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9.1  Introduction

Schizophrenia (SZ) and bipolar disorder (BD) are severe psychiatric disorders 
involving complex interactions between genetic and environmental factors [1–5].

Environmental factors, such as winter birth, urban environment, and maternal 
infection during pregnancy, in particular caused by Influenza virus, Herpesviruses 
or T. gondii, are associated with an increased risk for SZ and for BD [6–9]. Viruses 
or parasites have been associated with the pathogenesis of SZ or BD, but most stud-
ies were based on serology that essentially detects an immunological scar, i.e., spe-
cific immunoglobulin G antibody [10–12]. Nonetheless, though the period of 
infection can be debated, epidemiological data provide arguments for critical peri-
ods in life when they may have a significant impact, along with associated immune- 
mediated inflammation: (a) the perinatal period encompassing the embryonal 
development and the postnatal final steps of neurodevelopment and (b) the young 
adulthood period when infections with, e.g., Herpesviruses occur. These periods 
were further thought to correspond to the early acquisition of a 
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“neurodevelopmental risk”, followed by some triggering effects of new infections 
and/or particular stress factors in teenagers or young adults [12–17]. As illustrated 
in Fig. 9.1, such a lifelong scenario may integrate perinatal “priming” event(s) and 
“boosting” events later in life, which could be synergistic or substitutable, with a 
critical period for teenagers and young adults.

Genetic studies revealed a potential contribution of loci involved in the inflam-
matory/immune pathways, including the major histocompatibility complex region, 
in both SZ and BD [18–21], among other candidate genes [22, 23]. Structural 
genomic studies also highlighted significant modifications in psychotic patients, 
including copy number variations, deletions, or somatic modifications of the 
genomic DNA [24–26].

Nonetheless, the mechanisms possibly underlying interactions between genetic 
and environmental risk factors contributing to the clinical onset and/or to the pro-
gression of psychotic disorders remain to be understood. Moreover, the significant 
observations made in studies addressing different aspects from various disciplines 
should require a unifying, but missing, link to allow a global understanding.

Rather recently, the involvement of multicopy genetic elements of the human 
genome, such as Human Endogenous Retroviruses (HERVs), has been reported in 
SZ and BD [9, 13, 27].
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Fig. 9.1 Lifelong exposure to environmental factors impacting epigenetics and gene expres-
sion. Environmental triggers may influence gene expression but no direct link with disease was 
identified, nor directly targeted or involved genes. Epidemiological studies point to most critical 
periods of exposure to infectious factors, during the embryonal/postnatal period and during the 
teenage/young adult period. Black circles represent cumulated events having potentially impacted 
genomic regulation or structures. Colored stars on the drawing for DNA double helix represent 
potentially susceptible DNA sequences. Adapted from Rutten & Mills Sch. Bull. 2009
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9.2  HERVs Represent a Disregarded but Important Part 
of the Human Genome with Original Genetic Features

HERVs are multicopy families of polygenic structures, represent 8% of the human 
genome and have retained characteristics of retroviruses. They entered the genome 
of species from ancient germ-line infections by exogenous retroviruses that have 
integrated their DNA genomic copy (cDNA) into the DNA of such host cells. 
Integration of retroviral genome cDNA reverse-transcribed from the virion RNA is a 
common characteristic of retroviruses, mediated by their encoded enzymes, reverse 
transcriptase, and integrase. Thus, nonlethal infection and integration of a retroviral 
genome within a chromosomal region that may not affect embryonal and adult devel-
opment following gametes fusion, can lead to a hereditary transmission to the off-
spring. Multiple similar events, called “endogenization”, with various retroviruses 
during evolution, led to multiple families of endogenous retroviruses (ERVs) within 
the genomes of species ending with numerous mutations, recombination events, and 
deletions within integrated sequences (provirus), as illustrated in Fig. 9.2.
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Fig. 9.2 Retroviral endogenizations and transmission to offspring. This illustration depicts 
the successive steps of retroviral endogenization in species, starting from infection of gametes, 
integration of a DNA retroviral copy (provirus) in a chromosome giving birth to a viable individual 
inheriting and retaining this copy in the DNA of all cells and transmitting it to its offspring. 
Throughout successive generations and species evolution, both endogenous retrotranspositions 
and re-infections of the germ line of certain individuals (as long as the exogenous strain is persist-
ing in the environment) generate multiple and variable copy numbers in a final population. As 
shown in the lower panel, retroviral genomes integrated as proviruses are originally composed of 
two flanking long terminal regions of repeated sequences (LTR), with gag, pol, and env genes, 
respectively encoding viral capsid proteins, retroviral enzymes, and the envelope protein. They 
may undergo many somatic modifications during inheritance over generations and most elements 
are modified or inactivated. Nonetheless, few proviruses from various families may retain coding 
potential for proteins, if not for complete retroviral expression
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HERVs, like other ERVs, belong to the superfamily of repeated and transposable 
elements (transposons, retrotransposons, and endogenous retroviruses) and alto-
gether represent over 42% of the human genome. They were shown to have played 
a role in inter- and intra-species gene transmission between individuals. At the indi-
vidual level, they are responsible of somatic modifications such as intracellular gene 
retro-transposition or recombination, and may undergo changes under selective 
environmental pressure or interactions with infectious pathogens.

HERVs are therefore components of the human genome that can be transmitted 
to subsequent generations through gametes, but have evolved differently from other 
host genes [28]. They have significant inter-individual copy number variations 
within the genome of healthy humans from different ethnic origins or simply 
between individuals [29–32], which would suggest inter-individual differences in 
potentially related genetic susceptibility.

9.3  HERVs in Schizophrenia and Bipolar Disorder

Interestingly, considering observed somatic rearrangements and copy number varia-
tion in psychotic patients’ DNA, HERVs may generate such genetic rearrangements 
linked to their properties of mobile genetic elements [33]. This could even be trig-
gered by microbial agents activating the expression of certain HERV copies or fami-
lies [34–38]. Interestingly, structural modifications in the major histocompatibility 
complex (MHC) C4 gene were associated with characteristics of HERVs [29] and 
numerous HERV sequences were also found in the chromosomal region corre-
sponding to MHC class II genes [39, 40]. In addition, the role of HERV inserts in 
the regulation of schizophrenia-linked genes has been described [41] and genomic 
differences between affected and nonaffected homozygous twins identified a dif-
ferentially amplified HERV copy from the twin with SZ [42].

Thus, HERVs may link many observed genetic features in psychoses such as 
schizophrenia, while providing an explanation for an underlying mechanism driven 
by these remnants of “mobile genetic elements” in the human genome, since still 
functionally interacting with environmental pathogens.

However, a potentially unifying role should not be limited to the genomic level, 
as HERV-encoded proteins with well characterized and relevant pathogenic mode of 
action [43] were shown to be expressed in SZ or BD [44–49].

Although most of the contemporary copies of HERVs were inactivated by muta-
tions or deletions or silenced by epigenetic modifications, as schematized in Fig. 9.2, 
their plasticity and potential responsiveness to environmental triggers are of particu-
lar relevance for gene–environment interactions [50]. Under certain conditions, 
undisrupted HERV sequences or copies may be expressed and display viral protein 
properties [51–53].

In schizophrenia, a sequence homologous to a human endogenous retrovirus 
originally identified in MS and previously named “Multiple Sclerosis-associated 
Retroviral element” (MSRV), was identified from differential DNA amplification in 
homozygote twins discordant for the disease [42]. MSRV sequences later permitted 
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to unravel a previously unknown HERV family, now named HERV-W [54–56]. 
MSRV/HERV-W proteins or elevated RNA levels were further detected in patients 
with schizophrenia from different world areas and in independent studies [45, 47, 
49]. Significantly elevated HERV-W transcriptional activity, though with different 
expression patterns, was also reported in patients with SZ or BD [44].

The HERV-W family and copies corresponding to its MSRV element, have now 
consistently been shown to be activated by infectious agents [35, 57–59]. In particu-
lar, HERV-W elements have been reported to be activated by T. gondii [60] as well 
as by Influenza virus in human cell lines [37], which is relevant for environmental 
infections incriminated in elevated risk, for e.g., schizophrenia. Such pathogenic 
activation of HERV-W elements [45, 61–63] may result in the production of its 
envelope protein (HERV-W Env) that strongly stimulates a pro-inflammatory cas-
cade through the TLR4 receptor pathway [64] and displays neurotoxicity [43].

At the neuronal level, altered NMDA receptor (NMDAR) signaling plays a cen-
tral role in psychosis [65] and this glutaminergic system has been extensively 
described to be part of several key physiological processes, such as synapse matura-
tion [61, 62], spinogenesis [63, 66], and learning/memory [67]. Moreover, the regu-
lation of NMDA receptor signaling is highly dependent on the surface diffusion of 
the receptor and its dynamic anchoring within postsynaptic densities [68]. A recent 
study showed that the effect of HERV-W-encoded envelope protein (HERV-W 
ENV) on glutamatergic NMDAR signaling was not mediated through direct action 
on channel physiology, but on its trafficking in the plasma membrane at the level of 
neuronal synapses [43]. This showed a potent link between exposure to HERV-W 
ENV and NMDAR surface dynamics with a pattern of response that was unique to 
HERV-W Env compared to all other tested compounds, including LPS, another 
TLR4 agonist. The effect also uniquely targeted gluN2B and not gluN2A receptors. 
The fact that these effects were not observed under glia-free conditions also sug-
gested the implication of glia-dependent pathways in this process. The study showed 
the potential impact of HERV-W env expression, beyond its pro-inflammatory 
effects, on neuroreceptor dysregulation as observed in psychoses such as schizo-
phrenia and bipolar disorder. Moreover, these specific effects were reproduced 
using HERV-W ENV serum from patient.

Most interestingly, this study also showed that consistent psychotic behavior was 
induced in an animal model consisting in rats expressing HERV-W ENV protein in 
hippocampal neurons transfected with ENV gene expressing plasmids in vivo. In 
addition, a specific monoclonal antibody targeting HERV-W ENV not only inhib-
ited HERV-W ENV pathogenic effects in  vitro but also significantly prevented 
abnormal behavioral signs in antibody-treated rats using intraperitoneal injections 
in this animal model, versus mock-transfected controls. This not only confirmed the 
specificity of the neuropathogenic effects of HERV-W ENV and of its behavioral 
correlates in vivo, but importantly paves the way toward a new therapeutic avenue 
with antibodies neutralizing this HERV protein.

Thus, HERVs should not only provide a link with previously described genomic 
features of SZ or BD but also with the abnormal expression of pathogenic endoge-
nous proteins activated by environmental factors, in particular HERV-W envelope 
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protein with a now evidenced mode of action on the distribution of neuronal recep-
tors at the synapse level. Therefore, the involvement of certain HERV elements 
appears consistent with the previously evoked missing link between known features 
of these psychotic diseases and it may provide a global understanding of their patho-
genesis, with gene-environment interactions and resulting endogenous neuropatho-
genic effector molecules. A global scenario summarizing the hypothesis resulting 
from the present data on the role of HERV-W envelope protein is proposed in Fig. 9.3.

9.4  Conclusion and Perspectives

In conclusion, a lifelong scenario of a detrimental interaction between infectious 
agents and HERV-W genes may decipher the actual development and course of 
schizophrenia or bipolar disorder. But, after the preclinical proof of concept pro-
vided with a monoclonal antibody neutralizing the pathogenic effects of HERV-W 
ENV in an animal model, further research and development followed by clinical 
studies are needed to find out if such a specific treatment strategy could neutralize 
the pathogenic effects of HERV-W ENV and/or reduce the expression of HERV-W, 
with appropriate endpoints in patients with schizophrenia or with bipolar disorder. 
Time may come when new therapeutic strategies targeting pathogenic and non-
physiological agonists would allow treating, or possibly preventing, such psychiat-
ric diseases without impairing physiological functions mediated by neuroreceptors 
and neurotransmitters.

+

Influenza T.Gondii

HSV-1 HSV-2CMV Or Or

and/or?

Or

Transactivation
& de novo insertion

Pro-Inflammation  & Neurotoxicity

Modulated by immuno-genetic and other environmental factors

Perinatal Infections
Secondary Infections

Subgroup of
Schizophrenia and
Bipolar disorder

ENV

HERV-W Env specifically targets TLR4

HERV-W

TLR4 Neutralizing
antibody

Fig. 9.3 Human Endogenous retroviruses (HERV-W): the missing link? As previously pre-
sented, infectious agents were associated with increased risk for schizophrenia or bipolar disorder 
but, according to their tropism and corresponding periods of infection, they can activate HERV-W 
elements as already shown in vitro. They would however have a relevant impact in two different 
periods of life. The early perinatal infections would mostly involve influenza virus or Toxoplasma 
gondii, while viruses from the Herpesvirus family (e.g., Cytomegalovirus-CMV; Herpes simplex 
virus type 1 and type 2 -HSV-1 or 2) are commonly acquired in teenagers and young adults
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