the performance of
the PhaseSwap model on healthy subjects when it was trained on subjects with
sleep disorders. For the self-supervised training, we use WSelf = 5 s. The results
are reported in Table 2. Note that we combined the recordings of subgroup
II and the ones not used for the training from subgroup I into a single test
set since they are from subjects with sleep disorders. We observe that for both
experiments, rtrain = 25% and rtrain = 50%, the PhaseSwap model outperforms
the supervised baseline for both test sets. Notably, the performance gap on
subgroup III is larger than 10%. This can be explained by the fact that sleep
disorders can drastically change the sleep structure of the affected subjects,
which in turn leads the supervised baseline to learn features that are specific to
the disorders/subjects present in the training set.

4.6 Comparison to the Relative Positioning Task

The Relative Positioning (RP) task was introduced by Banville et al. [1] as a
self-supervised learning method for EEG signals, which we briefly recall here.
Given xt and xt′ , two samples with a window size W and starting points t and
t′ respectively, the RP task defines the following labels



80 A. Lemkhenter and P. Favaro

Table 2. Comparison of the performance of the PhaseSwap model on the ISRUC-
Sleep data set for various values of rtrain.

rtrain Model Validation set Test set B
(subgroup I + II)

Test set B
(subgroup III)

25% PhaseSwap 75.8% 67.3% 62.8%

25% Supervised 75.9% 63.1% 47.9%

50% PhaseSwap 76.3% 68.2% 67.1%

50% Supervised 75.5% 68.3% 57.3%

Table 3. Comparison between the PS and RP pre-training on the SC data set.

Pre-training Validation set Test set A Test set B SelfSL validation accuracy

Supervised 79.4% 67.9% 66.0% –

PS 84.3% 72.0% 69.6% 86.9%

RP 80.3% 66.2% 65.4% 56.9%

CSelf (|ht − ht′ |) = 1 (|t − t′| ≤ τpos) − 1 (|t − t′| > τneg), where ht = E(xt),
ht′ = E(xt′), 1(·) is the indicator function, and τpos and τneg are predefined
quantities. Pairs that yield CSelf = 0 are discarded. | · | denotes the element-wise
absolute value operator.

Next, we compare our self-supervised task to the RP task [1]. For both
settings, we use WSelf = 5 s and rtrain = 20%. For the RP task we choose
τpos = τneg = 12 × WSelf . We report the balanced accuracy for all test sets on
the SC data set in Table 3. We observe that our self-supervised task outperforms
the RP task. This means that the features learned through the PS task allow
the model to perform better on unseen data.

4.7 Results on the Sleep Telemetry and CHB-MIT Data Sets

In this section, we evaluate our framework on the ST and CHB-MIT data sets.
For the ST data set, we use WSelf = 1.25 s, WSup = 30 s and rtrain = 50%. For
the CHB-MIT data set, we use WSelf = 2 s, WSup = 10 s, rtrain = 25% and 30
epochs for the supervised fine-tuning/training. As shown in Table 4, we observe
that for the ST data set, the features learned through the PS task produce a
significant improvement, especially on Test sets A and B. For the CHB-MIT data
set, the PS fails to provide the performance gains as observed for the previous
data sets. We believe that this is due to the fact that the PS task is too easy on
this particular data set: Notice how the validation accuracy is above 99%. With
a trivial task, self-supervised pre-training fails to learn any meaningful feature
representations.

In order to make the task more challenging, we introduce a new variant,
which we call PS + Masking, where we randomly zero out all but 6 randomly
selected channels for each sample during the self-supervised pre-training. The



Boosting Generalization in Bio-signal Classification 81

Table 4. Evaluation of the PhaseSwap model on the ST and CHB-MIT datasets.

Dataset Experiment Val. set Test set A Test set B SelfSL val. accuracy

ST Supervised 69.2% 52.3% 46.7% –

ST PhaseSwap 74.9% 60.4% 52.3% 71.3%

CHB-MIT Supervised 92.6% 89.5% 58.0% –

CHB-MIT PhaseSwap 92.2% 86.8% 55.1% 99.8%

CHB-MIT PS+Masking 91.7% 90.6% 59.8% 88.1%

Table 5. Comparison of the performance of the PhaseSwap model on the SC data
set for various values of the window size WSelf .

WSelf Experiment Validation set Test set A Test set B

1.25 s PhaseSwap 84.3% 72.0% 69.6%

2.5 s PhaseSwap 84.6% 71.9% 70.0%

5 s PhaseSwap 83.4% 72.5% 70.9%

10 s PhaseSwap 83.6% 71.6% 69.9%

30 s PhaseSwap 83.9% 71.0% 69.2%

– Supervised 79.4% 68.1% 66.1%

model obtained through this scheme performs the best on both sets A and B
and is comparable to the Supervised baseline on the validation set. As for the
reason why the PS training was trivial on this particular data set, we hypothesize
that this is due to the high spatial correlation in the CHB-MIT data set samples.
This data set contains a high number of homogeneous channels (all of them are
EEG channels), which in turn result in a high spatial resolution of the brain
activity. At such a spatial resolution, the oscillations due to the brain activity
show a correlation both in space and time [9]. However, our PS operator ignores
the spatial aspect of the oscillations. When applied, it often corrupts the spatial
coherence of the signal, which is then easier to detect than the temporal phase-
amplitude incoherence. This hypothesis is supported by the fact that the random
channel masking, which in turn reduces the spatial resolution during the self-
supervised training, yields a lower training accuracy, i.e., it is a non-trivial task.

4.8 Impact of the Window Size

In this section, we analyze the effect of the window size WSelf used for the self-
supervised training on the final performance. We report the balanced accuracy on
all our test sets for the SC data set in Table 5. For all these experiments, we use
20% of the identities in the training set. The capacity of the Supervised model
CSup ◦ E is independent of WSelf (see Sect. 3), and thus so is its performance.
We observe that the best performing models are the ones using WSelf = 2.5 s for
the Validation Set and WSelf = 5 s for sets A and B. We argue that the features
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Table 6. Balanced accuracy reported on the SC data set for the four training variants.

Experiment Validation set Test set A Test set B

Supervised 79.4% 67.9% 66.0%

PhaseSwap 84.3% 72.0% 69.6%

PSFrozen 75.2% 68.1% 67.1%

Random 70.1% 62.1% 63.9%

learned by the self-supervised model are less specific for larger window sizes. The
PS operator drastically changes structured parts of the time series, but barely
affects pure noise segments. As discussed in Sect. 3, white noise is invariant with
respect to the PS operator. With smaller window sizes, most of the segments
are either noise or structured patterns, but as the window size grows, its content
becomes a combination of the two.

4.9 Frozen vs Fine-Tuned Encoder

In Table 6, we analyze the effect of freezing the weights of E during the super-
vised fine-tuning. We compare the performance of the four variants described
in Sect. 4.2 on the SC data set. All variants use WSelf = 5 s, WSup = 30 s and
rtrain = 20%. As expected, we observe that the PhaseSwap variant is the most
performant one since it is less restricted in terms of training procedure than
PSFrozen and Random. Moreover, the PSFrozen outperforms the Random
variant on all test sets and is on par with the Supervised baseline on the Test set
B. This confirms that the features learned during pre-training are useful for the
downstream classification even when the encoder model E is frozen during the
fine-tuning. The last variant, Random, allows us to disentangle the contribu-
tion of the self-supervised task from the prior imposed by the architecture choice
for E. As we can see in Table 6, the performance of the PhaseSwap variant is
significantly higher than the latter variant, confirming that the self-supervised
task chosen here is the main factor behind the performance gap.

4.10 Architecture

Most of the experiments in this paper use the FCN architecture [24]. In this
section, we illustrate that the performance boost of the PhaseSwap method does
not depend on the neural network architecture. To do so, we also analyze the per-
formance of a deeper architecture in the form of the Residual Network (ResNet)
proposed by Humayun et al. [7]. We report in Table 7 the balanced accuracy
computed using the SC data set for two choices of WSelf ∈ {2.5 s, 30 s} and
two choices of rtrain ∈ {20%, 100%∗}. The table also contains the performance
of the FCN model trained using the PS task as a reference. We do not report
the results for the RP experiment using WSelf = 30 s as we did not manage to
make the self-supervised pre-training converge. All ResNet models were trained



Boosting Generalization in Bio-signal Classification 83

Table 7. Evaluation of the PhaseSwap model using the ResNet architecture on the
SC data set. Values denoted with a * are averages across two runs.

rtrain WSelf Architecture Experiment Val. set Test set A Test set B

20% 5 s FCN FCN + PS 84.3% 72.0% 69.6%

20% 5 s ResNet phase swap 82.1% 72.5% 69.6%

20% 5 s ResNet RP 72.3% 67.4% 65.9%

20% – ResNet supervised 79.1%* 70.0%* 66.5%*

20% 30 s ResNet phase swap 83.6% 70.7% 69.3%

100%* 5 s FCN FCN + PS 84.3% – –

100%* 5 s ResNet phase swap 81.2% – –

100%* 5 s ResNet RP 79.1% – –

100%* – ResNet supervised 84.2%* – –

100%* 30 s ResNet phase swap 84.2% – –

for 15 epochs for the supervised fine-tuning. For rtrain = 20%, we observe that
pre-training the ResNet on the PS task outperforms both the supervised and RP
pre-training. We also observe that for this setting, the model pre-trained with
WSelf = 30 s performs better on both the validation set and test set B compared
to the one pre-trained using WSelf = 5 s. Nonetheless, the model using the sim-
pler architecture still performs the best on those sets and is comparable to the
best performing one on set A. We believe that the lower capacity of the FCN
architecture prevents the learning of feature representations that are too specific
to the pretext task compared the ones learned with the more powerful ResNet.
For the setting rtrain = 100%∗, the supervised ResNet is on par with a model
pre-trained on the PS task with WSelf = 30 s. Recall that rtrain = 100%∗ refers
to the setting where all recording session and patients are used for the training
set. Based on these results, we can conclude that there is a point of diminishing
returns in terms of available data beyond which the self-supervised pre-training
might even deteriorate the performance of the downstream classification tasks.

5 Conclusions

We have introduced the phase swap pretext task, a novel self-supervised learning
approach suitable for bio-signals. This task aims to detect when bio-signals have
mismatching phase and amplitude components. Since the phase and amplitude
of white noise are uncorrelated, features learned with the phase swap task do
not focus on noise patterns. Moreover, these features exploit signal patterns
present both in the amplitude and phase domains. We have demonstrated the
benefits of learning features from the phase component of bio-signals in several
experiments and comparisons with competing methods. Most importantly, we
find that pre-training a neural network with limited capacity on the phase swap
task builds features with a strong generalization capability across subjects and
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observed sessions. One possible future extension of this work, as suggested by
the results on the CHB-MIT data set [23], is to incorporate spatial correlations
in the PS operator through the use of a spatio-temporal Fourier transformation.
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Abstract. Deep learning enables impressive performance in image
recognition using large-scale artificially-balanced datasets. However, real-
world datasets exhibit highly class-imbalanced distributions, yielding two
main challenges: relative imbalance amongst the classes and data scarcity
for mediumshot or fewshot classes. In this work, we address the problem
of long-tailed recognition wherein the training set is highly imbalanced
and the test set is kept balanced. Differently from existing paradigms
relying on data-resampling, cost-sensitive learning, online hard exam-
ple mining, loss objective reshaping, and/or memory-based modeling, we
propose an ensemble of class-balanced experts that combines the strength
of diverse classifiers. Our ensemble of class-balanced experts reaches
results close to state-of-the-art and an extended ensemble establishes a
new state-of-the-art on two benchmarks for long-tailed recognition. We
conduct extensive experiments to analyse the performance of the ensem-
bles, and discover that in modern large-scale datasets, relative imbalance
is a harder problem than data scarcity. The training and evaluation code
is available at https://github.com/ssfootball04/class-balanced-experts.

1 Introduction

In the past decades, deep learning has boosted success in image recognition to a
new level [14]. The availability of large-scale datasets with thousands of images in
each class [4,47] has been a major factor in this revolution. However, these datasets
are manually curated and artificially balanced, as opposed to real-world datasets
that exhibit a highly skewed and class-imbalanced distribution in a long-tailed
shape: a few common classes and many more rare classes. To address this practical
challenge, in this work, we focus on the problem of long-tailed recognition, wherein
datasets exhibit a natural power-law distribution [32], allowing us to assess model
performance on four folds: Manyshot classes (≥100 samples), Mediumshot classes
(20–100 samples), Fewshot classes (<20 samples), and All classes. Training data
follows a highly class-imbalanced distribution, and testing data is balanced so that
equally good performance over all classes is crucial [24].

c© Springer Nature Switzerland AG 2021
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Fig. 1. Our pipeline for long-tailed recognition: an ensemble of experts trained on class-
balanced subsets of Manyshot, Mediumshot, and Fewshot data. We transfer knowledge
from Manyshot to Mediumshot and Fewshot classes by initialising experts with a Base-
line model trained on all the data. Expert models classify samples outside their subset
as out-of-distribution and output partial posteriors that are fused into a full posterior
to obtain the final prediction.

The twomain challenges for a long-tailed classificationmodel are relative imbal-
ance amongst the classes, and data scarcity or unobservable data modes [13].
Existing techniques for imbalanced classification have focused on data re-sampling
[6,13] and cost-sensitive learning [3,23] to re-weigh the loss objective or counter
relative imbalance, while techniques for fewshot learning have employed data aug-
mentation [7,36,40,41], classifier weight prediction [9,28,29], or prototype-based
non-parametric methods [24,30,33] to address data scarcity.

Unlike the aforementioned paradigms, we instead revisit the classic approach
of ensemble of experts [17,19,44] and adapt it to long-tailed recognition. We
first decompose the imbalanced classification problem into balanced classification
problems by splitting the long-tailed training classes into balanced subsets. Then
we train an expert on each balanced subset, so-called Manyshot, Mediumshot, or
Fewshot data, with out-of-distribution detection for samples outside an expert’s
class-balanced subset. This explicitly tackles the issue of relative imbalance, and
prevents competition between Manyshot and Fewshot classes during training.

Further, to use all available data for learning feature representations and
to transfer knowledge from Manyshot to Mediumshot and Fewshot classes, we
initialise the feature extractor of each expert using a Baseline model trained
on the entire dataset. This simple and effective approach reaches close to state-
of-the-art results without involving more complex models or sophisticated loss
objectives. Moreover, the decomposition into class-balanced subsets allows us
to analyse the upper bound on performance in each data regime. Specifically,
our experiments with an Oracle upper bound allow us to bring Fewshot and
Mediumshot accuracy on par with Manyshot accuracy, revealing that in modern
large-scale datasets the data scarcity for Mediumshot and Fewshot classes can be
effectively handled using knowledge transfer from Manyshot classes. Therefore,
relative imbalance is a more severe problem.
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We also leverage the flexibility and modularity of the ensemble framework
to create larger and more diverse ensembles using existing solutions for long-
tailed recognition. In particular, we involve the following methods in the solution
space: (1) a Baseline model without any bells or whistles; (2) feature learning
followed by classifier finetuning with uniform class sampling [31,41]; (3) data
augmentation using feature generation networks [7,36,41]; and (4) knowledge
transfer through prototype-based memory representation [24,30]. The extended
ensemble consisting of all these models outperforms the current state-of-the-art
on two benchmark datasets by a significant margin.

Our contributions in this work can be summarised as follows:

(1) We propose an effective and modular ensemble of experts framework for long-
tailed recognition that decomposes the imbalanced classification problem into
multiple balanced classification problems. Our framework utilises all available
data for learning feature representations and transfers this knowledge from
Manyshot to Mediumshot and Fewshot classes. The results of our ensemble
of class-balanced experts are close to the state-of-the-art performance on two
long-tailed benchmark datasets, ImageNet-LT and Places-LT [24].

(2) We enrich our ensemble with a diverse set of existing solutions for long-tailed
recognition, namely data re-sampling, data augmentation using synthesised
features, and prototype-based classification, and establish a new state-of-
the-art for long-tailed recognition.

(3) We analyse the upper bound performance of our approach in the following
manner: we assume Oracle access to the experts containing the ground truth
classes of the test samples in their class-balanced subsets. We discover that
data scarcity for rare classes is not a severe issue in modern large-scale
datasets. Rather, relative imbalance is the main bottleneck.

2 Related Work

Imbalanced Classification and Long-Tailed Recognition. There is a long
history of research in imbalanced classification [1,13,32], in binary and more
generally multi-class classification problems. Classic problems that naturally
encounter class imbalance are face attribute detection [18,26], object detec-
tion [23,48], and image defect detection [43]. Prior work on image classifica-
tion [37,38] deals with long-tailed datasets, but only recently a benchmark for
the problem on the ImageNet and Places dataset was proposed by [24]. They
also propose splits for open-world classification, but in this work we only con-
sider long-tailed recognition and we report the performance of our methods on
the proposed ImageNet-LT and Places-LT. We summarise below the existing
solutions for imbalanced classification and long-tailed recognition.

Data Re-sampling Heuristics and Cost-Sensitive Learning. These are
classic ways to tackle long-tailed recognition. A more balanced data distribu-
tion is achieved by randomly over-sampling fewshot classes or randomly under-
sampling of manyshot classes [6,13]. However, over-sampling suffers from over-
fitting on fewshot classes while under-sampling cannot take full benefit of avail-
able data for generalization on manyshot classes. Other work has focused on
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hard example mining [5] or cost-sensitive learning [3,23] reasoned from class fre-
quencies. Instead, to augment our ensemble of class-balanced experts, we use
a uniform class sampling procedure in mini-batch training for finetuning the
classifier after a representation learning phase, which has the advantage that all
data is used to learn representations while decision boundary learning takes class
imbalance into account. This has also been employed before in related zero-shot
learning [41] and fewshot learning [31] work.

Synthetic Data Augmentation. This is a classic technique that synthe-
sises features for minority classes based on feature space similarities [2,12].
More recently, generative models have been employed in zero-shot [7,40,41]
and fewshot learning [36] literature to automatically generate images or fea-
ture embeddings for data-starved classes. In this work, we use the f-VAEGAN-
D2 model from [41] that generates feature embeddings conditioned on available
class embeddings using a VAE-GAN model, and integrate it into our ensemble
of experts framework.

Prototype-Based Models and Knowledge Transfer. Prototype-based net-
works [30,33] maintain a memory module for all the classes such that each class
is equally represented regardless of sample frequency. In particular, Liu et al. [24]
learn prototype-based features on-the-fly to effectively transfer knowledge from
manyshot classes to fewshot classes. We integrate their model into our ensemble
due to its ability to perform consistently well across the entire class spectrum.
Transfer learning [27] addresses data imbalance by transferring abundant fea-
tures of manyshot classes to those of fewshot classes. Recent work includes
transferring the intra-class variance [42] and transferring semantic deep fea-
tures [24,46]. We instead transfer knowledge across the dataset by initialising
our expert models with a baseline model pre-trained on the entire dataset.

Ensemble Learning. Ensemble methods are a well-studied topic in machine
learning literature. In particular, a variety of ensemble-based methods using
boosting [11,34], bagging [8,20], stacking [35], and evolutionary selection of clas-
sifiers [21] have been employed for imbalanced datasets. However, they all con-
sider ensembles with the same kind of model and task. Our approach is related
to the work of Hinton et al. [17] who train an ensemble of experts over disjoint
semantically-close subsets of classes, thereby each expert deals with a differ-
ent classification task. We instead train our experts on subsets of classes that
are intrinsically balanced to counter relative imbalance and prevent competition
between manyshot and fewshot classes during training. Moreover, we integrate
a diverse set of models for long-tailed recognition into our ensemble of experts.

Out-of-Distribution Detection and Confidence Calibration. Modern
neural networks can function both as classification models and detectors for out-
of-distribution examples [15]. Recent works focus on adding small perturbations
in input space and applying temperature scaling [22], and adding loss terms to
push out-of-distribution examples towards uniform confidence [16]. Related work
on confidence calibration tries to fix overconfident predictions on in-distribution
data using temperature scaling [10]. We instead focus on learning an ensemble of
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class-balanced experts for long-tailed recognition, where the problem of out-of-
distribution detection arises when dealing with samples from outside an expert’s
subset, and jointly calibrate experts’ confidences to fuse their posteriors.

3 Method

We propose an ensemble of experts for solving the problem of long-tailed recog-
nition. We split the long-tailed dataset into (approximately) class-balanced sub-
sets, and a separate classification model, or expert, is trained for each subset.
Expert models identify samples belonging to classes outside their subset as out-
of-distribution; therefore we train them to produce low confidence predictions
on these samples. During inference, each classification model yields a partial
posterior distribution for test samples, the ensemble of which is fused to form
a complete posterior distribution. Our entire pipeline is depicted in Fig. 1. The
modularity of our framework allows us to explictly address the problem of rela-
tive imbalance, and moreover analyse the upper bounds for performance in each
data regime using Oracle access to experts containing ground truth classes of
test samples in their class-balanced subsets.

3.1 Long-Tailed Recognition Using Class-Balanced Experts

The task of long-tailed visual recognition is as follows: given class-imbalanced
training set DTrain = {(xi, yi)}ni=1 and class-balanced validation set DVal and
class-balanced test set DTest, the objective is to maximise test accuracy on four
folds, Manyshot classes (≥100 samples), Mediumshot classes (20–100 samples),
Fewshot classes (<20 samples), and All classes. This is a hard problem, since any
high performing model must deal with the two problems of relative imbalance
and data scarcity.

Fig. 2. Dataset splitting: We
decompose ImageNet-LT into (rel-
atively) class-balanced Manyshot,
Mediumshot, and Fewshot data
subsets.

Relative imbalance leads to biased classifi-
cation boundaries wherein accuracy on few-
shot samples is compromised in favor of
manyshot samples that dominate the train-
ing objective. Data scarcity leads to rep-
resentations that do not model unobserved
data modes and is more severe. To tackle
both these issues, we sort the class-imbalanced
training set DTrain according to class frequen-
cies and partition it into contiguous class-
balanced subsets DManyshot, DMediumshot and
DFewshot. This is visualised in Fig. 2.
For each subset, we train separate classifica-
tion models or experts, that are initialised
using a model pre-trained on the entire

dataset. Consequently we obtain the expert models EManyshot, EMediumshot and
EFewshot corresponding to each class-balanced subset. The feature extractor part
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of each expert model E is initialised using the Baseline model pre-trained on the
entire training setDTrain. This enables knowledge transfer fromManyshot toMedi-
umshot and Fewshot classes. In this work, the expert models E and the Baseline
model are deep fully convolutional neural networks with softmax classifiers.

3.2 Out-of-Distribution Detection for Experts

The expert models identify samples from classes outside their class-balanced
subset as out-of-distribution or OOD for short, therefore we train them using an
out-of-distribution detection strategy. Observe that this is a hard problem, since
here OOD examples come from within the same distribution albeit from extra
classes within the dataset, as opposed to standard out-of-distribution detection
wherein OOD samples come from an entirely different dataset.

Training with Reject Class. We add a reject class to the softmax classifier of
each expert. For instance, EManyshot treats samples from DMediumshot ∪ DFewshot

as a single reject class. This introduces imbalance since the reject class has far
more samples than any other class, therefore we undersample reject class samples
appropriately during training. We correct for the statistical bias by incrementing
its logit score by the log of the undersampling ratio. We note that samples in
the reject class have very high variance and are therefore hard to fit.

3.3 Fusing Expert Posteriors

We consider various baseline strategies and propose a novel joint calibration
module to fuse expert posteriors E (x) into a complete posterior distribution.
The final prediction and confidence scores are taken from this posterior, denoted
as q(x), using the argmax operation.

KL-Divergence Minimisation. We find the full posterior distribution for
each sample, by minimising its KL-divergence with all the partial posterior dis-
tributions predicted by the experts [17], that is,

min
q(x)

∑

E
KL(E (x)||q(x))

where q(x) is parameterised using logits z and a softmax function as q(x) =
softmax(z). Note that probabilities corresponding to out-of-distribution classes
for the expert E are summed up into one probability score in q(x) to align the
two distributions.
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Soft-Voting. We find the full posterior by summing up the partial posteriors
directly and normalising the sum to 1,

q(x) =

∑

E
g(E (x))

∑

E
1

Here g(.) is a function that converts an expert’s partial posterior into a full
posterior. Since experts are trained with a reject class, g(.) averages reject class
probability score across out-of-distribution classes corresponding to expert E .

Expert Selection. We train a 3-way classifier on the validation set, taking
the partial posterior vectors E (x) of each expert E as input, to predict for a
sample x the expert model E that contain’s the sample’s ground truth class
in its class-balanced subset. Thus, for instance, the classifier learns to predict
that a manyshot sample lies in the class-balanced subset of the manyshot expert
EManyshot. The full posterior q(x) is then given by g(E (x)) for the predicted
expert E , where g(.) is defined similarly as before.

Model Stacking. We train a single layer linear softmax classifier to predict
the full posterior q(x) from the partial posterior vectors E (x) of each expert E .
The vectors E (x) are concatenated to form a feature embedding for the softmax
classifier which is trained by optimising the cross entropy loss on the validation
set. This is a standard way for ensemble fusion known as model stacking [39].

Joint Calibration. We calibrate the partial posteriors E (x) by learning scaling
and shift parameters before adding up the posteriors similarly to soft-voting,

q(x) =

∑

E
g(σSM (wE � zE (x) + bE ))

Z

where σSM denotes the softmax operation, wE and bE are scale and shift param-
eters respectively, zE (x) denotes the logit scores of expert E for sample x, �
denotes elementwise multiplication of two vectors, Z is a normalisation factor,
and g(.) is defined as before. We learn scale and shift parameters by minimising
the cross entropy loss on the validation set. This module effectively learns the
right alignment for experts’ partial posteriors before performing soft-voting.

4 Experiments

Datasets. We use the object-centric ImageNet-LT and scene-centric Places-LT
datasets for long-tailed recognition, released by Liu et al. [24]. The training set
statistics are depicted in Table 1. ImageNet-LT has an imbalanced training set
with 115,846 images for 1,000 classes from ImageNet-1K [4].
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Table 1. Statistics for training sets in
ImageNet-LT and Places-LT.

Datasets Attributes Many Medium Few All

ImageNet-LT Classes 391 473 136 1,000

Samples 89,293 24,910 1,643 115,846

Places-LT Classes 132 162 71 365

Samples 52,862 8,834 804 62,500

The class frequencies follow a
natural power-law distribution [32]
with a maximum number of 1,280
images per class and a minimum
number of 5 images per class. The
validation and testing sets are bal-
anced and contain 20 and 50 images
per class respectively. Places-LT has

an imbalanced training set with 62,500 images for 365 classes from Places-2 [47].
The class frequencies follow a natural power-law distribution [32] with a max-
imum number of 4,980 images per class and a minimum number of 5 images
per class. The validation and testing sets are balanced and contain 20 and 100
images per class respectively.

Evaluation Metrics. We report average top-1 accuracy across the four folds,
Manyshot classes (≥100 samples), Mediumshot classes (20–100 samples), Few-
shot classes (<20 samples), and All classes. Since the test set is balanced across
all classes, the average accuracy and mean precision coincide. These four metrics
are important for fine-grained evaluation since high accuracy on All classes does
not imply high accuracy on Fewshot classes or Mediumshot classes.

Implementation Details. For the Baseline model, we take a Resnet-10 back-
bone for ImageNet-LT, following [24]. We initialise the model with Gaussian
weights, use an initial learning rate of 0.2, and train for 100 epochs with a cosine
learning rate schedule [25]. For Places-LT, we start with an ImageNet pre-trained
Resnet-152 model, and finetune it with 0.01 learning rate for the first 30 epochs
followed by 0.1 exponential decay in every 10 epochs. To train expert models, we
initialise the feature extractor of each expert E from the Baseline model, and
finetune it on its class-balanced subset. For EMediumshot and EFewshot, we freeze
the lower layers of the feature extractor and only learn the top few layers. The
number of learnable layers is a hyperparameter that is fixed by measuring per-
formance on the validation set. To train experts with the reject class, we fix the
undersampling ratio for samples from the reject class by measuring performance
on the validation set. Note that the classifier for each expert E is smaller than
the Baseline model; it equals the number of classes in the expert’s class-balanced
subset, plus an additional reject class.

4.1 Oracle Performance

To estimate the upper bound of our approach, we consider the performance with
Oracle access to expert selection information, that is, with apriori knowledge of the
expert E that contains the ground-truth class of a test sample in its class-balanced
subset. The results are depicted in Table 2 and Table 3. The Oracle outperforms
the Baseline by a significant margin on Mediumshot, Fewshot and All accuracy.
Moreover, it is significantly interesting to note that the Oracle accuracies onMedi-
umshot and Fewshot classes are on par with Manyshot accuracy. This illustrates
that performance drops on Mediumshot and Fewshot classes result from relative
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Table 2. Performance of Oracle vs
Baseline on ImageNet-LT.

Method Many Medium Few All

Baseline 54.3 26.2 5.8 34.4

Experts (Oracle) 54.2 43.3 45.7 47.9

Table 3. Performance of Oracle vs
Baseline on Places-LT.

Method Many Medium Few All

Baseline 45.4 25.6 9.0 29.5

Experts (Oracle) 47.3 46.1 46.5 46.6

imbalance rather than data scarcity. Therefore, in principle, it is possible for a clas-
sification model to matchFewshot andMediumshot accuracy withManyshot accu-
racy in modern large-scale datasets. It is also interesting to see that the Manyshot
accuracy does not improve much by using an Oracle, suggesting that Manyshot
accuracy is already saturated in the Baseline model.

4.2 Effect of Joint Calibration Module

We apply the methods outlined in Sect. 3.3 for fusing expert posteriors and com-
pare their performance on ImageNet-LT and Places-LT. The results are depicted
in Table 4 and Table 5. KL-div minimisation and Soft-voting yield the highest
Fewshot accuracy, however All accuracy is much lower than the other meth-
ods. Expert selection and Stacking are better than KL-div minimisation and
Soft-voting on Manyshot, Mediumshot and All accuracy, but worse on Fewshot
accuracy. The Joint-calibration module obtains the best Manyshot, Mediumshot
and All accuracy, even though Fewshot accuracy suffers.

Table 4. Effect of joint calibration
module for ImageNet-LT.

Module Many Medium Few All

KL-div min 25.3 20.5 39.1 21.9

Soft-voting 26.3 21.3 38.9 25.6

Expert selection 38.3 32.6 17.2 32.8

Stacking 28.1 27.5 33.8 28.6

Joint calibration 43.2 34.3 18.9 35.7

Table 5. Effect of joint calibration
module for Places-LT.

Module Many Medium Few All

KL-div min 30.2 31.7 28.9 30.4

Soft-voting 30.0 31.8 28.9 30.6

Expert selection 32.6 31.8 24.5 30.7

Stacking 28.2 36.0 26.2 31.3

Joint calibration 37.2 35.3 26.3 34.2

4.3 Diverse Ensembles with Experts

In this section, we extend our ensemble using existing long-tailed recognition
solutions and analyse the performance of various combinations of models in the
ensemble. We experiment with the following models: (i) The Baseline model, (ii)
The three expert models, EManyshot, EMediumshot and EFewshot fused using Soft-
voting, collectively referred to as Experts, (iii) Classifier finetuning with uniform
class sampling,wherein we freeze the feature extractor of the Baseline model and
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(a) ImageNet-LT: Base Models (b) ImageNet-LT: Take-One-Out Ensem-
bles

(c) Places-LT: Base Models (d) Places-LT: Take-One-Out Ensembles

Fig. 3. From L-R: Performance of - Base Models, and Take-One-Out ensembles. All
results are evaluated on the testing set. Top and bottom rows correspond to ImageNet-
LT and Places-LT respectively. Best viewed in color with zoom.

finetune the classifier with uniform class sampling. This is referred to as Uni-
form class sampling or Uniform, (iv) Data augmentation for Mediumshot and
Fewshot classes using a conditional generative model from class embeddings to
feature embeddings, denoted as GAN based augmentation or simply GAN, (v)
Knowledge transfer from Manyshot to Fewshot classes using a learned convex
combination of class prototypes from [24], denoted as Liu et al.. The perfor-
mances of these base models are depicted in Fig. 3a and Fig. 3c. Notice how the
performance of the Baseline model degrades from Manyshot to Mediumshot to
Fewshot accuracy. The Expert models give the highest accuracy on the Fewshot
classes, but are worse on Manyshot accuracy.

We combine all these models into a single ensemble, take one model out and
see the effect on the performance. To keep the analysis simple, we use Soft-voting
for fusing posteriors from all the models, since it doesn’t involve learning addi-
tional parameters. This ablation is depicted in Fig. 3b and Fig. 3d. As expected,
the diverse ensembles give higher All accuracy than the base models. Taking
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Experts out causes performance drop on Mediumshot, Fewshot and All accuracy,
and increase in accuracy on Manyshot classes. This suggests that the Experts are
important in the ensemble for high Mediumshot and Fewshot accuracy. On the
other hand, taking the Baseline model out of the ensemble causes an increase
in Fewshot accuracy while Manyshot accuracy drops. The ablation also reveals
the inherent trade-off between Manyshot and Fewshot accuracy; an appropriate
combination of models can tilt accuracy in favor of Manyshot or Fewshot classes.

4.4 Comparison to the State-of-the-Art

We now compare our ensemble of class-balanced experts and the diverse ensem-
ble described in the previous section to the state-of-the-art on the test set of
ImageNet-LT and Places-LT. All ensemble combinations use the joint calibra-
tion module to fuse model posteriors as it gives us the highest average accuracy.
The results are depicted in Table 6 and Table 7. We observe that Ours (Experts)
gives us close to state-of-the-art results, and Ours (All) establishes a new state-
of-the-art on both the benchmark datasets. This validates our hypothesis that
an ensemble of class-balanced expert models is a simple and effective strategy
for dealing with long-tailed datasets.

Table 6. Results on ImageNet-LT, using
backbone Resnet-10. *Results obtained
from the author’s code. ‡Results taken
directly from [24].

Methods Many Medium Few All

Lifted Loss‡ [26] 35.8 30.4 17.9 30.8

Focal Loss‡ [23] 36.4 29.9 16 30.5

Range Loss‡ [45] 35.8 30.3 17.6 30.7

FSLwF‡ [9] 40.9 22.1 15 28.4

Liu et al.‡ [24] 43.2 35.1 18.5 35.6

Baseline 54.3 26.2 5.7 34.4

Uniform 46.5 33.0 13.3 35.6

GAN 46.4 30.0 15.2 34.4

Liu et al.* [24] 40.8 33.3 16.6 33.9

Ours (Experts) 43.2 34.3 18.9 35.7

Ours (All) 48.2 37.0 21.5 39.2

Table 7. Results on Places-LT, using
backbone Resnet-152. *Results obtained
from the author’s code. ‡Results taken
directly from [24].

Methods Many Medium Fews All

Lifted Loss‡ [26] 41.1 35.4 24.0 35.2

Focal Loss‡ [23] 41.1 34.8 22.4 34.6

Range Loss‡ [45] 41.1 35.4 23.2 35.1

FSLwF‡ [9] 43.9 29.9 29.5 34.9

Liu et al.‡ [24] 44.7 37.0 25.3 35.9

Baseline 45.4 25.6 9.0 29.5

Uniform 41.3 35.5 25.2 35.6

GAN 42.7 33.3 22.5 34.6

Liu et al.* [24] 41.4 37.1 19.2 35.2

Ours (Experts) 37.2 35.3 26.3 34.2

Ours (All) 43.6 39.9 27.7 38.9

4.5 Discussion

There is significant difference between the results depicted in Table 2 and Table 3,
and Table 6 and Table 7. This shows that the various strategies used for fusing
expert posteriors are sub-optimal. To analyse the underlying cause, we take our
ensemble of class-balanced experts and plot a confusion matrix, each entry show-
ing the percentage of samples from dataset D that are classified by expert model



Long-Tailed Recognition Using Class-Balanced Experts 97

E . For the preliminary analysis we use Soft-voting for fusing expert posteriors.
Figure 4a shows the result for Places-LT. The plot shows there is significant con-
fusion amongst experts; experts aren’t selected optimally for classes to which a
test sample belongs. We term this phenomenon as Expert collision.

Fig. 4. Top (bottom): Before (after) joint calibration. L-R: Expert confusion matrix,
confidence histograms of EManyshot for samples it correctly classifies in EManyshot, and
EFewshot for the same samples. All results on Places-LT. Joint calibration aligns experts’
confidences and decreases expert collision.

We further consider each expert’s confidence in its predictions. We take the
confidence or the maximum softmax probability (MSP) from the expert pos-
teriors and plot confidence histograms. We do this for EManyshot on its class-
balanced subset DManyshot, for samples from the test set it correctly classifies,
and for EFewshot on the same test samples from DManyshot. This is depicted in
Fig. 4b and Fig. 4c. The plots show that EManyshot has high confidence predic-
tions while EFewshot has low confidence predictions on these samples. However,
to avoid Expert collision both the confidence histograms should have a reason-
able margin in between and not overlap. Figure 4d and Fig. 4e, 4f respectively
show the confusion matrix and confidence histograms after joint calibration. It’s
essential to align confidences of the three experts correctly, and this is precisely
what joint calibration does by learning scale and shift parameters for each class.

5 Conclusion

This article presented an ensemble of class-balanced experts framework for
long-tailed recognition. Our effective and modular strategy explicitly tackles
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relative imbalance without resorting to complex models or sophisticated loss
objectives. We decompose the imbalanced classification problem into balanced
classification problems that are more tractable, and train separate expert mod-
els for Manyshot, Mediumshot and Fewshot subsets of the data with a reject
class for samples lying outside an expert’s class-balanced subset. We scale and
shift experts’ partial posteriors to jointly calibrate experts’ predictions, and our
ensemble of class-balanced experts reaches close to state-of-the-art performance
on two long-tailed benchmarks. We also extend our ensemble with diverse exist-
ing solutions for long-tailed recognition and establish a new state-of-the-art on
the two benchmark datasets. Moreover, our experiments with an Oracle upper
bound reveal that performance drops on Mediumshot accuracy and Fewshot
accuracy are caused by relative imbalance and not data scarcity for rare classes.
Therefore, it is possible to bring Mediumshot and Fewshot accuracy on par
with Manyshot accuracy by remedying relative imbalance in modern large-scale
datasets, which motivates further research in this direction.
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Abstract. Intuitively, image classification should profit from using spa-
tial information. Recent work, however, suggests that this might be over-
rated in standard CNNs. In this paper, we are pushing the envelope and
aim to investigate the reliance on spatial information further. We propose
to discard spatial information via shuffling locations or average pooling
during both training and testing phases to investigate the impact on indi-
vidual layers. Interestingly, we observe that spatial information can be
deleted from later layers with small accuracy drops, which indicates spa-
tial information at later layers is not necessary for good test accuracy.
For example, the test accuracy of VGG-16 only drops by 0.03% and
2.66% with spatial information completely removed from the last 30%
and 53% layers on CIFAR-100, respectively. Evaluation on several object
recognition datasets with a wide range of CNN architectures shows an
overall consistent pattern.

1 Introduction

Despite the impressive performances of convolutional neural networks (CNNs)
on computer vision tasks [9,10,16,18,25], their inner workings remain mostly
obfuscated to us, especially how the information is encoded throughout layers.
Generally, the majority of modern CNNs for image classification utilize a collec-
tion of filters with local receptive fields to capture hierarchical patterns across all
the convolutional layers [10,16,25]. Such design choices are based on the assump-
tion that spatial information remains important at every convolutional layer, and
better representations can be attained by gradually enlarging the receptive field
to incorporate more contexts. This further leads to lots of approaches that help
capture spatial correlations between features in order to improve model perfor-
mance [1,13,26]. For example, a popular class of those methods is the visual
attention mechanism [15,19] which enables more powerful representations by
enhancing the most salient region of the image.

However, recent works on restricting the receptive field of CNN architectures
for scrambled inputs [2] or using wavelet feature networks of shallow depth [20],
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-71278-5 8) contains supplementary material, which is avail-
able to authorized users.
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have all found it to be possible to acquire competitive performances on the
respective tasks. This raises doubts on the necessity of spatial information for
classification and whether the network can still maintain the performance when
the spatial information is completely removed from the training process.

Fig. 1. Shuffling the feature maps from the last 54% layers in VGG-16 randomly and
spatially only reduces the final test accuracy by 2.66% (from 74.10% to 71.44%) on
CIFAR-100, and the training processes look surprisingly similar, which implies that
spatial information may not be necessary for good classification accuracy.

In this work, we re-design the structure of the network to separate the spa-
tial information and channel-wise information independently, with the goal of
analyzing the dependency of the network on them. Spatial information refers to
the spatial ordering on the feature map. To this end, we propose channel-wise
shuffle to eliminate channel information, and spatial shuffle, patch-wise spatial
shuffle and GAP+FC to eliminate spatial information. Surprisingly, we find that
the spatial information is not necessary at later layers, and the modified CNNs,
i.e. without accessing any spatial information at later layers, can still achieve
competitive results on several object recognition datasets. As an example, Fig. 1
shows the training processes of a standard VGG-16 and a modified VGG-16 with
spatial shuffle on CIFAR-100. In the shuffled VGG-16, feature maps must first go
through a random spatial shuffle operation before convolved with the filters from
the last 54% layers. Interestingly, the test accuracy only drops 2.66%, and the
training process is nearly identical to the standard VGG-16. This observation
generalizes to various CNN architectures: removing spatial information from the
last 30% layers gives a surprisingly little test accuracy decrease within 1% across
architectures and datasets, and the accuracy decrease is still within 7% even if
the last 50% layers are manipulated. This indicates that spatial information is
overrated for standard CNNs and not necessary to reach competitive perfor-
mances. Finally, our investigation on the detection task shows that although
the unavailability of spatial information at later layers does hinder the CNN to
localize objects, the impact is not as fatal as expected; at the same time, the
classification ability of the model is not affected.
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The main contributions of our work are as follows: we find that spatial infor-
mation at later layers is not really necessary for good classification test accuracy
and that even though the depth of the network plays an important role, later
layers do not require spatial integration. As a side effect, GAP+FC leads to a
smaller model with fewer parameters with small test accuracy drops.

2 Related Work

Intuitively, object recognition benefits from gradually enlarged receptive field
and spatial integration. For that reason extensive efforts have been made to
enhance the aggregation of spatial information in the decision-making progress
of CNNs. [5,32] have made attempts to generalize the strict spatial sampling of
convolutional kernels to allow for globally spread out sampling, and [31] have
spurred a range of follow-up work on embedding global context layers with the
help of spatial down-sampling. Another emerging interest of augmenting CNNs
with self-attention has also made progress in several vision tasks. [27] presents
a non-local operation that computes the response at a position as a weighted
sum of the features at all positions to capture long-range dependencies and
shows that self-attention is an instantiation of their non-local operations. [3]
show improvements on image classification and achieve state-of-the-art results
on video action recognition tasks with a variant of non-local operations. Even a
fully attentional model is verified to be effective for various visual tasks [21].

While all of these works have improved on a related classification metric
in some way, it is not entirely evident whether the architectural changes alone
can be credited, as there is an increasing number of work on questioning the
importance of the extent of spatial information for common CNNs. One of the
most recent observations by [2] indicates that the VGG-16 architecture trained
on ImageNet is invariant to scrambled images to a large extent. Furthermore,
they construct a modified ResNet architecture with a limited receptive field as
small as 33 × 33, similar to the style of the traditional Bag-of-Visual-Words and
reach competitive results on ImageNet. In contrast to their work, we make a
clear distinction between first and last layers, and we show empirically spatial
information at last layers are not necessary for good test accuracy.

[23] assumes that current CNNs do not respect the spatial information due to
the pooling operation; CNNs look for features in the image without paying atten-
tion to their pose during prediction. This limitation motivates the work of [23]
where they make use of dynamic routing among capsules to encode the spatial
information. Moreover, the widely used global average pooling in most recently
proposed architectures [10,17] implies that collapsing spatial information at the
very end does not affect the test accuracy. On a related note, [8] indicates that
models trained solely on ImageNet do not learn shape sensitive representations
with constructing object-texture mismatched images, which would be expected
to require global spatial information. Instead, the models are mostly sensitive to
local texture features.

Our work aims to push the envelope further to investigate the necessity of
spatial information in the processing pipeline of CNNs. While related work has
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put the attention mainly on altering the input and does not differentiate between
last and first layers, we are interested in taking measures that remove the spatial
information at different intermediate layers to shed light on how CNNs process
spatial information, evaluating its importance and providing insights for archi-
tectural design choices.

3 Methods and Experimental Setup

In this section, we design methods to systematically study the phenomenon found
in Fig. 1 that spatial information appears to be neglectable to some extent. We
test how information is represented throughout the network’s layers by discard-
ing spatial or channel information in different ways in intermediate layers and
applying them to well-established architectures. Experiments are conducted on
object recognition and detection tasks. Section 3.1 elaborates details on our
approaches, and the experimental setup is discussed in Sect. 3.2.
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Fig. 2. An example of VGG-16 modified by our methods. The leftmost architecture
shows the modification (in red) from GAP+FC, where the last two convolutional layers
are replaced by fully-connected layers after a GAP layer. The middle architecture shows
the modification (in red) from shuffle conv, where the last two convolutional layers are
replaced by one of the shuffling methods and an ordinary convolution. Spatial shuffle
randomly and independently permutes pixels on each feature map at a global scale in
the sense that a pixel can end up anywhere on the feature map. Patch-wise shuffle first
divides the feature map into grids; then it randomly permutes the pixel locations within
each grid independently. Channel shuffle randomly permutes the order of feature maps,
leaving the spatial ordering unchanged. (Color figure online)
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3.1 Approaches to Constrain Information

We propose four different methods, namely channel-wise shuffle, spatial shuffle,
patch-wise spatial shuffle, and GAP+FC, to remove either spatial or channel
information from the training. Spatial information here refers to the awareness
of the relative spatial position between activations on the same feature map, and
channel information stands for the dependency across feature maps. The left part
of Fig. 2 illustrates an example of VGG-16 with its last two layers modified by
GAP+FC or any of the three shuffle methods.

Spatial Shuffle extends the ordinary convolution operation by prepending a
random spatial shuffle operation to permute the input to the convolution. As
illustrated in Fig. 2: Given an input tensor of size c × h × w with c being the
number of feature maps for a convolutional layer, we first take one feature map
from the input tensor and flatten it into a 1-d vector with h×w elements, whose
ordering is then permuted randomly. The resulting vector is finally reshaped
back into h × w and substitute the original feature map. This procedure is
independently repeated c times for each feature map so that activations from
the same location in the previous layer are misaligned, thereby preventing the
information from being encoded by the spatial arrangement of the activations.
The shuffled output becomes the input of an ordinary convolutional layer in
the end. Even though shuffling itself is not differentiable, gradients can still be
propagated through in the same way as pooling operations. Therefore it can be
embedded into the model directly for end-to-end training. As the indices are
recomputed within each forward pass, the shuffled output is also independent
across training and testing steps.

Images in the same batch are shuffled in the same way for the sake of sim-
plicity since we find empirically that it does not make a difference whether the
images in the same batch are shuffled in different ways.

Patch-Wise Spatial Shuffle is a variant of spatial shuffle. In contrast, patch-
wise spatial shuffle does not perform on a global scale but a local scale by dividing
the feature map into grids. Each patch in the grid is subsequently shuffled inde-
pendently. Afterwards, an ordinary convolution is performed as usual. Note that
the two operations are equivalent when the patch size is the same as the feature
map size. Figure 2 demonstrates an example of patch-wise spatial shuffle with a
2 × 2 patch size, where the random permutation of pixel locations is restricted
within each patch.

Channel-Wise Shuffle is used to investigate the importance of channel infor-
mation which is normally deemed as essential [28–30]. It keeps the spatial order-
ing of activations and randomly permutes the ordering of feature maps to pre-
vent the model from utilizing channel information. An illustration can be seen
in Fig. 2, channel-wise shuffle is also performed independently across training
and testing steps.

GAP+FC denotes Global Average Pooling and Fully Connected Layers. Spatial
Shuffle is an intuitive way of destroying spatial information. However, shuffling
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introduces undesirable randomness into the model; non-deterministic feature
maps from an image lead to fluctuations in the model prediction, so an evalu-
ation needs multiple forward passes to acquire an estimate of the mean of the
output. A simple deterministic alternative achieving a similar goal is to deploy
Global Average Pooling (GAP) after an intermediate layer, and all the subse-
quent ones are substituted by fully connected layers. Compared to Spatial Shuf-
fle that introduces an extra computational burden at each forward pass, it is a
much more efficient way to avoid learning spatial information at intermediate
layers because it shrinks the spatial size of all subsequent feature maps to one;
therefore, the number of FLOPs and parameters are also reduced.

3.2 Experimental Setup

This section details the experimental setup for the classification and object detec-
tion tasks. We test different architectures on three datasets: CIFAR-100, Small-
ImageNet-32x32 [4], and Pascal VOC 2007 + 2012. Small-ImageNet-32x32 is a
down-sampled version of the original ImageNet (from 256 × 256 to 32 × 32). We
report top-1 accuracy and mAP [6,7] in classification and detection experiments
respectively. We will take an existing architecture and apply the modification to
different layers. The rest of the setup and hyper-parameters for modified archi-
tectures remain the same as the original architectures.

Classification: For the VGG architecture, the modification is only performed
on the convolutional layers, as illustrated in Fig. 2. For the ResNet architecture,
one bottleneck sub-module is considered as a single piece, and the modification
is applied onto the 3 × 3 convolutions within the sub-module since they are the
only operations with spatial extent. Features that go through the skip connection
branch are also shuffled in the shuffle experiments to prevent the model from
learning to ignore the information from the residual branch. The rest of the
configuration remains the same (see supplemental material for an example of
modified ResNet-50 architecture).

For CIFAR-100 and Small-ImageNet-32x32 experiments, the original ResNet
architecture down-samples the input image by a factor of 32 and gives 1 × 1
feature maps at last layers, therefore shuffling is noneffective. To make shuffling
non-trivial, we set the first convolution in ResNet to 3 × 3 with stride 1 and the
first max-pooling layer is removed so that the final feature map size is 4 × 4.

To alleviate the effect of mismatched training details, we first reproduce the
reported results for all experiments and then train our modified architectures
under the same training setting. All models in the same set of experiments (e.g.
VGG-16 on CIFAR-100) use the same set of hyper-parameters, and they share
the same initialization from the same random seed. During testing, we make sure
to use a different random seed than during training.

Detection: We use the training set and validation set of VOC 2012+2007 as
the training data and report mAP on VOC 2007 test set. We shuffle the last
layer in the backbone model to test the robustness of localization against the
absence of spatial information.
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4 Results

We first compare the test accuracy of VGG-16 on CIFAR-100 with spatial or
channel information missing from a different number of last layers in Sect. 4.1.
An in-depth study of our main observations on CIFAR-100 and Small-ImageNet-
32x32 for VGG-16 and ResNet-50 is conducted in Sect. 4.2. In Sect. 4.3, we inves-
tigate the model robustness against the loss of spatial information in various
degree by controlling the amount of spatial information that passes through the
network. Finally, we present the detection results on VOC datasets in Sect. 4.4.

4.1 Spatial and Channel-Wise Shuffle on VGG-16

In this section, we first investigate the invariance of pre-trained models to the
absence of the spatial or channel information at test time, then we impose this
invariance at training time with methods in Sect. 3.1.

Shuffle the Last 30% Layers Channel-Wise: Our baseline is a VGG-16
trained on CIFAR-100 that achieves 74.10% test accuracy. We first test its
robustness against the absence of the channel information at test time by sub-
stituting the last 30% convolutional layers with the channel-wise shuffle convo-
lution. As is expected, the test accuracy drops to 1.04% (Table 1), which is the
same as the random guessing on CIFAR-100. Following the same training scheme
of the baseline, we then train another VGG-16 with channel-wise shuffle added
to its last 30% convolutional layers. This model can reach around 67% test accu-
racy no matter whether channel-wise shuffle is applied at test time. However,
it still performs significantly worse than the baseline, which indicates that the
expressiveness of the model is much limited without utilizing the ordering of
feature maps even though the spatial information is preserved.

Table 1. Top-1 accuracy of VGG-16 on CIFAR-100 with spatial/channel-wise shuffle
enabled at either training or test time for the last 30% layers. A model from standard
training does not possess robustness against spatial shuffle (23.49%) and channel-wise
shuffle (1.04%). However, when imposed in training, the model achieves 74.07% test
accuracy for spatial shuffle and 67.56% for channel-wise shuffle, showing impressive
robustness to the loss of spatial information.

Train
scheme

No
shuffle

Channel
shuffle

Channel
shuffle

No
shuffle

Spatial
shuffle

Spatial
shuffle

No
shuffle

Test
scheme

No
shuffle

Channel
shuffle

No
shuffle

Channel
shuffle

Spatial
shuffle

No
shuffle

Spatial
shuffle

Top-
1(%)

74.10 67.56 67.80 1.04 74.07 73.74 23.49
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Shuffle the Last 30% Layers Spatially: As a comparison to channel shuffle,
we repeat the same experiment on spatial shuffle, and the result is presented in
the second half of Table 1. No shuffle → spatial shuffle of the pre-trained VGG-16
gives 23.49% test accuracy, which is similar to the test accuracy of a one-hidden-
layer perceptron (with 512 hidden units and ReLU activation) on CIFAR-100
(25.61%) when evaluated with the random spatial shuffle. However, if the spatial
shuffle is infused into the model at training time, then the baseline test accuracy
can be retained no matter whether random spatial shuffle appears at test time
(74.07% for spatial shuffle→ spatial shuffle and 73.74% for spatial shuffle→ no
shuffle).

Fig. 3. Classification accuracy of VGG-16 on CIFAR-100 with different shuffle schemes.
The very slow decrease of the test accuracy of spatial shuffle implies a far less important
role of spatial information for classification. The test accuracy is not much affected,
given that the spatial shuffle modifies 31% of its layers. Even with 54% later layers
shuffled spatially, the test accuracy only decreases by 2.66%, and the same number
of the test accuracy decrease in channel-wise shuffle happens when the last layer is
modified.

Shuffle Other Layers: To systematically study the impact of spatial and chan-
nel information, we gradually increase the number of modified layers from the
last in VGG-16 and report the corresponding test accuracy in Fig. 3. All models
are trained with the same setup, and shuffling is performed both at training and
test time; the x-axis is the percentage of modified layers counting from the last
layer on with 0 referring the baseline.

Besides an overall decreasing trend for both shuffling with the increase of the
percent of modified layers, the test accuracy of spatial shuffle drops unexpectedly
slowly, e.g. merely 2.66% test accuracy drop when up to 54% of layers from the
last are shuffled spatially. Likewise, when spatial information is removed from
the last 77% layers, it still has a reasonable test accuracy (57.05%), whereas the
test accuracy of channel-wise shuffle is only 4.84%.
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Discussion: This indicates that although a standard model makes use of both
spatial dimension and channel dimension to encode information, the spatial infor-
mation plays a surprisingly less pivotal role than the channel information. The
model is even able to adapt to the complete absence of spatial information at
later layers if spatial information is removed explicitly at training time, which
strengthens the claims from [2,23] that CNNs intrinsically possess invariance to
the spatial relationship among features to some extent. Moreover, the unsuc-
cessful adaptation to channel-wise shuffle implies that the large model capacity
may mainly come from the channel order and shuffling the channel order causes
unrecoverable damage to the model.

4.2 Spatial Information at Later Layers is Not Necessary

In this section, we design more experiments to study the reliance of different lay-
ers on spatial information: we modify the last convolutional or bottleneck layers
of VGG-16 or ResNet-50 by Spatial Shuffle (both at training and test time) and
GAP+FC such that the spatial information is removed in different ways. Our mod-
ification on the baseline model always starts from the last layer and is consecutively
extended to the first layer. The modified networks are then trained on the training
set with the same setup and evaluated on the hold-out validation set.
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Fig. 4. Classification results of GAP+FC and spatial shuffle for VGG-16 and ResNet-
50 on CIFAR-100 and Small-ImageNet-32x32. The x-axis is the percent of modified
layers/sub-modules counting from the last one. Models on the same dataset are trained
with the same setup. It can be observed consistently across experiments that the base-
line test accuracy is preserved for a long time even though spatial information is elim-
inated from the last several layers by spatial shuffle or GAP+FC, suggesting that spa-
tial information at later layers is not necessary for good test accuracy. The difference
between the baseline models and the models whose latter half of the layers are modified
by GAP+FC or spatial shuffle is, however, still in a reasonable range between 2.48%
(ResNet-50 with spatial shuffle on CIFAR-100) to 6.92% (ResNet-50 with GAP+FC
on Small-ImageNet-32x32).
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Results on CIFAR-100 and Small-ImageNet-32x32: Results of VGG-16
and ResNet-50 on CIFAR-100 and Small-ImageNet-32x32 are shown in Fig. 4.
The x-axis is the percent of modified later layers, and 0 is the baseline model
test accuracy without modifying any layer.

As we can see, Spatial Shuffle and GAP+FC have a similar overall behaviour
consistently across architectures and datasets: the baseline test accuracy is
retained for a long time before it starts to decrease with the increase of the
percent of modified layers. When the last 30% layers are modified by GAP+FC
or spatial shuffle, there is no or little test accuracy decrease across experiments
(0.17% for ResNet-50 on CIFAR-100 and 1.44% for VGG-16 on Small-ImageNet
with spatial shuffle). And the test accuracy decrease is still in a reasonable range
(2.48% with spatial shuffle on CIFAR-100 and 6.92% for GAP+FC on Small-
ImageNet-32x32 for ResNet-50), even with around half of the last layers mod-
ified. At 77% to 81% of the modified later layers, the test accuracy just starts
to show a significant difference to the baseline in the range of 8.58% (ResNet-
50 with spatial shuffle on CIFAR-100) to 20.21% (VGG-16 with GAP+FC on
Smalll-ImageNet-32x32).

Our experiments here clearly show that spatial information can be neglected
from a significant number of later layers with no or small test accuracy drop
if the invariance is imposed at training, which suggests that spatial informa-
tion at last layers is not necessary for good test accuracy. We should, however,
notice that it does not indicate that models whose prediction is based on spatial
information can not generalize well. Besides, unlike the common design manner
that layers at different depth inside the network are normally treated equally,
e.g. the same module is always used throughout the architecture [12,14,24], our
observation implies it is beneficial to have different designs for different layers
since there is no necessity to encode spatial information in the later layers. As a
side effect, GAP+FC can reduce the number of model parameters with little test
accuracy drop. For example, GAP+FC achieves nearly identical results (46.05%)
to the VGG-16 baseline (46.59%), while reducing the number of parameters from
37.70M to 29.31M on Small-ImageNet-32x32.

4.3 Patch-Wise Spatial Shuffle

In this section, we study the relation between the model test accuracy and the
amount of spatial information that propagates throughout a network. The latter
is controlled by patch-wise spatial shuffle with different patch sizes. The larger
the patch size is, the less the preserved spatial information. Patch-wise spatial
shuffle reduces to spatial shuffle when the patch size is the same as the feature
map size, in which case no spatial information remains. Our experiments are
conducted on CIFAR-100 for VGG-16 and ResNet-50, and we only shuffle a
single layer at a time since the model is not able to recover the “damage” caused
by shuffling an early layer (see more in the supplemental material).

The result of patch-wise spatial shuffling of different patch sizes is shown in
Fig. 5. We can see that the patch size does not make much difference in terms of
the test accuracy at later layers, e.g. results of patch size 2, 4 and 8 for ResNet-50
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at 8–14 layers are similar. However, the test accuracy has a rapid decrease with
the increase of the patch size at first layers, indicating a relatively important
role of spatial information at first layers. Nevertheless, this role might not be
as much important as what is commonly believed, as the ResNet-50 still has
40.76% test accuracy when the input image is completely shuffled.

4.4 Detection Results on VOC Datasets

Object detection should intuitively suffer more from spatial shuffling than clas-
sification since the spatial information should help to localize objects. In this
section, we show some initial results on Pascal VOC [6,7].

We design an analogue to YOLO [22] as our detection model. The architec-
ture consists of a backbone and a detection head; the backbone is a ResNet-50
without the classifier, and the detection head has three bottlenecks and a 3 × 3
convolutional layer whose outputs is in the same format as [22]. Different to [22],
we deploy a 3 × 3 convolution instead of a fully connected layer in the end to
output the final detection results. The latter gives the model potential access to
the object feature, which may be exploited by the model to predict its location.
In order to prevent the undesirable shortcut, we use a 3 × 3 convolution so that
the prediction of a bounding box at a certain location does not depend on all
activation on the feature map.

By using a pre-trained ResNet-50 on ImageNet, we can reach 66% mAP on
VOC2007 test set after fine-tuning, which is the same as the number in [22].
To avoid pretraining a spatially shuffled model on ImageNet, we compare a
spatially shuffled model and a non spatially shuffled model, both trained from

Fig. 5. The result of patch-wise spatial shuffling of VGG-16 and ResNet-50 on CIFAR-
100. Only a single layer is shuffled at a time. Layer index 13 and 16 stand for the last
layer of VGG-16 and ResNet-50, respectively. With the increase of the patch size, the
test accuracy decreases faster at first layers than that at last layers. It is interesting
to see that both models’ test accuracy do not fall into the random guess (16.02% for
VGG-16 and 40.76% for ResNet-50) at layer index one and patch size 32, where the
input image is completely shuffled.
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Fig. 6. Left: Qualitative detection results on the VOC 2007 test set. Examples are the
first 11 images in the test set. The left result is from the baseline, and the right result is
from the shuffled model. Right: Detection error analysis of our baseline and the shuffled
model shows a doubled localization error in the shuffled model and the rest types of
error are in the same level as the baseline.

scratch on VOC. Our models are trained for 500 epochs with exponentially
decaying learning rate starting from 0.001. Our baseline model achieves 50%
mAP on VOC2007 test set without using an ImageNet pre-trained backbone.
The result of the shuffled model, where we apply random shuffle to the last layer
of the backbone, is 34%. While this sounds like a large drop, it turns out that
the classification performance is essentially preserved and only the localization
performance is suffering. To analyze this effect in detail, we use the method
and tools proposed in [11]. The diagnosis tool classifies each prediction from the
model as either correct prediction or a type of error based on its class label and
IoU with the ground truth. More details can be found in [11].

The results in Fig. 6 right show that the misclassification to the wrong class
and background are of similar percents for both models, and the localization
error doubles for the shuffled model (an increase from 14.2% to 28.4%). Though
random shuffling indeed affects the model’s localization ability, it is unexpected
that the effect is not fatal. Because random shuffling switches features, it is highly
likely the model trained with spatial shuffle has to predict the correct bounding
box for one object based on some other features. We should also notice that a
prediction is counted as a localization error if it has the correct class label and the
IoU to the ground truth is less than 0.5. Therefore, classification-wise speaking,
the shuffled model got 73.7% (45.3% + 28.4%) of its predictions correct, which
is at the same level as the baseline (73.3% = 59.1% + 14.2%).

Qualitative Results: Figure 6 left shows some qualitative results from both
models. Those examples are the first 11 images in the VOC2007 test set. We
can see that the localization error actually mainly comes from small objects for
which the shuffled model tends to predict several bounding boxes on one object,
and the bounding box of the relatively big object is not really off, e.g. the shuffled
model managed to localize the dining table in the middle right image and the
horse in the middle left image while the baseline can not.
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5 Conclusion

To conclude, we empirically show that a significant number of later layers of
CNNs are robust to the absence of spatial information, which is commonly
assumed to be important for object recognition tasks. Modern CNNs can tol-
erate the loss of spatial information from the last 30% of layers at around 1%
accuracy drop; and the test accuracy only decreases by less than 7%, when
spatial information is removed from the last half of layers on CIFAR-100 and
Small-ImageNet-32x32. Though the depth of the network is essential for good
test accuracy, later layers do not require spatial integration.
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Abstract. The training of deep-learning-based 3D object detectors
requires large datasets with 3D bounding box labels for supervision
that have to be generated by hand-labeling. We propose a network
architecture and training procedure for learning monocular 3D object
detection without 3D bounding box labels. By representing the objects
as triangular meshes and employing differentiable shape rendering, we
define loss functions based on depth maps, segmentation masks, and
ego- and object-motion, which are generated by pre-trained, off-the-shelf
networks. We evaluate the proposed algorithm on the real-world KITTI
dataset and achieve promising performance in comparison to state-of-the-
art methods requiring 3D bounding box labels for training and superior
performance to conventional baseline methods.

Keywords: 3D object detection · Differentiable rendering ·
Autonomous driving

1 Introduction

Three-dimensional object detection is a crucial component of many autonomous
systems because it enables the planning of collision-free trajectories. Deep-
learning-based approaches have recently shown remarkable performance [33] but
require large datasets for training. More specifically, the detector is supervised
with 3D bounding box labels which are obtained by hand-labeling LiDAR point
clouds [10]. On the other hand, methods that optimize pose and shape of individ-
ual objects utilizing hand-crafted energy functions do not require 3D bounding box
labels [8,32]. However, these methods cannot benefit from training data and pro-
duce worse predictions in our experiments. To leverage deep learning and overcome
the need for hand-labeling, we thus introduce a training scheme for monocular 3D
object detection which does not require 3D bounding box labels for training.

We build upon Pseudo-LiDAR [33], a recent supervised 3D object detector
that utilizes a pre-trained image-to-depth network to back-project the image into
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Fig. 1. We propose a monocular 3D vehicle detector that requires no 3D bounding box
labels for training. The right image shows that the predicted vehicles (colored shapes) fit
the ground truth bounding boxes (red). Despite the noisy input depth (lower left), our
method is able to accurately predict the 3D poses of vehicles due to the proposed fully
differentiable training scheme. We additionally show the projections of the predicted
bounding boxes (colored boxes, upper left) (Color figure online).

a point cloud and then applies a 3D neural network. To replace the direct super-
vision by 3D bounding box labels, our method additionally uses 2D instance
segmentation masks, as well as, ego- and object-motion as inputs during train-
ing. We show that our method works with off-the-shelf, pre-trained networks:
Mask R-CNN [13] for segmentation and struct2depth [4] for motion estimation.
Therefore, we introduce no additional labeling requirements for training in com-
parison to Pseudo-LiDAR. During inference the motion network is not required.

Due to the Pseudo-LiDAR-based architecture, our approach can utilize
depth maps from mono-to-depth, or stereo-to-depth methods, which can be self-
supervised or supervised. We show experiments for all four combinations. For
depth maps generated by a self-supervised mono-to-depth network [11], only
Mask R-CNN needs to be trained supervisedly and we use a model pre-trained
on the general COCO dataset [22], therefore avoiding any supervision on the
KITTI dataset.

1.1 Related Work

Object Detection. Two-dimensional object detection is a fundamental task in
computer vision, where two-stage, CNN-based detectors [29] have shown impres-
sive performance. Mask R-CNN [13] extends this approach to include the pre-
diction of instance segmentation masks with high accuracy.

In contrast, image-based 3D object detection is still an open problem because
depth information has to be inferred from 2D image data. Approaches based
on per-instance optimization minimize a hand-crafted energy function for each
object individually; the function encodes prior knowledge about pose and shape
and considers input data, e.g., the back-projection of an estimated depth map [8],
an image-gradient-based fitness measure [38], or the photometric constraint for
stereo images together with 2D segmentation masks [32]. Initial deep-learning-
based methods for stereo images [6] and monocular images [5] generate object
proposals which are then ranked by a neural network. Subsequent approaches
employ geometric constraints to lift 2D detections into 3D [25,27]. Kundu et al.
[19] propose to compare the predicted pose and shape of each object to the
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ground truth depth map and segmentation mask, which yields two additional
loss terms during training. They employ rendering to define the loss function and
approximate the gradient using finite differences. Their approach relies on 3D
bounding box labels for supervision and uses the additional loss terms to improve
the final performance. Li et al. [21] propose Stereo-RCNN which combines deep
learning and per-instance optimization for object detection from stereo images.
Similar to our approach, Stereo-RCNN does not supervise the 3D position using
3D bounding box labels. In contrast to our method, they use the 3D bound-
ing box labels to directly supervise the 3D dimensions, the viewpoint, and the
perspective keypoint. Replacing the 3D bounding box labels by estimated 3D
dimensions, viewpoints, and perspective keypoints is a non-trivial extension of
their work. Furthermore, it is not studied how well their algorithm would handle
the inevitable noise in the estimated 3D dimensions, viewpoints, and perspective
keypoints if they are not computed from the highly accurate ground truth labels.
Moreover, Stereo-RCNN is designed specifically for stereo images, while the pro-
posed method is designed for monocular images and can be easily extended
to the stereo setting (cf. Sect. 3). Wang et al. [33] back-project the depth map
obtained from an image-to-depth network to a point cloud and then use networks
initially designed for LiDAR data [18,26] for detection. Their method, Pseudo-
LiDAR, showed that representing depth information in the form of point clouds
is advantageous and has inspired our work.

Learning Without Direct Supervision. In the context of autonomous
driving, self-supervised learning has been used successfully for depth predic-
tion [11,35], as well as depth and ego-motion prediction [4]. Using only 2D super-
vision for 3D estimation is common in object reconstruction where the focus lies
on estimating pose and shape for a diverse class of objects, but networks are
commonly trained and evaluated on artificial datasets without noise. Generally,
neural networks are trained to extract the 3D shape of an object from a sin-
gle image. Initial works [17,34] use multi-view images with known viewpoints to
define a loss based on the ground truth segmentation mask in each image and the
differentiably rendered shape. Subsequent methods [14,16] overcome the depen-
dence on known poses by including the pose into the prediction pipeline and
thus require only 2D supervision.

The aforementioned approaches rely on rendering a 2D image from the 3D
representation to define loss functions based on the input. To enable training,
the renderer has to be differentiable with respect to the 3D representation. Loper
and Black [23] proposed a mesh-based, differentiable renderer called OpenDR,
which was extended in [14]. Other methods use approximations to ray casting for
voxel volumes [34], differentiable point clouds [16], or differentiable rasterization
for triangular meshes [17].

1.2 Contribution

We propose a monocular 3D vehicle detector that is trained without 3D bound-
ing box labels by leveraging differentiable shape rendering. The major inputs
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Fig. 2. The proposed model contains a single-image network and a multi-image network
extension. The single-image network back-projects the input depth map estimated from
the image into a point cloud. A Frustum PointNet encoder predicts the pose and shape
of the vehicle which are then decoded into a predicted 3D mesh and segmentation mask
through differentiable rendering. The predictions are compared to the input segmen-
tation mask and back-projected point cloud to define two loss terms. The multi-image
network architecture takes three temporally consecutive images as the inputs, and the
single-image network is applied individually to each image. Our network predicts a
depth map for the middle frame based on the vehicle’s pose and shape. A pre-trained
network predicts ego-motion and object-motion from the images. The reconstruction
loss is computed by differentiably warping the images into the middle frame.

for our model are 2D segmentation masks and depth maps, which we obtain
from pre-trained, off-the-shelf networks. Therefore, our method does not require
3D bounding box labels for supervision. Two-dimensional ground truth and
LiDAR point clouds are only required for training the pre-trained networks.
We thus overcome the need for hand-labeled datasets which are cumbersome to
obtain and contribute towards the wider applicability of 3D object detection. We
train and evaluate the detector on the KITTI object detection dataset [10]. The
experiments show that our model achieves comparable results to state-of-the-art
supervised monocular 3D detectors despite not using 3D bounding box labels
for training. We further show that replacing the input monocular depth with
stereo depth yields competitive stereo 3D detection performance, which shows
the generality of our 3D detection framework.

2 Learning 3D Vehicle Detection Without 3D Bounding
Box Labels

The proposed model consists of a single-image network that can learn from
single, monocular images and a multi-image extension that additionally learns
from temporally consecutive frames. Figure 2 depicts the proposed architecture.
We utilize pre-trained networks to compute depth maps, segmentation masks,
and ego- and object-motion, which are used as inputs to the network and for the
loss functions during training. During inference only the single-image network
and the pre-trained image-to-depth and segmentation networks are required.
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(a) V 0 +B0 (b) V 0 +B1 (c) V 0 +B2

Fig. 3. Shape manifold visualization. The mean shape is shown in red, and the
deformed meshes are shown as black wireframes. The resulting shape space can repre-
sent longer (3a), higher (3b), and smaller (3c) cars.

2.1 Shape Representation

We use a mesh representation given by a mean mesh together with linear vertex
displacements which are obtained from the manifold proposed in [8] by a semi-
manual process and are available on the project page. The mean vertex posi-
tions are denoted V 0 ∈ R

N×3, the K vertex displacement matrices are denoted
Bk ∈ R

N×3, k = 1, . . . , K, the shape coefficients are denoted z = (z1, . . . , zK)
and the deformed vertex positions in the canonical coordinate system are denoted
V def ∈ R

N×3. The deformed vertex positions are the linear combination

V def = V 0 +
K∑

k=1

zk · Bk . (1)

2.2 Single-Image Network

The input depth map is back-projected into a point cloud, which decouples
the architecture from the depth source as in [33]. The point cloud is filtered
with the object segmentation mask to obtain the object point cloud. For depth
maps from monocular images, the object point cloud frequently has outliers at
occlusion boundaries, which are filtered out based on their depth values.

Afterward, a Frustum PointNet encoder [26] predicts the position x ∈ R
3,

orientation ry ∈ [0, 2π), and shape z ∈ R
K of the vehicle. The shape coefficients

z are applied in a canonical, object-attached coordinate system to obtain the
deformed mesh based on our proposed shape manifold (Subsect. 2.1) using Eq. 1.
The deformed mesh is rotated by ry around the y-axis and translated by x to
obtain the mesh in the reference coordinate system.

The deformed mesh in the reference coordinate system is rendered differen-
tiably to obtain a predicted segmentation mask Sobj and a predicted depth map
Dobj . The rendered depth map Dobj that incorporates the predicted pose and
shape of the vehicle is used only in the multi-image network. For the image areas
which do not belong to the vehicle, as defined by the input segmentation mask,
we utilize the input depth map as the background depth and render the depth
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Fig. 4. Qualitative results with and without posecd (cf. Sect. 2.3). We show the ground
truth (red) and the predictions (green). Without the proposed posecd the model learns
to tightly fit the point cloud which leads to worse results due to errors in the point
cloud. With posecd the segmentation loss can correct the erroneous position of the
point cloud and the predicted position is more accurate (Color figure online).

from the deformed mesh otherwise. For rendering the predicted depth map and
segmentation mask we utilize a recent implementation [14] of the differentiable
renderer proposed in [23]. Additional details are in the supplementary material.

2.3 Loss Functions

In order to train without 3D bounding box labels we use three losses, the segmen-
tation loss Lseg, the chamfer distance Lcd, and the photometric reconstruction
loss Lrec. The first two are defined for single images and the photometric recon-
struction loss relies on temporal photo-consistency for three consecutive frames
(Fig. 2). The total loss is the weighted sum of the single image loss for each frame
and the reconstruction loss

Ltot = wrec · Lrec +
1
3

·
∑

t

Lt
single , (2)

where the single image loss is the weighted sum of the segmentation loss and
chamfer distance

Lsingle = wcd · Lcd + wseg · Lseg . (3)

To capture multi-scale information, the segmentation and reconstruction loss
are computed for image pyramids [3] with eight levels, which we form by repeat-
edly applying a 5 × 5 binomial kernel with stride two. For each pyramid level
the loss values are the mean over the pixel-wise loss values which ensures equal
weighting for each level.
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Fig. 5. Qualitative comparison of MonoGRNet [27] (first row), Mono3D [5] (second
row), and our method (third row) with depth maps from BTS [20]. We show ground
truth bounding boxes for cars (red), predicted bounding boxes (green), and the back-
projected point cloud. In comparison to Mono3D, the prediction accuracy of the pro-
posed approach is increased specifically for further away vehicles. As in the quantitative
evaluation (cf. Table 1), the performance of MonoGRNet and our model is comparable
(Color figure online).

Segmentation Loss. The segmentation loss penalizes the difference between
the input segmentation mask Sin and the differentiably rendered segmentation
mask Sobj using the squared L2 norm.

Lseg = ||Sin − Sobj ||2 . (4)

Chamfer Distance. The chamfer distance for point clouds, which was used in
the context of machine learning by [9], penalizes the 3D distance between two
point clouds. Its original formulation is symmetric w.r.t. the two point clouds. In
contrast, the situation analyzed in this paper does not posses this symmetry. For
each point ri in the input object point cloud, there must exist a corresponding
vertex v in the deformed mesh, while due to occlusion or truncation, the reverse
is not true. Therefore, we use a non-symmetric version of the chamfer distance

Lcd =
1
M

∑

i

min
j

ρ(||ri − vj ||) . (5)

We employ the Huber loss ρ : R → R
+
0 to gain robustness against outliers.

For depth maps obtained from monocular image-to-depth networks, we notice
weak performance of the chamfer distance (cf. Table 3) due to a high bias in the
position of the input object point cloud, which is caused by the global scale
ambiguity (cf. Fig. 4). To use the orientation information captured in the object
point cloud without deteriorating the position estimate, we introduce posecd.
The network outputs an auxiliary position xaux, and the chamfer distance is
then calculated using this position

Lcd = Lcd(xaux, ry) . (6)

The auxiliary position xaux is predicted by a separate network head. We cut
the gradient flow between the main network and the additional head to not
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Table 1. Result for the proposed KITTI validation set. We report the average preci-
sion (AP) in percent for the car category in the bird’s-eye view (BEV) and in 3D. The
AP is the average over 40 values as introduced in [31]. Our method convincingly out-
performs the supervised baseline method Mono3D and shows promising performance
in comparison to a state-of-the-art supervised method MonoGRNet.

Method Input
Without
3D Bbox

APBEV,0.7 AP3D,0.7

Easy Mode Hard Easy Mode Hard

Ours Mono � 19.23 9.60 5.34 6.13 3.10 1.70

MonoGRNet [27] Mono 23.07 16.37 10.05 13.88 9.01 5.67

Mono3D [5] Mono 1.92 1.13 0.77 0.40 0.21 0.17

influence the main network, which necessitates the use of another loss term that
back-propagates through the predicted position x.

Multi-image Reconstruction Loss. The multi-image network is inspired by
the recent success of self-supervised depth prediction from monocular images [4,
11], which relies on differentiably warping temporally consecutive images into
a common frame to define the reconstruction loss. The single-image network is
applied to three consecutive images It−1, It, It+1 of the same vehicle and the
reconstruction loss is defined in the middle frame. The reconstruction loss is
formulated as in [4] and we use their pre-trained network to estimate the ego-
motion and object motion required for warping.

Hindsight Loss. To overcome the multi-modality of the loss w.r.t. the orienta-
tion of the vehicle, we apply the hindsight loss mechanism [12], which has been
frequently used in the context of self-supervised object reconstruction [14,16].
The network predicts orientation hypotheses in L bins and the hindsight loss is
the minimum of the total loss over the hypotheses.

3 Experiments

We quantitatively compare our method with other state-of-the-art monocular
3D detection methods on the publicly available KITTI 3D object detection
dataset [10]. Note that since our method is the first monocular 3D detector
trained without 3D bounding box labels, the compared-against methods are
supervised methods that are trained with ground truth 3D bounding box labels.
We conduct an extensive ablation study on the different loss terms to show
the efficacy of each proposed component. Because the accuracy of the input
point cloud plays a crucial role for the proposed model, we show experiments
with depth maps estimated from different methods. Finally, we compare against
methods based on per-instance optimization.
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Fig. 6. Qualitative comparison of ShapePriors [8] (first row) and our approach (second
row) with depth maps from BTS. We show ground truth bounding boxes for cars (red),
predicted bounding boxes (green), and the back-projected point cloud. ShapePriors is
initialized with detections from 3DOP [6] as in the original paper, which leads to false
positives (left column). For the quantitative evaluation (cf. Subsect. 3.2) we control
for this difference and our approach still shows better performance. The comparison
shows that learning can produce more robust and accurate prediction than per-instance
optimization. Both methods do not require 3D bounding box labels for training. (Color
figure online)

KITTI Object Detection. The KITTI dataset consists of sequences that are
used for numerous benchmarks, e.g. 3D object detection and depth prediction.
This leads to an overlap of the common validation set for object detection [6]
and the popular Eigen [7] train set for monocular depth estimation. The overlap
was already noted by [33]. Unlike in [33], we use a subset of the validation set
that has no sequence-level overlap with the Eigen training set or the KITTI 2015
stereo training set. Following works can integrate pre-trained mono-to-depth and
stereo-to-depth networks directly. The split files can be found on the project
page. Results on the standard validation set [6] are given in the supplementary
material and they unsurprisingly show better performance than on the proposed
split.

For the confidence score we estimate the KITTI category (easy, moderate,
and hard) from the data. We shift and scale the baseline scores 1 − Lsingle such
that objects which are estimated to be easy have a higher score than any object
which is estimated to be moderate. The same holds for moderate objects in
comparison to hard objects. This gives a slight improvement in average precision
and details are in the supplementary material.

Pre-trained Networks. For Mask R-CNN [13] we use the implementation of
[1] and their pre-trained weights on the COCO [22] dataset. For ego- and object-
motion estimation we utilize the official implementation of struct2depth [4] and
their pre-trained weights on the Eigen train split. For depth estimation we use
Monodepth 2 [11], BTS [20], SGM [15], and GA-Net [37]. For Monodepth 2 we
use the official implementation and their pre-trained weights on Zhou’s [39] sub-
set of the Eigen train split; this model is trained with supervision from monoc-
ular images of resolution 1024 × 320 and utilizes pre-training on ImageNet [30].
For BTS we use the official implementation and their pre-trained weights on
the Eigen train split. For SGM we use the public implementation provided by
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Table 2. Depth source ablation study. The average precision of the proposed model
improves when using a supervised instead of an unsupervised image-to-depth method
and when using stereo images instead of monocular images. Our more general method
delivers the best performs among methods trained without 3D bounding box labels, but
worse performance as the stereo-specific Stereo-RCNN which uses partial 3D bounding
box information for training. Our approach clearly improves upon the common baseline
3DOP and the recent DirectShape and TLNet. Stereo-RCNN does not directly super-
vise the 3D position, but directly supervises the 3D bounding box dimensions. Addi-
tionally, they compute the viewpoint and perspective keypoint from the ground truth
3D bounding box label and use them for supervision and thus require 3D bounding
box labels during training. Replacing the 3D bbox labels by estimated 3D dimensions,
viewpoints, and perspective keypoints is a non-trivial extension of their work.

Method Input
Without
3D Bbox

APBEV,0.7 AP3D,0.7

Easy Mode Hard Easy Mode Hard

Ours (Monodepth) Mono � 10.78 5.43 2.99 4.53 2.16 1.17

Ours (BTS) Mono � 19.23 9.60 5.34 6.13 3.10 1.70

Ours (SGM) Stereo � 31.51 15.78 8.76 8.42 4.08 2.23

Ours (GA-Net) Stereo � 68.16 35.82 20.45 38.45 18.78 10.44

Stereo-RCNN [21] Stereo (�) 71.51 53.81 35.56 56.68 38.30 25.45

TLNet [28] Stereo 24.92 17.01 11.25 13.74 9.45 6.13

DirectShape [32] Stereo � 24.91 16.03 10.28 12.60 7.36 4.33

3DOP [6] Stereo 8.72 5.52 3.29 2.68 1.48 1.05

[2] and piecewise linear interpolation in 2D to complete the disparity map. For
GA-Net we use the official implementation and their pre-trained weights on
Scene Flow [24] and the KITTI 2015 stereo training set. For matching consec-
utive segmentation masks we use a similar procedure to [4]; however, we first
warp the segmentation masks into a common frame using optical flow [36].

Evaluation Results. For monocular object detection, we compare to two
supervised monocular 3D detection networks: MonoGRNet [27] is a state-of-the-
art monocular detector and Mono3D [5] is a common baseline method. Table 1
shows the evaluation results. Our results are superior to the ones generated by
Mono3D in all categories. While MonoGRNet outperforms our method, the per-
formance gap is relatively small. This difference is smaller for the easy category
than for the moderate category, which shows that handling distant objects and
occlusions when learning without 3d bounding box labels is challenging.
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Table 3. Ablation study using depth maps from BTS [20]. Using the chamfer dis-
tance without the proposed posecd reduces the accuracy significantly. Learning pose
and shape without 3D bounding box labels is an under-constraint problem and the
performance decreases (cf. last row). Without multi-image training the performance in
the BEV is similar but the performance in 3D is decreased.

Method
APBEV,0.7 AP3D,0.7

Easy Mode Hard Easy Mode Hard

Full Model 19.23 9.60 5.34 6.13 3.10 1.70

W/o Lcd 9.75 5.21 2.75 3.50 1.73 0.98

W/o posecd 4.53 2.84 1.58 0.94 0.48 0.26

W/o Lseg 4.22 2.23 1.16 0.76 0.41 0.18

W/o Lrec 19.60 9.48 5.30 4.88 2.26 1.20

W/ Bk 16.02 8.12 4.51 5.24 2.59 1.32

3.1 Ablation Study

Input Depth. Table 2 shows that the average precision with BTS [20], a super-
vised mono-to-depth network, is better than the performance with the self-
supervised Monodepth 2 [11], due to the superior depth estimation accuracy.
This leads to the question: Does the performance of the proposed model con-
stantly improve if more accurate depth maps are used as input? When switching
from mono to stereo, better depth maps are estimated, and the AP is dramati-
cally improved, as can be seen in Table 2. Besides, using depth maps from GA-
Net [37], a stereo-to-depth network trained in a supervised fashion, outperforms
using depth maps from the traditional stereo matching algorithm SGM [15] by a
notable margin. In Table 2, we also show the results of state-of-the-art stereo 3D
detectors, Stereo-RCNN [21], DirectShape [32], 3DOP [6], and TLNet [28]. The
proposed approach ranks first among the methods that do not use 3D bounding
box labels for training.

Loss Terms. We demonstrate the significance of using the chamfer distance
together with the proposed posecd in Fig. 4 and Table 3. Simultaneously esti-
mating pose and shape generally resulted in worse performance and training
instabilities due to the inherent scale ambiguity. The best results we achieved
are obtained with the mean shape – the shape variability of cars within the
KITTI dataset is small and thus a fixed shape is a reasonable approximation.
More details can be found in the supplementary material. During our experi-
ments, the reconstruction loss in the multi-image setting contributes marginal
improvements, which may be due to the noise in the ego-motion and object-
motion predictions, which were taken from the self-supervised struct2depth [4];
details are included in the supplementary material.



Learning Monocular 3D Vehicle Detection Without 3D Bounding Box Labels 127

3.2 Comparison with Non-Learning-Based Methods

We choose ShapePriors [8] for comparison because it uses very similar input
data; ShapePriors uses depth maps and initial 3D detections, while our method
uses depth maps and 2D segmentation masks during inference. We compare both
methods using depth maps generated by GA-Net.

The initial 3D detections were taken from 3DOP in the original paper. To
facilitate a fair quantitative comparison, we initialize the position with the
median of the object point cloud in the x and z direction and the minimum
in the y direction. For the orientation and the 2D bounding box we use the
ground truth. Because we require the ground truth label for the orientation ini-
tialization and the segmentation mask for the position initialization, we match
segmentation masks and labels. Thus, the results presented here are not compa-
rable to the other results within this paper.

Under these conditions, ShapePriors achieves 23.65% APBEV,0.7,easy and ours
77.47%. For the qualitative comparison (cf. Fig. 6) ShapePriors is initialized with
detections from 3DOP [6] as in the original paper. The quantitative and quali-
tative comparisons show that per-instance optimization delivers less robust and
accurate predictions than learning. Similarly, the comparison against Direct-
Shape (cf. Table 2) indicates that learning can extract meaningful priors from
the training data and ultimately deliver superior performance.

4 Conclusion

We propose the first monocular 3D vehicle detection method for real-world
data that can be trained without 3D bounding box labels. By proposing a
differentiable-rendering-based architecture we can train our model from unla-
beled data using pre-trained networks for instance segmentation, depth estima-
tion, and motion prediction. During inference only the instance segmentation and
depth estimation networks are required. Without ground truth labels for train-
ing, we decisively outperform a baseline supervised monocular detector and show
promising performance in comparison to a state-of-the-art supervised method.

Furthermore, we demonstrate the generality of the proposed framework by
using depth maps from a stereo-to-depth network and without further changes
achieving state-of-the-art performance for stereo 3D object detection without 3D
bounding box labels for training. While this paper demonstrates that monocu-
lar 3D object detection without 3D bounding box labels for training is viable,
many directions for future research remain, e.g. the explicit integration of stereo
images, the extension to pedestrians and cyclists, training on large, unlabelled
datasets, or the integration of an occlusion aware segmentation loss.
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Abstract. Deep neural networks have recently advanced the state-of-
the-art in image compression and surpassed many traditional compres-
sion algorithms. The training of such networks involves carefully trad-
ing off entropy of the latent representation against reconstruction qual-
ity. The term quality crucially depends on the observer of the images
which, in the vast majority of literature, is assumed to be human. In
this paper, we aim to go beyond this notion of compression quality
and look at human visual perception and image classification simul-
taneously. To that end, we use a family of loss functions that allows
to optimize deep image compression depending on the observer and to
interpolate between human perceived visual quality and classification
accuracy, enabling a more unified view on image compression. Our exten-
sive experiments show that using perceptual loss functions to train a
compression system preserves classification accuracy much better than
traditional codecs such as BPG without requiring retraining of classi-
fiers on compressed images. For example, compressing ImageNet to 0.25
bpp reduces Inception-ResNet classification accuracy by only 2%. At the
same time, when using a human friendly loss function, the same com-
pression system achieves competitive performance in terms of MS-SSIM.
By combining these two objective functions, we show that there is a
pronounced trade-off in compression quality between the human visual
system and classification accuracy.

1 Introduction

Image compression algorithms aim at finding representations of images that use
as little storage—measured in bits—as possible. Opposed to lossless image com-
pression, where the goal is to achieve a high compression rate while requiring
perfect reconstruction, lossy image compression enables even higher compression
rates by allowing for a loss in reconstruction quality. Recently, image compres-
sion based on deep neural networks (DNNs) has achieved remarkable results in
both lossless [33] and lossy image compression [2,4,32,35,41,43], outperforming
many traditional codecs. One distinct advantage of such methods is their flex-
ibility with regards to the term reconstruction quality which crucially depends
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BPG [5] Mentzer et al. [32] Ours (for Human) Ours (for Classification)

MS-SSIM 0.942 0.959 0.954 0.891
Accuracya 0.707 0.719 0.715 0.780

a Accuracy uncompressed: 0.803

Fig. 1. Accuracy evaluated on ImageNet-1K with off-the-shelf Inception-ResNet-V2.
MS-SSIM on Kodak. Both datasets are compressed at ∼0.25 bpp with different meth-
ods. Our Classification optimized system induces very low loss in classification accuracy
at high compression rates, compared to human optimized approaches.

on the observer of the compressed images. Previous research in lossy image
compression expressed quality largely in terms of human visual perception and
optimized for the human visual system (HVS), using distortion measures such as
multiscale structural similarity [47] (MS-SSIM) or mean squared error (MSE) as
training objectives. However, due to recent advances in computer vision systems,
increasingly more images are observed solely by machines and bypass humans.
Consequently, a natural question that arises is whether or not there exists a rela-
tion between quality perceived by humans and quality perceived by computer
vision systems, and if so, how can we trade off quality between different types
of observers? In other words, is a compression system optimized for the human
observer also optimal for machines? We investigate these questions by specifically
looking at classification of natural images as one of the most well studied tasks in
computer vision. The training of modern classifiers is typically a costly and time-
consuming undertaking and parameters of the best performing classifiers are
often publicly available. With that in mind, we are interested in a compression
system that generalizes well in the following sense. Firstly, we want to compress
images such that no retraining of classifiers on compressed images is required.
Secondly, the compression system should be agnostic to classifier architectures.
Thirdly, it should also generalize well to other visual tasks such as fine-grained
visual categorization of natural images. Together, these generalization require-
ments encourage using publicly available, pretrained classifiers on compressed
images from the same domain or on related tasks where classifiers were obtained
with transfer learning. Our method for classification oriented compression relies
on a feature reconstruction loss using deep features extracted from the hidden
layers of a convolutional neural network trained for image classification. This
type of loss function has been used in the context of super-resolution [7,21,27],
style-transfer [15,21] and variational autoencoders [12] with remarkable success.
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In order to optimize for human visual perception, we make use of MS-SSIM as
a measure of quality perceived by humans, since it has been reported to cor-
relate better with the HVS than MSE. Finally, the convex combination of the
two objectives allows to investigate the trade-off between human visual percep-
tion and classification in the context of image compression. In summary, the
contributions of our work are threefold:

– We show that training deep image compression with a perceptual loss function
preserves classification accuracy much better than human optimized compres-
sion systems. In addition, our experiments show that (1) we do not have to
retrain classifiers on compressed images in order to preserve accuracy on
highly compressed images, and (2) using VGG-based feature reconstruction
loss generalizes to other models, indicating that deep CNN features are shared
between CNN architectures.

– By looking at the convex combination between human and classification-
friendly loss, we present a simple way to trade off compression quality in
terms of human perception against image classification. Since we only rely
on the training objective, our method can be integrated to any learned lossy
image compression system.

– Our extensive experimental study indicates that there exists a pronounced trade-
off between compression quality perceived by the human observer and classi-
fication accuracy. We show how improved compression quality for the human
observer comes at the cost of degraded classification accuracy, and vice versa.

We emphasize that the contribution of this work is not presenting a new type of
loss function nor in a new deep compression architecture. Rather, we make us
of existing techniques in order to present a method to trading off compression
quality depending on the observer and to show that it is possible to explicitly
optimize compression for subsequent classification.

2 Related Work

Deep Image Compression. Image compression using DNNs has recently become
an active area of research. The most popular types of architectures used for image
compression are based on autoencoders [2,4,32,35,41] and recurrent neural net-
works [22,42,43] (RNNs). Typically, the networks are trained in an end-to-end
manner to minimize a pixel-wise notion of distortion such as MSE, MS-SSIM or
L1-distance between original and decoded image.

Compression for Computer Vision. Image compression in combination with
other computer vision tasks has been studied in a number of recent works. Liu
et al. [29] propose an image compression framework based on JPEG that is favor-
able to DNN classifiers. Also starting from an engineered codec, Liu et al. [30]
propose a 3D image compression framework based on JPEG2000 which is tai-
lored to segmentation of 3-D medical images. Both works differ from ours in that
we look at learned image compression, rather than modifying an engineered one.
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A few examples exist in the literature, where a classifier is learned from features
extracted from the encoded representations. Gueguen et al. [17] train a modified
ResNet-50 directly on the blockwise discrete cosine transform coefficients from
the middle of the JPEG codec. Torfason et al. [44] make use of the compres-
sive autoencoder proposed in [41] and train neural networks for classification
and segmentation on the latent (quantized) representations and on the decoded
images. These works stand orthogonal to ours in that we do not allow training
on compressed versions of images. Rather, we train the compression algorithm
such that it maintains information relevant for subsequent classification, keep-
ing the classifiers fixed. We furthermore focus on agnosticity to architectures of
inference algorithms. Finally, since compression artifacts typically compromise
the performance of classifiers, Dodge and Karam [11] study the effect of JPEG
compression on image classification with neural networks.

Feature Reconstruction Loss. This class of similarity functions makes use of deep
features extracted from convolutional neural networks. Recent advances in genera-
tivemodelling have shown that using this type of loss functions, high quality images
can be generated and have been applied to a variety of tasks. Gatys et al. [14,15]
apply the idea to style transfer and texture synthesis, while Johnson et al. [21] and
Bruna et al. [7] achieve remarkable results in super resolution [7,21] and style trans-
fer [21]. Ledig et al. [27] further develop the idea and enhance the CNN feature loss
with adversarial training to achieve state-of-the-art results in single image super
resolution. In the image compression domain, steps in this direction have also been
made. Agustsson et al. [3], Santurkar et al. [37] and Liu et al. [28] enhance pixel-
wise distortion and adversarial training with a feature reconstruction loss. Fur-
thermore, Chinen et al. [8] and Zhang et al. [48] both propose a similarity metric
based on deep features extracted from VGG-16 trained for image classification.
These works have in common that their focus is on the human observer, while
we exploit properties of feature reconstruction loss in the context of compression
geared towards subsequent image classification. Feature reconstructions loss has
also been used in the context of compression artifact removal. Galteri et al. [13]
train a generative adversarial network in combination with a VGG-based percep-
tual loss function to remove compression artifacts in images. It is shown that this
can significantly increase the quality of compressed images in terms of MS-SSIM
and in terms of object detection accuracy. However, contrary to our work, no clear
trade-off between the human observer and image classification is investigated.

3 Method

In this section, we outline our approach to compressing images for human
visual perception, classification accuracy and the interpolation between the two.
Throughout this paper we adopt the compression architecture proposed by Tode-
rici et al. [43], based on recurrent neural networks. We emphasize that we only
focus on the objective functions to account for different types of observers.

Compression Framework. Let X ⊆ R
d denote a set of training images, Z ⊆ Z the

quantization levels and d : R
d × R

d → R a notion of distortion between images.
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Our goal is to find a compression system consisting of an encoder E : R
d → R

m

that maps input images x to their latent representation z = E(x), a quantizer
q : R

m → Zm that discretizes z to ẑ = q(z), and a decoder D : Zm → R
d that

maps the quantized representation back to image space, x̂ = D(ẑ). The goal
is then to minimize the rate-distortion trade-off over the training set X , i.e.
for β ≥ 0, we want to minimize

∑
x∈X d(x, x̂) + β H(ẑ), where H denotes the

entropy. As a compression architecture, we adopt the RNN-based model pro-
posed in [43] with gated recurrent units (GRUs), allowing for variable bitrates.
An input image x is passed through the encoder and quantizer, mapping the
latent codes stochastically to Zm = {−1,+1}m. The quantized representation
is subsequently decoded, yielding an estimate of the original image. This is
repeated with the residual error fed to the encoder to obtain an estimate at
the next bitrate, using information from the hidden states of the previous iter-
ations. Formally, a single iteration at unrolling step t ≥ 1, can be represented
as x̂t = x̂t−1 + Dt(Q(Et(rt))) with x̂0 = 0 and r1 = x and where Et and Dt

are encoder and decoder carrying information from the previous unrolling steps.
Finally, we remark that, since Z contains a finite number of quantization levels,
we set β = 0 in the training objective.

Optimizing for Human Visual Perception. In order to optimize the compres-
sion system for the human observer, we choose a measure of distortion that
approximately models human visual perception. The multiscale structural sim-
ilarity index (MS-SSIM) [47] is based on the assumption that the human eye
is adapted for extracting structural information from images and incorporates
image details at multiple resolutions. It is furthermore reported to correlate bet-
ter with human visual perception than MSE. Since MS-SSIM is differentiable, we
follow [22,32,35] and minimize directly dH(x, x̂) = 1−MS-SSIM(x, x̂). We refer
to compression optimized with dH as RNN-H. An alternative approach would
be to use other, human-centric distortion metrics such as LPIPS [48] or the app-
roach proposed in [8]. However, as these approaches are based on CNNs they
bear the additional challenge of dealing with checkerboard-like artifacts [34].

Optimizing for Classification. Suppose we are given a CNN classifier f trained
on a set of images and labels (X ′,Y ′) and corresponding training and validation
splits (X ′

train,Y ′
train) and (X ′

val,Y ′
val). When we optimize compression for classi-

fication accuracy, we are interested in finding an encoder, quantizer and decoder
such that the accuracy evaluated on the decoded validation set D(q(E(X ′

val)))
is maintained as well as possible, without further retraining the classifier on
decoded images. Formally, we wish to maximize

∑
x∈X ′

val
1{f(x) = f(x̂)}. We

are thus not interested in matching decoded and original images on a pixel-wise
basis, but rather on preserving features which are relevant for subsequent classi-
fication. Image classification is a task which is typically invariant to translations
and local deformations (see e.g. [6,31]), which motivates the use of an objec-
tive function with similar properties. For example, using a pixel-wise distortion,
such as MSE, which is not invariant to such deformations would be a subopti-
mal choice. Furthermore, minimizing MSE encourages the generator to produce
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images that are pixel-wise averages of plausible solutions [12], resulting in overly
smooth images. In other words, high frequency information such as textures will
tend to get lost in the compression process. While this is less problematic for the
HVS, which is more susceptible to low frequency changes, CNNs are sensitive to
any change in frequency [29].

Features learned by convolutional neural networks [26] for image classifica-
tion provide a promising alternative. The intuition is that, if such features are
maintained in the compression process, then the compressed representations are
encouraged to encode information relevant to classification rather than to the
human observer. Moreover, it is known that CNNs provide stability to small
geometric deformations and translations, thanks to rectification and pooling
units [6]. This is beneficial for our purpose, since we do not want to put too
much emphasis on such deformations as they do not affect classification. Finally,
feature reconstruction loss typically leads to high frequency artifacts ([12] and
references therein) and checkerboard patterns [34]. While this harms human
perceived visual quality, our experiments indicate that this is not the case for
classification. These considerations make distortion measures based on CNN fea-
tures promising candidates for classification oriented image compression.

In order to define a distortion measure that incorporates these properties,
we fix a CNN classifier fL trained on a dataset (X ′′, Y ′′). Denote by φi the
responses of the i-th convolutional layer after activation and let I be a set of
such layers. Note that I is not required to include all layers. We then define the
distortion measure associated with the loss network fL and layers I to be MSE
in feature space

dC, I(x, x̂) =
∑

i∈I
γi‖φi(x) − φi(x̂)‖22, (1)

where γi := (Hi × Wi × Ci)−1 and Hi, Wi, Ci represent the spatial dimensions
of the corresponding layer. Note that we do not restrict the loss network to
be trained on the same dataset as the compression system or the classifier f ,
however we do require that X ′′ ∩ X ′

val = ∅. Furthermore, the classifier f might
have a different underlying architecture than the loss network fL. This formula-
tion allows to investigate the generalizability of the compression system to new
datasets and CNN architectures. We refer to compression optimized with dC, I
as RNN-C.

From Human Visual Perception to Classification. In a scenario where images
are consumed by both humans and classifiers, we would like to be able to trade
off reconstruction quality between the two observers. In other words, we want
to have a compressed representation of an image that contains features relevant
for classification and looks visually pleasing for the human observer. At the
same time, this enables us to investigate the relation between human visual
perception and classification accuracy. For that purpose, we consider the convex
combination between distortions dH and dC, I

dα, I(x, x̂) = (1 − α) · λH · dH(x, x̂) + α · dC, I(x, x̂) (2)
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Fig. 2. Sample image from the Stanford Dogs dataset. RNN-H results in smoother and
blurrier images, RNN-C on the other hand produces sharp images but suffers from
checkerboard-like artifacts stemming from the CNN based loss function.

and control the trade-off with the parameter α ∈ [0, 1]. The parameter λH is a
scaling parameter which keeps the two losses on the same magnitude and is set
to 5,000. We refer to compression optimized with dα, I as RNN-α.

4 Experiments

In this section we experimentally validate our approach to trading off compres-
sion quality between human visual perception and classification accuracy, mak-
ing use of the proposed family of loss functions. All models are implemented in
Python using the Tensorflow [1] library.1

Image Compression. We use the RNN compression architecture proposed by
Toderici et al. [43] with GRUs and the additive reconstruction framework. Our
implementation differs from the original version in two aspects. Firstly, during
training, we feed as input the full resolution images, rather than 32×32 image
patches. And secondly, instead of optimizing the L1-distance in image space,
we use the family of loss functions (2) as training objective. Furthermore, we
do not use the lossless entropy coding scheme proposed in their original work.
While this would likely result in reduced bitrates, and thereby further improve
our results, we omit this in order to reduce complexity and focus exclusively on
the distortion during training. If not stated otherwise, we train the networks for
8 unrolling steps, yielding rates between 0.125 and 1.0 bpp. As training data
X , we use the training split of the ILSVRC-2012 [36] dataset, commonly known
as ImageNet-1K. We preprocess the images by resizing such that the smallest
side equals 256 pixels and aspects are preserved using bilinear interpolation.
During training, we take random crops of size 224×224 and randomly flip them
horizontally. During validation, we use the central crop of size 224×224. We
follow [32] and normalize with a mean and variance obtained from a subset of
the training set. We train all our networks using the Adam optimizer [24] for
three epochs with the learning rate set to 4e-4 and minibatches of size four. All
models are trained on eight Nvidia Titan X GPUs with 12GB RAM.

1 The source code is available at https://github.com/DS3Lab/odlc.

https://github.com/DS3Lab/odlc
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Measures of Distortion. We train the compression networks using the loss func-
tion defined in Eq. (2) and use VGG-16 trained on the ImageNet-1K training
split as our loss network fL. Preliminary experiments have shown that choosing
I = {φ1.1, φ5.1} in (1), where φi.j denotes the j-th convolutional layer after acti-
vation in the i-th block of VGG-16, performed best. Including the entire set of
convolutions or only the first or last layer did not yield any improvements. We
provide detailed plots to compare the different loss compositions with respect
to accuracy in the supplementary materials. The weights of the loss network are
frozen and left unchanged during training. We experiment with different values
for the parameter α, starting the training each time from scratch. Namely, in
order to optimize for human visual perception, we set α = 0, while for classifi-
cation oriented compression, we set α = 1. To investigate the trade-off between
human vision and classification, we train with α ∈ {1

4 , 1
2 , 3

4}, also starting train-
ing from scratch each time.

Comparison with Other Methods. We compare our approach to the traditional
compression algorithms JPEG [46], WebP [16] and BPG [5] which achieves state-
of-the-art performance in HVS oriented compression. Following [32,35], BPG is
used in the non-default 4:4:4 chroma format. Finally, we also compare against
the state-of-the-art learned compression method presented in Mentzer et al. [32],
using their publicly available weights and code. Since the available weights do
not compress images below 0.3 bpp, we train two models with the same hyperpa-
rameters but different number of bottleneck channels to achieve lower bitrates.

Datasets. We evaluate our approach on four publicly available datasets. For
classification we use the ImageNet-1K dataset [36], as well as two datasets used
for fine-grained categorization, CUB-200–2011 [45] and Stanford Dogs [23]. In
order to evaluate the performance in terms of human visual perception we use
the Kodak Photo CD dataset [25] and the ImageNet-1K validation split.

CNN Architectures. On ImageNet-1K, we use DenseNet-121 [20], Inception-
ResNet-V2 [39], Inception-V3 [40], MobileNet-V1 [19], ResNet-50 [18], Xcep-
tion [9] and VGG-16 [38] for inference and use the weights provided by the
Keras Library [10]. For fine-grained categorization on CUB-200–2011 and Stan-
ford Dogs, we use Inception-V3, Inception-ResNet-V2, MobileNet-V1, ResNet-50
and VGG-16. To obtain the classifiers, we use ImageNet pre-trained networks
and fine-tune all layers on the original uncompressed training split.

Evaluating Classification Accuracy. In order to compare the different compres-
sion algorithms with regard to classification accuracy, we evaluate a collection of
CNN architectures on datasets compressed with different algorithms and at dif-
ferent bitrates. Note that all classifiers are trained on the uncompressed respec-
tive training datasets, without retraining on decoded data. The evaluation pro-
cedure is as follows. Since generally, the images do not have the same resolution,
we resize them such that the smaller side equals Scomp and aspects are preserved.
We then take the central crop of size Scomp×Scomp yielding square images. After
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this step, given a compression algorithm, we encode the images for a predefined
grid of quality parameters and compute the bpp values for each image and qual-
ity parameter. For each quality level, we subsequently take the average over the
entire validation set, yielding the final bpp values. Finally, we decode and take
the central crop of size Sinf × Sinf of the decoded image, which is then fed to
the classifier. This results in a set of (bpp, accuracy) points for each classifier
and compression method. For CNNs that expect inputs of size Sinf = 299 we
set Scomp = 336 and for those with Sinf = 224, we set Scomp = 256.

Evaluating Human Visual Perception. The procedure to compare the compres-
sion methods for human perceived visual quality is as follows. To account for the
variable resolution on ImageNet-1K, we resize each image with bilinear interpo-
lation such that the smallest side equals 256 pixels and aspects are preserved.
We then take the central crop of size 256×256. Since the Kodak images are all of
equal resolution, we skip this first resizing step and keep the original resolution.
We then compress the images using a predefined grid of quality parameters and
compute their bpp values which are averaged over the validation set. Finally,
we compute the MS-SSIM scores between decoded and original (resized) image.
This yields a set of (bpp, MS-SSIM) points for each compression method.

4.1 Results

We start by investigating the trade-off between human perception and classifica-
tion accuracy using compression trained with an increasingly more classification
friendly loss. We then look at compression in terms of classification accuracy,
followed by our results on human perception.

From Human Visual Perception to Classification. In order to investigate the rela-
tion between compression quality perceived by humans in terms of MS-SSIM, and
by CNN classifiers, we train the compression networks with loss functions that
interpolate between human friendly and classification friendly loss, i.e. for values
of α in {0, 1

4 , 1
2 , 3

4 , 1}. This trade-off can be seen qualitatively in Fig. 2. Opti-
mizing for MS-SSIM, results in images that appear smoother and more blurry.
Classification optimized compression on the other hand results in sharper images
but suffers from checkerboard-like artifacts. This type of degradation is a known
issue for feature visualization and super resolution (see e.g. [34]) and – in our
case – stems from the convolution based loss function which incurs artifacts in
gradients. In order to quantitatively investigate the trade-off, we visualize the
relation in Fig. 3. We plot MS-SSIM on Kodak (left axis) and ImageNet-1K val-
idation accuracy (right axis) against the tradeoff parameter α corresponding to
RNN compression trained with different loss functions. The Figures indicate that
we can indeed trade off accuracy against MS-SSIM by optimizing compression
with our family of loss functions. Interestingly, we observe that by increasing the
trade-off parameter α from 0 to 0.25, we substantially increase accuracy while
the reduction in MS-SSIM is relatively small. The same holds for the other direc-
tion. Finally, we observe that the trade-off is much more pronounced in the low
bitrate regime.
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(a) Inception-ResNet-V2, 0.25 bpp (b) Inception-ResNet-V2, 1.0 bpp

(c) DenseNet-121, 0.25 bpp (d) DenseNet-121, 1.0 bpp

Fig. 3. MS-SSIM evaluated on Kodak (left axis, grey), validation accuracy evaluated on
ImageNet-1k (right axis, blue). As α increases, MS-SSIM decreases, while validation
accuracy increases. The trade-off is especially pronounced for the low bitrates and
DenseNet-121 is in general more sensitive to compression than Inception-ResNet-V2
(Color figure online).

ImageNet Classification. Table 1 shows the classification accuracies for a wider
collection of CNN architectures. We see that our RNN-C outperforms both the
traditional codecs BPG, WebP and JPEG as well as our RNN-H and the deep
image compression method proposed in [32], across all architectures and bitrates
considered. In the case of the loss network VGG-16 this is to be expected, since
we explicitly train the compression network to produce images whose VGG-
features – which are fed to the fully connected layers for classification – match
the ones from their uncompressed version. Interestingly however, we see that
RNN-C generalizes well to architectures different from the loss network and
maintains the accuracy remarkably well, indicating that hidden representations
are shared among CNN architectures. It is again noticeable that the advantage
of RNN-C is much more pronounced for low bitrates.

Fine-Grained Visual Categorization. In order to explore the generalization prop-
erties of our compression system to new tasks, we evaluate our method on two
well known datasets for fine-grained visual categorization, namely Stanford Dogs
and CUB-200–2011. We emphasize that the compression system is trained on
the ImageNet-1K training split. Figures 4(a) and 4(b) indicate that RNN-C out-
performs both the traditional codecs, RNN-H compression and the approach
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Table 1. Validation accuracy on ImageNet-1K. Our RNN-C compression consistently
outperforms all other methods across bitrates and architectures.

ImageNet-1K Validation Accuracy

224×224 input 299×299 input

bpp DenseNet-121 MobileNet ResNet-50 VGG-16a bpp Inception-V3 Xception

Low Bitrates (∼0.13 bpp)

RNN-C 0.125 0.5914 0.4903 0.6092 0.6009 0.125 0.6691 0.6815

RNN-H 0.125 0.4109 0.3221 0.4309 0.3797 0.125 0.5550 0.5722

Mentzer et al. [32] 0.142 0.4744 0.3774 0.4931 0.4387 0.140 0.6069 0.6269

BPG 0.157 0.4661 0.3421 0.4711 0.4448 0.132 0.5750 0.6050

JPEG 0.136 0.0480 0.0493 0.0426 0.0320 0.113 0.2675 0.2166

Medium Bitrates (∼0.65 bpp)

RNN-C 0.625 0.7252 0.6256 0.7246 0.6998 0.625 0.7678 0.7787

RNN-H 0.625 0.6709 0.5688 0.6744 0.6450 0.625 0.7434 0.7543

Mentzer et al. [32] 0.652 0.6842 0.5909 0.6975 0.6670 0.648 0.7567 0.7652

BPG 0.725 0.6857 0.5834 0.6894 0.6634 0.581 0.7377 0.7523

WebP 0.589 0.6306 0.5263 0.6323 0.6247 0.602 0.7268 0.7429

JPEG 0.582 0.6166 0.5111 0.6333 0.6365 0.686 0.7390 0.7476

High Bitrates (∼1.0 bpp)

RNN-C 1.000 0.7303 0.6347 0.7316 0.7037 1.000 0.773 0.7840

RNN-H 1.000 0.6998 0.5984 0.7018 0.6732 1.000 0.7631 0.7728

Mentzer et al. [32] 1.037 0.7076 0.6183 0.7152 0.6841 1.034 0.7667 0.7767

BPG 1.048 0.7085 0.6151 0.7168 0.6841 1.066 0.7618 0.7756

WebP 0.997 0.6930 0.6050 0.7039 0.6829 1.055 0.7589 0.7699

JPEG 1.087 0.6808 0.5865 0.6963 0.6918 0.962 0.7517 0.7622

Original - 0.7453 0.6590 0.7465 0.7088 - 0.7786 0.7907
a Loss network used to train RNN-C compression.

(a) Stanford Dogs Acc. (b) CUB-200-2011 Acc. (c) MS-SSIM on Kodak

Fig. 4. Validation accuracy is displayed in (a) and (b) where our RNN-C consistently
outperforms BPG, JPEG, WebP, RNN-H and deep compression [32] across bitrates.
MS-SSIM on Kodak is shown in (c), indicating that our RNN-H is comptetitive to the
state-of-the-art while RNN-C is comparable to JPEG. In each figure, RNN compression
is trained from scratch on ImageNet-1K.
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presented in [32] in terms of preserved classification accuracy with Inception-
ResNet-V2 on both datasets. Similarly to ImageNet-1K classification, we see
that the difference is especially pronounced below 0.5 bpp.

Human Visual Perception. Figure 4(c) shows that RNN-H outperforms RNN-
C on Kodak across bitrates. In comparison to neural compression from [32],
RNN-H performs competitive, although worse for the lowest bitrate. Comparing
our method against the traditional codecs, RNN-H slightly outperforms BPG
for bitrates above 0.2 bpp. Additionally, RNN-H clearly outperforms WebP and
JPEG, while RNN-C performs competitive to JPEG.

5 Discussion

In this paper we investigate the trade-off in learned image compression with
RNNs [43] between human visual perception and image classification. To that
end, we use a family of loss functions that enables us to either optimize com-
pression for the human observer, or towards subsequent image classification. Our
experiments show that when using the human friendly loss, RNN compression
performs competitive to a state-of-the-art learned compression method [32] and
to the traditional codec BPG [5] in terms of MS-SSIM. JPEG and WebP perform
consistently worse than our approach. We use MS-SSIM as a model for image
similarity perceived by humans which, although being a widely adopted measure
of distortion, is only an approximation to a true model of the human visual sys-
tem. Our classification friendly loss, based on features extracted from VGG-16,
induces a compression system which by a large margin outperforms both the the
other approaches in terms of preserved classification accuracy. Our experiments
furthermore indicate that our approach is agnostic to the CNN architecture
used for classification and does not require the classifiers to be retrained on
compressed images. This suggests that we can indeed explicitly optimize image
compression for subsequent classification. We observe a clear trade-off between
quality perceived by the human visual system and classification accuracy, mean-
ing that, for a fixed bitrate, an increase in accuracy always comes at the cost
of degraded quality for the human observer, and vice versa. Across classifiers,
this trade-off is much more pronounced for bitrates below 0.5 bpp. Finally, we
find that by moving the loss function only marginally towards classification, we
can substantially increase the preserved accuracy while incurring only a minor
reduction in MS-SSIM. This improves compression in a scenario where images
are consumed by humans and classifiers simultaneously and allows a user to
trade off reconstruction quality accordingly.

An interesting line of future work could include investigating other types of
distortion measures used for the human oriented training loss, for example met-
rics that are based on CNNs which have been reported to correlate better with
human perceptual similarity. Additionally, while classification is one of the most
basic computer vision tasks, it would be interesting to explore whether the app-
roach presented here also generalizes to other tasks such as image sementation
and object detection.
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Abstract. This work focuses on synthesizing human poses from human-
level text descriptions. We propose a model that is based on a conditional
generative adversarial network. It is designed to generate 2D human
poses conditioned on human-written text descriptions. The model is
trained and evaluated using the COCO dataset, which consists of images
capturing complex everyday scenes with various human poses. We show
through qualitative and quantitative results that the model is capable of
synthesizing plausible poses matching the given text, indicating that it
is possible to generate poses that are consistent with the given semantic
features, especially for actions with distinctive poses.

1 Introduction

Given a text description like “A tennis player hitting a tennis ball with a rac-
quet”, we can directly imagine a human pose that matches the description.
Such ability would be useful for applications like retrieving images with seman-
tically similar poses or animating avatars based on text descriptions. Synthe-
sizing the human pose, however, is very difficult since the articulated body
pose is much more complex than rigid or nearly convex shapes like objects or
faces. Although previous works on synthesizing images from text describing a
scene [16,22,23,25,28,32,33] achieve astonishing results when the images con-
tain objects such as flowers, animals with small pose variations like birds or
general scenes such as mountains or playing fields, the synthesized humans in
these scenes appear quite unrealistic due to distorted or incorrect poses. This
failure is due to the uniqueness of the human pose which is highly articulated and
versatile. Conversely, most existing works for modeling humans rely on the pose
as part of the intermediate feature representation [12,18]. Synthesizing poses in
complex scenes is therefore an essential step towards synthesizing images with
realistic human poses.
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Fig. 1. The image on the left hand side shows an example from the COCO dataset
that is annotated by an image caption describing the image and the human pose. In
this work, we use only the image caption to generate the human pose.

In this work, we focus on synthesizing versatile human poses from text as
shown in Fig. 1. We examine how well the synthesized poses match the text
description and whether it is possible to achieve semantic consistency in their
feature spaces. To achieve this goal, we design a model based on Generative
Adversarial Networks (GANs) [6] to generate a single person pose conditioned
on a given human-level text description. In order to condition the network to gen-
erate a pose that matches the text, the text is first encoded into an embedding
using a pre-trained language model and then fed-forward through a convolu-
tional network. The generated and real poses will then be assessed by a critic
network whose objective is to maximize the earth mover’s distance between the
real and generated samples distributions. Similar to the pose representation in
detection-based human pose estimation [29], we represent the pose by a set of
heatmaps each corresponding to a body keypoint. Additionally, to resolve the
highly unstable nature of GAN training, we experiment with different GAN
models and loss functions and thoroughly evaluate their impact on the synthe-
sized poses. We evaluate the approach on the COCO dataset and show that it
is possible to generate human poses that are consistent with a given text.

2 Related Work

Generative models are a powerful tool for learning data distributions. Recent
advancements in deep network architectures have enabled modeling complex and
high-dimensional data such as images [27]. Examples of deep generative models
include Deep Belief Networks (DBNs) [10], Variational Autoencoder (VAEs) [11]
and the more recent approach of Generative Adversarial Networks (GANs) [6].
In the field of computer vision, GANs have been employed for different tasks for
content synthesis, including unconditional image synthesis [6,24], image synthe-
sis conditioned on text [13,14,16,22,23,25,28,32,33], generating text description
conditioned on images [5], style transfer between images [4], and transferring a
target pose to a given person’s pose in an image [19].
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Image synthesis conditioned on text has gained traction in computer vision
research recently. Motivations for such works include matching features between
the semantic and visual space. Reed et al. [25] combine a GAN with a deep sym-
metric structured text-image joint embedding to synthesize plausible images of
birds and flowers from human-written text descriptions. Zhang et al. [33] propose
a GAN composed of two stages and generate hierarchical representations that are
transferred between several stacked GANs. Reed et al. [25] and Zhang et al. [33]
also attempt to generalize their models to generate images with multiple types
of objects using the COCO dataset. However, their approaches do not directly
address the human pose, and the persons in the synthesized images have deformed
poses. In a subsequent work, Reed et al. [26] generate images based on text and
show that using a sparse set of keypoints allows for synthesizing a higher resolu-
tion image. Zhou et al. [35] alter the pose of a person in a given image based on a
text description. In the first stage they generate a pose by predicting a pose from
a set of pose clusters created from the training set. However, they use a pedes-
trian dataset in which the poses are simple and contain mainly small variations
of standing or walking persons. Since the approach assumes that all poses can be
represented by a small set of clusters, the approach cannot be applied to datasets
with versatile and highly articulated poses such as COCO. In a more recent work,
Xu et al. [32] proposed a more advanced attentional GAN, which is multi-stage and
attention-based, such that it can synthesize fine-grained details by paying atten-
tion to the relevant words in the text. Their model outperforms the previous works
but individuals still appear deformed in the generated images. Li et al. [14] pro-
pose an object-driven attention module that generates images conditioned on the
class label. However, they do not explicitly handle the human case and the humans
still look deformed despite improved results. In the fashion domain, Zhu et al. [36]
manipulate the clothing of a person in a given image based on a text description
without altering the pose. Other related works such as [7,9,15,34] deal with search-
ing for or synthesizing plausible human poses that match object affordances in a
given scene.

3 Generating Human Poses from Text

The goal of our approach is to generate human poses that match a textual
description as illustrated in Fig. 1. To this end, we use a conditional Wasserstein
GAN as shown in Fig. 2. The text description is first converted into a vector and
used to condition the GAN, which predicts heatmaps for each joint, which are
finally converted into a human pose. Before we discuss the network architecture
in Sect. 3.2, we discuss the representation of the text and the human pose.

3.1 Feature Representation

We need to define representations for the text description as well as the human
pose such that they can be used in a convolutional network. The text is encoded
by the mapping ϕ : T → R

300, which maps a text sequence into a 300 dimen-
sional embedding space. For the text embedding, we use fastText [2,20]. As is
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Fig. 2. The architecture of the proposed network. The generator G takes a noise vector
z ∈ R

128 and a text encoding vector h ∈ R
300 as input and generates a pose heatmap

G(z, h) ∈ R
J×64×64 where J is the number of keypoints. The discriminator D takes

a real or generated pose heatmap H and a text encoding vector h as input. The
discriminator predicts a single value D(x, h) ∈ R indicating its confidence about the
sample being real or generated. For upsampling, transposed convolution layers are used.

common for human pose estimation [31], we represent the human pose by a
heatmap x ∈ R

m×n for each joint j. The heatmaps are modeled by a Gaussian
distribution centered at the keypoint coordinate. Compared to a skeleton repre-
sentation based on joint coordinates, heatmaps allow for representing joints that
are invisible due to occlusion or truncation by setting the heatmaps to zero and
allow an implementation based on a convolutional network rather than a fully
connected one. The choice of the heatmap-based representation is also validated
by our experiments, in which we compare the proposed representation with a
skeleton representation that is regressed by a fully connected network. Given
these two representations for the text description and the human pose, we will
describe the network architecture that generates heatmaps from the embedded
text in the following section.

3.2 Architecture

In order to learn to predict plausible poses from text, we use adversarial training
as illustrated in Fig. 2. In our experiments, we show that a vanilla GAN performs
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poorly. We therefore use a Wasserstein GAN (WGAN), which is a more stable vari-
ant for training GANs with their continuous and nearly everywhere differentiable
loss functions [1].

The model consists of a conditional generator network G and a conditional
discriminator network D. The input to the generator is a concatenation of a noise
vector z ∼ N(0, I), where N denotes a normal distribution, with the embedded
text description h = ϕ(t) reduced by a layer from 300 to 128 dimensions. Given
z and h, the network infers J heatmaps with resolution m × n, i.e. G(z, h) ∈
R

J×m×n. The discriminator network takes either real or generated heatmaps
as input. Since our goal is to generate heatmaps or poses that match the text
description, we condition the network on the embedded text h = ϕ(t) as well.
Since the heatmaps have a higher dimensionality with J × 64 × 64 than h, we
first apply the inverse transformations of the generator until the resolution is
reduced to 4 × 4. We then concatenate the embedded text, by duplicating it 16
times after a layer that reduces the vector h from 300 to 128 dimensions. Both
networks are trained together where D’s objective is to maximize the distance
between the generated heatmaps G(z, h) and the real heatmaps x sampled from
the training dataset Pr. Unlike in the unconditional case, D has to distinguish
two types of errors: heatmaps that correspond to unrealistic human poses as well
as heatmaps that correspond to realistic poses, but the poses do not match the
text description. The two errors are penalized by the following two terms:

LD∗ = − E(x,h)∼Pr,z∼Pz
[D(x, h) − D(G(z, h), h)]

− E(x,h)∼Pr,ĥ∼Ph
[D(x, h) − D(x, ĥ)]

(1)

where (x, h) ∼ Pr is a pair of a heatmap and the corresponding text encoding
from the training set Pr and G(z, h) is the generated pose for the same text
embedding h and a random noise vector z. For the second term, we sample a
second text encoding ĥ from the training set independently of x, i.e. ĥ ∼ Ph.

In order to optimize the WGAN using the dual objective of Kantorovich-
Rubinstein [30], the discriminator network needs to be Lipschitz continuous, i.e.
|D(x2) − D(x1)| ≤ |x2 − x1| for any x1, x2. Enforcing the Lipschitz constraint
requires to constrain the gradient norm of the discriminator to 1. This can be
achieved in two ways. The first approach uses a Lipschitz penality (LP) [21]:

RLP = E(x̂,h)∼Px̂,h
[max(0, ‖∇x̂,hD(x̂, h)‖2 − 1)2]. (2)

The Lipschitz penalty term is one sided and it is only active if the gradient norm
is larger than 1. The second approach is termed Gradient Penalty (GP) [8]:

RGP = E(x̂,h)∼Px̂,h
[(‖∇x̂,hD(x̂, h)‖2 − 1)2] (3)

which prefers that the gradient is one. In both cases, we sample x̂ uniformly
along straight lines between a real heatmap x and a generated heatmap G(z, h)
conditioned on the matching text encoding h, i.e. x̂ = εx + (1 − ε) · G(z, h) where
ε is uniformly sampled in [0, 1]. In our experiments, we evaluate the model when
either of these terms is used. The loss function of D is therefore:
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LD = LD∗ + λR (4)

where R is either RLP or RGP , which are denoted by WGAN-LP or WGAN-GP,
respectively, and λ is the regularization parameter for the Lipschitz constraint.
To improve the training of G, a term with interpolated text encodings is added
to the standard loss of G:

LG = − Ez∼Pz,h∼Ph
[D(G(z, h), h)]

− Ez∼Pz,h1,h2∼Ph

[
D

(
G

(
z,

h1 + h2

2

)
,
h1 + h2

2

)]
.

(5)

Here, h, h1, h2 ∼ Ph are text encodings from the training set, and 1
2h1 + 1

2h2 is
an interpolated encoding between two training samples. The second term adds
many more text encoding samples that lie near the real distribution manifold
for G to learn [25].

To obtain poses from the J heatmaps generated by the model, we take the
point with the maximum activation in each channel as the location of the corre-
sponding keypoint j if its confidence value is above 0.2, otherwise we omit the
keypoint. This means that our model is not limited to generate full body poses,
but it can generate full body poses as well as poses of the upper body only as
shown in Fig. 3.

4 Dataset and Training

Dataset. We use the COCO (Common Objects in Context) [17] dataset for
training and evaluating the model. This dataset contains more than 100k anno-
tated images of everyday scenes and every image has five human-written text
descriptions describing the scene. Additionally, the persons are annotated by 17
body keypoints. In order to ensure that the text description refers to the per-
son, we only include images which contain a single person and at least 8 visible
keypoints.

Training. We first train an unconditional model, i.e. only pose heatmaps are used
while the text is excluded. In this way, we pre-train the model on all annotated
poses of COCO and we are not limited to the training samples where the text
refers to the annotated person, so that the model learns to generate realistic
pose. In this setting, the network parameters related to the text encoding are
set to zero, while the remaining network parameters are updated. The samples
are created by cropping each annotated person using the provided bounding box.
In total, there are 116, 021 annotated poses in the training set and 4, 812 poses
in the validation set. G is updated after every 5 iterations of updating D. We
use λ = 10 as weight for the regularizer in (4).

After pre-training, we train the conditional model using both the pose
heatmaps and the text from the images with a single person. For the second
stage, there are in total 17, 326 images with a single annotated person in the
training set and 714 images in the validation set. During training, we randomly
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Fig. 3. Examples of generated poses from text. The first row shows the ground-truth
pose from the validation set. The text on the top is the associated text. The three
poses below each ground-truth pose are synthesized by the model from the text on the
top with different noise vectors z. It can be seen that some poses such as ‘throwing’
(third column) are more distinct than others such as ‘holding’ (second column). For
throwing, we can see that the wrist joint is raised. For ‘working on the computer’ (fifth
column), we can see a sitting pose with the wrists extended appearing to be typing.

select one of the annotated captions per image. We apply an affine transforma-
tion such that the bounding box is located at the center of the image. At this
stage, all network parameters are updated and we increase the weight of λ to
150 due to the small number of training samples. To improve training, we also
perform some slight data augmentation on the heatmaps by randomly flipping
them horizontally and rotating them between −10◦ and +10◦ around the center.

5 Experiments

Qualitative Results. Figure 3 shows some qualitative poses generated by the
model, and the ground truth poses as reference. The captions used here are
randomly selected from the validation set. We can see that the text encodings
are indeed effectively guiding the synthesis of the poses, such that most of the
generated poses resemble the real pose and they can reflect the given text, in
particular for distinct actions.
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Fig. 4. Poses synthesized from text that is not part of the COCO dataset.

We also evaluated if the model overfits to the text description of the COCO
dataset or if it can as well generate plausible poses from other text descriptions
as well. Since we do not have any ground-truth poses, we used sentences that
relate to activities, such that it is rather clear what the target poses should look
like. The results appear in Fig. 4. As can be seen, the generated poses match the
input text well.

It is also interesting to see what the model can produce if we only feed it with
parts of a sentence. Figure 5 shows the results. It can be seen that specific verbs
and nouns like ‘playing’ and ‘tennis’ matter more in interpreting the context and
guiding the model in generating human poses although verbs such as ‘playing’
are generic and can map to various poses, unlike ‘ski’ for example.

Comparison to Regression. To demonstrate the benefit of representing human
poses by heatmaps, we also trained a WGAN-LP that uses a fully connected
network to regress the keypoint coordinates instead of a convolutional neural
network that predicts a heatmap for each keypoint. In addition to the coordinate
prediction, the generator predicts a probability value for the keypoint visibility.
For this, we use an additional entropy loss based on the ground truth visibility
flags of the training data. The regression approach is less intuitive than the
heatmap-based approach and it is more difficult to train. Figure 6 shows some
qualitative poses generated by the regression model. If we compare the poses
with Fig. 3, we clearly see that the regression approach generates less realistic
poses than the proposed approach that is based on heatmaps.

Quantitative Evaluation. In order to show that the model learned to generate
unseen samples that are close to the real distribution, we calculate the distance
of the nearest neighbor (NN) pose in the training set of each generated sample
conditioned on the text from the validation set and denote it by d̄pnn. This
distance is calculated by generating poses conditioned on the captions from the
validation set and then for each such generated pose, we take the distance to
its nearest neighbor and finally average the results over all the generated poses.
For comparison, in addition to training our algorithm with the Lipshitz-LP term
(WGAN-LP), we also train our model using the Lipschitz-GP term (WGAN-GP)
and the vanilla GAN.
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Fig. 5. Poses synthesized from parts of a sentence. The noise input in each row is fixed
and varies across the rows. Here what really made the pose unique are the words ‘tennis
game’ since the verb ‘playing’ can apply to many different poses.

Table 1 shows the results. The vanilla GAN has the largest distance and
we observed that a mode collapse occurs such that there were many repetitions
and unrealistic poses in the generated results. When the model is trained using
WGAN-GP or WGAN-LP, the NN distance is much smaller where WGAN-LP
performs slightly better than WGAN-GP. If a regression-based approach is used
instead of the heatmaps, the distance is much higher. The nearest neighbor
distance, however, measures only if the generated poses are plausible, but it
does not indicate if the generated pose matches the input text. Therefore, in
order to show that the text is guiding the pose generation, we calculate the
distance to the pose corresponding to the nearest training sample based on the
caption, which is obtained by the Euclidean distance in the text embedding
space. We denote this distance by d̄ptnn

. As for the other distance, WGAN-LP
performs slightly better than WGAN-GP and the vanilla GAN performs worst.
The regression-based approach performs also worse than the proposed method.
We also report the average distance to all poses of the training set, which we
denote by d̄pall. We provide additional qualitative results for the three approaches
in the supplementary material.

To further evaluate the conditional model using the poses in the validation
set, we propose the following conditional measure with respect to the validation
set. For a text encoding hi in the validation set, the model synthesizes k = 10
poses using k different noise vectors z. We then calculate three distances for each
of the k poses: the first, d̄pnn, is the distance to the nearest neighbor among poses



154 Y. Zhang et al.

Fig. 6. Examples of generated poses using a regression model. The first row shows the
ground-truth pose from the validation set. The text on the top is the associated text.
The three poses below each ground-truth pose are synthesized. The synthesized poses
of the regression model are clearly worse than the poses synthesized by the proposed
model shown in Fig. 3.

in the validation set; the second, d̄pgt, is the distance to the ground truth pose, and
the third, d̄pall, is the average distance to all poses in the validation set. Finally, we
average the distances over the generated k poses over all samples. The results are
reported in Table 2. As for the validation set, we observe that the vanilla GAN
struggles to generate realistic poses and WGAN-LP performs slightly better
than WGAN-GP. The regression of keypoint coordinates performs also worse
than the heatmap representation. Furthermore, we calculate the mean distance
in the text encoding space. To this end, we obtain for each generated pose the
nearest neighbor pose from the validation set. We then compute the distance
between the input text and the text of the corresponding nearest neighbor pose.
We average the distances over all generated poses. This measure is denoted by
d̄tpnn

. The differences are smaller compared to the pose distances, but it still
shows that the WGANs outperform the vanilla GAN.
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Table 1. Quantitative evaluation with respect to the training set. Regression indicates
that the keypoint coordinates are regressed instead of being detected using a heatmap
representation.

GAN model Pose distance

d̄pnn d̄ptnn
d̄pall

Vanilla GAN 205.2 344.9 351.1

WGAN-GP 82.9 260.5 293.8

WGAN-LP regression 98.0 268.1 291.1

WGAN-LP 77.2 253.6 287.2

Table 2. Quantitative evaluation with respect to the validation set. Regression indi-
cates that the keypoint coordinates are regressed instead of using a heatmap represen-
tation.

GAN model Pose distance Text distance

d̄pnn d̄pgt d̄pall d̄tpnn

Vanilla GAN 218.8 343.2 352.0 10.8

WGAN-GP 110.2 255.7 293.4 10.5

WGAN-LP regression 128.2 264.7 290.8 10.5

WGAN-LP 102.3 246.0 286.9 10.5

Interpolation Test. Another interesting qualitative measure is the interpolation
between two text descriptions and observing the generated poses. If the gener-
ated poses show smooth transitions between the interpolations, we can conclude
that the model learned a proper distribution instead of just having memorized
the training samples [3]. Given two embedded text descriptions h1 and h2, we
interpolate between them by ĥ = w·h1+(1−w)·h2 with w ∈ {1, 0.75, 0.5, 0.25, 0}.
For this experiment, we keep the noise z fixed. Figure 7 shows two interpolation
examples. In the first example, we interpolate between ‘The man is standing on
the beach’ and ‘The man is holding a surfboard’. We observe that the right arm
gradually moves up for the holding pose. We also observe that the full body pose
is generated at the beginning, but the camera gets closer on the right hand side
and only two-thirds of the person are visible. The second example interpolates
between ‘The boy has a tennis racket in his hands’ and ‘The boy is going to
serve the ball’.

User Study. For the subjective evaluation, we have designed an online question-
naire in which 20 text descriptions from the validation set are taken. For each
text description, a user is presented with two human poses, in which one is the
real pose matching the text, and the other is synthesized by the model condi-
tioned on this text. The 20 captions are randomly selected from the validation
set and the generated poses have not been cherry-picked. The user is asked to
choose which of the two poses matches the caption better or if they match the
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Fig. 7. Interpolation results of text encoding. In each row, the leftmost and rightmost
poses are synthesized from the captions. The three poses in the middle are synthesized
from interpolations of the encodings of the two captions while z is kept fixed.

Table 3. The percentage of the users choosing the matching pose as the real pose,
generated pose or “equally well”.

Real pose Generated pose Equally well

48.81% 35.31% 15.88%

text equally well. The results are summarized in Table 3. Eighty people in total
participated in the survey. The ratio between choosing generated and real poses
is around 5:7. And for more than 50% of the time, the users cannot correctly
distinguish the generated pose from the real one, i.e., they either choose the
generated pose or rate the poses equally well.

6 Conclusion

In this work, we have addressed the task of human pose synthesis from text
for highly complex poses. We have designed an effective model using a con-
ditional Wasserstein GAN that generates plausible matching poses from text
descriptions. We have demonstrated by qualitative and quantitative results on
the COCO dataset that the proposed approach is effective, and additionally
outperforms a vanilla GAN and a regression-based approach. We have also con-
ducted a user study that confirmed our results. The model was also able to
interpolate poses between two text descriptions. Furthermore, we have shown
that the model generalizes well and can additionally generate plausible poses for
unseen sentences that are not part of the COCO dataset.

Acknowledgement. The work has been funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) GA 1927/5-1 and the ERC Starting Grant
ARCA (677650).



Adversarial Synthesis of Human Pose from Text 157

References

1. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks.
In: International Conference on Machine Learning (2017)

2. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Trans. Assoc. Comput. Ling. 5 23–25 (2017)

3. Borji, A.: Pros and cons of gan evaluation measures. Computer Vision and Image
Understanding 179 (2019)

4. Chu, C., Zhmoginov, A., Sandler, M.: Cyclegan, a master of steganography. arXiv
preprint arXiv:1712.02950 (2017)

5. Dai, B., Fidler, S., Urtasun, R., Lin, D.: Towards diverse and natural image descrip-
tions via a conditional gan. In: IEEE International Conference on Computer Vision
(2017)

6. Goodfellow, I., et al.: Generative adversarial nets. Adv. Neural Inf. Process. Syst.
27 501–505 (2014)

7. Grabner, H., Gall, J., Van Gool, L.: What makes a chair a chair? In: IEEE Con-
ference on Computer Vision and Pattern Recognition (2011)

8. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of wasserstein gans. In: Advances in Neural Information Processing Sys-
tems (2017)

9. Gupta, A., Satkin, S., Efros, A.A., Hebert, M.: From 3d scene geometry to human
workspace. In: IEEE Conference on Computer Vision and Pattern Recognition
(2011)

10. Hinton, G.E.: Deep belief networks. Scholarpedia 4(5) (2009)
11. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114 (2013)
12. Lassner, C., Pons-Moll, G., Gehler, P.V.: A generative model of people in clothing.

In: IEEE International Conference on Computer Vision (2017)
13. Li, B., Qi, X., Lukasiewicz, T., Torr, P.: Controllable text-to-image generation. In:

Advances in Neural Information Processing Systems (2019)
14. Li, W., Zhang, P., Zhang, L., Huang, Q., He, X., Lyu, S., Gao, J.: Object-driven

text-to-image synthesis via adversarial training. In: IEEE Conference on Computer
Vision and Pattern Recognition (2019)

15. Li, X., Liu, S., Kim, K., Wang, X., Yang, M.H., Kautz, J.: Putting humans in
a scene: learning affordance in 3d indoor environments. In: IEEE Conference on
Computer Vision and Pattern Recognition (2019)

16. Li, Y., et al.: Storygan: a sequential conditional gan for story visualization. In:
IEEE Conference on Computer Vision and Pattern Recognition (2019)

17. Lin, T.Y., et al.: Microsoft coco: common objects in context. In: European Con-
ference on Computer Vision (2014)

18. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned
multi-person linear model. ACM Trans. Graph. 34, 432 (2015)

19. Ma, L., Jia, X., Sun, Q., Schiele, B., Tuytelaars, T., Van Gool, L.: Pose guided
person image generation. In: Advances in Neural Information Processing Systems
(2017)

20. Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., Joulin, A.: Advances in pre-
training distributed word representations. In: International Conference on Lan-
guage Resources and Evaluation (2018)

21. Petzka, H., Fischer, A., Lukovnicov, D.: On the regularization of wasserstein gans.
In: International Conference on Learning Representations (2018)

http://arxiv.org/abs/1712.02950
http://arxiv.org/abs/1312.6114


158 Y. Zhang et al.

22. Qiao, T., Zhang, J., Xu, D., Tao, D.: Learn, imagine and create: Text-to-image gen-
eration from prior knowledge. Advances in Neural Information Processing Systems
32 (2019)

23. Qiao, T., Zhang, J., Xu, D., Tao, D.: Mirrorgan: learning text-to-image generation
by redescription. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion (2019)

24. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with
deep convolutional generative adversarial networks. In: International Conference
on Learning Representations (2016)

25. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adver-
sarial text to image synthesis. In: International Conference on Machine Learning
(2016)

26. Reed, S.E., Akata, Z., Mohan, S., Tenka, S., Schiele, B., Lee, H.: Learning what
and where to draw. Advances in Neural Information Processing Systems29 (2016)

27. Salakhutdinov, R.: Learning deep generative models. Ann. Rev. Stat. Appl. 2
(2015)

28. Tan, H., Liu, X., Li, X., Zhang, Y., Yin, B.: Semantics-enhanced adversarial nets
for text-to-image synthesis. In: IEEE International Conference on Computer Vision
(2019)

29. Tompson, J.J., Jain, A., LeCun, Y., Bregler, C.: Joint training of a convolutional
network and a graphical model for human pose estimation. In: Advances in Neural
Information Processing Systems (2014)

30. Villani, C.: Optimal transport: old and new. Springer, Cham (2008)
31. Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines.

In: IEEE Conference on Computer Vision and Pattern Recognition (2016)
32. Xu, T., Zhang, P., Huang, Q., Zhang, H., Gan, Z., Huang, X., He, X.: Attngan:

Fine-grained text to image generation with attentional generative adversarial net-
works. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

33. Zhang, H., et al.: Stackgan: text to photo-realistic image synthesis with stacked
generative adversarial networks. In: IEEE International Conference on Computer
Vision (2017)

34. Zhang, Y., Hassan, M., Neumann, H., Black, M.J., Tang, S.: Generating 3d people
in scenes without people. In: IEEE Conference on Computer Vision and Pattern
Recognition (2020)

35. Zhou, X., Huang, S., Li, B., Li, Y., Li, J., Zhang, Z.: Text guided person image syn-
thesis. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

36. Zhu, S., Urtasun, R., Fidler, S., Lin, D., Change Loy, C.: Be your own prada:
fashion synthesis with structural coherence. In: IEEE International Conference on
Computer Vision (2017)



Long-Term Anticipation of Activities
with Cycle Consistency

Yazan Abu Farha1(B), Qiuhong Ke2, Bernt Schiele3, and Juergen Gall1

1 University of Bonn, Bonn, Germany
abufarha@iai.uni-bonn.de

2 The University of Melbourne, Melbourne, Australia
3 MPI Informatics, Saarbrücken, Germany

Abstract. With the success of deep learning methods in analyzing
activities in videos, more attention has recently been focused towards
anticipating future activities. However, most of the work on anticipation
either analyzes a partially observed activity or predicts the next action
class. Recently, new approaches have been proposed to extend the pre-
diction horizon up to several minutes in the future and that anticipate a
sequence of future activities including their durations. While these works
decouple the semantic interpretation of the observed sequence from the
anticipation task, we propose a framework for anticipating future activ-
ities directly from the features of the observed frames and train it in an
end-to-end fashion. Furthermore, we introduce a cycle consistency loss
over time by predicting the past activities given the predicted future. Our
framework achieves state-of-the-art results on two datasets: the Break-
fast dataset and 50Salads.

1 Introduction

Humans spend a significant time of their life thinking about the future. Whether
thinking about their future dream job, or planning for the next research project.
Even unconsciously, people tend to anticipate future trajectories of moving
agents in the surrounding environment and the activities that they will be doing
in the near future. Such anticipation capability is considered a sign of intelligence
and an important factor in determining how we interact with the environment
and how we make decisions.

Since anticipation is an important intrinsic capability of human beings,
researchers have recently tried to model this capability and embed it in intelli-
gent and robotic systems. For example, several approaches have been proposed
to anticipate future trajectories of pedestrians [4,18], or semantic segmentation
of future frames in video [5,25]. These approaches have many applications in
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Fig. 1. (Left) Overview of the proposed approach, which is trained end-to-end and
includes a cycle consistency module. (Right) Effect of the cycle consistency module.
Without the cycle consistency, the network anticipates actions that are plausible based
on the previous actions. However, in some cases an essential action is missing. In this
example pour oil. By using the cycle consistency, we enforce the network to verify if
all required actions have been done before. For the action fry pancake, pouring oil into
the pan is required and the cycle consistency resolves this issue.

autonomous driving and navigation. Another line of research focuses on antic-
ipating future activities [19,21,44], which has potential applications in surveil-
lance and human-robot interaction.

While anticipating the next action a few seconds in the future has been
addressed in [11,44,46], such short time horizon is insufficient for many appli-
cations. Service robots, for example, where a robot is continuously interacting
with a human, require anticipating a longer time horizon, which rather includes
a sequence of future activities than only predicting the next action. By antic-
ipating longer in the future, such robots can plan ahead and accomplish their
tasks more efficiently. Recent approaches, therefore, focused on increasing the
prediction horizon up to several minutes and predict multiple action segments in
the future [3,10,16]. While these approaches successfully predict future activities
and their duration, they decouple the semantic interpretation of the observed
sequence from the anticipation task using a two-step approach.

Separating the understanding of the past and the anticipation of future has
several disadvantages. First, the model is not trained end-to-end, which means
that the approach for temporal action segmentation is not optimized for the
anticipation task. Second, if there are any mistakes in the temporal action seg-
mentation, these mistakes will be propagated and effect the anticipated activi-
ties. Finally, the action labels do not represent all information in the observed
video that is relevant for anticipating the future. In contrast to these approaches,
we propose a sequence-to-sequence model that directly maps the sequence of
observed frames to a sequence of future activities and their duration. We then
cast the understanding of the past as an auxiliary task by proposing a recogni-
tion module, which consists of a temporal convolutional neural network and a
recognition loss, that is combined with the encoder.

Furthermore, as we humans can reason about the past given the future,
previous works only aim to predict the future, and it is intuitive that forcing the
network to predict the past as well is helpful. To this end, we propose a cycle
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consistency module that predicts the past activities given the predicted future.
This module verifies if, for the predicted future actions, all required actions
have been done before as illustrated in Fig. 1. In this example, the actions pour
dough to pan and fry pancake are plausible given the previous actions, but the
action pour oil has been missed. The cycle consistency module then predicts
from the anticipated actions, the observed actions. Since pour dough to pan and
fry pancake are the inputs for the cycle consistency module, it will predict all the
required preceding actions such as pour milk, stir dough and pour oil. However,
as pour oil is not part of the observations, the cycle consistency module will have
a high error, which steers the network to predict pour oil in the future actions.

Our contribution is thus three folded: First, we propose an end-to-end model
for anticipating a sequence of future activities and their durations. Second, we
show that the proposed recognition module improves the sequence-to-sequence
model. Third, we propose a cycle consistency module that verifies the predictions.

We evaluate our model on two datasets with untrimmed videos containing
many action segments: the Breakfast dataset [20] and 50Salads [41]. Our model
is able to predict the future activities and their duration accurately achieving
superior results compared to the state-of-the-art methods.

2 Related Work

Early Action Detection: The early action detection task tries to recognize an
ongoing activity given only a partial observation of that activity. An initial work
addressing this task by Ryoo [36] is based on a probabilistic formulation using
dynamic bag-of-words of spatio-temporal features. Hoai and De la Torre [14]
used a max-margin formulation. More recent approaches use recurrent neural
networks with special loss functions to encourage early activity detection [26,37].
In contrast to these approaches, we anticipate future activities without even any
partial observations.

Future Prediction: Predicting the future has become one of the main research
topics in computer vision. Many approaches have been proposed to predict future
frames [24,30], future human trajectories [4,18], future human poses [15,29,35],
image semantic segmentation [5,25], or even full sentences describing future
frames or steps in recipes [27,38]. However, low level representations like pixels
of frames or very high level natural language sentences cannot be used directly. A
complementary research direction is concentrated on anticipating activity labels.
Lan et al . [21] predicted future actions using hierarchical representations in a
max-margin framework. Koppula and Saxena [19] used a spatio-temporal graph
representation to encode the observed activities and then predict object affor-
dances, trajectories, and sub-activities. Instead of directly predicting the future
action labels, several approaches were proposed to predict future visual repre-
sentations and then a classifier is trained on top of the predicted representations
to predict the future labels [11,12,34,39,44,46]. Predicting future representa-
tions has also been used in the literature for unsupervised representations learn-
ing [40]. Other approaches use multi-task learning to predict the future activity
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and its starting time [28,31], or the future activity and its location [23,42]. Miech
et al . [32] modeled the transition probabilities between actions and combine it
with a predictive model to anticipate future action labels. There is a parallel line
of research addressing the anticipation task in egocentric videos [8,9]. However,
these approaches are limited to very few seconds in the future. In contrast to
these approaches, we address the anticipation task for a longer time horizon.

Recently, more effort has been dedicated to increase the anticipation horizon.
Several methods have been proposed to anticipate activities several minutes in
the future using RNNs [2,3], temporal convolutions with time-variable [16], or
memory networks [10]. While these approaches manage to anticipate activities
for a longer time horizon, their performance is limited. The approach of [10] relies
on the ground-truth action labels of the observations, whereas the methods in [2,
3,16] follow a two-step approach. I.e. they first infer the activities in the observed
part, then anticipate the future activities with their corresponding duration.
These two steps are trained separately, which prevents the model from utilizing
the visual cues in the observed frames. In contrast to these approaches, our
model is trained in one step in an end-to-end fashion.

Cycle Consistency: Cycle consistency has been widely used in computer vision. It
was used to learn dense correspondence [47], image-to-image translation [48], and
depth estimation [13]. Recent approaches used cycle consistency in the temporal
dimension [7,45]. Dwibedi et al . [7] introduced an approach to learn representa-
tions using video alignment as a proxy task and cycle consistency for training.
In [13], the appearance consistency between consecutive video frames is used to
learn representations that generalize to different tasks. Motivated by the suc-
cess of cycle consistency in various applications, we apply it as an additional
supervisory signal to predict the future activities.

3 The Anticipation Framework

Given a partially observed video with many activities, we want to predict all
the activities that will be happening in the remainder of that video with their
corresponding duration. Assuming that the observed part consists of to frames
X1:to = (x1, . . . , xto) corresponding to n activities A1:n = (A1, . . . , An), our
goal is to predict the future activities An+1:N = (An+1, . . . , AN ) and their cor-
responding duration �n+1:N = (�n+1, . . . , �N ), where N is the total number of
activities in that video. In contrast to the previous approaches that use only
the action labels of the observed frames for anticipating the future, we propose
to anticipate the future activities directly from the observed frames. First, we
propose a sequence-to-sequence model that maps the sequence of features from
the observations to a sequence of future activities and their duration. Then,
we introduce a cycle consistency module that predicts the past activities given
the predicted future. The motivation of this module is to force the sequence-to-
sequence module to encode all the relevant information in the observed frames
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Fig. 2. Overview of the anticipation framework. The observed frames are passed
through a TCN-based recognition module which produces discriminative features for
the sequence-to-sequence model. The sequence-to-sequence model predicts the future
activities with their duration. In addition, we enforce cycle consistency over time by
predicting the past activities given the predicted future.

and verify if the predictions are plausible. Finally, we extend the sequence-to-
sequence model with a recognition module that generates discriminative features
that capture the relevant information for anticipating the future. An overview
of the proposed model is illustrated in Fig. 2. Our framework is hence trained
using an anticipation loss, a recognition loss, and a cycle consistency loss. In the
following sections, we describe in detail these modules.

3.1 Sequence-to-Sequence Model

The sequence-to-sequence model maps the sequence of observed frames to a
sequence of future activities and their duration. For this model, we use a recur-
rent encoder-decoder architecture based on gated recurrent units (GRUs).

Recurrent Encoder. The purpose of the recurrent encoder is to encode the
observed frames in a single vector which will be used to decode the future activ-
ities. Given the input features X, the recurrent encoder passes these features
through a single layer with a gated recurrent unit (GRU)

he
t = GRU(xt, he

t−1), (1)

where xt is the input feature for frame t, and he
t−1 is the hidden state at the pre-

vious time step. The hidden state at the last time step he
to encodes the observed

frames and will be used as an initial state for the decoder.
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Recurrent Decoder. Given the output of the encoder he
to , the recurrent

decoder predicts the future activities and their relative duration. The decoder
also consists of a single layer with a gated recurrent unit (GRU). The hidden
state at each step is updated using the GRU update rules

hd
m = GRU(Am−1, hd

m−1), (2)

where the input at each time step Am−1 is the predicted activity label for the
previous step. At training time, the ground-truth label is used as input. Whereas
the predicted label is used during inference time. For the first time step, a special
start-of-sequence (SOS) symbol is used as input. Given the hidden state hd

m at
each time step, the future activity label Am and its relative duration �m are
predicted using a fully connected layer, i.e.

Ãm = WAhd
m + bA, (3)

�̂m = W�h
d
m + b�, (4)

where Ãm is the predicted logits for the future activity, and �̂m is the predicted
duration in log space. To get the relative duration, we apply softmax over the
time steps

�̃m =
e�̂m

∑
k e�̂k

. (5)

The decoder keeps predicting future activity labels and the corresponding dura-
tion until a special end-of-sequence (EOS) symbol is predicted. As a loss function,
we use a combination of a cross entropy loss for the activity label and a mean
squared error (MSE) for the predicted relative duration

LA = LCE + LMSE , (6)

LCE =
1

N − n

N∑

m=n+1

−log(ãm,A), (7)

LMSE =
1

N − n

N∑

m=n+1

(�̃m − �m)2, (8)

where LA is the anticipation loss, ãm,A is the the predicted probability for the
ground truth activity label at step m, n is the number of observed action seg-
ments and N is the total number of action segments in the video.

Since the input to the encoder are frame-wise features which might be very
long, the output of the encoder he

to might not be able to capture all the relevant
information. To alleviate this problem we combine the decoder with an attention
mechanism using a multi-head attention module [43]. Additional details are given
in the supplementary material.
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3.2 Cycle Consistency

Since predicting the future from the past and the past from the future should be
consistent, we propose an additional cycle consistency loss. Given the predicted
future activities, we want to predict the past activities and their duration. This
requires the predicted future to be good enough to predict the past. The cycle
consistency loss has two benefits. First, it verifies if, for the predicted future
actions, the actions that have been previously observed are plausible. Second, it
encourages the recurrent decoder to keep the most important information of the
observed sequence until the end, instead of storing only the information of the
previous anticipated activity. In this way, a wrong prediction does not necessary
propagate since the observed sequence is kept in memory.

The cycle consistency module is similar to the recurrent decoder and consists
of a single layer with GRU, however, it predicts the past instead of the future.
The hidden state of this GRU is initialized with the last hidden state of the
recurrent decoder and at each step the hidden state is updated as follows

hcyc
m = GRU(Am−1, hcyc

m−1). (9)

Given the hidden state hcyc
m at step m, an activity label of the observations and

its relative duration are predicted using a fully connected layer. The loss function
is also similar to the recurrent decoder

Lcyc = LCE + LMSE , (10)

LCE =
1
n

n∑

m=1

−log(ãm,A), (11)

LMSE =
1
n

n∑

m=1

(�̃m − �m)2, (12)

where Lcyc is the cycle consistency loss, LCE and LMSE are the cross entropy
loss and MSE loss applied on the past activity labels and their relative duration.

While the mapping from past to future can be multi-modal, this does not
limit the applicability of the cycle consistency module. Since the cycle consis-
tency module is conditioned on the predicted future, no matter what mode is
predicted, the cycle consistency makes sure it is plausible. This also applies to
the inverse mapping. As there is a path from the observed frames to the cycle
consistency module through the sequence-to-sequence model, there is no ambi-
guity in which past activities have been observed.

3.3 Recognition Module

In the sequence-to-sequence model, the input of the recurrent encoder are the
frame-wise features. However, directly passing the features to the encoder is
sub-optimal as the encoder might struggle to capture all the relevant informa-
tion for anticipating the future activities. As past activities provide a strong
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signal for anticipating future activities, we use a recognition module that learns
discriminative features of the observed frames. These features will then serve
as an input for the sequence-to-sequence model to anticipate the future activi-
ties. Given the success of temporal convolutional networks (TCNs) in analyzing
activities in videos [1,22], we use a similar network for our recognition module.
Besides being a strong model for analyzing videos, TCNs are fully differentiable
and can be integrated in our framework without preventing end-to-end training.
For our module, we use a TCN similar to the one proposed in [1]. The TCN
consists of several layers of dilated 1D convolutions where the dilation factor is
doubled at each layer. The operations at each layer can be formally described as
follows

F̂l = ReLU(W1 ∗ Fl−1 + b1), (13)

Fl = Fl−1 + W2 ∗ F̂l + b2, (14)

where Fl is the output of layer l, ∗ is the convolution operator, W1 ∈ R
3×K×K

are the weights of the dilated convolutional filters with kernel size 3 and K is
the number of the filters, W2 ∈ R

1×K×K are the weights of a 1 × 1 convolution,
and b1, b2 ∈ R

K are bias vectors. The input of the first layer F0 is obtained by
applying a 1 × 1 convolution over the input features X.

The output of the last dilated convolutional layer serves as input to the
subsequent modules. To make sure that these features are discriminative enough,
we add a classification layer that predicts the action label at each observed frame

Ỹt = Softmax(WfL,t + b), (15)

where Ỹt contains the class probabilities at time t, fL,t ∈ R
K is the output of

the last dilated convolutional layer at time t, W ∈ R
C×K and b ∈ R

C are the
weights and bias for the 1 × 1 convolutional layer, where C is the number of
action classes. To train this module we use a cross entropy loss

LR =
1
to

to∑

t=1

−log(ỹt,c), (16)

where ỹt,c is the predicted probability for the ground truth label c at time t, and
to is the number of observed frames.

3.4 Loss Function

To train our framework, we sum up all the three mentioned losses

L = LA + LR + Lcyc, (17)

where LA is the anticipation loss, LR is the recognition loss, and Lcyc is the
cycle consistency loss.
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Table 1. Ablation study on the Breakfast dataset. Numbers represent mean over
classes (MoC) accuracy.

Observation % 20% 30%

Prediction % 10% 20% 30% 50% 10% 20% 30% 50%

S2S 23.22 20.92 20.10 20.05 26.43 24.38 24.13 23.38

S2S + TCN 14.52 13.55 13.15 12.70 14.83 14.11 13.61 13.01

S2S + TCN + LR 24.72 22.43 21.70 21.77 28.35 26.29 25.01 24.47

S2S + TCN + LR + Lcyc 25.16 22.73 22.22 22.01 28.07 26.25 25.12 24.81

S2S + TCN + LR + Lcyc + attn. 25.88 23.42 22.42 21.54 29.66 27.37 25.58 25.20

4 Experiments

We evaluate the proposed model on two datasets: the Breakfast dataset [20] and
50Salads [41]. In all experiments, we report the average of three runs.

The Breakfast dataset is a collection of 1, 712 videos with overall 66.7 hours
and roughly 3.6 million frames. Each video belongs to one out of ten breakfast
related activities, such as make tea or pancakes. The video frames are annotated
with fine-grained action labels like pour milk or fry egg. Overall, there are 48
different actions. On average, each video contains 6 action instances and is 2.3
minutes long. For evaluation, we use the standard 4 splits as proposed in [20]
and report the average.

The 50Salads dataset contains 50 videos showing people preparing different
kinds of salad. These videos are relatively long with an average of 6.4 minutes
and 20 action instances per video. The video frames are annotated with 17 fine-
grained action labels like cut tomato or peel cucumber. For evaluation, we use
five-fold cross-validation and report the average as in [41].

We follow the state-of-the-art evaluation protocol and report the mean over
classes (MoC) accuracy for different observation/prediction percentages [3,16].

Implementation Details. For the recognition module, we used a TCN with 10
layers and 64 filters in each layer. The number of units in the GRU cells is set to
512. For each training video, we generate two training examples with 20% and
30% observation percentage. The prediction percentage is always set to 50%.
All the models are trained for 80 epochs using Adam optimizer [17]. We set the
learning rate to 0.001 and reduce it every 20 epochs with a factor of 0.8. For
both datasets, we extract I3D [6] features for the video frames using both RGB
and flow streams and sub-sample them at 5 frames per second.

4.1 Ablation Analysis

In this section, we analyze the impact of the different modules in our framework
on the anticipation performance. This analysis is conducted on the Breakfast
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(a) (b)

Fig. 3. Impact of the cycle consistency loss. Cycle consistency verifies if, for the pre-
dicted future actions, all required actions have been done before and no essential action
is missing (a), and it further encourages the decoder to keep the important information
from the observations until the end, which results in better predictions (b).

dataset and the results are shown in Table 1. Additional ablation experiments to
study the impact of the input to the recurrent encoder and decoder are provided
in the supplementary material.

Impact of the Recognition Module: The recognition module consists of two parts:
a TCN and a recognition loss LR. Starting from only the sequence-to-sequence
module (S2S), we can achieve a good accuracy in the range 20% − 27%. By
combining the sequence-to-sequence module with the recognition module (S2S +
TCN + LR), we gain an improvement of 1%−2% for each observation-prediction
percentage. This indicates that recognition helps the anticipation task. We also
evaluate the performance when the TCN is combined with the sequence-to-
sequence module without the recognition loss (S2S + TCN). As shown in Table 1,
the results are worse than using only the sequence-to-sequence module if we do
not apply the recognition loss. This can be explained by the structure of the
network. The recurrent encoder maps the features extracted by the TCN from
all frames to a single vector. Without additional loss for the recognition module,
the gradient vanishes and the parameters of the TCN are not well estimated.
Nevertheless, by just applying the recognition loss, we get enough supervisory
signal to train the TCN and improve the overall anticipation accuracy. This also
highlights that the improvements from the recognition module are due to the
additional recognition task and not because of having more parameters.

Impact of the Cycle Consistency Loss: The cycle consistency module predicts
the past activities from the predicted future. The intuition is that to be able
to predict the past activities, the predicted future activities have to be cor-
rect. As shown in Table 1, using the cycle consistency loss gives an additional
improvement on the anticipation accuracy. The cycle consistency loss verifies if,
for the predicted future actions, all required actions have been done before and
no essential action is missing. For example in Fig. 3(a), the model observes spoon
flour, crack egg, pour milk, and stir dough. Without the cycle consistency the
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Table 2. Comparison between the two-step approach and ours on the Breakfast
dataset. Numbers represent mean over classes (MoC) accuracy.

Observation % 20% 30%

Prediction % 10% 20% 30% 50% 10% 20% 30% 50%

Two-Step 23.58 21.90 20.80 20.18 27.80 25.21 23.32 22.96

Ours 25.88 23.42 22.42 21.54 29.66 27.37 25.58 25.20

network did not predict the action pour oil, which is required to fry pancake.
By using cycle consistency this issue is resolved. Cycle consistency also forces
the decoder to remember all observed activities. As illustrated in Fig. 3 (b), the
model observes spoon flour, crack egg, pour milk, butter pan, and stir dough.
Without the cycle consistency, the network predicts the action stirfry egg, which
would have been plausible if spoon flour and pour milk were not part of the obser-
vations. Since the cycle consistency encourages the decoder to use all observed
actions for anticipation, the activity fry pancake is correctly anticipated.

Impact of the Attention Module: Finally, using the full model by combining the
recurrent decoder with the multi-head attention module further improves the
results by roughly 1%. As shown in Table 1, the gain from using the attention
module is higher when the observation percentage is 30%. This is mainly because
of the encoder module. Given the observed frames, the encoder tries to encode
them in a single vector. This means that the encoder has to throw away more
information from the long sequences compared to shorter sequences. In this case,
the attention module can help in capturing some of the lost information in the
encoder output by attending on the relevant information in the observations.

4.2 End-to-End vs. Two-Step Approach

To illustrate the benefits of end-to-end learning over two-step approaches, we
compare our framework with its two-step counterpart. For this comparison, we
first train the recognition module from our framework and then fix the weights
of the TCN and train the remaining components of our model with the anticipa-
tion loss and the cycle consistency loss. Table 2 shows the results of our frame-
work compared to the two-step approach on the Breakfast dataset with different
observation and prediction percentages. As shown in the table, our framework
outperforms the two-step approach with a large margin of up to 2.3%. This high-
lights the benefits of end-to-end approaches where the model can capture the
relevant information in the observed frames to anticipate the future. On the con-
trary, two-step approaches can only utilize the label information of the observed
frames that are not optimized for the anticipation task which is sub-optimal.
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Table 3. Comparison with the state-of-the-art. Numbers represent MoC accuracy.

Observation % 20% 30%

Prediction % 10% 20% 30% 50% 10% 20% 30% 50%

Breakfast

RNN model [3] 18.11 17.20 15.94 15.81 21.64 20.02 19.73 19.21

CNN model [3] 17.90 16.35 15.37 14.54 22.44 20.12 19.69 18.76

RNN [3] + TCN 05.93 05.68 05.52 05.11 08.87 08.90 07.62 07.69

CNN [3] + TCN 09.85 09.17 09.06 08.87 17.59 17.13 16.13 14.42

UAAA (mode) [2] 16.71 15.40 14.47 14.20 20.73 18.27 18.42 16.86

Time-Cond. [16] 18.41 17.21 16.42 15.84 22.75 20.44 19.64 19.75

Ours 25.88 23.42 22.42 21.54 29.66 27.37 25.58 25.20

50Salads

RNN model [3] 30.06 25.43 18.74 13.49 30.77 17.19 14.79 09.77

CNN model [3] 21.24 19.03 15.98 09.87 29.14 20.14 17.46 10.86

RNN [3] + TCN 32.31 25.51 19.10 14.15 26.14 17.69 16.33 12.97

CNN [3] + TCN 16.02 14.68 12.09 09.89 19.23 14.68 13.18 11.20

UAAA (mode) [2] 24.86 22.37 19.88 12.82 29.10 20.50 15.28 12.31

Time-Cond. [16] 32.51 27.61 21.26 15.99 35.12 27.05 22.05 15.59

Ours 34.76 28.41 21.82 15.25 34.39 23.70 18.95 15.89

4.3 Comparison with the State-of-the-Art

In this section, we compare our framework with the state-of-the-art methods on
both the Breakfast dataset and 50Salads. We follow the same protocol and report
results for different observation and prediction percentages. Table 3 shows the
results on both datasets. All the previous approaches follow the two-step app-
roach by inferring the action labels of the observed frames first and then use these
labels to anticipate the future activities. As shown in Table 3, our framework out-
performs all the state-of-the-art methods by a large margin of roughly 5% − 8%
for each observation-prediction percentage pair on the Breakfast dataset. An
interesting observation is that all the previous approaches achieve comparable
results despite the fact that they are using different network architectures based
on RNNs [2,3], CNNs [3], or even temporal convolution [16]. On the contrary,
our framework clearly outperforms these approaches with the advantage that it
was trained in an end-to-end fashion.

For 50Salads, our model outperforms the state-of-the-art in 50% of the cases.
This is mainly because 50Salads is a small dataset. Since our model is trained
end-to-end, it requires more data to show the benefits over two-step approaches.

Since the state-of-the-art methods like [3] use an RNN-HMM model [33]
for recognition, we also report the results of [3] with our TCN as a recognition
model. The results are shown in Table 3 (RNN [3] + TCN and CNN [3] + TCN).
Our model outperforms these methods even when they are combined with TCN.
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(a) (b)

Fig. 4. Qualitative results for anticipating future activities. (a) An example from the
Breakfast dataset for the case of observing 20% of the video and predicting the activities
in the following 50%. (b) An example from the 50Salads dataset for the case of observing
20% of the video and predicting the activities in the following 20%.

This highlights that the improvements in our model are not only due to the TCN,
but mainly because of the joint optimization of all modules for the anticipation
task in an end-to-end fashion and the introduced cycle consistency loss.

Qualitative results for our model on both datasets are illustrated in Fig. 4.
As shown in the figure, our model can generate accurate predictions of the
future activities and their duration. We also show the results of the sequence-to-
sequence (S2S) and the two-step baselines. Our model anticipates the activities
better.

5 Conclusion

In this paper, we introduced a model for anticipating future activities from a par-
tially observed video. In contrast to the state-of-the-art methods which rely on
the action labels of the observations, our model directly predicts the future activ-
ities from the observed frames. We train the proposed model in an end-to-end
fashion and show a superior performance compared to the previous approaches.
Additionally, we introduced a cycle consistency loss for the anticipation task
which further boosts the performance. Our framework achieves state-of-the-art
results on two publicly available datasets.
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Abstract. Segmenting objects of interest in an image is an essential
building block of applications such as photo-editing and image analysis.
Under interactive settings, one should achieve good segmentations while
minimizing user input. Current deep learning-based interactive segmen-
tation approaches use early fusion and incorporate user cues at the image
input layer. Since segmentation CNNs have many layers, early fusion may
weaken the influence of user interactions on the final prediction results.
As such, we propose a new multi-stage guidance framework for inter-
active segmentation. By incorporating user cues at different stages of
the network, we allow user interactions to impact the final segmentation
output in a more direct way. Our proposed framework has a negligible
increase in parameter count compared to early-fusion frameworks. We
perform extensive experimentation on the standard interactive instance
segmentation and one-click segmentation benchmarks and report state-
of-the-art performance.

1 Introduction

The widespread availability of smartphones had made taking photos easier than
ever. In a typical image capturing scenario, the user taps the device touchscreen
to focus on the object of interest. This tap directly locates the object in the scene
and can be leveraged for segmentation. Generated segmentations are implicit,
but are applicable for downstream photo applications, such as simulated ‘bokeh’
or other special-effects filters such as background blur (see Fig. 1). In this work,
we tackle “tap-and-shoot segmentation” [4], a special case of interactive instance
segmentation.

Interactive segmentation leverages inputs such as clicks, scribbles, or bound-
ing boxes to help segment objects from the background down to the pixel level.
Two key differences distinguish tap-and-shoot segmentation from standard inter-
active segmentation. First, tap-and-shoot uses only “positive” clicks marking
foreground, as we assume that the user clicks (only) on the object of interest
during the capture process. Standard interactive segmentation uses both posi-
tive and negative clicks [18,19,28] to respectively indicate the object of interest
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versus background or non-relevant foreground objects. Secondly, tap-and-shoot
has a strong focus on maximizing the mean intersection over union (mIoU) with
a single click because the target application is casual photography. In contrast,
standard interactive segmentation tries to achieve some threshold mIoU (e.g.
85%) while minimizing the total number of clicks.

This second distinction is subtle but critical for designing and learning tap-
and-shoot segmentation frameworks. Our finding is that existing approaches fare
poorly with only one or two clicks – they are simply not trained to maximize
performance under such settings. To make the most of the first (few) click(s), we
hypothesize that user cues’ guidance should be fused into the network at multiple
locations rather than via early fusion. Just as gradients vanish towards the initial
layers during back-propagation, input signals also diminish as it makes a forward
pass through the network. The many layers of deep CNNs further exacerbate this
effect [14,22]. A late fusion would allow the user interaction to have a direct and
more pronounced effect on the final segmentation mask. To this end, we propose
an interactive segmentation framework with multi-stage fusion and demonstrate
its advantages over the common early fusion frameworks and other alternatives.
Specifically, we propose a light-weight fusion block that encodes the user click
transformation and allows a shorter connection from user inputs to the final
segmentation layer.

Most similar in spirit to our framework is [14] and [23]. These two works
also propose alternatives to early fusion but are extremely parameter heavy. For
example, [14] uses two dedicated VGG [26] networks to to extract features from
the image and the user interactions separately before fusing into a final instance
segmentation mask (see Fig. 2(c)). [23] uses a single stream but applies a simple
late fusion of element-wise multiplication on the feature maps (see Fig. 2(b)). It
therefore has separate ‘positive’ and ‘negative’ feature maps and the number of
weights for the following layer increases by a factor of 2. For VGG, this doubles
the parameters of the ensuing ‘fc6’ layer from 100 to 200 million. Compared
to [23], our last-stage fusion approach is light-weight and uses less than 1.5%
more trainable parameters.

Our contributions are summarized as follows:

– We propose a novel one-click interactive segmentation framework that fuses
user guidance at different network stages.

– We demonstrate that multi-stage fusion is highly beneficial for propagating
guidance and increasing the mIoU since it allows user interaction to have a
more direct impact on the final segmentation.

– Comprehensive experiments on six benchmarks show that our approach sig-
nificantly outperforms existing state-of-the-art for both tap-and-shoot and
standard interactive instance segmentation.

2 Related Works

As an essential building block of image/video editing applications, interactive
segmentation and dates back decades [21]. The latest methods [14,18,19,23,28]
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Fig. 1. Motivation. We consider the popular special-effect filter used in mobile pho-
tography - background blur. Here the user intends to blur the rest of the image barring
the dog. In most existing interactive segmentation approaches [18,19,28], the user click
(here placed on the dog) is leveraged only at the input layer and its influence diminishes
through the layers. This can result in unsatisfactory image effects, e.g. portions of the
dog’s elbow and ear are wrongly classified as background and are mistakenly blurred
(shown in enlarged red boxes). Our proposed multi-stage fusion allows user click to
have a more direct effect leading to improvement in segmentation quality (shown in
enlarged green boxes).

integrate deep architectures such as FCN-8s [17] or DeepLab [5,6]. Most of these
approaches integrate user cues in the input stage. The clicks are transformed into
‘guidance’ maps and appended to the three-channel colour image input before
being passed through a CNN [18,19,28].

Early Interactive Instance Segmentation methods used graph-cuts [3,
24], geodesics, or a combination [10]. These methods’ performance is limited
as they separate the foreground and background based on low-level colour and
texture features. Consequently, for scenes where foreground and background are
similar in appearance, or lighting and contrast is low, more labelling effort from
the users to achieve good segmentations [28]. Recently, deep convolutional neu-
ral networks [6,17] have been incorporated into interactive segmentation frame-
works. Initially, [28] used Euclidean distance-based guidance maps to represent
user-provided clicks and are passed along with the input RGB image through
a fully convolutional network. Subsequent works made extensions with newer
CNN architectures [18], iterative training procedures [18] and structure-aware
guidance maps [19]. These works share a structural similarity: the guidance
maps are concatenated with the RGB image as additional channels at the first
(input) layer. We refer to this form of structure as early fusion (see Fig. 2(a)).
Architecture-wise, early fusion is simple and easy to train; however, user inputs’
influence gets diminished through the layers.

Tap-and-Shoot Segmentation was introduced by [4], and refers to the
one-click interactive setting. One assumes that during image capture, the user
taps the touchscreen (once) on the foreground object of interest, from which
one can directly segment the object of interest. [4] uses early fusion; it
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(a) Early fusion

 (c) Two-stream FCN 

 (b) Late fusion

 (d) Proposed approach

Classification Layer

Concatenation
'Negative' guidance
'Positive' guidance

RGB

RGB

RGB

RGB

Element-wise multiplication

Fig. 2. (a) Existing interactive instance segmentation and “tap-and-shoot” segmen-
tation techniques concatenate user provided cues as an extra guidance map(s) (for
‘positive’ and ‘negative’ clicks) with the RGB and pass everything through a segmen-
tation network. (b-c) Other alternative approaches are extremely parameter heavy. (b)
The work of [14] uses two dedicated VGG [26] networks for extracting features from
image and user interactions separately. (c) The work of [23] performs late fusion via
element-wise multiplication on the feature maps which requires an additional 100 mil-
lion parameters. (d) We leverage user guidance at the input (early fusion) and via
late fusion. Our multi-stage fusion reduces the layers of abstraction and allows user
interactions to have a more direct impact on the final output.

transforms the user tap into a guidance map via two shortest-path minimizations
and then concatenates the map to the input image. The authors validate only on
simple datasets such as ECSSD [25] and MSRA10K [7], where the images con-
tain a single dominant foreground object. As we show later in our benchmarks
(see Table 1), these datasets are so simplistic that properly trained networks
with no user input can also generate high-quality segmentation masks which are
comparable or even surpass the results reported by [4].

Feature Fusion in Deep Architectures is an efficient way to leverage
complementary information, either from different modalities [27], or different
levels of abstraction [29]. Element-wise multiplication [23] and addition [14,16]
are two common operations applied for fusing multiple channels. Other strategies
include ‘skip’ connections [17], where features from earlier layers are concate-
nated with the features extracted from the deeper layers. Recently, a few inter-
active instance segmentation works have begun exploring outside of the early-
fusion paradigm to integrate user guidance [14,23]. However, these approaches
are heavy in their computational footprint, as they increase the number of
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parameters to be learned by order of hundred of millions [23]. Dilution of input
information is common-place in deep CNNs as the input gets processed several
blocks of convolution [22]. Feature fusion helps preserve input information by
reducing the layers of abstraction between the user interaction and the segmen-
tation output.

3 Proposed Method

3.1 Overview

We follow the conventional paradigm of [18,19,28] in which ‘positive’ and ‘neg-
ative’ user clicks are transformed into ‘guidance’ maps of the same size as the
input image. Unlike [18,19,28], we work within the one-click setting. The user
provides a single ‘positive’ click on the object of interest; this click is then
encoded into a single channel guidance map G (see Sect. 3.3). We then feed
the 3-channel RGB image input and the guidance map as an additional channel
into a fully convolutional network. Figure 3(a) shows an overview of our pipeline.
Typically these FCNs are fine-tuned versions of semantic segmentation networks
such as FCN-8s [17] or DeepLab [5].

For our base segmentation network, we use DeepLab-v2 [5]; it consists of
a ResNet-101 [12] feature extraction backbone and a Pyramid Scene Parsing
(PSP) module [30] acting as the prediction head. Upon receiving the input of
size h × w × 4, the ResNet-101 backbone generates feature maps of dimension
h/8 × w/8 × 2048 (Fig. 3(a)).

3.2 Multi-stage Fusion

The fusion module consists of 3 Squeeze-and-Excitation residual blocks (SE-
ResNet) [13]. Proposed in [13], SE-ResNet blocks have been shown to effective
for a variety of vision tasks such as image classification on ImageNet [8] and
object detection on MS COCO [15]. SE-ResNet blocks incur minimal additional
computational overhead as they consist of two 3 × 3 convolutional layers, two
inexpensive fully connected layers and channel-wise scaling operation.

Each SE-ResNet block consists of a residual block, a squeeze operation which
produces a channel descriptor by aggregating feature maps across their spatial
operation, dimensionality reduction layer (by reduction ratio r) and an exci-
tation operation which captures the channel interdependencies. The individual
components of the SE-ResNet block is shown in Fig. 3(b). The residual block
consists of two 3×3 convolutions, batch normalization, and a ReLU non-linearity
(Fig. 3(c)). We fix the number of filter banks to be 256 for each of the 3×3 con-
volution. The reduction ratio r is kept as 16 [13]. The input to the fusion block
is a h/4×w/4×256 feature map which is obtained by processing the h×w×4 input
with 7 × 7 convolution operation with stride 2, batch normalization, ReLU non-
linearity and a 2× 2 max-pooling operation with stride 2 (Init block, Fig. 3(a)).
The final SE-ResNet block downsamples to generate a h/8×w/8×256 feature
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Fig. 3. (a) Overview of our pipeline. Given an image and a ‘positive’ user click (shown
in green circle), we transform the click into a Gaussian guidance map, which is concate-
nated with the 3-channel image input and is fed to our segmentation network. For ease
of visualization, inverted values for the Gaussian guidance map is shown in the image.
The output is the segmentation mask of the selected object. (b) SE-ResNet block (c)
Residual block.

map. This is concatenated with the h/8×w/8×2048 obtained from the feature
extraction backbone to obtain a h/8×w/8×2304 feature map.

On top of these feature maps, PSP performs pooling operations at different
grid scales on the feature maps to gather the global contextual prior, leading
to feature maps of dimensions h/8×w/8×512. The multi-scale feature pool-
ing of PSP [30] enables the network to capture objects occurring at different
image scales. Pixel-wise foreground-background classification is performed on
these down-sampled feature maps. The network outputs a probability map rep-
resenting whether a pixel belongs to the object of interest or not. Bi-linear inter-
polation is performed to up-sample the predicted probability map to have the
same dimensions as the original input image.

3.3 Transforming User Click

In interactive approaches, pixel values of the guidance map are defined as a func-
tion of its distance on the image grid to the point of user interaction (Eq. 1). This
includes Euclidean [14,28] and Gaussian guidance maps [18]. For each pixel posi-
tion p on the image grid, the pair of distance-based guidance maps for positive
(+) and negative clicks (−) can be computed as
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Gd
+(p) = min

c∈{p+}
d(p, c) and Gd

−(p) = min
c∈{p−}

d(p, c). (1)

For Euclidean guidance maps [28], the function d(·, ·) is the Euclidean distance.
For Gaussian guidance maps, the ‘min’ is replaced by a ‘max’ operator. A more
recent approach advocated taking image structures such as super-pixels and
region-based object proposals into consideration to generate guidance maps [19].
To generate the guidance maps, we use Gaussian transformations [18] as it
offers a favourable trade-off between simplicity and performance. We initialize
an image-sized all zero channel and place a Gaussian with a standard deviation
of 10 pixels at the user click location. Note that we do not use ‘negative’ clicks
in our framework.

3.4 Implementation Details

Network Optimization. We train the network to minimize the class-balanced
binary cross-entropy loss,

L =
∑

j∈N

wyj
· BCE(yj , ŷj) (2)

where N is the number of pixels in the image, BCE(·) is the standard cross-
entropy loss between the label yj and the prediction ŷj at pixel location j given
by,

BCE(yj , ŷj) = −yj · logŷj − (1 − yj) · log(1 − ŷj) (3)

wyj
is the inverse normalized frequency of labels yj ∈ {0, 1} within the mini-

batch. We optimize using mini-batch SGD with Nesterov momentum (with
default value of 0.9) and a batch size of 5. The learning rate is fixed at 10−8

across all epochs and weight decay is 0.0005. For the ResNet-101 backbone, we
initialize the network weights from a model pre-trained on ImageNet [8]. During
training, we first update the early-fusion skeleton for 30–35 epochs. Next we
freeze the weights of the early-fusion model and train the late-fusion weights for
5–10 epochs. Finally, we train the joint network for another 5 epochs.

Simulating User Clicks. Manually collecting user interactions is an expensive
and arduous process [2]. In a similar vein as [4] and other interactive segmen-
tation frameworks [18,19,28], we simulate user interactions to train and evalu-
ate our method. During training, we use the ground truth masks of the object
instances from the MSRA10K dataset. To initialize, we take the center of mass of
the ground truth mask as our user click location; we then jitter the click location
by U(−50, 50) pixels randomly. The clicked pixel location is constrained to the
confines of the object ground truth mask. The random perturbation introduces
variation in the training data and also allows better approximation of true user
interactions.
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Table 1. Ablation Study: Tap-and-Shoot Segmentation. ‘res’ refers to the image
resolution used during training. We report average mIoU for the segmentation results
after training for 16K iterations and after training convergence. The -baseline models
receive a 3-channel RGB image as input without the guidance map G.

Method G res GrabCut [24] Berkeley [20] ECSSD [25] MSRA-10K [7]

TNS [4] � 256 72.3 / 79.0 55.7 / 67.0 70.3 / 76.0 81.1 / 85.0

vgg-baseline � 256 73.5 / 77.4 58.2 / 63.2 71.2 / 72.3 83.4 / 86.2

vgg-early � 256 76.2 / 80.1 62.8 / 65.3 74.8 / 76.5 87.1 / 87.5

resnet-baseline � 256 81.6 / 83.0 68.5 / 68.2 80.2 / 82.0 86.4 / 86.9

resnet-early � 256 83.3 / 84.3 75.0 / 75.3 82.0 / 83.6 88.6 / 89.6

resnet-multi � 256 84.1 / 85.7 75.1 / 78.4 81.9 / 85.2 91.5 / 92.1

resnet-baseline � 512 76.1 / 79.0 65.5 / 68.3 79.9 / 82.6 87.0 / 87.9

resnet-early � 512 82.9 / 84.5 76.2 / 78.1 85.6 / 85.7 91.5 / 91.4

resnet-multi � 512 83.1 / 86.2 80.1 / 81.3 86.8 / 87.1 92.5 / 93.1

4 Experimental Validation

4.1 Datasets

We evaluate on six publicly available datasets commonly used to benchmark
interactive image segmentation [4,18,19,28]: MSRA10K [7], ECSSD [25], Grab-
Cut [24], Berkeley [20], PASCAL VOC 2012 [9] and MS COCO [15]. We use
mean intersection over union (mIoU) of foreground w.r.t. to the ground truth
object mask across all instances to evaluate the segmentation accuracy as per
existing works [4,17–19,28].

MSRA10K has 10, 000 natural images; the images are characterized by vari-
ety in the foreground objects whilst the background is relatively homogeneous.
Extended complex scene saliency dataset (ECSSD) is a dataset of 1000 natural
images with structurally complex backgrounds. GrabCut is a dataset consisting
of 49 images with typically a distinct foreground object. It is a popular dataset for
benchmarking interactive instance segmentation algorithms. Berkeley dataset
consists of 96 natural images. PASCAL VOC 2012 consists of 1464 train-
ing and 1449 validation images across 20 different object classes; many images
contain multiple objects. MS COCO is a challenging large-scale image segmen-
tation dataset with 80 different object categories, 20 of which are common with
the PASCAL VOC 2012 categories.

4.2 Tap-and-Shoot Segmentation

Following [4], we use MSRA10K [7] for training and partition the dataset into
three non-overlapping subsets of 8000, 1000 and 1000 images as our training,
validation and test set. We report the mIoU after training for 16K iterations
and again after network convergence (at 43k iterations for us, vs. 260k iterations
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in [4]) in Table 1. During training, we resize the images to 512×512 pixels. This
choice of resolution is driven primarily by matching the resolution to that of the
training images for the ResNet-101 backbone [12].

The -baseline models are trained using only the 3-channel RGB image and
the instance ground truth mask without any user click transformations. The -
early models use Gaussian guidance maps [18]; the network input is 3-channel
RGB image and Gaussian encoding of the user’s tap on the object of inter-
est (Fig. 2(a)). The -multi models refer to the multi-stage fusion models with
Gaussian encoding of user clicks. Note that we do not train a late-fusion model;
standalone late-fusion models show inferior performance compared to their early-
fusion counterparts [23].

From Table 1, we observe that our trained network converges mostly within
16K iterations. For simplistic datasets such as MSRA10K and ECSSD, the vgg-
baseline without user click transformation compares favourably with the app-
roach of [4] at the same training resolution of 256 × 256. resnet-baseline models
trained with 512 × 512 images significantly outperform [4] reporting absolute
mIoU gains of till 7% across the datasets. Based on this result alone, we con-
clude that one-click (and standard) interactive segmentation approaches should
be benchmarked on more challenging datasets. Examples include PASCAL VOC
2012 and MS COCO, which feature cluttered scenes, multiple objects, occlusions
and challenging lighting conditions. (see Table 3).

Furthermore, with only the Gaussian transformation and ResNet-101 back-
bone trained on 512 × 512, we are able to achieve mIoU increase in the range
of 5–11% across datasets at convergence w.r.t [4]. Having the multi-stage fusion
offers us absolute mIoU gains of 1–4% w.r.t the early fusion variant (resnet-early
vs. resnet-multi when trained with 512 × 512 images). Additionally, our resnet
models require significantly less memory; 195.8 MB (stored as 32-bit/4-byte
floating point numbers) instead of the 652.45 MB required for the segmentation
network of [4].

4.3 Interactive Image Segmentation

Approaches in the literature [14,18,19,28] are typically evaluated by (1) the
average number of clicks needed to reach the desired level of segmentation (@85%
mIoU for PASCAL VOC 2012, MS COCO, @90% mIoU for the less challenging
Grabcut and Berkeley) and (2) the average mIoU vs the number of clicks.

The first criterion is primarily geared towards annotation tasks [18,19] where
high-quality segments are desired for each instance in the scene; the fewer the
number of clicks, the lower the annotation effort. In this work, we are concerned
primarily with achieving high-quality segments for the object of interest given
only a single click. Accordingly, given a single user click, we report the average
mIoU across all instances for the GrabCut, Berkeley and the PASCAL VOC 2012
val dataset. For MS COCO object instances, following [28], we split the dataset
into the 20 PASCAL VOC 2012 categories and the 60 additional categories,
and randomly sample 10 images per category for evaluation. We also report the
average mIoU across the sampled 800 MS COCO instances [14].
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Input Image with the overlaid gt mask Disk guidance mapEuclidean guidance Gaussian guidance

Fig. 4. Examples of guidance maps. Given a click (shown as green circle) on the
object of interest, existing approaches transform it into guidance maps and uses it
as an additional input channel. For ease of visualization, inverted values for the disk
guidance map and the Gaussian guidance map are shown in the image. (Color figure
online)

Table 2. User Click Transformation. The best results are indicated in bold.
COCO-20 and COCO-60 refers to the instances from 20 overlapping categories and
60 non-overlapping categories of PASCAL VOC 2012 respectively.

G GrabCut Berkeley VOC12 COCO-20 COCO-60

Euclidean [28] 82.6 82.7 75.1 63.2 46.8

Disk [2] 84.5 81.3 74.5 65.3 51.5

Gaussian [18] 84.0 82.9 78.1 64.2 49.8

Gaussian-multi 86.2(2.2 ↑) 84.0(1.1 ↑) 80.8(2.7 ↑) 64.5(0.3 ↑) 52.3(2.5 ↑)

For training [14,19,28], we use the ground truth masks of object instances
from PASCAL VOC 2012 [9] train set with additional masks from Semantic
Boundaries Dataset (SBD) [11] resulting in 10582 images. Note that unlike [18],
we do not use the training instances from MS COCO.

Ablation Study. We perform extensive ablation studies to thoroughly ana-
lyze the effectiveness of the individual components of our one-click segmenta-
tion framework. First, to validate our choice of guidance maps, we consider the
user click transformations commonly used in existing interactive segmentation
algorithms - Euclidean distance maps [14,28], Gaussian distance maps [18] and
disk [2]. Figure 4 shows examples of such guidance maps. For each kind of guid-
ance map, we train separate networks to understand the impact of different
user click transformations. For evaluation, we report the average mIoU over all
instances in the dataset, given a single click (see Table 2). Next, we study the
impact of our proposed late-fusion module (denoted by -multi in Table 2); we
observe an average mIoU improvement of around 1.8% across different datasets.

One-Click Segmentation. We compare the segmentation performance of
our method with existing interactive instance segmentation approaches (see
Table 3). The approaches are grouped separately into 3 different categories -
pre-deep learning approaches, deep learning-based interactive instance segmen-
tation approaches and tap-and-shoot segmentation approaches. From Table. 3,
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Table 3. Average mIoU given a single click. The approaches are grouped
separately into 3 different categories - pre-deep learning approaches, deep learning-
based interactive instance segmentation approaches and tap-and-shoot segmentation
approaches respectively. For GC [3], GM [1], GD [10], and iFCN [28] we make use of
the values provided by the authors of iFCN [28]. The mIoU improvement (in %) over
existing state-of-the-art approaches is indicated using ↑.

Method Network GrabCut Berkeley VOC12 COCO-20 COCO-60

GC [3] - 41.7 33.8 27.7 - 8.9

GM [1] - 23.7 24.5 23.8 - 22.1

GD [10] - 48.8 36.1 31.0 - 25.2

iFCN [28] FCN-8s [17] 62.9 61.3 53.6 42.9

ITIS [18] DeepLabv3+ [6] 82.1 - 71.0 - -

CAG [19] FCN-8s [17] 83.2 - 74.0 - -

TS [14] FCN-8s [17] 77.7 74.5 62.3 42.5 42.5

TNS [4] FCN-8s [17] 79.0 67.0 - - -

Ours-best DeepLabv2 [5] 86.2(3.0 ↑) 84.0(9.5 ↑) 80.8(6.8 ↑) 64.5(22.0 ↑) 52.3(9.6 ↑)

we observe that our approach outperforms the classical interactive segmentation
works by a significant margin reporting 40% absolute improvement in average
mIoU. We also outperform existing state-of-the-art interactive instance segmen-
tation approaches [18,19] by a considerable margin (>3%). Additionally, we
report an absolute mIoU improvement of 7.2% and 17% on Grabcut and Berke-
ley over the tap-and-shoot segmentation framework of [4]. We show qualitative
results to demonstrate the effectiveness of our proposed algorithm (see Fig. 5).
The resulting segmentations demonstrate that our approach is highly effective
for the one-click segmentation paradigm.

5 User Study

Across existing state-of-the-art interactive frameworks [18,19,28], user clicks are
simulated following the protocols established in [18,28]. For our user study, we
consult 5 participants uninitiated to the task of interactive segmentation. We
prepare a toy dataset with 50 object instances from the MSRA10K [7] dataset.
We presented the image with the segmentation mask for the target object over-
laid on the image and asked the users to provide their click. During training, we
applied random perturbations of U(−50, 50) pixels to the center of mass of the
object instance to obtain the final user click. Our user study found that partici-
pants placed clicks at a mean distance of 24 pixels from the center of the mask
with a standard deviation of 27 pixels. This result validates our assumption that
users are more likely to click in the vicinity of the object’s center-of-mass. On
average, we observed that users took 2.3 s with a standard deviation of 0.8 s to
position their click.



Multi-stage Fusion for One-Click Segmentation 185

Fig. 5. Qualitative Results. Incorporating the user clicks at different stages of the
network leads to an improvement in the quality of masks generated (second row) w.r.t
the early-fusion variants (first row). Click locations are shown in green circles. The
extreme right column shows a scenario where both the networks failed to generate a
satisfactory mask.

6 Conclusion

In this work, we propose a one-click segmentation framework that produces high-
quality segmentation masks. We validated our design choices through detailed
ablation studies; we observed that having a multi-stage module improves the
segmentation framework and gives the network an edge over its early-fusion
variants. Via experiments, we observed that for the single click scenario, our
proposed approach significantly outperforms existing state-of-the-art approaches
- including the more complicated interactive instance segmentation models using
state-of-the-art segmentation models [6].

However, we observe existing tap-and-shoot segmentation frameworks [4],
including our proposed framework, are limited by their inability to learn from
negative clicks [18,19,28]. One major drawback of such a training scenario is
that the network does not have a notion of corrective clicking; if the generated
segmentation mask extends beyond the object boundaries, it cannot rectify this
mistake. Clicking on locations outside the object can mitigate this effect, though
this then deviates from tap-and-shoot interaction.
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Abstract. In computer vision research, the process of automating archi-
tecture engineering, Neural Architecture Search (NAS), has gained sub-
stantial interest. Due to the high computational costs, most recent
approaches to NAS as well as the few available benchmarks only pro-
vide limited search spaces. In this paper we propose a surrogate model for
neural architecture performance prediction built upon Graph Neural Net-
works (GNN). We demonstrate the effectiveness of this surrogate model
on neural architecture performance prediction for structurally unknown
architectures (i.e. zero shot prediction) by evaluating the GNN on several
experiments on the NAS-Bench-101 dataset.

1 Introduction

Deep learning using convolutional neural architectures has been the driving force
of recent progress in computer vision and related domains. Multiple interde-
pendent aspects such as the increasing availability of training data and com-
pute resources are responsible for this success. Arguably, none has had as much
impact as the advancement of novel neural architectures [11,19]. Thus, the focus
of computer vision research has shifted from a feature engineering process to an
architecture engineering process. The direct consequence is the need to automate
this process using machine learning techniques.

Neural Architecture Search (NAS) [7] attends to techniques automating archi-
tecture engineering. Due to very long compute times for the recurrent search and
evaluation of new candidate architectures [41], NAS research has hardly been
accessible for researchers without access to large-scale compute systems. Yet, the
publication of NAS-Bench-101 [38], a dataset of over 423k fully trained neural
architectures, facilitates a paradigm change in NAS research. Instead of care-
fully evaluating each new proposed neural architecture, NAS-Bench-101 enables
to experiment with classical data-based methods such as supervised learning
to evaluate neural architectures. While the impact of benchmarks such as NAS-
Bench-101 on the community is high, they come at extreme computational costs.
All architectures in the search space have to be extensively evaluated, which
leads to practical restrictions on the search space. This calls for accurate sur-
rogate models that enable to extrapolate expected performances to structurally
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different and larger architectures in unseen areas of the search space, i.e. zero
shot prediction. In this paper, we first tackle the task of learning to predict the
accuracy of convolutional neural architectures in a supervised way, i.e. we learn a
surrogate model that enables to predict the performance of neural architectures
on the CIFAR-10 image classification task. Furthermore, we evaluate our pro-
posed model on two different zero shot prediction scenarios and show its ability
to accurately predict performances in previously unseen regions of the search
space.

Most current neural architectures for computer vision can be represented
as directed, acyclic graphs (DAGs). Thus, we base our surrogate model on
Graph Neural Networks. Graph Neural Networks (GNNs) [35] have proven to
be very powerful comprehending local node features and graph substructures.
This makes them a very useful tool to embed nodes as well as full graphs like the
NAS-Bench-101 architectures into continuous spaces. Furthermore, the benefit
of GNNs over Recurrent Neural Networks (RNNs) has been shown in the con-
text of graph generating models. The model Deep Generative Models of Graphs
(DGMG) in [22] utilizes GNNs and shows dominance over RNN methods. DGMG
is able to capture the structure of graph data and its attributes in a way that
probabilistic dependencies within graph nodes and edges can be expressed, yield-
ing in learning a distribution over any graph. This makes DGMG a strong tool
to map neural architectures into a feature representation which captures the
complex relation within the neural architecture.

Inspired by [22], we utilize the GNN as our surrogate model for the perfor-
mance prediction task.

In summary, in this paper we make the following contributions: We present
a surrogate model– a graph encoder built on GNNs– for neural architecture
performance prediction trained and evaluated on the NAS-Bench-101 benchmark
and show that this neural performance predictor accurately predicts architecture
performances in previously structurally different and unseen regions of the search
space, i.e. zero shot prediction.

The remaining paper is structured as follows: Sect. 2 gives a short review of
the related work. In Sect. 3 we present our proposed encoder model. Section 4
gives detailed model implementation details of the proposed surrogate model.
In Sect. 5, we describe the NAS-Bench-101 dataset on which we conduct our
evaluation. In Sect. 6, we present our experiments and results. Finally, we give a
conclusion and outline some future directions in Sect. 7.

2 Related Work

2.1 Neural Architecture Search

Neural Architecture Search (NAS) [25,30,31,40,41], the process of designing
neural network architectures in an automatic way, gained substantial attention
recently. See [7] for an overview and detailed survey over recent NAS methods.
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The currently most successful approaches follow different paradigms: Reinforce-
ment learning (RL) [30,40,41] as a NAS strategy considers the neural architec-
ture generation as the agent’s action with it’s reward given in terms of validation
accuracy. Evolutionary Algorithm (EA) [24,31] approaches optimizing the neural
architectures themselves by guiding the mutation of architectures and evaluat-
ing their fitness given in terms of validation accuracy. Bayesian optimization
(BO) [16] derives kernels for architecture similarity measurements to extrapo-
late the search space. Gradient based methods [25,26] use continuous relaxations
of neural architectures to allow for gradient-based optimization.

2.2 Neural Architecture Benchmark Datasets

NAS-Bench-101 [38] is a public dataset of 423k neural architectures and pro-
vides tabular benchmark results for a restricted cell structured architecture
search space [41] with exhaustive evaluation on the CIFAR-10 image classifi-
cation dataset [18]. As shown in [39], only subspaces of the architectures in
NAS-Bench-101 can be used to evaluate one-shot NAS methods [25,30], moti-
vating their proposed variant NAS-Bench-1shot1 [39].

Similarly to NAS-Bench-101, NAS-Bench-201 [6] uses a restricted, cell- struc-
tured search space, while the employed graph representation allows to evaluate
discrete and one-shot NAS algorithms. The search space is even more restricted
than NAS-Bench-101, providing only 6k unique evaluated architectures in total.
We conduct our experiments on NAS-Bench-101, which is the largest available
tabular neural architecture benchmark for computer vision problems.

2.3 Performance Predictor for Neural Architectures

The work on performance prediction models for neural architectures is very lim-
ited. [23] uses a performance predictor in an iterative manner during the search
process of NAS. [1] uses features of a neural architecture, such as the valida-
tion accuracy, some architecture parameters such as the number of weights and
the number of layers as well as hyperparameters, to predict learning curves
during the training process by means of a SRM regressor. [26] proposes a per-
formance prediction model learned in combination with an auto-encoder in an
end-to-end manner. The neural architectures are mapped into a latent feature
representation, which is then used by the predictor for performance prediction
and are further decoded into new neural architectures. Recently [33] proposes
a semi-supervised assessor of neural architectures. The graphs are employed by
an auto-encoder to discover latent feature representations, which is then fine-
tuned by means of a graph similarity measurement. Lastly, a graph convolution
network is used for performance prediction.

2.4 Graph Neural Networks

Combining modern machine learning methods with graph structured data has
increasingly gaining popularity. One can interpret it as an extension of deep
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Fig. 1. Illustration of the graph encoding process: The node-level propagation using T
rounds of bidirectional message passing (left) and the graph-level aggregation into a
single graph embedding hG (right). (Color figure online)

learning techniques to non-Euclidean data [4] or even as inducing relational
biases within deep learning architectures to enable combinatorial generalization
[3]. Because of the discrete nature of graphs, they can not trivially be optimized
in differentiable learning methods that act on continuous spaces. The concept
of graph neural networks is a remedy to this limitation. The idea of Graph
Neural Networks as an iterative process which propagates the node states until
an equilibrium is reached, was initially mentioned in 2005 [12]. Motivated by the
increasing populatiry of CNNs, [5] and [15] defined graph convolutions in the
Fourier domain by utilizing the graph Laplacian. The modern interpretation of
GNNs was first mentioned in [17,21,28] where node information was inductively
updated through aggregating information of each node’s neighborhood. This
approach was further specified and generalized by [13] and [10].

The research in GNNs enabled breakthroughs in multiple areas related to
graph analysis such as computer vision [20,36,37], natural language processing
[2], recommender systems [27], chemistry [10] and others. The capability of GNNs
to accurately model dependencies between nodes makes them the foundation of
our research. We utilize them to move from the discrete graph space to the
continuous space.

In this paper, we want to use continuous methods, GNNs, to handle the
graphs characterizing neural architectures from the NAS-Bench-101 dataset [38].
More precisely, we show the ability of GNNs to encode neural architectures
such as to allow for a regression of their expected performance on an image
classification problem.

3 The Graph Encoder

In this section we present our GNN-based model to encode the discrete graph
space of NAS-Bench-101 into a continuous vector space. One can imagine a single
GNN iteration as a two-step procedure. First, each node sends out a message
to its neighbors alongside its edges. Second, each node aggregates all incoming
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messages to update itself. After a final amount of these iteration steps, the
individual node embeddings are aggregated into a single graph embedding.

3.1 Node-Level Propagation

Let G = (V,E) be a graph with nodes v ∈ V and edges e ∈ E ⊆ V × V . We
denote N(v) = {u ∈ V | (u, v) ∈ E} and Nout(v) = {u ∈ V | (v, u) ∈ E} as the
directed neighborhoods of a node v ∈ V . For each node v ∈ V , we associate an
initial node embedding hv ∈ R

dn . In our experiments we use a learnable look-up
table based on the node types. Propagating information through the graph can
be seen as an iterative message-passing process

mu→v = Ξu∈N(v)

(
M (t)(h(t−1)

v , h(t−1)
u )

)
, (1)

h(t)
v = U (t)(h(t−1)

v ,mu→v), (2)

with a differentiable message module M (t) in (1), a differentiable update module
U (t) in (2) and a differentiable, permutation invariant aggregation function Ξ.
The message module M (t) is illustrated by the green arrows in Fig. 1 (left). To
address the directed nature of the NAS-Bench-101 graphs, we add a reverse
message module

mout
u→v = Ξu∈Nout(v)

(
M

(t)
out(h

(t−1)
v , h(t−1)

u

)
, (3)

h(t)
v = U (t)(h(t−1)

v ,mu→v,m
out
u→v). (4)

This is outlined in Fig. 1 (left) by the red arrows and leads to so-called bidi-
rectional message passing. The update module U (t) utilizes each node’s incoming
messages to update that node’s embedding from h

(t−1)
v to h

(t)
v .

Exploring many different choices for the message and update modules exper-
imentally, we find that the settings similar to [22] work best for our needs. We
pick a concatenation together with a single linear layer for our message modules.
The update module consists of a single gated recurrent unit (GRU) where h

(t−1)
v

is treated as the hidden state. For the aggregation function, we choose the sum.
To increase the capacity of our model, on the one hand, we apply multiple rounds
of propagation and on the other hand, we use a different set of parameters for
each round.

3.2 Graph-Level Aggregation

After the final round of message-passing, the propagated node embeddings h =
(hv)v∈V are aggregated into a single graph embedding hG ∈ R

dg , where

hG = A(h), (5)

We obtain good results by using a linear layer combined with a gating layer
that adjusts each node’s fraction in the graph embedding. This aggregation layer
A in (5) is further illustrated in Fig. 1 (right).
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4 Model Details

In this section, we give further details on the implementation of our GNN model.

4.1 Message

The message module M (t) concatenates the embedding of the considered node
h
(t−1)
v as well as the incoming embedding h

(t−1)
u , each of dimension dn. It further

performs a linear transformation on the concatenated embedding. The reverse
message module M

(t)
out is a clone of M (t) initialized with its own weights,

M (t) = Lin2dn×2dn

(
[h(t−1)

v , h(t−1)
u ]

)
, (6)

M
(t)
out = Lin′

2dn×2dn

(
[h(t−1)

v , h(t−1)
u ]

)
. (7)

The message module (green) and the reverse message (red) can be seen on
the left side of Fig. 1.

4.2 Update

The update module U (t) is a single GRU cell. First, the incoming messages
mu→v and mout

u→v are added and handled as the GRU input. Second, the node
embedding h

(t−1)
v is treated as the hidden state and is updated,

U (t) = GRUCell2dn,dn

(
mu→v + mout

u→v, h(t−1)
v

)
. (8)

4.3 Aggregation

We use two rounds of propagation before aggregating the node embeddings into
a single graph embedding. This graph aggregation consists of two parts. First,
a linear layer transforms the node embeddings to the required graph embedding
dimension dg. Second, another linear layer combined with a sigmoid handles each
node’s fraction in the graph embedding,

A1 = Lindn×dg
(h(2)

v ), (9)

A2 = σ
(
Lindn×1(h(2)

v )
)
, (10)

A =
∑

v

A1 � A2. (11)

An illustration of the aggregation module is given in Fig. 1 (right).

5 The NAS-Bench-101 Dataset

NAS-Bench-101 [38] is a public dataset of neural architectures in a restricted cell
structured search space [41] evaluated on the CIFAR-10-classification set [18].
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NAS-Bench-101 considers the following constraints to limit the search space: it
only considers directed acyclic graphs, the number of nodes is limited to |V | ≤ 7,
the number of edges is limited to |E| ≤ 9 and only 3 different operations are
allowed {3 × 3 convolution, 1 × 1 convolution, 3 × 3 max − pool}. These
restrictions lead to a total of 423k unique convolutional architectures, which are
built from the cells in the following way: Each cell is stacked three times, followed
by a max-pooling layer which reduces the feature map size by factor two. This
pattern is repeated 3 times, followed by global average pooling and a dense
softmax layer to produce the output. While this search space is limited it covers
relevant architectures such as for example ResNet like [14] and InceptionNet
like [32] models [38].

The architectures have been trained for four increasing numbers of epochs
{4, 12, 36, 108}. Each of these architectures is mapped to its test, validation and
training measures. In this paper we use the architectures trained for 108 epochs
and aim to predict their corresponding validation and test accuracy.

6 Experiments

We conduct experiments in three complementary domains. First, we evaluate the
performance prediction ability of the proposed GNN in the traditional supervised
setting. Then, we conduct zero shot prediction experiments in order to show the
performance of the proposed model for unseen graph structures during training.
Both experiments are carried out on the validation accuracies reported in NAS-
Bench101. Last, we compare our results to the recent publication by Tang et
al. [33] in terms of test accuracy prediction.

Implementation Details. If not mentioned differently, we set dn = 250 for the
node dimensions and dg = 56 for the dimension of the latent space. We split the
dataset 70%/20%/10% edit-sampled into training-, test- and validation set. All
our experiments are implemented using PyTorch [29] and PyTorch Geometric [9].

The hidden layers of the regressor are of size 28, 14 and 7. We used no acti-
vation function for the very last output (linear regression) and trained the joint
encoder model with a learning rate of 1e−5 for 100 epochs. The hyperparameters
were tuned with BOHB [8],

6.1 Performance Prediction

Supervised Performance Prediction. Here, we evaluate the latent space
generated by the encoder with respect to its prediction error regarding a metric
of interest of the NAS-Bench-101 graphs, i.e. the validation accuracy on CIFAR-
10. For this purpose, we utilize a simple predictor, i.e. a four-layer MLP with
ReLU non-linearities.

We jointly train the encoder and the predictor supervisedly end-to-end. We
test for prediction as well as for zero shot prediction errors. There are a few
outliers in the NAS-Bench-101 graphs that end up with a low validation accuracy
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Fig. 2. (Left) The predicted accuracy and ground truth of 100 randomly sampled
graphs from the NAS-Bench-101 dataset showing a low prediction error for graphs
with high accuracy. For low accuracy architectures, our model mostly predicts low
values. (Right) The mean and variance of the squared error of the test set performance
prediction sorted by the ground truth accuracy in logarithmic scale. Predictions are
very reliable for architectures in the high accuracy domain while errors are higher for
very low performing architectures.

Table 1. Predictive performance of the GNN encoder in terms of RMSE on supervised
validation performance prediction.

Model Prediction

Encoder 0.0486(±0.1%)

RF-wide-depth feature encoding 0.061(±0.4%)

RF-one-hot encoding 0.0632(±0.01%)

MLP-one-hot encoding 0.0632(±0.02%)

RNN-one-hot encoding 0.063(±0.01%)

on the CIFAR-10 classification task. Figure 2 (left) visualizes these outliers and
shows that our model is able to find them even if it cannot perfectly predict
their accuracies. One can see that the model predicts the validation accuracy of
well performing graphs very accurately. To further explore the loss, Fig. 2 (right)
illustrates the mean and variance of the squared error of the test set partitioned
in 9 bins with respect to the ground truth accuracy. The greater part of the
loss arises from graphs with a low accuracy. More importantly, our model is
very accurate in its prediction for graphs of interest namely graphs with high
accuracy.

The rather bad prediction of graphs with low and intermediate accuracy can
be explained through their low share in the dataset. Taking a look at the dis-
tribution of the individual accuracies in the overall NAS-Bench-101 dataset, as
shown in Fig. 3 (left), illustrates the low share of low and intermediate accuracies
in the dataset and explains therefore, the rather bad prediction behaviour of our
surrogate model. Figure 3 (middle) and (right) plot the validation accuracy com-
pared to the test accuracy of the NAS-Bench-101 dataset. This figure illustrates
that predicting the best architecture on the validation set does not necessarily
imply a proper prediction on the test set.
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Fig. 3. Distinct properties of NAS-Bench-101; The allocation of the dataset sorted by
the ground truth accuracy in logarithmic scale ∼98.8% in the two last bins (left). NAS-
Bench-101 validation and test accuracy behaviour on the CIFAR-10 image classification
task. Validation accuracy in % compared to the test accuracy in % of the neural
architectures in the NAS-Bench-101 dataset (middle). A more precise look into the
areas of interest for neural architectures display that the best neural architecture by
means of the test accuracy is unequal to the best accuracy by means of the validation
accuracy (right).

We compare the results of the encoder to several baselines. Our baselines are
a random forest approach and also an MLP regressor with four layers, using one-
hot node feature encodings and graph depth/width feature encodings. In order
to compare to an RNN baseline, we adapted the RNN-surrogate model from [23],
which, in their original implementation, only handles cells of equal length. For
the application to NAS-Bench-101 with cell types of different length, we do the
following slight modification: we input to the LSTM a 0-padded one-hot vector
of node attributes, encoding up to 7 nodes and 5 operations.

Table 1 summarises the performance prediction results on the supervised per-
formance prediction task. All experiments are repeated 3 times and we report
the mean and the relative standard deviation. The experiments show that our
surrogate model is able to predict the neural architecture performances in a sta-
ble way and outperforms all baselines in terms of the RMSE by a significant
margin.

Zero Shot Performance Prediction. Next, we consider the task of predict-
ing the validation accuracy of structurally unknown graph types, i.e. zero shot
prediction. The zero shot prediction task is furthermore divided into two sub-
tasks. First, the encoder is trained on all graphs of length 2, 3, 4, 5, 7 and tested
on graphs of length 6. In this scenario, the unseen architectures could be under-
stood as interpolations of seen architectures. Second, we learn the encoder on
graphs of length 2, 3, 4, 5, 6 and test it on graphs of length 7. This case is expected
to be harder not only because the graphs of length 7 are the clear majority and
have the highest diversity, but also because the prediction of their performance
is an extrapolation out of the seen training distribution.

Table 2 summarizes the performance prediction results on the zero shot per-
formance prediction task. All experiments are repeated 3 times and we report
the mean and the relative standard deviation. As expected, the resulting RMSE
is slightly higher for the extrapolation to graphs of length 7 than for the zero
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Table 2. Predictive performance of the GNN encoder in terms of RMSE on the two
different zero shot validation performance prediction tasks.

Model Zero shot prediction

2, 3, 4, 5, 7 − 6 2, 3, 4, 5, 6 − 7

Encoder 0.0523(±3.9%) 0.0573(±1.7%)

RF-wide-depth feature encoding 0.06(±0.2%) 0.073(±0.5%)

RF-one-hot encoding 0.07(±0.04%) 0.063(±0.1%)

MLP-one-hot encoding 0.0647(±2.4%) 0.094(±12.7%)

RNN-one-hot encoding 0.062(±4.7%) 0.069(±3.3%)

Fig. 4. Progress of loss and validation error over 50 epochs regarding performance
prediction. Best validation RMSE ∼0.0487.

shot prediction for graphs of length 6. Yet the overall prediction improves over
all baselines by a significant margin. The higher standard deviation in compar-
ison to the random forest baselines indicates that the performance of the GNN
depends more strongly on the weight initialization than in the fully supervised
case. Yet, please note that this dependence on the initialization is still signifi-
cantly lower than for the MLP and RNN baselines. The experiments show that
our surrogate model is able to accurately predict data that it has never seen,
i.e. that it can predict the accuracies even for architectures not represented by
the training distribution.

6.2 Training Behaviour

In the following, we analyse the training behaviour of our model in the different
scenarios described above.

SupervisedPerformancePrediction. For visualisation aspects of the training
behaviour of our encoder, we plot the development of the training loss against the
validation loss for the supervised performance prediction from Sect. 6.2 Supervised
PerformancePrediction. Figure 4 displays this development of training loss against
validation loss measured by means of the RMSE. The smallest achieved RMSE is
∼0.0487 for training on 70% of the dataset, i.e. 296, 558 samples.
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Fig. 5. Progress of loss and test error over 50 epochs regarding zero shot prediction
with two distinct splits. One training set consists of all graphs of length 2, 3, 4, 5, 7 with
a test set of the graphs of length 6 (left). The other consists of all graphs of length
2, 3, 4, 5, 6 with a test set of the graphs of length 7 (right).

Zero Shot Prediction. The progress of the training loss and test error for
the zero shot prediction case of our encoder can be seen in Fig. 5. The training
set containing all graphs of length 2, 3, 4, 5, 7/2, 3, 4, 5, 6 has a total amount of
361, 614/64, 542 samples. Thus the encoder is tested only on graphs of length
6/7, which corresponds to a total of 62, 010/359, 082 neural architectures. The
experiments show that our model is able to accurately predict data that it has
never seen before. The behaviour of the test error during the second zero shot
prediction task, see Fig. 5 (right), displays interesting information. During the
first epochs, the error rises before it starts decreasing and approaching the train-
ing loss asymptotically. One interpretation could be that the model first learns
simple graph properties like the number of nodes before it learns more complex
graph substructures that generalise to the unseen data.

6.3 Comparison to State of the Art

In this section we compare our GNN-surrogate model with the most recent state-
of-the-art predictor [33]. They evaluate their predictor on the test accuracy of
the NAS-Bench-101 dataset. Since predicting on the validation accuracy does
not imply the same proper prediction behaviour on the test set, we evaluate
our surrogate model in the same setting. In [33], an auto-encoder model is first
trained on the entire NAS-Bench-101 dataset and then fine-tuned with a graph
similarity metric and test accuracy labels. Because the training relies on an
unsupervised pre-training, they refer to the approach as semi-supervised. To
enable a direct comparison, we sample randomly 1, 000/10, 000/100, 000 graphs
from the training data set and evaluate the performance prediction ability of the
GNN surrogate model on all remaining 431, 624/413, 624/323, 624 graphs in the
NAS-Bench-101 dataset. Please note that, at training time, the semi-supervised
approach from [33] actually has access to more data than our fully supervised
approach, because of the unsupervised pre-training.
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Table 3. Comparison of predictive performance of surrogate models in terms of MSE
on the test accuracies.

Surrogate-model Performance prediction

1, 000 10, 000 100, 000

GNN encoder 0.0044 0.0022 0.0015

Semi-supervised assessor [33] 0.0031 0.0026 0.0016

Table 3 shows the experimental comparison, where we report an average
over three runs for our approach while the numbers of [33] are taken from
their paper. The proposed GNN surrogate model surpasses the proposed semi-
supervised assessor [33] when 10.000 and 100.000 training architectures are avail-
able. With only 1.000 randomly drawn training samples, the results of our app-
roach decrease. Yet, since we do not have access to the exact training samples
used in [33], the results might become less comparable the lower the number of
samples drawn.

7 Conclusion

In this paper, we propose a GNN surrogate model for the prediction of the
performance of neural architectures. Through multiple experiments on NAS-
Bench-101, we examined various capabilities of the encoder. The GNN encoder is
a powerful tool regarding supervised performance prediction and also especially
in the zero-shot setup. Further research will mainly review the possibilities of
neural architecture search in accordance with further performance prediction.
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Abstract. High annotation costs are a major bottleneck for the train-
ing of semantic segmentation approaches. Therefore, methods working
with less annotation effort are of special interest. This paper studies the
problem of semi-supervised semantic segmentation, that is only a small
subset of the training images is annotated. In order to leverage the infor-
mation present in the unlabeled images, we propose to learn a second
task that is related to semantic segmentation but that is easier to learn
and requires less annotated images. For the second task, we learn latent
classes that are on one hand easy enough to be learned from the small set
of labeled data and are on the other hand as consistent as possible with
the semantic classes. While the latent classes are learned on the labeled
data, the branch for inferring latent classes provides on the unlabeled
data an additional supervision signal for the branch for semantic seg-
mentation. In our experiments, we show that the latent classes boost the
accuracy for semi-supervised semantic segmentation and that the pro-
posed method achieves state-of-the-art results on the Pascal VOC 2012
and Cityscapes datasets.

Keywords: Semantic segmentation · Semi-supervised learning ·
Generative adversarial networks

1 Introduction

In recent years, deep convolutional neural networks (DCNNs) have achieved
astonishing performance for the task of semantic segmentation. However, to
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(a) Image (b) Latent Classes (c) Semantic Classes

Fig. 1. Our network learns not only semantic but also latent classes that are easier to
predict. The figure shows an example of latent and semantic class segmentation for an
image that is not part of the training data. As it can be seen, the learned latent classes
are very intuitive since the vehicles are grouped into one latent class and objects that
are difficult to segment like pedestrians, bicycles, and signs are grouped into another
latent class.

achieve good results, DCNN-based methods require an enormous amount of high-
quality annotated training data and acquiring it takes a lot of effort and time.
This problem is especially acute for the task of semantic segmentation, due to
the need for per-pixel labels for every training image. To mitigate the annotation
expenses, Hung et al. [14] proposed a semi-supervised algorithm that employs
images without annotation during training. On labeled data, the authors train a
discriminator network that distinguishes segmentation predictions and ground-
truth annotations. On unlabeled data, they use the discriminator to obtain two
kinds of supervision signals. First, they use an adversarial loss to enforce real-
ism in the predictions. Second, they use the discriminator to locate regions of
sufficient realism in the prediction. These regions are then annotated by the
semantic class with the highest probability. Finally, the network for semantic
segmentation is trained on the labeled images and the estimated regions of the
unlabeled images. Recently, Mittal et al. [28] introduced an extension to [14] by
improving the adversarial training and adding a semi-supervised classification
module. The latter is used for refining the predictions at the inference time.
Although these approaches report impressive results for semi-supervised seman-
tic segmentation, they do not leverage the entire information which is present in
the unlabeled images since they discard large parts of the images.

In this work, we propose an approach for semi-supervised semantic segmen-
tation that does not discard any information. Our key observation is that the
difficulty of the semantic segmentation task depends on the definition of the
semantic classes. This means that the task can be simplified if some classes are
grouped together or if the classes are defined in a different way, which is more
consistent with the similarity of the instances in the feature space. If the seg-
mentation task becomes easier, less labeled data will be required to train the
network. This approach is in contrast to [14,28] that focus on regions in the
unlabeled images that are easy to segment, whereas we focus to learn a simpler
segmentation task with latent classes on the labeled data that is then used as
additional guidance to learn the original task on the labeled and unlabeled data.
Figure 1 shows an example of inferred latent classes and semantic classes.
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Our network consists of two branches and is trained on labeled and unlabeled
images jointly in an end-to-end fashion as illustrated in Fig. 2. While the semantic
branch learns to infer the given semantic classes, the latent branch learns latent
classes and infers the learned latent classes. In contrast to the semantic branch,
the loss for the latent branch takes only the labeled images into account. The
purpose of the latent branch is to discover latent classes that are simple enough
such that they can be learned on the small set of labeled data. Without any
constraints this would result in a single latent class. We therefore introduce a
conditional entropy loss that minimizes the variety of semantic classes that are
assigned to a particular latent class. In other words, the latent classes should be
on one hand easy enough to be learned from the small set of labeled data and
on the other hand they should be as consistent as possible with the semantic
classes. Since the latent branch solves a simpler semantic segmentation task, we
use it as additional supervision for the semantic branch on the unlabeled images.
After training, the latent branch is discarded and only the semantic branch is
used for inference.

We demonstrate that our model achieves state-of-the-art results on PASCAL
VOC 2012 [8] and Cityscapes [6]. Additionally, we show that the learned latent
classes are superior to manually defined supercategories.

2 Related Work

The expensive acquisition of pixel-wise annotated images has been recognized
as a major bottleneck for the training of deep semantic segmentation models.
Consequently, the community sought ways to reduce the amount of annotated
images while loosing as little performance as possible.

Weakly-supervised semantic segmentation methods learn to segment images
from cheaper image annotations, i.e. pixel-wise labels are exchanged for cheaper
annotations for all the images in the training set. The proposed types of annota-
tions include bounding boxes [16,23,31,41], scribbles [25,42,43] or human anno-
tated keypoints [2]. Image level class tags have attracted special attention. A
minority of works in this area first detect potential object regions and then iden-
tify the object class using the class tags [9,32,34]. The majority of approaches
use class activation maps (CAMs) [49] to initially locate the classes of interest.
Pinheiro et al. [33,40] pioneered in this area and several methods have improved
this approach [1,3,4,10,12,13,17,30,37,43–47]. A few works leverage additional
data available on the Internet. For example, [11,15,20] use videos. While the
works mentioned above mainly focus on refining the localization cues obtained
from the CAM, recently the task of improving the CAM itself received attention
[19,20,22].

Some of the works mentioned above consider a setup where some images
have pixel-wise annotations and the other images are weakly labeled. They
combine fully supervised learning with weakly supervised learning. Papandreou
et al. [31] proposed an expectation maximization based approach, modelling the
pixel-wise labels as hidden variables and the image labels or bounding boxes as
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the observed ones. Lee et al. [19] introduce a sophisticated dropout method to
obtain better class activation maps on unlabeled images. Earlier, Li et al. [22]
improved the CAMs by automatically erasing the most discriminative parts of an
object. Wei et al. [47] examine what improvement in CAMs can be achieved by
dilated convolutions. Different from previous approaches, Zilong et al. [13] do not
improve the CAM but focus on refining high confidence regions obtained from
the CAM by deep seeded region growing. The semi-supervised setting without
any additional weak supervision has been so far only addressed by [14,28].

Fig. 2. Overview of the proposed method. While the semantic branch infers pixel-wise
class labels, the latent branch learns latent classes and infers the learned latent classes.
The latent classes are learned only on the labeled images using the latent loss Llatent

that ensures that the latent classes are as consistent as possible with the semantic
classes. The semantic branch is trained on labeled images with the cross-entropy loss
Lce and on unlabeled images the predictions of the latent branch are used as supervision
(Lcons). Additionally, the semantic branch receives adversarial feedback (Ladv) from a
discriminator network distinguishing predicted and ground truth segmentations.

While learning an easier auxiliary task as an intermediate step has been inves-
tigated in the area of domain adaptation [7,18,24,39,48], it has not been stud-
ied for semi-supervised semantic segmentation. Moreover, using latent classes to
facilitate learning has been investigated for object detection [35,50], joint object
detection and pose estimation [21], and weakly-supervised video segmentation
[36]. However, apart from addressing a different task, these approaches focus on
discovering subcategories of classes while we aim to group the classes.
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3 Method

An overview of our method is given in Fig. 2. Our proposed model is a two-
branch network. While the semantic branch serves to solve the final task, the
purpose of the latent branch is to learn to group the semantic classes into latent
classes in a data driven way as fine-grained as possible. While the fraction of
annotated data is not sufficient to produce good results for the task of semantic
segmentation, it is enough to learn the prediction of latent classes reasonably
well, since this task is easier. Thus, the predictions of the latent branch can then
serve as a supervision signal for the semantic branch on unlabeled data.

3.1 Semantic Branch

The task of the semantic branch Sc is to solve the final task of semantic segmen-
tation, that is to predict the semantic classes for the input image. This branch
is trained both on labeled and unlabeled data.

On labeled data, we optimize the semantic branch with respect to two loss
terms. The first term is the cross-entropy loss:

Lce = −
∑

h,w,n

∑

c∈C

Y (h,w,c)
n log(Sc(Xn)(h,w,c)) (1)

where Xn ∈ R
H×W×3 is the image, Yn ∈ R

H×W×|C| is the one-hot encoded
ground truth for semantic classes, and Sc is the predicted probability of the
semantic classes. To enforce realism in the semantic predictions, we additionally
apply an adversarial loss:

Ladv = −
∑

n,h,w

log(D(Sc(Xn))(h,w)) (2)

Details of the discriminator network D are given in Sect. 3.4.
On unlabeled data, the loss function for the semantic branch also consists of

two terms. The first one is the adversarial term (2) and the second term is the
consistency loss that is described in Sect. 3.3.

3.2 Latent Branch

In order to provide additional supervision for the semantic branch on the unla-
beled data, we introduce a latent branch Sl that is trained only on the labeled
data. The purpose of the latent branch is to learn latent classes that are eas-
ier to distinguish than the semantic classes and that can be better learned on a
small set of labeled images. Figure 1 shows an example of latent classes where for
instance semantic similar classes like vehicles are grouped together. One of the
latent classes often corresponds to a stuff class that includes all difficult classes.
This is desirable since having several latent classes that are easy to recognize
and one latent class that contains the rest results in a simple segmentation task
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that can be learned from a small set of labeled images. However, we have to pre-
vent a trivial solution where a single latent class contains all semantic classes.
We therefore propose a loss that ensures that the latent classes l ∈ L have to
provide as much information about semantic classes c ∈ C as possible.

To this end, we use the conditional entropy as loss:

Llatent = −
∑

l∈L

∑

c∈C
Pb(c, l) log(Pb(c|l)). (3)

The loss is minimized if the variety of possible semantic classes for each latent
class l is as low as possible. In the best case, there is a one-to-one mapping
between the latent and semantic classes. The index b denotes that the probability
is calculated batchwise. We first estimate the joint probability

Pb(c, l) =
1

NHW

∑

h,w,n

Sl(Xn)(h,w,l)Y (h,w,c)
n (4)

where H and W are the image height and width, N is the number of images in the
batch, Sl is the predicted probability of the latent classes, and Yn ∈ R

H×W×|C| is
the one-hot encoded ground truth for the semantic classes. From this, we obtain

Pb(c|l) =
Pb(c, l)∑
c Pb(c, l)

. (5)

Obtaining the conditional entropy from multiple batches is in principle desirable,
but it requires the storage of feature maps from multiple batches. Therefore we
compute it per batch.

3.3 Consistency Loss

While the latent branch is trained only on the labeled data, the purpose of the
latent branch is to provide additional supervision for the semantic branch on
the unlabeled data. Given that the latent branch solves a simpler task than
the semantic branch, we can expect that the latent classes are more accurately
predicted than the semantic classes. We therefore propose a loss that measures
the consistency of the prediction of the semantic branch with the prediction of
the latent branch. Since the number of latent classes is less or equal than the
number of semantic classes, we map the prediction of the semantic branch Sc to
a probability distribution of latent classes Sl̂c

:

Sl̂c
(Xn)(h,w,l) =

∑

c∈C
P (l|c)Sc(Xn)(h,w,c). (6)

We estimate P (l|c) from the predictions of the latent branch on the labeled
data. We keep track of how often semantic and latent classes co-occur with an
exponentially moving average:

M
(i)
c,l = (1 − α)M (i−1)

c,l + α
∑

h,w,n

Y (h,w,c)
n Sl(Xn)(h,w,l) (7)
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where i denotes the number of the batch. The initialization is M0
c,l = 0. The

parameter 0 < α < 1 controls how fast we update the average. We set α to the
batch size divided by the number of images in the data set. Using the acquired
co-occurence matrix M , P (l|c) is estimated as:

P (l|c) =
Mc,l∑

k∈L Mc,k
. (8)

The consistency loss is then defined by the mean cross entropy between the
latent variable maps predicted by the latent branch Sl and the ones constructed
based on the prediction of the semantic branch Sl̂c

:

Lcons = − 1
NHW

∑

n,h,w

∑

l∈L
Sl(Xn)(h,w,l) log(Sl̂c

(Xn)(h,w,l)). (9)

The minimization of this loss forces the semantic branch to predict classes which
are assigned to highly probable latent classes.

3.4 Discriminator Network

Our discriminator network D is a fully-convolutional network [27] with 5 lay-
ers and Leaky-ReLu as nonlinearity. It takes label probability maps from the
segmentation network or ground-truth maps as input and predicts spatial con-
fidence maps. Each pixel represents the confidence of the discriminator about
whether the corresponding pixel in a semantic label map was sampled from the
ground-truth map or the segmentation prediction. We train the discriminator
network with the help of the spatial cross-entropy loss using both labeled and
unlabeled data:

LD = −
∑

h,w

(1 − yn) log(1 − D(Sc(Xn))h,w) + yn log(D(Yn)h,w) (10)

where yn = 0 if a sample is drawn from the segmentation network, and yn = 1
if it is a ground-truth map. By minimizing such a loss, the discriminator learns
to distinguish between the generated and ground-truth probability maps.

4 Experiments

4.1 Implementation Details

For a fair comparison with Hung et al. [14] and Mittal et al. [28], we choose
the same backbone architecture and keep the same hyper-parameters where
appropriate. For the segmentation network, we use a single scale ResNet-based
DeepLab-v2 [5] architecture that is pre-trained on ImageNet [38] and MSCOCO
[26]. We branch the proposed network at the last layer by applying Atrous Spa-
tial Pyramid Pooling (ASPP) [5] two times for the semantic and latent branch.
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Finally, we use bilinear upsampling to make the predictions match the initial
image size.

For the discriminator network, we use a fully convolutional network, which
contains 5 convolutional layers with kernels of the sizes 4 × 4 and 64, 128, 256,
512 and 1 channels, applied with a stride equal to 2. Each convolutional layer,
except for the last one, is followed by a Leaky-ReLU with the leakage coefficient
equal to 0.2.

Table 1. Comparison to the state-of-the-art on Pascal VOC 2012 using mIoU (%).

Method Fraction of annotated images

1/50 1/20 1/8 1/4 1/2 Full

Hung et al. [14] 55.6 64.6 69.5 72.1 73.8 74.9

Mittal et al. [28] 63.3 67.2 71.4 – – 75.6

Proposed 59.6 68.2 71.3 72.4 73.9 75.0

Proposed + Classifier 61.8 69.3 72.2 – – 75.3

We train the segmentation network on labeled and unlabeled data jointly
with L = Llabeled + 0.1 ·Lunlabeled where the weight factor is the same as in [14].
The loss for the labeled and unlabeled data are given by

Llabeled = Lce + Llatent + 0.01 · Ladv, (11)
Lunlabeled = Lcons + 0.01 · Ladv. (12)

The weight for the adversarial loss is also the same as in [14]. By default, we
limit the number of latent classes to 20. Additional details are provided as part
of the supplementary material.

We conducted our experiments on three datasets for semantic segmenta-
tion: Pascal VOC 2012 [8], Cityscapes [6] and IIT Affordances [29]. We report
the results for the IIT Affordances dataset [29] in the supplementary material.
The Pascal VOC 2012 dataset contains images with objects from 20 foreground
classes and one background class. There are 10528 training and 1449 validation
images in total. The testing of the resulting model is carried out on the validation
set. The Cityscapes dataset comprises images extracted from 50 driving videos.
It contains 2975, 500 and 1525 images in the training, validation and test set,
respectively, with annotated objects from 19 categories. We report the results
of testing the resulting model on the validation set. As an evaluation metric, we
use mean-intersection-over-union (mIoU).

4.2 Comparison with the State-of-the-Art

PASCAL VOC 2012. On the PASCAL VOC 2012 dataset, we conducted
our experiments on five fractions of annotated images, as shown in Table 1,
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where the rest of the images are used as unlabeled data. Since [14] report the
results only for the latest three fractions, we evaluate the performance of their
method for the unreported fractions based on the publicly available code. The
improvement is especially pronounced, if we look at the sparsely labeled data
fractions, such as 1/50, 1/20 and 1/8. Our method performs on par with [28]
and the leading method varies from data fraction to data fraction. However, our
approach of learning latent variables is complementary to [28] and we can also
add a classifier for refinement as in [28]. We show some qualitative results of our
method in the supplementary material.

Table 2. Comparison to the state-of-the-art on Cityscapes using mIoU (%).

Method Pre-training Fraction of annotated images

1/8 1/4 1/2 Full

Mittal et al. [28] 59.3 61.9 – 65.8

Proposed 61.0 63.1 – 64.9

Hung et al. [14] COCO 58.8 62.3 65.7 67.7

Proposed COCO 63.3 65.4 66.1 66.3

Table 3. Impact of the loss terms. The evaluation is performed on Pascal VOC 2012
where 1/8 of the data is labeled. Llabeled

adv denotes that the adversarial loss is only used
for the labeled images.

Loss mIoU (%)

Lce 64.1

Lce + Llatent 64.6

Lce + Llatent + Lcons 67.3

Lce + Llabeled
adv 68.7

Lce + Ladv 69.4

Lce + Llatent + Lcons + Ladv 71.3

Cityscapes. For the Cityscapes dataset, we follow the semi-supervised learning
protocol that was proposed in [14]. This means that 1/8, 1/4 or 1/2 of the train-
ing images are annotated and the other images are used without any annotations.
We report the results in Table 2. Since [28] does not pre-train the segmentation
network on COCO, we evaluated our method also without COCO pre-training.
We outperform both [14] and [28] on all annotated data fractions. We show some
qualitative results of our method in the supplementary material.
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4.3 Ablation Experiments

In our ablation experiments, we evaluate the impact of each loss term. Then we
examine the impact of the number of latent classes and show that they form
meaningful supercategories of the semantic classes. Finally, we show that the
learned latent classes outperform supercategories that are defined by humans.

Impact of the Loss Terms. For analyzing the impact of the loss terms Lce (1),
Ladv (2), Llatent (3), and Lcons (9), we use the Pascal VOC 2012 dataset where
1/8 of the data is labeled. The results for different combinations of loss terms
are reported in Table 3.

We start using only the entropy loss Lce since this loss is always required. In
this setting only the semantic branch is used and trained only on the labeled data.
This setting achieves 64.1% mIoU. Adding the latent loss Llatent improves the
performance by 0.5%. In this setting, the semantic and latent branch are used,
but they are both only trained on the labeled data. Adding the consistency loss
Lcons boosts the accuracy by 2.7%. This shows that the latent branch provides
additional supervision for the semantic branch on the unlabeled data.

So far, we did not use the adversarial loss Ladv. When we add the adversarial
loss only for the labeled data Llabeled

adv to the entropy loss Lce, the performance
grows by 4.6%. In this setting, only the labeled data is used for training. If we
use the adversarial loss also for the unlabeled data, the accuracy increases by
0.7%. This shows that the adversarial loss improves semi-supervised learning,
but the gain is not as high compared to additionally using the latent branch
to supervise the semantic branch on the unlabeled data. In this setting, all loss
terms are used and the accuracy increases further by 1.9%. Compared to the
entropy loss Lce, the proposed loss terms increase the accuracy by 7.2%.

Impact of Number of Latent Classes. For our approach, we need to specify
the maximum number of latent classes. While we used by default 20 in our
previous experiments, we now evaluate it for 2, 4, 6, 10, and 20 latent classes on
Pascal VOC 2012 with 1/8 of the data being labeled. The results are reported in
Table 4. The performance grows monotonically with the number of latent classes
reaching its peak for 20.

In the same table, we also report the number of effective latent classes. We
consider a latent class l to be effectively used at threshold t, if P (l|c) > t for at
least one semantic class c. We report this number for t = 0.1 and t = 0.9. The
number of effective latent classes differs only slightly for these two thresholds.
This shows that a latent class typically either constitutes a supercategory of at
least one semantic class or it is not used at all. We observe that until 10, all
latent classes are used. If we allow up to 20 latent classes, only 14 latent classes
are effectively used. In practice, we recommend to set the number of maximum
latent classes to the number of semantic classes. The approach will then select
as many latent classes as needed. Although we assume that the number of latent
classes is less or equal to the number of semantic classes, we also evaluated the
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approach for 50 latent classes. As expected, the accuracy drops but the approach
remains stable. The number of effectively used latent classes also remains at 14.
In practice, this setting should not be used since it violates the assumptions of
the approach and can lead to unexpected behavior in some cases.

To see if a semantic class is typically mapped to a single latent class, we
plot P (l|c) for inference on Pascal VOC 2012 as well as on Cityscapes and show
the results in Fig. 3(a) and Fig. 3(b), respectively. Indeed, the mapping from
semantic classes to latent classes is very sparse. Typically, for each semantic
class c, there is one dominant latent class l, i.e., P (l|c) > 0.9. If the number of
latent classes increases to 20, some of the latent classes are not used. On Pas-
cal VOC 2012, similar categories like cat and dog or cow, horse, and sheep are
grouped. Some groupings are based on the common background like aeroplane
and bird. The grouping bicycle, bottle, and dining table combines the most diffi-
cult classes of the dataset. However, we observed that there are small variations
of the groupings for different runs when the number of latent classes is very small.
On Cityscapes with 20 latent classes, the semantic classes pole, traffic light, and
traffic sign; person, rider, motorcycle, and bicycle; wall and fence; truck, bus,
and train are grouped together. These groupings are very intuitive.

Table 4. Impact of the number of latent classes. The evaluation is performed on Pascal
VOC 2012 where 1/8 of the data is labeled. A latent class l is considered effective, if
there exists a semantic class c so that P (l|c) > t. The third column shows this number
for t = 0.1 and the fourth for t = 0.9.

Max. latent classes mIoU (%) Effective latent classes

t = 0.1 t = 0.9

2 69.7 2 2

4 70.2 4 4

6 70.3 6 6

10 70.7 10 10

20 71.3 16 14

50 70.8 18 14

Comparison of Learned Latent Classes with Manually Defined Latent
Classes. Since the latent classes typically learn supercategories of the seman-
tic classes, the question arises if the same effect can be achieved with manually
defined supercategories. In this experiment, the latent classes are replaced with
10 manually defined supercategories. More details regarding these supercate-
gories are provided in the supplementary material. In this setting, the latent
branch is trained to predict these supercategories on the labeled data using the
cross-entropy loss. For unlabeled data, everything remains the same as for the
proposed method. We report the results in Table 5. The performance using the
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(a) P (l|c) on Pascal VOC 2012 for 10
and 20 latent classes

(b) P (l|c) on Cityscapes for 10 and 20
latent classes.

Fig. 3. The distribution of latent classes for both datasets is pretty sparse, essentially
the latent classes form supercategories of semantic classes that are similar in appear-
ance. The grouping bicycle, bottle, and dining table for 10 latent classes seems to be
unexpected, but due to the low number of latent classes the network is forced to group
additional semantic classes. In this case, the network tends to group the most difficult
classes of the dataset. In case of 20 latent classes, the merged classes are very intuitive,
but not all latent classes are effectively used.

Table 5. Comparison of learned latent classes with manually defined latent classes.
The evaluation is performed on Pascal VOC 2012 where 1/8 of the data is labeled.
In case of learned latent classes, the second column reports the maximum number of
latent classes. In case of manually defined latent classes, the exact number of classes is
reported.

Method Classes mIoU (%)

Manual 10 69.0

Learned 10 70.7

Semantic classes 21 68.5

Semantic classes (KL) 21 69.1

Learned 20 71.3

supercategories is only 69.0%, which is significantly below the proposed method
for 10 latent variables.

Another approach would be to learn all semantic classes instead of the latent
classes in the latent branch. In this case, both branches learn the same semantic
classes. This gives 68.5%, which is also worse than the learned latent classes.
If both branches predict the same semantic classes, we can also train them
symmetrically. Being more specific, on labeled data they are both trained with
the cross-entropy loss as well as the adversarial loss. On unlabeled data, we
apply the adversarial loss to both of them and use the symmetric Kullback–
Leibler divergence (KL) as a consistency loss. This approach performs better,
giving 69.1%, but it is still inferior to our proposed method. Overall, this shows
the necessity to learn the latent classes in a data-driven way.
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5 Conclusion

In this work, we addressed the task of semi-supervised semantic segmentation,
where a small fraction of the data set is labeled in a pixel-wise manner, while
most images do not have any types of labeling. Our key contribution is a two-
branch segmentation architecture, which uses latent classes learned in a data-
driven way on labeled data to supervise the semantic segmentation branch on
unlabeled data. We evaluated our approach on the Pascal VOC 2012 and the
Cityscapes dataset where the proposed method achieves state-of-the-art results.
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and Christoph Schnörr1,2
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Abstract. Sum-of-Squares polynomial normalizing flows have been pro-
posed recently, without taking into account the convexity property and
the geometry of the corresponding parameter space. We develop two gra-
dient flows based on the geometry of the parameter space of the cone of
SOS-polynomials. Few proof-of-concept experiments using non-Gaussian
target distributions validate the computational approach and illustrate
the expressiveness of SOS-polynomial normalizing flows.
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1 Introduction

Optimal transport has become a central topic for mathematical modelling
[19,24] and for computational approaches to data analysis and machine learning
[17]. Wasserstein distances based on various transportation cost functions and
their dual formulations, parametrized by deep networks, provide a framework
for generative data-driven modeling [6].

A current prominent line of research initiated by [20,21] concerns the repre-
sentation and estimation of so-called normalizing flows, in order to model a data
distribution ν in terms of an elementary reference measure μ, typically the stan-
dard Gaussian μ = N (0, In), as pushforward measure ν = T�μ with respect to a
transportation map (diffeomorphism) T . This framework supports a broad range
of tasks like density estimation, exploring a posteriori distributions, latent vari-
able models, variational inference, uncertainty quantification, etc. See [12,14,16]
for recent surveys.

A key requirement is the ability to evaluate efficiently both T and T−1 along
with the corresponding Jacobians. Based on classical work [11], triangular maps
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T and their relation to optimal transport, therefore, has become a focus of
research [4,8]. While the deviation from optimal transport, as defined by [7],
can be bounded by transportation inequalities [22], merely regarding triangular
maps T as diffeomorphisms (performing non-optimal transport) does not restrict
expressiveness [3]. Accordingly, triangular maps parametrized by deep networks
are nowadays widely applied.

Contribution, Organization. A basic property that ensures the invertibility of
T is monotonicity, which in connection with triangular maps can be achieved by
the coordinatewise integration of nonnegative functions. In a recent paper [10],
Sum-of-Squares (SOS) polynomials that are nonnegative by construction, were
used for this purpose, as part of the standard procedure for training deep net-
works. However, both the convexity properties and the geometry of the parame-
ter space of the cone of SOS polynomials [2,13] were completely ignored. In this
work, we take this geometry into account and devise computational approaches
to the construction of transportation maps T . Specifically, we contribute:

– We introduce basic notions in Sect. 2 and specify the parametrization of
triangular transportation maps using SOS polynomials in Sect. 3.

– Based on this parametrization, two algorithms for learning the parameters
from given data are developed in Sect. 4. Algorithm 1 directly exploits the
Riemannian geometry of the positive definite matrix cone. Algorithm 2 pulls
back the objective function to the tangent bundle and performs ordinary
gradient descent using a Krylov subspace method for approximating a related
matrix-valued entire function.

– We evaluate both algorithms and the expressiveness of SOS-polynomial flows
in Sect. 5 using few academical non-Gaussian distributions. To enable a clear
assessment, we do not use a deep network for additional parametrization.

Our findings regarding the first algorithm are quite positive which stimulates
further research on suitable extensions to large problem dimensions.

Notation. Let n ∈ N, then [n] denotes the set {1, 2, . . . , n}. We denote the vector
space of real multivariate polynomials in n variables of degree at most d ∈ N by
R[x]d = R[x1, . . . , xn]d. xα = xα1

1 · · · xαn
n ∈ R[x]d is a monomial corresponding to

α ∈ Nn
d = {α ∈ Nn : |α| =

∑
i∈[n] αi ≤ d}. The vectors

vd(x) = (xα) ∈ Rsn(d), α ∈ Nn
d , sn(d) =

(
n + d

d

)

, (1.1)

that comprise all monomials in n variables of degree not greater than d,
form a basis of R[x]d. The number n of variables is implicitly determined
by the number of arguments, and may vary. For example, if d = 2, then
v2(x) = (1, x1, . . . , xn, x2

1, x1x2, . . . , x
2
n)� with sn(2) = 1

2 (n + 1)(n + 2). We
set tn(d) = sn−1(d) = dim vd(x1, . . . , xn−1, 0). Sn, Sn

+ and Pn denote the spaces
of symmetric matrices, of symmetric and positive semidefinite matrices, and
of symmetric and positive definite matrices, respectively, of dimension n × n.
〈a, b〉 = a�b denotes the Euclidean inner product of a, b ∈ Rn.
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2 Preliminaries

2.1 Normalizing Flows

Let μ and ν denote the reference measure and the target measure supported on
Rn, respectively. Throughout this paper, we assume that μ = N (0, In) is the
standard multivariate Gaussian distribution and that ν is absolutely continuous
with respect to the Lebesgue measure such that

dμ(x) = p(x)dx, dν(y) = q(y)dy (2.1)

with density functions p, q. Our objective is to compute a smooth diffeomorphism
T : Rn → Rn such that ν = T�μ becomes the pushforward (or image) measure of
μ with respect to T , defined by

ν(V ) = μ
(
T−1(V )

)
, V ⊂ Rn, (2.2)

for all measurable subsets V . In terms of the densities (2.1), Eq. (2.1) reads

q(y) = p
(
T−1(y)

)
|det dT−1(y)|, (2.3a)

p(x) = q
(
T (x)

)
|det dT (x)|, y = T (x) (2.3b)

with the Jacobian matrices dT, dT−1. As detailed in Sects. 2.2 and 3, we consider
a subclass of diffeomorphisms

TA = {TA ∈ Diff(Rn) : A ∈ Pn,d}, (2.4)

whose elements are defined by (3.5b) and (3.6). Assuming samples

{yi}i∈[N ] ∼ ν (2.5)

from the target distribution to be given, the goal is to determine some TA ∈ TA
such that (2.2) approximately holds. To this end, following [14, Section 4], we
set SA = T−1

A and consider the KL divergence

KL
(
(SA)�q‖p

)
= KL

(
q‖(TA)�p

)
= Eq[− log p ◦ SA − log det dSA] + c, (2.6)

where the constant c collects terms not depending on SA. Replacing the expec-
tation by the empirical expectation defines the objective function

J : Pn,d → R, J(A) =
1
N

∑

i∈[N ]

(
− log p

(
SA(yi)

)
− log det dSA(yi)

)
. (2.7)

After detailing the class of maps (2.4) in Sects. 2.2 and 3, the Riemannian
gradient flow with respect to (2.7) will induce a normalizing flow of q to p
(Sect. 4).
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2.2 Triangular Increasing Maps

A mapping T : Rn → Rn is called triangular and increasing, respectively, if each
component function Tk only depends on variables xi with i ≤ k (property (2.8a))
and if each function (2.8b) is increasing in xk.

Tk(x) = Tk(x1, . . . , xk), ∀k ∈ [n] (2.8a)
xk �→ Tk(x1, . . . , xk), ∀k ∈ [n] (2.8b)

The existence of a triangular map T : C1 → C2 for any two open solid convex
subsets C1, C2 ⊂ Rn was shown by Knothe [11]. More generally, the existence of
a unique (up to μ-equivalence) triangular increasing map T that achieves (2.2),
for any given absolutely continuous probability measures μ, ν, was established
by [3, Lemma 2.1]. Property (2.8a) implies that the Jacobian matrices dT and
dT−1 are triangular, which is computationally convenient in connection with
(2.3) and (2.7).

3 SOS Polynomials and Triangular Increasing Maps

In this section, we adopt the approach from [10] using SOS polynomials for
the construction of increasing triangular maps. The key difference is that we will
exploit the geometry and convexity of the parameter space in Sect. 4 for deriving
normalizing flows.

Definition 1 (SOS polynomial) [13]. A polynomial p ∈ R[x]2d is a sum-of-
squares (SOS) polynomial if there exist q1, ..., qm ∈ R[x]d such that

p(x) =
∑

k∈[m]

q2k(x). (3.1)

We denote the subset of SOS polynomials by Σ[x]2d ⊂ R[x]2d.

The following basic proposition says that each SOS polynomial corresponds to
a parameter matrix A on the positive definite manifold.

Theorem 1 ([2, Thm. 3.39]). A polynomial p(x) =
∑

α∈Nn
2d

pαxα is SOS if and
only if there exists a matrix A such that

p(x) = 〈vd(x), Avd(x)〉, A ∈ Psn(d). (3.2)

Note that p(x) ≥ 0, ∀x ∈ Rn, by construction. Next, we use (2.8) and the
representation (3.2) in order to define a family (2.4) of increasing triangular
maps. Based on (3.2), define the sequence of SOS polynomials

p[k](x) := p[k](x1, . . . , xk) = 〈vd(x1, . . . , xk), A[k]vd(x1, . . . , xk)〉 (3.3a)
∈ Σ[x1, . . . , xk]2d, A[k] ∈ Psk(d), k ∈ [n] (3.3b)
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and the sequence of linear forms

〈c[k], vd(x1, . . . , xk−1, 0)〉, c[k] ∈ Rtn(d), k ∈ [n] (3.4)

that are parametrized by symmetric positive definite matrices A[k] and vectors
c[k], respectively. We collectively denote these parameters by

A := {c[1], . . . , c[n], A[1], . . . , A[n]} ∈ Pn,d (3.5a)

Pn,d := Rt1(d) × · · · × Rtn(d) × Ps1(d) × · · · × Psn(d). (3.5b)

Then the map

TA ∈ Diff(Rn), x �→ TA(x) =
(
T[1](x1), . . . , T[n](x1, . . . , xn)

)� (3.6a)
T[k](x1, . . . , xk) = 〈c[k], vd(x1, . . . , xk−1, 0)〉 (3.6b)

+
∫ xk

0

p[k](x1, . . . , xk−1, τ) dτ (3.6c)

is triangular and increasing due to the nonnegativity of the SOS polynomials
p[k].

The inverse maps SA = T−1
A have a similar structure and could be

parametrized in the same way. The objective function (2.7) therefore is well
defined.

4 Riemannian Normalizing Flows

In this section, we will develop two different gradient descent flows with respect to
the objective function (2.7) that take into account the geometry of the parameter
space Pn,d (3.5b). Either flow is supposed to transport the target measure ν
that is only given through samples (2.5), to the reference measure μ. This will
be numerically evaluated in Sect. 5.

Section 4.1 works out details of the Riemannian gradient flow leading to
Algorithm 1. Section 4.2 develops a closely related flow using different numerical
techniques, leading to Algorithm 2. In what follows, the tangent space to (3.5b)
at A is given and denoted by

Sn,d = TAPn,d = Rt1(d) × · · · × Rtn(d) × Ss1(d) × · · · × Ssn(d). (4.1)

4.1 Riemannian Gradient

Consider the open cone of positive definite symmetric n × n matrices Pn. This
becomes a Riemannian manifold [1] with the metric

gA(U, V ) = tr(A−1UA−1V ), U, V ∈ TAPn = Sn. (4.2)

The Riemannian gradient of a smooth function J : Pn → R reads

grad J(A) = A (∂AJ(A)) A, (4.3)
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where ∂J(A) denotes the Euclidean gradient. The exponential map is globally
defined and has the form

expA(U) = A
1
2 expm(A− 1

2 UA− 1
2 )A

1
2 , A ∈ Pn, U ∈ Sn, (4.4)

with the matrix exponential function expm(B) = eB , B ∈ Rn×n. Discretizing
the flow using the geometric explicit Euler scheme with step size h and iteration
counter t ∈ N yields

At+1 = expAt

(
− h grad J(At)

)
(4.5a)

= A
1
2
t expm

(
− hA

1
2
t ∂AJ(At)A

1
2
t

)
A

1
2
t , t ∈ N, A0 ∈ Pn. (4.5b)

Applying this discretization to the respective components of (3.5) yields the
following natural gradient flow for the objective function (2.7):

Algorithm 1: Riemannian SOS Flow
Initialization
Choose A0 ∈ Pn,d such that T[1] ≈ id.
while not converged do

(A[k])t+1 =

(A[k])
1
2
t expm

(
− h(A[k])

1
2
t ∂A[k]J(At)(A[k])

1
2
t

)
(A[k])

1
2
t , ∀k ∈ [n],

(c[k])t+1 = (c[k])t − h ∂c[k]J(At), ∀k ∈ [n].

4.2 Exponential Parameterization

Consider again first the case of a smooth objective function J : Pn → R. We
exploit the fact that the exponential map (4.4) is globally defined on the entire
tangent space Sn of (Pn, g), which does not generally hold for Riemannian man-
ifolds. Using

expI(U) = expm(U), U ∈ Sn, (4.6)

we pull back J to the vector space Sn,

J̃ : Sn → R, J̃(U) = J ◦ expm(U), (4.7)

and perform ordinary gradient descent:

Ut+1 = Ut − h∂J̃(Ut), t ∈ N, U0 ∈ Sn. (4.8)

Denote the canonical inner product on Sn by 〈U, V 〉 = tr(UV ). Then the gradient
of J̃(U) is given by the equation

d
dτ

J̃(U + τV )
∣
∣
τ=0

= 〈∂J̃(U), V 〉 = dAJ ◦ dU expm(V ), ∀V ∈ Sn, (4.9)

where A = expm(U).
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It remains to evaluate the differential of the matrix exponential on the right-
hand side of (4.9). Using the vectorization operator vec(.), that turns matrices
into vectors by stacking the column vectors, and we have the identity

vec(CXB�) = (B ⊗ C) vec(X). (4.10)

Thus, by [9, Thm. 10.13], we conclude

vec
(
dU expm(V )

)
= K(U) vec(V ) (4.11a)

K(U) = (I ⊗ eU )ψ
(
U ⊕ (−U)

)
, (4.11b)

where ⊗ denotes the Kronecker matrix product [23], ⊕ denotes the Kronecker
sum

A ⊕ B = A ⊗ In + In ⊗ B, (4.12)

and ψ denotes the matrix-valued function given by the entire function

ψ =
ex − 1

x
(4.13)

with matrix argument x. Applying vec(·) to the left-hand side of (4.9) and
substituting (4.11) in the right-hand side gives

〈
vec(∂J̃(U)), vec(V )

〉
=

〈
vec(∂J(A)),K(U) vec(V )

〉
, ∀V ∈ Sn. (4.14)

Hence, taking into account the symmetry of K(U),

∂J̃(U) = vec−1
(
K(U) vec(∂J(A))

)
. (4.15)

As a result, (4.8) becomes

Ut+1 = Ut − h vec−1
(
K(U) vec

(
∂J(At)

))
, At = expm(Ut), U0 ∈ Sn.

(4.16)

In order to evaluate iteratively this equation, the matrix K(U) given by (4.11b)
is never computed. Rather, based on [18], the product K(U) vec

(
∂J(At) is com-

puted by approximating the product ψ
(
U ⊕ (−U)

)
∂J(At) as follows. Using the

shorthands
C = U ⊕ (−U), b = ∂J(At) (4.17)

one computes the Krylov subspace

Km(C, q1) = span{q1, Cq1, . . . , C
m−1q1}, q1 =

b

‖b‖ (4.18)

using the basic Arnoldi iteration with initial vector q1, along with a orthonormal
basis Vm = (q1, . . . , qm) of Km(C, q1). This yields the approximation

ψ
(
U ⊕ (−U)

)
∂J(At) ≈ ψ(C)b ≈ ‖b‖Vmψ(Hm)e1, Hm = V �

m CVm, (4.19)
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where e1 = (1, 0, . . . , 0)� denotes the first canonical unit vector. The right-hand
side of (4.19) only involves the evaluation of ψ for the much smaller matrix Hm,
which can be savely done by computing

ψ(Hm)e1 =
(
Im 0

)
expm

(
Hm e1
0 0

)

em+1 (4.20)

and using any available routine [15] for the matrix exponential. Putting together,
the iteration (4.8) is numerically carried out by computing

Ut+1 = Ut − h vec−1
(
‖∂J(At)‖

(
I ⊗ expm(Ut)

)
Vmψ(Hm)e1

)
(4.21a)

At = expm(Ut), t ∈ N, U0 ∈ Sn. (4.21b)

In view of (4.6), we replace the overall parametrization (3.5a) by

U := {c[1], . . . , c[n], U[1], . . . , U[n]} ∈ Sn,d (4.22a)

Sn,d := Rt1(d) × · · · × Rtn(d) × Ss1(d) × Ssn(d). (4.22b)

Consequently, analogous to (4.7), we denote the pulled back objective function
(2.7) by J̃(U). Applying the procedure worked out above to each positive definite
component of the overall parametrization (4.22) results in Algorithm 2.

Algorithm 2: Exponential SOS Flow
Initialization
Choose A0 ∈ Pn,d such that T[1] ≈ id.
U[k] = logm(A[k]), ∀k ∈ [n].
while not converged do

(A[k])t = expm
(
(U[k])t

)

(U[k])t+1 = (U[k])t − h vec−1
(
K

(
(U[k])t

)
vec

(
∂A[k]J(At)

))

(c[k])t+1 = (c[k])t − h ∂c[k]J(At), ∀k ∈ [n].

Remark 1 (polymomial basis). The framework outlined above does not depend
on the specific choice of a monomial basis (1.1). For example, replacing vd(x) by

Qvd(x), Q ∈ GL
(
sn(d);R

)
(4.23)

for some linear regular transformation Q, provides a viable alternative. For
instance, a polynomial basis that is orthogonal with respect to a weighted L2

inner product makes sense, especially if prior information about the support
supp ν of the target measure is available.

4.3 Application: Sampling from the Target Measure

In this section, we consider the objective function (2.7) for the specific case
μ = N (0, In) and the task to generate samples y = TA(x) ∼ ν from the estimated
target measure, using samples x ∼ μ that are simple to compute.
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Taking into account the specific form of μ and the triangular structure of
SA, the objective function (2.7) simplifies to

J(A) =
1
N

∑

i∈[N ]

∑

k∈[n]

(1
2
(
S[k](yi,1, . . . , yi,k)

)2−log ∂kS[k](yi,1, . . . , yi,k)
)
. (4.24)

Both Algorithm 1 and 2 can be used to minimizer (4.24) numerically. The
evaluation of the map TA = S−1

A makes use of the triangular structure of in
order to solve the equations

SA(y) =

⎡

⎢
⎢
⎢
⎣

S[1](y1)
S[2](y1, y2)
...
S[n](y1, ..., yn)

⎤

⎥
⎥
⎥
⎦

= x. (4.25)

for y = TA(x) by computing recursively

yk =
(
S[k](y1, ..., yk−1, .)

)−1 (xk), k ∈ [n]. (4.26)

Each step involves few iterations of the one-dimensional Newton method that
converges to the unique solution, thanks to the monotonicity of the triangular
maps that holds by construction – cf. (3.6).

5 Numerical Experiments

In this section, we report numerical results as proof of concept and discuss the
following two aspects:

– Expressiveness of polynomial SOS maps for measure transport and generative
modeling (Sects. 5.2 and 5.3);

– performance and comparison of the two geometric flows approximated by
Algorithms 1 and 2 (Sect. 5.4).

We point out that unlike the paper [10], no deep network was used for additional
parametrization which would obscure the influence of the SOS-polynomial maps.

5.1 Implementation Details

We used the three two-dimensional densities open-ring, closed-ring and mixture
of two Gaussians for this purpose (Fig. 1), that play the role of the data measure
ν. A sample set yi ∼ ν, i ∈ [N ], with N = 2.000, was generated as input data.

Next, either algorithm was applied in order to estimate numerically the SOS-
parameters A given by (3.5a), by minimizing the objective function (4.24). We
used SOS-polynomials of degrees 2d ∈ {2, 4, 6} for parametrizing the maps
TA(x). Taking into account the symmetry of the matrices the corresponding
numbers of variables to be determined are 12, 31, 70. Finally, samples xi ∼ μ
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Fig. 1. Three non-Gaussian distributions used to evaluate Riemannian SOS-polynomial
normalizing flows. From (left to right): open ring, closed ring and mixture of two Gaus-
sians distributions.

were generated and the map TA = S−1
A was computed (Sect. 4.3) in order to

generate samples yi = TA(xi). Corresponding kernel density estimates can then
be compared to the plots depicted by Fig. 1.

Both Algorithms 1 and 2 were modified in a stochastic gradient descent like
manner: Every update was performed using the gradient with respect to a single
random index i ∈ [N ] of the objective (4.24), such that each index i was visited
after N updates. Thus, even though the considered problem sizes are small,
we modified both geometric gradient descent algorithms such that they remain
efficient for larger problem sizes [5].

5.2 Riemannian SOS-Polynomial Normalizing Flows

Figure 2 displays recovered densities using the procedure described in Sect. 5.1.
See also the figure caption. The low-degree SOS polynomials used to parametrize
and estimate the transportation maps TA suffice to generate samples yi = T (xi)
by pushing forward samples xi ∼ N (0, In) such that sample yi follow the ground-
truth densities ν depicted by Fig. 1 quite accurately.

We also checked the influence of changing the polynomial basis according
to Remark 1 (page 8). Specifically, Hermite polynomials that are orthogonal
with respect to a weighted L2 inner product were used instead of the canonical
monomial basis. Figure 4 illustrates that this did not affect the process in a
noticeable way. Neither did the result for the Gaussian mixture density show
any noticeable effect.

5.3 Exponential SOS-Polynomial Normalizing Flows

We repeated all experiments reported in Sect. 5.2 using Algorithm 2, instead
of Algorithm 1, that is based on the parametrization detailed in Sect. 4.2. The
results are shown by Fig. 3.

We generally observed fairly good density approximations even for low-degree
polynomial parametrizations, that do not achieve the accuracy of the results
obtained using the Riemannian flows, however (cf. Fig. 2). In particular, we
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Fig. 2. Riemannian SOS-Polynomial Normalizing Flows. Kernel density estimate plots
based on N = 2000 samples yi = TA(xi) = S−1

A (xi) generated by the transportation
maps TA corresponding to the densities shown by Fig. 1 and samples xi ∼ N (0, In).
The columns correspond from (left to right) to the degrees 2d ∈ {2, 6} of the SOS-
polynomials that were used to compute the increasing triangular maps TA. Except for
the mixture of two Gaussians density, low-degree SOS-polynomals suffice to recover
the densities quite accurately.

Fig. 3. Exponential SOS-Polynomial Normalizing Flows. Results of the experiments
obtained using Algorithm 2 using the same data as for the experiments illustrated by
Fig. 2. In comparison to the former results, the approximation accuracy deteriorated
slightly. In addition, choosing larger polynomial degrees may not improve the result.
We attribute this finding to the fact that Algorithm 2 is based on approximating the
geometry of the parameter space in various ways (see text).
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Fig. 4. Riemannian SOS-Polynomial Normalizing Flows using Hermite polynomials,
rather than the canonical monomial basis, and using the same data as for the experi-
ments illustrated by Fig. 2.

observed that increasing the polynomial degree did not systematically improve
the approximation.

We attribute this negative finding to two facts: Firstly, Algorithm 2 does not
exactly respect the geometry of the parameter space Pn,d (3.5b). Secondly, the
Krylov subspace approximation underlying the updates (4.21) may also affect
the approximation accuracy. We leave a more detailed analysis for future work.

5.4 Comparison Between Riemannian and Exponential SOS Flow

Comparing the results discussed in Sects. 5.2 and 5.3 suggests that Riemannian
SOS-polynomial normalizing flows should be preferred.

A striking difference concerns the dependency on the polynomial degree.
While the Riemannian SOS flow generally yield improved density approxima-
tions when the degree is increased, this is hardly the case when using the expo-
nential parametrization. Possible reasons were discussed in the preceding section.

In both cases, however, even small polynomial degrees enable to represent
densities by transportation maps quite accurately.

6 Conclusion

We studied transportation maps for generative modeling using Sum-of-
Squares polynomials for the construction of increasing triangular maps. Two
parametrizations were studied along with two numerical algorithms for estimat-
ing the parameters by minimizing a sample-based objective function. Experi-
ments show that low-degree polynomials suffice to recover basic non-Gaussian
distributions quite accurately. Riemannian SOS-polynomial flows that fully
respect the geometry of the parameter space perform best, whereas approxi-
mations of the geometry may cause detrimental effects. We merely regard the
reported preliminary experimental results as proof of concept, conducted with
low-degree parametrizations and small dimension of the underlying domain. Our
future work will be devoted to geometric methods for taming the complexity of
large degree parametrizations and the representation of high-dimensional gener-
ative models.
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Abstract. We investigate a deep transfer learning methodology to per-
form water segmentation and water level prediction on river camera
images. Starting from pre-trained segmentation networks that provided
state-of-the-art results on general purpose semantic image segmentation
datasets ADE20k and COCO-stuff, we show that we can apply transfer
learning methods for semantic water segmentation. Our transfer learn-
ing approach improves the current segmentation results of two water
segmentation datasets available in the literature. We also investigate the
usage of the water segmentation networks in combination with on-site
ground surveys to automate the process of water level estimation on river
camera images. Our methodology has the potential to impact the study
and modelling of flood-related events.

1 Introduction

In recent years, the price and accessibility of surveillance cameras has greatly
improved. Notably, this progress has allowed many organizations, private and
public, to install surveillance cameras along rivers and other water bodies. The
availability of these cameras allows the interested parties to monitor the condi-
tions of the river as well as its surroundings for purposes such as boating, fishing,
flood monitoring, etc. [14,27].

For the flood-risk management sector, the use of such cameras brings an
unparalleled opportunity for the study and modelling of flood-related events.
Indeed, as of now, to measure the water level of rivers, it is necessary to rely
on water gauges [25]. Gauges are expensive to install and maintain, and their
measurements can be unreliable when the river goes out-of-bank during a flood.
Satellite data from Synthetic Aperture Radar (SAR) can provide information
when the river goes out-of-bank, but the frequency of satellite overpasses is
limited (currently at most once in each 12 h period) [5,17].

River cameras offer a new possibility: by using the measurements of the
heights of particular landmarks or objects in the field of view of the camera, or
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https://doi.org/10.1007/978-3-030-71278-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71278-5_17&domain=pdf
http://orcid.org/0000-0002-0693-8011
http://orcid.org/0000-0003-1690-3338
http://orcid.org/0000-0002-9256-1192
https://doi.org/10.1007/978-3-030-71278-5_17


Automated Water Segmentation Using Transfer Learning 233

by matching the camera image with light detection and ranging (LIDAR) digital
surface model data [10], it becomes possible to directly estimate the water level
from a camera. Such an example is given in Fig. 1. This approach is much more
flexible in matter of river surveillance location choices as well as budget.

Fig. 1. Sequence of river camera images with annotated landmark heights L1 (10 m),
L2 (11 m) and L3 (12 m). At T1, water (segmented in blue) water has not reached any
of the landmarks: the water level is below 10 m. At T2, L1 is reached by water, but not
L2 or L3: the water level is between 10 and 11 m. At T3, water has reached L2 but not
L3: water level is between 11 and 12 m. At T4, water has reached all the landmarks:
water level is above 12 m. (Color figure online)

When considering this approach, the water level measurements must be cal-
culated through a complex workflow: an operator (algorithm or human) has to
segment the image to find which areas/landmarks are flooded. Once the operator
knows which landmarks were flooded or not, it is possible to estimate the water
level: the lower bound will be the height of the highest flooded landmark, and the
upper bound will be the height of the lowest not flooded landmark. However, if a
human operator is considered, this process makes the water level measurement,
time consuming, and possibly an unusable approach since the number of images
to study (locations, extent in time, framerate) are typically large.

Our goal is to automate the process of river water segmentation by apply-
ing transfer learning (TL) on deep convolutional neural networks, and assess its
potential for flood modelling. Specifically, for the datasets at our disposal, we
study the relevance of using TL approaches in order to perform water segmenta-
tion and possibly use this segmentation to estimate the river levels as accurately
as possible. Our paper brings three novel contributions:

1. We develop water segmentation algorithms by using TL, and demonstrate
that it outperforms the current methods presented in the literature.

2. We provide an insightful comparison of several TL approaches for water seg-
mentation.

3. We show that it is possible to use our semantic segmentation method in
combination with ground survey measurements to estimate water levels for a
variety of locations.

In Sect. 2, we discuss the current related methods that are used to address the
problem of water segmentation on river camera images. In Sect. 3, we motivate
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and explain the approach we used to tackle the problem of water segmentation.
In Sect. 4, we show the results of our TL approach. We compare our method
with the current state-of-the-art methods and show that we are able to improve
the water segmentation performance. In Sect. 5, we analyze the efficiency of
water segmentation networks to estimate the river levels. We make our final
observations and conclusions in Sect. 6.

2 Related Work

There have been many successful applications of deep learning to images from
surveillance cameras. Some examples include deep learning for crowd counting
[22,30], abnormal behavior detection [8], pedestrian detection [26] or even park-
ing occupancy detection [1]. Until now however, most attempts that have tried
to tackle the problem of water detection in the context of floods have been real-
ized using hand-crafted features [9]. However, those algorithms remain sensitive
to luminosity and water reflection problems [9].

A deep learning approach was applied to flood detection in [16]. The authors
perform water detection on a home-made, accessible, dataset of 300 water images
that were gathered from the web and annotated manually. The performance of
three semantic segmentation networks (FCN-8 [15], Tiramisu [12] and Pix2Pix
[11]) are evaluated. By training the networks from scratch, Tiramisu produces
the best results, with 90.47% pixel accuracy. It is not clear however if the results
are transferable to water level estimation for real cases.

In another work, water detection is performed in the context of autonomous
driving for low-cost boats [23]. In this work, a deep learning architecture using
a fully convolutional network based on U-Net [20] to perform the water seg-
mentation is proposed. A pixel accuracy of 97.45% is obtained. However, the
evaluation protocol used images from the same video streams (therefore very
similar images) both for training and test sets, which suggests that the reported
results might be overestimated.

In [28], a deep semantic segmentation network is trained from scratch for
water segmentation and river level estimation. The biggest originality of this
paper lies in their development of the SOFI index (the percentage of segmented
water pixels in the image) to evaluate the quality of their results.

A water level estimation model based on voluntary geographic information
(VGI), LIDAR data and river camera images is developed in [13]. Notably, ran-
dom forests are used to develop a waterline detection algorithm [2].

3 Transfer Learning for Water Segmentation

In Sect. 2, we saw that little research has focused on water segmentation, espe-
cially in the context of flooding. Indeed, there are only a few specific water
segmentation datasets.



Automated Water Segmentation Using Transfer Learning 235

However, semantic segmentation of natural images is an area that has been
extensively studied over the past years. State-of-the-art algorithms for multi-
purpose semantic segmentation are based on the use of Fully Convolutional
Networks (FCNs) [15].

The most well-known datasets used for the comparison of semantic segmenta-
tion algorithms are COCO-stuff [3] and ADE20k [31]. These two datasets contain
large sets of images semantically annotated with 182 types of labels for COCO-
stuff and 150 for ADE20k. As we show in Table 1, some label types of these two
datasets correspond to water bodies. These two datasets, among others [6,7],
are widely used for evaluating semantic segmentation algorithms.

Table 1. Water body related images in ADE20k and COCO-stuff datasets.

ADE20k dataset COCO-stuff dataset

Training Test Training Test

Water 709 75 River 2113 90

Sea 651 57 Sea 6598 292

River 320 26 Water-other 2453 79

Waterfall 80 9

Given these observations, we decided to tackle the problem of water segmen-
tation using transfer learning (TL).

For a supervised learning problem, the aim is to find a function f : X → Y
from a dataset of N input-output pairs B = {(xi, yi)Ni=1 : xi ∈ X, yi ∈ Y } such
that the function f should be able to predict the output of a new (possibly
unseen) input, as accurately as possible. The set X is called the input space,
and Y the output space.

With TL, the aim is also to build a function ft for a target problem with
input space Xt, output space Yt and possibly a dataset Bt. However, TL tries
to build ft by transferring knowledge from a source problem s with input space
Xs, output space Ys and a dataset Bs.

Inductive TL [18] is the branch of TL related to problems where we have
datasets of input-output pairs in both source and target domains, and where
Xs = Xt and Ys �= Yt. Typically, inductive TL is used to repurpose well known,
efficient machine learning models trained on large datasets to related problems
with smaller training datasets [19,21].

In our case, we want to use inductive TL where the source problem s will
be the segmentation of ADE20K or COCO-stuff images, and the target problem
t will be the binary water segmentation of river camera images. We think the
problems of segmenting the ADE20K and COCO-stuff datasets are especially
relevant in our context given the fact that they contain labels of water bodies,
which makes source and target output domains fairly similar.

In the scope of this study, we chose to focus on three TL approaches. With
the first TL approach, we use the pre-trained network as such, taking advantadge
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of the water body labels to directly create binary semantic segmentation masks.
With the second approach, we consider model transfer approaches, where we fine-
tune semantic segmentation networks pre-trained on either ADE20K or COCO-
stuff on water segmentation datasets. We also test a third TL approach related
to sample selection, where we fine-tune the pre-trained network on the subset of
ADE20k and COCO-stuff images containing water bodies. While other inductive
TL approaches exist and could possibly outperform our current results, we found
that our methods are computationally efficient, which will be critical for potential
future applications in near-real-time water level estimation.

4 Water Segmentation Experiments

In this section, we discuss the water segmentation experiments that were per-
formed on water segmentation datasets available in the literature. We also com-
pare our results to state-of-the-art water detection results.

4.1 Protocol

Pre-trained Networks. The purpose of our experiments is to evaluate the
relevance of applying TL for water segmentation. As we explained in Sect. 3, we
chose to consider two datasets for pre-training: ADE20k and COCO-stuff. We
chose these datasets as they contain water-labelled images. For each of these two
datasets, we study one of its best performing semantic segmentation networks.

For ADE20k, the network we considered is an FCN with a ResNet50 encoder
and an UperNet decoder [31]. UperNet [29] is a model that is based on Pyramid
Pooling in order to avoid the use of deconvolution layers. During training, the
images are rescaled at 5 different sizes: the shorter edge of the image is rescaled to
either 300, 375, 450, 525 or 600 pixels, and the bigger edge is rescaled according
to the image aspect ratio. We re-used the original implementation as well as the
available pre-trained network weights.

For COCO-stuff, we chose the state-of-the-art network referenced by the
authors of the dataset, DeepLab (v2). It has a ResNet101 encoder, and an atrous
spatial pyramid pooling decoder able to robustly segment objects at multiple
scales [4]. We used a pytorch implementation of the model with available pre-
trained COCO-stuff weights1.

First TL Approach: Pre-trained Network Use. With this method, we use the
pre-trained weights of the networks: we do not tune any layer of the network.
We apply the pre-trained networks on our images, and aggregate the predictions
of water body labels (lake, river, sea, water, and other similar water related
labels) as the output water segmentation. Given that the networks were trained
with images of water bodies, this first, simple approach should provide a baseline
result for the evaluation of our other approaches. We refer to this approach as
Pre-Trained.
1 https://github.com/kazuto1011/deeplab-pytorch.

https://github.com/kazuto1011/deeplab-pytorch
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Second TL Approach: Networks Fine-Tuning. As the output of ADE20k seman-
tic segmentation networks is not binary, the last output layers of the semantic
segmentation networks could not be directly reused in our binary semantic seg-
mentation problem. This is why we considered three fine-tuning methodologies:

– HEAD. With this approach, we only retrain the last output layers of the
network. The rationale is that the network has already learned all the neces-
sary filters to perform water segmentation, and it requires only to learn how
to perform the binary segmentation.

– WHOLE. We fine-tune the entire network, with a random initialization of
the last binary output layers.

– 2STEPS. We first retrain the last layer of the network with all the other
layers kept as is. Once the last layer is retrained, we fine-tune the entire
network. This approach can be considered as retraining the entire network
after having applied the HEAD approach.

Third TL Approach: Sample Selection. As we show in Table 1, the two datasets
on which our networks were pre-trained contain images with water related labels.
We thus consider a sample selection approach algorithm in order to perform TL:
we extract all the images containing water labels from the ADE20k and COCO-
stuff dataset, and fine-tune the two pre-trained networks on this new dataset
with binary masks. In our experiments, we will refer to this approach as Sample
Selection. We then fine-tuned the network using the WHOLE approach. HEAD
and 2STEPS were also tested during our experiments, but for clarity purposes,
we chose to only present the results using the approach providing the best results.

Relevance of Using TL. In order to understand the relative performance of these
TL approaches, we also considered what results could be obtained with the same
networks trained from scratch (only using the training images of the dataset). We
will refer to this approach as Scratch. For the same purpose, we also compared
our TL approach with the water semantic segmentation results obtained in the
literature [16,23].

Training. We trained the networks using the parameters recommended by the
authors [4,31]. For the fine-tuning and scratch approaches, we increased the
number of epochs to 300 in order to ensure full convergence for all the networks.
For the approaches WHOLE and 2STEPS, we used an initial learning rate value
10 times smaller than its recommended value (0.001) in order to start with less
aggressive updates.

4.2 Datasets

Our experiments are performed on two datasets used for water segmentation
in the literature, and which we use for evaluating the performance of our TL
methodology.
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– INTCATCH, an available dataset of RGB images annotated with binary
semantic segmentation water/not-water masks [23]. The images come from
a camera positioned on a boat. It was designed for waterline detection for
driving autonomous boats. The dataset consists of 144 training images and
39 test images. We noticed that the images in training and test come from
two video streams with relatively high frame-rates, which makes training and
test datasets look similar.

– LAGO (named after the main author [16]), an accessible dataset of RGB
images with binary semantic segmentation of water/not-water labelled pixels.
The dataset was created through manual collection of camera images having
a field-of-view capturing riverbanks. This dataset was used for river segmen-
tation [16]. The dataset is made of 300 images, with 225 used in training, and
75 in test.

Sample images of the datasets are shown in Fig. 2.

Fig. 2. Sample images from the datasets used for the water segmentation experiments.

4.3 Performance Criteria

Let I ∈ [0, 255]H×W×3 be a typical 8-bit RGB, image of height H and width
W . Let S ∈ [0, 1]H×W be its corresponding, ground-truth, pixel-wise, semantic
segmentation mask, and Ŝ ∈ [0, 1]H×W be the estimation (prediction) of this
segmentation made by our semantic segmentation algorithm. The two perfor-
mance criteria used for the evaluation of semantic segmentation methods are
defined as follows:

Pixel Accuracy (Acc). In (1), we define the pixel accuracy as the percentage of
pixels correctly estimated by our algorithm.

Acc =

∑H
y=1

∑W
x=1 1 − |(S(y, x) − Ŝ(y, x))|

H × W
(1)
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Mean Intersection over Union (MIoU). The Intersection over Union (IoU ) rep-
resents the percentage of overlap between the ground truth and its estimation.
The MIoU criteria defined in (2) is the average of the IoU over all the pixel
labels. In our case, the pixel label types are water and background (not-water).
Thus, we need to consider the binary case:

MIoU =
1
2

H∑

y=1

W∑

x=1

S(y, x)Ŝ(y, x)
S(y, x) + Ŝ(y, x) − S(y, x)Ŝ(y, x)

+
1
2

H∑

y=1

W∑

x=1

(1 − S(y, x))(1 − Ŝ(y, x))
(1 − S(y, x)) + (1 − Ŝ(y, x)) − (1 − S(y, x))(1 − Ŝ(y, x))

(2)

The advantage of using MIoU over Acc is that it is less sensitive to class
imbalance within the image. However, one of the works we are comparing with
provide their results for Acc only. For the sake of transparency, we provide our
results using both criteria.

4.4 Results and Analysis

The results of the water segmentation approaches are presented in Table 2.

Table 2. Results of the water segmentation approaches on LAGO and INTCATCH
test datasets.

LAGO INTCATCH

MIoU Acc MIoU Acc

Gonzalez et al. [16] 81.91 90.2 – –

Steccanella et al. [23] – – – 97.5

ResNet50-UperNet Pre-trained 90.2 95.4 97.4 98.7

Pre-trained on ADE20k Fine-tuning HEAD 89.06 94.37 98.06 99.03

WHOLE 93.32 96.50 98.94 99.47

2STEPS 93.09 96.44 99 99.5

Sample Selection 92.2 96.95 98.95 99.48

Scratch 83.41 91.74 96.09 98.02

DeepLab Pre-trained 90.34 95.52 97.70 98.85

Pre-trained on COCO-stuff Fine-tuning HEAD 92.19 96.04 99.07 99.54

WHOLE 93.74 96.76 99.19 99.59

2STEPS 93.72 96.75 99.16 99.56

Sample Selection 91.69 96.31 98.59 99.3

Scratch 80.70 89.95 98.73 99.36

As explained in Sect. 4.2, we noticed that the images contained in the INT-
CATCH training and test sets are largely similar to each other as they are frames
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randomly sampled from the same two videos. This is how we explain the excellent
performance of the different networks tested on these images.

On both LAGO and INTCATCH datasets, we can observe that, for both net-
works, the pre-trained networks, and TL approaches provide better results than
the methods presented in the literature [16,23]. We can also see that the networks
retrained from scratch obtain results similar to the ones of the state-of-the-art
on the respective datasets. This shows that the use of semantic segmentation
networks that are first trained on large multi-purpose datasets can improve the
performance. Indeed, even without any kind of fine-tuning, the pre-trained net-
works already outperform the state-of-the-art.

For the three datasets and both networks, fine-tuning the entire networks
(WHOLE and 2STEPS) or using sample selection always provides better results
than the pre-trained networks. This shows that it is possible to further improve
the performance of the segmentation by fine-tuning the networks weights.
Between sample selection and fine-tuning, the fine-tuning approaches seems to
provide the best results.

We also observe that HEAD provides results relatively close to or inferior
to the pre-trained approach. Furthermore, 2STEPS approach always obtains
better results than HEAD. This implies that it is necessary to fine-tune the
entire networks rather than retraining only its output layer.

5 River Level Estimation Experiments

In this section, our goal is to describe the experiments that we performed to
evaluate whether the semantic segmentation networks assessed in the previous
section can be used in the context of river level estimation.

5.1 Datasets

Our river level estimation datasets consist of RGB images coming from video
streams of Farson Digital river cameras located at 4 different locations in the
U.K. [27]. For each location, the camera position and orientation is fixed, which
means that the field of view stays the same for all of the images for a location.

Each location is annotated with landmarks for which heights were manually
measured during a ground survey. The images composing the datasets were all
sampled from the camera video streams with the purpose of observing a specific
flood event. On each sampled image, the landmarks were annotated with binary
information flooded/unflooded, that could be used to estimate the water levels
in the images (see Fig. 1).

From our first location, Diglis Lock, we extracted 141 images and used 7
landmarks. For the second location, Evesham, we extracted 134 images and
used 13 landmarks. For the third location, Strensham Lock, we extracted 144
images and used 24 landmarks. For the fourth location, Tewkesbury Marina,
we extracted 144 images and used 4 landmarks. In our nomenclature, Farson
corresponds to the union of the images collected from the 4 mentioned locations.
Sample images for each of the locations are given in Fig. 3.
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Fig. 3. Images from Farson river camera datasets [27], with their landmarks in red
dots. (Color figure online)

5.2 Protocol

Performance Criteria. As explained in Sect. 5.1, only specific landmark
(pixel) locations were annotated on those images. This is why we chose to use
the balanced accuracy classification score BAcc defined as:

BAcc = 100 × (
1
2
TF

F
+

1
2
TU

U
), (3)

where F is the number of actual flooded landmarks, TF the number of cor-
rectly classified flooded landmarks, U the number of actual unflooded landmarks
and TU the number of correctly classified unflooded landmarks. Given that the
extracted time periods of the river camera datasets might create an imbalance
between flooded or unflooded landmarks, therefore, we think (3) is a relevant
performance criteria to consider.

Experimental Design. We reused the networks that were trained in Sect. 4 to
produce binary segmentation masks of the river camera images using the fully
trained/fine-tuned networks. A landmark is predicted as flooded if its pixels
location is predicted as water, and unflooded otherwise.

A TL approach trying to directly output the water level from the camera
images could have been considered. However, this approach requires water-level
annotated images for each location as the water levels will vary. Thus, we assess
that our landmark classification approach is more relevant.
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Table 3. Balanced accuracies (see Sect. 5.2) of landmark classification using TL on
the Farson dataset. Note that Pre-Trained and Sample Selection do not need to be
fine-tuned over LAGO or INTCATCH datasets.

Network trained/fine-tuned on

– LAGO INTCATCH

BAcc BAcc BAcc

ResNet50-UperNet Pre-trained 83.4

Pre-trained on ADE20k Fine-tuning HEAD 87.96 78.89

WHOLE 93.06 88.03

2STEPS 93.29 88.25

Sample selection 90.97

Scratch 91.56 80.47

DeepLab Pre-trained 87.41

Pre-trained on COCO-stuff Fine-tuning HEAD 93.41 91.65

WHOLE 95.04 94.31

2STEPS 95.06 93.78

Sample Selection 91.32

Scratch 87.1 85.55

5.3 Results and Analysis

The results are presented in Table 3. The scratch approach, which does not use
TL, tends to perform worse than the pre-trained networks without any kind of
fine-tuning. Training the network from scratch on LAGO dataset seems to be
the most favorable case. We explain this by the fact that the scratch approach
overfits its training dataset, and the LAGO dataset is focusing on river images
similar to the Farson dataset.

We can observe that fine-tuning the networks on either LAGO or INTCATCH
allows improvement in the landmark classification performance. The WHOLE
and 2STEPS approaches that fine-tune the entire networks, obtain the best
overall performance. Only retraining the last layer (HEAD) has varying impacts
on the performance: while it is always better than retraining the network from
scratch, it does not always reach the performance of using the pre-trained net-
work.

The sample selection approach provide good performance on both networks.
However, when comparing the TL methods, it is always outranked by fine-tuning
the entire networks (WHOLE and 2STEPS) over LAGO, which is a dataset
containing river images. Note that in the context of reusing the semantic seg-
mentation networks for landmark detection over the Farson dataset, the sample
selection approach is similar to the WHOLE fine-tuning approaches, the differ-
ence being the dataset on which they are fine-tuned.

We can also observe that DeepLab network seems to obtain better results
than ResNet50-UperNet overall. From what we have seen on the segmentation
results, we believe that the choice of landmark locations played a significant role,
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and that these results should not be directly correlated to the quality of the seg-
mentation: for example, we observed that while DeepLab seemed to be able to
make better distinctions between the edges of the river (where the landmarks
are typically located), it was also making more mistakes than ResNet50-UperNet
elsewhere in the image (the sky was sometimes considered as water, reflections
in the water were not always considered as water). In our case of water seg-
mentation in time series images, several post-segmentation filtering approaches
could be considered to improve the landmark detection results: if the N images
before and after the current image have segmented landmark X as water/not-
water, it is likely that landmark X is also water/not-water in the current image.
The information regarding the landmark height could also be used to perform
filtering: if N landmarks located at higher locations are segmented as water, it
is likely that the lower landmarks should also be segmented as water.

6 Conclusion

In this paper, we have explored the possibilities of using TL in the context of
water segmentation, especially for river level detection.

We have shown that TL approaches were able to outperform the current lit-
erature in water segmentation on two different datasets. We have also proven
that using fine-tuning and/or sample selection could further improve the water
segmentation performance. These networks obtained significantly worse perfor-
mance once retrained from scratch.

We have supplied quantified and encouraging results to demonstrate the util-
ity of our proposed TL approaches in the context of flood modelling, able to
predict flood situations with high accuracy.

Future research will focus on an in-depth analysis of our results for practical
flood modelling studies, with the aim to provide more advanced statistics helpful
to hydrologists, but that are going beyond the scope of this current study [24].

More practically, we would like to consider merging river camera images
with LIDAR digital surface model data [10], which can allow to obtain surface
elevation of the terrain on a 1 m grid. In theory, this could allow our approach
to rely on more landmarks for the estimation of water levels, while avoiding
the tedious work of performing ground surveys to measure the heights of those
landmarks.

Acknowledgement. This work was funded by the UK EPSRC EP/P002331/1. The
datasets used in this study are all available as described in references [16,23,27].
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Abstract. Modern neural networks can easily fit their training set per-
fectly. Surprisingly, despite being “overfit” in this way, they tend to
generalize well to future data, thereby defying the classic bias–variance
trade-off of machine learning theory. Of the many possible explanations,
a prevalent one is that training by stochastic gradient descent (SGD)
imposes an implicit bias that leads it to learn simple functions, and these
simple functions generalize well. However, the specifics of this implicit
bias are not well understood.

In this work, we explore the smoothness conjecture which states that
SGD is implicitly biased towards learning functions that are smooth. We
propose several measures to formalize the intuitive notion of smoothness,
and we conduct experiments to determine whether SGD indeed implicitly
optimizes for these measures. Our findings rule out the possibility that
smoothness measures based on first-order derivatives are being implicitly
enforced. They are supportive, though, of the smoothness conjecture for
measures based on second-order derivatives.

1 Introduction

Classical machine learning wisdom suggests that the expressive power of a model
class (its capacity) should be carefully balanced with the amount of available
training data: if the capacity is too low, learned models will underfit and not
manage to fit the training set, let alone the test set. If the capacity is too high,
learned models do fit the training set, but they overfit to spurious patterns and
fail to represent the underlying trend, again failing to generalize well to the test
set. Thus, the learned models generalize best when the capacity is in a sweet-
spot somewhere between underfitting and overfitting. This observation is also
known as bias–variance trade-off.

Several researchers have observed that neural networks seem to defy the bias–
variance trade-off: increasing model capacity often improves generalization per-
formance, even if the network is already apparently “overfit”. This phenomenon
had first been reported more than 20 years ago, e.g. [5,15], but it has only begun
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Fig. 1. A non-smooth function (orange) and smooth function (blue) interpolating a
one-dimensional dataset. (Color figure online)

receiving wider attention in recent years. This started with the work of [22], who
showed that plotting the test loss as a function of model capacity (represented by
the hidden layer size) does not yield the U-shaped curve predicted by the bias–
variance trade-off, but starts to decrease again for high model class capacities.
The authors then conjecture that the surprising generalization performance of
“overfit” neural networks might be due to implicit regularization in the training
process: while the training objective only penalizes the prediction quality, the
optimization process nevertheless prefers solutions that have “small complexity”
and therefore generalize well.

It is still an open question, though, what exactly the implicitly regularized
complexity measure is. In this work, we explore the conjecture (put forward, e.g.,
in [19]) that it is “smoothness” which is implicitly regularized: stochastic gradient
descent tends to produce functions that are not needlessly “rough” or “bumpy”.
For an illustration, see Fig. 1. While this smoothness conjecture is intuitively
appealing, it is not clear so far how the intuitive concept of “smoothness” would
be correctly formalized mathematically. This is especially a problem because
in high dimensions, as common in machine learning, there are many possible
notions of smoothness for a function.

Our goal in this work is to make progress towards a formal analysis of the
smoothness conjecture. Specifically, our main steps are the following:

– We define four measures that express “smoothness” of a trained neural net-
work; two rely on first-order information, two on second-order information.

– We introduce two experimental settings that allow us to assess compatible
the smoothness conjecture for each of these measures is with empirical obser-
vations.

– Based on our experimental results, we argue that first-order smoothness mea-
sures can be excluded as candidates for SGD’s implicit regularization, whereas
second-order methods are promising candidates.

2 Related Work

To the best of our knowledge, the first modern paper that observed the unex-
pected generalization behavior of neural networks is [22], where the authors focus
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on the fact that the test loss keeps decreasing with the number of hidden units.
This was later followed by more refined analyses (e.g. [2,4,27]), which observed
a “double descent” behavior: for low-capacity model classes, the standard rea-
soning of over- and underfitting holds. For model classes of very high capacity,
though, where the training error can be reduced to zero, i.e. the data is inter-
polated, higher model class capacity corresponds to further reductions of the
test loss. Later work [21] confirmed the findings in extensive experiments and
observed that a double descent occurs not only as a function of model size but
also the number of training epochs.

In [28] it was shown that modern deep convolutional neural networks are able
to fit datasets even with random labels, and it is thereby easy to find models of
small training error that do not generalize well. Consequently, the explanation for
the unexpectedly good generalization behavior cannot be that all interpolating
models generalize equally well. Instead, it must be the specific solutions found
by standard network training (using stochastic gradient descent) that have these
favorable properties.

A popular form of explanation introduced already by [22] is that the train-
ing procedure is implicitly biased towards solutions with low complexity. Sub-
sequently, most works concentrated on the question which property of trained
neural networks it could be that would make them generalize well. Suggestions
include the sharpness of the reached loss function minimum [13], distance from
initialization [20], Fisher–Rao norm [18], as well as various measures based on
parameter norms [3,23]). However, an extensive empirical comparison in [10]
showed that many of the proposed measures are not positively correlated with
generalization quality. Therefore, the question of how to enforce generalization
for high-complexity model classes remains so far unsolved.

Some of the smoothness measures that we discuss later have been studied
previously in other contexts. We postpone the discussion of this related work to
Sect. 3.4, after we have presented the measures in technical form.

In this work, we do not try to solve the question of which complexity mea-
sure should best be minimized for neural networks to generalize well, but the
question which such measure SGD actually implicitly regularizes, if any. Our
approach is inspired by [19], who observe that under certain conditions, training
shallow ReLU networks in the one-dimensional setting using gradient descent
yields “simple” functions that are close to a piecewise-linear interpolation of
the training data. The author do not explore analogs for real networks with
high-dimensional inputs, though. Another work that is related to our analysis is
the recent preprint [14], where also the smoothness of trained neural networks is
studied. The authors find that overparametrized networks interpolate almost lin-
early between the samples, which is consistent with our findings. The work does
not answer the question if smoothness is actively minimized by SGD, though.

3 Does SGD Implicitly Optimize for Smoothness?

We study the implicit regularization properties of stochastic gradient descent
training for neural networks in a standard setup of supervised learning. We adopt
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a regression setting with input set R
d. And output set R. Assuming a fixed but

unknown data distribution P, the goal is to learn a function f : R
d → R with

low expected loss,
L(f) = E(x,y)∼P(f(x) − y)2. (1)

While the data distribution is unknown, we do have access to a training set
D = {(x1, y1), . . . , (xn, yn)} consisting of independent and identically distributed
(i.i.d.) samples from P. This allows us to define the training loss

L(f) =
1
n

n∑

i=1

(f(xi) − yi)2. (2)

For a fixed model class, F , e.g. the set of ReLU networks of a fixed architecture,
we want to select (learn) a function f ∈ F which minimizes the training loss. We
are primarily interested in models that perfectly fit or interpolate the training
data, meaning the learned function satisfies L(f) = 0. For numerical reasons,
we only require L(f) < ε with a small ε (e.g. 10−5) in practice. Typically, if the
model class is rich enough to contain any model that fulfills this condition, then
it contains many of them. The informal smoothness conjecture is:

When the model class is a set of neural networks that is rich enough to
interpolate the training data and we use stochastic gradient descent for
training, then the resulting trained model is not an arbitrary minimizer of
the training loss, but among the smoothest possible ones.

In this work, we aim towards a better understanding of the validity of this
conjecture. First, we formalize several smoothness measures, which makes it
possible to treat the above conjecture as a mathematical rather than just an
informal statement. Then, we provide experimental evidence that support the
smoothness conjecture for some smoothness measures while refuting it for others.

3.1 Measuring the Smoothness of a Function

In machine learning, the notion of smoothness of a function is often used intu-
itively (e.g. [4,11,14]) and it is rarely defined formally. In this section we formu-
late four measures that assign scalar smoothness values to functions f : R

d → R.
To be precise, the measures we define quantify roughness or the absence of
smoothness, as we will use the convention that small values (close to 0) indicate
smooth functions, whereas large values indicate functions with little smooth-
ness. This convention is, unfortunately, necessary to be compatible with most of
the prior literature. The non-negativity reflects the qualitative use of the term
smoothness as a single-sided bounded measure: there is a limit on how smooth
a functions can be (e.g. attained by constant functions), but there is no obvious
limit to how non-smooth it could be.

The measures we discuss can be classified into two categories: first-order and
second-order smoothness measures. First-order measures are based on properties
of the first-order derivatives (gradients) or differences between function values of
f . Second-order measures are based on second-order derivatives, or differences
between gradients of f .
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3.2 First-Order Smoothness Measures

Inspired by the common procedure for linear models, a simple way to formalize
smoothness is to identify it with steepness: if a function is very steep (has a
large gradient magnitude), then it is not very smooth. For non-linear functions,
which we are interested in, the gradient varies for different input arguments. To
obtain a scalar measure, we take the expected value of the Euclidean norm of
the function’s gradient with respect to the underlying data distribution.

Definition 1 (Gradient norm). Let PX be a probability distribution over R
d

and let f : R
d → R be a function that is differentiable almost everywhere with

respect to PX . We define the gradient norm of f with respect to PX as

GN(f) = E x∼PX
‖∇xf(x)‖. (3)

GN is non-negative and it is 0 for those functions whose gradient is zero almost
everywhere. This, in particular, includes constant functions, but also piece-wise
constant functions as long as the set where f changes values has measure zero
according to PX .

Because it is defined as an expected value over the data distribution, we can
approximate GN(f) by random sampling: let x1, . . . , xN be N data samples that
were not used for training f , then we set

ĜN(f) =
1
N

N∑

i=1

‖∇xf(xi)‖. (4)

For our experiments we use N = 1000 and we use automatic differentiation to
compute the gradient. The value of N was chosen heuristically as a compromise
between accuracy and computational efficiency.

An alternative approach for characterizing smoothness that avoids the con-
dition of differentiability is to study changes of the function values along one-
dimensional line segments. For this, we define

Definition 2. Let f : R
d → R

k be a (potentially vector-valued) function and
let a, b ∈ R

d. We define a line segment of f from a to b to be a function
f[a,b] : [0, 1] → R

k defined as

f[a,b](t) = f((1 − t)a + tb). (5)

Studying the curve induced by the function values on any such line segment,
we obtain an intuitive measure of smoothness. If the curve is straight and short,
the underlying function is smoother than if the curve is wrinkled and long.
Mathematically, we define the function path length as the expected value of the
total variation over all line segments of f with end points distributed according
to the data distribution:
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Definition 3 (Function path length). Let PX be a probability distribution
over R

d and let f : R
d → R be a function. We define the function path length

of f with respect to PX as

FPL(f) = E a,b∼PX
TV(f[a,b]) (6)

where the total variation of a function g : [0, 1] → R
k is defined as

TV(g) = sup
P∈P

|P |∑

i=1

‖g(ti) − g(ti−1)‖ (7)

with P denoting the set of all partitions of the interval [0, 1]:

P = {P = (t0, t1, . . . , t|P |)
∣∣ 0 = t0 < t1 · · · < t|P | = 1}. (8)

FPL is non-negative by construction and minimized (with value 0) by all
constant functions.

As GN before, the fact that FPL is defined in terms of an expectation oper-
ation over the data distribution makes it possible to derive a sampling-based
approximation. Let (ai, bi)i=1,...,N be N pairs of data points that were not used
during the training of f . Then we set

F̂PL(f) =
1
N

N∑

i=1

T̂V(f[ai,bi]) (9)

where T̂V approximates TV using a regular subdivision of the input interval:

T̂V(f[a,b]) =
n−1∑

i=1

|f(ti) − f(ti−1)| (10)

with ti = i
n−1a +

(
1 − i

n−1

)
b for i ∈ {0, . . . , n − 1}. For our experiments, we use

N = 1000 and n = 100.
While first-order smoothness measures are intuitive and efficient, they also

have some shortcomings. In particular, neither the gradient norm nor the func-
tion path length can distinguish between some functions which we would not
consider equally smooth. For example, take f(x) = x on [0, 1] and g(x) = 0
on [0, 1

2 ] and g(x) = 2x − 1 on [12 , 1] under a uniform data distribution. Both
functions have identical function path length and gradient norm, even though
intuitively one would consider f smoother than g. This problem can be overcome
by looking at measures that take second-order information (i.e. curvature) into
account.

3.3 Second-Order Smoothness Measures

A canonical choice for a second-order smoothness measure would be to compute
properties (e.g. the Frobenius norm or operator norm) of the Hessian matrix.
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Unfortunately, this is not tractable in practice, because of the high computational
effort of computing the Hessian matrix many times, as well as the memory
requirements, which are quadratic in the number of input dimensions.

Instead, the first measure we propose relies on an analog of the construction
used for the function path length, now applied to the function’s gradient instead
of its values.

Definition 4 (Gradient path length). Let PX be a probability distribution
over R

d and let f : R
d → R be a differentiable function. We define the gradient

path length as
GPL(f) = E a,b∼PX

TV((∇xf)[a,b]) (11)

GPL is non-negative by construction. It vanishes on constant functions, but
also on linear (more precisely: affine) ones. To approximate GPL in practice,
we use the same construction as for FPL, where the occurring gradients are
computed using automatic differentiation.

A special situation emerges for two-layer ReLU networks, i.e. functions of
the form

f(x) = 〈w(2), a〉 + b(2) with ai = ReLU
[〈w(1)

i , x〉 + b
(1)
i

]
for i = 1, . . . , h, (12)

where h is the number of hidden units in the network and w
(1)
1 , . . . , w

(1)
h and w(2)

are weight vectors of suitable dimensions and b
(1)
1 , . . . , b

(1)
h and b(2) are scalar

bias terms. For these, we can compute a measure of second-order smoothness
explicitly from the parameter values.

Definition 5 (Weights product). Let fθ : R
d → R be a two-layer ReLU net-

work with parameters θ = (W (1), b(1), w(2), b(2)), where W (1) = (w(1)
1 , . . . , w

(1)
h )

with w
(1)
i ∈ R

d and b(1) = (b(1)1 , . . . , b
(1)
h ) with b

(1)
i ∈ R for i = 1, . . . , h, as well

as w(2) ∈ R
h and b(2) ∈ R. We define the weights product measure as

WP(fθ) =
h∑

i=1

|w(2)
i | · ‖w

(1)
i ‖ (13)

where w
(2)
i indicates the i-th entry of the vector w(2) for any i = 1, . . . , h.

WP is non-negative by construction, and takes the value 0 on networks where
for each neuron in the hidden layer either all incoming weights or the outgoing
weight are zero, with arbitrary values of the bias terms. From Eq. (12) one sees
that all constant functions can be expressed this way.

A small computation establishes that for one-dimensional inputs, WP is equal
to the total variation of the derivative, under the assumption that the positions at
which the hidden units switch between deactivation and activation (−b

(1)
i /w

(1)
i )

are unique. In higher dimensions, each summand in (13) is still the norm of the
difference of the gradients on the two sides of the ReLU activation function.
Thus WP is a second-order measure, based on the changes of the gradient.
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In contrast to the previous smoothness measures, WP is only defined for
two-layer ReLU networks and does not take the underlying data distribution into
account. Its advantage, though, is that it can easily be computed exactly, without
having to rely on sampling-based approximations as for the other measures.

3.4 Smoothness Measures in Related Work

The measure we call gradient norm, as well as minor variants, were explored
in multiple prior works, e.g. [6,24–26]. Generally, the findings are that a small
average norm of the Jacobian, i.e. the gradient in the scalar setting, can lead to
improved generalization. In [17], a measure of “rugosity” (roughness) is proposed
based on the learned function’s Hessian matrix. The authors also discuss a Monte
Carlo approximation of this quantity, which resembles our notion of gradient path
length, with the main difference being that it uses local perturbations instead of a
line segment. Even closer is the smoothness measure in [14] which also measures
how the gradient of a function changes when interpolating between two samples.

The weight product measure is an analog of the path-regularizer of [23] for
two-layer ReLU networks. In that work, the measure is proposed for training-
time regularization, not as a post-hoc smoothness measure. To our knowledge,
the function path length measure has not been used in the context of neural
networks, but a similar constructions was suggested, e.g., for audio signals [9].

4 Experiments

We report on our experiments that shed light on the validity of the smoothness
conjecture in general, and with respect to the four proposed smoothness mea-
sures in particular. Note that the naive approach of simply checking the numeric
values of the smoothness measures is not possible, because we do not know what
reference value to compare them to. Ideally, this would be the smallest achiev-
able smoothness value for any network of the studied class on the provided data.
Unfortunately, we cannot easily compute these on high-dimensional data, only
derive some lower bound (see Table 2).

Instead, we use two proxy setups that we consider contributions of potentially
independent interest, as they would also be applicable to other measures besides
smoothness. First, we study how monotonically the measures behave when net-
works are trained with increasing amounts of data. If the smoothness conjecture
is fulfilled, one would expect perfect monotonicity, see the discussion in Sect. 4.2.
Second, we analyze whether substantially smoother models exist than the one
produced by SGD that nevertheless interpolate the data. Under the smoothness
conjecture, this should not be the case, see Sect. 4.3.

Before reporting on the results of the experiments, though, we introduce the
experimental setup.
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4.1 Experimental Setup

The surprising generalization abilities have been observed for networks of all
sizes. We restrict our own analysis to small networks, because the more efficient
experiments allows us to try more different settings and perform multiple reruns
to gain statistical power. Specifically, we use fully connected ReLU networks
with one hidden layer of size h = 256. We train the networks using mini-batch
stochastic gradient descent with a batch size of 64, and, unless specified other-
wise, a learning rate of 0.01. For network initialization, the network’s bias terms
are initially set to 0. The weights in each of the two layers are initialized by
drawing uniformly from the interval [−�, �] with � =

√
6α

nin+nout
. nin is the num-

ber of input units of the layer, nout is the number of output units, and α is an
initialization scale. For α = 1, this initializer would reduce to the widely used
Glorot uniform initializer [7]. We use α = 0.01 instead, as it has been observed
in [19] that a smaller initialization scale generally leads to smoother learned
functions, and this is also consistent with our own findings.

Many existing works use the number of training epochs as stopping criterion.
This is not ideal for our setting, as we observed that training models of differ-
ent complexity, e.g. with different regularization terms, for the same number of
epochs leads to large differences in the achieved training losses and how close to
convergence the models actually are. Instead, we use a threshold of 10−5 on the
training loss as the stopping criterion. This choice ensures that the models fit
the training set almost perfectly and have converged to a comparable level.

All experiments were performed using the TensorFlow framework [1], assisted
by the Sacred package [8] for enhanced reproducibility. Our code is available at
https://github.com/vvolhejn/neural network smoothness.

As a data source, we use the MNIST dataset of handwritten digits [16] in the
following way. For any pair of digits (a, b) with 0 ≤ a < b ≤ 9, we construct a
training set by filtering MNIST to only the images of digit a or digit b. We then
select the first 10,000 images in the filtered dataset so that dataset sizes are equal
among choices of (a, b). This results in

(
10
2

)
= 45 regression problems, which

we call the MNIST-binary problem set. By solving multiple small regression
problems instead of a single large one, we hope to reduce variance and gain
more confidence that the observed trends are not just due to randomness. As
data for computing the smoothness measures, we use subsets of the MNIST test
set with the corresponding digits.

4.2 Monotonicity

As a first test of the hypothesis that smoothness is implicitly enforced during
neural network training, we use the following observation. Imagine two training
sets, D and D′, where D′ is identical to D, except that some more data points
have been added to it. Denote by f and f ′ the smoothest possible functions in
a hypothesis set that interpolate the data in D and D′, respectively. Then f ′

cannot be smoother than f , because adding training samples means adding con-

https://github.com/vvolhejn/neural_network_smoothness
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straints to the interpolation problem, and the minimizer over a more constrained
set can only achieve a higher or equal objective value.

Our experiments verify empirically if this phenomenon indeed occurs for dif-
ferent model classes and the smoothness measures of Sect. 3.1. We first select a
dataset D = {(x1, y1), . . . , (xN , yN )} that all studied model classes are able to
interpolate. Then we construct an increasing sequence of datasets D1, . . . , Dn

with Di � Di+1 for i = 1, . . . , n − 1, and train models on each of these datasets,
obtaining functions f1, . . . , fn. For any smoothness measure S (with the conven-
tion that a lower value of S means a smoother function), we expect to obtain

S(f1) ≤ S(f2) ≤ · · · ≤ S(fn) (14)

if the smoothness conjecture holds for S. As a quantitative measure of how close
we are to all inequalities holding, we use the Kendall rank correlation coefficient,
τ ∈ [−1, 1], which reflects the number of inversions in the sequence, see [12]. A
value of τ = 1 means perfect accordance with (14).

Table 1. Monotonicity score (Kendall’s τ) for the 45 MNIST-binary datasets. Standard
deviation is not listed for WP and GPL because these measures reach the maximum
value of τ for every dataset.

Smoothness measure GN FPL GPL WP

Kendall’s τ 0.16 ± 0.32 0.07 ± 0.46 1.0 1.0

For each of the 45 MNIST-binary tasks, we use training set sizes N ∈ {64, 128,
256, 512, 1024, 2048, 4096, 8192}. We fix an ordering of the dataset and simply
select its first N elements. To lower the variance, we repeat the experiment three
times for each dataset. Therefore, we obtain a total of 3 ∗ 45 values of τ .

Table 1 summarizes the results as mean and standard deviation over the
obtained τ values. We see that for the first-order smoothness measures, GN and
FPL, the change in function smoothness is highly fluctuating and only weakly
correlated with growing dataset size. In contrast, the rank correlation is consis-
tently at its maximum value for the second-order measures, GPL and WP.

4.3 Optimality

In this section, we take a second look at the question of whether smoothness
is implicitly optimized by SGD training and if yes, which notion of smoothness
exactly that is. For this, we take an exclusion approach: we can be sure that a
complexity measure S is not being regularized implicitly during training, if we
are able to find another model that performs equally well on the training set but
is substantially smoother according to this measure than that found by SGD.

To search for such smoother models, we rely on explicit regularization. Dur-
ing network training, we replace the original loss function L with a regularized
version Lreg, in which we penalize high values of S:
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Fig. 2. Effect of explicit smoothness regularization for training on MNIST data for
different smoothness measures (subfigures) and regularization strengths (y-axis). Lower
values indicate smoother models.

Lreg(f) = L(f) + λS(f) (15)

where λ > 0 is a regularization coefficient.
When S is expensive to compute, network training is slowed down consider-

ably, as the measure and its gradient have to be evaluated in every training step.
We therefore use stochastic variants of the smoothness measures that always use
the current training batch as data points. Evaluation of the trained models is
done on the test data, without using these stochastic variants. Furthermore, we
use a learning rate of 0.1 for the two path length measures instead of the default
value of 0.01. This is merely for practical reasons as it ensures training converges
in a reasonable time; we did not observe any negative side effects of this change.

Figure 2 shows the results of all experiments as box-whisker plots for the
45 MNIST-binary datasets. The first row in each plot (λ = 0) corresponds to
training the unregularized objective, i.e. plain SGD training. The other rows
reflect training with different amounts of regularization strength. Setups in which
the explicit regularization was too strong to reach the interpolation regime (i.e.
training error remained above 10−5) are not reported and not included in the
analysis.



Does SGD Implicitly Optimize for Smoothness 257

Table 2. Numeric summary of explicit regularization experiment results. For each
measure, we report the results for the highest regularization coefficient for which we
were still able to train the models to achieve 10−5 training loss. For an explanation of
the rows, see the main text.

Smoothness measure GN FPL GPL WP

Unregularized mean μunreg 0.93 1.17 2.62 12.84

Regularized mean μreg 0.29 1.05 2.35 11.57

Lower bound lS 0 1 0 0

Normalized ratio rnorm 0.31 ± 0.13 0.33 ± 0.27 0.89 ± 0.06 0.90 ± 0.03

Table 2 contains a numeric summary of these results. The columns Unregular-
ized mean and Regularized mean show the mean value of the respective smooth-
ness measure across the 45 MNIST-binary tasks (the full score distribution was
already provided in Fig. 2). The regularized mean is computed only from the
models with the largest reported regularization coefficient. Lower bound, lS , is
a bound on the smallest value that the corresponding measure, S, can take on
an interpolating model from the studied model class. For GN, GPL and WP,
only the trivial bound 0 is readily available. For FPL, we know that data pairs
of identical output value contribute 0 to Eq. (9), while data pairs of opposite
output values contribute at least 2, so a lower bound on FPL for balanced data
is 1. The normalized ratio is computed as

rnorm =
1
45

45∑

i=1

S(freg
i ) − lS

S(funreg
i ) − lS

, (16)

where freg
i and funreg

i are the results of training models on the i-th task with
and without regularization, respectively.

The plots and table show a clear trend: for the first-order smoothness mea-
sures, adding explicit regularization to the training objective results in models
that have equally small training loss yet much higher smoothness (GN and FPL
are reduced by approximately 70%). Consequently, we can reject the conjecture
that SGD implicitly optimizes for these measures. Note that this finding is not
incompatible with results in the literature that enforcing a small norm of the
gradient can positively impact generalization [24–26], as that is just a sufficient
criterion, not a necessary one.

For the second-order smoothness measures the results show the opposite
effect. By including explicit regularization, we were not able to substantially
increase the models’ smoothness (GPL and WP are reduced by approximately
10%). Formally, our result cannot be taken as proof that no substantially
smoother models exist. After all, we might just not have been able to find them
using the explicit regularization procedure. Nevertheless, the results do sup-
port the conjecture that SGD does have a regularizing effect on neural network
training, and they concretize the formulation of the smoothness conjecture: the
enforced smoothness is likely of second-order type.
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5 Conclusion

In this work, we empirically studied the conjecture that training neural networks
by stochastic gradient descent results in models that do not only have a small
training loss, but that at the same time are very smooth, even when the training
objective does not explicitly enforce the latter property. If correct, the conjecture
would be a major milestone towards a better understanding of the generalization
properties of neural networks.

After introducing four different smoothness measures, two of first-order and
two of second-order type, we reported on experiments showing that there is no
support for the smoothness conjecture with respect to the first-order smooth-
ness measures. However, our findings are quite well aligned with SGD enforcing
second-order smoothness, thereby adding credibility to this instantiation of the
conjecture.

For future work, it would be interesting to see if our results also transfer to
deeper networks and larger datasets, as well as other network architectures, e.g.
convolutional or recurrent networks. One could also now use theoretical tools to
determine which second-order smoothness measure exactly is being minimized
and by what mechanism.
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Abstract. Context - i.e. information not contained in a particular mea-
surement but in its spatial proximity - plays a vital role in the analysis
of images in general and in the semantic segmentation of Polarimetric
Synthetic Aperture Radar (PolSAR) images in particular. Nevertheless,
a detailed study on whether context should be incorporated implicitly
(e.g. by spatial features) or explicitly (by exploiting classifiers tailored
towards image analysis) and to which degree contextual information has
a positive influence on the final classification result is missing in the liter-
ature. In this paper we close this gap by using projection-based Random
Forests that allow to use various degrees of local context without chang-
ing the overall properties of the classifier (i.e. its capacity). Results on
two PolSAR data sets - one airborne over a rural area, one space-borne
over a dense urban area - show that local context indeed has substantial
influence on the achieved accuracy by reducing label noise and resolving
ambiguities. However, increasing access to local context beyond a certain
amount has a negative effect on the obtained semantic maps.

1 Introduction

Context refers to information not contained in an individual measurement but in
its local proximity or at a larger (even global) range. For image analysis, this can
refer to a spatial (i.e. pixels close to each other), temporal (measurements with a
small time difference), or spectral (measurements taken at similar wavelengths)
neighborhood. In this paper, context refers to the spatial neighborhood of a pixel.

In contrast to the (semantic) analysis of close-range photography, for a long
time context had played only a minor role in remote sensing, in particular for
data sources such as HyperSpectral Imagery (HSI) or Synthetic Aperture Radar
(SAR). One reason is the historical approach and the scientific communities that
pioneered in the analysis of images from both domains. The similarity of color
photographs to the early stages of the human visual cortex (e.g. being based
on angular measurements of the light intensity of primary colors), inspired to
model also subsequent stages according to this biological role model for which
it is well known that context (spatial as well as temporal) plays a vital role
for the understanding of the image input [21]. HSI and SAR images, on the
other hand, are too dissimilar to human perception to have inspired a similar
c© Springer Nature Switzerland AG 2021
Z. Akata et al. (Eds.): DAGM GCPR 2020, LNCS 12544, pp. 260–274, 2021.
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Fig. 1. We investigate the role of (visual spatial) context by varying the size of the
spatial projections within the framework of projection-based Random Forests (pRFs),
i.e. the size rs and distance rd of regions sampled relative to the patch center and used
by the internal node tests of the decision trees to determine the semantic class.

approach during the early years of automated image analysis. On the contrary,
early attempts to remote sensing image interpretation were often carried out by
the same groups that built the corresponding sensors. Consequently, they took
a rather physics-based approach and developed statistical models that aim to
capture the complex relations between geo-physical and biochemical properties
of the imaged object and the measured signal. Even today, approaches that
aim to model the interaction of electro-magnetic waves with a scatterer with
certain geometric and electro-physical properties are still in use for SAR image
processing (see e.g. [7,10]). Another reason is that the information contained
in a single RGB pixel of a close-range photograph is rarely sufficient to make
any reliable prediction of the semantic class this pixel might belong to. On the
other hand, the information contained in a single HSI or PolSAR pixel does
allow to make such predictions with a surprisingly high accuracy if processed
and analysed correctly.

As a consequence, although there were early attempts to incorporate context
(see e.g. [24,28]) into the semantic analysis of remote sensing images, many
classification methods ignored relations between spatially adjacent pixels and
process each pixel independently (e.g. as in [6] for HSI and [16] for SAR data,
respectively). This means in particular, that a random permutation of all pixels
within the image would not effect classification performance during automatic
image interpretation (quite in contrast to a visual interpretation by humans).
However, neighboring pixels do contain a significant amount of information which
should be exploited. On the one hand, adjacent pixels are usually correlated due
to the image formation process. On the other hand, the depicted objects are
usually large (with respect to the pixel size) and often rather homogeneous.
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There are two distinct yet related concepts of context in images, i.e. visual
context and semantic context. Semantic context refers to relationships on
object level such as co-occurrence relations (e.g. a ship usually occurs together
with water) for example modelled via Latent Dirichlet Allocations [23] or con-
cept occurence vectors [27] and topological relations (e.g. trees are more likely
to be next to a road than on a road) capturing distances and directions (see
e.g. [2]). This type of context is usually exploited during the formulation of the
final decision rule, e.g. by applying a context-independent pixel-wise classifica-
tion followed by a spatial regularization of the obtained semantic maps [5] or
by applying Markov Random Fields (MRFs, see e.g. [11,25] for usage of MRFs
for the classification of SAR images). Visual context refers to relationships
on the measurement level allowing for example to reduce the noise of an indi-
vidual measurement (e.g. by local averaging) or to estimate textural properties.
For example, visual context is implicitly considered during SAR speckle filter-
ing. Another common example are approaches that combine spectral and spatial
information in a pixel-wise feature vector and then apply pixel-based classifica-
tion methods (e.g. [9,22]). More recent approaches move away from the use of
predefined hand-crafted features and use either variants of shallow learners that
have been tailored towards the analysis of image data (such as projection-based
Random Forests [12]) or deep neural networks. In particular the latter have
gained on importance and are often the method of choice for the (semantic)
analysis of remote sensing images in general (see e.g. [15] for an overview) and
SAR data in particular [31].

In this paper we address the latter type, i.e. visual context, for the special
case of semantic segmentation on polarimetric SAR images. In particular, we are
interested whether different data representations that implicitly integrate con-
text are helpful and in analysing how much local context is required or sufficient
to achieve accurate and robust classification results. To the best of the authors
knowledge, such an investigation is missing in the current literature of PolSAR
processing. Corresponding works either stop at low-level pre-processing steps
such as speckle reduction [4,8] or simply assume that any amount of available
contextual information leads to an improved performance.

Mostly to be able to efficiently vary available context information while keep-
ing model capacity fixed, we use projection-based Random Forests (pRFs, [12])
which are applied to image patches and apply spatial projections (illustrated in
Fig. 1) that sample regions of a certain size and distance to each other. Increas-
ing the region size allows to integrate information over larger areas and thus
adaptively reduce noise, while a larger region distance enables the RF to access
information that is further away from the patch center without increasing the
computational load (very similar to dilated convolutions in convolution networks
[30]). Thus, the contribution of this paper is three-fold: First, we extend the gen-
eral framework of [12] to incorporate node tests that can be directly applied to
polarimetric scattering vectors; Second, we compare the benefits and limitations
of using either scattering vectors or polarimetric sample covariance matrices for
the semantic segmentation of PolSAR images; and third, we analyse how much
context information is helpful to increase classification performance.
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2 Projection-Based Random Forests

Traditional machine-learning approaches for semantic segmentation of PolSAR
images either rely on probabilistic models aiming to capture the statistical char-
acteristics of the scattering processes (e.g. [3,29]) or apply a processing chain
that consists of pre-processing, extracting hand-crafted features, and estimat-
ing a mapping from the feature space to the desired target space by a suitable
classifier (e.g. [1,26]). Modern Deep Learning approaches offer the possibility to
avoid the computation of hand-crafted features by including feature extraction
into the optimization of the classifier itself (see e.g. [17–20]). These networks are
designed to take context into account by using units that integrate information
over a local neighborhood (their receptive field). In principle, this would allow
to study the role of context for the semantic segmentation of remotely sensed
images with such networks. However, an increased receptive field usually cor-
responds to an increase of internal parameters (either due to larger kernels or
deeper networks) and thus an increased capacity of the classifier.

This is why we apply projection-based Random Forests (pRFs [12]) which
offer several advantages for the following experiments: Similar to deep learning
approaches, pRFs learn features directly from the data and do not rely on hand-
crafted features. Furthermore, they can be applied to various input data without
any changes to the overall framework. This allows us to perform experiments
on PolSAR data which are either represented through polarimetric scattering
vectors s ∈ C

k or polarimetric sample covariance matrices C ∈ C
k×k

C = 〈ss†〉wC
(1)

where (·)† denotes conjugate transpose and 〈·〉wC
a spatial average over a wC ×

wC neighborhood.
Every internal node of a tree (an example of such a tree is shown in Fig. 2(a))

in a RF performs a binary test t : D → {0, 1} on a sample x ∈ D that has reached
this particular node and propagates it either to the left (t(x) = 0) or right child
node (t(x) = 1). The RF in [12] defines the test t as

t(x) =
{

0 if d(φ(ψ1(x)), φ(ψ2(x))) < θ,
1 otherwise. (2)

where ψ(·) samples a region from within a patch that has a certain size rs and
distance rd to the patch center, φ(·) selects a pixel within this region, d(·) is a
distance function, and θ is the split threshold (see Fig. 2(b) for an illustration).
Region size rs and distance rd to the patch center are randomly sampled from
a user defined range. They define the maximal possible patch size w = 2rd + rs
and thus the amount of local context that can be exploited by the test. To test
whether a multi-scale approach is beneficial for classification performance, we
allow the region distance to be scaled by a factor α which is randomly drawn by
a user defined set of possible scales.

The pixel selection function φ as well as the distance function are data type
dependent. The RF in [12] proposes test functions that apply to w × w patches
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(a) A typical decision tree
within a pRF (visualized via
[14]) that was trained on
the OPH data set (see Sec-
tion 3.1). Leaf colors represent
the dominant class in a leaf
(see Figure 3(c)); leaf size rep-
resents the number of samples
in this leaf.

(b) A node test t uses spa-
tial projections of a patch cen-
tered at x that sample regions
of size rs and distance rd to
the patch center via ψ() from
which φ() selects a single pixel.
The distance d between these
two pixel values is then com-
pared to the split threshold θ.

Fig. 2. Visualisation of a single decision tree of a trained pRF (left) as well as the
applied spatial node projections (right).

of polarimetric covariance matrices, (i.e. D = C
w×w×k×k). In this case, φ either

computes the average over the region or selects the covariance matrix within a
given region with minimal, maximal, or medium span rs, polarimetric entropy
H, or anisotropy A, i.e.

S =
k∑

i=1

λi , H =
k∑

i=1

λi

S
log

(
λi

S

)
, A =

λ2 − λ3

λ2 + λ3
(3)

where λ1 > λ2 > λ3 are the Eigenvalues of the covariance matrix. Note, that for
k = 2, i.e. dual-polarimetric data, the covariance matrix has only two Eigenvalues
which means that the polarimetric anisotropy cannot be computed.

Any measure of similarity between two Hermitian matrices P,Q (see [13] for
an overview) can serve as distance function d, e.g. the Bartlett distance

d(P,Q) = ln

( |P + Q|2
|P ||Q|

)
. (4)

We extend this concept to polarimetric scattering vectors s ∈ C
k by adjust-

ing φ to select pixels with minimal, maximal, or medium total target power
(
∑

i |si|). Note that polarimetric scattering vectors are usually assumed to fol-
low a complex Gaussian distribution with zero mean which means that the local
sample average tends to approach zero and thus does not provide a reasonable
projection. While it would be possible to use polarimetric amplitudes only, we
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want to work as closely to the data as possible. Extracting predefined features
and using corresponding projections is possible within the pRF framework but
beyond the scope of the paper. As distance d(p, q) we use one of the following
distance measures between polarimetric scattering vectors p, q ∈ C

k:

Span distance: d(p, q) =
k∑

i=1

|pi| −
k∑

i=1

|qi| (5)

Channel intensity distance: d(p, q) = |pi| − |qi| (6)
Phase difference: d(p, q) = arg(pi) − arg(qi) (7)

Ratio distance: d(p, q) =
∣∣∣∣log

( |pi|
|pj |

)∣∣∣∣ −
∣∣∣∣log

( |qi|
|qj |

)∣∣∣∣ (8)

Euclidean distance: d(p, q) =

√√√√ k∑
i=1

|pi − qi|2, (9)

where arg(z) denotes the phase of z.
An internal node creates multiple such test functions by randomly sampling

their parameters (i.e. which ψ defined by region size and position, which φ, and
which distance function d including which channel for channel-wise distances)
and selects the test that maximises the information gain (i.e. maximal drop of
class impurity in the child nodes).

3 Experiments

3.1 Data

We use two very different data sets to evaluate the role of context on the semantic
segmentation of PolSAR images. The first data set (shown in Fig. 3(a), 3(c)) is
a fully polarimetric SAR image acquired over Oberpfaffenhofen, Germany, by
the E-SAR sensor (DLR, L-band). It has 1390 × 6640 pixels with a resolution
of approximately 1.5 m. The scene contains rather large homogeneous object
regions. Five different classes have been manually marked, namely City (red),
Road (blue), Forest (dark green), Shrubland (light green), and Field (yellow).

The second data set (shown in Fig. 3(b)) is a dual-polarimetric image of size
6240 × 3953 acquired over central Berlin, Germany, by TerraSAR-X (DLR, X-
band, spotlight mode). It has a resolution of approximately 1 m. The scene con-
tains a dense urban area and was manually labelled into six different categories,
namely Building (red), Road (cyan), Railway (yellow), Forest (dark green), Lawn
(light green), and Water (blue) (see Fig. 3(d)).

The results shown in the following sections are obtained by dividing the
individual image into five vertical stripes. Training data (i.e. 50,000 pixels) are
drawn by stratified random sampling from four stripes, while the remaining
stripe is used for testing only. We use Cohen’s κ coefficient estimated from the
test data and averaged over all five folds as performance measure.
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(a) OPH image data
(E-SAR, DLR, L-Band)

(b) BLN image data
(TerraSAR-X, DLR, X-Band)

(c) OPH reference data:
City (red), Road (blue),
Forest (dark green), Shrub-
land (light green), Field
(yellow), unlabelled pixels
in white

(d) BLN reference data:
Building (red), Road (cyan), Railway (yel-
low), Forest (dark green), Lawn (light
green), Water (blue), unlabelled pixels in
white.

Fig. 3. False color composite of the used PolSAR data (top) as well as color-coded
reference maps (bottom) of the Oberpfaffenhofen (OPH, left) and Berlin (BLN, right)
data sets. Note: Images have been scaled for better visibility. (Color figure online)

3.2 Polarimetric Scattering Vectors

As a first step we work directly on the polarimetric scattering vectors by using the
projections described in Sect. 2 with rd, rs ∈ {3, 11, 31, 101}. Figure 4 shows the
results when using the polarimetric scattering vectors directly without any pre-
processing (i.e. no presumming, no speckle reduction, etc.). The absolute accu-
racy (in terms of the kappa coefficient) differs between the air- (κ ∈ [0.64, 0.80])
and space-borne (κ ∈ [0.29, 0.44]) PolSAR data. There are several reasons for this
difference. One the one hand, the OPH data was acquired by an fully-polarimetric
airborne sensor while the BLN data was acquired by a dual-polarimetric space-
borne sensor. As a consequence, the OPH data contains more information (one
more polarimetric channel) and has in general a better signal to noise ratio.
On the other hand, the scene is simpler in terms of semantic classes, i.e. the
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Fig. 4. Achieved κ (top) and prediction time (bottom) for OPH (left) and BLN (right)
using polarimetric scattering vectors. The solid lines denote the single scale (α = 1),
the dashed lines the multi-scale (α ∈ {1, 2, 5, 10}) case.

reference data contains less classes and object instances are rather large, homo-
geneous segments. In contrast, the BLN data contains fine grained object classes
such as buildings and roads in a dense urban area.

Despite the difference in the absolute values for both data sets, the relative
performance between the different parameter settings is very similar. In general,
larger region sizes lead to a better performance. While the difference between
3×3 and 11×11 regions are considerable, differences between 11×11 and 31×31
regions are significantly smaller. Large regions of 101 × 101 pixels lead to worse
results than moderate regions of 31×31. Larger regions allow to locally suppress
speckle and noise and are better able to integrate local context. However, beyond
a certain region size, the patches start to span over multiple object instances
which makes it impossible to distinguish between the different classes.

A similar although less pronounced effect can be seen for increasing region
distances. At first, performance does increase with larger distance. However, the
improvement soon saturates and for very large distances even deteriorates. This
effect is strongest in combination with small region sizes as the distance relative
to the region size is much smaller for tests with large regions, i.e. for a test with
a region distance of rd = 11, regions of rs = 31 still overlap.

The optimal parameter combination in terms of accuracy is rs = rd = 31,
i.e. patches with w = 93 (note, that this only determines the maximal patch size
while the actually used size depends on the specific tests selected during node
optimisation). Interestingly, this seems to be independent of the data set.

A large region size has the disadvantage of an increased run time during
training and prediction (the latter is shown in Fig. 4). The run time per node
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test increases quadratically with the region size rs but is independent of rd. The
overall run time also depends on the average path length within the trees which
might in- or decrease depending on the test quality (i.e. whether a test is able to
produce a balanced split of the data with a high information gain). In general, an
increased region size leads to a much longer prediction time, while an increased
region distance has only a minor effect. As a consequence, if computation speed
is of importance in a particular application, it is recommendable to increase
sensitivity to context by setting a larger region distance than increasing the
region size (at the cost of a usually minor loss in accuracy).

The dashed lines in Fig. 4 show the results when access to context is increased
beyond the current local region by scaling the region distance by a factor α which
is randomly selected from the set R = {1, 2, 5, 10} (e.g. if rd is originally selected
as rd = 5 and α is selected as α = 10, the actually used region distance is 50).
If the original region distance is set to a small value (i.e. rd = 3) using the
multi-scale approach leads to an increased performance for all region sizes. For
a large region size of rs = 101 this increase is marginal, but for rs = 3 the
increase is substantial (e.g. from κ = 0.64 to 0.72 for OPH). However, even for
medium region distances (rd = 11) the effect is already marginal and for large
distances the performance actually decreases drastically. The prediction time
is barely affected by re-scaling the region distance. In general, this reconfirms
the results of the earlier experiments (a too large region distance leads inferior
results) and shows that (at least for the used data sets) local context is useful
to solve ambiguities in the classification decision, but global context does rarely
bring further benefits. On the one hand, this is because local homogeneity is
a very dominant factor within remote sensing images, i.e. if the majority of
pixels in a local neighborhood around a pixel belong to a certain class, the
probability is high that this pixel belongs to the same class. On the other hand,
typical objects in remote sensing images (i.e. such as the here investigated land
cover/use classes) are less constrained in their spatial co-occurrence than close
range objects (e.g. a road can go through an urban area, through agricultural
fields as well as through forest or shrubland and can even run next to a river).

3.3 Estimation of Polarimetric Sample Covariance Matrices

In a second experiment, we use the projections described in Sect. 2, i.e. the RF is
applied to polarimetric sample covariance matrices instead of scattering vectors.
While in contrast to scattering vectors, covariance matrices can be locally aver-
aged, we exclude node tests that perform local averaging in order to be better
comparable to the experiments on scattering vectors.

As covariance matrices are computed by locally averaging the outer product
of scattering vectors, they implicitly exploit context. In particular distributed
targets can be statistically described only by their second moments. Another
effect is that large local windows increases the quality of the estimate consider-
ably. However, too large local windows will soon go beyond object borders and
include pixels that belong to a different physical process, i.e. in the worst case
to a different semantic class, reducing the inter-class variance of the samples.
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Fig. 5. Achieved κ (top) and prediction time (bottom) for OPH (left) and BLN (right)
using covariance matrices computed over local windows of size wC .

Figure 5 shows that performance barely changes for medium window sizes
but degrades drastically for larger windows. A reasonable choice is wC = 11,
which is used in the following experiments. Note that covariance matrices are
precomputed and thus do not influence computation times of the classifier.

3.4 Polarimetric Sample Covariance Matrices

In the last set of experiments, we fix the local window for computing the local
polarimetric covariance matrix to wC = 11 and vary region distance rd and
size rs in the same range as for the experiments based on the scattering vector, i.e.
rd, rs ∈ {3, 11, 31, 101}. The results are shown in Fig. 6. Compared to using scat-
tering vectors directly, the achieved performance increased from κ ∈ [0.64, 0.798]
to κ ∈ [0.786, 0.85] for OPH and from κ ∈ [0.288, 0.436] to κ ∈ [0.448, 0.508] for
BLN which demonstrates the benefits of speckle reduction and the importance
to use second-order moments. The relative performance among different set-
tings for region size and distance, however, stays similar. Large regions perform
in general better than small regions. An interesting exception can be observed
for rs = 3 and rs = 11: While for small distances (d ≤ 11) the larger rs = 11
leads to better results, the accuracy for rs = 3 surpasses the one for rs = 11
if rd = 31. In general the results follow the trend of the experiments based on
scattering vectors: First, the performance increases with increasing distance, but
then declines if the region distance is too large. This is confirmed as well by the
experiments with upscaled distances: While for rd = 3 the results of the scaled
distance is often superior to the results achieved using the original distance, the
performance quickly decreases for d > 11.
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3.5 Summary

Figure 7 shows qualitative results by using projections that allow 1) a minimal
amount of context (being based on scattering vectors with rd = rs = 3 and no
scaling), 2) the optimal (i.e. best κ in the experiments) amount of context (being
based on covariance matrices with rd = rs = 31 and no scaling); and 3) a large
amount of context (being based on covariance matrices with rd = 101, rs = 31
and scaling with α ∈ {1, 2, 5, 10}). There is a significant amount of label noise
if only a small amount of local context is included but even larger structures
tend to be misclassified if they are locally similar to other classes. By increas-
ing the amount of context, the obtained semantic maps become considerably
smoother. Note, that these results are obtained without any post-processing.
Too much context, however, degrades the results as the inter-class differences
decrease leading to misclassifications in particular for smaller structures.

Fig. 6. Achieved κ (top) and prediction time (bottom) for OPH (left) and BLN (right)
using polarimetric sample covariance matrices. The solid lines denote the single scale
(α = 1), the dashed lines the multi-scale (α ∈ {1, 2, 5, 10}) case.
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(a) Minimal context: Scattering vector, rd = rs = 3, α = 1

(b) Optimal context: Covariance matrix (wC = 11), rd = rs = 31, α = 1

(c) Maximal context: Covariance matrix (wC = 11), rd = 31, rs = 31,
α ∈ {1, 2, 5, 10}

Fig. 7. Obtained semantic maps (stitching of corresponding test sets) by exploiting
different amounts of spatial context. Note: Images have been scaled for better visibility.

4 Conclusion and Future Work

This paper extended the set of possible spatial projections of pRFs by exploit-
ing distance functions defined over polarimetric scattering vectors. This allows a
time- and memory efficient application of pRFs directly to PolSAR images with-
out any kind of preprocessing. However, the experimental results have shown
that usually a better performance (in terms of accuracy) can be obtained by
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using polarimetric sample covariance matrices. We investigated the influence of
the size of the spatial neighborhood over which these matrices are computed and
showed that medium sized neighborhoods lead to best results where the rela-
tive performance changes were surprisingly consistent between two very different
data sets. Last but not least we investigated the role context plays by varying the
region size and distance of the internal node projections of pRFs. Results show
that the usage of context is indeed essential to improve classification results but
only to a certain extent after which performance actually drastically decreases.

Future work will confirm these findings for different sensors, i.e. HSI and
optical images, as well as for different classification tasks. Furthermore, while
this paper focused on visual context (i.e. on the measurement level), semantic
context (i.e. on the level of the target variable) is of interest as well. On the one
hand, the test selection of the internal nodes of pRFs allows in principle to take
semantic context into account during the optimisation process. On the other
hand, post processing steps such as MRFs, label relaxation, or stacked Random
Forests should have a positive influence on the quality of the final semantic maps.
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Abstract. Prediction of trajectories such as that of pedestrians is cru-
cial to the performance of autonomous agents. While previous works have
leveraged conditional generative models like GANs and VAEs for learning
the likely future trajectories, accurately modeling the dependency struc-
ture of thesemultimodal distributions, particularly over long time horizons
remains challenging. Normalizing flow based generative models can model
complex distributions admitting exact inference. These include variants
with split coupling invertible transformations that are easier to parallelize
compared to their autoregressive counterparts. To this end, we introduce
a novel Haar wavelet based block autoregressive model leveraging split
couplings, conditioned on coarse trajectories obtained from Haar wavelet
based transformations at different levels of granularity.This yields an exact
inference method that models trajectories at different spatio-temporal res-
olutions in a hierarchical manner. We illustrate the advantages of our app-
roach for generating diverse and accurate trajectories on two real-world
datasets – Stanford Drone and Intersection Drone.

1 Introduction

Anticipation is a key competence for autonomous agents such as self-driving vehi-
cles to operate in the real world. Many such tasks involving anticipation can be
cast as trajectory prediction problems, e.g. anticipation of pedestrian behaviour
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Fig. 1. Our normalizing flow based model uses a Haar wavelet based decomposition to
block autoregressively model trajectories at K coarse-to-fine scales.
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in urban driving scenarios. To capture the uncertainty of the real world, it is
crucial to model the distribution of likely future trajectories. Therefore recent
works [3,5,27,36] have focused on modeling the distribution of likely future tra-
jectories using either generative adversarial networks (GANs, [15]) or variational
autoencoders (VAEs, [22]). However, GANs are prone to mode collapse and the
performance of VAEs depends on the tightness of the variational lower bound
on the data log-likelihood which is hard to control in practice [9,20]. This makes
it difficult to accurately model the distribution of likely future trajectories.

Normalizing flow based exact likelihood models [12,13,23] have been con-
sidered to overcome these limitations of GANs and VAEs in the context of
image synthesis. Building on the success of these methods, recent approaches
have extended the flow models for density estimation of sequential data e.g.
video [25] and audio [21]. Yet, VideoFlow [25] is autoregressive in the tempo-
ral dimension which results in the prediction errors accumulating over time [26]
and reduced efficiency in sampling. Furthermore, FloWaveNet [21] extends flows
to audio sequences with odd-even splits along the temporal dimension, encod-
ing only local dependencies [4,20,24]. We address these challenges of flow based
models for trajectory generation and develop an exact inference framework to
accurately model future trajectory sequences by harnessing long-term spatio
temporal structure in the underlying trajectory distribution.

In this work, we propose HBA-Flow, an exact inference model with coarse-to-
fine block autoregressive structure to encode long term spatio-temporal correla-
tions for multimodal trajectory prediction. The advantage of the proposed frame-
work is that multimodality can be captured over long time horizons by sampling
trajectories at coarse-to-fine spatial and temporal scales (Fig. 1). Our contribu-
tions are: 1. we introduce a block autoregressive exact inference model using Haar
wavelets where flows applied at a certain scale are conditioned on coarse trajec-
tories from previous scale. The trajectories at each level are obtained after the
application of Haar wavelet based transformations, thereby modeling long term
spatio-temporal correlations. 2. Our HBA-Flow model, by virtue of block autore-
gressive structure, integrates a multi-scale block autoregressive prior which fur-
ther improves modeling flexibility by encoding dependencies in the latent space.
3. Furthermore, we show that compared to fully autoregressive approaches [25],
our HBA-Flow model is computationally more efficient as the number of sampling
steps grows logarithmically in trajectory length. 4. We demonstrate the effective-
ness of our approach for trajectory prediction on Stanford Drone and Intersection
Drone, with improved accuracy over long time horizons.

2 Related Work

Pedestrian Trajectory Prediction. Work on traffic participant prediction
dates back to the Social Forces model [18]. More recent works [1,18,35,38] con-
sider the problem of traffic participant prediction in a social context, by taking
into account interactions among traffic participants. Notably, Social LSTM [1]
introduces a social pooling layer to aggregate interaction information of nearby
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traffic participants. An efficient extension of the social pooling operation is devel-
oped in [10] and alternate instance and category layers to model interactions in
[28]. Weighted interactions are proposed in [7]. In contrast, a multi-agent tensor
fusion scheme is proposed in [40] to capture interactions. An attention based
model to effectively integrate visual cues in path prediction tasks is proposed in
[37]. However, these methods mostly assume a deterministic future and do not
directly deal with the challenges of uncertainty and multimodality.
Generative Modeling of Trajectories. To deal with the challenges of uncer-
tainty and multimodality in anticipating future trajectories, recent works employ
either conditional VAEs or GANs to capture the distribution of future trajecto-
ries. This includes, a conditional VAE based model with a RNN based refinement
module [27], a VAE based model [14] that “personalizes” prediction to indi-
vidual agent behavior, a diversity enhancing “Best of Many” loss [5] to better
capture multimodality with VAEs, an expressive normalizing flow based prior
for conditional VAEs [3] among others. However, VAE based models only max-
imize a lower bound on the data likelihood, limiting their ability to effectively
model trajectory data. Other works, use GANs [16,36,40] to generate socially
compliant trajectories. GANs lead to missed modes of the data distribution.
Additionally, [11,34] introduce push-forward policies and motion planning for
generative modeling of trajectories. Determinantal point processes are used in
[39] to better capture diversity of trajectory distributions. The work of [29] shows
that additionally modeling the distribution of trajectory end points can improve
accuracy. However, it is unclear if the model of [29] can be used for predictions
across variable time horizons. In contrast to these approaches, in this work we
directly maximize the exact likelihood of the trajectories, thus better capturing
the underlying true trajectory distribution.
Autoregressive Models. Autoregressive exact inference models like Pixel-
CNN [31] have shown promise in generative modeling. Autoregressive models
for sequential data includes a convolutional autoregressive model [30] for raw
audio and an autoregressive method for video frame prediction [25]. In par-
ticular, for sequential data involving trajectories, recent works [32] propose an
autoregressive method based on visual sources. The main limitation of autore-
gressive approaches is that the models are difficult to parallelize. Moreover, in
case of sequential data, errors tend to accumulate over time [26].
Normalizing Flows. Split coupling normalizing flow models with affine trans-
formations [12] offer computationally efficient tractable Jacobians. Recent meth-
ods [13,23] have therefore focused on split coupling flows which are easier to
parallelize. Flow models are extended in [13] to multiscale architecture and the
modeling capacity of flow models is further improved in [23] by introducing 1×1
convolution. Recently, flow models with more complex invertible components
[8,19] have been leveraged for generative modeling of images. Recent works like
FloWaveNet [21] and VideoFlow [21] adapt the multi-scale architecture of Glow
[23] with sequential latent spaces to model sequential data, for raw audio and
video frames respectively. However, these models still suffer from the limited
modeling flexibility of the split coupling flows. The “squeeze” spatial pooling
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operation in [23] is replaced with a Haar wavelet based downsampling scheme
in [2] along the spatial dimensions. Although this leads to improved results on
image data, this operation is not particularly effective in case of sequential data
as it does not influence temporal receptive fields for trajectories – crucial for
modeling long-term temporal dependencies. Therefore, Haar wavelet downsam-
pling of [2] does not lead to significant improvement in performance on sequen-
tial data (also observed empirically). In this work, instead of employing Haar
wavelets as a downsampling operation for reducing spatial resolution [2] in split
coupling flows, we formulate a coarse-to-fine block autoregressive model where
Haar wavelets produce trajectories at different spatio-temporal resolutions.

3 Block Autoregressive Modeling of Trajectories

In this work, we propose a coarse-to-fine block autoregressive exact inference
model, HBA-Flow, for trajectory sequences. We first provide an overview of con-
ditional normalizing flows which form the backbone of our HBA-Flow model. To
extend normalizing flows for trajectory prediction, we introduce an invertible
transformation based on Haar wavelets which decomposes trajectories into K
coarse-to-fine scales (Fig. 1). This is beneficial for expressing long-range spatio-
temporal correlations as coarse trajectories provide global context for the subse-
quent finer scales. Our proposed HBA-Flow framework integrates the coarse-to-
fine transformations with invertible split coupling flows where it block autore-
gressively models the transformed trajectories at K scales.

3.1 Conditional Normalizing Flows for Sequential Data

We base our HBA-Flow model on normalizing flows [12] which are a type of
exact inference model. In particular, we consider the transformation of the con-
ditional distribution p(y|x) of trajectories y to a distribution p(z|x) over z
with conditional normalizing flows [2,3] using a sequence of n transformations
gi : hi−1 �→ hi, with h0 = y and parameters θi,

y
g1←→ h1

g2←→ h2 · · · gn←→ z. (1)

Given the Jacobians Jθi
= ∂hi/∂hi−1 of the transformations gi, the exact

likelihoods can be computed with the change of variables formula,

log pθ(y|x) = log p(z|x) +
n∑

i=1

log |detJθi
|, (2)

Given that the density p(z|x) is known, the likelihood over y can be com-
puted exactly. Recent works [12,13,23] consider invertible split coupling trans-
formations gi as they provide a good balance between efficiency and modeling
flexibility. In (conditional) split coupling transformations, the input hi is split
into two halves li, ri, and gi applies an invertible transformation only on li
leaving ri unchanged. The transformation parameters of li are dependent on ri
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Fig. 2. Left: HBA-Flow generative model with the Haar wavelet [17] based represen-
tation Fhba. Right: Our multi-scale HBA-Flow model with K scales of Haar based
transformation.

and x, thus hi+1 = [gi+1(li|ri,x), ri]. The main advantage of (conditional) split
coupling flows is that both inference and sampling are parallelizable when the
transformations gi+1 have an efficient closed form expression of the inverse g−1

i+1,
e.g. affine [23] or non-linear squared [41] and unlike residual flows [8].

As most of the prior work, e.g. [2,12,13,23], considers split coupling flows gi

that are designed to deal with fixed length data, these models are not directly
applicable to data of variable length such as trajectories. Moreover, recall that for
variable length sequences, while VideoFlow [25] utilizes split coupling based flows
to model the distribution at each time-step, it is still fully autoregressive in the
temporal dimension, thus offering limited computational efficiency. FloWaveNets
[21] split li and ri along even-odd time-steps for audio synthesis. This even-odd
formulation of the split operation along with the inductive bias [4,20,24] of
split coupling based flow models is limited when expressing local and global
dependencies which are crucial for capturing multimodality of the trajectories
over long time horizons. Next, we introduce our invertible transformation based
on Haar wavelets to model trajectories at various coarse-to-fine levels to address
the shortcomings of prior flow based methods [21,25] for sequential data.

3.2 Haar Wavelet Based Invertible Transform

Haar wavelet transform allows for a simple and easy to compute coarse-to-fine
frequency decomposed representation with a finite number of components unlike
alternatives e.g. Fourier transformations [33]. In our HBA-Flow framework, we
construct a transformation Fhba comprising of mappings fhba recursively applied
across K scales. With this transformation, trajectories can be encoded at dif-
ferent levels of granularity along the temporal dimension. We now formalize
invertible function fhba and its multi-scale Haar wavelet based composition Fhba.
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Single Scale Invertible Transformation. Consider the trajectory at scale k
as yk = [y1

k, · · · ,yTk

k ], where Tk is the number of timesteps of trajectory yk. Here,
at scale k = 1, y1 = y is the input trajectory. Each element of the trajectory
is a vector, yj

k ∈ R
d encoding spatial information of the traffic participant.

Our proposed invertible transformation fhba at any scale k is a composition,
fhba = fhaar ◦ feo. First, feo transforms the trajectory into even (ek) and odd
(ok) downsampled trajectories,

feo(yk) = ek,ok where, ek = [y2
k, · · · ,yTk

k ] and ok = [y1
k, · · · ,yTk−1

k ]. (3)

Next, fhaar takes as input the even (ek) and odd (ok) downsampled trajecto-
ries and transforms them into coarse (ck) and fine (fk) downsampled trajectories
using a scalar “mixing” parameter α. In detail,

fhaar(ek,ok) = fk, ck where, ck = (1 − α)ek + αok and
fk = ok − ck = (1 − α)ok + (α − 1)ek

(4)

where, the coarse (ck) trajectory is the element-wise weighted average of the
even (ek) and odd (ok) downsampled trajectories and the fine (fk) trajectory
is the element-wise difference to the coarse downsampled trajectory. The coarse
trajectories (ck) provide global context for finer scales in our block autoregres-
sive approach, while the fine trajectories (fk) encode details at multiple scales.
We now discuss the invertibilty of this transformation fhba and compute the
Jacobian.

Lemma 1. The generalized Haar transformation fhba = fhaar ◦ feo is invertible
for α ∈ [0, 1) and the determinant of the Jacobian of the transformation fhba =
fhaar ◦ feo for sequence of length Tk with yj

k ∈ R
d is detJhba = (1 − α)(d·Tk)/2.

We provide the proof in the supplementary material. This property allows
our HBA-Flow model to exploit fhba for spatio-temporal decomposition of the
trajectories y while remaining invertible with a tractable Jacobian for exact
inference. Next, we use this transformation fhba to build the coarse-to-fine multi-
scale Haar wavelet based transformation Fhba and discuss its properties.
Multi-scale Haar Wavelet Based Transformation. To construct our gen-
eralized Haar wavelet based transformation Fhba, the mapping fhba is applied
recursively at K scales (Fig. 2, left). The transformation fhba at a scale k applies
a low and a high pass filter pair on the input trajectory yk resulting in the
coarse trajectory ck and the fine trajectory fk with high frequency details. The
coarse (spatially and temporally sub-sampled) trajectory (ck) at scale k is then
further decomposed by using it as the input trajectory yk+1 = ck to fhba at
scale k + 1. This is repeated at K scales, resulting in the complete Haar wavelet
transformation Fhba(y) = [f1, · · · , fK , cK ] which captures details at multiple (K)
spatio-temporal scales. The finest scale f1 models high-frequency spatio-temporal
information of the trajectory y. The subsequent scales fk represent details at
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coarser levels, with cK being the coarsest transformation which expresses the
“high-level” spatio-temporal structure of the trajectory (Fig. 1).

Next, we show that the number of scales K in Fhba is upper bounded by
the logarithm of the length of the sequence. This implies that Fhba, when inte-
grated in the multi-scale block auto-regressive model provides a computationally
efficient setup for generating trajectories.

Lemma 2. The number of scales K of the Haar wavelet based representation
Fhba is K ≤ log(T1), for an initial input sequence y1 of length T1.

Proof. The Haar wavelet based transformation fhba halves the length of trajec-
tory yk at each level k. Thus, for an initial input sequence y1 of length T1, the
length of the coarsest level K in Fhba(y) is |cK |= T1/2K ≥ 1. Thus, K ≤ log(T1).

3.3 Haar Block Autoregressive Framework

HBA-Flow Model. We illustrate our HBA-Flow model in Fig. 2. Our HBA-
Flow model first transforms the trajectories y using Fhba, where the invertible
transform fhba is recursively applied on the input trajectory y to obtain fk and
ck at scales k ∈ {1, · · · ,K}. Therefore, the log-likelihood of a trajectory y under
our HBA-Flow model can be expressed using the change of variables formula as,

log(pθ(y|x)) = log(pθ(f1, c1|x)) + log |det (Jhba)1 |

= log(pθ(f1, · · · , fK , cK |x)) +
K∑

i=1

log |det (Jhba)i |. (5)

Next, our HBA-Flow model factorizes the distribution of fine trajectories
w.l.o.g. such that fk at level k is conditionally dependent on the representations
at scales k + 1 to K,

log(pθ(f1, · · · , fK , cK |x)) = log(pθ(f1|f2, · · · , fK , cK ,x)) + · · ·
+ log(pθ(fK |cK ,x)) + log(pθ(cK |x)).

(6)

Finally, note that [fk+1, · · · , fK , cK ] is the output of the (bijective) trans-
formation Fhba(ck) where fhba is recursively applied to ck = yk+1 at scales
{k + 1, · · · ,K}. Thus HBA-Flow equivalently models pθ(fk|fk+1, · · · , cK ,x) as
pθ(fk|ck,x),

log(pθ(y|x)) = log(pθ(f1|c1,x)) + · · · + log(pθ(fK |cK ,x))

+ log(pθ(cK |x)) +
K∑

i=1

log |det (Jhba)i |. (7)

Therefore, as illustrated in Fig. 2 (right), our HBA-Flow models the distri-
bution of each of the fine components fk block autoregressively conditioned on
the coarse representation ck at that level. The distribution pθ(fk|ck,x) at each
scale k is modeled using invertible conditional split coupling flows (Fig. 2, right)
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[21], which transform the input distribution to the distribution over latent “pri-
ors” zk. This enables our framework to model variable length trajectories. The
log-likelihood with our HBA-Flow approach can be expressed using the change
of variables formula as,

log(pθ(fk|ck,x)) = log(pφ(zk|ck,x)) + log |det(Jsc)k| (8)

where, log |det(Jsc)k| is the log determinant of Jacobian (Jsc)k of the split
coupling flow at level k. Thus, the likelihood of a trajectory y under our HBA-
Flow model can be expressed exactly using Eqs. (7) and (8).

The key advantage of our approach is that after spatial and temporal down-
sampling of coarse scales, it is easier to model long-term spatio-temporal depen-
dencies. Moreover, conditioning the flows at each scale on the coarse trajec-
tory provides global context as the downsampled coarse trajectory effectively
increases the spatio-temporal receptive field. This enables our HBA-Flows bet-
ter capture multimodality in the distribution of likely future trajectories.
HBA-Prior. Complex multimodel priors can considerably increase the model-
ing flexibility of generative models [3,21,25]. The block autoregressive structure
of our HBA-Flow model allows us introduce a Haar block autoregressive prior
(HBA-Prior) over z = [z1, · · · , zfK , zcK ] in Eq. (8), where zk is the latent repre-
sentation for scales k ∈ {1, · · · ,K−1} and zfK , zcK are the latents for the coarse
and fine representations scales K. The log-likelihood of the prior factorizes as,

log(pφ(z|x)) = log(pφ(z1|z2, · · · , zfK , zcK ,x)) + · · ·
+ log(pφ(zfK |zcK ,x)) + log(pφ(zcK |x)).

(9)

Each coarse level representation ck is the output of a bijective transformation
of the latent variables [zk+1, · · · , zfK zcK ] through the invertible split coupling
flows and the transformations fhba at scales {k + 1, · · · ,K}. Thus, HBA-Prior
models pφ(zk|zk+1, · · · , zfK , zcK ,x) as pφ(zk|ck,x) at every scale (Fig. 2, left).
The log-likelihood of the prior can also be expressed as,

log(pφ(z|x)) = log(pφ(z1|c1,x)) + · · · + log(pφ(zK−1|cK−1,x))

+ log(pφ(zfK |cK ,x)) + log(pφ(zcK |x)).
(10)

We model pφ(zk|ck,x) as conditional normal distributions which are multi-
modal as a result of the block autoregressive structure. In comparison to the
fully autoregressive prior in [25], our HBA-Prior is efficient as it requires only
O(log(T1)) sampling steps.
Analysis of Sampling Time. From Eq. (6) and Fig. 2 (left), our HBA-Flow
model autoregressively factorizes across the fine components fk at K scales. From
Lemma 2, K ≤ log(T1). At each scale our HBA-Flow samples the fine compo-
nents fk using split coupling flows, which are easy to parallelize. Thus, given
enough parallel resources, our HBA-Flow model requires maximum K ≤ log(T1)
i.e. O(log(T1)) sampling steps and is significantly more efficient compared to
fully autoregressive approaches e.g. VideoFlow [25], which require O(T1) steps.
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Table 1. Five fold cross validation on the Stanford Drone dataset. Lower is better for
all metrics. Visual refers to additional conditioning on the last observed frame. Top:
state of the art, Middle: Baselines and ablations, Bottom: Our HBA-Flow.

Method Visual Er @ 1sec Er @ 2sec Er @ 3sec Er @ 4sec -CLL Speed

“Shotgun” [32] – 0.7 1.7 3.0 4.5 91.6 –

DESIRE-SI-IT4 [27] � 1.2 2.3 3.4 5.3 – –

STCNN [32] � 1.2 2.1 3.3 4.6 – –

BMS-CVAE [5] � 0.8 1.7 3.1 4.6 126.6 58

CF-VAE [3] – 0.7 1.5 2.5 3.6 84.6 47

CF-VAE [3] � 0.7 1.5 2.4 3.5 84.1 88

Auto-regressive [25] – 0.7 1.5 2.6 3.7 86.8 134

FloWaveNet [21] – 0.7 1.5 2.5 3.6 84.5 38

FloWaveNet [21] + HWD [2] – 0.7 1.5 2.5 3.6 84.4 38

FloWaveNet [21] � 0.7 1.5 2.4 3.5 84.1 77

HBA-Flow (Ours) – 0.7 1.5 2.4 3.4 84.1 41

HBA-Flow + Prior (Ours) – 0.7 1.4 2.3 3.3 83.4 43

HBA-Flow + Prior (Ours) � 0.7 1.4 2.3 3.2 83.1 81

4 Experiments

We evaluate our approach for trajectory prediction on two challenging real world
datasets – Stanford Drone [35] and Intersection Drone [6]. These datasets contain
trajectories of traffic participants including pedestrians, bicycles, cars recorded
from an aerial platform. The distribution of likely future trajectories is highly
multimodal due to the complexity of the traffic scenarios e.g. at intersections.
Evaluation Metrics. We are primarily interested in measuring the match of the
learned distribution to the true distribution. Therefore, we follow [3,5,27,32] and
use Euclidean error of the top 10% of samples (predictions) and the (negative)
conditional log-likelihood (-CLL) metrics. The Euclidean error of the top 10%
of samples measures the coverage of all modes of the target distribution and is
relatively robust to random guessing as shown in [3].
Architecture Details. We provide additional architecture details in the sup-
plemental material.

4.1 Stanford Drone

We use the standard five-fold cross validation evaluation protocol [3,5,27,32]
and predict the trajectory up to 4 s into the future. We use the Euclidean error
of the top 10% of predicted trajectories at the standard (1/5) resolution using 50
samples and the CLL metric in Table 1. We additionally report sampling time
for a batch of 128 samples in milliseconds.

We compare our HBA-Flow model to the following state-of-the-art models:
The handcrafted “Shotgun” model [32], the conditional VAE based models of
[3,5,27] and the autoregressive STCNN model [32]. We additionally include the
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Fig. 3. Mean top 10% predictions (Blue - Groudtruth, Yellow - FloWaveNet [21], Red
- Our HBA-Flow model) and predictive distributions on Intersection Drone dataset.
The predictions of our HBA-Flow model are more diverse and better capture the mul-
timodality the future trajectory distribution. (Color figure online)

various exact inference baselines for modeling trajectory sequences: the autore-
gressive flow model of VideoFlow [25], FloWaveNet [21] (without our Haar
wavelet based block autoregressive structure), FloWaveNet [21] with the Haar
wavelet downsampling of [2] (FloWaveNet + HWD), our HBA-Flow model with
a Gaussian prior (without our HBA-Prior). The FloWaveNet [21] baselines serves
as ideal ablations to measure the effectiveness of our block autoregressive HBA-
Flow model. For fair comparison, we use two scales (levels) K = 2 with eight
non-linear squared split coupling flows [41] each, for both our HBA-Flow and
FloWaveNet [21] models. Following [3,32] we additionally experiment with con-
ditioning on the last observed frame using a attention based CNN (indicated by
“Visual” in Table 1).

Method mADE ↓ mFDE ↓
SocialGAN [16] 27.2 41.4
MATF GAN [40] 22.5 33.5
SoPhie [36] 16.2 29.3
Goal Prediction [11] 15.7 28.1
CF-VAE [3] 12.6 22.3
HBA-Flow + Prior (Ours) 10.8 19.8

Table 2. Evaluation on the Stanford
Drone using the split of [11,36,40].

We observe from Table 1 that our
HBA-Flow model outperforms both
state-of-the-art models and baselines.
In particular, our HBA-Flow model
outperforms the conditional VAE based
models of [3,5,27] in terms of Euclidean
distance and -CLL. Further, our HBA-
Flow exhibits competitive sampling
speeds. This shows the advantage of
exact inference in the context of gen-
erative modeling of trajectories – leading to better match to the groundtruth
distribution. Our HBA-Flow model generates accurate trajectories compared to
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the VideoFlow [25] baseline. This is because unlike VideoFlow, errors do not
accumulate in the temporal dimension of HBA-Flow. Our HBA-Flow model
outperforms the FloWaveNet model of [21] with comparable sampling speeds
demonstrating the effectiveness of the coarse-to-fine block autoregressive struc-
ture of our HBA-Flow model in capturing long-range spatio-temporal dependen-
cies. This is reflected in the predictive distributions and the top 10% of predic-
tions of our HBA-Flow model in comparison with FloWaveNet [21] in Fig. 3. The
predictions of our HBA-Flow model are more diverse and can more effectively
capture the multimodality of the trajectory distributions especially at complex
traffic situations e.g. intersections and crossings. We provide additional examples
in the supplemental material. We also observe in Table 1 that the addition of
Haar wavelet downsampling [2] to FloWaveNets [21] (FloWaveNet + HWD) does
not significantly improve performance. This illustrates that Haar wavelet down-
sampling as used in [2] is not effective in case of sequential trajectory data as it is
primarily a spatial pooling operation for image data. Finally, our ablations with
Gaussian priors (HBA-Flow) additionally demonstrate the effectiveness of our
HBA-Prior (HBA-Flow + Prior) with improvements with respect to accuracy.
We further include a comparison using the evaluation protocol of [11,35–37] in
Table 2. Here, only a single train/test split is used. We follow [3,11] and use the
minimum average displacement error (mADE) and minimum final displacement
error (mFDE) as evaluation metrics. Similar to [3,11] the minimum is calcu-
lated over 20 samples. Our HBA-Flow model outperforms the state-of-the-art
demonstrating the effectiveness of our approach.

Observed
Mean Top 10%

B - GT, Y -[21], R - Ours
FloWaveNet [21]

Predictions
HBA-Flow (Ours)

Predictions

Fig. 4. Mean top 10% predictions (Blue - Groudtruth, Yellow - FloWaveNet [21], Red -
Our HBA-Flow model) and predictive distributions on Intersection Drone dataset. The
predictions of our HBA-Flow model are more diverse and better capture the modes of
the future trajectory distribution. (Color figure online)
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Table 3. Five fold cross validation on the Intersection Drone dataset.

Method Er @ 1sec Er @ 2sec Er @ 3sec Er @ 4sec Er @ 5sec -CLL

BMS-CVAE [5] 0.25 0.67 1.14 1.78 2.63 26.7

CF-VAE [3] 0.24 0.55 0.93 1.45 2.21 21.2

FloWaveNet [21] 0.23 0.50 0.85 1.31 1.99 19.8

FloWaveNet [21] + HWD [2] 0.23 0.50 0.84 1.29 1.96 19.5

HBA-Flow + Prior (Ours) 0.19 0.44 0.82 1.21 1.74 17.3

4.2 Intersection Drone

We further include experiments on the Intersection Drone dataset [6]. The
dataset consists of trajectories of traffic participants recorded at German inter-
sections. In comparison to the Stanford Drone dataset, the trajectories in this
dataset are typically longer. Moreover, unlike the Stanford Drone dataset which
is recorded at a University Campus, this dataset covers more “typical” traffic
situations. Here, we follow the same evaluation protocol as in Stanford Drone
dataset and perform a five-fold cross validation and evaluate up to 5 s into the
future.

We report the results in Table 3. We use the strongest baselines from Table 1
for comparison to our HBA-Flow + Prior model (with our HBA-Prior), with
three scales, each having eight non-linear squared split coupling flows [41]. For
fair comparison, we compare with a FloWaveNet [21] model with three levels and
eight non-linear squared split coupling flows per level. We again observe that our
HBA-Flow leads to much better improvement with respect to accuracy over the
FloWaveNet [21] model. Furthermore, the performance gap between HBA-Flow
and FloWaveNet increases with longer time horizons. This shows that our app-
roach can better encode spatio-temporal correlations. The qualitative examples
in Fig. 4 from both models show that our HBA-Flow model generates diverse
trajectories and can better capture the modes of the future trajectory distribu-
tion, thus demonstrating the advantage of the block autoregressive structure of
our HBA-Flow model. We also see that our HBA-Flow model outperforms the
CF-VAE model [3], again illustrating the advantage of exact inference.

5 Conclusion

In this work, we presented a novel block autoregressive HBA-Flow framework
taking advantage of the representational power of autoregressive models and
the efficiency of invertible split coupling flow models. Our approach can bet-
ter represent the multimodal trajectory distributions capturing the long range
spatio-temporal correlations. Moreover, the block autoregressive structure of our
approach provides for efficient O(log(T )) inference and sampling. We believe
that accurate and computationally efficient invertible models that allow exact
likelihood computations and efficient sampling present a promising direction of
research of anticipation problems in autonomous systems.
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Abstract. Localizing objects in 3D space and understanding their asso-
ciated 3D properties is challenging given only monocular RGB images.
The situation is compounded by the loss of depth information during
perspective projection. We present Center3D, a one-stage anchor-free
approach and an extension of CenterNet, to efficiently estimate 3D loca-
tion and depth using only monocular RGB images. By exploiting the
difference between 2D and 3D centers, we are able to estimate depth
consistently. Center3D uses a combination of classification and regres-
sion to understand the hidden depth information more robustly than
each method alone. Our method employs two joint approaches: (1) LID:
a classification-dominated approach with sequential Linear Increasing
Discretization. (2) DepJoint: a regression-dominated approach with
multiple Eigen’s transformations [6] for depth estimation. Evaluating on
KITTI dataset [8] for moderate objects, Center3D improved the AP in
BEV from 29.7% to 43.5%, and the AP in 3D from 18.6% to 40.5%.
Compared with state-of-the-art detectors, Center3D has achieved a bet-
ter speed-accuracy trade-off in realtime monocular object detection.

1 Introduction and Related Work

3D object detection is currently one of the most challenging topics for both indus-
try and academia. Applications of related developments can easily be found in
the areas of robotics, autonomous driving [4,18,21] etc. The goal is to have
agents with the ability to identify, localize, react, and interact with objects in
their surroundings. 2D object detection approaches [11,17,26] achieved impres-
sive results in the last decade. In contrast, inferring associated 3D properties
from a 2D image turned out to be a challenging problem in computer vision,
due to the intrinsic scale ambiguity of 2D objects and the lack of depth infor-
mation. Hence many approaches involve additional sensors like LiDAR [20,23]
or radar [22] to measure depth. However, there are reasons to prefer monocular-
based approaches too. LiDAR has reduced range in adverse weather conditions,
while visual information of a simple RGB camera is more dense and also more
Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-71278-5 21) contains supplementary material, which is
available to authorized users.
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robust under rain, snow, etc. Another reason is that cameras are currently signif-
icantly more economical than high precision LiDARs and are already available
in e.g. robots, vehicles, etc. Additionally, the processing of single RGB images is
much more efficient and faster than processing 3D point clouds in terms of CPU
and memory utilization.

These compelling reasons have led to research exploring the possibility of
3D detection solely from monocular images [1,2,9,12,14,16,19]. The network
structure of most 3D detectors starts with a 2D region proposal based (also
called anchor based) approach, which enumerates an exhaustive set of predefined
proposals over the image plane and classifies/regresses only within the region of
interest (ROI). MonoGRNet [16] consists of parameter-specific subnetworks. All
further regressions are guided by the detected 2D bounding box. M3D-RPN [1]
demonstrates a single-shot model with a standalone 3D RPN, which generates
2D and 3D proposals simultaneously. Additionally, the specific design of depth-
aware convolutional layers improved the network’s 3D understanding. With the
help of an external network, Multi-Fusion [24] estimates a disparity map and
subsequently a LiDAR point cloud to improve 3D detection. Due to multi-stage
or anchor-based pipelines, most of them perform slowly.

Most recently, to overcome thedisadvantages above, 2Danchor-free approaches
have been used by researchers [2,5,11,26]. They model objects with keypoints like
centers, corners or points of interest of 2D bounding boxes. Anchor-free approaches
are usually one-stage, thus eliminating the complexity of designing a set of anchor
boxes and fine tuning hyperparameters. Our paper is also an extension of one of
theseworksCenterNet:Objects asPoints [26], which proposed a possibility to asso-
ciate a 2D anchor free approach with a 3D detection.

Nevertheless, the performance of CenterNet is still restricted by the fact
that a 2D bounding box and a 3D cuboid are sharing the same center point.
In this paper we show the difference between the center points of 2D bounding
boxes and the projected 3D center points of objects, which are almost never at
the same image position. Comparing CenterNet, our main contributions are as
follows: 1. We additionally regress the 3D centers from 2D centers to locate the
objects in the image plane and in 3D space more properly. 2. By examining depth
estimation in monocular images, we show that a combination of classification
and regression explores visual clues better than using only a single approach.
An overview of our approach is shown in Fig. 1.

We introduce two approaches to validate the second conclusion: (1) Motivated
by DORN [7] we consider depth estimation as a sequential classification with
residual regression. According to the statistics of the instances in the KITTI
dataset, a novel discretization strategy is used. (2) We divide the complete depth
range of objects into two bins, foreground and background, either with overlap
or associated. Classifiers indicate which depth bin or bins the object belongs to.
With the help of Eigen’s transformation [6], two regressors are trained to gather
specific features for closer and farther away objects, respectively. For illustration
see the depth part in Fig. 1.

Compared to CenterNet, our approach improved the AP of easy, moderate,
hard objects in BEV from 31.5, 29.7, 28.1 to 56.7, 43.5, 41.2, in 3D space from
19.5, 18.6, 16.6 to 52.5, 40.5, 34.9, which is comparable with state-of-the-art
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Fig. 1. Overview of Center3D. A monocular input image is fed to the backbone DLA-
34, which generates feature maps. Heatmaps and 2D offset are subsequently used to
detect the 2D center [26]. The latter is relocated by 3D offset to propose the 3D
center, which is illustrated in the bottom-left of the figure. By applying a combination
of regression and classification, DepJoint or LID, Center3D is inferring the depth of the
associated 3D center. Depth, together with regressed dimensions, orientation, and 3D
center are finally used to propose the 3D BBox. Our contributions comparing CenterNet
are indicated in bold or with dashed lines.

approaches. Center3D achieves a better speed-accuracy trade-off on the KITTI
dataset in the field of monocular 3D object detection. Details are given in Table 1
and discussed in Sect. 3.

2 Center3D

2.1 CenterNet Baseline

The 3D detection approach of CenterNet described in [26] is the basis of our
work. It models an object as a single point: the center of its 2D bounding box.
For each input monocular RGB image, the original network produces a heatmap
for each category, which is trained with focal loss [13]. The heatmap describes
a confidence score for each location, the peaks in this heatmap thus represent
the possible keypoints of objects. All other properties are then regressed and
captured directly at the center locations on the feature maps respectively. For
generating a complete 2D bounding box, in addition to width and height, a
local offset will be regressed to capture the quantization error of the center
point caused by the output stride. For 3D detection and localization, the addi-
tional abstract parameters, i.e. depth, 3D dimensions and orientation, will be
estimated separately by adding a head for each of them. Following the output
transformation of Eigen et al. [6] for depth estimation, CenterNet converts the
feature output into an exponential area to suppress the depth space.

2.2 Regressing 3D Center Points

The 2D performance of CenterNet is very good, while the APs in 3D perform
poorly, as the first row shown in Table 1. This is caused by the difference between
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Fig. 2. 3D bounding box estimation on KITTI validation set. first row: the output of
CenterNet. Projected 3D bounding boxes located around estimated 2D centers. The
position of centers is generated by the peak of the Gaussian kernel on the heatmap.
second row: the ground truth of input images. Here the 2D (red) and 3D (green)
projected bounding boxes with their center points are shown. third row: the output
of Center3D. The 3D cuboid is based on 3D center points shifted from 2D space with
offset. More qualitative results can be found in the supplementary material. (Color
figure online)

the center point of the visible 2D bounding box in the image and the projected
center point of the complete object from physical 3D space. This is illustrated in
the first two rows of Fig. 2. A center point of the 2D bounding box for training
and inference is enough for detecting and decoding 2D properties, e.g. width and
height, while all additionally regressed 3D properties, e.g. depth, dimension and
orientation, should be consistently decoded from the projected 3D center of the
object. The gap between 2D and 3D center points decreases for faraway objects
and for objects which appear in the center area of the image plane. However the
gap becomes significant for objects that are close to the camera or on the image
boundary. Due to perspective projection, this offset will increase as vehicles get
closer. Close objects are especially important for technical functions based on
perception (e.g. in autonomous driving or robotics).

Hence we split the 2D and 3D tasks into separate parts, as shown in Fig. 1.
Assuming that the centers of 2D bounding boxes is ci2D = (xi

2D, yi
2D), and the

3D projected center points of cuboids from physical space is ci3D = (xi
3D, yi

3D).
We still locate an object with ci2D, which is definitively included in the image,
and determine the 2D bounding box of the visible part with wi and hi. For the
3D task we relocate ci3D by adding two head layers on top of the backbone and
regress the offset Δci = (xi

3D−xi
2D, yi

3D−yi
2D) from 2D to 3D centers. Given the

projection matrix P in KITTI, we now determine the 3D location C = (X,Y,Z)
by converting the transformation in homogeneous coordinates.
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SID from BEV

LID from BEV

Fig. 3. The comparison of the discretization strategies LID (first row) and SID (second
row) from BEV between 0 m and 54 m, with a setting of dmin = 1m, dmax = 91 m
and N = 80. The solid red lines indicate the threshold of each bin, the solid rectan-
gles represent the ground truth vehicles in BEV, while blue rectangles represent the
estimations.

2.3 Enriching Depth Information

This section introduces two novel approaches to infer depth cues over monoc-
ular images: First, we adapt the advanced DORN [7] approach from pixel-wise
to instance-wise depth estimation. We introduce a novel linear-increasing dis-
cretization (LID) strategy to divide continuous depth values into discrete ones,
which distributes the bin sizes more evenly than spacing-increasing discretization
(SID) in DORN. Additionally, we employ a residual regression for refinement of
both discretization strategies. Second, with the help of a reference area (RA)
we describe the depth estimation as a joint task of classification and regression
(DepJoint) in exponential range.

LID Usually a faraway object with higher depth value and less visible features
will induce a higher loss, which could dominate the training and increases uncer-
tainty. On the other hand these targets are usually less important for functions
based on object detection. To this end, DORN solves the ordinal regression prob-
lem by quantizing depth into discrete bins with SID strategy. It discretizes the
given continuous depth interval [dmin, dmax] in log space and hence down-weight
the training loss in faraway regions with higher depth values, see Eq. 1. How-
ever, such a discretization often yields too dense bins within unnecessarily close
range, where objects barely appear (as shown in Fig. 3 first row). According
to the histogram in Fig. 4 most instances of the KITTI dataset are between
5 m and 80 m. Assuming that we discretize the range between dmin = 1 m and
dmax = 91 m into N = 80 sub-intervals, 29 bins will be involved within just 5 m.
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Fig. 4. left: Histogram of the depth. The analysis is based on instances in the KITTI
dataset. right: Transformation of Eigen et al. [6] according to depth estimation. The
x-axis indicates the feature output, and the y-axis is the depth output after transfor-
mation (given in meter).

Thus, we use the LID strategy to ensure the lengths of neighboring bins increase
linearly instead of log-wise. For this purpose, assume the length of the first bin is
δ. Then the length of the next bin is always δ longer than the previous bin. Now
we can encode an instance depth d in lint = �l� ordinal bins according to LID
and SID respectively. Additionally, we reserve and regress the residual decimal
part lres = l − lint for both discretization strategies:

SID: l = N
log d − log dmax

log dmax − log dmin
,

LID: l = −0.5 + 0.5

√
1 +

8(d − dmin)
δ

, δ =
2(dmax − dmin)

N(1 + N)
.

(1)

During the inference phase, DORN counts the number of activated bins with
probability higher than 0.5, as estimated by the ordinal label l̂int, and uses the
median value of the l̂int-th bin as the estimated depth in meters. The notation
of symbols with ·̂ denotes the output of estimation. However, relying on discrete
median values of bins only is not precise enough for instance localization. Hence
we modify the training to be a combination of classification and regression.
For classification we follow the ordinal loss with binary classification and add
a shared layer to regress the residuals lres additionally. Given an input RGB
image I ∈ R

W×H×3, where W represents the width and H the height of I, we
generate a depth feature map D̂ ∈ R

W
R ×H

R ×(2N+1), where R is the output stride.
Backpropagation is only applied on the centers of 2D bounding boxes located at
ĉi2D, where i ∈ {0, 1, ...,K−1} indicates the instance number of total K instances
over the image. The final loss Ldep is defined as the sum of the residual loss Li

res

and ordinal loss Li
ord:
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Ldep =
K−1∑
i=0

(Li
res + Li

ord), Li
res = SmL1(l̂ires, l

i
res),

Li
ord = −

⎛
⎝li−1∑

n=0

log Pi
n +

N−1∑
n=li

log(1 − Pi
n)

⎞
⎠ , Pi

n = P
(
l̂i > n

)
,

(2)

where Pi
n is the probability that the i-th instance is farther away than the n-th

bin, and SmL1 represents the smooth L1 loss function [15]. During inference,
the amount of activated bins will be counted up as l̂iint. We refine the result by
taking into account the residual part, l̂ = l̂iint + l̂ires, and decode the result by
inverse-transformation of Eq. 1.

DepJoint The transformation described by Eigen et al. [6] converts the output
depth to an exponential scale. It generates a depth feature map D̂ ∈ R

W
R ×H

R ×1.
The output d̂ at the estimated center point of a 2D bounding box ĉi2D is con-
verted to Φ(d̂) = e−d̂. This enriches the depth information for closer objects by
putting more feature values into smaller ranges. As shown on the right panel of
Fig. 4, the feature map values between −4 and 5 correspond to a depth up to
54.60 m, while feature values corresponding to more distant objects up to 148.41
m account for only 10% of the feature output range [−5, 5]. The transformation is
reasonable, since closer objects are of higher importance. Eigen’s transformation
shows an impressive precision on closer objects but disappoints on objects which
are farther away. To improve on the latter, we introduce the DepJoint approach,
which treats the depth estimation as a joint classification and regression. Com-
pared to using Eigen’s transformation solely, it also emphasizes the distant field.
DepJoint divides the depth range [dmin, dmax] in two bins with scale parameter
α and β:

Bin 1 = [dmin, (1 − α)dmin + αdmax],
Bin 2 = [(1 − β)dmin + βdmax, dmax].

(3)

Each bin will only be activated during training when the object lies within the
appropriate interval. The first bin is used to regress the absolute value of depth
di, while the second bin is used to regress the residual value of depth d̃i =
dmax −di. With this transformation, a larger depth value will be supported with
more features. We use the binary Cross-Entropy loss CEb(·) for classification of
each bin b and regress di and d̃i = dmax −di with L1 loss L1(·) subsequent to an
output transformation Φ(·). Hence the output of the depth head is D̂ ∈ R

W
R ×H

R ×6

and the loss for training is defined as:

Ldep =
K−1∑
i=0

(Li
cls + Li

reg

)
, Li

cls =
∑
b

CEb(di),

Li
reg = 11

(
di

) · L1
(
di, Φ

(
d̂i1

))
+ 12

(
di

) · L1
(
d̃i, Φ

(
d̂i2

))
,

(4)
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where d̂ib represents the regression output for the b-th bin and i-th instance.
The indicator function 1b

(
di

)
will only be activated, when di stays in b-th Bin.

Training is only applied on 2D centers of bounding boxes. During inference the
weighted average will be decoded as the final result:

d̂i = Pi
Bin 1

(
d̂i

)
· Φ

(
d̂i1

)
+ Pi

Bin 2

(
d̂i

)
·
(
dmax − Φ

(
d̂i2

))
, (5)

where P i
Bin b denotes the normalized probability of d̂i.

2.4 Reference Area

Conventionally the regressed values of a single instance will be trained and
accessed only on a single center point, which reduces the calculation. However, it
also restricts the perception field of regression and affects reliability. To overcome
these disadvantages, we apply the concept used by Eskil et al. [9] and Krishna
et al. [10]. Instead of relying on a single point, a Reference Area (RA) based
on the 2D center point is defined within the 2D bounding box, whose width and
height are set accordingly with a proportional value γ. All values within this
area contribute to regression and classification. If RAs overlap, the area closest
to the camera dominates, since only the closest instance is completely visible on
the monocular image. During inference all predictions in the related RA will be
weighted equally. Supplementary material contain additional details.

3 Experiments

3.1 Implementation Details

We performed experiments on the KITTI object detection benchmark [8], which
contains 7481 training images and 7518 testing images. All instances are divided
into easy, moderate and hard targets according to visibility in the image [8]. To
numerically compare our results with other approaches we use intersection over
union (IoU) based on 2D bounding boxes (AP), bounding boxes in Bird’s-eye
view (BEV AP) and in 3D space (3D AP). Most recently, the KITTI evaluation
benchmark has been using 40 instead of 11 recalls. However, many methods
only evaluated the average precision on 11 recalls (AP11) in percentage. For fair
comparison, we show here firstly AP11 on the validation set and then AP40 on
the official test set.

Like most previous works, and in particular CenterNet, we firstly only con-
sider the “Car” category and follow the standard training/validation split strat-
egy in [3], which leads to 3712 images for training and 3769 images for validation.
In particular, we keep the modified Deep Layer Aggregation (DLA)-34 [25] as
the backbone. Regarding different approaches, we add specific head layers, which
consist of one 3 × 3 convolutional layer with 256 channels, ReLu activation and
a 1×1 convolution with desired output channels at the end. We trained the net-
work from scratch in PyTorch [15] on 2 GPUs (1080Ti) with batch sizes 7 and
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Table 1. AP11(%) on KITTI validation set at 0.5 IoU threshold. We focus on the
car detection result here. RT indicates runtime in ms. ct3d denotes CenterNet with
3D center points instead of 2D center points. eigen represents the original Eigen’s
transformation in CenterNet, while lid refers to the LID and dj represents the DepJoint
approach. ra indicates a reference area supporting regression tasks. The best result is
marked in bold, the second best is underlined. E, M and H indicate Easy, Moderate
and Hard instances.

Approach
RT 2D AP BEV / 3D AP
(ms) E M H E M H

CenterNet [26] 43 97.1 87.9 79.3 31.5 / 19.5 29.7 / 18.6 28.1 / 16.6
CenterNet(ct3d) - 87.1 85.6 69.8 46.8 / 39.9 37.9 / 31.4 32.7 / 30.1

Mono3D [2] - 92.3 88.7 79.0 30.5 / 25.2 22.4 / 18.2 19.2 / 15.5
MonoGRNet [16] 60 - - - - / 50.5 - / 37.0 - / 30.8
Multi-Fusion [24] 120 - - - 55.0 / 47.9 36.7 / 29.5 31.3 / 26.4
M3D-RPN [1] 161 90.2 83.7 67.7 55.4 / 49.0 42.5 / 39.6 35.3 / 33.0

Center3D(+eigen) 47 96.7 88.0 79.4 47.6 / 38.0 37.6 / 30.8 32.4 / 29.4
Center3D(+lid) 53 96.9 87.5 79.0 51.3 / 44.0 39.3 / 35.0 33.9 / 30.6
Center3D(+dj) 54 96.1 86.8 78.2 55.4 / 49.7 41.7 / 38.1 35.6 / 32.9
Center3D(+dj+ra) 56 96.8 88.2 79.6 56.7/ 52.5 43.5/ 40.5 41.2/ 34.9

Table 2. AP40(%) on KITTI test set at 0.7 IoU threshold. We show the car, pedestrain
and cyclist detection results here. E, M and H indicate Easy, Moderate and Hard
instances.

Car

Approach
2D AP AOS BEV/3D AP

E M H E M H E M H

M3D-RPN [1] 89.0 85.1 69.3 88.4 82.8 67.1 21.0/14.8 13.7/9.7 10.2/7.4

Center3D 95.1 85.1 73.1 93.1 82.5 70.8 18.9/12.0 14.0/9.3 12.4/8.1

BEV/3D AP
Pedestrain Cyclist

E M H E M H

M3D-RPN [1] 5.7/4.9 4.1/3.5 3.3/2.9 1.3/0.9 0.8/0.7 0.8/0.5

Center3D 5.7/4.9 3.7/3.4 3.5/2.8 5.3/4.3 2.8/2.4 2.7/2.1

9. We trained the network for 70 epochs with an initial learning rate of 1.25e−4

or 2.4e−4, which drops by a factor of 10 at 45 and 60 epochs if not specified
otherwise.

3.2 Center3D

We can bridge the gap between 2D and 3D center points by adding 2 specific
layers to regress the offset Δci. For demonstration we perform an experiment,
which is indicated as CenterNet(ct3d) in Table 1. It models the object as a
projected 3D center point with 4 distances to boundaries. The visible object,
whose 3D center point is out of the image, is ignored during training. As Table 1
shows, for easy targets ct3d increases the BEV AP by 48.6% and the 3D AP by
104.6% compared to the baseline of CenterNet. This is achieved by the proper
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Table 3. Experimental results of LID. We show the comparison between SID and LID,
the influence of different bins. -res indicates no regression of residuals as an ablation
study. APs are given in percentage.

Bin BEV AP 3D AP

Easy Mode Hard Easy Mode Hard

Eigen – 47.6 37.6 32.4 38.0 30.8 29.4

SID 40 33.4 27.6 26.9 26.7 24.4 21.1

LID 40 31.5 25.6 24.9 24.7 22.7 19.4

SID 100 47.6 37.5 32.3 39.6 33.8 29.4

LID 100 50.2 39.2 33.9 41.5 35.6 31.3

SID 80 48.7 37.9 32.9 40.4 34.3 30.0

LID 80 51.3 39.3 33.9 44.0 35.0 30.6

LID/-res 80 37.1 33.0 29.2 31.9 26.7 25.8

decoding of 3D parameters based on an appropriate 3D center point. However,
simply modeling an object with a 3D center will hurt 2D performance, since
some 3D centers are not attainable, although the object is still partly visible in
the image.

In contrast, the Center3D approach is able to balance the trade-off between
a tightly fitting 2D bounding box and a proper 3D location. The regression of
offsets is regularizing the spatial center, while also preserving the stable precision
in 2D (the 7th row in Table 1). BEV AP for moderate targets improves from
29.7% to 37.6%, and 3D AP increases from 18.6% to 30.8%, which performs
comparably to the state of the art. Since Center3D is also the basis for all further
experiments, we treat the performance as our new baseline for comparison.

3.3 LID

We first implement and adjust the DORN [7] approach for depth estimation
instance-wise rather than pixel-wise. Following DORN we add a shift ξ to both
distance extremum d∗

min and d∗
max to ensure dmin = d∗

min + ξ = 1.0. In addition,
we perform experiments for our LID approach to demonstrate its effectiveness.
We set the number of bins to 80, and add a single head layer to regress the
residuals of the discretization. Hence, for depth estimation, we add head layers
to generate the output features D̂ ∈ R

W
R ×H

R ×161, while CenterNet generates an
output feature D̂ ∈ R

W
R ×H

R ×1. Here the depth loss weight λdep = 0.1 yields the
best performance. We compare the results with our new baseline Center3D with
the same learning rate of 1.25e−4. The best result is shown as Center3D(+lid)
in Table 1.

More detailed, Table 3 shows both LID and SID with different number of
bins improved even instance-wise with additional layers for ordinal classifica-
tion, when a proper number of bins is used. Our discretization strategy LID
shows a considerably higher precision in 3D evaluation, comprehensively when
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Table 4. Experimental results of DepJoint. The regression part of depth estimation
is supported by RA. The dependence on α/β is shown, which represents the threshold
scale of first/second bins regarding to dmax. The left column shows the results of asso-
ciated strategy, while the right column shows the results of overlapping strategy. APs
are given in percentage.

BEV AP 3D AP BEV AP 3D AP
α/β E M H E M H α/β E M H E M H

0.7/0.3 52.9 40.6 35.0 44.5 37.5 32.7 0.2/0.2 48.6 37.5 33.3 42.1 32.9 30.9
0.6/0.4 49.9 39.6 34.1 44.7 35.5 30.8 0.3/0.3 53.2 41.2 35.1 47.4 36.4 32.3
0.8/0.2 47.9 38.7 33.6 40.3 31.9 30.9 0.4/0.4 51.5 40.3 34.1 45.5 36.0 31.2
0.9/0.1 48.4 37.8 32.7 41.4 31.2 29.4 0.5/0.5 42.9 35.9 31.9 37.7 29.3 28.3

80 and 100 bins are used. A visualization of inferences of both approaches from
BEV is shown in Fig. 3. LID only preforms worse than SID in the 40 bin case,
where the number of intervals is not enough for instance-wise depth estimation.
Furthermore we verify the necessity of the regression of residuals by comparing
the last two rows in Table 3. The performance of LID in 3D will deteriorate
drastically if this refinement module is removed.

3.4 DepJoint and Reference Area

In this section, we evaluate the performance of DepJoint approach. Firstly, only
the regression part of depth estimation is supported by RA, which is sensitive
according to its size. We set γ = 0.4 as default for RA, which yields mostly the
best result. The supporting experimental results can be found in the supplemen-
tary material. Additionally, we apply dmin = 0m, dmax = 60m and λdep = 0.1
for all experiments. Table 4 shows the experimental results. As introduced in
Sect. 2.3, we can divide the whole depth range into two overlapping or asso-
ciated bins. For overlapping strategy, the overlapping area should be defined
properly. When the overlapping area is too small, the overlapping strategy actu-
ally converts to the associated strategy. On the other hand, if the overlapping
area is too wide, the two independent bins tend to capture the general feature
instead of specific feature of objects in panoramic depth. In that case, the two
bins would not focus on objects in foreground and background respectively any-
more, since the input objects during training for both bins are almost the same.
This can also explain why the threshold choices of 0.7/0.3 and 0.6/0.4 result
in a better accuracy in 3D space comparing with 0.9/0.1 and 0.8/0.2. For the
associated strategy, the thresholds α/β of 0.3/0.3 and 0.4/0.4 show the best per-
formance for the following reason: usually more distant objects show less visible
features in the image. Hence, we want to set both thresholds a little lower, to
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assign more instances to the distant bins and thereby suppress the imbalance of
visual clues between the two bins.

Furthermore, the ablation study (without RA) verifies the effectiveness of
DepJoint in comparison with Eigen’s transformation. For DepJoint approach,
α/β are set to 0.7/0.3 and λdep = 0.5. As Center3D(+eigen) and (+dj) shown
in Table 1, DepJoint approach has a considerably higher AP in both BEV and
3D space.

3.5 Comparison to the State of the Art

Table 1 shows the comparison with state-of-the-art monocular 3D detectors on
the validation dataset. Center3D(+lid) and (+dj) follow the settings described
above. However, Center3D(+dj+ra) is supported here by RA in the regression of
3D offset, dimension, rotation and 2D width/height comprehensively (γ = 0.4).
The corresponding loss weightings are all set to 0.1, except λdep = 0.5 and
λrot = 1. The learning rate is 2.4e−4.

As Table 1 shown, all Center3D models perform at comparable 3D perfor-
mance with respect to the best approaches currently available. Both LID and
DepJoint approach for depth estimation have a higher AP than simply applying
the Eigen’s transformation in 3D task. Especially, Center3D(+dj+ra) achieved
state-of-the-art performance with BEV APs of 56.7% and 43.5% for easy and
moderate targets, respectively. For hard objects in particular, it outperforms all
other approaches with BEV AP of 41.2% and with 3D AP of 34.9%.

Table 2 shows the AP40 of Center3D(+dj+ra) on the KITTI test set. In com-
parison with M3D-RPN, Center3D outperforms in 2D AP and average orienta-
tion similarity (AOS) obviously with comparable BEV and 3D APs. Besides,
Center3D performs particularly better for hard object detection and Cyclist
detection. More qualitative results can be found in the supplementary material.

Center3D preserves the advantages of an anchor-free approach. It performs
better than most other approaches in 2D AP, especially on easy objects. Most
importantly, it infers on the monocular input image with the highest speed
(around three times faster than M3D-RPN, which performs similarly to Cen-
ter3D in 3D). Therefore, Center3D is able to fulfill the requirement of a real-time
detection.

4 Conclusion

In this paper we introduced Center3D, a one-stage anchor-free monocular 3D
object detector, which models and detects objects with center points of 2D
bounding boxes. We recognize and highlight the importance of the difference
between centers in 2D and 3D by regressing the offset directly, which trans-
forms 2D centers to 3D centers. In order to improve depth estimation, we fur-
ther explored the effectiveness of joint classification and regression when only
monocular images are given. Both classification-dominated (LID) and regression-
dominated (DepJoint) approaches enhance the AP in BEV and 3D space. Finally,



Center3D 301

we employed the concept of RAs by regressing in predefined areas, to over-
come the sparsity of the feature map in anchor-free approaches. Center3D per-
forms comparably to state-of-the-art monocular 3D approaches with significantly
improved runtime during inference. Center3D achieved a better trade-off between
3D precision and inference speed.
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Abstract. Safe feature-based vehicle localization requires correct and
reliable association between detected and mapped localization land-
marks. Incorrect feature associations result in faulty position estimates
and risk integrity of vehicle localization. Depending on the number and
kind of available localization landmarks, there is only a limited guarantee
for correct data association due to various ambiguities.

In this work, a new data association approach is introduced for
feature-based vehicle localization which relies on the extraction and use
of unique geometric patterns of localization features. In a preprocessing
step, the map is searched for unique patterns that are formed by local-
ization landmarks. These are stored in a so called codebook, which is then
used online for data association. By predetermining constellations that
are unique in a given map section, an online guarantee for reliable data
association can be given under certain assumptions on sensor faults.

The approach is demonstrated on a map containing cylindrical objects
which were extracted from LiDAR data. The evaluation of a localization
drive of about 10min using various codebooks both demonstrates the
feasibility as well as limitations of the approach.

Keywords: Vehicle localization · Geometric hashing · Data
association

1 Introduction

High definition (HD) maps are essential to enable safe highly automated driv-
ing. Consequently, reliable and accurate vehicle localization in such maps is
inevitable. In the past years, various feature-based localization approaches have
been introduced. These methods utilize a separate map layer containing localiza-
tion features, also called landmarks, which they aim to associate with detected
features in the vehicle’s surrounding. The resulting association constraints pose
an optimization problem, which is solved for an accurate pose estimate.

State-of-the-art methods differ mainly in the kind of localization features
that are used. Whereas some approaches rely on dense point clouds such as
visual point features [17] or RADAR point clouds [16], other methods make
use of landmarks such as road markings [11,15], or geometric primitives [4,7].
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However, all these methods imply some kind of feature association. Especially in
those cases where localization features are sparse and do not have an expressive
descriptor, data association represents one of the main challenges for reliable
vehicle localization. To satisfy integrity requirements, a guarantee for correct
data association is desirable.

This contribution focuses on the extraction and use of unique landmark pat-
terns, hereafter referred to as constellation codebooks, for reliable data associa-
tion. Landmarks used for localization often appear in periodic orders, so that
many ambiguities arise in the data association step. This contribution suggests
to identify that specific geometric information which breaks the symmetry and
to cluster landmarks such that the resulting feature patterns reflect the unique-
ness of the environment. This enables reliable feature association even in sparse
feature maps.

The proposed approach consists of a two-step process: In a first step, a given
map of localization features is searched for such unique geometric patterns of
landmarks. In this work, these constellations are referred to as codewords. All
extracted codewords are stored in a codebook, which can then be used online for
vehicle localization. For easy and fast search and access, this work suggests to
store the codebook in a hash table format.

During the localization drive, the geometric patterns of detected localization
features are compared to the codebook content. As soon as one of the codewords
is detected online, incorrect associations can be excluded and a certain guarantee
can be given that the resulting associations are correct. Hereby, the suggested
data association approach, which is based on Geometric Hashing [19], does not
make any assumptions on prior vehicle poses. It allows for feature association
based only on the geometric information provided by the extracted features,
while ambiguities are eliminated due to the preprocessing step.

The method is derived and tested on a dataset representing an urban loop of
3.8 km in Sindelfingen, Germany, where pole-like features are used as localization
landmarks. The method, however, is not limited to this specific kind of features
and can easily be adapted to arbitrary localization features. Experimental results
verify the potential of the proposed approach.

2 Related Work

In order to provide reliable localization that meets high integrity requirements,
most approaches rely on outlier detection and exclusion [1,21] or pattern match-
ing techniques [2,7] to avoid incorrect associations between map and sensor data.
By accumulating sensor features and matching a group of landmarks with the
map, these approaches try to reduce or even eliminate the number of ambigui-
ties in data association and exclude associations that are found to be outliers. A
major drawback of most approaches is the assumption that a certain number of
correct associations is found and only a small percentage of outliers needs to be
eliminated. Also, a guarantee that all outliers are excluded or that the correct
alignment with the map is found cannot be given.
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Brenner et al. suggest a pattern matching algorithm in [4,14] for vehicle
localization. By deriving a descriptor for cylindrical localization features based
on other features in the near surrounding, they notice that such patterns can be
ambiguous as well and not every accumulated pattern of localization landmarks
provides enough unique information for a reliable alignment with the map. The
existence of ambiguities in data association is also discussed in [6], where a
method based on Geometric Hashing [8] for the extraction of such patterns
is suggested. Applying the same Geometric Hashing algorithm for the actual
feature association step has been introduced in [5] and a similar technique is
used in this work. The main contribution of this work, however, focuses on the
generation and use of constellation codebooks, i.e. unique geometric patterns of
localization features.

Extracting unique information from the environment for localization has
been considered in works like [9]. Here, a method is proposed for creating
unique identifiers, called fingerprint sequences, for visually distinct locations
using panoramic color images. Also, object recognition methods like Bag of
Words approaches as utilized in [10,20] are well known and provide a similar
kind of vocabulary, however, without satisfying any uniqueness requirements.
Furthermore, these methods have only been applied in the field of image data
processing. To the authors’ knowledge, the concept of identifying unique pat-
terns in feature maps and the use of codebooks for localization has not been
studied before.

3 Codebook Generation

In the following, a codebook is defined as a set of feature patterns, hereafter
referred to as codewords. The codebook is computed for a given map or map
section and used for feature-based vehicle localization. The proposed feature
constellations, which are contained in a codebook must satisfy certain constraints
in order to enable reliable vehicle localization. The main requirement is the
uniqueness of the extracted constellations in a given map section. If a feature
pattern is known to be unique in a map even under various sensor or map faults,
this information can be used for reliable data association.

In the following subsections, the codebook generation is described in detail.
This involves the derivation of various requirements for the constellations of
interest, as well as a search algorithm for the identification of such feature pat-
terns.

3.1 Definition of Uniqueness

Feature patterns of interest are desired to be unique in a sense that they are
uniquely associable in a given map section. This must still be true, even if the
measurements of the landmarks are affected by noise. In other words: For a
unique feature constellation, there exists no other approximative matching in
the map section of interest than the correct one.
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To describe these assumptions in a mathematical way, the distance d
between single landmarks p = (x, y) ∈ R

2 and sets of landmarks G =
{(x1, y1), . . . , (xN , yN )}, (xi, yi) ∈ R

2, i = 1, . . . , N, is defined as

d(p,G) := min{||p − g||2 | g ∈ G}, (1)

which is the distance of p to its nearest neighbor in G. Thus, the mean point-
to-point distance between two sets of landmarks G1 and G2 with cardinality
|G1| = |G2| can be defined as

D(G1, G2) :=
1

|G1|
∑

g∈G1

d(g,G2). (2)

Let T be the set of all euclidean transformations, i.e. all combinations of
rotation and translation. Then, a pattern of landmarks C is unique in a map
section M if

∀ Teucl ∈ T � F ⊂ M with |F | = |C| : D(Teucl(C), F ) < ε (3)

for F �= C and a minimum distance ε.
This means that considering any arbitrary transformation Teucl ∈ T , no sub-

set F ⊂ M with |F | = |C| exists, whose mean distance to Teucl(C) is smaller
than ε. Therefore, there exists only one transformation, which allows an approx-
imative matching [3] of the constellation with the map, which is the identity
transformation.

In the following, ε is also called uniqueness threshold, because the choice
of ε is decisive for the classification of feature patterns in unique or ambiguous
patterns. For large ε, less patterns will be identified as unique. On the other hand,
for small ε, patterns that differ only slightly in their geometrical characteristics
will be classified as unique, which results in less ambiguous patterns.

3.2 Codeword Extraction

In practice, it is not feasible to find unique feature patterns in large maps of entire
cities or even countries. However, a reasonable assumption is that an initial, very
rough position estimate within a map is given. Therefore, the patterns of interest
do not need to be unique within an entire map, but rather in a map section of
limited size. In the following, the uniqueness requirement (3) will be limited to
certain map tiles T of size R. Thus, R = ∞ refers to the entire map.

Also, to facilitate the detection of codewords C during the localization drive,
the spatial expansion of codewords, i.e. the diameter of the smallest enclosing
circle containing a codeword, should be limited. This can be described as

d(pi, pj) ≤ L ∀ pi, pj ∈ C, i �= j, (4)

with a given maximum diameter L.
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Algorithm 1. Codebook Generation

Input: Map M , tile radius R, max. expansion L, uniqueness threshold ε.
Output: Codebook CB containing all unique constellations with cardinality scw.

1. Generate overlapping map tiles {T1, . . . , Tn} of size R covering the whole map M .
2. Gather map features for each tile Ti = {p1, . . . , p|Ti|}, i = 1, . . . , n.
3. For each tile Ti, construct all possible feature combinations C of size scw fulfilling

expansion requirement (4) for the given maximum expansion L.
4. Check uniqueness requirement (3) with given uniqueness threshold ε for every

constellation C regarding the current map tile.
5. If C fulfills (3), add it to the codebook CB. Discard C otherwise.

Now, in order to generate a constellation codebook, landmark patterns with
characteristics (3) and (4) can be identified in a map M . The method is sum-
marized in Algorithm 1.

In steps 1) and 2), the map is divided into map tiles of a given radius R.
This parameter should be chosen in a way that the current map tile can always
be found reliably, for example using a low-cost GPS module. Then, each tile is
regarded separately.

First, all possible feature combinations of the desired cardinality scw and
expansion L are constructed. These are the candidate patterns which need to be
classified into unique or ambiguous patterns.

Regarding a tile Ti containing Nf features, there are a total of
(

Nf

scw

)
constel-

lations of scw features. As an example, for Nf = 50 and scw = 3, there exist(
50
3

)
= 19.600 constellations in total. For larger patterns of cardinality scw = 6,

there are almost 16 million different patterns. However, by limiting the constel-
lation expansion to L as suggested by Eq. (4), this number of candidate patterns
can be reduced noticeably.

All candidate patterns found in step 3) are then compared to each other
and uniqueness requirement (3) is checked for a given uniqueness threshold ε.
Here, scan matching methods like the well-known Iterative Closest Point (ICP)
algorithm [13] can be used. If the constellation proves to fulfill the uniqueness
requirement, it is added to the codebook. If it is not unique according to (3),
the pattern is discarded. Finally, steps 3) – 5) are repeated for each previously
constructed map tile Ti.

Figure 1 shows example constellations for the first map tile T0 with tile
radius R = 200 m. Map features are plotted in gray. Codewords are visualized
by colored lines connecting the features belonging to the codeword.

4 Localization Using Constellation Codebooks

The offline generated constellation codebook can now be used for the purpose of
data association for vehicle localization. In order to allow an easy and fast recog-
nition of codewords and a quick search for associations, in this work, a Geometric
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Fig. 1. Map representing a loop of 3.8 km of roads. Localization features are drawn in
gray. Colored lines connect those features that belong to one codeword in tile T0 of size
R = 200m.

Hashing based method is proposed for the representation of codebooks as well as
the actual data association step. Geometric Hashing was initially introduced in
[8] for object recognition purposes. It is a popular technique for the association
of geometric features that have undergone transformations. The method consists
of a training phase as well as the recognition phase. During the training phase,
features of interest are represented in a variety of coordinate systems that are
defined by the features themselves and stored in a quickly searchable, tabular
format. Online, a given input sample S can be searched for the objects of interest
with the help of the previously generated hash table.

The following subsections will discuss a modified hashing algorithm which is
suggested in combination with constellation codebooks as they were derived in
Sect. 3. For further details on Geometric Hashing, the authors refer to [8,19] or
[12].

4.1 Hash Table Generation

For the generation of the hash table, which is used for codeword recognition
during localization, each codeword is hashed separately. Details on the hashing
procedure as well as the noise model will be discussed briefly.

Hashing of Codewords. Let CB be a codebook that contains a number of
codewords CB = {c1, c2, . . . , cN}. Each codeword ci consists of scw features
ci = {pi

1, . . . , p
i
scw

}, i = 1, . . . , N . Each ordered pair of features (pi
n, pi

m) with
pi

n, pi
m ∈ ci and n �= m represents a basis pair. Let Ki be the set of basis pairs of

codeword ci. The cardinality of this basis set is |Ki| = scw(scw − 1). Each basis
k = (pi

n, pi
m) ∈ Ki defines a local coordinate frame O(pi

n,pi
m), called the geometric
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basis. For each basis k ∈ Ki, the remaining features ci \ k are transformed into
the corresponding basis frame and quantized according to a grid. Finally, a hash
function is applied to each feature location and the hashes are stored in a hash
table H. The main parameters used in the hashing procedure are visualized in
Fig. 2.

Noise Model. If the measured features are affected by noise, the positional
error in the hash locations has to be described by a valid noise model. Obvi-
ously, the positional noise on the feature locations in the hash frame depends
heavily on the chosen basis pair as well as the position of the features within
the geometric basis. A small distance between basis pair features will enhance
the noise in angular direction, while the noise in radial direction stays constant.
Therefore, the authors suggest to estimate the resulting noise distribution in
polar coordinates. For the underlying sensor noise, a Gaussian distribution with
standard deviation σ is assumed, which is centered at the “true” location of the
feature. A Monte Carlo Simulation is performed to generate noisy measurements,
which are then transformed into the basis frame. For each geometric basis and
each feature within that basis, the standard deviation in angular σθ and radial
σr component are estimated using these simulated measurements and stored in
the hash table for the online use.

xmap

ymap

Transform

xhash

yhash

p2p1

Fig. 2. Visualization of the Geometric Hashing procedure. An example codeword of
size scw = 5 (green) is hashed according to the basis frame O(xhash,yhash) defined by
the features p1 and p2. Other map features not belonging to the codeword (gray) are
discarded in the hashing procedure. (Color figure online)

4.2 Feature Association

Given a sample of detected features D and the previously generated hash table
H, feature associations can now be determined by searching the hash table.
For more detail on data association for vehicle localization based on Geometric
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Hashing the authors refer to [5]. In the following, the method will be briefly
recapitulated.

First, two arbitrary detections p1, p2 ∈ D are chosen, which define a geo-
metric basis O(p1,p2) just as described before. All feature detections D are then
transformed into this basis by a rigid transformation, quantized, and hashed
accordingly. For each computed hash value, appropriate bins in the hash table
H are accessed and a vote is given to each basis found there. In this step, not
only the exact bin is accessed but also its direct neighborhood to ensure that
noisy measurements that fell into neighboring bins can be associated as well.

Then, the set of bases B is determined that received as many votes as the
number of features belonging to the codeword, namely scw. These bases repre-
sent those codewords that could potentially be matched. Finally, the resulting
candidate associations are validated based on the Mahalanobis distance between
feature measurement in the hash frame and noise distribution, which is stored
in the hash table.

If valid associations were found, the matching codeword is returned. Other-
wise, the previously described steps can be repeated for each available basis pair
k = (pi, pj) with pi, pj ∈ D, i �= j. In practice, not every generated basis will
necessarily have a matching basis in the hash table. If a basis pair was chosen,
which is not part of a codeword, the resulting basis cannot be matched with the
hash table. Therefore, multiple bases have to be generated in order to find one
that is part of a codeword.

5 Experimental Results

5.1 Dataset

The vehicle BerthaONE [18] was used for the acquisition of the dataset utilized
to demonstrate and evaluate the proposed approach. A loop of about 3.8 km
in an urban area in Sindelfingen, Germany, which results in about 10 min of
driving time, was used for the evaluation. The corresponding localization map
layer contains 593 cylinders such as traffic signs, tree trunks, and traffic lights
as localization features, which were extracted from LiDAR data as described
in [7]. Each cylinder is described by its center point (x, y) ∈ R

2 on the ground
plane. The feature locations in map coordinates were shown in Fig. 1. A reference
solution for validation is provided by [17].

5.2 Localization Framework

The localization framework used to demonstrate the approach is visualized in
Fig. 3. A State-of-the-Art localization framework consisting of map, feature
detectors, feature association, and optimizer is adapted and extended by a code-
book generator and hashing functionalities. The main contribution of this work,
namely the codebook generation and feature association, is highlighted in green.
The hashing functionalities are highlighted in gray.
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Pole Detector

Hash Function
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GNSS Odometry

Map
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Generator

Hash Table

Fig. 3. Overview of the suggested localization framework using Constellation Code-
books and a Geometric Hashing algorithm for data association.

Additional sensors, such as a GNSS receiver and an odometry unit, are added
to the framework in dashed lines. These are optional components that are not
needed for the data association step itself. However, the GNSS input can be used
to determine the current map tile and odometry measurements could be utilized
to improve the continuity of the localization solution whenever the suggested
method is unavailable.

However, one of the biggest advantages of the proposed approach lies in
the fact that no prior pose propagation is needed to find correct associations.
Therefore, such information is completely neglected in this work.

5.3 Constellation Codebooks

To evaluate the described approach, a variety of codebooks is generated for the
before mentioned map and used for localization. Parameters for the codebook
generation that were examined in this work are the tile size R, the unique-
ness threshold ε as well as the number of resulting codewords. All generated
codebooks contain feature constellations of size scw ∈ {3, 4} with a maximum
constellation expansion of L = 35 m, which corresponds to the sensor range.
Constellations of size scw > 4 could also be extracted using the same method.
However, this is something that was not evaluated, since no enhancement of
the system availability is expected. Also, it is desirable to extract the minimal
number of landmarks required to provide a reliable localization solution.

Depending on the chosen tile radius R and the uniqueness threshold ε, a dif-
ferent number of feature patterns was identified as unique patterns in the map
ranging in between 0 up to 550.000 codewords. The numbers can be taken from
Fig. 4. Here, codebooks were generated for tiles of radius R ∈ {∞, 300m, 200m}
and uniqueness threshold ε ∈ {0.25m, 0.5m, 0.75m, 1.0m, 1.25m}. For large
uniqueness thresholds, the number of unique feature patterns decreases as
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expected. While there are more than 400.000 codewords using a tile size of R =
300 m and ε = 0.25 m, only 129 codewords are available for ε = 1.25 m and the
same tile size. In the case of R = ∞, no codewords were found at all for ε >
0.75 m. Also, for decreasing tile sizes, the number of codewords increases. Look-
ing at ε = 0.5 m, there are 17.802 codewords if the uniqueness is required in the
whole map. For R = 300 m, this number increases to 62.939, and for R = 200 m
to 104.491. As an example, a codebook for R = ∞ and ε = 0.5 m containing
17.802 codewords of 3 or 4 features is visualized in Fig. 5. Each color represents
the features that are part of a different codeword. It should also be noted that
there are some parts in the map where the codeword density is relatively low.
This is due to the low feature density in those regions.

0.25 0.5 0.75 1 1.25
101
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Uniqueness threshold ε [m]
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R = 300m
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Fig. 4. Number of extracted codewords of size scw ∈ {3, 4} for various tile sizes R and
uniqueness thresholds ε.

Fig. 5. Example codebook with feature patterns of size scw ∈ {3, 4} for tile radius
R = ∞ and uniqueness threshold ε = 0.5 m. Each color represents one codeword.
Features that belong to one codeword are connected by lines.

5.4 Localization Results

The potential of the proposed approach is mainly assessed by the availabil-
ity of the system and the percentage of correct associations. The association
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Fig. 6. Overall availability of feature associations vs. total number of codewords con-
tained in the codebooks used for localization.
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Fig. 7. Percentage of correct associations during localization with the use of various
codebooks that were generated for various tile sizes R and uniqueness thresholds ε.

availability obviously depends very strongly on the codebook used and espe-
cially on the number of codewords contained in the codebook. This correlation
can be observed in Fig. 6. The use of codebooks that contain a few hundred
codewords results in a low availability of less than 5 %. For larger codebooks
with more than 500.000 codewords, an association availability of about 48 % is
reached. This is due to the fact that map features often are occluded or not yet in
sensor range. Only if all features of one codeword are detected, the association is
possible and the system is available. Therefore, the system availability increases
with the number of codewords that are contained in the codebook used. The
percentage of correct associations is visualized in Fig. 7. Here, the uniqueness
threshold ε, which was chosen to extract the codewords, plays an important role.
For a relatively small choice of ε = 0.25 m, codewords were correctly associated
in up to 97 % of the time, depending on the tile size R. By increasing the unique-
ness threshold up to 1 m, 100 % correct associations are found independent of
the tile size R ∈ {200m, 300m}. For R = ∞ and ε > 0.75 m no codewords are
available, therefore the system is not available.

Overall, there exists a trade-off between system availability and reliability. In
order to reach a high availability, it is desirable to extract many codewords. This
can be achieved using small tiles and small uniqueness thresholds. On the other
hand, for reliable associations, a high uniqueness threshold ε should be chosen
which results in fewer codewords, but 100% correct associations. In practice, it
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is conceivable to use multiple codebooks with different uniqueness thresholds to
boost availability, where no high integrity solution is available.

6 Conclusions

In this work, a new approach for reliable data association for feature-based vehi-
cle localization was proposed. The method suggests to preprocess a given map in
order to identify and extract unique geometric landmark patterns, called code-
words, which are suitable for reliable feature association. These unique feature
constellations are hashed and stored in a hash table format, the constellation
codebook, for quick and easy search and access during localization.

The exclusive use of unique landmark patterns for data association enables,
under certain assumptions on sensor faults, a guarantee for correct feature asso-
ciation and, therefore, provides reliable vehicle localization.

Experimental results were discussed for a feature map of about 3.8 km of
roads containing about 600 cylindrical localization landmarks. A variety of code-
books with different parameter choices was constructed for this map. The evalu-
ation of a localization drive of about 10 min in the before mentioned map using
these previously generated codebooks demonstrates a trade-off between system
availability and reliability.

Future work will focus on the use of multiple constellation codebooks that
satisfy different uniqueness requirements for a continuous and accurate localiza-
tion solution.
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Abstract. In this work we introduce a new Bounding-Box Free Net-
work (BBFNet) for panoptic segmentation. Panoptic segmentation is an
ideal problem for proposal-free methods as it already requires per-pixel
semantic class labels. We use this observation to exploit class bound-
aries from off-the-shelf semantic segmentation networks and refine them
to predict instance labels. Towards this goal BBFNet predicts coarse
watershed levels and uses them to detect large instance candidates where
boundaries are well defined. For smaller instances, whose boundaries are
less reliable, BBFNet also predicts instance centers by means of Hough
voting followed by mean-shift to reliably detect small objects. A novel
triplet loss network helps merging fragmented instances while refining
boundary pixels. Our approach is distinct from previous works in panop-
tic segmentation that rely on a combination of a semantic segmentation
network with a computationally costly instance segmentation network
based on bounding box proposals, such as Mask R-CNN, to guide the
prediction of instance labels using a Mixture-of-Expert (MoE) approach.
We benchmark our proposal-free method on Cityscapes and Microsoft
COCO datasets and show competitive performance with other MoE
based approaches while outperforming existing non-proposal based meth-
ods on the COCO dataset. We show the flexibility of our method using
different semantic segmentation backbones and provide video results on
challenging scenes in the wild in the supplementary material.

1 Introduction

Panoptic segmentation is the joint task of predicting semantic scene segmen-
tation together with individual instances of objects present in the scene. His-
torically this has been explored under different umbrella terms of scene under-
standing [37] and scene parsing [32]. In [17], Kirillov et al. coined the term and
gave a more concrete definition by including the suggestion from Forsyth et
al. [10] of splitting the objects categories into things (countable objects like per-
sons, cars, etc..) and stuff (uncountable like sky, road, etc..) classes. While stuff
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(a) S. Segmentation Head (b) Watershed Head (c) Hough Voting Head (d) Triplet Loss Head

Fig. 1. BBFNet gradually refines the class boundaries of the semantic segmentation
network to predict panoptic segmentation. The Watershed head detects candidates
for large instances whereas the Hough voting head detects small object instances. The
Triplet Loss network refines and merges the detection to obtain the final instance labels.

classes require only semantic label prediction, things need both the semantic and
instance labels. Along with this definition, Panoptic Quality (PQ) measure was
proposed to benchmark different methods. Since then, there has been a more
focused effort towards panoptic segmentation with multiple datasets [7,23,24]
supporting it.

Existing methods for panoptic segmentation can be broadly classified into two
groups. The first group uses a proposal based approach for predicting things.
Traditionally these methods use completely separate instance and scene seg-
mentation networks. Using a MoE approach, the outputs are combined either
heuristically or through another sub-network. Although, more recent works pro-
pose sharing a common feature backbone for both networks [16,27], this split of
tasks restricts the backbone network to the most complex branch. Usually this
restriction is imposed by the instance segmentation branch ([13]).

The second group of work uses a proposal free approach for instance seg-
mentation allowing for a more efficient design. An additional benefit of these
methods is that they do not need bounding-box predictions. While bounding-
box detection based approaches have been popular and successful, they require
predicting auxiliary quantities like scale, width and height which do not directly
contribute to instance segmentation. Furthermore, the choice of bounding-boxes
for object-detection had been questioned in the past [28]. We believe panoptic
segmentation to be an ideal problem for a bounding-box free approach since it
already contains structured information from semantic segmentation.

In this work, we exploit this using a flexible panoptic segmentation head that
can be added to any off-the-shelf semantic segmentation network. We coin this as
Bounding-Box Free Network (BBFNet) which is a proposal free network and pre-
dicts things by gradually refiningclass boundaries predicted by the base network.
To achieve this we exploit previous works in non-proposal based methods for
instance segmentation [2,4,26]. Based on the output of a semantic segmentation
network, BBFNet first detects noisy and fragmented large instance candidates
using a watershed-level prediction head (see Fig. 1). These candidate regions are
clustered and their boundaries improved with a triplet loss based head. The
remaining smaller instances, with unreliable boundaries, are detected using a
Hough voting [3] head that predicts the offsets to the center of the instance.
Without using MoE our method produces comparable results to proposal based
approaches while outperforming proposal-free methods on the COCO dataset.
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2 Related Work

Most current works in panoptic segmentation fall under the proposal based app-
roach for detecting things. In [17], Kirillov et al. use separate networks for seman-
tic segmentation (stuff ) and instance segmentation (things) with a heuristic MoE
fusion of the two results for the final prediction. Realising the duplication of fea-
ture extractors in the two related tasks, [16,18,21,27,35] propose using a single
backbone feature extractor network. This is followed by separate branches for
the two sub-tasks with a heuristic or learnable MoE head to combine the results.
While panoptic Feature Pyramid Networks (FPN) [16] uses Mask R-CNN [13]
for the things classes and fills in the stuff classes using a separate FPN branch,
UPSNet [35] combines the resized logits of the two branches to predict the final
output. In AUNet [21], attention masks predicted from the Region Proposal
Network (RPN) parallizable and the instance segmentation head help fusing the
results of the two tasks. Instead of relying only on the instance segmentation
branch, TASCNet [18] predicts a coherent mask for the things and stuff classes
using both branches. All these methods rely on Mask R-CNN [13] for predicting
things. Mask R-CNN is a two-stage instance segmentation network which uses
a RPN to predict initial candidates for instance. The two-stage serial approach
makes Mask R-CNN accurate albeit computationally expensive and inflexible
thus slowing progress towards real-time panoptic segmentation.

In FPSNet [12], the authors replace Mask R-CNN with a computationally
less expensive detection network and use its output as a soft attention mask to
guide the prediction of things classes. This trade off is at a cost of considerable
reduction in accuracy while continuing to use a computationally expensive back-
bone (ResNet50 [14]). In [20] the authors make up for the reduced accuracy by
using an affinity network but this is at the cost of computational complexity.
Both these methods still use bounding-boxes for predicting things. In [31], the
detection network is replaced with an object proposal network which predicts
instance candidates. In contrast, we propose a flexible panoptic segmentation
head that relies only on a semantic segmentation network which, when replaced
with faster networks [29,30] allows for a more efficient solution.

A parallel direction gaining increased popularity is the use of proposal-free
approach for predicting things. In [33], the authors predict the direction to the
center and replace bounding box detection with template matching using these
predicted directions as a feature. Instead of template matching, [1,19] use a
dynamically initiated conditional random field graph from the output of an
object detector to segment instances. In the more recent work of Gao et al. [11],
cascaded graph partitioning is performed on the predictions of a semantic seg-
mentation network and an affinity pyramid computed within a fixed window
for each pixel. Cheng et al. [5] simplify this process by adopting a parallelizable
grouping algorithm for thing pixels. In comparison, our flexible panoptic segmen-
tation head predicts things by refining the segmentation boundaries obtained
from any backbone semantic segmentation network. Furthermore, our post-
processing steps are computationally more efficient compared to other proposal-
free approaches while outperforming them on multiple datasets.
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Fig. 2. BBFNet gradually refines the class boundaries of the backbone semantic seg-
mentation network to predict panoptic segmentation. The watershed head predicts
quantized watershed levels (shown in different colours) which is used to detect large
instance candidates. For smaller instances we use Hough voting with fixed bandwidth.
The output shows offsets (Xoff, Yoff) colour-coded to represent the direction of the pre-
dicted vector. Triplet head refines and merges the detection to obtain the final instance
labels. We show the class probability (colour-map hot) for different instances with their
center pixels used as fa. Table 1 lists the components of individual heads while Sect. 3
explains them in detail.

3 Panoptic Segmentation

In this section we introduce our non-bounding box approach to panoptic seg-
mentation. Figure 2 shows the various blocks of our network and Table 1 details
the main components of BBFNet. The backbone semantic segmentation network
consists of a ResNet50 followed by an FPN [22]. In FPN, we only use the P2,
P3, P4 and P5 feature maps which contain 256 channels each and are 1/4, 1/8,
1/16 and 1/32 of the original scale respectively. Each feature map then passes
through the same series of eight Deformable Convolutions (DC) [8]. Intermedi-
ate features after every couple of DC are used to predict semantic segmentation
(Sect. 3.1), Hough votes (Sect. 3.2), watershed energies (Sect. 3.3) and features
for the triplet loss [34] network. We first explain each of these components and
their corresponding training loss.

3.1 Semantic Segmentation

The first head in BBFNet is used to predict semantic segmentation. This allows
BBFNet to quickly predict things (Cthings) and stuff (Cstuff) labels while the
remainder of BBFNet improves things boundaries using semantic segmentation
features Fseg. We use per-pixel cross-entropy loss to train this head given by:

Lss =
∑

c∈{Cstuff,Cthing}

yc log(pssc ), (1)

where yc and pssc are respectively the one-hot ground truth label and predicted
softmax probability for class c.
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3.2 Hough Voting

The Hough voting head is similar to the semantic segmentation head and is used
to refine Fss to give Hough features Fhgh. These are then used to predict offsets
for the center of each things pixel. We use a tanh non-linearity to squash the
predictions and obtain normalised offsets (X̂off and Ŷoff). Along with the centers
we also predict the uncertainty in the two directions (σx and σy) making the
number of predictions from the Hough voting head equal to 4 × Cthings. The
predicted center for each pixel (x, y), is then given by:

X̂center(x, y) = x̂ + X̂
C(x,y)
off (x, y),

Ŷcenter(x, y) = ŷ + Ŷ
C(x,y)
off (x, y),

(2)

where C is the predicted class and (x̂, ŷ) are image normalised pixel location.
Hough voting is inherently noisy [3] and requires clustering or mode seek-

ing methods like mean-shift [6] to predict the final object centers. As instances
could have different scales, tuning clustering hyper-parameters is difficult. For
this reason we use Hough voting primarily to detect small objects and to fil-
ter predictions from other heads. We also observe that the dense loss from the
Hough voting head helps convergence of deeper heads in our network.

The loss for this head is only for the thing pixels and is given by:

Lhgh = w
( (Xoff − X̂off)2

σx
+

(Yoff − Ŷoff)2

σy

)
− 1

2

(
log(σx) + log(σy)

)
, (3)

where Xoff and Yoff are ground truth offsets and w is the per pixel weight. To
avoid bias towards large objects, we inversely weigh the instances based on the
number of pixels. This allows it to accurately predict the centers for objects of all
sizes. Note that we only predict the centers for the visible regions of an instance
and do not consider its occluded regions.

3.3 Watershed Energies

Our watershed head is inspired from DWT [2]. Similar to that work, we quantise
the watershed levels into fixed number of bins (K = 4). The lowest bin (k =
0) corresponds to background and regions that are within 2 pixels inside the
instance boundary. Similarly, k = 1, k = 2 are for regions that are within 5 and
15 pixels away from the instance boundary, respectively, while k = 3 is for the
remaining region inside the instance.

In DWT, the bin corresponding to k = 1 is used to detect large instance
boundaries. While this does reasonably well for large objects, it fails for smaller
objects producing erroneous boundaries. Furthermore, occluded instances that
are fragmented cannot be detected as a single object. For this reason we use this
head only for predicting large object candidates which are filtered and refined
using predictions from other heads.

Due to the fine quantisation of watershed levels, rather than directly predict-
ing the upsampled resolution, we gradually refine the lower resolution feature
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Table 1. Architecture of BBFNet. dc, conv, ups and cat stand for deformable con-
volution [8], 1 × 1 convolution, upsampling and concatenation respectively. The two
numbers that follow dc and conv are the input and output channels to the blocks.*
indicates that more processing is done on these blocks as detailed in Sect. 3.3 and
Sect. 3.4.

Input Blocks Output

FPN dc-256-256, dc-256-128 Fss

Fss ups, cat, conv-512-(Cstuff+Cthing), ups Segmentation

Fss 2×dc-128-128 Fhgh

Fhgh ups, cat, conv-512-128, conv-128-(4×Cthing), ups Hough

Fhgh 2×dc-128-128 Fwtr

Fwtr ups, cat, conv-512-128, conv-128-16, ups F ∗
W

Fwtr 2×dc-128-128 Ftrp

Ftrp ups, cat, conv-512-128, conv-128-128, ups F ∗
T

maps while also merging higher resolution features from the backbone semantic
segmentation network. Fhgh is first transformed into Fwtr followed by further
refining into FW as detailed in Table 1. Features from the shallowest convolution
block of ResNet are then concatenated with FW and further refined with two
1 × 1 convolution to predict the four watershed levels.

We use a weighted cross-entropy loss to train this given by:

Lwtr =
∑

k∈(0,3)

wkWk log(pwtr
k ), (4)

where Wk is the one-hot ground truth for kth watershed level, pwtr
k its predicted

probability and wk its weights.

3.4 Triplet Loss Network

The triplet loss network is used to refine and merge the detected candidate
instances in addition to detecting new instances. Towards this goal, a popular
choice is to formulate it as an embedding problem using triplet loss [4]. This loss
forces features of pixels belonging to the same instance to group together while
pushing apart features of pixels from different instances. Margin-separation loss
is usually employed for better instance separation and is given by:

L(fa, fp, fn) = max
(
(fa − fp)2 − (fa − fn)2 + α, 0

)
, (5)

where fa, fp, fn are the anchor, positive and negative pixel features respectively
and α is the margin. Choosing α is not easy and depends on the complexity of
the feature space [25]. Instead, we opt for a fully-connected network to classify
the pixel features and formulate it as a binary classification problem:

T (fa, f∗) =

{
1 if, f∗ = fp,

0 if, f∗ = fn,
(6)
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We use the cross-entropy loss to train this head:

Ltrp =
∑

c∈(0,1)

Tc log(ptrpc ), (7)

Tc is the ground truth one-hot label for the indicator function and ptrp the
predicted probability.

The pixel feature used for this network is a concatenation of FT (see Table 1),
its normalised position in the image (x, y) and the outputs of the different heads
(pseg, pwtr, X̂off, Ŷoff, σx and σy).

3.5 Training and Inference

We train the whole network along with its heads in using the weighted loss
function:

Ltotal = α1 Lss + α2 Lhgh + α3 Lwtr + α4 Ltrp. (8)

For the triplet loss network, training with all pixels is prohibitively expensive.
Instead we randomly choose a fixed number of anchor pixels Na for each instance.
Hard positive examples are obtained by sampling from the farthest pixels to
the object center and correspond to watershed level k = 0. For hard negative
examples, neighbouring instances’ pixels closest to the anchor and belonging to
the same class are given higher weight. Only half of the anchors use hard example
mining while the rest use random sampling.

We observe that large objects are easily detected by the watershed head
while Hough voting based center prediction does well when objects are of the
same scale. To exploit this observation, we detect large object candidates (IL′)
using connected components on the watershed predictions correspond to k ≥ 1
bins. We then filter out candidates whose predicted Hough center (Icenter

L′ ) does
not fall within their bounding boxes (BBL′). These filtered out candidates are
fragmented regions of occluded objects or false detections. Using the center pixel
of the remaining candidates (IL′′) as anchors points, the triplet loss network
refines them over the remaining pixels allowing us to detect fragmented regions
while also improving their boundary predictions.

After the initial watershed step, the unassigned thing pixels corresponding
to k = 0 and primarily belong to small instances. We use mean-shift clustering
with fixed bandwidth (B) to predict candidate object centers, Icenter

S . We then
back-trace pixels voting for their centers to obtain the Hough predictions IS .

Finally, from the remaining unassigned pixels we randomly pick an anchor
point and test it with the other remaining pixels. We use this as candidates
regions that are filtered (IR) based on their Hough center predictions, similar to
the watershed candidates. The final detections are the union of these predictions.
We summarise these steps in algorithm provided in the supplementary material.

4 Experiments

In this section we evaluate the performance of BBFNet and present the results
we obtain. We first describe the datasets and the evaluation metrics used. In
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Table 2. (a) Performance of different heads (W- Watershed, H- Hough Voting and T-
Triplet Loss Network) on Cityscapes validation set. BBFNet exploits the complimen-
tary performance of watershed (large objects > 10k pixels) and Hough voting head
(small objects < 1k pixels) resulting in higher accuracy. PQs, PQm and PQl are the
PQ scores for small, medium and large objects respectively. Bold is for best results.
(b) Performance of Hough voting head (H) with varying B for different sized objects,
s-small < 1k pixels, l-large > 10k pixels and m-medium sized instances. For reference
we also plot the performance of Watershed+Triplet loss (W+T) head (see Table 2).

Sect. 4.1 we describe the implementation details of our network. Section 4.2 then
discusses the performance of individual heads and how its combination helps
improve the overall accuracies. We presents both the qualitative and quantitative
results in Sect. 4.3 and show the flexibility of BBFNet in Sect. 4.4. We end this
section by presenting some of the failure cases in Sect. 4.5 and comparing them
with other MoE+BB based approaches.

The Cityscapes dataset [7] contains 2975 densely annotated images of driving
scenes for training and a further 500 validation images. For the panoptic chal-
lenge, a total of 19 classes are split into 8 things and 11 stuff classes. Microsoft
COCO [23] is a large scale object detection and segmentation dataset with over
118k training (2017 edition) and 5k validation images. The labels consists of 133
classes split into 80 things and 53 stuff.

We benchmark using the Panoptic Quality (PQ) measure which was proposed
in [16]. Were avilabel we also provide the IoU score.

4.1 Implementation Details

We use the pretrained ImageNet [9] models for ResNet50 and FPN and train the
BBFNet head from scratch. We keep the backbone fixed for initial epochs before
training the whole network jointly. In the training loss (Eq. 8), we set α1, α2, α3

and α4 parameters to 1.0, 0.1, 1.0 and 0.5 respectively, since we found this to
be a good balance between the different losses. The mean-shift bandwidth is
set to reduced pixels of B = 10 to help the Hough voting head detect smaller
instances. In the watershed head, the number of training pixels decreases with
K and needs to be offset by higher wk. We found the weights 0.2, 0.1, 0.05, 0.01
to work best for our experiments. Moreover, these weights help the network
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Table 3. Panoptic segmentation results on the Cityscapes and COCO dataset. All
methods use the same pretraining (ImageNet) and backbone (ResNet50+FPN), except
those with ∗ (ResNet101) and ± (Xception-71). Bold is for overall best results and
underscore is the best result in non-BB based methods.

Method BB Cityscapes COCO

PQ PQTh PQSt IoU PQ PQTh PQSt IoU PQtest

FPSNet [12] ✓ 55.1 48.3 60.1 - - - - - -

Li et al. [20] ✓ 61.4 54.7 66.6 77.8 43.4 48.6 35.5 53.7 47.2*

Porzi et al. [27] ✓ 60.3 56.1 63.6 77.5 - - - - -

TASCNet [18] ✓ 55.9 50.5 59.8 - - - - - 40.7

AUNet [21] ✓ 56.4 52.7 59.0 73.6 39.6 49.1 25.2 45.1 45.2*

P. FPN [16] ✓ 57.7 51.6 62.2 75.0 39.0 45.9 28.7 41.0 40.9*

AdaptIS [31] ✓ 59.0 55.8 61.3 75.3 35.9 29.3 40.3 - 42.8*

UPSNet [35] ✓ 59.3 54.6 62.7 75.2 42.5 48.5 33.4 54.3 46.6*

DIN [19] ✗ 53.8 42.5 62.1 71.6 - - - - -

DeeperLab [36] ✗ 56.5± - - - 33.8± - - - 34.4±

SSAP [11] ✗ 56.6 49.2 - 75.1 36.5* - - - 36.9*

P. DeepLab [5] ✗ 59.7 - - 80.5 35.1 - - - 41.4±

BBFNet ✗ 56.6 49.9 61.1 76.5 37.1 42.9 28.5 54.9 42.9*

focus on detecting pixels corresponding to lower bins on whom the connected-
component is performed. To train the triplet-loss network head we set the number
of pixels per object Na = 1000. To improve robustness we augment the training
data by randomly cropping the images and adding alpha noise, flipping and
affine transformations. No additional augmentation was used during testing. All
experiments were performed on NVIDIA Titan 1080Ti.

A common practice during inference is to remove prediction with low detec-
tion probability to avoid penalising twice (FP and FN) [35]. In BBFNet, these
correspond to regions with poor segmentation. We remove regions with low
mean segmentation probability (<0.65). Furthermore, we also observe bound-
aries shared between multiple objects to be frequently predicted as different
instances. We filter these by having a threshold (0.1) on the IoU between the
segmented prediction and its corresponding bounding box.

4.2 Ablation Studies

We conduct ablation studies here to show the advantage of each individual head
and how BBFNet exploits them. Table 2(a) shows the results of our experiments
on Cityscapes. We use the validation sets for all our experiments. We observe
that watershed or Hough voting heads alone do not perform well. In the case
of watershed head this is because performing connected component analysis on
k = 1 level (as proposed in [2]) leads to poor SQ. Note that performing the
watershed cut at k = 0 is also not optimal as this leads to multiple instances
that share boundaries being grouped into a single detection. By combining the
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Fig. 3. Sample qualitative results of BBFNet on Cityscapes (first row) and COCO
dataset. BBFNet can handle different object classes with multiple instances.

Watershed head with a refining step from the triplet loss network we observe
over 10 point improvement in accuracy.

On the other hand, the performance of the Hough voting head depends on
the bandwidth B that is used. Table 2(b) plots its performance with varying
B. As B increases from 5 to 20 pixels we observe an initial increase in overall
PQ before it saturates. This is because while the performance increases on large
objects (>10k pixels), it reduces on small (<1k pixels) and medium sized objects.
However, we observe that at lower B it outperforms the Watershed+triplet loss
head on smaller objects. We exploit this in BBFNet (see Sect. 3.5) by using the
watershed+triplet loss head for larger objects while using Hough voting head
primarily for smaller objects.

4.3 Experimental Results

Table 3 benchmarks the performance of BBFNet with existing methods on the
Cityscapes and COCO datasets. As all state-of-the-art methods report results
with ResNet50+FPN networks while using the same pre-training dataset (Ima-
geNet) we also follow this convention and report our results with this setup
except where highlighted. Multi-scale testing along with horizontal-flipping were
used in some works but we omit those results here as this can be applied to any
existing work including BBFNet to improve performance. From the results we
observe that BBFNet, without using an MoE or BB, has comparable performance
to other MoE+BB based methods while outperforming non-BB based methods
on the more complicated COCO dataset. Figure 3 shows some qualitative results
on the Cityscapes and COCO dataset.
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Table 4. Panoptic segmentation results showing the trade-off between performance and
efficiency with different semantic segmentation backbones on the Cityscapes dataset.
For efficiency we use flops, parameters, inference time (TI) and the post-processing
time (TPP). We compare this with a baseline proposal based network (UPSNet) and a
proposal free network (SSAP).

Network Backbone PQ SQ RQ IoU Flops Params TI TPP

(T) (M) (sec) (sec)

BBFNet ERFNet [29] (w/o DC) 46.8 76.2 58.7 69.0 0.07 2.58 0.12 0.15

MobileNetV2 [30] 48.2 77.0 60.3 70.1 0.1 4.26 0.22 0.15

ResNet50 [14] (w/o DC) 50.4 76.3 62.4 68.9 0.49 28.2 0.16 0.15

ResNet50 [14] 56.6 80.0 69.3 76.5 0.38 29.5 0.32 0.15

ResNet101 [14] 57.8 80.7 70.2 78.6 0.53 48.49 0.34 0.15

SSAP [11] ResNet50 [14] 56.6 - - 75.1 - - - ≥0.26

UPSNet [35] ResNet50 [14] 59.3 79.7 73.0 75.2 0.425 44.5 0.2 0.33

4.4 Flexibility and Efficiency

To highlight BBFNets ability to work with different segmentation backbones
we compare its generalisation with different segmentation networks. As it is
expected we observe an increase in performance with more complex backbones
and with DC’s but at a cost of reduced efficiency (see Table 4). For reference we
also show the performance of a baseline proposal-based approach (UPSNet) and
a proposal-free approach (SSAP). We used the author provided code of UPSNet1

for computing efficiency figures. Note, that since UPSNet uses Mask R-CNN its
backbone cannot be replaced and it is not as flexible as BBFNet.

As BBFNet does not use a separate instance segmentation head, it is com-
putationally more efficient using only ≈ 29.5M parameters compared to 44.5M
UPSNet. We find a similar pattern when we compare the number of FLOPs
on a 1024 × 2048 image with BBFNet taking 0.38 TFLOPs compared to 0.425
TFLOPs of UPSNet. The authors of SSAP [11] do not provide details about their
number of parameters, FLOPs and inference time. However, they provide timing
information for their post-processing step which is a cascaded graph partitioning
approach that uses the predictions of a semantic segmentation network and an
affinity pyramid network. This cascaded graph partition module solves a multicut
optimisation problem [15] and takes between 0.26 − 1.26 seconds depending on
the initial resolution for the cascaded graph partition. We believe that BBFNet
post-processing step is simpler and presumably faster than in SSAP.

4.5 Error Analysis

We discuss the reasons for performance difference between our bounding-box
free method and ones that use bounding-box proposals. UPSNet [35] is used as

1 Source code available from https://github.com/uber-research/UPSNet.

https://github.com/uber-research/UPSNet
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(a) Input Image (b) Ground truth (c) BBFNet predictions (d) Incorrect predictions

Fig. 4. Sample results where BBFNet fails. First row shows an example where low
confidence of semantic segmentation network leads to missed detection while the second
row shows examples of false positives due to wrong class label prediction. Without MoE
these errors from the semantic segmentation network cannot be corrected by BBFNet.

a benchmark as it shares common features with other methods. Table 5 depicts
the number of predictions made for different sized objects in the Cityscapes
validation dataset. We report the True Positive (TP), False Positive (FP) and
the False Negative (FN) values.

One of the areas where BBFNet performs poorly is the number of small object
detections. BBFNet detects 2/3 of the smaller objects compared to UPSNet.
Poor segmentation (wrong class label or inaccurate boundary prediction) also
leads to a relatively higher FP for medium and large sized objects. Figure 4 shows
some sample examples. The multi-head MoE approach helps addressing these
issues but at the cost of additional complexity and computation time (Sect. 4.3).
For applications where time or memory are more critical compared to detecting
smaller objects, BBFNet would be a more suited solution.

Table 5. Performance comparison of BBFNet with an MoE+BB method (UPSNet).
Due to a non-MoE approach, errors from the backbone semantic segmentation network
(low TP-small and high FP-medium, large) cannot be corrected by BBFNet.

Network Small Medium Large

TP FP FN TP FP FN TP FP FN

UPSNet 1569 722 2479 3496 401 954 1539 49 82

BBFNet 1067 666 2981 3446 680 1004 1527 82 94

5 Conclusions and Future Work

We presented an efficient bounding-box free panoptic segmentation method
called BBFNet. Unlike previous methods, BBFNet does not use any instance
segmentation network to predict things. It instead refines the boundaries from
the semantic segmentation output obtained from any off-the-shelf segmentation
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network. This allows us to be flexible while out-performing proposal-free meth-
ods on the more complicated COCO benchmark.

In the next future we would work on making the network end-to-end trainable
and improving the efficiency by removing the use of DCN while maintaining
similar accuracy.

Acknowledgment. We would like to thank Prof. Andrew Davison and Dr. Alexandre
Morgand for their critical feedback during the course of this work.
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Abstract. This work introduces a new proposal-free instance segmen-
tation method that builds on single-instance segmentation masks pre-
dicted across the entire image in a sliding window style. In contrast to
related approaches, our method concurrently predicts all masks, one for
each pixel, and thus resolves any conflict jointly across the entire image.
Specifically, predictions from overlapping masks are combined into edge
weights of a signed graph that is subsequently partitioned to obtain all
final instances concurrently. The result is a parameter-free method that
is strongly robust to noise and prioritizes predictions with the highest
consensus across overlapping masks. All masks are decoded from a low
dimensional latent representation, which results in great memory sav-
ings strictly required for applications to large volumetric images. We
test our method on the challenging CREMI 2016 neuron segmentation
benchmark where it achieves competitive scores.

1 Introduction

Instance segmentation is the computer vision task of assigning each pixel of an
image to an instance, such as individual car, person or biological cell. There are
two main types of successful deep learning approaches to instance segmentation:
proposal-based and proposal-free methods. Recently, there has been a growing
interest in the latter. Proposal-freemethods do not require object detection and are
preferred in imagery as studied here, in which object instances cannot be approxi-
mated by bounding boxes and are much larger than the field of view of the model.

Some recent successful proposal-free approaches [11,17,19] tackle instance
segmentation by predicting, for a given patch of the input image, whether or
not each pixel in the patch is part of the instance that covers the central pixel
of the patch. This results a probability mask, which from now on we call cen-
tral instance mask. These masks are then repeatedly predicted across the entire
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Fig. 1. Comparison between the proposed method and the strong baseline represent-
ing the current state-of-the-art. Left: At the top-left corner, an example of binary
central instance mask for a given ground truth label image; below, the backbone model
predicts feature maps with the spatial dimensions of the input image. Right: a) Sparse-
neighborhood branch used in the baseline model to predict affinities for a given sparse
neighborhood structure; b) Simple generalization of the sparse-neighborhood branch to
predict dense central instance masks; c) Proposed encoded-neighborhood branch pre-
dicting central instance masks in a low-dimensional latent space.

image, either in a sliding window style or by starting from a seed and then
shifting the field of view depending on the previously predicted masks. Final
object-instances are then obtained by aggregating predictions from overlapping
masks which is in itself a nontrivial and interesting problem.

In this work, we introduce a new proposal-free segmentation method that is
also based on predicting central instance masks1. However, our approach comes
with four main advantages compared to previous methods. Firstly, our model
concurrently predicts all central instance masks, one for each pixel, by using a
fully-convolutional approach with much smaller computational footprint than
previous methods, which iteratively predict one instance at the time, one mask
after the other [11,19]. Secondly, our approach predicts central instance masks in
a low dimensional latent representation (see Fig. 1c), which results in great mem-
ory savings that are strictly required to apply the method to large volumetric
images. Thirdly, the proposed approach aggregates predictions from overlapping
central instance masks without the need for any extra parameter or threshold
and outputs predictions with associated uncertainty; and, finally, all final object-
instances are obtained concurrently, as opposed to previous methods predicting
them one-by-one with subsequent conflict resolution.

1 For interesting, closely related but independent work, see [10].
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Additionally, we systematically compare the proposed model with the cur-
rent state-of-the-art proposal-free method both on natural and biological images
[3,8,15,18,31]. This strong baseline consists of a fully-convolutional network pre-
dicting, for each pixel, an arbitrary predefined set of short- and long-range affini-
ties, i.e. neighborhood relations representing how likely it is for a pair of pixels
to belong to the same object instance (see Fig. 1a).

Our method achieves competitive scores on the challenging CREMI 2016 neu-
ron segmentation benchmark. In our set of validation experiments, we show how
predicting encoded central instance masks always improves accuracy. Moreover,
when predictions from overlapping masks are combined into edge weights of a
graph that is subsequently partitioned, the result is a method that is strongly
robust to noise and gives priority to predictions sharing the highest consensus
across predicted masks. This parameter-free algorithm, for the first time, out-
performs super-pixel based methods, which have so far been the default choice
on the challenging data from the CREMI competition challenge.

2 Related Work

Many of the recent successful instance segmentation methods on natural images
are proposal-based : they first perform object detection, for example by predicting
anchor boxes [24], and then assign a class and a binary segmentation mask to
each detected bounding box [9,23]. Proposal-Free methods on the other hand
directly group pixels into instances. Recent approaches use metric learning to
predict high-dimensional associative pixel embeddings that map pixels of the
same instance close to each other, while mapping pixels belonging to different
instances further apart, e.g. [13,14]. Final instances are then retrieved by apply-
ing a clustering algorithm. A post-processing step is needed to merge instances
that are larger then the field of view of the network.

Aggregating Central Instance Masks – The line of research closest to ours
predicts overlapping central instance masks in a sliding window style across
the entire image. The work of [17] aggregates overlapping masks and computes
intersection over union scores between them. In neuron segmentation, flood-
filling networks [11] and MaskExtend [19] use a CNN to iteratively grow one
instance/neuron at a time, merging one mask after the other. Recently, the work
of [20] made the process more efficient by employing a combinatorial encoding
of the segmentation, but the method remains orders of magnitude slower as
compared to the convolutional one proposed here, since in our case all masks
are predicted at the same time and for all instances at once. The most closely
related work to ours is the independent preprint [10], where a very similar model
is applied to the BBBC010 benchmark microscopy dataset of C. elegans worms.
However, here we propose a more efficient model that scales to 3D data, and we
provide an extensive comparison to related models predicting long-range pixel-
pair affinities.
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Predicting Pixel-Pair Affinities – Instance-aware edge detection has experi-
enced recent progress due to deep learning, both on natural images and biological
data [3,8,15,18,22,27,31,33]. Among these methods, the most recent ones also
predict long-range affinities between pixels and not only direct-neighbor rela-
tionships [8,15,18]. Other related work [7,28] approach boundary detection via
a structured learning approach. In neuron segmentation, boundaries predicted
by a CNN are converted to final instances with subsequent postprocessing and
superpixel-merging. Some methods define a graph with both positive and neg-
ative weights and formulate the problem in a combinatorial framework, known
as multicut or correlation clustering problem [4]. In neuron segmentation and
connectomics, exact solvers can tackle problems of considerable size [1], but accu-
rate approximations [21,32] and greedy agglomerative algorithms [3,16,30] are
required on larger problems.

3 Model and Training Strategy

In this section, we first define central instance masks in Sect. 3.1. Then, in
Sect. 3.2, we present our first main contribution, a model trained end-to-end to
predict encoded central instance masks, one for each pixel of the input image.

3.1 Local Central Instance Masks

This work proposes to distinguish between different object instances based on
instance-aware pixel-pair affinities in the interval [0, 1], which specify whether
or not two pixels belong to the same instance or not. Given a pixel of the input
image with coordinates u = (ux, uy), a set of affinities to neighboring pixels
within a K × K window is learned, where K is an odd number. We define
the K × K-neighborhood of a pixel as: NK×K ≡ NK × NK , where NK ≡{−K−1

2 , . . . , K−1
2

}
and represent the affinities relative to pixel u as a central

instance mask Mu : NK×K → [0, 1].
We represent the associated training targets as binary ground-truth masks

M̂u : NK×K → {0, 1}, which can be derived from a ground-truth instance label
image L̂ : H × W → N with dimension H × W :

∀u ∈ H × W, ∀n ∈ NK×K M̂u (n) =

{
1, if L̂(u) = L̂(u + n)
0, otherwise.

(1)

We actually use similar definitions in 3D, but use 2D notation here for simplicity.

3.2 Training Encoded Central Instance Masks End-To-End

In several related work approaches [3,8,15,18,31], affinities between pairs of
pixels are predicted for a predefined sparse stencil representing a set of N
short- and long-range neighborhood relations for each pixel (N = 8 sparse-
neighborhood branch of Fig. 1a). The N output feature maps are then trained
with a binary classification loss.
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(a) (b)

(c) (d)

Fig. 2. Examples of expected (a-
b) and not expected (c-d) binary
2D central instance masks.

Fig. 3. Computing instance-aware affinity
between pixels u and v from instance masks
associated to the central pixel in the patch
(orange cross).

On paper, this training method can be easily generalized to output a feature
map of size K2 ×H ×W and thus predict a full K ×K central instance mask for
each pixel of the input image (see dense-neighborhood branch in Fig. 1b). Never-
theless, in practice, this model has prohibitively large memory requirements for
meaningful values of K, precluding application to 3D data of interest here.

However, among the 2K·K conceivable binary masks M̂u : NK2 → {0, 1},
in practice only a tiny fraction corresponds to meaningful instance masks (see
some examples in Fig. 2). This suggests that it is possible to find a compact
representation that spans the manifold of expected instance shapes.

As our first main contribution, we test this assumption by training a model
end-to-end to predict, for each pixel u ∈ H × W of the input image, a latent
vector zu ∈ R

Q encoding the K × K central instance mask Mu centered at
pixel u (see encoded-neighborhood branch in Fig. 1c). The backbone model is
first trained to output a more compact Q × H × W feature map and then a
tiny convolutional decoder network is applied to each pixel of the feature map to
decode masks. During training, decoding one mask for each pixel in the image
would be too memory consuming. Thus, we randomly sample R pixels with
coordinates u1, . . . ,uR and only decode the associated masks Mu1 , . . . ,MuR

.
Given the ground-truth central instance masks M̂ui

defined in Eq. 1, the training
loss is then defined according to the Sørensen-Dice coefficient formulated for
fuzzy set membership values, similarly to what was done in [31]. Ground-truth
labels are not always pixel-precise and it is often impossible to estimate the
correct label for pixels that are close to a ground-truth label transition. Thus,
in order to avoid noise during training, we predict completely empty masks for
pixels that are less than two pixels away from a label transition, so that the model
is trained to predict single-pixel clusters along the ground-truth boundaries. In
our experiments, this approach performed better than masking the training loss
along the boundaries.
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Algorithm 1: Affinities from Aggregated Central Instance Masks
Input: Graph G(V, E); central instance masks Mu : NK×K → [0, 1]
Output: Affinities āe ∈ [0, 1] with variance σ2

e for all edges e ∈ E

1: for each edge e = (u, v) ∈ E in graph G do
2: Get coordinates u = (ux, uy) and v = (vx, vy) of pixels linked by edge e
3: Collect all T masks Mc1 , . . . , McT including both pixel u and pixel v
4: Init. vectors [a1, . . . , aT ] = [w1, . . . , wT ] = 0 for affinities and evidence weights
5: for i ∈ 1, . . . , T do
6: Get relative coords. of u and v with respect to the central pixel ci
7: ai ← min

(Mci(u − ci), Mci(v − ci)
)

� Fuzzy-AND: both values active
8: wi ← max

(Mci(u − ci), Mci(v − ci)
)

� Fuzzy-OR: at least one value active

9: Get weighted affinity average āe =
∑

i aiwi /
∑

i wi

10: Get weighted affinity variance σ2
e =

∑
i wi(ai − āe)

2 /
∑

i wi

11: return āe, σ
2
e for each e ∈ E

3.3 Predicting Multi-scale Central Instance Masks

Previous related work [8,15,18] shows that predicting long-range affinities
between distant pixels improves accuracy as compared to predicting only short-
range ones. However, predicting large central instance masks would translate to
a bigger model that, on 3D data, would have to be trained on a small 3D input
field of view. This, in practice, usually decreases accuracy because of the reduced
3D context available to the network. Thus, we instead predict multiple central
instance masks of the same window size 7 × 7 × 5 but at different resolutions,
so that the lower the resolution the larger the size of the associated patch in
the input image. These multiple masks at different resolutions are predicted by
adding several encoded-neighborhood branches along the hierarchy of the decoder
in the backbone model, which in our case is a 3D U-Net [5,26] (see Fig. S7). In
this way, the encoded central instance masks at higher and lower resolutions can
be effectively learned at different levels in the feature pyramid of the U-Net.

4 Affinities with Uncertainty from Aggregated Masks

In order to obtain an instance segmentation from the predictions of the model
presented in Sect. 3, we now compute instance-aware pixel-pair affinities for a
given sparse N -neighborhood structure (see Table S3 in Supplementary Material
for details about the structure) and use them as edge weights of a pixel grid-
graph G(V,E), such that each node represents a pixel/voxel of the image. The
graph is then partitioned to obtain object instances.

In this section, we propose an algorithm that, without the need of any thresh-
old parameter, aggregates predictions from overlapping central instance masks
and outputs edge weights with associated uncertainty. Related work either
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Fig. 4. Proposed method to average overlapping masks and compute the affinity
between pixel u and pixel v (highlighted in red in the ground-truth segmentation on
the left). For simplicity, we only consider three masks among all the ones including
both pixels u and v. In Mask 1, only v is part of the mask, so there is a strong evidence
for no affinity between u and v; in Mask 2, u is predicted to be part of the mask only
with a low confidence, so the contribution of this mask in the final average will be
weak; in Mask 3, both pixels are not part of the central instance mask, so there is
no evidence about their affinity. The final affinity value of edge (u, v) is given by the
weighted average of the collected affinities ai weighted with the evidence weights wi:
āe =

∑3
i=1 aiwi /

∑
i wi (Color figure online)

thresholds the predicted central instance masks [10,11,19] or computes Intersec-
tion over Union (IoU) scores for overlapping patches [17]. However, an advantage
of predicting pixel-pair affinities/pseudo-probabilities as compared to IoU scores
is that affinities can easily be translated into attractive and repulsive interactions
in the grid-graph and a parameter-free partitioning algorithm can be employed
to yield instances.

Here, we propose a simple algorithm to aggregate predictions from multiple
patches: Fig. 4 shows a simplified example of how Algorithm 1 computes the
affinity for an edge e linking a pair of pixels u and v. As a first step, the algorithm
loops over all predicted central instance masks including both u and v. However,
not all these masks are informative, as we visually explain in Fig. 3: a mask Mci

centered at pixel ci provides any evidence about the affinity between pixels u
and v only if at least one of the two pixels belongs to the mask (fuzzy OR
operator at line 8 in Algorithm 1). If both pixels do not belong to it, we cannot
say anything about whether they belong to the same instance (see Fig. 3c). We
model this with an evidence weight wi ∈ [0, 1], which is low when both pixels
do not belong to the mask. On the other hand, when at least one of the two
pixels belongs to the mask, we distinguish two cases (fuzzy AND operator at
line 7 in Algorithm 1): i) both pixels belong to the mask (case in Fig. 3a), so by
transitivity we conclude they should be in the same instance and their affinity
ai should tend to one; ii) only one pixel belongs to the mask (case in Fig. 3b),
so that according to this mask they are in different instances and their affinity
should tend to zero.
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At the end, we compute a weighted average āe and variance σ2
e of the collected

affinities from all overlapping masks, such that masks with more evidence will
contribute more on average, and the obtained variance is a measure of how
consistent were the predictions across masks. The algorithm was implemented
on GPU using PyTorch and the variance was computed via Welford’s online
stable algorithm [29].

5 Experiments on Neuron Segmentation

We evaluate and compare our method on the task of neuron segmentation in
electron microscopy (EM) image volumes. This application is of key interest
in connectomics, a field of neuro-science with the goal of reconstructing neural
wiring diagrams spanning complete central nervous systems. We test our method
on the competitive CREMI 2016 EM Segmentation Challenge [6]. We use the
second half of CREMI sample C as validation set for our comparison experiments
in Table 1 and then we train a final model on all the three samples with available
ground truth labels to submit results to the leader-board in Table 2. Results are
evaluated using the CREMI score, which is given by the geometric mean of
Variation of Information Score (VOI split + VOI merge) and Adapted Rand-
Score (Rand-Score) [2]. See Sect. S7.4 in Supplementary Material for more details
on data augmentation, strongly inspired by related work.

5.1 Architecture Details of the Tested Models

As a backbone model we use a 3D U-Net consisting of a hierarchy of four fea-
ture maps with anisotropic downscaling factors (12 , 1

2 , 1), similarly to [14,15,31].
Models are trained with the Adam optimizer and a batch size equal to one.
Before applying the loss, we slightly crop the predictions to prevent training on
borders where not enough surrounding context is provided. See Sect. S7.2 and
Fig. S7 in Supplementary Material for all details about the used architecture.

Baseline Model (SNB) – As a strong baseline, we re-implement the cur-
rent state-of-the-art and train a model to predict affinities for a sparse neigh-
borhood structure (Fig. 1a). We perform deep supervision by attaching three
sparse-neighborhood branches (SNB) at different levels in the hierarchy of the
UNet decoder and train the coarser feature maps to predict longer range affini-
ties. Details about the used neighborhood structures and the architecture can
be found in Table S3 and Fig. S7 in Supplementary Material.

Proposed Model (ENB) – We then train a model to predict encoded cen-
tral instance masks (Fig. 1c). Similarly to the baseline model, we provide deep
supervision by attaching four encoded-neighborhood branches (ENB) to the back-
bone U-Net. As explained in Sect. 3.3, all branches predict 3D masks of shape
7×7×5, but at different resolutions (1, 1, 1), (14 , 1

4 , 1) and (18 , 1
8 , 1), as we show in

the architecture in Fig. S7. A visualization of the learned latent spaces is given
in Fig. S8.
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Combined Model (SNB+ENB) – Finally, we also train a combined model
to predict both central instance masks and a sparse neighborhood of affini-
ties, by providing deep supervision both via encoded-neighborhood and sparse-
neighborhood branches. The backbone of this model is then trained with a total
of seven branches: three branches equivalent to the ones used in the baseline
model SNB, plus four additional ones like those in the ENB model (see Fig. S7).

5.2 Graph Partitioning Methods

Given the predicted encoded central instance masks, we compute affinities ae

either with the average aggregation method introduced in Sect. 4 (MaskAggr)
or the efficient approach described in Sect. S7.3. The result of either is a signed
pixel grid-graph, i.e. a graph with positive and negative edge weights that needs
to be partitioned into instances. The used neighborhood connectivity of the
graph is given in Table S3. Positive and negative edge weights we are computed
by applying the additive transformation we = ae−0.5 to the predicted affinities.

To obtain final instances, we test different partitioning algorithms. The
Mutex Watershed (MWS) [31] is an efficient algorithm to partition graphs with
both attractive and repulsive weights without the need for extra parameters. It
can easily handle the large graphs considered here with up to 108 nodes/voxels
and 109 edges2.

Then, we also test another graph partitioning pipeline that has often been
applied to neuron segmentation because of its robustness. This method first
generates a 2D super-pixel over-segmentation from the model predictions and
then partitions the associated region-adjacency graph to obtain final instances.
Super-pixels are computed with the following procedure: First, the predicted
direct-neighbor affinities are averaged over the two isotropic directions to obtain
a 2D neuron-membrane probability map; then, for each single 2D image in the
stack, super-pixels are generated by running a watershed algorithm seeded at the
maxima of the boundary-map distance transform (WSDT). Given this initial
over-segmentation, a 3D region-adjacency graph is built, so that each super-pixel
is represented by a node in the graph. Edge weights of this graph are computed
by averaging short- and long-range affinities over the boundaries of neighboring
super-pixels. Finally, the graph is partitioned by applying the average agglom-
eration algorithm proposed in [3] (GaspAvg).

5.3 Results and Discussion

Pre-Training of the Encoded Space – The proposed model based on an
encoded-neighborhood branch can be properly trained only if the dimension Q of
the latent space is large enough to accommodate all possible occurring neighbor-
hood patterns. To find a small but sufficiently large Q, we trained a convolutional

2 Among all edges given by the chosen neighborhood structure, we add only 10% of
the long-range ones, since the Mutex Watershed was shown to perform optimally in
this setup [3,31].
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(a) (b) (c) (d) (e) (f)

Fig. 5. Comparison between different affinities and their robustness to noise. (a-b) Raw
data and ground-truth labels. (c-d) Affinities predicted by the sparse-neighborhood
branch, which is trained with a dense binary classification loss (high affinities are
red). (e-f) Affinities computed by averaging overlapping masks as explained in Sect. 4
(MaskAggr). Affinities from averaged masks are smoother and present a more consis-
tent boundary evidence in the noisy region highlighted by the red circle in (a). Here
we show affinities along the horizontal (−4, 0, 0) and vertical (0, −4, 0) directions.

Variational Auto-encoder (VAE) [12,25] to compress binary ground-truth cen-
tral instance masks M̂u into latent variables zu ∈ R

Q and evaluated the quality
of the reconstructed binary masks via the reconstruction loss. We concluded
that Q = 32 is large enough to compress the masks considered here consisting of
7 × 7 × 5 = 245 pixels. As a first experiment, we tried to make use of this VAE-
pretrained latent space to train the proposed encoded-neighborhood branch and
predict encoded masks directly in this space by using an L2 loss on the encoded
vectors. However, similarly to the findings of [10], this approach performed worse
than directly training the full model end-to-end as described in Sect. 3.2.

Training Encoded Masks – As we show in our validation experiments
in Table 1, models trained to predict encoded central instance masks (ENB)
achieved better scores than the current state-of-the-art method predicting affini-
ties for a sparse neighborhood structure (SNB). Our interpretation of this result
is that using the encoding process to predict central instance masks encourages
the model to predict segment shapes that are consistent in a larger neighbor-
hood, which can be helpful to correctly segment the most difficult regions of the
data.

Aggregating Overlapping Masks – In our validation experiments of Table 1,
we also test the affinities computed by averaging over overlapping masks (Mask-
Aggr), as described in Sect. 4. We then partition the resulting signed graph by
using the Mutex Watershed, which has empirical linearithmic complexity in the
number of edges. Our experiments show that, for the first time on this type
of more challenging neuron segmentation data, the Mutex Watershed (MWS)
achieves better scores than the super-pixel-based methods (WSDT+GaspAvg),
which have so far been known to be more robust to noise but also require the
user to tune more hyper-parameters.

We also note that the MWS achieves competitive scores only with affinities
computed from aggregating overlapping masks (MaskAggr). This shows that
the MWS algorithm can take full advantage of the central instance aggregation
process by assigning the highest priority to the edges with largest attractive and
repulsive weights that were consistently predicted across overlapping masks.
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Table 1. Comparison experiments on our CREMI validation set. Training encoded
central instance masks (ENB) achieved better scores than the current state-of-the-
art approach training only affinities for a sparse neighborhood (SNB). The model that
performed best was the one using the method proposed in Sect. 4 to average overlapping
masks (MaskAggr).

Train

Sparse

Neighbor.

(SNB)

Train

Encoded

Masks

(ENB)

Aggregate

Overlapping

Masks

(MaskAggr)

Partitioning

algorithm

No

superpixels

required

CREMI-Score

(lower is better)

VI-merge

(lower is better)

X X X MWS X 0.153 0.272

O X X MWS X 0.184 0.273

O X O MWS X 0.419 0.302

X X O MWS X 0.532 0.447

X O O MWS X 1.155 0.874

O X O WSDT+GaspAvg O 0.173 0.234

X X O WSDT+GaspAvg O 0.237 0.331

X O O WSDT+GaspAvg O 0.254 0.355

X X X WSDT+GaspAvg O 0.334 0.388

O X X WSDT+GaspAvg O 0.357 0.391

On the other hand, most of the affinities trained with the sparse-neighborhood
branch and a dense binary classification loss are almost binary, i.e. they present
values either really close to zero or really close one (see comparison between differ-
ent types of affinities in Fig. 5). This is not an ideal setup for the MWS, which is a
greedy algorithm merging and constraining clusters according to the most attrac-
tive and repulsive weights in the graph. In fact, in this setting the MWS can often
lead to over-segmentation and under-segmentation artifacts like those observed in
the output segmentations of the (SNB+ENB+MWS) and (SNB+MWS) models.
Common causes of these mistakes can be for example inconsistent predictions from
the model and partially missing boundary evidence, which are very common in this
type of challenging application (see Fig. 5 for an example).

Finally, we also note that superpixel-based methods did not perform equally
well on affinities computed from aggregated masks and the reason is that these
methods were particularly tailored to perform well with the more binary-like
classification output of the sparse-neighborhood branch.

Training Both Masks and a Sparse Neighborhood – In our validation
experiments, the combined model, which was trained to predict both a sparse
neighborhood (SNB) and encoded central instance masks (ENB), achieved the
best scores and yielded sharper and more accurate mask predictions. In general,
providing losses for multiple tasks simultaneously has often been proven benefi-
cial in a supervised learning setting. Moreover, the dense gradient of the encoded-
neighborhood branch, which focuses on locally correct predictions, nicely comple-
ments the sparse gradient3 of the encoded-neighborhood branch, which focuses on
predictions that are consistent in a larger neighborhood. We expect this to be

3 The gradient of the encoded-neighborhood branch is sparse, due to GPU-memory
constraints as explained in Sect. 3.2.
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Table 2. Representative excerpt of the published methods currently part of the CREMI
leaderboard [6] (July 2020). The best method proposed in this work achieves competi-
tive scores and is based on an efficient parameter-free algorithm that does not rely on
superpixels. For more details about the partitioning algorithms used by related work,
see references in the first column.

Model

Train

Sparse

Neighbor.

(SNB)

Train

Encoded

Masks

(ENB)

Aggregate

Overlapping

Masks

(MaskAggr)

Partitioning

algorithm

No

superpixels

required

CREMI-Score

(lower is better)

GaspUNet[3] X O O WSDT+LMulticut O 0.221

PNIUNet[15] X O O Z-Watershed+Agglo O 0.228

GaspUNet[3] X O O GaspAvg X 0.241

OurUNet X X X MWS X 0.246

OurUNet O X O WSDT+GaspAvg O 0.268

MALAUNet[7] X O O WSDT+Multicut O 0.276

OurUNet X X O WSDT+GaspAvg O 0.280

CRUNet[33] O O O 3D-Watershed O 0.566

LFC[22] X O O Z-Watershed+Agglo O 0.616

another reason why the combination of affinities and central instance masks
performed best in our experiments.

Results on Test Samples – The evaluation on the three test samples presented
in Table 2 confirms our findings from the validation experiments: among the
methods tested in this work, the best scores are achieved by the combined model
(ENB+SNB) and by using the Mutex Watershed algorithm (MWS) on affinities
averaged over overlapping masks (MaskAggr). Our method achieves comparable
scores to the only other method in the leader-board that does not rely on super-
pixels (line 3 in Table 2). This method uses the average agglomeration algorithm
GaspAvg proposed in [3] instead of the MWS. GaspAvg has been shown to be
more robust to noise than Mutex Watershed, however it is also considerably
more computationally expensive to run on large graphs like the ones considered
here.

6 Conclusions

We have presented a new proposal-free method predicting encoded central
instance masks in a sliding window style, one for each pixel of the input image,
and introduced a parameter-free approach to aggregate predictions from over-
lapping masks and obtain all instances concurrently. When applied to large vol-
umetric biological images, the resulting method proved to be strongly robust to
noise and compared favorably to competing methods that need super-pixels and
hence more hyper parameters. The proposed method also endows its predictions
with an uncertainty measure, depending on the consensus of the overlapping cen-
tral instance masks. In future work, we plan to use these uncertainty measures
to estimate the confidence of individual instances, which could help facilitate the
subsequent proof-reading step still needed in neuron segmentation.



Proposal-Free Instance Segmentation from Latent Single-Instance Masks 343

Acknowledgements. Funded by the Deutsche Forschungsgemeinschft (DFG, Ger-
man Research Foundation) - Projektnummer 240245660 - SFB 1129.

References

1. Andres, B., et al.: Globally optimal closed-surface segmentation for connectomics.
In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV
2012. LNCS, vol. 7574, pp. 778–791. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33712-3 56

2. Arganda-Carreras, I., et al.: Crowdsourcing the creation of image segmentation
algorithms for connectomics. Front. Neuroanat. 9, 142 (2015)

3. Bailoni, A., Pape, C., Wolf, S., Beier, T., Kreshuk, A., Hamprecht, F.A.: A gener-
alized framework for agglomerative clustering of signed graphs applied to instance
segmentation. arXiv preprint arXiv:1906.11713 (2019)

4. Chopra, S., Rao, M.R.: On the multiway cut polyhedron. Networks 21(1), 51–89
(1991)
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Abstract. We address the problem of discovering part segmentations of
articulated objects without supervision. In contrast to keypoints, part seg-
mentations provide information about part localizations on the level of
individual pixels. Capturing both locations and semantics, they are an
attractive target for supervised learning approaches. However, large anno-
tation costs limit the scalability of supervised algorithms to other object
categories than humans. Unsupervised approaches potentially allow to use
much more data at a lower cost. Most existing unsupervised approaches
focus on learning abstract representations to be refined with supervi-
sion into the final representation. Our approach leverages a generative
model consisting of two disentangled representations for an object’s shape
and appearance and a latent variable for the part segmentation. From
a single image, the trained model infers a semantic part segmentation
map. In experiments, we compare our approach to previous state-of-
the-art approaches and observe significant gains in segmentation accu-
racy and shape consistency (Code available at https://compvis.github.io/
unsupervised-part-segmentation). Our work demonstrates the feasibility
to discover semantic part segmentations without supervision.

1 Introduction

Instances of articulated objects such as humans, birds and dogs differ in their
articulation (different pose) and also show different colors and textures (appear-
ance). Despite those large variations in articulation and appearance, humans are
able to establish correspondences between individual parts across instances.

For example, consider two persons wearing different outfits as in Fig. 1a. One
is wearing a plain, blue shirt, the other one is wearing a dotted, white T-shirt.
In the first case, arms and chest share the same appearance, thus information
about appearances cannot be used to identify the parts. In the second case, arms
and chest have different appearances, thus information about appearances could
be used to identify the parts.

Most previous approaches for learning part segmentations are based on super-
vised learning. While this can lead to good performance on a narrow set of object
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(a) Two people with similar
poses, π1 � π2, but different
appearances α1 �= α2. Seman-
tic segmentations S1, S2 are
unaffected by appearance vari-
ations, i.e. S1 � S2, and thus
independent thereof.

α π

S

x

(b) In our model, the joint distribution over
images x, segmentations S, poses π, and ap-
pearances α factorizes into p(x, S, π, α) =
p(x|S, α)p(S|π)p(π)p(α). Thus, S is independent
of α and dependent on π. While π is a latent
representation of pose, S is a semantic segmen-
tation.

Fig. 1. A Probabilistic Model for Unsupervised Part Discovery. As illustrated
in a), semantic segmentations are appearance independent, which is reflected in the
structure of our probabilistic model shown in b). (Color figure online)

classes, especially that of humans [10], it requires to build a large dataset for
each object of interest. To overcome this limitation, we require methods that
discover parts and their segmentations solely from observing the data, i.e. we
need unsupervised approaches.

Previous works on unsupervised keypoint discovery [13,22,45] produce
semantic keypoints which could provide information about parts. However, as
we show in our experiments, even when combined with image intensity infor-
mation to estimate the shape of parts, inferring pixel-wise localizations of parts
from keypoints remains ambiguous. An essential ingredient of keypoint-based
approaches is the built-in low-dimensional bottleneck which encourages com-
pression and hence learning. The keypoints are represented through heatmaps
of spatially normalized activations, which encourages well localized activations
i.e. keypoints. In contrast, a segmentation of parts has roughly the same dimen-
sionality as the image itself and allows arbitrary shapes of the segmented parts.
Thus we cannot use the segmentation as a built-in bottleneck and must find a
different way to enforce the bottleneck.

To learn parts and their segmentation unsupervised, we propose a probabilis-
tic generative model with three hidden variables. We use two low-dimensional,
continuous variables, which are independent of each other, to disentangle the
instance-specific appearance, from the instance-invariant shape. The third vari-
able is a high-dimensional discrete variable to model the support of parts, hence
a segmentation. It is a descendant of the appearance-independent shape variable
to ensure independence of instance specific appearance. We show how the mask
can be efficiently learned in a variational inference framework assuming suitable
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priors. Overall, our approach learns to infer a semantic part segmentation map
from a single image by learning from a stream of video frames or from pairs of
synthetically transformed images.

In experiments on multiple datasets of humans and birds, our method is
able to discover parts within the image that are consistent across instances.
We compare intersection-over-union metrics (IOU) of our approach to those
obtained from previous methods on keypoint learning and observe improvements
in two out of three datasets of humans and on the dataset of birds. In addition,
the generative nature of our approach enables part-based appearance transfers
where it outperforms both pose supervised and keypoint-based unsupervised
approaches in terms of shape consistency.

2 Background

Disentangled Representation Learning. To learn more meaningful representa-
tions, [6,32] build upon the Variational Autoencoder (VAE) [16,31] to encourage
disentanglement. However, non-identifiability issues [12,21] suggest that addi-
tional information is required to obtain well-defined factors.

[17] demonstrated a factorization into style and content of digits using a
conditional variant of the VAE. Motivated by Generative Adversarial Networks
(GANs) [9], [24] adds a discriminator to this architecture. Using videos, [5] uses
a classification problem to obtain disentangled representations of the temporally
varying factors and its stationary factors. This approach is closely related to
estimating and minimizing the Mutual Information of two factors [2] by defining
the joint distribution of the two factors through samples from the same video.

Localized Representation Learning. Image segmentation is a well studied problem
in computer vision. The seminal work of [27] introduced a variational formula-
tion to approximate images by piecewise constant functions with regularized
edge length. Superpixel approaches [30] group nearby pixels according to their
similarity and obtain oversegmentations of an image. [1] combines a hierarchy of
segmentations with contour detection to improve results. However, these meth-
ods rely on low-level image features and cannot account for semantic similarity.

Co-segmentation assumes the availability of a large number of examples show-
ing the object to be segmented. The ability of this paradigm to learn from such
a weak source of information resulted in many different approaches [23] ranging
from graphical models [38] to deep generative models [34]. But their underlying
assumption that the object to be segmented is salient limits them to masks of a
single object, whereas our method learns multiple semantic parts, with part-wise
correspondences across instances.

Unsupervised Part Discovery. Part based models have been extensively stud-
ied [26,33,37,42]. Recent works demonstrated the ability to discover semantic
keypoints without supervision. Based on the differentiable score-map to key-
point layer of [43], [35] learns keypoints which are stable under synthetic image
transformations by enforcing an equivariance principle. [45] integrates this prin-
ciple into an autoencoder framework. [13] uses a reconstruction task with two
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x2

x1

π ∼ N (μ(x1), Σ(x1))

α

πEπ

Eα

SDS

π ∼ p(π), α ∼ p(α)

T IT (π, α)

(π, α) ∼ p(π, α)

Fig. 2. Learning Appearance Independent Segmentations. To learn segmenta-
tions S independent to appearance variation α, we first disentangle a global repre-
sentation for shape π and appearance α. The disentanglement is achieved through a
variational and an adversarial constraint.

images from the same video, instead of synthetic transformations. [22] makes
the representation more expressive by considering ellipses instead of circles for
keypoints. However, in all cases the intermediate representation of keypoints is
crucial, We obtain pixel-accurate part memberships, whereas above approaches
can only give a rough heatmap of part localizations. In addition, our approach
can handle occlusions robustly which we demonstrate in our experiments.

3 Approach

We have an image x depicting an object o composed of N object parts o1, . . . , oN .
We would like to build a model that learns about those object parts and assigns
each location in the image to its corresponding object part, thus a part seg-
mentation. Without supervision for part segmentations, we rely on a generative
approach by looking for the segmentation S∗ that explains the image x best.
Using Bayes rule, we can rewrite this as follows:

S∗ = arg max
S

p(S|x) = arg max p(x|S)p(S). (1)

The likelihood p(x|S) measures if the segmentation can describe the image well
enough and the prior p(S) measures if S is a suitable candidate for a segmenta-
tion. We now motivate suitable choices for the priors of S for part learning.

3.1 Appearance Independence of Segmentations

Take two people spontaneously striking the same pose as depicted in Fig. 1a.
The two people have the same pose π, but different appearances α1 and α2.
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l1 l2 l3
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(a) Gaussian Markov Random Field.
Without any prior assumptions, any im-
age pixel is dependent on any other pixel,
(dense connectivity). In a GMRF, we
only allow adjacent pixels to interact
(sparse connectivity).
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pi(u, v)

H(c = 1, p)
H(c = 0, p)

H(p)

(b) Entropy Regularization. To keep
the learned segmentation S close to a cat-
egorical distribution, we regularize the en-
tropy of part probabilities pi(u, v).

Fig. 3. Segmentation Priors. We assume two priors for our segmentation model.

This generates two images x1 and x2 and we infer corresponding part segmen-
tations S1 and S2. Intuitively, the part segmentations Si are independent of the
variation of individual appearances, and as those people share the same poses,
clearly the part segmentation of the image will be the same, i.e. S1 = S2. We
argue that we can exploit this independence by modifying the image generation
process so that segmentations are a result of pose and shape. We now consider
α and π as random variables. In a graphical model sense, the joint distribu-
tion over poses, appearances and segmentations should factorize as depicted in
Fig. 1: p(x, S, π, α) = p(x|S, α)p(S|π)p(π). Note that this directly reveals the
corresponding motivation in (1). If we had access to the underlying shape and
appearance variables that generate images x, we know that the part segmenta-
tion S must be dependent on shape π. In practice, π and α are hidden variables
and we must learn to infer them from observations x.

3.2 Learning Appearance Independent Segmentations

We now explain how we achieve a disentangled representation of shape and
appearance. Let xi ∼ (αi, πi) express that αi and πi were the factors generating
the image xi. We then sample x1 = (α, π1) and x2 = (α, π2) from the dataset.
In practice, this means that we need a pair of images depicting the same object
but with varied poses. To infer the latent variables, we use two encoders.

Eα : R
dim(x) → R

dim(α), x �→ α, Eα(x2) = α (2)

Eπ : R
dim(x) → R

dim(π), x �→ π, Eπ(x1) = π (3)

Here, α and π are simple low-dimensional latent variables, each represented by
a vector. Please refer to the appendix for implementation details. To keep π
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Fig. 4. Complete Method. First, we sample images x1, x2 from the dataset and
infer their segmentations S1 and S2. We extract part based descriptors for appearance
α
2
1, . . . , α

2
N from x2 by masking out each part using S2 and mapping it into appearance

space using Eα. We then build a likelihood model for x1 based on S1 and α
2
1, . . . , α

2
N .

independent of α, we simply keep π close to a standard normal distribution in
a variational framework, i.e. p(π) = N (0, I) and q(π|x1) = N (μ(x1),Σ(x1)).
However, this is not sufficient to guarantee that p(π) is factorized into semanti-
cally consistent parts. To give an example, the model could also learn to factorize
parts based on their average color, i.e. all blue parts and all red parts. To pre-
vent this, we add an additional adversarial constraint that limits the mutual
information between shape and appearance I(α, π). Following recent works on
mutual information estimation [3,25,29], we achieve this through an adversary
T , which is a simple classifier trained with the following objective

max
T

E(π,α)∼p(π,α) log (σ(T (π, α)))+ (4)

Eπ∼p(π),α∼p(α) log (1 − σ(T (π, α))) (5)

Here, σ(x) denotes the sigmoid activation. Intuitively, this means that we sample
a batch of B image pairs, {xi

1, x
i
2} i = 1, . . . , B, from the dataset and map them

through the encoders, α = Eα(x2) and π = Eπ(x1). This gives us a batch
of samples from the joint distribution (π, α)i ∼ p(π, α), i = 1, . . . , B. We then
randomly permute the order of {αi} within the batch to obtain a batch of samples
from the marginal distribution π ∼ p(π), α ∼ p(α).

The procedure is depicted in Fig. 2. Note that the procedure is not a clas-
sical image discriminator as used in a GAN [9] training, but rather a neu-
ral mutual information estimator [2,7]. One can derive that in the limit, the
adversary converges to an estimate of the mutual information. We thus term
E(π,α)∼p(π,α) T (π, α) = IT (π, α) = ̂I(π, α) an estimate for the mutual informa-
tion of our disentangled representation. This summarizes the objectives used to
train the encoders.

Eπ : min Lrec + λvariationalKL (q(π|x)‖p(π)) + λadversarialIT (π, α) (6)
Eα : min Lrec (7)



Unsupervised Part Discovery 351

DeepFashion Exercise Pennaction

Input

[45]

[13]

[22]

Ours

GT

Fig. 5. Qualitative Comparison Against Keypoint Learning. To obtain segmen-
tation masks from keypoint baselines, we use an unsupervised postprocessing based on
a conditional random field [18]. We do not apply any postprocessing on our results.

Here Lrec is a reconstruction likelihood, such as a L2 loss or a perceptual loss
between the original and the reconstructed image. Lrec will be explained in more
detail in Sect. 3.4. In practice, we rely on the adaptive regularization scheme
proposed in [7].

Having a disentangled representation for shape and appearance, we can
finally infer segmentations S given shapes π using a simple decoder model DS .
The full procedure of disentanglement and inference for segmentations is depicted
in Fig. 2. However, without further prior knowledge, it is in general not clear
that DS will produce what resembles part segmentation under a common prior.
We therefore need to formulate suitable priors for S to achieve the desired result.

3.3 Priors for Segmentations

This section motivates suitable priors for the segmentation S. We claim that part
segmentations are locally smooth regions within the image, meaning that long-
range interactions between pixels are only possible through local connectivity.
We illustrate this high-level idea in Fig. 3a. To achieve local smoothness within
the image, we interpret S as the output of a per-pixel classifier with probabilities
pi(u, v), i = 1, . . . , N . We obtain pi(u, v) by a softmax normalization of the
output of DS , thus

DS : π �→ l, pi(u, v) =
exp (li(u, v))

∑N
i=1 exp (li(u, v))

. (8)
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Table 1. IOU Comparison Against Keypoint Learning. To obtain segmentation
masks from keypoint estimates, we use an unsupervised postprocessing based on a
conditional random field [18]. See appendix for full details.

Dataset Method Arms Feet Head Legs Torso Overall

DeepFashion [45] + CRF 0.194 0.000 0.598 0.293 0.376 0.292

DeepFashion [13] + CRF 0.0522 0.000 0.118 0.108 0.244 0.104

DeepFashion [22] + CRF 0.215 0.000 0.606 0.309 0.322 0.290

DeepFashion Ours 0.508 0.000 0.530 0.500 0.722 0.452

Exercise [45] + CRF 0.043 0.230 0.096 0.431 0.335 0.227

Exercise [13] + CRF 0.101 0.190 0.000 0.469 0.357 0.223

Exercise [22] + CRF 0.212 0.213 0.366 0.445 0.441 0.336

Exercise Ours 0.253 0.104 0.340 0.428 0.504 0.326

Pennaction [45] + CRF 0.066 0.000 0.327 0.379 0.442 0.243

Pennaction [13] + CRF 0.050 0.122 0.000 0.316 0.455 0.189

Pennaction [22] + CRF 0.038 0.000 0.105 0.312 0.402 0.171

Pennaction Ours 0.094 0.101 0.237 0.371 0.484 0.257

In practice, l can be seen as the logits of a classifier. We now assume a Gaussian
Markov Random Field prior for l, i.e. p(l) = N (0,∇), where ∇ denotes the
spatial gradient operator, which can be approximated using a finite-difference
filter. To efficiently train DS , we use variational inference, meaning that we are
looking for a suitable approximate posterior. Using the mean-field approximation
we can define q(l|x) =

∏dim(l)
i q(li|x) = N (DS(π), I) . Then, keeping l close to

the chosen prior in a KL sense simply results in regularizing the spatial gradient.

KL (q‖p) =
N

∑

i=1

∑

u,v

||∇(u,v)li(u, v)||2 (9)

Unfortunately, this prior is not sufficient. What is still missing is a prior that
states that parts are mutually exclusive at every location, i.e. segmentations S
are categorical. To enforce this, we have several options: using approximations
of categorical distributions [4,14], or add a regularizer that pushes the part
segmentations towards a categorical solution, for instance by regularizing the
entropy or cross-entropy, as shown in Fig. 3b. In practice, we found that entropy
and cross-entropy regularization work best. For simplicity, we restrict us to the
entropy regularization.

min H(p) =
∑

u,v

N
∑

i=1

pi(u, v) log pi(u, v) (10)

Here, (u, v) indicate spatial coordinate indices. To summarize, we employ the
following objective for DS .

DS : min Lrec + λGMRFKL (q(l|x)‖p(l)) + λH(p)H(p) (11)
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Fig. 6. Qualitative Results on CUB. Despite the lack of multi-view training pairs,
we are still able to learn a good part model using our proposed method.

3.4 Part-Based Image Generation

Having introduced all our chosen priors, it remains to specify the likelihood
model p(x|S) i.e. how we generate images x from segmentations S. Clearly, S is
not sufficient to explain the image because instance-specific appearance details
are missing. We therefore would like to build a part-based likelihood model that
adds instance-specific part appearances αi. We employ the following procedure,
which is common practice in unsupervised keypoint learning [13,22], as shown
in Fig. 4.

1. Sample images x1, x2 from the dataset and infer their segmentations S1 and
S2. As stated in Sect. 3.2, x1 and x2 are images of the same instance in
different poses.

2. Extract part based descriptors for appearance α2
1, . . . , α

2
N from x2 by masking

out each individual part using S2 and mapping it into appearance space using
Eα. The masking out operation is a simple hadamard product of each inferred
part segmentation x2,i = S2,i � x2 and can be interpreted as a part attention
mechanism. We then obtain the part based descriptors using Eα : α2

i =
Eα(x2,i).
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Table 2. IOU Comparison Against Keypoint Learning on Birds. To obtain
segmentation masks from keypoint baselines, we use an unsupervised postprocessing
based on a conditional random field [18]. See appendix for details.

Method Head Chest Wing Tail Feet Overall

[45] + CRF 0.207 0.320 0.318 0.365 0.074 0.257

[13] + CRF 0.000 0.394 0.158 0.189 0.000 0.148

[22] + CRF 0.203 0.477 0.347 0.431 0.068 0.305

Ours 0.340 0.565 0.489 0.679 0.154 0.446

3. We now have a set of vectors representing unlocalized part appearance
descriptors and a spatial localization for those descriptors in terms of the seg-
mentation S. To bring back spatial information for the appearance descriptors
α2

i we calculate the expected appearance descriptor at each pixel which we
term Sα : Sα(u, v) =

∑N
i=1 α2

i · pi(u, v)
4. Finally, we reconstruct the image x1 from Sα using a generator network G.

More formally, this gives us the part-based image likelihood.

p(x1|S1, α
2
1, . . . , α

2
N ) = N (G(Sα), I) (x1) (12)

With this approach, we make the assumption that part appearances are constant
across all poses π for a specific instance. Then, minimizing the negative log-
likelihood gives the Lrec objective used in previous sections.

Lrec = − log (N (G(Sα), I) (x1)) = ‖G(Sα) − x1‖2 (13)

In practice G is a hour-glass style architecture [28] and Lrec is implemented
through a perceptual loss [15]. See supplementary for more details.

4 Experiments

Human Object Category. We begin by evaluating our method on datasets of
the human object category, namely DeepFashion [19,20], Exercise [40,41] and
Pennaction [44]. DeepFashion contains strong variations in viewpoints, poses and
appearances but only a simple background. Exercise has strong pose variation
but only simple appearances and a simple background. Pennaction introduces
the additional challenge of background clutter.

We evaluate the performance of our method using the intersection-over-union
(IOU) metric against a ground-truth part annotation. We establish missing
ground-truth annotation by using the supervised pretrained model from Dense-
pose [10] as a substitute oracle. We calibrate our model on a held-out validation
set to match the ground-truth as good as possible. Additional details can be
found in the appendix.

We compare against recent work on unsupervised keypoint learning [13,22,
45]. To compare keypoint learning with segmentation learning, we apply a condi-
tional random fields (CRF) [18] postprocessing. This step is a standard technique
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(a) Swapping only chest
appearance.

(b) Swapping chest and
arm appearance.

(c) Swapping chest, arm,
hip and leg appearance.

Fig. 7. Part-Based Appearance Transfer. Parts which are swapped are highlighted
in color (active), parts which remain constant are gray (inactive). (a): we transfer
appearance of torso parts. (b): we transfer appearance of torso and arm parts. (c): we
transfer appearance of torso, arm and leg parts. The transfer succeeds despite strong
occlusions and viewpoint variations (Color figure online).

to refine image segmentations [11,36,39]. Note that we do not apply any post-
processing on top of our proposed method. Additional details can be found in
the appendix.

Qualitative results of our method and keypoint learning baselines [13,22,45]
are shown in Fig. 5. We observe that keypoint consistency is especially difficult
to achieve when dealing with strong viewpoint variations, for instance when
switching between frontal and side poses on the DeepFashion and between push-
up, squatting position on the Exercise dataset. The results on Pennaction suggest
that background clutter is challenging for all methods, especially arm parts in
downwards pointing poses. Note that on some images with an extreme amount of
part occlusions, even the supervised ground-truth model by [10] fails to segment
parts precisely (column 2, Fig. 5).

Finally, we show quantitative results in terms of IOU in Table 1. On Deep-
Fashion and Pennaction our method outperforms other methods by a consistent
margin in terms of IOU. On Exercise, the method is on par with the state-of-
the art keypoint model [22] paired with CRF postprocessing. The quantitative
results validate our observation for all the datasets that our method is able to
discover semantically consistent parts across instances in form of segmentations.

Other Object Categories. We qualitatively analyze our method on the bird object
category in Fig. 6. Note that CUB is a single image dataset, which requires us
to use artificial thin-plate-spline transformations (TPS) as an approximation
to multi-view pose variations. This approximation is identical to those used in
[13,22,35]. We observe that our part discovery method learns local parts and is
also able to find appropriate scales for parts for smaller sized birds. To evaluate
our method quantitatively, we created a small dataset of bird part annotations
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Table 3. Evaluating Shape Consistency. Percentage of Correct Keypoints (PCK)
for pose estimation on shape/appearance swapped generations for supervised and unsu-
pervised methods. α is pixel distance divided by image diagonal. Note that [8] serves
as upper bound, as it uses the groundtruth shape estimates.

α PCK@2.5 % PCK@5 % PCK@10 %

VU-Net [8] 31.64 54.90 80.83

Lorenz et al. [22] 14.50 37.50 69.63

Ours 41.56 65.76 83.12

as ground-truth information and evaluate against [13,22,45] in terms of IOU in
Table 2. The results suggest that our approach can be scaled to other object
categories.

4.1 Part-Based Appearance Transfer

We explore the capabilities of part-based appearance transfer between instances
in Fig. 7. Parts which are transferred are displayed in color (active), parts which
are not transferred are displayed in gray (inactive). The transfer succeeds despite
strong occlusions and pose variations. In the most extreme case, occluded appear-
ances can be inferred from partial observations, for instance when transferring
from half-body images to full-body images or from frontal to side-ways poses.
Note that we do not use any adversarial training, which causes our generated
images to look rather smooth and untextured in comparison to state-of-the art
image synthesis.

Following [22], we evaluate the resulting pose consistency when transferring
parts between instances by calculating the percentage of correct keypoints after
swapping the appearance. The results in Table 3 show that our method performs
significantly better than [22] and even outperforms the supervised baseline VU-
Net [8] by a small margin.

Due to space constraints, we refer the reader to the supplementary materials
regarding an ablation study.

5 Conclusion

We have shown that we can build a generative model for part segmentations
by a suitable combination of priors. Since the method is generative, it allows
learning part segmentations without explicit supervision. Experiments demon-
strate the benefits of this approach over models which obtain part masks through
keypoints. Overall, this work shows that disentanglement serves as a powerful
substitute for supervision and, when combined with appropriate priors, allows
to directly discover part segmentations. This is in contrast to most previous
works on unsupervised learning, which consider unsupervised learning merely
as a pre-training step to be followed by supervised training to obtain the final
result.
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Abstract. We study the lifted multicut problem restricted to trees,
which is np-hard in general and solvable in polynomial time for paths.
In particular, we characterize facets of the lifted multicut polytope for
trees defined by the inequalities of a canonical relaxation. Moreover, we
present an additional class of inequalities associated with paths that
are facet-defining. Taken together, our facets yield a complete totally
dual integral description of the lifted multicut polytope for paths. This
description establishes a connection to the combinatorial properties of
alternative formulations such as sequential set partitioning.

1 Introduction

The lifted multicut problem [12] is a graph partitioning model based on real-
valued costs attributed to pairs of nodes that are in distinct components. It has
been applied successfully to inference tasks in areas such as image segmenta-
tion [2,17], object tracking [22] and motion segmentation [16]. In this paper we
study the lifted multicut problem and its associated polyhedral geometry under
the restriction that the underlying graph is a tree. This constitutes an extreme
special case, since it is natural to consider only connected graphs and trees are
minimally connected graphs. The resulting tree partition problem is equivalently
formulated as the minimization of a multi-linear polynomial which exhibits a
sparsity pattern that is determined by the tree. Therefore, it is clearly np-hard,
as we show in Sect. 3. In Sect. 4, we study the facial structure of the lifted mul-
ticut polytope for trees. We introduce a canonical relaxation in terms of node
triplets and characterize under which circumstances the basic inequalities are
facet-defining. Furthermore, we present another class of facet-defining inequali-
ties, which we call intersection inequalities. Finally, we show that the facets that
we present yield a complete totally dual integral description in the case of paths
(Sect. 5).

Overall, we contribute to the study of graph partition problems an analy-
sis of the facial structure of the lifted multicut polytope for the extreme case
of minimally connected graphs such as trees and paths. Our results establish
connections between the lifted multicut problem on trees and pseudo-Boolean
optimization as well as sequential set partitioning. Furthermore, our insights can
accelerate solvers for the problem based on integer linear programming.
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2 Related Work

Multicut Polytopes and Correlation Clustering. Partitions of a graph into
an unconstrained number of components based on similarities or dissimilarities
of neighboring nodes is referred to as weighted correlation clustering. Weighted
correlation clustering has been studied for complete graphs [1] as well as for
general graphs [6]. Due to the fact that any partition of a graph into connected
components is characterized by the mathematical notion of a multicut, corre-
lation clustering is closely related to the study of multicuts. The combinatorial
polytopes associated with the multicuts of a graph have been studied, among
others, most notably by [5,7,8,10]. The more general case in which similarities or
dissimilarities of non-neighboring nodes are taken into account as well has been
introduced in [12]. The latter, more expressive formulation has found a number
of applications in computer vision [2,16,17,22].

Pseudo-Boolean Optimization. The equivalent formulation of the problem
we study in the form of an unconstrained minimization of a multi-linear polyno-
mial connects our work to the field of pseudo-Boolean optimization. The opti-
mization of pseudo-Boolean functions plays an important role in machine learn-
ing, for instance, in MAP inference for computer vision. The general problem can
be reduced to the quadratic case [3,4], which is responsible for the np-hardness
of the problem. The combinatorial polytope associated with the linearization
of quadratic pseudo-Boolean functions was studied extensively by [18]. Recent
research also considers the linearization of more general multi-linear forms [19].
Computational approaches to pseudo-Boolean optimization based on the roof
duality bound [11,14] have been quite successful in practice [20].

Sequential Set Partitioning. A set partitioning problem where the elements
are assumed to adhere to a linear order has been studied by Kernighan [15],
who devises a dynamic program to solve the problem in polynomial time. The
algorithm essentially solves a shortest path problem in a directed acyclic graph.
The corresponding integer linear programming formulation admits a totally uni-
modular constraint matrix [13]. We derive a complete polyhedral description for
the equivalent formulation as a lifted multicut problem on paths.

3 Tree Partition Problem

Let T = (V,E) be a tree. We use the short-hand notation uv = {u, v} for any
pair of distinct vertices u, v ∈ V , which may or may not correspond to an edge.
When convenient, we write n = |E| and m = |(V

2

)| = n(n−1)/2 for the number of
edges and the total number of vertex pairs, respectively. For any pair of distinct
nodes u, v ∈ V , denote by Puv the unique path from u to v in T . Moreover, we
denote by d(u, v) the distance of u and v in T , i.e. the length of Puv.

A multicut is a set of edges that are between the components of a partition
of a graph [7]. The characteristic vector x ∈ {0, 1}E of a multicut (where xe = 1
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if e ∈ E is cut) is lifted to the space {0, 1}(V2) by setting xuv = 1 if, and only
if u and v are in distinct components of the underlying partition [12].

The lifted multicut problem on trees is to find a partition of a tree that
minimizes a sum of costs associated with pairs of nodes that are in distinct
components. It is formulated as an integer linear program as follows.

Definition 1 (Lifted Multicut Problem). The lifted multicut polytope LMC

w.r.t. T is defined as the convex hull of all x ∈ {0, 1}(V2) that satisfy the path
and cut inequalities:

xuv ≤
∑

e∈Puv

xe ∀u, v ∈ V, d(u, v) ≥ 2, (path)

xe ≤ xuv ∀u, v ∈ V, d(u, v) ≥ 2, ∀e ∈ Puv. (cut)

The lifted multicut problem w.r.t. T and θ ∈ R
(V2) is defined as

min
x∈LMC

∑

uv∈(V2)
θuv xuv. (LMP)

Note that any vector x ∈ {0, 1}E is the characteristic vector of a multicut
of T as any edge set of a tree defines a partition. The path and cut inequalities
ensure that for any distinct pair of nodes u, v ∈ V it holds that xuv = 1 if, and
only if the path Puv is cut at any of its edges.

The lifted multicut problem on T can be equivalently formulated as the
minimization of a particular multi-linear polynomial over binary inputs, which
we refer to as tree partition problem.

Definition 2 (Tree Partition Problem). Let T = (V,E) be a tree and θ̄ ∈ R
(V2).

The optimization problem

min
y∈{0,1}E

∑

uv∈(V2)
θ̄uv

∏

e∈Puv

ye (TPP)

is called the instance of the tree partition problem w.r.t. T and θ̄. If T is a path,
then we also refer to (TPP) as the path partition problem w.r.t. T and θ̄.

It is straightforward to see, by a change of variables, that the problems (TPP)
and (LMP) are equivalent (up to a constant).

Lemma 1. The vector y ∈ {0, 1}E is a solution of problem (TPP) w.r.t. the
tree T = (V,E) and costs θ̄ ∈ R

(V2) if, and only if, the unique x ∈ LMC such that
xe = 1 − ye for all e ∈ E is a solution of problem (LMP) w.r.t. T and the cost
vector θ = −θ̄.
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Proof. For any distinct pair of nodes u, v ∈ V , we set

xuv = 1 −
∏

e∈Puv

ye (1)

which implies

xuv = 0 ⇐⇒ ∀e ∈ Puv : ye = 1 ⇐⇒ ∀e ∈ Puv : xe = 0. (2)

Therefore, we can reformulate problem (TPP) in terms of the variables xuv by
transforming the objective function according to

θ̄uv

∏

e∈Puv

ye = −θ̄uv

(
1 −

∏

e∈Puv

ye

)
+ θ̄uv = −θ̄uv xuv + θ̄uv. (3)

This leads to the linear combinatorial optimization problem

min
x∈LMC

∑

uv∈(V2)
θuv xuv + θ̄uv, (4)

where the definition of LMC captures the relationship (2). �	
Apparently, problem (TPP) corresponds to the minimization of a certain

class of pseudo-Boolean functions (PBF). More precisely, we call any n-variate
PBF tree-sparse, if its multi-linear polynomial form can be aligned with a tree
such that n = |E| and every non-zero coefficient corresponds to the edge set of a
path in the tree. Similarly, we call it path-sparse if the tree is a path itself. Tree-
sparse PBFs are exactly those PBFs that correspond to tree partition problems
(TPP).

Complexity. The tree partition problem, and thus problem (LMP), is np-hard
in general (Lemma 2 below). However, the path partition problem is solvable in
polynomial time [15].

Lemma 2. The tree partition problem is np-hard.

Proof. If T is a star (see Fig. 1a for an example), then problem (TPP) is equiv-
alent to the unconstrained binary quadratic program with |E| variables, which
is well-known to be np-hard. �	

4 Lifted Multicut Polytope for Trees

In this section we study the facial structure of the lifted multicut polytope LMC.
We characterize all trivial facets and offer an outer relaxation of LMC that is
tighter than the standard relaxation given by [12]. In Sect. 5, we show that
our results yield a complete totally dual integral (TDI) description of the lifted
multicut polytope for paths.
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Fig. 1. a) A star with additional (thin, blue) edges between non-neighboring nodes
corresponding to non-local variables. b) The node �u(v) is the first internal node on
the path Puv. c) A path of length at least three gives rise to an intersection inequality
(10). (Color figure online)

We denote the standard outer relaxation of LMC by

P0 =
{
x ∈ [0, 1](

V
2) | xuv ≤

∑

e∈Puv

xe ∀u, v ∈ V, d(u, v) ≥ 2,

xe ≤ xuv ∀u, v ∈ V, d(u, v) ≥ 2, ∀e ∈ Puv

}
,

which is obtained by dropping the integrality constraints from the definition of
LMC. In particular, any x ∈ P0 satisfies all path and cut inequalities. Let �u(v)
be the first node on the path Puv that is different from both u and v (cf. Fig. 1b)
and consider the polytope

P1 =
{
x ∈ [0, 1](

V
2) | xuv ≤ xu,�u(v) + x�u(v),v ∀u, v ∈ V, d(u, v) ≥ 2,

x�u(v),v ≤ xuv ∀u, v ∈ V, d(u, v) ≥ 2
}
.

This description is canonical in the sense that it only considers a quadratic
number of node triplets, namely those which feature two neighboring nodes and
an arbitrary third node. The following lemma states that P1 is indeed an outer
relaxation of LMC that is at least as tight as P0.

Lemma 3. It holds that LMC ⊆ P1 ⊆ P0.

Proof. We show first that LMC ⊆ P1. For this purpose, let x ∈ LMC ∩ Z
m be

a vertex of LMC. If xuv > xu,�u(v) + x�u(v),v for some u, v ∈ V , then xuv = 1
and xu,�u(v) = x�u(v),v = 0. This contradicts the fact that x satisfies all cut
inequalities w.r.t. �u(v), v and the path inequality w.r.t. u, v. If x�u(v),v > xuv for
some u, v ∈ V , then x�u(v),v = 1 and xuv = 0. This contradicts the fact that x
satisfies all cut inequalities w.r.t. u, v and the path inequality w.r.t. �u(v), v. It
follows that x ∈ P1.

Now, we show that P1 ⊆ P0. Let x ∈ P1. We need to show that x satisfies all
path and cut inequalities. Let u, v ∈ V with d(u, v) ≥ 2. We proceed by induction
on d(u, v). If d(u, v) = 2, then the path and cut inequalities are directly given by
the definition of P1 (for the two possible orderings of u and v). If d(u, v) > 2, then
the path inequality is obtained from xuv ≤ xu,�u(v) + x�u(v),v and the induction



On the Lifted Multicut Polytope for Trees 365

hypothesis for the pair �u(v), v, since d(�u(v), v) = d(u, v) − 1. Similarly, for any
edge e on the path from u to v, we obtain the cut inequality w.r.t. e by using
the induction hypothesis and x�u(v),v ≤ xuv such that (w.l.o.g.) e is on the path
from �u(v) to v. It follows that x ∈ P0. �	

4.1 Facets

In this section, we show which inequalities in the definition of P1 define facets
of LMC. Moreover, we present another type of inequalities associated with paths
in T , which define facets of LMC. We note that further facets can be established
by the connection of LMC to the multi-linear polytope and, as a special case,
the Boolean quadric polytope [18].

Lemma 4. The inequality

xuv ≤ xu,�u(v) + x�u(v),v (5)

for some u, v ∈ V defines a facet of LMC if, and only if, d(u, v) = 2.

Proof. First, suppose d(u, v) = 2. Then Puv is a path of length 2 and thus
chordless in the complete graph on V . Hence, the facet-defining property follows
directly from [12, Theorem 10]. Now, suppose d(u, v) > 2 and let x ∈ LMC be
such that (5) is satisfied with equality. We show that this implies

xuv + x�u(v),�v(u) = xu,�v(u) + x�u(v),v. (6)

Then the face of LMC induced by (5) has dimension at most m − 2 and hence
cannot be a facet. In order to check that (6) holds, we distinguish the following
three cases. If xuv = xu,�u(v) = x�u(v),v, then all terms in (6) vanish. If xuv =
xu,�u(v) = 1 and x�u(v),v = 0, then x�u(v),�v(u) = 0 and xu,�v(u) = 1, so (6) holds.
Finally, if xuv = x�u(v),v = 1 and xu,�u(v) = 0, then (6) holds as well, because
x�u(v),�v(u) = xu,�v(u) by contraction of the edge u, �u(v). �	
Lemma 5. The inequality

x�u(v),v ≤ xuv (7)

for some u, v ∈ V defines a facet of LMC if, and only if, v is a leaf of T .

Proof. First, suppose v is not a leaf of T and let x ∈ LMC be such that (7) is
satisfied with equality. Since v is not a leaf, there exists a neighbor w ∈ V of v
such that P�u(v),v is a subpath of P�u(v),w We show that x additionally satisfies
the equality

xuw = x�u(v),w (8)

and thus the face of LMC induced by (7) cannot be a facet. There are two
possible cases: Either xuv = x�u(v),v = 1, then xuw = x�u(v),w = 1 as well, or
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xuv = x�u(v),v = 0, then xuw = xvw = x�u(v),w by contraction of the path Puv, so
(8) holds.

Now, suppose v is a leaf of T and let Σ be the face of LMC induced by (7). We
need to prove that Σ has dimension m−1. This can be done explicitly by showing
that we can construct m−1 distinct indicator vectors 1ww′ for w,w′ ∈ V as linear
combinations of elements from the set S = {x ∈ LMC ∩ Z

m | xuv = x�u(v),v}.
For any u, v ∈ V , u �= v, let xuv ∈ {0, 1}m be such that xuv

ww′ = 0 for all w,w′

on the path Puv and xuv
ww′ = 1 otherwise. Clearly, it holds that xuv ∈ LMC. Now,

for u, v ∈ V we construct 1uv recursively via the distance d(u, v). If d(u, v) = 1,
it holds that 1uv = 1 − xuv. For d(u, v) > 1, we have

1uv = 1 − xuv −
∑

{ww′ �=uv|w,w′ on path Puv}
1ww′ . (9)

Note that, except 1�u(v),v, all indicator vectors are constructed from vectors in S.
Thus, we end up with m−1 vectors that are linearly independent and constructed
as linear combinations of 1 − xuv ∈ S for u, v ∈ V . Hence, the set {1} ∪ {xuv |
uv ∈ (

V
2

)} is affine independent and the claim follows. �	
Lemma 6. For any distinct u, v ∈ V , the inequality xuv ≤ 1 defines a facet
of LMC if, and only if, both u and v are leaves of T . Moreover, none of the
inequalities 0 ≤ xuv define facets of LMC.

Proof. We apply the more general characterization given by [12, Theorem 8]
and [12, Theorem 9]. The nodes u, v ∈ V are a pair of ww′-cut-vertices for some
vertices w,w′ ∈ V (with at least one being different from u and v) if, and only
if, u or v is not a leaf of V . Thus, the claim follows from [12, Theorem 9]. The
second assertion follows from [12, Theorem 8] and the fact that we lift to the
complete graph on V . �	

Intersection Inequalities. We present another large class of non-trivial facets
of LMC. For any u, v ∈ V with d(u, v) ≥ 3 consider the inequality

xuv + x�u(v),�v(u) ≤ xu,�v(u) + x�u(v),v, (10)

which we refer to as intersection inequality. As an example consider the graph
depicted in Fig. 1c with u = 0 and v = 3.

Lemma 7. Any intersection inequality is valid for LMC.

Proof. Let x ∈ LMC ∩ Z
m and suppose that either xu,�v(u) = 0 or x�u(v),v = 0

for some u, v ∈ V with d(u, v) ≥ 3. Then, since x satisfies all cut inequalities
w.r.t. u,�v(u), respectively �u(v), v, and the path inequality w.r.t. �u(v), �v(u), it
must hold that x�u(v),�v(u) = 0. Moreover, if even xu,�v(u) = 0 = x�u(v),v, then, by
the same reasoning, we have xuv = 0 as well. Hence, x satisfies (10). �	
Lemma 8. Any intersection inequality defines a facet of LMC.
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Proof. Let Σ be the face of LMC induced by (10) for some u, v ∈ V with d(u, v) ≥
3. We need to prove that Σ has dimension m − 1, which can be done explicitly
by showing that we can construct m − 1 distinct indicator vectors 1ww′ for
w,w′ ∈ V as linear combinations of elements from the set S = {x ∈ LMC∩Z

m |
xuv + x�u(v),�v(u) = xu,�v(u) + x�u(v),v}.

We employ the same construction as used in the proof of Lemma 5. Observe
that for any feasible x ∈ LMC∩Z

m with x /∈ S, we must have that x�u(v),�v(u) = 0
and xu,�u(v) = x�v(u),v = 1. This means that x�u(v),�v(u) /∈ S in the construction.
Thus, we simply omit 1�u(v),�v(u) from the construction. By the same reasoning,
we conclude that the m constructed vectors {1}∪{

xuv | uv ∈ (
V
2

)\{�u(v)�v(u)}}
are affine independent, so the claim follows. �	

5 Lifted Multicut Polytope for Paths

In this section we show that the facets established in the previous section yield
a complete description of LMC when T is a path. To this end, suppose that
V = {0, . . . , n} and E =

{{i, i + 1} | i ∈ {0, . . . , n − 1}} are linearly ordered.
Therefore, T = (V,E) is path. We consider only paths of length n ≥ 2, since for
n = 1, the polytope LMC = [0, 1] is simply the unit interval. Let Ppath be the
polytope of all x ∈ R

(V2) that satisfy

x0n ≤ 1, (11)
xin ≤ xi−1,n ∀i ∈ {1, . . . , n − 1}, (12)
x0i ≤ x0,i+1 ∀i ∈ {1, . . . , n − 1}, (13)
xi−1,i+1 ≤ xi−1,i + xi,i+1 ∀i ∈ {1, . . . , n − 1}, (14)
xj,k + xj+1,k−1 ≤ xj+1,k + xj,k−1 ∀j, k ∈ {0, . . . , n}, j < k − 2. (15)

Note that the system of inequalities (11)–(15) consists precisely of those inequal-
ities which we have shown to define facets of LMC in the previous section. We
first prove that Ppath indeed yields an outer relaxation of LMC.

Lemma 9. It holds that LMC ⊆ Ppath ⊆ P1.

Proof. First, we show that LMC ⊆ Ppath. Let x ∈ LMC∩Z
m, then x satisfies (11)

and (14) by definition. Suppose x violates (12), then xin = 1 and xi−1,n = 0.
This contradicts the fact that x satisfies all cut inequalities w.r.t. i − 1, n and
the path inequality w.r.t. i, n. So, x must satisfy (12) and, by symmetry, also
(13). It follows from Lemma 7 that x satisfies (15) as well and thus x ∈ Ppath.

Next, we prove that Ppath ⊆ P1. To this end, let x ∈ Ppath. We show that x
satisfies all inequalities (7). Let u, v ∈ V with u < v − 1. We need to prove that
both xu+1,v ≤ xuv and xu,v−1 ≤ xuv hold. For reasons of symmetry, it suffices
to show only xu+1,v ≤ xuv. We proceed by induction on the distance of u from
n. If v = n, then xu+1,n ≤ xun is given by (12). Otherwise, we use (15) for j = u
and k = v + 1 and the induction hypothesis on v + 1:
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xuv + xu+v,v+1 ≥ xu+1,v + xu,v+1 (16)
≥ xu+1,v + xu+1,v+1 (17)

=⇒ xuv ≥ xu+1,v. (18)

It remains to show that x satisfies all inequalities (5). Let u, v ∈ V with u < v−1.
We proceed by induction on d(u, v) = u − v. If d(u, v) = 2, then (5) is given by
(14). If d(u, v) > 2, then we use (15) for j = u and k = v as well as the induction
hypothesis on u, v − 1, which have distance d(u, v) − 1:

xuv + xu+1,v−1 ≤ xu+1,v + xu,v−1 (19)
≤ xu+1,v + xu,u+1 + xu+1,v−1 (20)

=⇒ xuv ≤ xu,u+1 + xu+1,v. (21)

Hence, x ∈ P1, which concludes the proof. �	

−∞ 0 1
. . .

n − 1 n ∞

Fig. 2. Illustration of the extension used in the proof of Theorem 1. The additional
terms xii, x−∞,i, xi,∞ and x−∞,∞ correspond to the thin green edges. (Color figure
online)

As our main result, we prove that Ppath is in fact a complete description of
LMC and, moreover, it is totally dual integral. For an extensive reference on the
subject of total dual integrality we refer the reader to [21].

Definition 3. A system of linear inequalities Ax ≤ b with A ∈ Q
k×m, b ∈ Q

k is
called totally dual integral (TDI) if for any c ∈ Z

m such that the linear program
max{c�x | Ax ≤ b} is feasible and bounded, there exists an integral optimal
dual solution.

Total dual integrality is an important concept in polyhedral geometry as it
provides a sufficient condition on the integrality of polyhedra according to the
following fact.

Fact 1 ([9]). If Ax ≤ b is totally dual integral and b is integral, then the
polytope defined by Ax ≤ b is integral.

Theorem 1. The system (11)–(15) is totally dual integral.

Proof. We rewrite system (11)–(15) more compactly in the following way. Intro-
duce two artificial nodes −∞ and ∞ where we associate −∞ to any index less
than 0 and ∞ to any index greater than n. Moreover, we introduce variables xii
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for all 0 ≤ i ≤ n as well as x−∞,i and xi,∞ for all 1 ≤ i ≤ n − 1 and finally
x−∞,∞ (cf. Fig. 2). Now, the system (11)–(15) is equivalent to the system

xj,k + xj+1,k−1 ≤ xj+1,k + xj,k−1 ∀j, k ∈ {−∞, 0, . . . , n,∞}, j ≤ k − 2
(22)

given the additional equality constraints

xii = 0 ∀0 ≤ i ≤ n, (23)
x−∞,i = 1 ∀1 ≤ i ≤ n − 1, (24)
xi,∞ = 1 ∀1 ≤ i ≤ n − 1, (25)

x−∞,∞ = 1. (26)

Let the system defined by (22)–(26) be represented in matrix form as Ax ≤
a, Bx = b. Note that Ppath is non-empty and bounded. Thus, to establish total
dual integrality, we need to show that for any θ ∈ Z

m+3n the dual program

min{a�y + b�z | A�y + B�z = θ, y ≥ 0} (27)

has an integral optimal solution. Here, the y variables, indexed by j, k, corre-
spond to the inequalities (22) and the z variables, indexed by pairs of i,−∞
and ∞, correspond to the equations (23)–(26). Then, the equation system
A�y + B�z = θ translates to

yi−1,i+1 + zi,i = θi,i (28)
yi−1,i+2 − yi−1,i+1 − yi,i+2 = θi,i+1 (29)

yi−1,�+1 − yi−1,� − yi,�+1 + yi,� = θi,� (30)
−y−∞,i+1 + y−∞,i + z−∞,i = θ−∞,i (31)

−yi−1,∞ + yi,∞ + zi,∞ = θi,∞ (32)
y−∞,∞ + z−∞,∞ = θ−∞,∞, (33)

where (28)–(30) hold for all 0 ≤ i < i + 1 < � ≤ n and (31), (32) hold for
all 1 ≤ i ≤ n − 1. Observe that (28) includes only y variables with indices of
distance 2, (29) couples y variables of distance 3 with those of distance 2 and (30)
couples the remaining y variables of any distance d > 3 with those of distance
d − 1 and d − 2. Hence, any choice of values for the free variables zii completely
determines all y variables. This means we can eliminate y and reformulate the
dual program entirely in terms of the z variables, as follows. It holds that

0 ≤ yi−1,i+1 = θi,i − zi,i ∀0 ≤ i ≤ n,

0 ≤ yi−1,i+2 = θi,i+1 + θi,i + θi+1,i+1 − zi,i − zi+1,i+1 ∀0 ≤ i < i + 1 ≤ n

and thus, by (30),

0 ≤ yi−1,�+1 =
∑

i≤j≤k≤�

θj,k −
�∑

k=i

zk,k (34)
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for all 0 ≤ i ≤ � ≤ n. Substituting the y variables in (31)–(33) yields the following
equivalent formulation of the dual program (27):

min z−∞,∞ +
n−1∑

i=1

z−∞,i + zi,∞ (35)

s.t.
�∑

k=i

zk,k ≤
∑

i≤j≤k≤�

θj,k ∀0 ≤ i ≤ � ≤ n (36)

z−∞,i + zi,i = θ−∞,i +
∑

0≤j≤i

θj,i ∀1 ≤ i ≤ n − 1 (37)

zi,∞ + zi,i = θi,∞ +
∑

i≤k≤n

θi,k ∀1 ≤ i ≤ n − 1 (38)

z−∞,∞ −
n∑

k=0

zk,k = θ−∞,∞ −
∑

0≤j≤k≤n

θj,k. (39)

The variables z−∞,i, zi,∞ and z−∞,∞ occur only in a single equation each.
Furthermore, the matrix corresponding to the inequality constraints satisfies
the consecutive-ones property w.r.t. its rows. Therefore, the constraint matrix
of the whole system is totally unimodular, which concludes the proof. �	
Remark. The constraint matrix corresponding to the system (11)–(15) is in gen-
eral not totally unimodular. A minimal example is the path of length 4.

Corollary 1. It holds that LMC = Ppath.

Proof. This is immediate from Lemma 9, Fact 1 and Theorem 1. �	
Remark. The path partition problem admits a more efficient representation as
a set partitioning problem as follows. For each 0 ≤ i ≤ � ≤ n, let

di,� =
∑

i≤j≤k≤�

θj,k, (40)

then taking the dual of problem (35) and simplifying yields the problem

min d�λ (41)

s.t.
∑

0≤i≤k≤�≤n

λi,� = 1, ∀0 ≤ k ≤ n

λ ≥ 0.

Each variable λi,� corresponds to the component containing nodes i to �. Problem
(41) is precisely the sequential set partitioning formulation of the path partition
problem as used by [13]. It admits a quadratic number of variables and a linear
number of constraints (opposed to a quadratic number of constraints in the
description of LMC). The integrality constraint need not be enforced, since the
constraint matrix is totally unimodular.
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6 Conclusion

We studied the lifted multicut polytope for the special case of trees lifted to the
complete graph. We characterized a number of its facets and provided a tighter
relaxation compared to the standard linear relaxation. Our analysis establishes
a connection between the lifted multicut problem on trees and pseudo-Boolean
optimization. Moreover, the described facets yield a complete totally dual inte-
gral description of the lifted multicut polytope for paths. This main results
relates the geometry of the path partition problem to the combinatorial proper-
ties of the sequential set partitioning problem. Moreover, our insights can accel-
erate solvers for the tree and path partition problem based on integer linear
programming.
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Abstract. We introduce a new architecture called a conditional invert-
ible neural network (cINN), and use it to address the task of diverse
image-to-image translation for natural images. This is not easily pos-
sible with existing INN models due to some fundamental limitations.
The cINN combines the purely generative INN model with an uncon-
strained feed-forward network, which efficiently preprocesses the con-
ditioning image into maximally informative features. All parameters of
a cINN are jointly optimized with a stable, maximum likelihood-based
training procedure. Even though INN-based models have received far
less attention in the literature than GANs, they have been shown to
have some remarkable properties absent in GANs, e.g. apparent immu-
nity to mode collapse. We find that our cINNs leverage these properties
for image-to-image translation, demonstrated on day to night translation
and image colorization. Furthermore, we take advantage of our bidirec-
tional cINN architecture to explore and manipulate emergent properties
of the latent space, such as changing the image style in an intuitive way.

Code: github.com/VLL-HD/conditional INNs.

1 Introduction

INNs occupy a growing niche in the space of generative models. Because they
became relevant more recently compared to GANs or VAEs, they have received
much less research attention so far. Currently, the task of image generation is
still dominated by GAN-based models [4,17,18]. Nevertheless, INNs have some
extremely attractive theoretical and practical properties, leading to an increased
research interest recently: The training is not adversarial, very stable, and does
not require any special tricks. Their loss function is quantitatively meaningful for
comparing models, checking overfitting, etc. [32], which is not given with GANs.
INNs also do not experience the phenomenon of mode collapse observed in GAN-
based models [28]. Compared to VAEs, they are able to generate higher-quality
results, because no ELBO approximation or reconstruction loss is needed, which
typically leads to modeling errors [1,35]. Furthermore, they allow mapping real
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images into the latent space for explainability, interactive editing, and concept
discovery [15,19]. In addition, they have various connections to information the-
ory, allowing them to be used for lossless compression [12], information-theoretic
training schemes [3], and principled out-of-distribution detection [5,24].

In this work, we present a new architecture called a conditional invertible neu-
ral network (cINN), and apply it to diverse image-to-image translation. Diverse
image-to-image translation is a particular conditional generation task: given a
conditioning image Y , the task is to model the conditional probability distribu-
tion p(X|Y ) over some images X in a different domain. ‘Diverse’ implies that
the model should generate different X covering the whole distribution, not just
a single answer. More specifically, we consider the case of paired training data,
meaning matching pairs (xi, yi) are given in the training set. Unpaired image-
to-image translation in theory is ill-posed, and only possible through inductive
bias or explicit regularization.

For this setting, the use of existing INN-based models has so far not been
possible in a general way. Some methods for conditional generation using INNs
exist, but these are mostly class-conditional, or other cases where the condition
directly contains the necessary high-level information [3,26,30]. This is due to
the basic limitation that each step in the network must be invertible. Because the
condition itself is not part of the invertible transformation, it can therefore not
be passed across layers. As a result, it is impossible for an INN to extract useful
high-level features from the condition. That would be necessary for effectively
performing diverse image-to-image translation, where e.g. the semantic context
of the condition is needed.

Fig. 1. Diverse colorizations, which our
network created for the same grayscale
image. One of them shows ground truth
colors, but which? Solution at the bottom
of next page.

Our cINN extends standard INNs in
three aspects to avoid this shortcom-
ing. Firstly, we use a simple but effec-
tive way to inject conditioning into the
core building blocks at multiple reso-
lutions in the form of so-called con-
ditional coupling blocks (CCBs). Sec-
ondly, to provide useful conditions at
each resolution level, we couple the INN
with a feed-forward conditioning net-
work : it produces a feature pyramid C
from the condition image Y , that can
be injected into the CCBs at each reso-
lution. Lastly, we present a new invert-
ible pooling scheme based on wavelets,
that improves the generative capabil-
ity of the INN model. The entire cINN
architecture is visualized in Fig. 2.

The whole cINN can be trained end-
to-end with a single maximum likeli-
hood loss function, leading to simple, repeatable, and stable training, without
the need for hyperparameter tuning or special tricks. We show that the learned
conditioning features C are maximally informative for the task at hand from an
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information theoretic standpoint. We also show that the cINN will learn the true
conditional probability if the networks are powerful enough.

Our contributions are summarized as follows:

– We propose a new architecture called conditional invertible neural network
(cINN), which combines an INN with an unconstrained feed-forward network
for conditioning. It generates diverse images with high realism, while adding
noteworthy and useful properties compared to existing approaches.

– We demonstrate a stable, maximum likelihood training procedure for jointly
optimizing the parameters of the INN and the conditioning network. We
show that our training causes the conditioning network to extract maximally
informative features from the condition, measured by mutual information.

– We take advantage of our bidirectional cINN architecture to explore and
manipulate emergent properties of the latent space. We illustrate this for
day-to-night image translation and image colorization.

ϕ

c(0)

c(1)

c(2)

c(3)

CCBCCBCCBCCB

CCBCCBCCBCCB

CCBCCBCCBCCB

CCBCCBCCBCCB

X

Z

Y

c
=

{c
( k

)
}

Fig. 2. Illustration of the cINN. It consists of a feed-forward conditioning network (left
half ), and an invertible part (right half ). Black arrows: connections always in the
same direction. Green boxes: extracted feature maps c(k). Purple arrows: invert-
ible connections, depending on training/testing. Orange arrows: invertible wavelet
downsampling. Pink blocks: conditional coupling blocks (CCBs). (Color figure online)

2 Related Work

Image-to-image translation for natural images was first demonstrated with GAN-
based models [14]. It was also extended to the unpaired setting by [36]. However,
these models are generally not able to produce diverse outputs. Several works
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attempt to prevent such mode collapse in image-to-image GANs through spe-
cialized architectures and regularization [23,25,37]. A hybrid approach between
GAN and autoencoder is used in [33] for diversity. While these approaches do
lead to visual diversity, there is currently no way to verify if they truly cover the
entire distribution, or a lower-dimensional manifold.

Conditional INN models can be divided into methods with a conditional
latent space, and methods where the INN itself is conditional. Apart from our
cINN, the only example for the second case to our knowledge is [26]: an INN-
based model is used to de-modulate mel-spectrograms back into audio waves.
While the conditioning scheme is similar to our CCBs, the condition is given
externally and directly contains the needed information, instead of being learned.
Diversity is also not considered, the model is only used to produce a single output
for each condition. For the second category of conditional latent space models,
pixel-wise conditioning is in general more difficult to achieve. [19] manipulate
latent space after training to generate images with certain global attributes.
In [30], a class-conditional latent space is used for training to obtain a class-
conditional INN model. A special type of conditional latent space is demon-
strated in [2], suitable for non-stochastic inverse problems of small dimensional-
ity. Examples where the approach is extended to spatial conditioning include [31],
where two separate INNs define a mapping between medical imaging domains.
The model requires an additional loss term with hyperparameters, that has an
unknown effect on the output distribution, and diversity is not considered. Clos-
est to our work is [20], where a VAE and INN are trained jointly, to allow a
specific form of diverse image-to-image translation. However, the method is only
applied for translation between images of the same domain, i.e. generate similar
images given a conditioning image. The training scheme requires four losses that
have to be balanced with hyperparameters. Our cINN can map between arbi-
trary domains, is more flexible due to the CCB design instead of a conditional
latent space, and only uses a single loss function to train all components jointly.

3 Method

We divide this section into two parts: First, we discuss the architecture itself, split
into the invertible components (Fig. 2 right), and the feed-forward conditioning
network (Fig. 2 left). Then, we present the training scheme and its effects on
each component.

3.1 CINN Architecture

Conditional Coupling Blocks. Our method to inject the conditioning features
into the INN is an extension of the affine coupling block architecture established
by [8]. There, each network block splits its input u into two parts [u1, u2] and
applies affine transformations between them that have strictly upper or lower
triangular Jacobians:

v1 = u1 � exp
(
s1(u2)

)
+ t1(u2) , v2 = u2 � exp

(
s2(v1)

)
+ t2(v1) . (1)
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The outputs [v1, v2] are concatenated again and passed to the next coupling
block. The internal functions sj and tj can be represented by arbitrary neural
networks, we call these the subnetworks of the block. In practice, each [sj , tj ]-
pair is jointly modeled by a single subnetwork, instead of separately. Importantly,
the subnetworks are only ever evaluated in the forward direction, even when the
coupling block is inverted:

u2 =
(
v2 − t2(v1)

) � exp
(
s2(v1)

)
, u1 =

(
v1 − t1(u2)

) � exp
(
s1(u2)

)
. (2)

As shown by [8], the logarithm of the Jacobian determinant for such a coupling
block is simply the sum of s1 and s2 over image dimensions, which we use later.

u1

u2

� + v1

� + v2

s1 t1 s2 t2

c

Fig. 3. A single conditional coupling block
(CCB).

We adapt the design of Eqs. (1)
and (2) to produce a conditional cou-
pling block (CCB): Because the sub-
networks sj and tj are never inverted,
we can concatenate conditioning data
c to their inputs without losing the
invertibility, replacing s1(u2) with
s1(u2, c) etc. Our CCB design is illus-
trated in Fig. 3. Multiple coupling
blocks are then stacked to form the INN-part of the cINN. We denote the entire
INN as f(x; c, θ), with the network parameters θ and the inverse as g(z; c, θ).
Because the resolution does not stay fixed throughout the INN, different sections
of the network require different conditions c(k). We then use c := {c(k)} to denote
the set of all the conditions at once. For any fixed condition c, the invertibility
is given as

f−1(· ; c, θ) = g(· ; c, θ). (3)
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Fig. 4. Haar wavelet downsampling reduces
spatial dimensions & separates lower fre-
quencies (a) from high (h, v, d).

Haar Wavelet Downsampling. All
prior INN architectures use one of
two checkerboard patterns for reshap-
ing to lower spatial resolutions ([8]
or [16]). Instead, we find it helpful
to perform downsampling with Haar
wavelets [9], which essentially decom-
pose images into a 2×2 average pool-
ing channel as well as vertical, horizontal and diagonal derivatives, see Fig. 4.
This results in a more sensible way of distributing the information after down-
sampling and also contributes to mixing the variables between resolution levels.
Similarly, [15] use a single discrete cosine transform as a final transformation in
their INN, to replace global average pooling.

Conditioning Network. It is the task of the conditioning network to transform
the original condition y into the necessary features c(k) that the INN uses at the
different resolution levels k. For this, we simply use a standard feed-forward
network, denoted ϕ, that jointly outputs the different features in the form of
the feature pyramid c. The conditioning network can be trained from scratch,



378 L. Ardizzone et al.

jointly with the INN-part, as explained in the next section. It is also possible to
use a pretrained model for initialization to speed up the start of training, e.g. a
pretrained ResNet [10] or VGG [29].

3.2 Maximum Likelihood Training of cINNs

Training the INN-Part. By prescribing a probability distribution pZ(z) on
latent space z, the INN f assigns any input x a probability, dependent on the
conditioning c and the network parameters θ, through the change-of-variables
formula:

q(x | c, θ) = pZ (f(x; c, θ))
∣
∣
∣
∣ det

(
∂f

∂x

)∣
∣
∣
∣ . (4)

Here, we use the Jacobian matrix ∂f/∂x. We will denote the Jacobian determi-
nant, evaluated at some training sample xi, as Ji := det

(
∂f/∂x|xi

)
. With a set

of observerd i.i.d. samples {(xi, ci)}, Bayes’ theorem gives us the posterior over
model parameters as

p(θ | {(xi, ci)}) ∝ pθ(θ)
∏

i

q(xi | ci, θ) (5)

This means we can find the most likely model parameters given the known
training data by maximizing the right hand side. After taking the logarithm
and changing the product to a sum, we get the following loss to minimize: L =
Ei

[− log
(
q(xi | ci, θ)

)]
, which is the same as in classical Bayesian model fitting.

Finally, inserting Eq. (4) with a standard normal distribution for pZ(z), we
obtain the conditional maximum likelihood loss we use for training:

LcML = Ei

[‖f(xi; ci, θ)‖22
2

− log
∣
∣Ji

∣
∣
]

. (6)

We can also explicitly include a Gaussian prior over weights pθ = N (0, σθ) in Eq.
(5), which amounts to the commonly used L2 weight regularization in practice.
Training a network with this loss yields an estimate of the maximum likelihood
network parameters θ̂. From there, we can perform conditional generation for
some c by sampling z and using the inverted network g: xgen = g(z; c, θ̂), with
z ∼ pZ(z).

The maximum likelihood training method makes it virtually impossible for
mode collapse to occur: If any mode in the training set has low probability under
the current guess q(x | c, θ), the corresponding latent vectors will lie far outside
the normal distribution pZ and receive big loss from the first L2-term in Eq. (6).
In contrast, the discriminator of a GAN only supplies a weak signal, proportional
to the mode’s relative frequency in the training data, so that the generator is
not penalized much for ignoring a mode completely.
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Jointly Training the Conditioning Network. Next, we consider the result
if we also backpropagate the loss through the feature pyramid c, to train the
conditioning network ϕ jointly with the same loss. Intuitively speaking, the more
useful the learned features are for the INN’s task, the lower the LcML loss will
become. Therefore, the conditioning network is encouraged to extract useful
features.

We can formalize this using the information-theoretical concept of mutual
information (MI). MI quantifies the amount of information that two variables
share, in other words, how informative one variable is about the other. For any
two random variables a and b, It can be written as the KL-divergence between
joint and factored distributions: I(a, b) = DKL(p(a, b)‖p(a)p(b)). With this, we
can derive the following proposition, details and proof are found in the appendix:

Proposition 1. Let θ̂ be the INN parameters and ϕ̂ the conditioning network
that jointly minimize LcML. Assume that the INN f(·; ·, θ) is optimized over F
defined in Assumption 1 (appendix), and ϕ over G0 defined in Assumption 2
(appendix). Then it holds that

I
(
x, ϕ̂(y)

)
= max

ϕ∈G0
I
(
x, ϕ(y)

)
(7)

In other words, the learned features will be the ones that are maximally infor-
mative about the generated variable x. Importantly, the assumption about the
conditioning networks family G0 does not say anything about its representational
power: the features will be as informative as possible within the limitations of
the conditioning network’s architecture and number of extracted features.

We can go a step further under the assumption that the power of the con-
ditioning network and number of features in the pyramid are large enough to
reach the global minimum of the loss (sufficient condition given by Assumption
3, appendix). In this case, we can also show that the cINN as a whole will learn
the true posterior by minimizing the loss (proof in appendix):

Proposition 2. Assume ϕ has been optimized over a family G1 of universal
approximators and dim(c) ≥ dim(y) (Assumption 3, appendix), and the INN is
optimized over a family of universal density approximators F (Assumption 1,
appendix). Then the following holds for (x, y) ∈ X , where X is the joint domain
of the true training distribution p(x, y):

q(x|ϕ̂(y), θ̂) = p(x|y) (8)
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4 Experiments

We present results and explore the latent space of our models for two image-to-
image generation tasks: day to night image translation, and image colorization.
We use the former as a qualitative demonstration, and the latter for a more
in-depth analysis and comparison with other methods. MNIST experiments, to
purely show the capability of the CCBs without the conditioning network, are
given in the appendix.

Fig. 5. Examples of conditions y (left), three generated samples (middle), and the
original image x (right).

In practice, we use several techniques to improve the network and training.
Ablations of the following are included in the appendix.

– We augment the images by adding a small amount of noise, in order to remove
the quanitzation into 255 brightness levels. The quantization is known to
cause problems in training otherwise [32].

– After each coupling block, we perform a random, fixed permuation of the
feature channels. This effectively randomizes the split for the next coupling
block.

– We adopt the method from [8], whereby the affine scaling s is parametrized as
γ tanh(r(x)), where γ is learned directly as a channel-wise parameter, and r is
output by the subnetwork. This has exactly the same representational power
as directly outputting s, but improves stability, because the exp(s) term in
Eq. (1) does not explode as easily.
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4.1 Day to Night Translation

Fig. 6. Conditioning image (top left),
and extracted features from different lev-
els of the pyramid. From left to right, top
to bottom: 1st level, precise edges and tex-
ture; 2nd level, foreground/background;
3rd level, populated area.

We train on the popular day-to-night
dataset [22]. It contains webcam images
from approximately 100 different loca-
tions, taken at approximately 10–20
times during the day and night each.
This results in about 200 combinations
of day-night pairs per location. The test
set consists of 5 unseen locations. For
training, we randomly resize and crop
the images to 128 × 128 pixels. We use
the day-images as the condition y, and
the night-images as the generated x.
For the conditioning network, we use a
standard ResNet-18 [10]. We extract the
activations after every other layer of the
ResNet to form the feature pyramid. As
the ResNet contains the usual downsam-
pling operations, the activations already
have the correct sizes for the pyramid.
We then construct the INN part as
described in Sect. 3, with 8 coupling blocks in total, and five wavelet down-
sampling operations spaced in between. The subnetworks consist of three con-
volutions, with ReLU activations and batch normalization after the first two
convolutions.

We train for 175 000 iterations using the Adam optimizer, with a batch-size
of 48, and leave the learning rate fixed at 0.001 throughout. These training
parameters are comparable to those of standard feed-forward models.

Despite the relatively small training set, we see little signs of overfitting,
and the model generalizes well to the test set. Previously, [31] also found low
overfitting and good generalization on small training sets using INNs. Several
samples by the model are shown in Fig. 5. The cINN correctly recognizes pop-
ulated regions and generates lights there, as well as freely synthesizing diverse
cloud patterns and weather conditions. At the same time, the edges and struc-
tures (e.g. mountains) are correctly aligned with the conditioning image. The
features learned by the conditioning network are visualized in Fig. 6. Hereby,
independent features were extracted via PCA. The figure shows one example of
a feature from the first three levels of the pyramid.

4.2 Diverse Image Colorization

For a more challenging task, we turn to colorization of natural images. The com-
mon approach for this task is to represent images in Lab color space and generate
color channels a, b by a model conditioned on the luminance channel L. We train
on the ImageNet dataset [27]. As the color channels do not require as much res-
olution as the luminance channel, we condition on 256 × 256 pixel grayscale
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images, but generate 64 × 64 pixel color information. This is in accordance with
the majority of existing colorization methods.

For the conditioning network ϕ, we start with the same VGG-like architecture
from [34] and pretrain on the colorization task using their code. We then cut
off the network before the second-to-last convolution, resulting in 256 feature
maps of size 64 × 64 from the grayscale image L. To form the feature pyramid,
we then add a series of strided convolutions, ReLUs, and batch normaliziation
layers on top, to produce the features at each resolution. The ablation study in
Fig. 12 confirms that the conditioning network is absolutely necessary to capture
semantic information.

The INN-part constist of 22 convolutional CCBs, with three downsampling
steps in between. After that, the features are flattened, followed by 8 fully
connected CCBs. To conserve memory and computation, we adopt a similar

Grayscale y z = 0.0 · z∗ z = 0.7 · z∗ z = 0.9 · z∗ z = 1.0 · z∗ z = 1.25 · z∗

Fig. 7. Effects of linearly scaling the latent code z while keeping the condition fixed.
Vector z∗ is “typical” in the sense that ‖z∗‖2 = E

[‖z‖2
]
, and results in natural col-

ors. As we move closer to the center of the latent space (‖z‖ < ‖z∗‖), regions with
ambiguous colors become desaturated, while less ambiguous regions (e.g. sky, vegeta-
tion) revert to their prototypical colors. In the opposite direction (‖z‖ > ‖z∗‖), colors
are enhanced to the point of oversaturation. (Color figure online)

Fig. 8. For color transfer, we first compute the latent vectors z for different color images
(L, a, b) (top row). We then send the same z vectors through the inverse network with a
new grayscale condition L∗ (far left) to produce transferred colorizations a∗, b∗ (bottom
row). Differences between reference and output color (e.g. pink rose) can arise from
mismatches between the reference colors a, b and the intensity prescribed by the new
condition L∗. (Color figure online)
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Fig. 9. Diverse colorizations produced
by our cINN. (Color figure online)

Fig. 10. Failure cases of our method. Top:
Sampling outliers. Bottom: cINN did not rec-
ognize an object’s semantic class or connectiv-
ity.

V
A
E

cG
A
N

Fig. 11. Other methods have lower diversity
or quality, and suffer from inconsistencies in
objects, or color blurriness and bleeding (cf.
Fig. 9, bottom). (Color figure online)

Fig. 12. In an ablation study, we train a cINN using the grayscale image directly as
conditional input, without a conditioning network ϕ. The resulting colorizations largely
ignore semantic content which leads to exaggerated diversity. More ablations are found
in the appendix.
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splitting- and merging-scheme as in [7]: after each wavelet downsampling step,
we split off half the channels. These are not processed any further, but fed into
a skip connection and concatenated directly onto the latent output vector. This
way, the INN as a whole stays invertible. The reasoning behind this is the follow-
ing: The high resolution stages have a smaller receptive field and less expressive
power, so the channels split off early correspond to local structures and noise.
More global information is passed on to the lower resolution sections of the INN
and processed further. Overall, the generative performance of the network is not
meaningfully impacted, while dramatically reducing the computational cost.

For training, we use the Adam optimizer for faster convergence, and train
for roughly 250 000 iterations, and a batch-size of 48. The learning rate is 10−3,
decreasing by a factor of 10 at 100 000 and 200 000 iterations. At inference time,
we use joint bilateral upsampling [21] to match the resolution of the generated
color channels a, b to that of the luminance channel L. This produces visually
slightly more pleasing edges than bicubic upsampling, but has little to no impact
on the results. It was not used in the quantitative results table, to ensure an
unbiased comparison.

Latent space interpolations and color transfer are shown in Figs. 7 and 8,
with more experiments in the appendix. In Table 1, a quantitative comparison
to existing methods is given. The cINN clearly has the best sample diversity,
as summarized by the variance and best-of-8 accuracy. The standard cGAN
completely ignores the latent code, and relies only on the condition. As a result,
we do not observe any measurable diversity, in line with results from [14]. In
terms of FID score, the cGAN performs best, although its results do not appear
more realistic to the human eye, cf. Fig. 11. This may be due to the fact that
FID is sensitive to outliers, which are unavoidable for a truly diverse method (see
Fig. 10), or because the discriminator loss implicitly optimizes for the similarity
of deep CNN activations. The VGG classification accuracy of colorized images
is decreased for all generative methods equally, because occasional outliers may
lead to misclassification.

Table 1. Comparison of conditional generative models for diverse colorization (VAE-
MDN: [6]; cGAN: [14]). We additionally compare to a state-of-the-art regression model
(‘CNN’, no diversity, [13]), and the grayscale images alone (‘BW’). For each of 5k
ImageNet validation images, we compare the best pixel-wise MSE of 8 generated col-
orization samples, the pixel-wise variance between the 8 samples as an approximation
of the diversity, the Fréchet Inception Distance [11] as a measure of realism, and the
top 5 accuracy of ImageNet classification performed on the colorized images, to check
if semantic content is preserved by the colorization.

cINN (ours) VAE-MDN cGAN CNN BW Ground truth

MSE best of 8 3.53±0.04 4.06± 0.04 9.75± 0.06 6.77 ± 0.05 – –

Variance 35.2±0.3 21.1± 0.2 0.0± 0.0 – – –

FID 25.13± 0.30 25.98± 0.28 24.41±0.27 24.95± 0.27 30.91 ± 0.27 14.69± 0.18

VGG top 5 acc. 85.00± 0.48 85.00± 0.48 84.62± 0.53 86.86±0.41 86.02± 0.43 91.66± 0.43
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5 Conclusion and Outlook

We have proposed a conditional invertible neural network architecture which
enables diverse image-to-image translation with high realism. For image col-
orization, we believe that even better results can be achieved when employing
the latest tricks from large-scale GAN frameworks. Especially the non-invertible
nature of the conditioning network makes cINNs a suitable method for other
computer vision tasks such as diverse semantic segmentation.
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Abstract. A regular convolution layer applying a filter in the same way
over known and unknown areas causes visual artifacts in the inpainted
image. Several studies address this issue with feature re-normalization on
the output of the convolution. However, these models use a significant
amount of learnable parameters for feature re-normalization [41,48], or
assume a binary representation of the certainty of an output [11,26].

We propose (layer-wise) feature imputation of the missing input values
to a convolution. In contrast to learned feature re-normalization [41,48],
our method is efficient and introduces a minimal number of parameters.
Furthermore, we propose a revised gradient penalty for image inpaint-
ing, and a novel GAN architecture trained exclusively on adversarial
loss. Our quantitative evaluation on the FDF dataset reflects that our
revised gradient penalty and alternative convolution improves generated
image quality significantly. We present comparisons on CelebA-HQ and
Places2 to current state-of-the-art to validate our model. (Code is avail-
able at: github.com/hukkelas/DeepPrivacy. Supplementary material can
be downloaded from: folk.ntnu.no/haakohu/GCPR supplementary.pdf)

1 Introduction

Image inpainting is the task of filling in missing areas of an image. Use cases
for image inpainting are diverse, such as restoring damaged images, removing
unwanted objects, or replacing information to preserve the privacy of individu-
als. Prior to deep learning, image inpainting techniques were generally examplar-
based. For example, pattern matching, by searching and replacing with similar
patches [4,8,23,29,38,43], or diffusion-based, by smoothly propagating informa-
tion from the boundary of the missing area [3,5,6].

Convolutional Neural Networks (CNNs) for image inpainting have led to sig-
nificant progress in the last couple of years [1,24,42]. In spite of this, a standard
convolution does not consider if an input pixel is missing or not, making it ill-
fitted for the task of image inpainting. Partial Convolution (PConv) [26] propose
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Fig. 1. Masked images and corresponding generated images from our proposed single-
stage generator.

a modified convolution, where they zero-out invalid (missing) input pixels and
re-normalizes the output feature map depending on the number of valid pixels in
the receptive field. This is followed by a hand-crafted certainty propagation step,
where they assume an output is valid if one or more features in the receptive
field are valid. Several proposed improvements replace the hand-crafted compo-
nents in PConv with fully-learned components [41,48]. However, these solutions
use ∼ 50% of the network parameters to propagate the certainties through the
network.

We propose Imputed Convolution (IConv); instead of re-normalizing the out-
put feature map of a convolution, we replace uncertain input values with an
estimate from spatially close features (see Fig. 2). IConv assumes that a single
spatial location (with multiple features) is associated with a single certainty.
In contrast, previous solutions [41,48] requires a certainty for each feature in
a spatial location, which allocates half of the network parameters for certainty
representation and propagation. Our simple assumption enables certainty rep-
resentation and propagation to be minimal. In total, replacing all convolution
layers with IConv increases the number of parameters by only 1−2%.

We use the DeepPrivacy [15] face inpainter as our baseline and suggest several
improvements to stabilize the adversarial training: (1) We propose an improved
version of gradient penalties to optimize Wasserstein GANs [2], based on the
simple observation that standard gradient penalties causes training instability
for image inpainting. (2) We combine the U-Net [35] generator with Multi-Scale-
Gradient GAN (MSG-GAN) [19] to enable the discriminator to attend to multi-
ple resolutions simultaneously, ensuring global and local consistency. (3) Finally,
we replace the inefficient representation of the pose-information for the FDF
dataset [15]. In contrast to the current state-of-the-art, our model requires no
post-processing of generated images [16,25], no refinement network [47,48], or
any additional loss term to stabilize the adversarial training [41,48]. From our
knowledge, our model is the first to be trained exclusively on adversarial loss for
image-inpainting.
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Our main contributions are the following:

1. We propose IConv which utilize a learnable feature estimator to impute uncer-
tain input values to a convolution. This enables our model to generate visually
pleasing images for free-form image inpainting.

2. We revisit the standard gradient penalty used to constrain Wasserstein GANs
for image inpainting. Our simple modification significantly improves training
stability and generated image quality at no additional computational cost.

3. We propose an improved U-Net architecture, enabling the adversarial training
to attend to local and global consistency simultaneously.

2 Related Work

In this section, we discuss related work for generative adversarial networks
(GANs), GAN-based image-inpainting, and the recent progress in free-form
image-inpainting.

Generative Adversarial Networks. Generative Adversarial Networks [9] is
a successful unsupervised training technique for image-based generative models.
Since its conception, a range of techniques has improved convergence of GANs.
Karras et al. [21] propose a progressive growing training technique to iteratively
increase the network complexity to stabilize training. Karnewar et al. [19] replace
progressive growing with Multi-Scale Gradient GAN (MSG-GAN), where they
use skip connections between the matching resolutions of the generator and
discriminator. Furthermore, Karras et al. [20] propose a modification of MSG-
GAN in combination with residual connections [12]. Similar to [20], we replace
progressive growing in the baseline model [15] with a modification of MSG-GAN
for image-inpainting.

GAN-Based Image Inpainting. GANs have seen wide adaptation for the
image inpainting task, due to its astonishing ability to generate semantically
coherent results for missing regions. There exist several studies proposing meth-
ods to ensure global and local consistency; using several discriminators to focus
on different scales [16,25], specific modules to connect spatially distant features
[39,44,45,47], patch-based discriminators [48,49], multi-column generators [40],
or progressively inpainting the missing area [11,50]. In contrast to these methods,
we ensure consistency over multiple resolutions by connecting different resolu-
tions of the generator with the discriminator. Zheng et al. [52] proposes a prob-
abilistic framework to address the issue of mode collapse for image inpainting,
and they generate several plausible results for a missing area. Several meth-
ods propose combining the input image with auxiliary information, such as user
sketches [17], edges [31], or examplar-based inpainting [7]. Hukkel̊as et al. [15]
propose a U-Net based generator conditioned on the pose of the face.

GANs are notoriously difficult to optimize reliably [36]. For image inpainting,
the adversarial loss is often combined with other objectives to improve training
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(a) Pconv [26] (b) Gated Conv [48] (c) Ours

Fig. 2. Illustration of partial convolution, gated convolution and our proposed solu-
tion. � is element-wise product and ⊕ is addition. Note that CL is binary for partial
convolution.

stability, such as pixel-wise reconstruction [7,16,25,33], perceptual loss [39,51],
semantic loss [25], or style loss [41]. In contrast to these methods, we optimize
exclusively on the adversarial loss. Furthermore, several studies [17,40,41,47]
propose to use Wasserstein GAN [2] with gradient penalties [10]; however, the
standard gradient penalty causes training instability for image-inpainting mod-
els, as we discuss in Sect. 3.2.

Free-Form Image-Inpainting. Image Inpainting with irregular masks (often
referred to as free-form masks) has recently caught more attention. Liu et al.
[26] propose Partial Convolutions (PConv) to handle irregular masks, where they
zero-out input values to a convolution and then perform feature re-normalization
based on the number of valid pixels in the receptive field. Gated Convolution
[48] modifies PConv by removing the binary-representation constraint, and they
combine the mask and feature representation within a single feature map. Xie
et al. [41] propose a simple modification to PConv, where they reformulate
it as “attention” propagation instead of certainty propagation. Both of these
PConv adaptations [41,48] doubles the number of parameters in the network
when replacing regular convolutions.

3 Method

In this section, we describe a) our modifications to a regular convolution layer,
b) our revised gradient penalty suited for image inpainting, and c) our improved
U-Net architecture.

3.1 Imputed Convolution (IConv)

Consider the case of a regular convolution applied to a given feature map I ∈ R
N :

f(I) = WF ∗ I, (1)
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where ∗ is the convolution and WF ∈ R
D is the filter. To simplify notation,

we consider a single filter applied to a single one-dimensional feature map. The
generalization to a regular multidimensional convolution layer is straightforward.
A convolution applies this filter to all spatial locations of our feature map, which
works well for general image recognition tasks. For image inpainting, there exists
a set of known and unknown pixels; therefore, a regular convolution applied to
all spatial locations is primarily undefined (“unknown” is not the same as 0 or
any other fixed value), and naive approaches cause annoying visual artifacts [26].

We propose to replace the missing input values to a convolution with an
estimate from spatially close values. To represent known and unknown values,
we introduce a certainty Cx for each spatial location x, where C ∈ R

N , and
0 ≤ Cx ≤ 1. Note that this representation enables a single certainty to represent
several values in the case of having multiple channels in the input. Furthermore,
we define Ĩx as a random variable with discrete outcomes {Ix, hx}, where Ix
is the feature at spatial location x, and hx is an estimate from spatially close
features. In this way, we want the output of our convolution to be given by,

O = φ(f(E[Ĩx])), (2)

where φ is the activation function, and O the output feature map. We approxi-
mate the probabilities of each outcome using the certainty Cx; that is, P (Ĩx =
Ix) ≈ Cx and P (Ĩx = hx) ≈ 1 − Cx, yielding the expected value of Ĩx,

E[Ĩx] = Cx · Ix + (1 − Cx) · hx. (3)

We assume that a missing value can be approximated from spatially close values.
Therefore, we define hx as a learned certainty-weighted average of the surround-
ing features:

hx =
∑K

i=1 Ix+i · Cx+i · ωi
∑K

i=1 Cx+i

, (4)

where ω ∈ RK is a learnable parameter. In a sense, our convolutional layer will
try to learn the outcome space of Ĩx. Furthermore, hx is efficient to implement
in standard deep learning frameworks, as it can be implemented as a depth-wise
separable convolution [37] with a re-normalization factor determined by C.

Propagating Certainties. Each convolutional layer expects a certainty for
each spatial location. We handle propagation of certainties as a learned opera-
tion,

CL+1 = σ(WC ∗ CL), (5)

where ∗ is a convolution, WC ∈ R
D is the filter, and σ is the sigmoid function. We

constraint WC to have the same receptive field as f with no bias, and initialize
C0 to 0 for all unknown pixels and 1 else.

The proposed solution is minimal, efficient, and other components of the net-
work remain close to untouched. We use LeakyReLU as the activation function
φ, and average pooling and pixel normalization [21] after each convolution f .
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Replacing all convolutional layers with Ox in our baseline network increases the
number of parameters by ∼1%. This is in contrast to methods based on learned
feature re-normalization [41,48], where replacing a convolution with their pro-
posed solution doubles the number of parameters. Similar to partial convolution
[26], we use a single scalar to represent the certainty for each spatial location;
however, we do not constrain the certainty representation to be binary, and our
certainty propagation is fully learned.

U-Net Skip Connection. U-Net [35] skip connection is a method to combine
shallow and deep features in encoder-decoder architectures. Generally, the skip
connection consists of concatenating shallow and deep features, then followed by
a convolution. However, for image inpainting, we only want to propagate certain
features.

To find the combined feature map for an input in layer L and L+ l, we find a
weighted average. Assuming features from two layers in the network, (IL, CL),
(IL+l, CL+l), we define the combined feature map as;

IL+l+1 = γ · IL + (1 − γ) · IL+l, (6)

and likewise for CL+l+1. γ is determined by

γ =
CL · β1

CL · β1 + CL+l · β2
, (7)

where β1, β2 ∈ R
+ are learnable parameters initialized to 1. Our U-Net skip con-

nection is unique compared to previous work and designed for image inpainting.
Equation 6 enables the network to only propagate features with a high certainty
from shallow layers. Furthermore, we include β1 and β2 to give the model the
flexibility to learn if it should attend to shallow or deep features.

3.2 Revisiting Gradient Penalties for Image Inpainting

ImprovedWassersteinGAN [2,10] iswidely used in image inpainting [17,40,41,47].
Given a discriminator D, the objective function for optimizing a Wasserstein GAN
with gradient penalties is given by,

Ltotal = Ladv + λ · (||∇D(x̂)||p − 1)2, (8)

where Ladv is the adversarial loss, p is commonly set to 2 (L2 norm), λ is the
gradient penalty weight, and x̂ is a randomly sampled point between the real
image, x, and a generated image, x̃. Specifically, x̂ = t · x + (1 − t) · x̃, where t is
sampled from a uniform distribution [10].

Previous methods enforce the gradient penalty only for missing areas
[17,40,47]. Given a mask M to indicate areas to be inpainted in the image
x, where M is 0 for missing pixels and 1 otherwise (note that M = C0), Yu et
al. [47] propose the gradient penalty:

ḡ(x̂) = (||∇D(x̂) � (1 − M)||p − 1)2, (9)
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Fig. 3. Illustration of the generator (left of the dashed line) and discriminator architec-
ture. Up and down denotes nearest neighbor upsampling and average pool. The pose
information in the discriminator is concatenated to the input of the first convolution
layer with 32 × 32 resolution. Note that pose information is only used for the FDF
dataset [15].

where � is element-wise multiplication. This gradient penalty cause significant
training instability, as the gradient sign of ḡ shifts depending on the cardinality
of M . Furthermore, Eq. 9 impose ||∇D(x̂)|| ≈ 1, which leads to a lower bound
on the Wasserstein distance [18].

Imposing ||∇D(x̂)|| ≤ 1 will remove the issue of shifting gradients in Eq. 9.
Furthermore, imposing the constrain ||∇D(x̂)|| ≤ 1 is shown to properly esti-
mate the Wasserstein distance [18]. Therefore, we propose the following gradient
penalty:

g(x̂) = max(0, ||∇D(x̂) � (1 − M))||p − 1) (10)

Previous methods enforce the L2 norm [17,40,47]. Jolicoeur-Martineau et al. [18]
suggest that replacing the L2 gradient norm with L∞ can improve robustness.
From empirical experiments (see Appendix 1), we find L∞ more unstable and sen-
sitive to choice of hyperparameters; therefore, we enforce the L2 norm (p = 2).

In total, we optimize the following objective function:

Ltotal = Ladv + λ · max(0, ||∇D(x̂) � (1 − M))||p − 1) (11)

3.3 Model Architecture

We propose several improvements to the baseline U-Net architecture [15]. See
Fig. 3 for our final architecture. We replace all convolutions with Eq. 2, aver-
age pool layer with a certainty-weighted average and U-Net skip connections
with our revised skip connection (see Eq. 6). Furthermore, we replace progres-
sive growing training [21] with Multi-Scale Gradient GAN (MSG-GAN) [19].
For the MSG-GAN, instead of matching different resolutions from the generator
with the discriminator, we upsample each resolution and sum up the contribu-
tion of the RGB outputs [20]. In the discriminator we use residual connections,
similar to [20]. Finally, we improve the representation of pose information in the
baseline model (pose information is only used on the FDF dataset [15]).
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Representation of Pose Information. The baseline model [15] represents
pose information as one-hot encoded images for each resolution in the network,
which is extremely memory inefficient and a fragile representation. The pose
information, P ∈ R

K·2, represents K facial keypoints and is used as conditional
information for the generator and discriminator. We propose to replace the one-
hot encoded representation, and instead pre-process P into a 4 × 4 × 32 feature
bank using two fully-connected layers. This feature bank is concatenated with
the features from the encoder. Furthermore, after replacing progressive growing
with MSG-GAN, we include the same pose pre-processing architecture in the
discriminator, and input the pose information as a 32 × 32 × 1 feature map to
the discriminator.

4 Experiments

We evaluate our proposed improvements on the Flickr Diverse Faces (FDF)
dataset [15], a lower resolution (128×128) face dataset. We present experiments
on the CelebA-HQ [21] and Places2 [53] datasets, which reflects that our sug-
gestions generalizes to standard image inpainting. We compare against current
state-of-the art [34,41,48,52]. Finally, we present a set of ablation studies to
analyze the generator architecture.1

Quantitative Metrics. For quantitative evaluations, we report commonly used
image inpainting metrics; pixel-wise distance (L1 and L2), peak signal-to-noise
ratio (PSNR), and structural similarity (SSIM). Neither of these reconstruc-
tion metrics are any good indicators of generated image quality, as there often
exist several possible solutions to a missing region, and they do not reflect
human nuances [51]. Recently proposed deep feature metrics correlate better
with human perception [51]; therefore, we report the Frèchet Inception Dis-
tance (FID) [13] (lower is better) and Learned Perceptual Image Patch Simi-
larity (LPIPS) [51] (lower is better). We use LPIPS as the main quantitative
evaluation.

4.1 Improving the Baseline

We iteratively add our suggestions to the baseline [15] (Config A-E), and report
quantitative results in Table 1. First, we replace the gradient penalty term with
Eq. 10, where we use the L2 norm (p = 2), and impose the following constraint
(Config B):

Gout = G(I, C0) · (1 − C0) + I · C0, (12)

1 To prevent ourselves from cherry-picking qualitative examples, we present several
images (with corresponding masks) chosen by previous state-of-the-art papers [11,
41,48,52], thus copying their selection. Appendix 5 describes how we selected these
samples. The only hand-picked examples in this paper are Fig. 1, Fig. 4, Fig. 6, and
Fig. 7. No examples in the Supplementary Material are cherry-picked.
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Table 1. Quantitative results on the FDF dataset [15]. We report standard
metrics after showing the discriminator 20 million images on the FDF and Places2
validation sets. We report L1, L2, and SSIM in Appendix 3. Note that Config E is
trained with MSG-GAN, therefore, we separate it from Config A-D which are trained
with progressive growing [21]. * Did not converge. † Same as Config B

Configuration FDF Places2

LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓
A Baseline [15] 0.1036 22.52 6.15 –* –* –*

B + Improved Gradient penalty 0.0757 23.92 1.83 0.1619 20.99 7.96

C + Scalar Pose Information 0.0733 24.01 1.76 – † –† – †
D + Imputed Convolution 0.0739 23.95 1.66 0.1563 21.21 6.81

E + No Growing, MSG 0.0728 24.01 1.49 0.1491 21.42 5.24

where C0 is the binary input certainty and G is the generator. Note that we
are not able to converge Config A while imposing Gout. We replace the one-hot
encoded representation of the pose information with two fully connected layers in
the generator (Config C). Furthermore, we replace the input to all convolutional
layers with Eq. 3 (Config D). We set the receptive field of hx to 5 × 5 (K =
5 in Eq. 4). We replace the progressive-growing training technique with MSG-
GAN [19], and replace the one-hot encoded pose-information in the discriminator
(Config E). These modifications combined improve the LPIPS score by 30.0%.
The authors of [15] report a FID of 1.84 on the FDF dataset with a model
consisting of 46M learnable parameters. In comparison, we achieve a FID of 1.49
with 2.94M parameters (config E). For experimental details, see Appendix 2.

4.2 Generalization to Free-Form Image Inpainting

We extend Config E to general image inpainting datasets; CelebA-HQ [21] and
Places2 [53]. We increase the number of filters in each convolution by a factor of
2, such that the generator has 11.5M parameters. In comparison, Gated Convo-
lution [48] use 4.1M, LBAM [41] 68.3M, StructureFlow [34] 159M, and PIC [52]
use 3.6M parameters. Compared to [48,52], our increase in parameters improves
semantic reasoning for larger missing regions. Also, compared to previous solu-
tions, we achieve similar inference time since the majority of the parameters
are located at low-resolution layers (8 × 8 and 16 × 16). In contrast, [48] has
no parameters at a resolution smaller than 64 × 64. For single-image inference
time, our model matches (or outperforms) previous models; on a single NVIDIA
1080 GPU, our network runs at ∼89 ms per image on 256 × 256 resolution, 2×
faster than LBAM [41], and PIC [52]. GatedConvolution [48] achieves ∼62 ms
per image.2 See Appendix 2.1 for experimental details.

2 We measure runtime for [48,52] with their open-source code, as they do not report
inference time for 256 × 256 resolution in their paper.
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(a) Input (b) GConv [48] (c) PIC [52] (d) SF [34] (e) Ours

Fig. 4. Qualitative examples on the Places2 validation set with comparisons to Gated
Convolution (GConv) [48], StructureFlow (SF) [34], and Pluralistic Image Completion
(PIC) [52]. We recommend the reader to zoom-in on missing regions. For non hand-
picked qualitative examples, see Appendix 5.
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Table 2. Quantitative results on the CelebA-HQ and Places2 datasets. We use the
official frameworks to reproduce results from [48,52]. For the (Center) dataset we use
a 128 × 128 center mask, and for (Free-Form) we generate free-form masks for each
image following the approach in [48]. We report L1, L2, and SSIM in Appendix 3.

Method Places2 (Center) Places2 (Free Form) CelebA-HQ (Center) CelebA-HQ (Free Form)

PSNR LPIPS FID PSNR LPIPS FID PSNR LPIPS FID PSNR LPIPS FID

Gated

convolutions [48]

21.56 0.1407 4.14 27.59 0.0579 0.90 25.55 0.0587 6.05 30.26 0.0366 2.98

Plurastic image

inpainting [52]

21.04 0.1584 7.23 26.66 0.0804 2.76 24.59 0.0644 7.50 29.30 0.0394 3.30

Ours 21.70 0.1412 3.99 27.33 0.0597 0.94 25.29 0.0522 4.43 30.32 0.0300 2.38

(a) Input (b) PM [4] (c) PIC [52] (d) PC [26] (e) BA [41] (f) GC [48] (g) Ours

Fig. 5. Places2 comparison to PatchMatch (PM) [4], Pluralistic Image Completion
(PIC) [52], Partial Convolution (PC) [26], Bidirectional Attention (BA) [41], and Gated
Convolution (GC) [48]. Examples selected by authors of [41] (images extracted from
their supplementary material). Results of [48,52] generated by using their open-source
code and models. We recommend the reader to zoom-in on missing regions.

Quantitative Results. Table 2 shows quantitative results for the CelebA-HQ
and Places2 datasets. For CelebA-HQ, we improve LPIPS and FID significantly
compared to previous models. For Places2, we achieve comparable results to [48]
for free-form and center-crop masks. Furthermore, we compare our model with
and without IConv and notice a significant improvement in generated image
quality (see Fig. 1 in Appendix 3). See Appendix 5.1 for examples of the center-
crop and free-form images.

Qualitative Results. Figure 4 shows a set of hand-picked examples, Fig. 5
shows examples selected by [41], and Appendix 5 includes a large set of examples
selected by the authors of [11,41,48,52]. We notice less visual artifacts than
models using vanilla convolutions [34,52], and we achieve comparable results to
Gated Convolution [48] for free-form image inpainting. For larger missing areas,
our model generates more semantically coherent results compared to previous
solutions [11,41,48,52].
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Fig. 6. Diverse Plausible Results: Images from the FDF validation set [15]. Left
column is the input image with the pose information marked in red. Second column and
onwards are different plausible generated results. Each image is generated by randomly
sampling a latent variable for the generator (except for the second column where the
latent variable is set to all 0’s). For more results, see Appendix 6.

4.3 Ablation Studies

Pluralistic Image Inpainting. Generating different possible results for the
same conditional image (pluralistic inpainting) [52] has remained a problem for
conditional GANs [14,54]. Figure 6 illustrates that our proposed model (Config
E) generates multiple and diverse results. Even though, for Places2, we observe
that our generator suffers from mode collapse early on in training. Therefore,
we ask the question; does a deterministic generator impact the generated image
quality for image-inpainting? To briefly evaluate the impact of this, we train
Config D without a latent variable, and observe a 7% degradation in LPIPS
score on the FDF dataset. We leave further analysis of this for further work.

Propagation of Certainties. Figure 7 visualizes if the generator attends to
shallow or deep features in our encoder-decoder architecture. Our proposed U-
Net skip connection enables the network to select features between the encoder
and decoder depending on the certainty. Notice that our network attends to
deeper features in cases of uncertain features, and shallower feature otherwise.

Fig. 7. U-Net Skip Connections. Visualization of γ from Eq. 6. The left image is
the input image, second column and onwards are the values of γ for resolution 8 to
256. Rightmost image is the generated image. Smaller values of γ indicates that the
network selects deep features (from the decoder branch).

5 Conclusion

We propose a simple single-stage generator architecture for free-form image
inpainting. Our proposed improvements to GAN-based image inpainting sig-
nificantly stabilizes adversarial training, and from our knowledge, we are the
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first to produce state-of-the-art results by exclusively optimizing an adversarial
objective. Our main contributions are; a revised convolution to properly handle
missing values in convolutional neural networks, an improved gradient penalty
for image inpainting which substantially improves training stability, and a novel
U-Net based GAN architecture to ensure global and local consistency. Our model
achieves state-of-the-art results on the CelebA-HQ and Places2 datasets, and our
single-stage generator is much more efficient compared to previous solutions.
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Abstract. We present a novel dataset covering seasonal and challenging
perceptual conditions for autonomous driving. Among others, it enables
research on visual odometry, global place recognition, and map-based re-
localization tracking. The data was collected in different scenarios and
under a wide variety of weather conditions and illuminations, includ-
ing day and night. This resulted in more than 350 km of recordings in
nine different environments ranging from multi-level parking garage over
urban (including tunnels) to countryside and highway. We provide glob-
ally consistent reference poses with up-to centimeter accuracy obtained
from the fusion of direct stereo visual-inertial odometry with RTK-
GNSS. The full dataset is available at https://www.4seasons-dataset.
com.

Keywords: Autonomous driving · Long-term localization · SLAM ·
Visual learning · Visual odometry

1 Introduction

During the last decade, research on visual odometry (VO) and simultaneous
localization and mapping (SLAM) has made tremendous strides [11,12,29,30]
particularly in the context of autonomous driving (AD) [9,28,44,46]. One reason
for this progress has been the publication of large-scale datasets [6,7,14] tailored
for benchmarking these methods. Naturally, the next logical step towards pro-
gressing research in the direction of visual SLAM has been to make it robust
under dynamically changing and challenging conditions. This includes VO, e.g.
at night or rain, as well as long-term place recognition and re-localization
against a pre-built map. In this regard, the advent of deep learning has exhib-
ited itself have promising potential in complementing the performance of visual
SLAM [8,20,22,39]. Therefore, it has become all the more important to have
datasets that are commensurate with handling the challenges of any real-world
environment while also being capable of discerning the performance of state-of-
the-art approaches.
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Fig. 1. Dataset overview. Top: overlaid maps recorded at different times and envi-
ronmental conditions. The points from the reference map (black) align well with the
points from the query map (blue), indicating that the reference poses are indeed accu-
rate. Bottom: sample images demonstrating the diversity of our dataset. The first row
shows a collection from the same scene across different weather and lighting condi-
tions: snowy, overcast, sunny, and night. The second row depicts the variety of scenar-
ios within the dataset: inner city, suburban, countryside, and a parking garage. (Color
figure online)

To accommodate this demand, we present in this paper a versatile cross-
season and multi-weather dataset on a large-scale focusing on long-term local-
ization for autonomous driving. By traversing the same stretch under different
conditions and over a long-term time horizon, we capture variety in illumination
and weather as well as in the appearance of the scenes. Figure 1 visualizes two
overlaid 3D maps recorded at different times as well as sample images of the
dataset.

In detail this work adds the following contributions to the state-of-the-art:

– A cross-season/multi-weather dataset for long-term visual SLAM in automo-
tive applications containing more than 350 km of recordings.

– Sequences covering nine different kinds of environments ranging from multi-
level parking garage over urban (including tunnels) to countryside and high-
way.
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– Global six degrees of freedom (6DoF) reference poses with up-to centimeter
accuracy obtained from the fusion of direct stereo visual-inertial odometry
(VIO) with RTK-GNSS.

– Accurate cross-seasonal pixel-wise correspondences to train dense feature rep-
resentations.

2 Related Work

There exists a variety of benchmarks and datasets focusing on VO and SLAM
for AD. Here, we divide these datasets into the ones which focus only on the
task of VO as well as those covering different weather conditions and therefore
aiming towards long-term SLAM.

2.1 Visual Odometry

The most popular benchmark for AD certainly is KITTI [14]. This multi-sensor
dataset covers a wide range of tasks including not only VO, but also 3D object
detection, and tracking, scene flow estimation as well as semantic scene under-
standing. The dataset contains diverse scenarios ranging from urban over coun-
tryside to highway. Nevertheless, all scenarios are only recorded once and under
similar weather conditions. Ground truth is obtained based on a high-end inertial
navigation system (INS).

Another dataset containing LiDAR, inertial measurement unit (IMU), and
image data at a large-scale is the Málaga Urban dataset [4]. However, in contrast
to KITTI, no accurate 6DoF ground truth is provided and therefore it does not
allow for a quantitative evaluation based on this dataset.

Other popular datasets for the evaluation of VO and VIO algorithms not
related to AD include [40] (handheld RGB-D), [5] (UAV stereo-inertial), [10]
(handheld mono), and [36] (handheld stereo-inertial).

2.2 Long-Term SLAM

More related to our work are datasets containing multiple traversals of the same
environment over a long period of time. With respect to SLAM for AD the
Oxford RobotCar Dataset [27] represents a kind of pioneer work. This dataset
consists of large-scale sequences recorded multiple times for the same environ-
ment over a period of one year. Hence, it covers large variations in the appearance
and structure of the scene. However, the diversity of the scenarios is only limited
to an urban environment. Also, the ground truth provided for the dataset is not
accurate up-to centimeter-level and therefore, requires additional manual effort
to establish accurate cross-sequence correspondences.

The work [34] represents a kind of extension to [27]. This benchmark is
based on subsequences from [27] as well as other datasets. The ground truth of
the RobotCar Seasons [34] dataset is obtained based on structure from motion
(SfM) and LiDAR point cloud alignment. However, due to inaccurate GNSS
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measurements [27], a globally consistent ground truth up-to centimeter-level
can not be guaranteed. Furthermore, this dataset only provides one reference
traversal in the overcast condition. In contrast, we provide globally consistent
reference models for all traversals covering a wide variety of conditions. Hence,
every traversal can be used as a reference model that allows further research,
e.g. on analyzing suitable reference-query pairs for long-term localization and
mapping.

(a) Test vehicle. (b) Sensor system.

Fig. 2. Recording setup. Test vehicle and sensor system used for dataset recording.
The sensor system consists of a custom stereo-inertial sensor with a stereo baseline of
30 cm and a high-end RTK-GNSS receiver from Septentrio.

2.3 Other Datasets

Examples of further multi-purpose AD datasets which also can be used for VO
are [6,7,19,45].

As stated in Sect. 1, our proposed dataset differentiates from previous related
work in terms of being both large-scale (similar to [14]) as well as having high
variations in appearance and conditions (similar to [27]). Furthermore, we are
providing accurate reference poses based on the fusion of direct stereo VIO and
RTK-GNSS.

3 System Overview

This section presents the sensor setup which is used for data recording (Sect. 3.1).
Furthermore, we describe the calibration of the entire sensor suite (Sect. 3.2) as
well as our approach to obtain up-to centimeter-accurate global 6DoF reference
poses (Sect. 3.3).

3.1 Sensor Setup

The hardware setup consists of a custom stereo-inertial sensor for 6DoF pose
estimation as well as a high-end RTK-GNSS receiver for global positioning and
global pose refinement. Figure 2 shows our test vehicle equipped with the sensor
system used for data recording.
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Stereo-Inertial Sensor. The core of the sensor system is our custom stereo-
inertial sensor. This sensor consists of a pair of monochrome industrial-grade
global shutter cameras (Basler acA2040-35gm) and lenses with a fixed focal
length of f = 3.5 mm (Stemmer Imaging CVO GMTHR23514MCN). The cam-
eras are mounted on a highly-rigid aluminum rail with a stereo baseline of 30 cm.
On the same rail, an IMU (Analog Devices ADIS16465) is mounted. All sensors,
cameras, and IMU are triggered over an external clock generated by an field-
programmable gate array (FPGA). Here, the trigger accounts for exposure com-
pensations, meaning that the time between the centers of the exposure interval
for two consecutive images is always kept constant (1/[frame rate]) independent
of the exposure time itself.

Furthermore, based on the FPGA, the IMU is properly synchronized with the
cameras. In the dataset, we record stereo sequences with a frame rate of 30 fps.
We perform pixel binning with a factor of two and crop the image to a resolution
of 800 × 400. This results in a field of view of approximately 77◦ horizontally and
43◦ vertically. The IMU is recorded at a frequency of 2000 Hz. During recording,
we run our custom auto-exposure algorithm, which guarantees equal exposure
times for all stereo image pairs as well as a smooth exposure transition in highly
dynamic lighting conditions, as it is required for visual SLAM. We provide those
exposure times for each frame.

GNSS Receiver. For global positioning and to compensate drift in the VIO
system we utilize an RTK-GNSS receiver (mosaic-X5) from Septentrio in combi-
nation with an Antcom Active G8 GNSS antenna. The GNSS receiver provides a
horizontal position accuracy of up-to 6 mm by utilizing RTK corrections. While
the high-end GNSS receiver is used for accurate positioning, we use a second
receiver connected to the time-synchronization FPGA to achieve synchroniza-
tion between the GNSS receiver and the stereo-inertial sensor.

3.2 Calibration

Aperture and Focus Adjustment. The lenses used in the stereo-system have
both adjustable aperture and focus. Therefore, before performing the geometric
calibration of all sensors, we manually adjust both cameras for a matching aver-
age brightness and a minimum focus blur [18], across a structured planar target
in 10 m distance.

Stereo Camera and IMU. For the intrinsic and extrinsic calibration of the
stereo cameras as well as the extrinsic calibration and time-synchronization of the
IMU, we use a slightly customized version of Kalibr1 [32]. The stereo cameras are
modeled using the Kannala-Brandt model [23], which is a generic camera model

1 https://github.com/ethz-asl/kalibr.

https://github.com/ethz-asl/kalibr
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consisting of in total eight parameters. To guarantee an accurate calibration over
a long-term period, we perform a feature-based epipolar-line consistency check
for each sequence recorded in the dataset and re-calibrate before a recording
session if necessary.

GNSS Antenna. Since the GNSS antenna does not have any orientation but
has an isotropic reception pattern, only the 3D translation vector between one
of the cameras and the antenna within the camera frame has to be known. This
vector was measured manually for our sensor setup.

3.3 Ground Truth Generation

Reference poses (i.e. ground truth) for VO and SLAM should provide high accu-
racy in both local relative 6DoF transformations and global positioning. To fulfill
the first requirement, we extend the state-of-the-art stereo direct sparse VO [44]
by integrating IMU measurements [43], achieving a stereo-inertial SLAM system
offering average tracking drift around 0.6% of the traveled distance. To fulfill the
second requirement, the poses estimated by our stereo-inertial system are inte-
grated into a global pose graph, each with an additional constraint from the
corresponding RTK-GNSS measurement. Our adopted RTK-GNSS system can
provide global positioning with up-to centimeter accuracy. The pose graph is
optimized globally using the Gauss-Newton method, ending up with 6DoF cam-
era poses with superior accuracy both locally and globally. For the optimization,
we make use of the g2o library [25].

One crucial aspect for the dataset is that the reference poses which we pro-
vide are actually accurate enough, even though some of the recorded sequences
partially contain challenging conditions in GNSS-denied environments. Despite
the fact that the stereo-inertial sensor system has an average drift around 0.6%,
this cannot be guaranteed for all cases. Hence, for the reference poses in our
dataset, we report whether a pose can be considered to be reliable by measuring
the distance to the corresponding RTK-GNSS measurement. Only RTK-GNSS
measurements with a reported standard deviation of less than 0.01 m are consid-
ered as accurate. For all poses, without corresponding RTK-GNSS measurement
we do not guarantee a certain accuracy. Nevertheless, due to the highly accu-
rate stereo-inertial odometry system, these poses still can be considered to be
accurate in most cases even in GNSS-denied environments, e.g. tunnels or areas
with tall buildings.

4 Scenarios

This section describes the different scenarios we have collected for the dataset.
The scenarios involve different sequences – ranging from urban driving to parking
garage and rural areas. We provide complex trajectories, which include partially
overlapping routes, and multiple loops within a sequence. For each scenario, we
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Fig. 3. 3D models of different scenarios contained in the dataset. The figure
shows a loop around an industrial area (left), multiple loops around an area with high
buildings (middle), and a stretch recorded in a multi-level parking garage (right). The
green lines encode the GNSS trajectories, and the red lines encode the VIO trajectories.
Top: shows the trajectories before the fusion using pose graph optimization. Bottom:
shows the result after the pose graph optimization. Note that after the pose graph
optimization the reference trajectory is well aligned. (Color figure online)

have collected multiple traversals covering a large range of variation in environ-
mental appearance and structure due to weather, illumination, dynamic objects,
and seasonal effects. In total, our dataset consists of nine different scenarios, i.e.
industrial area, highway, local neighborhood, ring road, countryside, suburban,
inner city, monumental site, and multi-level parking garage.

We provide reference poses and 3D models generated by our ground truth
generation pipeline (cf. Fig. 3) along with the corresponding raw image frames
and raw IMU measurements. Figure 4 shows another example of the optimized
trajectory, which depicts the accuracy of the provided reference poses.

The dataset will challenge current approaches on long-term localization and
mapping since it contains data from various seasons and weather conditions as
well as from different times of the day as shown in the bottom part of Fig. 1.

4.1 Ground Truth Validation

The top part of Fig. 1 shows two overlaid point clouds from different runs across
the same scene. Note that despite the weather and seasonal differences the
point clouds align very well. This shows that our reference poses are indeed
very accurate. Furthermore, a qualitative assessment of the point-to-point cor-
respondences is shown in Fig. 5. The figure shows a subset of very accurate
pixel-wise correspondences across different seasons (autumn/winter) in the top
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Fig. 4. Reference poses validation. This figure shows two additional 3D models of
the scenarios collected. Note that these two sequences are quite large (more than 10 km
and 6 km, respectively). Top: before the fusion using pose graph optimization. Bottom:
results after optimization. The green lines encode the GNSS trajectories, the red lines
show the VIO trajectories (before fusion) and the fused trajectories (after fusion). The
left part of the figure shows a zoomed-in view of a tunnel, where the GNSS signal
becomes very noisy as highlighted in the red boxes. Besides, due to the large size
of the sequence, the accumulated tracking error leads to a significant deviation of the
VIO trajectory from the GNSS recordings. Our pose graph optimization, by depending
globally on GNSS positions and locally on VIO relative poses, successfully eliminates
global VIO drifts and local GNSS positioning flaws. (Color figure online)

and different illumination conditions (sunny/night) in the bottom. These point-
to-point correspondences are a result of our up-to centimeter-accurate global
reference poses and are obtained in a completely self-supervised manner. This
makes them suitable as training pairs for learning-based algorithms. Recently,
there has been an increasing demand for pixel-wise cross-season correspondences
which are needed to learn dense feature descriptors [8,33,38]. However, there is
still a lack of datasets to satisfy this demand. The KITTI [14] dataset does not
provide cross-seasons data. The Oxford RobotCar Dataset [27] provides cross-
seasons data, however, since the ground truth is not accurate enough, the paper
does not recommend benchmarking localization and mapping approaches.

Recently, RobotCar Seasons [34] was proposed to overcome the inaccuracy of
the provided ground truth. However, similar to the authors of [38], we found that
it is still challenging to obtain accurate cross-seasonal pixel-wise matches due to
pose inconsistencies. Furthermore, this dataset only provides images captured
from three synchronized cameras mounted on a car, pointing to the rear-left,
rear, and rear-right, respectively. Moreover, the size of the dataset is quite small
and a significant portion of it suffers from strong motion blur and low image
quality.

To the best of our knowledge, our dataset is the first that exhibits accurate
cross-season reference poses for the AD domain.
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Fig. 5. Accurate pixel-wise correspondences, making cross-seasonal training
possible. Qualitative assessment of the accuracy of our data collection and geometric
reconstruction method for a sample of four different conditions (from top left in clock-
wise order: overcast, snowy, night, sunny) across the same scene. Each same colored
point in the four images corresponds to the same geometric point in the world. The
cameras corresponding to these images have different poses in the global frame of ref-
erence. Please note that the points are not matched but rather a result of our accurate
reference poses and geometric reconstruction. This way we are capable of obtaining
sub-pixel level accuracy. On average we get more than 1000 of those correspondences
per image pair. (Color figure online )

5 Tasks

This section describes the different tasks of the dataset. The provided globally
consistent 6DoF reference poses for diverse conditions will be valuable to develop
and improve the state-of-the-art for different SLAM related tasks. Here the major
tasks are robust VO, global place recognition, and map-based re-localization
tracking.

In the following, we will present the different subtasks for our dataset.

5.1 Visual Odometry in Different Weather Conditions

VO aims to accurately estimate the 6DoF pose for every frame relative to a
starting position. To benchmark the task of VO there already exist various
datasets [10,15,40]. All of these existing datasets consist of sequences recorded at
rather homogeneous conditions (indoors, or sunny/overcast outdoor conditions).
However, especially methods developed for AD use cases must perform robustly
under almost any condition. We believe that the proposed dataset will contribute
to improving the performance of VO under diverse weather and lighting condi-
tions in an automotive environment. Therefore, instead of replacing existing
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Fig. 6. Challenging scenes for global place recognition. Top: two pictures share
the same location with different appearances. Bottom: two pictures have similar appear-
ance but are taken at different locations.

benchmarks and datasets, we aim to provide an extension that is more focusing
on challenging conditions in AD. As we provide frame-wise accurate poses for
large portions of the sequences, metrics well known from other benchmarks like
absolute trajectory error (ATE) or relative pose error (RPE) [15,40] are also
applicable to our data.

5.2 Global Place Recognition

Global place recognition refers to the task of retrieving the most similar database
image given a query image [26]. In order to improve the searching efficiency
and the robustness against different weather conditions, tremendous progress
on global descriptors [1,3,13,21] has been seen. For the re-localization pipeline,
visual place recognition serves as the initialization step to the downstream local
pose refinement by providing the most similar database images as well as the
corresponding global poses. Due to the advent of deep neural networks [17,24,
37,41], methods aggregating deep image features are proposed and have shown
advantages over classical methods [2,16,31,42].

The proposed dataset is challenging for global place recognition since it con-
tains not only cross-season images that have different appearances but share a
similar geographical location but also the intra-season images which share sim-
ilar appearances but with different locations. Figure 6 depicts example pairs of
these scenarios. We suggest to follow the standard metric widely used for global
place recognition [2,3,16,35].
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5.3 Map-Based Re-localization Tracking

Map-based re-localization tracking [39] refers to the task of locally refining the
6DoF pose between reference images from a pre-built reference map and images
from a query sequence. In contrast to wide-baseline stereo matching, for re-
localization tracking, it is also possible to utilize the sequential information of
the sequence. This allows us to estimate depth values by running a standard VO
method. Those depth estimates can then be used to improve the tracking of the
individual re-localization candidates.

In this task we assume to know the mapping between reference and query
samples. This allows us to evaluate the performance of local feature descriptor
methods in isolation. In practice, this mapping can be found using image retrieval
techniques like NetVLAD [2] as described in Sect. 5.2 or by aligning the point
clouds from the reference and query sequences [34], respectively.

Accurately re-localizing in a pre-built map is a challenging problem, espe-
cially if the visual appearance of the query sequence significantly differs from the
base map. This makes it extremely difficult especially for vision-based systems
since the localization accuracy is often limited by the discriminative power of
feature descriptors. Our proposed dataset allows us to evaluate re-localization
tracking across multiple types of weather conditions and diverse scenes, ranging
from urban to countryside driving. Furthermore, our up to centimeter-accurate
ground truth allows us to create diverse and challenging re-localization track-
ing candidates with an increased level of difficulty. By being able to precisely
changing the re-localization distances and the camera orientation between the
reference and query samples, we can generate more challenging scenarios. This
allows us to determine the limitations and robustness of current state-of-the-art
methods.

6 Conclusion

We have presented a cross-season dataset for the purpose of multi-weather
SLAM, global visual localization, and local map-based re-localization tracking
for AD applications. Compared to other datasets, like KITTI [14] or Oxford
RobotCar [27], the presented dataset provides diversity in both multiplicities
of scenarios and environmental conditions. Furthermore, based on the fusion
of direct stereo VIO and RTK-GNSS we are able to provide up-to centimeter-
accurate reference poses as well as highly accurate cross-sequence correspon-
dences. One drawback of the dataset is that the accuracy of the reference poses
can only be guaranteed in environments with good GNSS receptions. However,
due to the low drift of the stereo VIO system, the obtained reference poses are
also very accurate in GNSS-denied environments, e.g. tunnels, garages, or urban
canyons.

We believe that this dataset will help the research community to further
understand the limitations and challenges of long-term visual SLAM in changing
conditions and environments and will contribute to advance the state-of-the-art.
To the best of our knowledge, ours is the first large-scale dataset for AD providing
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cross-seasonal accurate pixel-wise correspondences for diverse scenarios. This
will help to vastly increase robustness against environmental changes for deep
learning methods. The dataset is made publicly available to facilitate further
research.
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Abstract. 3D depth computation from stereo data has been one of the
most researched topics in computer vision. While state-of-art approaches
have flourished over time, reconstruction of transparent materials is still
considered an open problem. Based on 3D light field data we propose a
method to obtain smooth and consistent double-layer estimates of scenes
with transparent materials. Our novel approach robustly combines esti-
mates from models with different layer hypotheses in a cost volume with
subsequent minimization of a joint second order TGV energy on two
depth layers. Additionally we showcase the results of our approach on
objects from common inspection use-cases in an industrial setting and
compare our work to related methods.

1 Introduction

Reconstructing 3D depth information through multi-view stereo methods is a
well researched topic of computer vision and has lead to countless variations
and approaches over the years. In order to obtain depth from correspondences
in different views, the majority of approaches rely on the assumption that scene
points reflect light in all directions uniformly, i.e. the Lambertian assumption
[11]. Unfortunately this assumption is violated for scene points from transparent
materials which poses a special case that is rarely considered in state-of-the-art
approaches. Moreover little to no surface structure and refractive effects make
the task even more difficult. Despite the challenging nature of the problem, com-
puting depth from scenes with transparent materials is a desirable ability for
industrial applications. The amount of publications regarding depth estimation
for transparent materials is very sparse. Earlier publications explore different
approaches to tackle the problem as for example through visible light tomogra-
phy [20] or polarized light [15]. The trend for recent approaches is towards spe-
cialized hardware such as the utilization of Time-of-Flight (ToF) measurements
[7,19] from RGB-D cameras and structured light setups [10,16,25]. With the
increasing popularity of learning based methods recent approaches show full 3D
reconstructions of transparent objects. As an example recent work of Li et al. [14]
extends the range of capable approaches by computing 3D transparent shapes
c© Springer Nature Switzerland AG 2021
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Fig. 1. Qualitative double-layer results of our proposed method. (a) shows a view of
a transparent fork on top of an opaque background. In (b) and (c) the corresponding
front-layer and back-layer depth estimates are shown. (d) and (e) show a high fre-
quency rainbow color mapping of the depth estimates to visualize the consistency of
the surfaces.

with a small set of images from a mobile phone camera and a known environment
map. Another learning-based publication of recent years is the single-image app-
roach by Chen et al. [5] which is able to produce visually convincing transparent
shapes from learned refractive flow of transparent objects. Despite the impres-
sive results of these approaches, they are not applicable to our intentions. Our
goal is to present a method in a more restricted environment. Firstly, we limit
our approach to passive (multi-view) data only. We also assume a front-parallel
multi-view alignment along exactly one image axis which is common for stereo
data. To allow for applications in an industrial setting, e.g. objects on a conveyor
belt, our approach is also required to process scenes which are subjected to lin-
ear motion while guaranteeing reasonably fast runtime. The intention is to allow
continuous acquisition with parallel processing of the data. The scene structure
modeled by our approach consists of a transparent object in front of an opaque
background. Thus the goal is to estimate two depth estimates globally across an
entire scene, i.e. a front layer for non-opaque surfaces and an opaque back-layer
for scene points that may be underneath, see Fig. 1 for an example. In the con-
text of passive (multi-view) data, a popular method to describe densely sampled
scenes is given by the plenoptic function [2] which enables the description of 3D
scene geometry in a light field (LF) [6]. A simplified variant of a light field can be
interpreted intuitively through a discrete volume in 3D, comprised of a stack of
images from different views. The acquisition of such light fields is commonly sub-
ject to epipolar constraints, thus enabling depth estimation through light field
analysis. For scene points of transparent materials, multiple depth cues super-
impose which results in local multi-orientation structures in light field data. In
[22,23] Wanner and Goldlücke show how local structure tensor (ST) analysis
[1] in the epipolar domain of light fields can be utilized to solve correspondence
problems for Lambertian and non-Lambertian surfaces. The major drawback of
this approach is that the depth estimates are bound to their corresponding model
hypothesis, which implies that depth estimates are only justified in regions of
a scene where the respective hypothesis is valid. Johannsen et al. [8,9] present
a different approach by solving coding problems with a dictionary of pattern
orientations in a local neighborhoods to compute multi-layer depth estimates
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(a) Scene

(b) Epipolar Plane Image (EPI)

(c) Semantic Segmentation of EPI

Fig. 2. Depiction of light field and epipolar plane images for the dataset D1 (Coin &
Tape) from Table 1. The scene consists of a coin on a flat surface with a strip of clear
tape spanned above. Sub-figure (a) partially depicts the central view V (x, y, sref) and
the manually annotated semantic segmentation with respect to single- and double-layer
regions. The sub-figures (b) and (c) show EPIs at location x̃ indicated by the red line
in (a). (c) shows the semantic segmentation in the EPI domain and the corresponding
orientations.

based on 4D light fields. Our experiments have shown that conventional stereo
matching and line fitting in the epipolar domain gives bad results when it comes
to transparent materials. In comparison we have found that the double orien-
tation structure tensor approach is well suitable for transparent materials since
this model is very sensitive to depth cues from non-Lambertian surfaces. In this
work we will adopt the basic idea of depth estimation with structure tensors on
narrow baseline light field data from an inline setup with the aforementioned
requirements. We will start by reviewing our setup and explain the light field
structure in Sect. 2. Furthermore we will give a brief introduction to structure
tensor analysis in the context of light fields and in Sect. 4 follow up with our pro-
posed method to combine estimates in a cost volume. After that we will explain
how we refine our double-layer results through a novel variational method.

2 Setup and Light Fields

Our assumption on the general scene structure is that a transparent object of
arbitrary shape is located in front of an opaque second layer as in Fig. 2. This
example shows a clear tape spanned over a coin. The objective is to recon-
struct the depth of the tape surface as well as the depth of the coin underneath.
Acquisition rays that traverse through the transparent object carry composite
depth information of at least two surfaces. This leads to some areas for which
a single-layer depth hypothesis is valid and some areas for which a double-layer
hypothesis is valid. In addition the problem becomes even more complicated due
to opaque structures on the transparent object which might occlude the subja-
cent background. As the final result our goal is to obtain two depth images of size
M × N where the depth estimates among both images coincide in single-layer
regions and differ in double-layer regions. The input data is assumed to be 3D
light field data which is a mapping of the form

L : (x, y, s) �→ R
3 , (1)
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Fig. 3. Illustration of the acquisition system. A line-scan camera is set up in line with
a linear transport stage. Through the alignment of the transport direction and the
horizontal image axis each scan line acquires a view of the entire scene incrementally
while the object on the transport stage passes the camera. The baseline of the resulting
light field is determined by the distance between scan lines.

where x ∈ {1, ...,M}, y ∈ {1, ..., N} denote the image coordinates and s ∈
{1, ..., P} the view-index. More general 4D light field data can be adapted to
this assumption by dropping the dimension corresponding to the movement along
the second image axis. To illustrate the content of LF data in this paper we will
depict the central view with the view index

sref =
�P + 1�

2
(2)

as a substitute for the whole light field. All data that is used in this paper is listed
in Table 1. To evaluate our proposed method we will use the publicly available
“Maria” dataset from [24] and adopt it to our 3D light field setup by discarding
all but the 9 central views in the horizontal direction of movement. In addition
we acquired multiple light fields of transparent objects with an inline acquisition
system based on the principles of [21]. An Illustration and a short Explanation
of the setup can be found in Fig. 3.

3 Depth from Light Field Analysis

The depth information of a LF scene can be computed through local orientation
analysis in epipolar plane images (EPI)

E(s, y) : (s, y) �→ R
3 . (3)

EPIs are images comprised of projections from acquisitions rays sharing common
epipolar planes. By choosing a fixed value x = x̃ thus one obtains

Ex̃(s, y) := L(x̃, y, s) . (4)

An example of such an EPI is depicted in Fig. 2. From this figure it can be
seen how different depth layers from the scene impose multi-orientation patterns
with certain angles in the epipolar domain of a LF. Note that the angle of these
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patterns is linked to the depth of the corresponding scene points. To obtain depth
estimates we thus apply an orientation analysis through the aforementioned
structure tensor approach [22]. Since the orientation analysis is performed locally
at each point in the light field (M × N × P ) we obtain a result stack with the
same dimensions.
Single Orientation Structure Tensor (SOST): The purpose of the single-
orientation model [1] is to compute depth estimate for opaque or occluded scene
points, i.e. single-layer regions. By finding the local orientation w(ξ) in a local
neighborhood Ω through minimization of the least squares energy term

min
ξ

E1(ξ) =
∫

Ω

(
w(ξ)T∇Ex̃

)2
dp , (5)

we obtain an angular estimate ξ, where p = [s, y]T is the image pixel of the EPI
Ex̃ and

∇Ex̃ =
[

∂Ex̃

∂s , ∂Ex̃

∂y

]T
(6)

denotes the gradient vector in the EPI domain. Reformulating Eq. (7) leads to
the definition of the single orientation structure tensor S,

min
ξ

E1(ξ) = w(ξ)T
(∫

Ω

∇Ex̃(∇Ex̃)Tdp

)
w(ξ) = w(ξ)TSw(ξ) . (7)

From the eigenvalue analysis on S, w(ξ) is obtained as the eigenvector corre-
sponding to the smaller eigenvalue. The resulting estimate stack for the SOST
model will be denoted by H1(x, y, s).
Second Order Double Orientation Structure Tensor (SODOST): By
extending the single-orientation case to the double-orientation case [1] with an
additive composition of patterns in a local neighborhood Ω, the single orientation
model can be extended to the double orientation model. In a similar fashion to
the SOST model, the optimal solution for a given multi-orientation pattern patch
Ω can be computed by minimizing

min
m(θ,γ)

E2(m(θ, γ)) = m(θ, γ)T
(∫

Ω

(D2Ex̃)(D2Ex̃)Tdp

)
m(θ, γ)

= m(θ, γ)TT m(θ, γ) ,

(8)

where m(θ, γ) denotes the MOP vector [1] and

D2Ex̃ =
[

∂2Ex̃

∂s2 , ∂2Ex̃

∂y∂s , ∂2Ex̃

∂y2

]T
. (9)

Because the structure tensor model T is comprised of second order derivatives
we will refer to this model as the second order double orientation structure
tensor (SODOST) model. Through an eigenvalue analysis with a subsequent root
solving on this structure tensor we obtain the two orientations u(θ) and v(γ) or
the corresponding disparities where it is assumed that u(θ) denotes the estimate
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closer to the camera. By performing this local analysis based on this model
we thus obtain two further estimate volumes H2(x, y, s) (front) and H3(x, y, s)
(back). The quality of the structure tensor estimates greatly depends on the
choice of the inner and outer scale for Gaussian smoothing. This is explained in
more detail in [22]. For the “Maria” dataset we chose to use the same parameters
as the referenced paper (i.e. σi = σo = 0.8) and for all other datasets we chose
to use a slightly larger outer scale σo = 1.2.

In our experiments we have observed that the structures in EPIs are a lot
more prominent on opaque surfaces compared to transparent scene points. Prior
to computing the structure tensor estimates we therefore normalize the contrast
of the entire light field to enhance the structure imposed by transparent sur-
faces. Let I ∈ R

M×N×P denote a single channel of the light field, we apply the
normalization filtering

In =
I − kσ ∗ I

c(kσ ∗ (I − kσ ∗ I)2)
1
2 + ε

+
1
2

, (10)

where ∗ is the volumetric convolution and kσ denotes a Gaussian kernel. The
parameter c is used to scale the normalized output to [0, 1]. In our implementa-
tion we used c = 6. We chose kσ to be a 2D kernel in spatial dimensions with a
standard deviation σ = 2.

4 Double-Layer Cost Volume

The major drawback of the plain structure tensor results are the affiliation to
either a single-layer or double-layer hypothesis which is valid in certain regions of
the scene. Our approach combines the results from all models and implicitly rules
out incorrect or weakly supported estimates. To achieve this in a robust manner
we create a cost volume V ∈ R

M×N×D where D is the number of elements in
a finite set {d0, d1, ..., dD−1} of disparity hypotheses. As depicted in Fig. 2 we
can observe that the angle of the sloped pattern lines in the epipolar domain
of the light field correspond to different depths and subsequently disparities in
a light field. Recall that we compute depth estimates at each point in a local
neighborhood of the light field, such that we attain the estimate volumes H1, H2

and H3. Because of the locality of the structure tensor operation, we can observe
that the estimates along the corresponding sloped line in the light field ideally
are constant. If the variance along this sloped line is high we want to penalize
this with a high cost. To analyze the estimates along any sloped line we thus
formulate a ray which intersects the reference view sref at the coordinates x, y
with an angle α. Since disparities can be translated to angles we can therefore
use the set of disparity hypotheses from above to determine the intersected voxel
in each view for each hypothesis ray. The relative shift for a certain view si with
respect to sref can therefore be computed with

Δyi→ref = �tan(α)(si − sref)	 . (11)
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Fig. 4. Rays traversing through an
estimate volume. The horizontal
dashed line indicates the reference
view sref . The filled area represents
the area of influence and defines
the set R.

Table 1. List of all datasets used in this
paper. The datasets D1–D8 have been acquired
by us with the inline line-scan setup shown
in Fig. 3. During acquisition, two light sources
from opposing directions are strobed alternately
at each step to produce 6 channels (2 × RGB)
of data instead of 3.

ID LF name Size (M × N × P ) Channels

- Maria [24] 926 × 926 × 9 3

D1 Coin & Tape 1172 × 1150 × 33 6

D2 Fork 1172 × 1150 × 33 6

D3 Medical item 1172 × 1150 × 33 6

D4 Phone case 1172 × 1150 × 33 6

D5 SMD parts 1172 × 1150 × 33 6

D6 Syringe 1172 × 1150 × 33 6

D7 Wallplugs 1172 × 1150 × 33 6

D8 Wooden balls 1172 × 1150 × 33 6

In theory each ray thus intersects up to P voxels. We define that all these voxels
of a single ray form a finite set Rx,y,di

. In a geometric perspective we can alter
the thickness of this ray by also selecting neighboring voxels in each view such
that we can set its radius of influence resulting in more or fewer voxels in the
set. An illustration of this principle is given in Fig. 4. With this in mind the cost
for each point of the cost volume can therefore be attained through

V (x, y, di) =
1

|Rx,y,di
|

∑
r∈Rx,y,di

min
j

h(Hj(r), di) , (12)

where |Rx,y,di
| denotes the number of elements in the set Rx,y,di

and r denotes
a point in light field coordinates. For the inner cost metric we chose to use a
stable absolute distance from the disparity hypothesis di

h(z, di) = max {|z − di|, τ} , (13)

where τ is a hyperparameter. We remark that the structure tensor estimates
Hj(r) from each model may be incorrect and noisy in certain regions. With the
given cost measure above a combined robust cost over all three structure tensor
models in a local neighbourhood along a hypothesis ray is provided. The cost
volume in Fig. 5 shows the unimodal and bimodal distribution along d for any
location x, y on the spatial grid. Naturally the distribution can have more than
two modes but in our testing we have found that either one or two prominent
modes are present in the cost volume. The task now is to find the index d
and the corresponding cost for one or two prominent modes on mostly smooth
distributions. To isolate the minimal points we use a simple non-maximum-
suppression algorithm denoted in Algorithm1 and define that a local minimum
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Fig. 5. Example of a cost volume. The left image shows a horizontal cut through the
cost volume from the “Coin & Tape” (D1) dataset at x̂. The location of the cut is
also indicated by the horizontal line in Fig. 2. The structure of the tape spanned over
the coin can be seen clearly. On the right hand side the unimodal and bimodal cost
distributions at y1 and y2 are shown in corresponding colors (visible in the online
version of this paper).

is only valid if it is below a certain threshold and no local maximum is within a
certain range along d. The algorithm is based upon a local gray value dilation
operation with a subsequent comparison to the unchanged cost volume.

For each x, y determining the index of the smallest minimum forms an image
which is denoted g1. For areas with a valid second best minimum we likewise
determine the indices which form g2. For single-layer coordinates we use the
corresponding entry from g1. Since the estimates in both images have no clear
affiliation to the front-layer or the back-layer we sort both images such that

(g1)i ≥ (g2)i ∀i = 1, ...,MN , (14)

where (gj)i denotes the i-th element of a flattened version of gj .

5 Joint TGV2−�1 Refinement

In this section, we propose a joint refinement approach to refine noisy depth
estimates for the foreground surface u and a background surface v. As a reg-
ularizer we make use of the Total Generalized Variation (TGV) regularizer [3]
of second order which has been shown to be very suitable for the refinement of
depth images [12,17]. The TGV regularizer of second order is defined as

TGV2(x) = min
x̃

λ0

∥∥∥D̃x̃
∥∥∥
2,1

+ λ1 ‖Dx − x̃‖2,1 , (15)

where x ∈ R
M×N is the image and x̃,∈ R

M×N×2 is an auxiliary vector field.
D̃ : RM×N×2 → R

M×N×4 and D : RM×N → R
M×N×2 are the finite differences

approximations of the gradient operator. For robust joint depth refinement we
propose to minimize the following variational energy

min
u,v

TGV2(u)+TGV2(v)+λu ‖c1  (u − g1)‖1+λv ‖c2  (v − g2)‖1 s.t. u ≥ v ,

(16)

where the optimal solution for the foreground u is constrained to be at least
as close to the camera as the background v. Here c1, c2 ∈ R

M×N denote the
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Algorithm 1. Implementation of the non-maximum suppression. The  oper-
ator denotes the Hadamard product and δB is the 1-0 indicator function on
condition B.
1: procedure Non-Maximum Suppression(V (x, y, d))
2: Vd(x, y, d) ← dilate(V (x, y, d)) � Dilate along d with width=3
3: VNMS(x, y, d) ← V (x, y, d) � δV (x,y,d)=Vd(x,y,d).
4: return VNMS(x, y, d)
5: end procedure

reciprocal values of the residual cost from the solutions g1 and g2 to steer data
fidelity locally and the  operator denotes the Hadamard product. By trans-
forming Eq. (16) into the corresponding saddle-point notation in the general
form of

min
x

max
y

(Kx)Ty + h(x) − f∗(y) , (17)

the problem can adequately be solved through the PDHG approach by Cham-
bolle and Pock [4]. To apply the algorithm to our problem, the proximal opera-
tors proxτh and proxσf∗ have to be determined. Note that both can be computed
element-wise. Since the convex conjugate of f : ‖·‖2,1 is given by the indicator
function on the 2,∞-norm ball, the proximal map in dual space is given by

proxσf∗(y)i =
yi

max{1, ‖yi‖2}
. (18)

Unfortunately the operator in primal-space is not so straight forward since we
need to pay attention to the constraint u ≥ v. We can formulate the term h(x)
from the saddle point notation in the following way

h(u, v) = λu ‖c1  (u − g1)‖1 + λv ‖c2  (v − g2)‖1 + δu≥v(u, v) , (19)

where the last term is the indicator function of the constraint

δu≥v(u, v) =

{
0 u ≥ v

∞ else
. (20)

As a first step we compute the solutions û and v̂ by the well known shrinkage
operator

proxτh(x)i = (gj)i + max (0, |xi − (gj)i| − λxτ(cj)i) sign(xi − (gj)i) . (21)

In case û < v̂ the shrinkage operator is invalid. The closest valid solution is given
by u = v. The joint proximal map in primal space thus becomes

arg min
u

λu(‖c1  (u − g1)‖1 + ‖c1  (u − g2)‖1) +
1
2τ

(‖u − ū‖22 + ‖u − v̄‖22) ,

(22)
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where ū and v̄ are the solutions from the previous step. Since this minimization
problem is of the form

arg min
u

K∑
i=1

wi|u − gi| + F (u) , (23)

we can solve this through the median formula proposed by Li and Osher [13].

6 Results

To the best of our knowledge there is no dedicated benchmark for transparent
depth estimation. Nevertheless we compare our results quantitatively on the
publicly available “Maria” dataset [24] and show results on more difficult self
acquired datasets.
Quantitative Results: In Fig. 6 the results of our quantitative evaluation are
shown. These results show that our procedure is at least on par with comparable
methods on the mentioned dataset. However, we use only a small fraction of
the data since we deliberately operate in an inline context. As a baseline we
consider the results from only the SODOST model with subsequent variational
denoising [4,18] of the central view which is closely related to the proposed
method in [23]. While the transparent plane is already estimated well, these
results lack consistency in single layer regions which is a major requirement of

MSE BadX
X = 0.2 X = 0.5 X = 1.0

SODOST
Front 1.71 5.73 2.10 0.14
Back 7.69 12.87 6.09 2.88
Combined 3.83 8.26 3.51 1.11

SODOST + TV−�2

Front 0.45 2.26 0.15 0.03
Back 4.75 9.96 5.07 1.51
Combined 1.97 4.98 1.89 0.55

[9]
Front 4.89 - - -
Back 3.20 - - -
Combined - - - -

[8]
Front 0.79 - - -
Back 1.45 - - -
Combined - - - -

Ours
Front 1.26 5.21 0.24 0.01
Back 0.73 3.29 0.06 0.00
Combined 1.07 4.53 0.18 0.01

Front Back
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Fig. 6. Quantitative results on the “Maria” dataset [24]. The metrics shown on the left
are the mean squared disparity error MSE times 100 and BadX. The later describes
the percentage of pixels with a disparity error greater than a threshold X. On the right
the corresponding images including the ground truth are depicted. The stated scores
are masked (2nd row on the right) where only white mask pixels are considered. To
provide better comparability we also state “Combined” values which are the average
masked metrics across both layers (front and back).
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Input Sem. Seg. SOST SODOST Ours
V (x, y, sref) H1(x, y, sref) H2(x, y, sref) H3(x, y, sref) Front Back

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

Fig. 7. Results on acquired data. The key information regarding each dataset is stated
in Table 1. Since transparent materials in the depicted data may be hard to identify
the second column shows the manual semantic segmentation for each scene in green
(single-layer) and blue (double-layer). We refer the reader to the online version of
this paper for the color coding. The third column shows the result from the single
orientation structure tensor model and the 4th and 5th columns show results from the
double orientation model. Our final results are shown in the 6th and 7th column.

our application as stated in Sect. 2. [23] solves this problem through consistency
checks among results from horizontal and vertical EPIs, which is not applicable
in our setup (3D vs. 4D LF). Unfortunately we were not able to provide a proper
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consistency metric because single orientation regions of the dataset are masked.
We therefore leave the interpretation of this aspect to the reader and point to
further qualitative results from our acquired datasets. Another crucial point is
that we were also able to achieve a low runtime. The runtime for this dataset
in our python testing environment is 11.3 seconds. For our larger light fields of
size 1150 × 1172 × 33 and 6 channels the average runtime is ≈35 s. These times
naturally depend on the chosen hyperparameters. Most significantly the size of
the cost volume has a major impact on this. For these experiments we chose
D = 80. These runtime numbers are based on a AMD Ryzen 3900X platform
with the support of a NVidia RTX Titan GPU.

Qualitative Results: Based on acquisition with the setup in Fig. 3 we also
present qualitative results in Fig. 7 on various use-cases e.g. objects in bags
or differently shaped transparent objects which we also consider as a valuable
contribution. In case of the “Maria” dataset the transparent object is ideally
conditioned for concept studies with a high separation between the front-layer
and the back-layer and little to no reflections on a planar structure. However we
think that the problem becomes more interesting with the use-cases given by our
acquisitions. With the depicted results we show that our approach also works well
for more complex shapes of transparent objects in real world data. As an example
consider the datasets D7 and D8. It is remarkable that although both examples
have a large amount of reflections, the shape of the objects from inside the clear
bag can be reconstructed. Also depth of the clear bag itself is estimated well.
Similarly the front SODOST estimate of the “Coin & Tape” example (D1) shows
heavy reflective effects on the coin and noise at the background. By incorporating
single orientation estimates from the single orientation structure tensor, our
model is able to circumvent this issue. With our approach it is possible to attain
a smooth separation between both layers while maintaining consistency for the
rest of the scene. All hyperparameters of our method that have not been stated
explicitly have been chosen empirically based on the individual datasets.

7 Conclusion

In this paper we presented a method to obtain smooth double-layer results for a
constrained inline setup based on 3D light field data from transparent objects.
We covered the preliminaries on various structure tensor models and explained
how we combine these estimates robustly in a cost volume. We furthermore
presented a refinement procedure based on a joint TGV2−1 regularizer which
enables us to handle two layers simultaneously while keeping a global depth
ordering. Additionally we presented quantitative numbers and a qualitative eval-
uation on acquired data to demonstrate the applicability of our approach. To
build a basis for future publications, the ability to benchmark depth reconstruc-
tion could be improved. Possible future work could therefore include the acqui-
sition of a large high quality dataset with transparent objects which also could
enable the development of learned methods. We believe that future approaches
can improve the runtime and accuracy further by incorporating learned descrip-
tors for non-Lambertian surfaces.
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23. Wanner, S., Goldlücke, B.: Reconstructing reflective and transparent surfaces from
epipolar plane images. In: German Conference on Pattern Recognition (Proceed-
ings of the GCPR, Oral Presentation) (2013)
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Abstract. In this paper we propose using a novel differentiable convolu-
tional distance transform layer for segmentation networks such as U-Net
to regularize the training process. In contrast to related work, we do not
need to learn the distance transform, but use an approximation, which
can be achieved by means of the convolutional operation. Therefore, the
distance transform is directly applicable without previous training and it
is also differentiable to ensure the gradient flow during backpropagation.
First, we present the derivation of the convolutional distance transform
by Karam et al. [6]. Then we address the problem of numerical instability
for large images by presenting a cascaded procedure with locally restricted
convolutional distance transforms. Afterwards, we discuss the issue of non-
binary segmentation outputs for the convolutional distance transform and
present our solution attempt for the incorporation into deep segmentation
networks. We then demonstrate the feasibility of our proposal in an abla-
tion study on the publicly available SegTHOR data set.

1 Introduction

In medical image computing, semantic segmentation of anatomical structures
from various imaging modalities is a crucial task to aid in image based diagnos-
tics. Therefore, research on automated segmentation methods is a major topic in
the medical computing domain, since manual segmentation is expensive and time
consuming. Especially deep learning strategies have become popular approaches
to achieve state of the art results. In supervised settings, these usually require
a desired ground truth segmentation, used to calculate a loss function, which is
minimized during training. Mean squared error, categorical cross entropy and
dice loss are common error functions, which directly make use of the ground
truth and are applied for segmentation tasks.

These kind of error functions, however, usually employ a pixel-to-pixel com-
parison and therefore reduce the segmentation task to a pixel-wise classification
task. They do not directly leverage information about higher order features,
such as shape or texture. Specifically, pixels are considered independent of each
other, thus, error correction for one pixel does not influence the error of another
c© Springer Nature Switzerland AG 2021
Z. Akata et al. (Eds.): DAGM GCPR 2020, LNCS 12544, pp. 432–444, 2021.
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pixel. Consequently, recent research aims at incorporating shape priors into the
segmentation process by means of an additional regularization term within the
loss function, that also captures higher order information.

One possible option is to infer shape information by means of a learned
latent representation of the ground truth segmentation. Oktay et al. [9] utilize
a pre-trained autoencoder for shape preservation. The autoencoder’s encoding
component is used to regularize the weight adaptation process of a generic seg-
mentation network during training. This is motivated by Girdhar et al.’s work
on establishing 3D representations of objects from 2D images [5]. Pham et al.
[11] present a 2D end-to-end architecture, in which an autoencoder, trained for
shape representation, is imitated in latent space by a separate encoder, to directly
leverage the autoencoder’s decoder for shape consistent segmentation.

Another strategy is to include a well-established shape representation, par-
ticularly the distance transform, into the learning process. Comparing a one-
hot encoded segmentation mask with its corresponding distance transform in
each channel, the latter contains distance information about the closest object
boundary in every pixel, whereas a binary mask only holds binary information
of whether the structure of interest is present or not. In Fig. 1 the differences
in binary images and in (Manhatten) distance transforms are illustrated on a
simple toy example, in which two pixel values are swapped. For the binary repre-
sentation, one can notice that only the affected pixels yield a difference, whereas
in the corresponding distance transforms, the simple swap has a larger impact
on the distance transform’s landscape.

Rousson et al. [13] leverage the idea of shape representation by means of
signed distance transforms, proposed by Paragios et al. [10], to incorporate shape
priors into the level set framework. Cremers et al. [3] also base their work on
the distance transform’s shape representation to enforce shape priors. Naturally,
incorporating the distance transform into deep neural networks is a plausible
step to model inter-pixel relationships, as also noted in Ma et al.’s work [7].
Dangi et al. [4] apply distance map regression in a multi-task learning setting
for cardiac MR image segmentation. They propose a regularization framework
by formulating an Euclidean distance map regression objective, that is pursued
by a sub-network of their segmentation architecture. In a related fashion Bai and
Urtasun [1] incorporate the watershed transform by fundamentally learning the
distance transform within image objects for instance segmentation. Bui et al. [2]
propose a similar multi-task approach, in which the geodesic distance is approx-
imated as a learning task for neonatal brain segmentation. Similarly, Navarro
et al. [8] also include the learning task of distance transform approximation in
their multi-task segmentation approach. In these contributions, however, the dis-
tance transform needs to be learned, since the implementation of the distance
transform is often not differentiable.

In this work we propose using Karam et al.’s [6] derivation of a convolutional
distance transform approximation for the application in a deep learning context.
To the best of our knowledge, this is the first time an adhoc differentiable convo-
lutional distance transform layer is proposed for deep segmentation networks. In
Sect. 2 we will discuss the underlying methods, starting with Karam et al.’s [6]
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Convolutional distance Transform, subsequently proposing a cascaded variant
for large images, and posing an embedding suggestion into deep learning frame-
works. In Sect. 3 we present our experimental setting and discuss our results in
Sect. 4 before concluding with Sect. 5.

2 Methods

Fig. 1. Differences in binary images (a) and (b) are only visible in the affected pixels,
highlighted in (b). For the corresponding (Manhatten) distance transforms (c) and
(d), differences propagate to further pixels, emphasized in (d), as these change the
foreground shape and thus the distance landscape.

A distance map of a binary image yields the distance of each pixel to its closest
foreground boundary pixel. Common applicable distances are the Manhatten and
the Euclidean distance. A major advantage of this type of image representation
is the provision of information about boundary, shape, and location of the object
of interest. We denote the distance between two pixel positions pi and pj in an
image as d(pi, pj). Then a distance transform DI : M × N → R+

0 for a binary
image I of resolution M × N can be defined pixel-wise as:

DI(pi) = min
pj :I(pj)=1

{d(pi, pj)} (1)

To incorporate an adhoc distance transform into the deep learning setting, we
follow Karam et al.’s [6] derivation and only consider translation invariant dis-
tances, i.e.

d(pi, pj) = d(pi + pk, pj + pk) (2)

for any image positions pi, pj ∈ M×N and any translation pk ∈ R×R. Although
most distances are translation invariant, this restriction needs to be mentioned,
as there are also counter examples, such as the SNCF distance.

2.1 Convolutional Distance Transform (CDT)

For the computation of the distance transform, Eq. (1) shows, that we need to
find the minimal distance to a boundary pixel from a given point. The minimum
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function can be approximated by a log-sum-exponential. Let d1, . . . , dn denote
n distances, then the minimum function can be reformulated as

min{d1, . . . , dn} = lim
λ→0

−λ log

(
n∑

i=1

exp
(

−di

λ

))
, (3)

for 1 > λ > 0. The idea is, that the exponential yields very small values, the
larger the distances are, as these are artificially increased by λ and negated in the
argument. Therefore, larger distances have a significantly smaller impact on the
sum than small distances. In the extreme case the exponential of large distances
seek zero, leaving only the exponential of the smallest distance in the sum.
The subsequent logarithmic function then reverts the exponential operation,
leaving an approximation of the minimum function. With Eq. (3), it is possible
to reformulate the distance transform of Eq. (1) to

DI(pi) = lim
λ→0

−λ log

⎛
⎝ ∑

pj :I(pj)=1

exp
(

−d(pi, pj)
λ

)⎞
⎠ (4)

Since a translation invariant distance is assumed, the distance between two points
can be rewritten to

d(pi, pj) = d(pi − pj , pj − pj)
= d(pi − pj , 0) (5)

Therefore, the distance transform can be formulated as

DI(pi) = lim
λ→0

−λ log

(∑
pj

I(pj) exp
(
−d(pi−pj ,0)

λ

))
, (6)

which is the definition of a convolution. Thus, for a small λ > 0, the distance
transform can be approximated by means of a convolution of the binary image
I with a kernel exp

(
−d(·,0)

λ

)
, i.e.:

DI ≈ −λ log
(

I ∗ exp
(

−d(·, 0)
λ

))
, (7)

where ∗ is the convolutional operator. Since all operations are differentiable,
this approximation may be integrated as a differentiable convolutional distance
transform layer into current deep learning frameworks. It shall be noted, that
Karam et al.’s work [6] also proposes variants of this convolutional distance
transform. Initial experiments however showed most promising transforms for
the presented formulation.

2.2 Cascaded Distance Transform for Large Images

A major drawback of the convolutional design of the distance transform (in all
variants) is that the kernel size theoretically needs to be as large as the diagonal
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of the input image. This is to ensure that even very sparse binary images can
be distance transformed by the proposed method. Otherwise background pixels
that are not within the kernel size reach of a foreground pixel would be assigned
a distance of 0. This circumstance, however, yields the following two issues:

◦ The large kernel size leads to an increased computational complexity for the
convolutional operation.

◦ For very large distances the exponential term for the kernel design in Eq. (7)
may approach zero, decreasing the numeric stability of the logarithmic expres-
sion within the convolutional distance transform (CDT). This issue particu-
larly arises for large images with only few foreground pixels. Figure 2(c) shows
the CDT of a toy example image (Fig. 2(a)). It is clearly visible, that the CDT
was only capable to calculate the distances for a specific range, before becom-
ing unstable, in comparison with a standard Manhatten distance transform
implementation in Fig. 2(b).

We address these issues by proposing a cascade of local distance transforms
to reduce the computational complexity and overcome the numerical instability.
Instead of directly computing the distance transform with a large kernel, we
suggest cascading distance transforms with smaller kernels to approximate the
actual transform. Since the kernel size determines the maximal distance that can
be measured, it is necessary to accumulate the calculated distances to form the
final distance transform approximation.

Let k denote the kernel size. Then the maximal distance to a foreground point
that can be captured by the CDT is limited to a range of �k

2 �. For all background
points that are further away than �k

2 � from a foreground point, Eq. (7) yields
a distance of 0, as within the kernel range, there are only background points.
The idea is to iteratively extend the binary input image by the area, for which
a distance calculation was possible by the locally restricted CDT, i.e. by all
points which fulfill the condition that the calculated distance is greater than
zero. This extended binary image can then be used to compute a new locally
restricted distance transform by means of the small kernel. The calculated dis-
tances can then be utilized with the distances of the previous iterations to form
the final distance transform. For the i-th iteration, let I(i) denote the extended
binary image, and let D

(i)
I denote the local CDT of I(i). For the i-th iteration we

assume that the original foreground area has been extended by a margin of i·�k
2 �.

Therefore this offset distance is additionally added to the current distances to
compensate the lower kernel size. Thus, the cascaded distance transform D∗

I is
updated by the current distances by adding i · �k

2 � + D
(i)
I , wherever D

(i)
I (p) > 0

holds. Let diag denote the diagonal of the input image I, then at most 	diag
� k

2 � 

of such local distance transforms are necessary to cover the whole image. Algo-
rithm1 summarizes this suggested procedure. Let w, h denote width and height
of the input image and k the kernel size used to compute the CDT. Then in
general its computational complexity is given by O(w · h · k2) operations. Our
proposed procedure can drastically reduce the number of operations from initial
O(w · h · diag2) (for a naive implementation without using separable kernels)
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(a) Toy example: binary image (b) Manhatten distance transform

(c) Global CDT (d) Cascaded CDT with k = 3

(e) Cascaded CDT with k = 5 (f) Cascaded CDT with k = 7

Fig. 2. Toy example. By means of a toy example with a resolution of 512 × 512
(a) it becomes apparent, that compared to a standard Manhatten distance trans-
form (b) the original global CDT (c) becomes numerically unstable for background
points with large distances. (d)–(f) show the resulting cascaded CDTs with k = 3, 5, 7,
respectively.

to O(w · h · k · diag)(also for a naive implementation without using separable
kernels), if the kernel size is chosen much smaller than the image diagonal, i.e.
k << diag.

Since the maximally possible measured distance of d(·, 0) in Eq. (7) is
restricted by the kernel size, a small kernel size additionally yields a more stable
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Algorithm 1. Cascaded Convolutional Distance Transform
1: function Cascaded CDT(I, diag, k)
2: s ← � diag

� k
2 � �

3: I(0) ← I
4: D∗

I ← I · 0
5: for i=0 to s do
6: D

(i)
I ← CDT(I(i), k)

7: I(i+1) ← I(i)

8: for all p : D
(i)
I (p) > 0 do

9: D∗
I (p) ← D∗

I (p) + i · � k
2
� + D

(i)
I (p)

10: I(i+1)(p) ← 1

11: return D∗
I

computation of the logarithmic term as the exponential does not tend to app-
roach zero. Figures 2(d)–(f) show the cascaded CDTs with kernel sizes of 3, 5, 7,
respectively. In comparison to the standard Manhatten distance transform in
Fig. 2(b), it becomes apparent that the offset assumption after each iteration
yields an error that is propagated to points with further distances. This error
decreases with increasing kernel size. Thus, with our proposed procedure there
is a trade-off between numerical stability by means of smaller kernel sizes and
accuracy through larger kernel sizes that needs to be considered. We argue that
for the purpose of considering inter-pixel relationships in the weight optimization
process of training a convolutional neural network this approximation of the dis-
tance transform suffices. Karam et al. [6] also address this issue by multiplexing
multiple λ values, however initial experiments showed that the choice of these
values heavily influence.

2.3 Convolutional Distance Transform for Deep Learning

The previous section describes an adhoc cascaded convolutional approximation
method of the distance transform for binary images. We propose using this
approximation to extend common segmentation networks, such as Ronneberger
et al.’s U-Net [12], in order to equip the segmentation loss with an additional
regression loss, which compares the distance transform of the network’s predic-
tion with the distance transform of the ground truth. Since distance transforms
are particularly sensible to distortions, the comparison of distance transformed
ground truth to the distance transformed prediction may lead to less noisy seg-
mentation results. Figure 3 shows the general idea, of how to extend the U-Net
segmentation network with the proposed distance transform layer. In addition to
the usual segmentation loss, e.g. the Dice loss, the predicted segmentation and
the ground truth segmentation are both passed through the cascaded CDT layer
to achieve the distance transforms of prediction and ground truth, respectively.
These distance transforms contribute to a regression loss, e.g. the mean squared
error, that considers inter-pixel relationships through the distance transforms.



Differentiable Convolutional Distance Transform Layer 439

Fig. 3. Network Architecture. The Convolutional Distance Transform Layer can be
attached to arbitrary segmentation networks. In addition to the segmentation loss, a
regression loss of distance maps is calculated.

However, it needs to be noted that the segmentation’s output is usually not
binary. Assuming a final softmax or sigmoid layer, the output values for each
channel vary between 0 and 1. It was necessary to assume a binary image to
be able to restructure Eqs. (4) to (6). A major disadvantage of Eq. (6) is that
for gray scale images, I(pi) may be a lot larger than the exponential for large
distances, even if I(pi) is rather small. Therefore, even small probabilities of the
segmentation output are considered in the sum and may be depicted as fore-
ground pixels, distorting the actual distance map, as can be seen in Fig. 4. Here
a toy example of a gray scale image is shown (Fig. 4(a)), in which the lower left
square is set to a very low intensity of 0.001. The computed CDT (Fig. 4(c)),
however, appears nearly identical to the CDT of the corresponding binary toy
example (Fig. 4(b)). As can be observed in Fig. 4(d), the only differences of the
computed distance transforms occur within the low intensity pixels, whereas the
remaining distance transform’s landscape does not show any changes. This is
very problematic, as in the segmentation prediction even pixels with very low
probabilities would then be considered as foreground pixels in the CDT. We
address this problem by proposing the following soft-threshold work around. Let
C denote the number of classes, and let yc(pi) be the prediction for class c at
position pi. Then we can soft-threshold the prediction by

ỹc(pi) := ReLU

(
yc(pi) − C − 1

C

)
. (8)

This soft-threshold sets any prediction score below C−1
C to zero. Therefore, we

enforce strong and correct predictions, as weak correct prediction scores are not
registered for the distance transform and negatively impact the regression loss.
Figure 4(e) shows the resulting CDT after applying the proposed soft-threshold,
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(a) Toy example: gray scale image (b) Cascaded CDT of Fig.2(a)

(c) Cascaded CDT of (a) (d) Difference of (c) and (b)

(e) Cascaded CDT of (a) with soft threshold (f) Difference of (e) and (b)

Fig. 4. Toy example. (a) shows a gray scale image, in which the intensity within the
lower left gray square is set to 0.001. (b) shows the cascaded CDT of Fig. 2(a) as
reference. Although the intensity of the gray area is very low, the cascaded CDT (c)
shows a nearly identical landscape to (b). The only difference can be found within the
lower left square (d). Application of the soft-threshold (assuming 2 classes) diminishes
the low intensity area (e)–(f).

assuming two classes. Low intensity pixels are considered as background, so
that a significant change in the distance transform landscape compared to the
reference can be observed in Fig. 4(f).
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3 Experiments

3.1 Data

We conducted ablation studies on the example of thoracic segmentation from
CT scans of the thorax, using the publicly available SegTHOR CT data set [14]
consisting of 40 CT volumes with corresponding ground truths of esophagus,
heart, trachea, and aorta, for training and 20 CT volumes for testing. The goal
of our ablation study is to investigate the influence of our proposed distance
transform layer on the segmentation output. Therefore, we did not aim to out-
perform optimized ensemble methods within the SegTHOR challenge, but set
value on a valid comparison. Thus, we trained a U-Net architecture with and
without our proposed layer on the same training and validation set to ensure
fair comparability. In a hold-out validation manner, we trained both models on
the 40 available training volumes, and submitted the predictions. For evaluation
the Dice Similarity Coefficient (DSC) and the Hausdorff Distance (HDD) were
considered as evaluation metrics, which were both provided by the challenge’s
submission platform.

3.2 Implementation Details

We implemented a 2D U-Net and the convolutional distance transform layer in
Tensorflow 1.12 with an input size of 256 × 256. Thus, we resized the CT slices
to the corresponding image size. Our U-Net implementation yields 5 image size
levels with 2 convolutional layers, batch normalization and a max-pooling layer
in each level. Starting with 32 kernels for each convolutional layer in the first size
level of each contracting path, we doubled the number of kernels for each size level
on the contracting side and halved the number of kernels on the expansive side.
We used a kernel size of 3×3 for every convolutional layer and 2×2 max-pooling
in each architecture. We used the standard dice loss Ldice as loss function for
U-Net and used mean squared error for the regression loss Ldist of the distance
transforms. We constructed a total loss function Ltotal := Ldice +wdistLdist with
weight wdist := 0.5 to train the U-Net, equipped with our additional distance
transform layer. The optimization was performed with an Adam Optimizer with
an initial learning rate of 0.001. The training slices were augmented by means
of random translation, rotation and zooming. With a batch size of 4, we trained
both models for 200 epochs and chose the model with best validation loss for
evaluation. For the distance transform layer, we chose λ := 0.35, as suggested
by Karam et al. [6]. The experiments were conducted on a GTX 1080 TI GPU.

4 Results

It should be noted that the main focus is the ablation study and the image resiz-
ing to 256 × 256 canonically decreases the segmentation quality in comparison
to methods that use the full image size. Table 1 shows the achieved DSC scores
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Table 1. Achieved DSCs for each organ.

DSC Esophagus Heart Trachea Aorta

U-Net 0.726312 0.809626 0.770571 0.853953

U-Net with distance transform 0.739028 0.822095 0.785847 0.853011

of the trained models for esophagus, heart, trachea, and aorta. It is observ-
able, that with the extension of the convolutional distance transform the scores
increase for all organs, except for the aorta. In this case the standard U-Net yields
marginally better results. While the DSC score improves by more than 1% for
the other organs, for the aorta the additional layer does not seem to bring any
benefit. We applied Wilcoxon significance tests with a significance level of 5%
on our evaluation results. We found that the improvements in DSCs for Trachea
and Esophagus are significant with p-values of 0.0169 and 0.0040, respectively.
For the DSC improvement in heart segmentation and the DSC difference in aorta
segmentation, we could, however, not find any significance.

The improvements can also be noticed in Table 2, in which the Hausdorff
distances are depicted. For esophagus, heart, and trachea the distances decrease
with our proposed layer, showing an improvement by approximately 25–30%.
However, for the aorta a slightly worse mean distance is observed. This may be
due to the fact, that the aorta seems to be a rather simple structure, that U-Net
can already easily extract. The improvements in Hausdorff distance are espe-
cially noteworthy, as we use a distance based regularization technique to improve
the segmentation. Regarding the Wilcoxon significance test we could observe
significant improvements for Trachea, Esophagus and Heart with p-values of
0.0072, 0.0008 and 0.0400, respectively. This underlines our assumption that our
proposed layer adds significant value to more complex shapes, whereas simple
structures as the almost circular aorta and heart slices are already well extracted
by a standard U-Net. Figure 5 shows exemplary segmentations of both models
on test data slices. The top images indicate better performance for esophagus
segmentation with the proposed layer, while the bottom images show superior
segmentation results with our layer for the trachea. In both top and bottom row,
the segmentations of the aorta do not show much difference.

Table 2. Achieved Hausdorff Distances (HDD) for each organ.

HDD Esophagus Heart Trachea Aorta

U-Net 1.511865 1.949374 2.137093 1.900747

U-Net with distance transform 1.113825 1.533211 1.649077 2.004237
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(a) U-Net (b) U-Net with Distance Transform

(c) U-Net (d) U-Net with Distance Transform

Fig. 5. Exemplary segmentations on the test set from both models. Top images indicate
better performance for esophagus segmentation, bottom images for trachea.

5 Conclusion

In this paper we propose a novel differentiable convolutional distance transform
layer for segmentation networks, that can be used adhoc without prior training.
We present a cascaded procedure to reduce the computational complexity and
to overcome the numerical instability. Additionally we suggest a soft-threshold
work around to address the demonstrated issue regarding non-binary segmen-
tation outputs. The proposed layer is used to regularize the training process.
We conducted ablation studies on the example of the segmentation of thoracic
organs and used the SegTHOR data set for training and evaluation. The exper-
iments show promising results, as compared to an equally trained U-Net our
extension yields significant improvements for most organs, particularly regard-
ing Hausdorff distance. We demonstrated on this example, that a combination
of proven non-deep learning concepts, such as the distance transform, with deep
learning methods may yield great potential. In the future, we aim at extending
our proposed layer for 3D segmentation networks.
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Abstract. PET/CT imaging is the gold standard for the diagnosis and
staging of lung cancer. However, especially in healthcare systems with
limited resources, costly PET/CT images are often not readily available.
Conventional machine learning models either process CT or PET/CT
images but not both. Models designed for PET/CT images are hence
restricted by the number of PET images, such that they are unable to
additionally leverage CT-only data. In this work, we apply the concept
of visual soft attention to efficiently learn a model for lung cancer seg-
mentation from only a small fraction of PET/CT scans and a larger pool
of CT-only scans. We show that our model is capable of jointly process-
ing PET/CT as well as CT-only images, which performs on par with
the respective baselines whether or not PET images are available at test
time. We then demonstrate that the model learns efficiently from only a
few PET/CT scans in a setting where mostly CT-only data is available,
unlike conventional models.

1 Introduction

Lung cancer is the second most frequently diagnosed cancer type and the leading
cause of cancer-related deaths in men and women alike with high incidence and
mortality rates [14]. For the staging of lung cancer, PET/CT imaging is widely
used, because it provides complementary information: while the CT component
visualizes anatomical properties, the PET component represents the metabolism.
This gives additional information on tumor activity and is important for the
detection of metastases. Despite its important role, combined PET/CT imaging
is often unavailable, due to logistic and economic constraints.

Unfortunately, conventional machine learning models only cater to CT data
or PET/CT data, but not both, which poses a significant problem, especially in
resource-constrained populations. Prior work [3,6] has highlighted this challenge,
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doi.org/10.1007/978-3-030-71278-5 32) contains supplementary material, which is
available to authorized users.
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and several other approaches have been proposed to deal with it [1,4,19]. They
attempt to learn effective joint representations of PET/CT modalities. However,
such approaches still assume that a PET image is available for every CT image
during training. This assumption greatly reduces the amount of effective training
data for a combination of CT-only and PET/CT data. Consequently, while such
models might be efficient during inference, they fall short in not being able to
learn effective joint representations for a combination of CT-only and PET/CT
data. The problem is further compounded by the complexity of the data, which
typically includes different types of malignant lesions (e.g., the main tumor,
lymph nodes metastases, and distant metastases). As such, conventional models
typically cannot make the best use of a combination of CT-only and PET/CT
data, a typical scenario in resource-constrained environments.

To solve this problem, we apply the established concept of visual soft atten-
tion [12]. The attention mechanism allows us to input PET images when they are
available. As such, the model benefits from the additional information contained
in PET images but does not mandate them. The model is thus flexible to the
availability of PET data. Consequently, it is possible to incorporate two separate
models that are trained on unimodal (CT) or bimodal (PET/CT) data, respec-
tively, into one single model. Additionally, since, we do not explicitly enforce
the attention mechanism to learn a joint representation of PET/CT modalities,
our model can be trained on a mix of CT-only and PET/CT images. Thus, our
model has the potential to make efficient use of both CT-only and PET/CT
data, unlike conventional models. We present the effectiveness of our model on
a large dataset with the goal of segmenting tumorous regions. We acronym our
model as PAG, which stands for PET-guided attention gate. To summarize, the
three main contributions of the current work are:

i) We propose a novel approach for dealing with a combination of CT-only and
PET/CT data based on a visual soft attention mechanism.

ii) Our model combines two discrete functions that deal with unimodal or
bimodal data, respectively, in a single model.

iii) We demonstrate a realistic application of the model in scenarios when
PET/CT images are scarce relative to CT-only images and show how the
model makes efficient use of the combination of CT-only and PET/CT data.

2 Related Work

Segmentation of anatomical structures such as tumors, lesions and lung nodules
from PET/CT images is an active and dynamic area of research within medi-
cal imaging. [17] implemented the U-Net architecture [13] for the segmentation
of nasopharyngeal tumors from dual-modality PET/CT images. [8] learned a
probability map of tumorous regions from a CT image and then used a fuzzy
variational model that incorporates the probability map as a prior and the PET
images to obtain a posterior probability map of tumorous regions. [5] studied
different fusion schemes of multi-modal images, all of which fuse the images at
the pixel space. [18] refined the segmentation maps obtained separately from CT
and PET images, using a graph-cut based co-segmentation model to refine the
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segmentation maps. [9] used belief functions to fuse the PET and CT images to
obtain segmentation masks of the tumors.

The named methods are based on bi-modal inputs i.e. both PET and CT
modalities. Such models, typically assume that a complete set of all modalities
used during training is available even during inference. Such methods do not have
the capacity to incorporate for missing modalities. Accordingly, several other
methods have been proposed that deal with missing modalities. [6] proposed the
Hemis model to extract representations from multiple modalities—in their case,
MR image sequences (such as DWI, T1-weighted, T2-weighted, FLAIR)—and
fuse them in a latent space where arithmetic operations such as the first and
second moments of the representations can be calculated. This composite rep-
resentation can then be deconvolved accordingly. The authors tested the appli-
cability of their model to MR image segmentation (on MSGC [15] and BRATS
2015 [10] datasets). They argue that instead of learning all combinations of
functions, each dealing with a specific missing modality, one single model can be
learned that deals with all such missing modalities. [3] proposed a generic multi-
input, multi-output model, which is an improvement over the Hemis model [6]
that is equivalently robust to missing modalities. The model, which is based on
correlation networks [2], was proposed to tackle the challenge of learning shared
representations from multi-modal images. Correlation networks [2] learn effective
correlations among individual modality-specific representations in a coordinated
representation space. Imposing correlations as such aid in learning a shared (or
coordinated) representation space, especially for MR image modalities that are
correlated among one another, in the sense that all the tumorous regions show
specific distinctive properties from non-tumorous regions, varying only in their
intensity patterns. [3] exploited this fact of MR images, by explicitly imposing
correlations among representations extracted from individual modalities through
the minimization of the Euclidean distance between modalities. However, it is
essential to note that for the problem at hand, the PET and CT modality in
PET/CT are not as well correlated as MR image modalities are. While tumor-
ous regions show a distinctive glare from non-tumorous ones in a PET image,
it is very much plausible that a similar glare can be observed in non-tumorous
regions as well. Therefore, enforcing correlations, as done for MR images, may
not be the best approach to learn representations of PET/CT scans.

Further, named methods assume that a complete set of modalities is available
during training, which may not be a valid assumption. In particular, it is not
always possible to compute correlations with incomplete PET/CT data, meaning
that a CT scan is available, but no corresponding PET scan. In contrast, the
proposed method treats PET representations as an optional context vector that
is fused with the CT representations through an attention mechanism, which
has the capability to amplify the signal in salient and discriminatory regions.

3 Methods

3.1 Objective

Let XCT and XPET represent the domain of CT and PET images respectively.
Likewise, let Y represent the domain of segmented tumorous regions. Given is
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Fig. 1. Schematic of the proposed PET-guided attention gate. The input feature rep-
resentation xl is scaled by attention mask α, which is computed by the attention gate.
Spatial and contextual information are captured by two gating signals: the encoded
feature representation g and the composite function h(x). The composite function is
zero when the PET images are missing and the output of the function f(xPET ) when
PET images are available. PET image representation and not the PET image itself is
fed to the attention gate.

a dataset consisting of N PET/CT images {xCT
i , xPET

i }N
i=1 and M CT images

{xCT
i }M

i=1 (xCT
i ∈ XCT and xPET

i ∈ XPET ) for which corresponding PET
images are missing. A typical scenario would be 0 ≤ N < M . For every CT
image we have a segmentation mask of tumorous regions i.e. {xCT

j , yj}M
j=1 where

xCT
j ∈ XCT and yj ∈ Y .

We are interested in a composite function H : (XCT , s · XPET ) → Y where
s equals 1 if PET images are available and 0 otherwise. The composite function
H encompasses two functions: F : (XCT ,XPET ) → Y and G : XCT → Y . ŷ =
H(xCT , s · xPET ) gives the probability map of tumorous regions. The proposed
PAG model models the function H : (XCT , s · XPET ) → Y .

3.2 Attention Mechanism

Intuition. The attention gate proposed as part of the current model is built
upon the one introduced by [12] for pancreas segmentation on CT images. They
based their formulation upon a soft attention mechanism for image classification
introduced by [7]. Their attention gate has two inputs: (a) a feature represen-
tation and (b) a gating signal. The gating signal filters the input feature repre-
sentation to select salient regions. The attention gate learns attention masks by
attending to parts of the input feature representation. It is enforced by allowing
the input feature representation to be compatible with the input gating signal.
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[7,12] used the encoded feature representation (output of the encoder) as the
gating signal.

The gating signal provides context for the input feature representation to
learn salient attention masks. We propose to use PET image feature represen-
tation as an additional input along with the encoded feature representation, as
shown in Fig. 1. Since PET images can be thought of as a heatmap of tumorous
regions in a given CT image, they can help to learn better and discrimina-
tory attention masks by helping the attention masks to focus their attention
on regions where PET images show a distinctive glare over their surroundings.
Accordingly, the context provided by the encoded feature representation is only
enhanced by the input of PET image features whenever they are available. Addi-
tionally, this formulation does not mandate the use of PET images features. PET
image features can be fed to the model as and when available, making the model
flexible to the non-availability of PET images.

Attention Gate. Let g represent an encoded feature representation with Hg ×
Wg × Dg spatial resolution and Fg filter channels respectively for an input CT
image xCT . Similarly let xl represent a feature representation at an intermediate
spatial resolution of the encoder branch (skip connection) with Hx × Wx × Dx

spatial resolution and Fl filter channels respectively for the same input CT image
xCT . Likewise, let xPET be an input PET image corresponding to the input CT
image xCT .

The attention gate learns attention coefficients αl
i ∈ [0, 1] for layer l and

voxel position i that identify discriminatory image regions and discard those
feature responses to preserve activations that are specific to the appropriate
task at hand. The output of the attention gate is an element wise multiplication
of the feature representation xl

i ∈ R
Fl and attention coefficients αl

i to obtain the
filtered output x̂l

i = xl
i � αl

i, where � denotes the element-wise multiplication.
We consider a single attention coefficient for the multi-dimensional vector xl

i at
voxel position i. Also note that gi ∈ R

Fg for voxel position i.
Let θx ∈ R

Fl×Fint and θg ∈ R
Fg×Fint be linear transformations that are

applied to the intermediate feature representation xl and the encoded feature
representation g respectively. Let f(xPET ) be a function that extracts PET
image specific features before they are applied to the attention gate. Define a
composite function

h(x) =

{
f(xPET ) when PET images are available
0 when PET images are unavailable

(1)

Then the attention coefficients are given by

ql
att = ψT (σ1(θT

x xl
i + θT

g gl
i + h(x) + bg)) + bψ (2)

αl
i = σ2(ql

att(x
l
i, gi;Θatt)) (3)
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where σ1(x) and σ2(x) are ReLU and sigmoid activations respectively. The
parameters of attention gate Θatt are given by θx ∈ R

Fl×Fint , θg ∈ R
Fg×Fint ,

ψ ∈ R
Fint×1 and bias terms bψ ∈ R, bg ∈ R

Fint . The linear transformations are
computed using channel-wise 1 × 1 × 1 convolutions for the input tensors.

The Composite Function. The composite function defined by Eq. 1 repre-
sents scenarios when the PET images are either available or missing. In the
absence of PET images, the function takes on a value of zero, which boils down
to having a simple attention gate akin to the one proposed by [12] on top of
the encoder-decoder architecture. However, in the presence of PET images, the
function is identical to the PET image feature extractor f(xPET ). Instead of
passing the PET images directly as an input to the attention gate, we pass a
higher dimensional feature representation extracted by the function f(xPET ),
which supposedly encompasses a richer spatial and contextual information than
the PET images themselves. This function could be any function approximator
such as a neural network. A key insight of the proposed model is that, in contrast
to previous modality fusion architectures [3,6], there is no fusion of the respec-
tive modality-specific embeddings. Such a fusion of embeddings from different
modalities can skew the intended embedding space while training the respective
models with missing modalities such as in our case. Since there is no fusion of
PET and CT embeddings in the proposed PAG model, we do not run the risk
of learning skewed embeddings while training the model with a combination of
PET/CT and CT images.

The model architecture is an encoder-decoder architecture similar to a U-Net
architecture with three skip connections. The three skip connections are filtered
through their respective attention gates, with each attention gate having its own
set of parameters. More details about the model architecture can be found in
the supplementary section.

4 Experiments

We consider four baselines to validate our approach. To make a fair compari-
son, the PAG model and all baselines use the same backbone architecture [11].
Unimodal and bimodal models process CT-only and PET/CT data respectively.
The only difference between unimodal and bimodal models is that PET images
are input to bimodal model as an additional channel along with CT images. On
the other hand, unimodal+attn and bimodal+attn models are unimodal and
bimodal models with the addition of a simple attention gate [12]. Similar to
the unimodal and bimodal models, unimodal+attn and bimodal+attn models
process CT-only and PET/CT images respectively. Unlike the two discrete uni-
modal and bimodal models (or unimodal+attn and bimodal+attn models), the
PAG model is a single model that handles both unimodal and bimodal scenarios.
PAG:ct denotes the PAG model with CT-only inputs during inference, whereas
PAG:ct+pet denotes the model with PET/CT inputs respectively.
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4.1 Ablation Framework

The ablation study underscores the contribution of the proposed PAG model in
contrast to the conventional models. To make things simpler to follow, consider a
hypothetical scenario where we have 80 CT and 20 PET/CT scans respectively.
So all in all, we have 100 CT scans, of which 20 CT scans have a corresponding
PET series. While it is possible to train a unimodal model with 100 CT scans, a
bimodal model can only be trained using 20 PET/CT scans. The rest of the 80
CT scans can not be used. On the other hand, since the PAG model is flexible
to the availability of PET scans, it is possible to train the model on the 100 CT
scans, including the 20 PET scans. Accordingly, the ablation study is designed
to examine the performance of the model in scenarios such as these. Concretely,
through this ablation study, we examine the performance of the baseline bimodal
model and the proposed PAG model as the fraction of the total number of PET
series that are made available for training is gradually reduced. With the decrease
in the number of PET scans as such, the number of CT scans that can be used
for training bimodal model also decreases. However, the PAG model can leverage
upon the complete set of CT scans in conjunction with the restricted number of
PET scans. It is important to note that since we keep the number of CT scans
fixed, the corresponding number of annotated scans (ground truth segmentation
masks) is also fixed.

In other words define the ratio r = npet/Npet where npet are the number of
PET scans available for training and Npet the total number of PET scans in
the given dataset. We then decrease the ratio r gradually from 1 to 0 (Npet is
fixed). It is expected that with decreasing ratio r, the performance of the bimodal
model decreases noticeably. However, we expect the decrease in the performance
of the novel PAG model to be less pronounced. At all times, even in the limit
of zero PET scans, it should perform at least as good as a unimodal model that
is trained on the complete set of CT scans. In the following, we provide details
about the dataset and implementation details for the experiments, before we
continue with the presentation and discussion of the results.

Evaluation Data. We evaluate our approach on a dataset of 397 PET/CT
scans of patients suffering from lung cancer, collected and labeled by the radi-
ology department of the University of Basel, Switzerland. PET/CT images pro-
vide complementary information on the regions of interest compared to CT-only
data. PET images can be thought of as a heatmap for the corresponding CT
images where the tumorous regions show a marked contrast or a distinctive
glare between their surroundings. An example of such a pair of CT images and
a PET/CT image (PET image superimposed on CT image) is shown in Fig. 2.
Note that the tumorous region, which is bound by a red bounding box in the
CT image, has a marked contrast over its surroundings in the PET/CT image.
This is because of the greater 18F-FDG uptake by the malignant tumors due to
higher metabolic activity, which can be detected from PET images.

The dataset contains a rich diversity of primary tumors, lymph node metas-
tases, and other metastases that were independently segmented by two expert
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Fig. 2. (Left) An example of a malignant tumor in the right lung. The tumor is sur-
rounded by the bounding box in red. (Right) PET/CT image for the same region.
There is a distinctive glare in the region for the corresponding tumorous region.

radiologists. Therefore, the dataset provides a rich data source that is an order of
magnitude larger than existing public PET/CT datasets with labelled segmen-
tation maps. More details about the dataset are provided in the supplementary
information.

Evaluation Criteria. We use dice coefficient as our metric to evaluate the
proposed model. Dice coefficient is one of the most widely used metric to evaluate
segmentation algorithms. It measures the degree of overlap between the ground
truth and predicted segmentation masks factored by the number of true positives
and false positives. It falls within a range of [0, 1] with 0 signifying absolutely no
intersection between the two sets while 1 signifying a perfect intersection with
no false positives or false negatives, meaning both sets are alike. A correctly
predicted segmentation mask has a dice coefficient of 1, whereas a segmentation
mask that predicts zeros for all the voxels has a dice coefficient of 0. Therefore
we would expect the dice coefficient of a segmentation algorithm to lie in the
range of [0, 1] and the higher the dice coefficient, the closer is the predicted
segmentation mask to the ground truth segmentation mask.

Training Details. We developed all our models using the PyTorch framework.1

Each of the models occupies approximately 12 GB of GPU memory for model
parameters, forward and backward pass. So with a batch size of 2, the memory
requirement is approximately doubled i.e., 24 GB. All models were trained on a
server of 8 NVIDIA Tesla V-100-SXM2 32 GB GPUs. We chose a weighted com-
bination of Sorenson-Dice loss and binary cross-entropy loss as our loss function,
a default choice for segmentation tasks. All the models were trained using Adam
optimizer (default parameters) and group normalization [16]. Initially, the learn-
ing rate α was set to 0.0001; the learning rate was then gradually decayed after
every training epoch. The model parameters were regularised using L2 regularisa-
tion with regularisation parameter β set to 10−5. Augmented data was included
for training at every training epoch but with a probability pdata−aug = 0.25. All
models were trained for 75 epochs.

1 https://github.com/pvk95/PAG.

https://github.com/pvk95/PAG
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While training the PAG model, it is critical that PET images are randomly
excluded at every training step with a non zero probability p. We do this to
ensure that the PAG model does not overfit to either of the scenarios when PET
images are available or not. We set this probability value p = 0.5. (See appendix
for a list of hyper-parameters).

From the dataset consisting of 397 PET/CT labeled images, 77 PET/CT
images and their corresponding labels were randomly selected and set apart as
our test dataset. The remaining 320 samples were used for training and vali-
dation. All the baseline and PAG models have been evaluated using four-fold
cross-validation experiments. The training and validation dataset is randomly
split into four folds. One of the folds was kept out for validation. The remaining
three folds were used for training the models. Each of the models was then re-
trained on the entire 320 PET/CT images before testing the models on the test
dataset. When constraining the number of PET images in the ablation study,
we randomly sampled the appropriate number of PET images from the samples
that were initially earmarked for training and then trained accordingly. It is
noteworthy that the respective validation folds across all the models and all the
ratios r in the ablation study remain the same. More details about the training
are provided in the supplementary information.

4.2 How Well Does the Model Incorporate the Two Scenarios: CT
only Images and PET/CT Images?

Figure 3 shows the performance of the individual baseline models and the PAG
model when a PET image is available for every CT image while training the
models. We thus do not place any restriction on the availability of PET images.
We do this primarily to validate whether our model is able to handle the combi-
nation of CT and PET/CT images well. We observe that the PAG:ct+pet model
performs on par with bimodal and bimodal+attn models. Similarly, PAG:ct per-
forms on par with unimodal and unimodal+attn models.

We incorporated the attention mechanism of [12] to the unimodal and
bimodal models, and denote the resulting models with unimodal+attn and
bimodal+attn. We expected them to outperform their non-attention counter-
parts (i.e., the unimodal and bimodal models). However, this is not the case,
considering Fig. 3. The reason for this behaviour could be the complexity of our
dataset. The attention gate [12] of the unimodal+attn and bimodal+attn mod-
els was originally tested on two publicly available datasets for pancreas image
segmentation. The pancreas has a definite shape, structure, and morphology.
They are found in a single location within the body. However, the tumors of the
current dataset exhibit varying shapes, structures, morphologies, and even loca-
tions within the body. This could explain why we do not observe a significant
performance gain on our dataset, by adding their attention gate to the unimodal
and bimodal models. However, this does not imply that the attention mechanism
is not at play here, but that the attention masks are not informative enough.
However, it becomes clear from Fig. 3 that accommodating PET images as part
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Fig. 3. The Figure shows the performance of the baseline models and the PAG model
on the test data set. PAG:ct and PAG:ct+pet are both based on the PAG model.
PAG:ct+pet is PAG model when PET images are input to the model in addition to
the CT images. Conversely, PAG:ct is PAG model when only CT images are input to
the model, but no PET images are used as input to the model. PAG:ct performs at par
with the unimodal and unimodal+attn models. Similarly PAG:ct+pet model performs
at par with the bimodal and bimodal+attn models.

of the proposed attention gate significantly improves performance of the mod-
els, considering the better performance of PAG:ct+pet model (dice coefficient
= 0.73) over PAG:ct model (dice coefficient = 0.58). This is not just a conse-
quence of the addition of PET images to the PAG:ct+pet model but because
of the addition of PET images to the PAG:ct+pet model in association with
the proposed attention gate, the very means of how PET images are fed to the
model.

Consequently, we conclude that when PET images are available during infer-
ence, PAG:ct+pet performs on par with bimodal and bimodal+attn models, and
when they are not available, PAG:ct performs on par with unimodal and uni-
modal+attn models. This supports the claim that the PAG model successfully
encompasses the two discrete models: unimodal and bimodal models. Further,
the addition of PET images through the proposed attention gate makes a sig-
nificant impact on the performance of the PAG model. This validates that the
attention gate effectively integrates information from PET images, whenever
they are available.

4.3 How Well Does the Model Handle a Combination of CT
and PET/CT Images?

Figure 4 shows the result of the ablation study, as described earlier in Sect. 4.1.
The performance of the PAG:ct+pet model and the bimodal models is evaluated
as the ratio r = npet/Npet is gradually reduced. The ratio points considered are
[1.0, 0.5, 0.3, 0.15, 0.1, 0.05, 0.03]. The majority of examined data points are
close to zero, in order to compare and contrast the significance of the PAG
model when PET images are very scarce. The unimodal model is illustrated
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Fig. 4. The Figure shows the dice coefficient for the PAG model and the bimodal model
when the fraction of total PET images that are made available for training the models
is restricted. Results are shown for the validation (CV) and test (Test) data sets. The
green band is the mean and standard deviation of the unimodal model trained on CT
images. The degradation in performance of the bimodal model is much more drastic
than the PAG:ct+pet model. Note that PAG:ct+pet model always maintains the edge
over unimodal model because either of the models were trained on the same number
of CT images, with additional PET images for PAG:ct+pet model.

as well with its mean (green dotted line) and standard deviation (green band
around the dotted line). It can be seen that for all the values of ratio r, the
dice coefficient of PAG:ct+pet is greater than the bimodal model. Consider, for
instance a point at r = 0.15. This point represents a scenario where one has
36 PET/CT images and 204 CT-only images or 240 CT images in total. The
bimodal model was trained on the small set of 36 PET/CT images while the PAG
model was trained on 204 CT images and 36 PET/CT images. This shows that
the extra 204 CT-only images which would otherwise have been discarded while
training the bimodal model could be used for training the PAG model. Clearly,
the extra 204 CT-only images make a difference in boosting the dice coefficient
of the model. This performance gain becomes more and more extreme as the
ratio r approaches values closer to zero.

There is another facet to the PAG:ct+pet model. Irrespective of the ratio r,
PAG:ct+pet was trained on the same number of CT images. This implies that
even in the limit of zero PET images, the performance of PAG:ct+pet should not
degrade below the performance of unimodal model which can be clearly observed
for points closer to zero ([0.03, 0.05, 0.1]). For example, consider a point r = 0.03.
This point represents a data set with 7 PET/CT images and 233 CT-only images
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or 240 CT images in total. The unimodal model was trained on 240 CT images
while the PAG model was trained on 240 CT images including 7 PET images.
Clearly, the extra number of 7 PET images yielded in significant performance
gains (dice coefficient = 0.66) over the unimodal model (dice coefficient = 0.56).
Naturally, the improvement in performance becomes more and more obvious
with increasing ratios r.

Hence, in the limit of zero PET images, the PAG model is able to successfully
leverage upon the extra number of CT-only images. This behaviour is reflected in
the higher dice coefficient of PAG:ct+pet model over the bimodal model. In the
scenario when the PAG model is trained with CT-only images, the performance
boundary would be the unimodal model. Consequently, just with the addition of
a few PET images to the PAG model, we observe significant performance gains,
considering higher dice coefficient of PAG:ct+pet model over unimodal model.
This supports our claim that the model makes efficient use of the combination
of CT-only and PET/CT data.

5 Discussion and Conclusion

Although PET/CT imaging is the gold standard for the staging of lung cancer,
due to logistic and economic constraints, PET images are often unavailable.
This problem is especially prominent in resource-constrained healthcare systems.
While conventional methods are unable to handle a combination of CT-only
and PET/CT data, we tackled this challenge by adapting an established visual
soft attention mechanism to the problem at hand. We demonstrated that our
proposed approach performs on par with unimodal and bimodal baselines. We
further present that our model is especially useful when the number of PET
images is small in comparison to the number of CT images, which is relevant in
resource-constrained environments.

It is noteworthy, irrespective of the number of PET/CT images that are
available, the model always requires the same number of segmentation masks as
the number of total number of CT images. This could be a limitation considering
the manual effort in procuring the segmentation masks. In future work, we would
like to explore the possibility of reducing the number of segmentation masks
by generative models. Thereby, we could extend the resource efficiency of the
algorithm to leverage a reduced number of segmented images.

Another interesting direction for future research would be to extend the pro-
posed PAG model to other imaging modalities such as MRIs, as our formula-
tion is not limited to a single additional modality. It would be interesting to
investigate further the behaviour of the proposed attention gate with additional
modalities.
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Abstract. Multimodal generative models learn a joint distribution over
multiple modalities and thus have the potential to learn richer representa-
tions than unimodal models. However, current approaches are either inef-
ficient in dealing with more than two modalities or fail to capture both
modality-specific and shared variations. We introduce a new multimodal
generative model that integrates both modality-specific and shared fac-
tors and aggregates shared information across any subset of modalities
efficiently. Our method partitions the latent space into disjoint subspaces
for modality-specific and shared factors and learns to disentangle these
in a purely self-supervised manner. Empirically, we show improvements
in representation learning and generative performance compared to pre-
vious methods and showcase the disentanglement capabilities.

1 Introduction

The promise of multimodal generative models lies in their ability to learn rich
representations across diverse domains and to generate missing modalities. As
an analogy, humans are able to integrate information across senses to make
more informed decisions [33], and exhibit cross-modal transfer of perceptual
knowledge [41]; for instance, people can visualize objects given only haptic cues
[42]. For machine learning, multimodal learning is of interest in any setting where
information is integrated across two or more modalities.

Alternatives to multimodal generative models include unimodal models with
late fusion or with coordinated representations, as well as conditional models
that translate between pairs of modalities [3]. Yet, both alternatives have disad-
vantages compared to multimodal approaches. While unimodal models cannot
handle missing modalities, conditional models only learn a mapping between
sources, and neither integrate representations from different modalities into a
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joint representation. In contrast, multimodal generative models approximate the
joint distribution and thus implicitly provide the marginal and conditional distri-
butions. However, learning a joint distribution remains the more challenging task
and there still exists a gap in the generative performance compared to unimodal
and conditional models.

We bridge this gap by proposing a new self-supervised multimodal genera-
tive model that disentangles modality-specific and shared factors. We argue that
this disentanglement is crucial for multimodal learning, because it simplifies the
aggregation of representations across modalities. For conditional generation, this
decomposition allows sampling from modality-specific priors without affecting
the shared representation computed across multiple modalities. Further, decom-
posed representations have been found to be more interpretable [6,17] and more
amenable for certain downstream tasks [26].

The main contribution of this work is the development of a new multimodal
generative model that learns to disentangle modality-specific and shared factors
in a self-supervised manner. We term this new method disentangling multimodal
variational autoencoder (DMVAE). It extends the class of multimodal variational
autoencoders by modeling modality-specific in addition to shared factors and by
disentangling these groups of factors using a self-supervised contrastive objective.
In two representative toy experiments, we demonstrate the following advantages
compared to previous multimodal generative models:

– Effective disentanglement of modality-specific and shared factors. This allows
sampling from modality-specific priors without changing the joint represen-
tation computed from multiple modalities.

– Improvements in representation learning over state-of-the-art multimodal
generative models. For any subset of modalities, our model aggregates shared
information effectively and efficiently.

– Improvements in generative performance over previous work. In a fair com-
parison, we demonstrate that modeling modality-specific in addition to shared
factors significantly improves the conditional generation of missing modali-
ties. For unconditional generation, we demonstrate the effectiveness of using
ex-post density estimation [8] to further improve joint generation across all
methods, including trained models from previous work.

2 Related Work

Broadly, our work can be categorized as an extension of the class of multimodal
generative models that handle more than two modalities (including missing ones)
efficiently. Among this class, we present the first method that partitions the
latent space into modality-specific and shared subspaces and disentangles these
in a self-supervised fashion.

Multimodal Generative Models. Current approaches are mainly based on
encoder-decoder architectures which learn the mapping between modalities
based on reconstructions or adversarial objectives (for a comprehensive review,
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see [3]). Among this class, methods can be distinguished by the type of mapping
they use to translate between inputs and outputs and by how they handle missing
modalities. Early approaches [16,35] try to learn all possible mappings, which in
the case of missing modalities results in 2M encoders for M modalities. A more
efficient alternative is proposed by [40] who introduce the multimodal varia-
tional autoencoder (MVAE) which uses a joint posterior that is proportional
to a product of experts (PoE) [14]. Their method handles missing modalities
efficiently, because it has a closed form solution for the aggregation of marginal
Gaussian posteriors. However, their derivation of the joint posterior is based on
the assumption that all modalities share a common set of factors—an assump-
tion that is often violated in practice, because modalities exhibit a high degree
of modality-specific variation. Our model also uses a joint latent space with a
product of experts aggregation layer, and thus shares the same theoretical advan-
tages, but it considers modality-specific factors in addition to shared factors. The
limitations of the MVAE were shown empirically in [31], where it is stated that
the MVAE lacks the abilities of latent factorization and joint generation. With
latent factorization the authors refer to the decomposition into modality-specific
and shared factors, and by joint generation they mean the semantic coherence
of unconditionally generated samples across modalities. They attribute these
problems to the joint posterior used by the MVAE and demonstrate empiri-
cally that using a mixture of experts, instead of a product, improves generative
performance. In contrast, we argue that the product of experts is not a prob-
lem per se, but that it is an ill-defined aggregation operation in the presence
of modality-specific factors. We resolve this model misspecification by modeling
modality-specific factors in addition to shared factors. Compared to the mixture
of experts multimodal variational autoencoder (MMVAE) [31], our model has
the advantage that it can sample from a modality-specific prior without affecting
the shared representation which can still be aggregated efficiently across modali-
ties through the PoE. Especially with more than two modalities, the aggregation
of representations, as it is done in our model, shows its benefits compared to the
MMVAE (see Sect. 4.2).

Domain Adaption/Translation. The research areas of domain adaption and
domain translation are in many regards closely related to multimodal generative
models. Approaches that have explored many-to-many mappings between differ-
ent domains have been based on adversarial methods [7,24], shared autoencoders
[36] and cycle-consistency losses [2]. Translation methods have shown remark-
able progress on image-to-image style transfer and the conceptual manipulation
of images, however, their focus lies on learning conditional mappings, while our
method models the joint distribution directly. Further, through the PoE our
method aggregates shared representations across any subset of modalities and
therefore handles missing modalities efficiently.

Disentanglement. Our goal is not the unsupervised disentanglement of all gener-
ative factors, which was shown to be theoretically impossible with a factorizing
prior and claimed to be impossible in general [25]. Instead, we are concerned
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with the disentanglement of modality-specific and shared sets of factors. In the
multi-view and multimodal case, there is theoretical evidence for the identifiabil-
ity of shared factors [9,19,27,37]. Further, the self-supervised disentanglement
of shared factors has been previously explored based on grouping information
[4], temporal dependencies [23], partly labeled data [18,38,39], and spatial infor-
mation [5]. We take a first step towards disentanglement given multimodal data
with modality-specific factors and an implicit, unknown grouping.

3 Method

In this section, we introduce multimodal generative models and derive the vari-
ational approximations and information-theoretic objectives that our method
optimizes. All proofs are provided in the appendix.

We consider a generative process with a partition into modality-specific and
modality-invariant (i.e., shared) latent factors (Fig. 1). A multimodal sample
x = (x1, . . . , xM ) with data from M modalities is assumed to be generated from
a set of shared factors c and a set of modality-specific factors sm. Consequently,
samples from different modalities are assumed to be conditionally independent
given c. In the following, we denote the set of all modality-specific factors of a
multimodal sample as s = (s1, . . . sM ).

Given a dataset {x(i)}N

i=1 of multimodal samples, our goal is to learn a gener-
ative model pθ(x|c, s) with a neural network parameterized by θ. From the above
assumptions on the data generating process, it follows the joint distribution

p(x, s, c) = p(c)
M∏

m=1

p(sm)p(xm | c, sm) (1)

which allows to consider only the observed modalities for the computation of the
marginal likelihood.

The computation of the exact likelihood is intractable, therefore, we resort to
amortized variational inference and instead maximize the evidence lower bound

LVAE(x, c) :=
M∑

m=1

Eqφ(sm | xm)

[
log pθm

(xm | c, sm)
]

− DKL (qφ(sm|xm) || p(sm))

which is composed of M log-likelihood terms and KL-divergences between
approximate posteriors qφ(sm |x) and priors p(sm). Above objective describes M
modality-specific VAEs, each of which takes as input an additional context vector
c that encodes shared information (described in Sect. 3.2). We use neural net-
works for each encoder qφm

(sm|xm) as well as for each decoder pθm
(xm|c, sm) and

denote the network parameters by the respective subscripts for decoder param-
eters θ and encoder parameters φ. Further, we follow the convention of using an
isotropic Gaussian prior and Gaussian variational posteriors parameterized by
the estimated means and variances that are the outputs of the encoder.

For each modality-specific VAE, it is possible to control the degree of disen-
tanglement of arbitrary factors with a weight on the respective KL-divergence
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Fig. 1. Graphical model and network architecture for the special case of two modalities.
Left: A sample xm from modality m is assumed to be generated by modality-specific
factors sm and modality-invariant factors c. Center: Inference network that aggre-
gates shared factors through a product of experts (PoE) layer. Dashed lines represent
simulated missing modalities as used during training. Right: Decoder network (black)
for modality m and loss terms (green). Dotted lines denote paths that are not being
backpropagated through. Shared factors are learned by a contrastive objective which
takes as input representations c and c̃ computed from different subsets of modalities.
Modality-specific factors are inferred by regularizing out shared information from the
latent space of the VAE. All loss terms are defined in Subsect. 3.2. (Color figure online)

term, like in the β-VAE [13]. However, there exist theoretical limitations on the
feasibility of unsupervised disentanglement of arbitrary factors [25]. In contrast,
we focus on the disentanglement of modality-specific and shared factors, for
which we use two additional objectives that are introduced in Subsect. 3.2.

3.1 Multimodal Inference Network

A key aspect in the design of multimodal models should be the capability to
handle missing modalities efficiently [3]. In our case, only the shared represen-
tation depends on all modalities and should ideally be able to cope with any
combination of missing inputs, which would require 2M inference networks in
a naive implementation. A more efficient alternative is offered in [40], where a
product of experts (PoE) [14] is used to handle missing modalities. Under the
assumption of shared factors, previous work [40] has shown that the posterior
p(c | x) is proportional to a product of unimodal posteriors

p(c | x) ∝ 1
p(c)M−1

M∏

m=1

p(c | xm) (2)

which—for the special case of Gaussian posteriors—has an efficient closed-form
solution (see Appendix A.3). We also assume Gaussian unimodal posteriors
qψm

(c|xm) where ψ denotes the encoder parameters, part of which can be shared
with the encoder parameters φm of a unimodal VAE. The choice of Gaussian
posteriors allows us to employ the PoE as an aggregation layer for shared factors.
This allows the model to use M unimodal inference networks to handle all 2M

combinations of missing modalities for the inference of shared factors.
While the PoE is a well defined aggregation operation for shared factors, it is

not suitable for modality-specific factors, because it averages over representations
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from different modalities.1 Therefore, we partition the latent space into M +
1 independent subspaces, one that is specific for each modality (denoted by
sm) and one that has shared content between all modalities (denoted by c),
as illustrated in Fig. 1. The PoE is only used for the shared representation, so
modality-specific information is not forced through the aggregation layer.

In theory, a partitioned latent space provides the possibility to encode both
modality-specific and shared information in separate subspaces; in practice,
however, objective LVAE does not specify what information (modality-specific
or shared) should be encoded in which subspace. For example, the first log-
likelihood term log pθ(x1 | c, s1) can be maximized if all information from input
x1 flows through the modality-specific encoder qφ(s1 | x1) and none through the
shared encoder. Thus, we posit that the model requires an additional objective
for disentangling modality-specific and modality-invariant information. Next,
we formalize our notion of disentanglement and introduce suitable contrastive
objectives.

3.2 Disentanglement of c and s

We take an information-theoretic perspective on disentanglement and represen-
tation learning. Consider multimodal data to be a random variable X and let
h1(X) and h2(X) be two functions, each of which maps the data to a lower-
dimensional encoding. Consider the objective

max
h1,h2∈H

I(X;h1(X)) + I(X;h2(X)) − I(h1(X);h2(X)) (3)

where I denotes the mutual information between two random variables and H
is the set of functions that we optimize over, for instance, the parameters of a
neural network. Objective (3) is maximized by an encoding that is maximally
informative about the data while being maximally independent between h1(X)
and h2(X). In our case, these two functions should encode modality-specific and
shared factors respectively. The proposed model learns such a representation by
using suitable estimators for the individual information terms.

The objective optimized by a VAE can be viewed as a lower bound on the
mutual information between data and encoding (e.g., see [1,15]). However, on
itself a VAE does not suffice to learn a disentangled encoding, because of the-
oretical limitations on disentanglement in an unsupervised setting [25]. So in
addition, we equip the VAE with two contrastive objectives: one that learns an
encoding of information shared between modalities, maximizing a lower bound
on I(x; c), and one that infers modality-specific factors by regularizing out shared
information from the latent space of a modality-specific VAE. The overall objec-
tive that is being maximized is defined as

L = LVAE + γLshared − δLdisent (4)

1 This problem has also been observed in [21] where it is described as “averaging over
inseparable individual beliefs”.
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where LVAE is the ELBO optimized by the VAEs, Lshared learns an encoding
of shared factors, Ldisent disentangles shared and modality-specific information,
and the hyperparameters γ and δ can be used to control these terms respec-
tively. The proposed objective estimates shared factors directly, while modality-
specific factors are inferred indirectly by regularizing out shared information
from the encoding of a modality-specific VAE. Further, as in the β-VAE [13],
the reconstruction loss and KL-divergence contained in LVAE can be traded off
to control the quality of reconstructions against the quality of generated sam-
ples. Figure 1 shows a schematic of the network including all loss terms that are
being optimized. In the following, we define the contrastive objectives used for
the approximation of the respective mutual information terms.

To learn shared factors, we use a contrastive objective [10,32] that maxi-
mizes a lower bound on the mutual information I(x; c) (see Appendix A for the
derivation). We estimate the mutual information with the sample-based InfoNCE
estimator [29] adapted to a multimodal setting. The objective is defined as

Lshared := −E

[
1
K

K∑

i=1

log
ef(x(i),x̃(i))

1
K

∑K
j=1 ef(x(i),x̃(j))

]
(5)

where the expectation goes over K independent samples {x(i), x̃(i)}K
i=1 from

p(x, x̃) where x̃ is a subset of modalities x̃ ⊂ x and f is a critic that maps to a
real-valued score. In particular, we use an inner product critic fφ(x, x̃) = 〈c, c̃〉
where c and c̃ are the representations computed from a full multimodal sam-
ple and a subset of modalities respectively. Intuitively, the objective contrasts
between a positive pair coming from the same multimodal sample and K − 1
negative pairs from randomly paired samples [e.g., 11]. By using a large number
of negative samples, the bound becomes tighter [29], therefore we use a relatively
large batch size of K = 1024 such that for every positive, we have 1023 negative
samples by permuting the batch. In Appendix A we prove that the contrastive
objective is a lower bound on I(x; c) and we further discuss the approximation
as well as our choice of critic.

To regularize out shared information from the encoding of a modality-specific
VAE, we use a discriminator that minimizes the total correlation TC(c, sm), a
measure of statistical dependence between a group of variables. In the case of
two variables, the total correlation is equivalent to the mutual information. We
approximate the total correlation using the density-ratio trick [28,34] and refer
to the approximation by Ldisent (see Appendix A). This procedure is very similar
to the one used by [20] with the important difference that we do not estimate
the total correlation between all elements in a single latent representation, but
between partitions c, sm of the latent space, of which c is shared between modal-
ities. In theory, one can use a single discriminator to minimize TC(c, s) jointly,
however, we found that in practice one has more control over the disentanglement
by using individual terms Ldisent = δm

∑
m Ldisent(c, sm) weighted by separate

disentanglement coefficients δm, instead of a global δ.



466 I. Daunhawer et al.

4 Experiments

In this section, we compare our method to previous multimodal generative
models both qualitatively and quantitatively. In the first experiment, we use a
bimodal dataset that has been used in previous studies and compare our method
to the MVAE [40] and MMVAE [31], the current state-of-the-art multimodal
generative models. In the second experiment, we go beyond two modalities and
construct a dataset with 5 simplified modalities that allows us to analyze the
aggregation of representations across multiple modalities, which, to the best of
our knowledge, has not been done previously.

For the quantitative evaluation, we employ metrics that were used in previous
studies. Mainly, we focus on generative coherence [31], which takes a classifier
(pretrained on the original data) to classify generated samples and computes
the accuracy of predicted labels compared to a ground truth. For unconditional
samples, coherence measures how often the generated samples match across all
modalities. To measure the quality of generated images, we compute Fréchet
Inception Distances (FIDs) [12]. It is important to note that a generative model
can have perfect coherence yet very bad sample quality (e.g., blurry images of
the correct class, but without any diversity). Analogously, a model can achieve
very good FID without producing coherent samples. Therefore, we also propose
to compute class-specific conditional FIDs for which the set of input images
is restricted to a specific class and the set of conditionally generated images
is compared to images of that class only. Hence, class-specific conditional FID
provides a measure of both coherence and sample quality. Finally, we evaluate
the quality of the learned representations by training a linear classifier on the
outputs of the encoders.

4.1 MNIST-SVHN

A popular dataset for the evaluation of multimodal generative models is the
MNIST-SVHN dataset [31,38], which consists of digit images from two different
domains, hand-written digits from MNIST [22] and street-view house numbers
from SVHN [30]. The images are paired by corresponding digit labels, and sim-
ilar to [31] we use 20 random pairings for each sample in either dataset. The
pairing is done for the training and test sets separately and results in a training
set of 1,121,360 and test set of 200,000 image pairs. The dataset is convenient
for the evaluation of multimodal generative models, because it offers a clear sep-
aration between shared semantics (digit labels) and perceptual variations across
modalities. This distinctive separation is required for the quantitative evaluation
via generative coherence and class-specific conditional FID.

For a fair comparison to previous work, we employ the same architectures,
likelihood distributions, and training regimes across all models. The setup is
adopted from the official implementation of the MMVAE.2 For our model we
use a 20 dimensional latent space of which 10 dimensions are shared between

2 https://github.com/iffsid/mmvae.

https://github.com/iffsid/mmvae
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(a) DMVAE (ours) (b) MMVAE (c) MVAE

Fig. 2. Comparison of conditionally generated SVHN samples given the respective
MNIST digit in the first row. Across a column, we sample from the modality-specific
prior (our model) or from the posterior (other models). Only our model keeps consistent
styles across rows, as it disentangles modality-specific and shared factors (without
supervision).

modalities and 10 dimensions are modality-specific.3 This does not increase the
total number of parameters compared to the MMVAE or MVAE where a 20
dimensional latent space is used respectively. All implementation details are
listed in Appendix C.

Qualitative Results. Figure 2 illustrates the conditional generation of SVHN
given MNIST. Only our method is capable of keeping consistent styles across
rows, because our model allows to draw samples from the modality-specific prior
without changing the shared representation computed from the input. For both
MVAE and MMVAE, we sample from the posterior to generate diverse images
along one column.4 One can already observe that our model and the MMVAE are
both capable of generating images with coherent digit labels, while the MVAE
struggles to produce matching digits, as already observed in [31]. The results are
similar for the conditional generation of MNIST given SVHN (see Appendix B),
demonstrating that our method is effective in disentangling modality-specific
and shared factors in a self-supervised manner.

Quantitative Results. Since the setup of this experiment is equivalent to the one
used by [31] to evaluate the MMVAE, we report the quantitative results from
their paper. However, we decided to implement the MVAE ourselves, because
we found that the results reported in [31] were too pessimistic.

3 The size of latent dimensions for modality-specific and shared representations is
a hyperparameter of our model. Empirically, we found the effect of changing the
dimensionality to be minor, as long as neither latent space is too small.

4 We further observed that without sampling from the posterior (i.e., reparameter-
ization) both the MVAE and MMVAE tend to generate samples with very little
diversity, even if diverse input images are used.
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Table 1. Results on MNIST/SVHN, where x1 corresponds to MNIST and x2 to SVHN.
Numbers denote median values over 5 runs (standard deviations in parentheses). For
MMVAE, numbers are based on the original work and standard deviations were com-
puted with the publicly available code. For latent classification, we use linear classifiers
and for the DMVAE only the shared representation is used (concatenation further
improves the results).

Method
Latent accuracy (in %) Coherence (in %)
x1 x2 Aggregated Joint x1 → x2 x2 → x1

MVAE 79.8 (± 3.8) 65.1 (± 4.6) 80.2 (± 3.6) 38.0 (± 1.8) 31.8 (± 1.4) 57.1 (± 3.4)

MMVAE 91.3 (± 0.4) 68.0 (± 0.6) N/A 42.1 (± 1.9) 86.4 (± 0.5) 69.1 (± 2.5)

DMVAE 95.0 (± 0.6) 79.9 (± 1.4) 92.9 (± 1.8) 85.9 (± 1.0) 91.6 (± 0.8) 76.4 (± 0.4)

Table 2. Comparison of generative quality on MNIST/SVHN, where x1 corresponds to
MNIST and x2 to SVHN. Numbers represent median FIDs (lower is better) computed
across 5 runs with standard deviations in parentheses. For the MMVAE, we computed
FIDs based on the publicly available code.

Method
Unconditional FID Conditional FID Class-Conditional FID

x1 x2 x1 → x2 x2 → x1 x1 → x2 x2 → x1

MVAE 21.2 (± 1.1) 68.2 (± 1.9) 65.0 (± 2.2) 19.3 (± 0.4) 83.8 (± 1.8) 53.6 (± 1.9)

MMVAE 36.6 (± 3.1) 98.9 (± 1.5) 97.0 (± 0.6) 28.6 (± 1.1) 125.3 (± 0.8) 52.6 (± 4.8)

DMVAE 15.7 (± 0.7) 57.3 (± 3.6) 67.6 (± 4.0) 18.7 (± 0.9) 91.9 (± 4.4) 23.3 (± 1.0)

Table 1 presents linear latent classification accuracies as well as conditional
and unconditional coherence results. Across all metrics, our model achieves sig-
nificant improvements over previous methods. Most strikingly, joint coherence
improves from 42.1% to 85.9% as a result of ex-post density estimation. As
previously noted, it can be misleading to look only at latent classification and
coherence, because these metrics do not capture the diversity of generated sam-
ples. Therefore, in Table 2 we also report FIDs for all models. In terms of FIDs,
our model shows the best overall performance, with an exception in the con-
ditional generation of SVHN given MNIST, for which the MVAE has slightly
lower FIDs. However, looking at the results as a whole, DMVAE demonstrates a
notable improvement compared to state-of-the-art multimodal generative mod-
els. Ablations across individual loss terms are provided in Appendix B.

Ex-post Density Estimation. [8], which we employ for sampling from the shared
space of the DMVAE, proves to be very effective for improving certain metrics
(Table 3). In particular, it can be used as an additional step after training, to
improve the joint coherence and, partially, unconditional FIDs of already trained
models. Note that ex-post density estimation does not influence any other met-
rics reported in Tables 1 and 2 (i.e., latent classification, conditional coherence,
and conditional FID).
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Table 3. Comparison of sampling from the prior vs. using ex-post density estima-
tion with a Gaussian mixture model (GMM) with 100 components and full covariance
matrix. After training, the GMM is fitted on the embeddings computed from the train-
ing data. For FIDs, the first number refers to MNIST, the second to SVHN, respec-
tively. Overall, ex-post density estimation improves most metrics for both MVAE and
MMVAE.

MVAE MMVAE DMVAE
Sampling FIDs Coherence FIDs Coherence FIDs Coherence

Prior 21.2 / 68.2 38.0 36.6 / 98.9 42.1 N/A N/A
GMM 13.4 / 73.7 68.5 28.7 / 119.7 80.3 15.7 / 57.3 85.9

4.2 Paired MNIST

To investigate how well the aggregation of shared representations works for more
than two modalities, we create a modified version of the MNIST dataset, which
consists of M -tuples of images that depict the same digit. We view each image
in the tuple (x1, . . . , xM ) as coming from a different modality xm–Xm, even
though each instance is drawn from MNIST. Further we perturb each image
with a high degree of Gaussian noise, which makes it difficult to infer digit
labels from a single image (for an example, see Appendix B), and train the
models as denoising variational autoencoders. We use comparable architectures,
likelihoods, and training regimes across all methods. All implementation details
are provided in Appendix C.

The dataset is generated by repeatedly pairing M images with the same label.
We vary M = 2, ...5 to investigate how the methods perform with an increasing
number of modalities. This pairing is done separately for training and test data
and results in 60,000 and 10,000 image M -tuples for the training and test sets
respectively. The resulting dataset offers a simple benchmark that requires no
modality-specific weights for the likelihood terms, has a clear characterization of
shared and modality-specific factors, and allows visual inspection of the results.5

The goal of this experiment is to test whether models are able to integrate
shared information across multiple modalities and if the aggregated representa-
tion improves with more modalities. To the best of our knowledge, experiments
evaluating the aggregation with more than two modalities have not been per-
formed before. Unlike the previous experiment, paired MNIST allows measuring
how well models generate a missing modality given two or more inputs. To
quantify this, we measure the average coherence over leave-one-out mappings
{xi}i�=j → xj . Further, we compute the average class-specific conditional FID
over leave-one-out mappings, which combines both coherence and generative
quality in a single metric.

Figure 3 presents the results for an increasing number of input modalities.
The left subplot shows that for the MVAE and DMVAE leave-one-out coherence
consistently improves with additional modalities, supporting our hypothesis that
5 Note that the weights of likelihood terms have been observed to be important hyper-

parameters in both [40] and [31].
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the PoE is effective in aggregating shared information. Notably, the MMVAE fails
to take advantage of more than two modalities, as it does not have a shared repre-
sentation that aggregates information. The right subplot shows that the DMVAE
outperforms the other methods in class-specific conditional FIDs, demonstrating
that it can achieve both high sample quality and strong coherence. We provide
further metrics and ablations for this experiment in Appendix B.

Fig. 3. Results on paired MNIST with varying number of “modalities”. Markers denote
median values, error-bars standard deviations, computed across 5 runs. Left: Leave-
one-out conditional coherence (higher is better). Right: Class-specific conditional FIDs
(lower is better).

5 Conclusion

We have introduced DMVAE, a novel multimodal generative model that learns
a joint distribution over multiple modalities and disentangles modality-specific
and shared factors completely self-supervised. The disentanglement allows sam-
pling from modality-specific priors and thus facilitates the aggregation of shared
information across modalities. We have demonstrated significant improvements
in representation learning and generative performance compared to previous
methods. Further, we have found that ex-post density estimation, that was used
to sample from the shared latent space of the DMVAE, improves certain metrics
dramatically when applied to trained models from existing work. This suggests
that the latent space learned by multimodal generative models is more expressive
than previously expected, which offers exciting opportunities for future work.
Moreover, the DMVAE is currently limited to disentangling modality-specific
and shared factors and one could extend it to more complex settings, such as
graphs of latent factors.
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Abstract. This paper considers semantic forecasting in road-driving
scenes. Most existing approaches address this problem as deterministic
regression of future features or future predictions given observed frames.
However, such approaches ignore the fact that future can not always
be guessed with certainty. For example, when a car is about to turn
around a corner, the road which is currently occluded by buildings may
turn out to be either free to drive, or occupied by people, other vehicles
or roadworks. When a deterministic model confronts such situation, its
best guess is to forecast the most likely outcome. However, this is not
acceptable since it defeats the purpose of forecasting to improve secu-
rity. It also throws away valuable training data, since a deterministic
model is unable to learn any deviation from the norm. We address this
problem by providing more freedom to the model through allowing it to
forecast different futures. We propose to formulate multimodal forecast-
ing as sampling of a multimodal generative model conditioned on the
observed frames. Experiments on the Cityscapes dataset reveal that our
multimodal model outperforms its deterministic counterpart in short-
term forecasting while performing slightly worse in the mid-term case.

1 Introduction

Self-driving cars are today’s burning topic [27]. With their arrival, the way that
we look at passenger and freight traffic will change forever. But in order to solve
such a complex task, we must first solve a series of “simpler” problems. One of
the most important elements of an autonomous driving system is the ability to
recognize and understand the environment [2,7]. It is very important that the
system is able to recognize roads, pedestrians moving along or on the pavement,
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other cars and all other traffic participants. This makes semantic segmentation
a very popular problem [26,30,31].

However, the ability to predict the future is an even more important attribute
of intelligent behavior [16,21,23–25]. It is intuitively clear that critical real-time
systems such as autonomous driving controllers could immensely benefit from
the ability to predict the future by considering the past [4,17,27]. Such systems
could make much better decisions than their counterparts which are able to per-
ceive only the current moment. Unfortunately, this turns out to be a very hard
problem. Most of the current work in the field approaches it very conservatively,
by forecasting only unimodal future [16,22]. However, this approach makes an
unrealistic assumption that the future is completely determined by the past,
which makes it suitable for guessing only the short-term future. Hence, deter-
ministic forecasting approaches will be prone to allocate most of its forecasts
to instances of common large classes such as cars, roads, sky and similar. On
the other side, such approaches will often underrepresent smaller objects. When
it comes to signs, poles, pedestrians or some other thin objects, it makes more
sense for a conservative model to allocate more space to the background than
to risk classifying them. Additionally, future locations of dynamic and articu-
lated objects such as pedestrians or domestic animals would also be very hard
to forecast by a deterministic approach.

In order to address problems of unimodal forecasting, this work explores how
to equip a given forecasting model with somewhat more freedom, by allowing
and encouraging prediction of different futures. Another motivation for doing so
involves scenarios where previously unseen space is unoccluded. Such scenarios
can happen when we are turning around a corner or when another car or some
larger vehicle is passing by. Sometimes we can deduce what could be in that
new space by observing recent past, and sometimes we simply can’t know. In
both cases, we would like our model to produce a distribution over all possible
outcomes in a stochastic environment [1,4,9,17]. We will address this goal by
converting the basic regression model into a conditional generative model based
on adversarial learning [18] and moment reconstruction losses [12].

2 Related Work

Dense Semantic Forecasting. Predicting future scene semantics is a promi-
nent way to improve accuracy and reaction speed of autonomous driving systems.
Recent work shows that direct semantic forecasting is more effective than RGB
forecasting [16]. Further work proposes to forecast features from an FPN pyra-
mid by multiple feature-to-feature (F2F) models [15]. This has recently been
improved by single-level F2F forecasting with deformable convolutions [19,20].

Multimodal Forecasting. Future is uncertain and multimodal, especially
in long-term forecasting. Hence, forecasting multiple futures is an interesting
research goal. An interesting related work forecasts multi-modal pedestrian tra-
jectories [9]. Similar to our work, they also achieve multimodality through a
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conditional GAN framework. Multi-modality has also been expressed through
mixture density networks [17] in order to forecast egocentric localization and
emergence prediction. None of these two works consider semantic forecasting.

To the best of our knowledge, there are only a few works in multimodal
semantic forecasting, and all these works are either very recent [1] or concurrent
[17]. One way to address multimodal semantic forecasting is to express infer-
ence within a Bayesian framework [1]. However, Bayesian methods are known
for slow inference and poor real-time performance. Multi-modality can also be
expressed within a conditional variational framework [4], by modelling inter-
action between the static scene, moving objects and multiple moving objects.
However, the reported performance suggests that the task is far from being
solved.

GANs with Moment Reconstruction. GANs [3] and their conditional ver-
sions [18] have been used in many tasks [6,11,14,28]. However, these approaches
lack output diversity due to mode collapse. Recent work alleviates this problem
with moment reconstruction loss [12] which also improves the training stability.

Improving Semantic Segmentation with Adversarial Loss. While most
GAN discriminators operate on raw image level, they can also be applied to
probabilistic maps. This can be used either as a standalone loss [8] or as a
regularizer of the standard cross entropy loss [5].

3 Method

3.1 Conditional MR-GAN

Generative adversarial models [3] are comprised of two neural networks - a gen-
erator and a discriminator. Each of them has its own task and separate loss func-
tion. The goal of a generator is to produce diverse and realistic samples, while
discriminator classifies given sample as either real (drawn from the dataset) or
fake (generated). By conditioning the model it is possible to direct the data
generation process. Generative adversarial networks can be extended to a con-
ditional model if both the generator and discriminator are conditioned on some
additional information [18]. Additional information can be of any kind, in our
case it’s a blend of features extracted from past frames.

However, both standard GAN and its conditional version are highly unstable
to train. To counter the instability, most conditional GANs for image-to-image
translation [6] use reconstruction (l1/l2) loss in addition to the GAN loss. While
reconstruction loss forces model to generate samples similar to ground-truth, it
often results in mode collapse. Mode collapse is one of the greatest problems of
generative adversarial models. While we desire diverse outputs, mode collapse
manifests itself as one-to-one mapping. This problem can be mitigated by replac-
ing the traditional reconstruction loss with moment reconstruction (MR) losses
which increase training stability and favour multimodal output generation [12].
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The main idea of MR-GAN [12] is to use maximum likelihood estimation
loss to predict conditional statistics of the real data distribution. Specifically,
MR-GAN estimates the central measure and the dispersion of the underlying
distribution, which correspond to mean and variance in the Gaussian case.

LMLE,Gaussian = Ex,y

[
(y − μ̂)2

2σ̂2
+

1
2

log σ̂2

]
, where (μ̂, σ̂2) = fθ(x) (1)

Overall architecture of MR-GAN is similar to conditional GANs, with two
important novelties:

1. Generator produces K different samples ŷ1:K for each image x by varying
random noise z1:K .

2. Loss function is applied to the sampled moments (mean and variance) in
contrast to the reconstruction loss which is applied directly on the samples.

They estimate the moments of the generated distribution as follows:

μ̃ =
1
K

K∑
i=1

ỹi, σ̃2 =
1

K − 1

K∑
i=1

(ỹi − μ̃)2, where ỹ1:K = G(x, z1:K). (2)

MR loss is calculated by plugging μ̃ and σ̃2 in Eq. 1. The loss thus obtained
is called MR2, while they denote a loss that does not take into account variance
with MR1.

For more stable learning, especially at an early stage, the authors suggest a
loss called Proxy Moment Reconstruction (proxy MR) loss. As It was shown in
[12] that MR and proxy MR losses achieve similar results on Pix2Pix [6] problem,
we will use simpler MR losses for easier, end-to-end, training.

3.2 F2F Forecasting

Most of the previous work in forecasting focuses on predicting raw RGB future
frames and subsequent semantic segmentation. Success in that area would be
a significant achievement because it would make possible to train on extremely
large set of unmarked learning data. However, problems such as autonomous
driving require the program to recognize the environment on a semantically
meaningful level. In that sense forecasting on RGB level is an unnecessary com-
plication. As many attempts in feature-to-feature forecasting were based on
semantic segmentation, in [15] they go a step further and predict the semantic
future at the instance level. This step facilitates understanding and prediction of
individual objects trajectories. The proposed model shares much of the architec-
ture with the Mask R-CNN, with the addition of predicting future frames. Since
the number of objects in the images varies, they do not predict the labels of the
objects directly. Instead, they predict convolutional features of fixed dimensions.
Those features are then passed through the detection head and upsampling path
to get final predictions.
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3.3 Single-Level F2F Forecasting

Šarić et al. in their paper [19] proposed a single-level F2F model with deformable
convolutions. The proposed model, denoted as DeformF2F, brings few notable
changes compared to [15]:
1. Single-level F2F model which performs on last, spatially smallest, resolution
2. Deformable convolutions instead of classic or dilated ones
3. Ability to fine tune two separately trained submodels (F2F and submodel for

semantic segmentation).

DeformF2F achieves state-of-the-art performance on mid-term (t + 9) pre-
diction, and second best result on short-term (t + 3) prediction.

3.4 Multimodal F2F Forecasting

We use modified single-level F2F forecasting model as a generator, customized
PatchGAN [13] as a discriminator, while MR1 and MR2 losses are used in order
to achieve diversity in predictions. We denote our model as MM-DeformF2F
(Multimodal DeformF2F) (Fig. 1).

SPP F2F FORECASTED
FEATURES

D

…

H/2 x W/2

t-3
H/2 x W/2

t
H/2 x W/2

t-9
H/2 x W/2

t-6

H/2 x W/2

t+

…

Fig. 1. Structural diagram of our model. Base structure is similar to [19]. It is composed
of feature extractor (yellow), upsampling branch (blue), spatial pyramid pooling (SPP)
and F2F. Additionally, we introduce random noise z, discriminator D and new loss
functions. Our model generates multiple predictions. (Color figure online)

Generator. Generator is based on DeformF2F model. In order to generate
diverse predictions, we introduce noise in each forward pass. Gaussian noise
tensor has 32 channels and fits the spatial dimensions of the input tensor. Instead
of one, we now generate K different predictions with the use of K different noise
tensors. Generator is trained with MR and GAN loss applied to those predictions.
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Discriminator. According to the proposal from [12], we use PatchGAN as a
discriminator. Since input features of our PatchGAN are of significantly smaller
spatial dimensions, we use it in a modified form with a smaller number of con-
volutional layers. Its purpose is still to reduce the features to smaller regions,
and then to judge each region as either fake (generated) or real (from dataset).
Decisions across all patches are averaged in order to bring final judgment in
the form of 0 to 1 scalar. Since the discriminator was too dominant in learning,
we introduced dropout in its first convolutional layer. In general, we shut down
between 50 and 65% of features.

Dataset. Following the example of [19], we use video sequences from the
Cityscapes dataset. The set contains 2975 scenes (video sequences) for learning,
500 for validation and 1525 for testing with labels for 19 classes. Each scene is
described with 30 images, with a total duration of 1.8 s. That means that dataset
contains a total of 150,000 images with resolution 1024 × 2048 pixels. Ground-
truth semantic segmentation is available for the 20th image of each scene. Since
introduction of GAN methods made our model more complicated, all images
from the dataset were halved in width and height in order to reduce the number
of features and speed up training.

Training Procedure. In last paragraph we described the dataset and the
initial processing of the input data. If we denote the current moment as t, then
in short-term prediction we use convolutional features at moments t − 9, t − 6,
t−3 in order to predict the semantic segmentation at moment t+3, or at moment
t+9 for mid-term forecasting. Features have spatial dimensions 16× 32 and 128
channels. Training can be divided into two parts. First, we jointly train feature
extractor and upsampling branch with cross entropy loss [10,19]. All images
later used for training are passed through feature extracting branch and the
resulting features are stored on SSD drive. We later load those features instead
of passing through feature extractor, as that saves us time in successive training
and evaluation of the model. In the second part, we train the F2F model in an
unsupervised manner. Unlike [19], instead of L2 loss we use MR loss and GAN
loss. We give a slightly greater influence to the reconstruction loss (λMR = 100)
than adversarial (λGAN = 10). For both the generator and the discriminator,
we use Adam optimizer with a learning rate of 4 · 10−4 and decay rates 0.9
and 0.99 for the first and second moment estimates, respectively. We reduce
the learning rate using cosine annealing without restart to a minimum value of
1·10−7. To balance the generator and the discriminator, we introduce dropout in
first convolutional layer of the discriminator. As an example, training short-term
forecasting task with MR1 loss without dropout begins to stagnate as early as
the fortieth epoch, where mIoU is 1.5 to 2% points less than the best results
achieved.
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4 Experiments

We show average metrics across 3 trained models and multiple evaluations for
each task. In every forward pass we generate 8 predictions. We use mIoU as our
main metric for accuracy, while MSE and LPIPS are used to express diversity
as explained below.

MSE. Mean Squared Error is our main diversity metric. We measure Euclidean
distance on pixel level between every two generated predictions for each scene,
and take mean over whole dataset.

LPIPS. Following the example of [12], we also use LPIPS (Learned Percep-
tual Image Patch Similarity [29]) to quantify the diversity of generated images.
In [29] they have shown that deep features can be used to describe similarity
between two images while outperforming traditional measures like L2 or SSIM.
We measure LPIPS between every two generated predictions for each scene,
and take mean over whole dataset. Since we don’t generate RGB images, but
instead predict semantic future which has limited structure, MSE has proved to
be sufficient measure for diversity.

4.1 Visual Assessment

In addition to the numerical results, in following subsections we will also show
generated predictions, as well as two gray images:

a) Mean logit variance

logits.var(dim=0).mean(dim=0)

b) Variance of discrete predictions

logits.argmax(dim=1).double().var(dim=0)

An example of gray images is shown in Fig. 2. The first gray image high-
lights areas of uncertainty, while on the second image we observe areas that are
classified into different classes on different generated samples.

4.2 Experimental Results on Cityscapes Dataset

We conducted experiments on short-term and mid-term forecasting tasks with
roughly the same hyperparameters. With MR1 loss we observe mIoU which is on
par with baseline model, and slightly greater in the case of short-term forecasting.
On the other hand, using MR2 loss resulted in lower mIoU, but predictions are
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Fig. 2. Shown in the following order: future frame and its ground truth segmentation,
mean logit variance and variance of discrete predictions. The first gray image highlights
areas of uncertainty, while on the second gray image we see areas that are classified
into different classes on different generated samples. The higher the uncertainty, the
whiter the area.

a lot more diverse compared to MR1. Although we could get higher mIoU on
mid-term forecasting with minimal changes in hyperparameters at the cost of
diversity, we do not intervene because mIoU is not the only relevant measure
in this task. Accordingly, although MR2 lowers mIoU by 5 or more percentage
points, we still use it because of the greater variety. Visually most interesting
predictions were obtained by using MR2 on short-term forecasting task. One of
those is shown on Fig. 3. Notice that people are visible in the first frame and
obscured by the car in the last frame. In the future moment, the car reveals the
space behind it, and for the first time our model predicts people in correct place
(second row, first prediction). We failed to achieve something like that when
using MR1 loss or with baseline model. Such predictions are possible with the
MR2 loss, but still rare, as in this particular case model recognized people in the
right place in only one of the twelve predictions.

Fig. 3. Short-term forecasting with MR2 loss. Row 1 shows the first and the last input
frame, the future frame, and its ground-truth segmentation. Row 2 shows 4 out of 12
model predictions.

Our main results are shown in Tables 1 and 2. Since results in [19] were
obtained on images of full resolution, we retrained their model on images with
halved height and width. In tables we show average mIoU and mIoU-MO
(Moving Objects) across five different models. We also show results achieved
with Oracle, single-frame model used to train the feature extractor and the
upsampling path, which “predicts” future segmentation by observing a future
frame. While oracle represents upper limit, Copy last segmentation can be seen
as lower bound, or as a good difficulty measure for this task. We get a slightly
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better mIoU if we average the predictions, although this contradicts the original
idea of this paper. Like in [1], we also observe slight increase of mIoU when
comparing top 5% to averaged predictions. Performance boost is best seen when
we look at moving objects accuracy (mIoU-MO) while using MR1 loss, as we
show in more detail in supplementary.

Table 1. Short-term prediction results. While our model achieves slightly higher mIoU
with MR1 loss, MR2 results in much more diverse predictions.

Method Loss mIoU mIoU-MO MSE LPIPS

Oracle L2 66.12 64.24 / /

Copy last segmentation L2 49.87 45.63 / /

DeformF2F-8 [19] L2 58.98±0.17 56.00±0.20 / /

MM-DeformF2F-8 MR1 59.22±0.05 56.40±0.08 1.21±0.05 0.0482

MM-DeformF2F-8 avg MR1 59.46±0.06 56.66±0.09 / /

MM-DeformF2F-8 MR2 53.85±0.35 49.52±0.64 4.38±0.24 0.1519

MM-DeformF2F-8 avg MR2 56.81±0.20 53.38±0.43 / /

Table 2. Mid-term prediction results. While our model achieves slightly lower mIoU
with MR1 loss, MR2 results in much more diverse predictions.

Method Loss mIoU mIoU-MO MSE LPIPS

Oracle L2 66.12 64.24 / /

Copy last segmentation L2 37.24 28.31 / /

DeformF2F-8 [19] L2 46.36±0.44 40.78±0.99 / /

MM-DeformF2F-8 MR1 46.23±0.28 41.07±0.57 2.81±0.32 0.1049

MM-DeformF2F-8 avg MR1 46.96±0.21 41.90±0.53 / /

MM-DeformF2F-8 MR2 37.48±0.31 29.66±0.60 7.42±0.44 0.2279

MM-DeformF2F-8 avg MR2 40.32±0.12 32.42±0.37 / /

4.3 Impact of the Number of Predictions on Performance

Table 3 shows the impact of the number of generated predictions (K) on their
diversity and measured mIoU. We can see that larger number of generated predic-
tions contributes to greater diversity, while slightly reducing mIoU. In training,
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we use K = 8 because of the acceptable training time and satisfactory diver-
sity. Training with K = 16 would take about twice as long. We discuss memory
overhead and evaluation time in supplementary material.

Table 3. Impact of the number of generated samples (K) on mIoU and diversity,
measured on mid-term prediction task and MR1 loss. We can see that a larger number
of generated samples contributes to greater diversity and slightly reduces mIoU. Testing
was performed at an early stage of the paper, and the results are somewhat different
from those in the Table 2. Since we evaluate on only one model for each K, due to
high variance in both training and evaluation mIoU values don’t necessarily represent
real situation. Furthermore, in some tasks training with K = 12 or K = 16 sometimes
showed better accuracy. The number of generated samples listed in the table refers to
the learning phase, while we measure mIoU, MSE and LPIPS on 8 generated samples
in the model exploitation phase.

K mIoU MSE LPIPS

16 45.28 4.105 0.1496

8 45.81 3.004 0.1264

4 46.48 2.078 0.0947

2 46.44 1.424 0.0608

1 46.32 0.014 0.0010

4.4 Importance of GAN Loss

To show that the output diversity is not only due to the use of moment recon-
struction losses and random noise, we trained the model without adversarial
loss (λGAN = 0). In this experiment we were using MR1 loss on short-term fore-
casting task and with generator producing 8 predictions for each input image.
Although some diversity is visible at an early stage (MSE around 0.7), around
the 12th epoch the diversity is less and less noticeable (MSE around 0.35), and
after the 40th it can barely be seen (MSE around 0.1). The model achieved its
best mIoU 59.18 in epoch 160 (although it was trained on 400 epochs), and
the MSE measure in that epoch was 0.08. Figure 4a shows the improvement in
performance through the epochs, but with gradual weakening of diversity. For
this example we chose an image with a lot of void surfaces, due to the fact that
greatest diversity is usually seen in those places. On Fig. 4b we show the same
scene, but predictions were obtained on a model trained with weights λGAN = 10
and λMR = 100. It took the model 232 epochs to achieve its best mIoU which
is 59.14, but MSE held stable above 1 until the last, 400th, epoch.
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(a) λGAN = 0

(b) λGAN = 10

Fig. 4. The first four columns show 4 out of 8 generated predictions. The last two
columns show mean logit variance and the variance of discrete predictions. Samples in
the three rows are generated in epochs 1, 13 and 161, respectively. On image a), in the
last row we observe almost indistinguishable predictions with second gray image being
entirely black. On image b), we see some diversity in people behind a van, and last
image shows some diversity in predicted classes.

4.5 Diversity of Multiple Forecasts

We have seen that averaging generated predictions before grading them increases
mIoU - from 0.2 up to 3% points, depending on the task. Therefore, we propose a
novel metric for measuring plausibility of multimodal forecasting. The proposed
metric measures percentage of pixels that were correctly classified at least once
through multiple forecasts. We distinguish three cases by looking at:

1. Every pixel except void class
2. Only pixels of movable objects
3. Only pixels that were correctly classified by Oracle.

We measure at multiple checkpoints (1, 2, 4, ..., 128) and present the obtained
results in Fig. 5. On Fig. 5 we compare short term forecasting using MR1 and
MR2 losses, while in supplementary material we also show additional line which
represents best so far prediction.
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Fig. 5. Number of future pixels that were correctly classified at least once depending
on the number of forecasts. We show three different cases with lines of different colors,
as described by legend. Full lines represent MR2 short-term model, while dashed lines
represent results with MR1 short-term model.

5 Conclusion and Future Work

We have presented a novel approach for multimodal semantic forecasting in road
driving scenarios. Our approach achieves multi-modality by injecting random
noise into the feature forecasting module. Hence, the feature forecast module
becomes a conditional feature-to-feature generator which is trained by minimiz-
ing the moment reconstruction loss, and by maximizing the loss of a patch-level
discriminator. Both the generator and the discriminator operate on abstract
features.

We have also proposed a novel metric for measuring plausibility of mul-
timodal forecasting. The proposed metric measures the number of forecasts
required to correctly guess a given proportion of all future pixels. We encourage
the metric to reflect forecasting performance by disregarding pixels which are
not correctly guessed by the oracle.

The inference speed of our multi-modal model is similar to the uni-modal
baseline. Experiments show that the proposed setup is able to achieve consider-
able diversity in mid-term forecasting. MR2 loss brings more diversity compared
to MR1, however it reduces mIoU by around 5% points. Inspection of the gener-
ated forecasts, reveals that the model is sometimes still hesitating to replace close
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and large objects, but it often accepts to take a chance on close and dynamic or
small and distant objects, like bikes and pedestrians.

In the future work we shall consider training with proxy MR1 and proxy MR2
losses. We should also consider using different discriminator, for example the one
with global contextual information. Also, one of the options is to try concatenat-
ing features with their spatial pools prior to the discriminator. Other suitable
future directions include evaluating performance on the instance segmentation
task and experimenting with different generative models.
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