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14.1	 �Introduction

Well-regulated inflammation is an essential protective mechanism, for example, to 
eliminate bacterial and viral infections; however, excessive inflammatory processes 
can cause harm, as in autoinflammatory diseases such as multiple sclerosis. In the 
central nervous system (CNS), inflammation can also be either neuroprotective or 
neurotoxic [1]. The outcome of inflammation depends on interactions between 
environmental factors and the inflammatory response; genetics; and whether the 
inflammation is acute or chronic [2]. For example, acute inflammation in the CNS, 
such as encephalitis, can be fatal within a few hours or days, but a chronic, harmful 
inflammatory state can also continue over months or even years, such as in multiple 
sclerosis. In acute CNS inflammation, macrophages and B- and T-cells from the 
peripheral immune system are assumed to cross the blood-brain barrier. In contrast, 
chronic CNS inflammation is hypothesized to be related to the activity of the CNS-
based immune system. In multiple sclerosis, for example, this local immune activity 
in the CNS is seen as disseminated activation of microglia [3]. Researchers have 
referred to these differences between THE involvement of the peripheral and central 
immune systems as “compartmentalization” [2, 4].

The pathogenetic mechanisms of multiple sclerosis and schizophrenia may show 
similarities because both affect the CNS, can be chronic, and are characterized by 
phases of active disease interspersed with phases of remission [5]. However, the 
inflammatory mechanisms in these two diseases differ. For example, a general 
neuroinflammatory state is typical for schizophrenia [6], whereas multiple sclerosis 
shows focal areas of neuroinflammation [3]. This chapter will review possible 
inflammatory mechanisms of schizophrenia and potential immune-based treatments.
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14.2	 �CNS Inflammation

Various components of the immune system are involved in inflammation in the 
CNS, including microglia, astrocytes, cytokines, and cells of the peripheral immune 
system, such as monocytes, macrophages, and T- and B-lymphocytes. These 
different parts of the immune system can be affected by a range of factors, including 
not only environmental toxins and pathogens but also genetics and secondary 
reactions to neuronal lesions resulting from trauma.

14.2.1	 �Microglia

Microglia make up 15% of cells in the CNS and are the most important component 
of the local immune defense system. They are activated in case of neuroinflammation, 
for example, resulting from injury or infection in the CNS [7]. Systemic infection 
also activates microglia, which contribute to the synthesis of proinflammatory 
cytokines in the CNS that cause so-called sickness behavior and other illness-related 
mental states [8, 9]. Although initially produced in response to an acute signal, 
proinflammatory cytokines may then continue to be released for up to 10 months; 
this finding led to the hypothesis that microglia may be involved in chronic 
inflammation [7]. In schizophrenia, in addition to activated microglia some studies 
found higher levels of pro-inflammatory cytokines and lower levels of anti-
inflammatory cytokines (see below). As a caveat, one must note that the subdivision 
of cytokines into pro- and anti-inflammatory is an oversimplification because certain 
cytokines can show both properties; the respective activity of such cytokines 
depends on several factors, including the activating signal, timing, and type of target 
cell [10]. However, this topic is beyond the scope of this chapter.

14.2.2	 �Sensitization of the Immune System and the  
Effects of Stress

Microglia can also be “sensitized” or “primed” by various low-level stimuli [11], 
including ageing-related processes [12], neurodegeneration [13], and stress [14]. 
After sensitization, the response of microglia to a low-level stimulus such as minor 
infection is exaggerated and they show greater pro-inflammatory reactivity [15], 
perhaps leading to an exacerbation or re-exacerbation of a CNS immune response 
and affecting behavior. This process of sensitization is also seen in the peripheral 
immune system. As with microglia, an initial immune response to a stimulus, e.g., 
stress, strengthens the subsequent immune response or lowers the threshold for a 
response upon re-exposure to the same stimulus [16]. On the basis of earlier studies, 
researchers hypothesized that this process is related to a memory function in the 
acquired immune system [14, 17]. For example, later re-exposure to a stimulus that 
caused an early childhood infection can result in increased cytokine release and 
associated neurotransmitter disturbances [18]. Furthermore, in rats stress-related 
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release of the cytokine interleukin-6 (IL-6) reactivated (prenatally) conditioned 
processes [19].

In addition to infections and trauma, stressful events can evoke a pro-inflamma-
tory immune response [20]. Stress increases the levels of corticosterone, which acti-
vates the N-methyl-d-aspartate (NMDA) receptor, and this receptor activation 
causes microglia to proliferate [21]. The increased cytokine levels associated with 
this response can present as psychopathological symptoms and behavioral changes 
[22]. After an acute stressful event, the immune response is normally downregu-
lated; however, studies have shown that chronic stress or repeated stressful events 
can lower the threshold for the physiological reactions to stress, including the 
immune system response or neurotransmitter changes [23]. Furthermore, the brains 
of aged animals were found to be in a proinflammatory state that sensitized them to 
peripheral infection and stress, so that they showed a greater cytokine response to 
these stimuli than younger animals [14]. In other animal studies, neurotransmitter 
responses to a cytokine, for example, tumor necrosis factor-alpha (TNF-α), were 
greater upon re-exposure [24, 25].

14.3	 �The Vulnerability-Stress-Inflammation Model 
of Schizophrenia

The vulnerability-stress model of schizophrenia was first proposed by Zubin and 
Spring over four decades ago [26]. The authors hypothesized that physical or mental 
stress can cause a psychotic episode. Because stress is known to be a cause of 
inflammation, and inflammation is known to be involved in schizophrenia, the 
model was further developed into the so-called vulnerability-stress-inflammation 
model. Evidence for the validity of this model is provided by animal studies, which 
show that offspring are more vulnerable to developing schizophrenia if an 
inflammatory response of the mother is stimulated in the second trimester or in the 
young offspring soon after birth [27]. Besides sensitization (see above), vulnerability 
to stress is also influenced by genetic factors, as proposed in the pathogen host 
defense hypothesis of depression [28]. Inflammatory markers and the effects of 
inflammation on neurotransmitter systems in schizophrenia are further elucidated.

14.3.1	 �Inflammatory Markers

An inflammatory process is hypothesized to be involved in the pathophysiology of 
at least a subgroup of patients with schizophrenia [29, 30], a theory that is supported 
by a range of findings. First, postmortem studies in schizophrenia have found 
degradation products of fibrin (a protein involved in coagulation and inflammation) 
in the brain [31] and cerebrospinal fluid (CSF) [32]. Furthermore, untreated patients 
with schizophrenia have a blunted type 1 cytokine response and an increased type 2 
cytokine response [33]. Meta-analyses of studies in schizophrenia found higher 
levels of pro-inflammatory cytokines in the peripheral blood in patients with a first 
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episode of the disease and those who had relapsed [34], including the inflammation-
marker C-reactive protein [35]; in contrast, levels of some anti-inflammatory 
cytokines were lower than in healthy controls [34]. The results of a meta-analysis of 
studies on cytokines in the CSF were similar [36]. When examining these findings, 
however, one must consider the potential effects of confounding factors such as 
smoking, body mass index, sex, sleep, and medication. Moreover, blood levels of 
cytokines may not appropriately reflect their function because several cytokines 
have a primarily paracrine effect. Lastly, the brain is protected from peripheral 
inflammation by the blood-brain barrier, and an immune activation with increased 
pro-inflammatory cytokines in the blood does not necessarily reflect the situation in 
the brain [37].

14.3.2	 �Inflammation and Neurotransmitters

For a long time, research on the neurobiology of schizophrenia has focused mainly 
on disturbances in dopaminergic neurotransmission. Studies have clearly shown 
that the dopamine system is altered in schizophrenia [38], but the exact relationship 
remains unclear and results of studies on antidopaminergic drugs have been 
disappointing. At least two cytokines may be involved in the changes in 
neurotransmitter systems seen in schizophrenia: IL-1ß, which has been shown to 
cause rat mesencephalic progenitor cells to be converted into a dopaminergic 
phenotype [39–41], and IL-6, which shortens the survival of serotonergic neurons in 
the fetal brain [42].

The interaction between cytokines and neurotransmitters in certain brain regions 
and in particular during brain development has been shown to contribute to the 
pathophysiology of schizophrenia. In a mouse model, Winter et  al. [43] found a 
significant increase in the dopamine levels in fetal brains after eliciting an immune 
response in the pregnant dams with a viral mimetic (poly I:C). The authors suggested 
that the poly I:C-induced immune response caused an excess of dopamine in the 
midbrain, a structure that is affected in patients with schizophrenia [43]. However, 
chronic administration of the cytokine interferon-alpha in animals was associated 
with a reduction in striatal dopamine release and with anhedonia [44]. Anhedonia is 
a characteristic negative symptom of schizophrenia, and negative symptoms are 
often found in chronic schizophrenia [45]. Other authors have proposed that latent 
persistent infections may result in imbalanced immune reactions [46]. Thus, 
inflammation may have diverse effects on dopaminergic neurotransmission and 
may be involved in the chronification of schizophrenia.

Another key neurotransmitter in the pathophysiology of schizophrenia is gluta-
mate, the most abundant neurotransmitter in the CNS, which is involved in cytokine-
directed tryptophan/kynurenine metabolism. Kynurenic acid, one of three or more 
intermediate neuroactive products in the kynurenine pathway, is the only known 
naturally occurring NMDA receptor antagonist in the human CNS [47]. In schizo-
phrenia, a predominant type 2 immune response is proposed to inhibit indoleamine 

N. Müller



231

2,3-dioxygenase (IDO), resulting in increased kynurenic acid production; kynurenic 
acid acts as an antagonist at NMDA receptors, which in turn decreases glutamate 
neurotransmission [48, 49]. Support for this hypothesis is provided by studies that 
found NMDA receptor antibodies in about 10% of untreated patients with acute 
schizophrenia [50, 51]. Some studies found higher kynurenic acid levels in the CSF 
[52, 53] and brains of patients with schizophrenia [54, 55] and in animal models of 
schizophrenia [56], and others found no changes in levels in the peripheral blood 
of patients with first-episode schizophrenia [57] or in other groups of schizophre-
nia patients [58]. Antipsychotic medication affects kynurenine metabolites and thus 
may be a confounder in studies [57–59].

14.4	 �Infection and Schizophrenia

Studies in animal models have shown that pre- and perinatal infections increase 
the likelihood of schizophrenia in offspring [60, 61]. For example, after prenatal 
exposure to viral agents animal offspring show symptoms typical of schizophre-
nia, including cognitive deficits and abnormalities in the startle reflex [62, 63]. 
The relationship between exposure to infections and a higher risk for schizo-
phrenia appears to hold true in humans, too, and has been shown for prenatal or 
childhood viral exposure [64–67], respiratory infections [68], genital or reproduc-
tive tract infections [68, 69], Toxoplasma gondii infection [70], and other infec-
tions [71–74]. Findings on virus antibody titers in patients with schizophrenia 
are inconsistent [75], although this may be because the studies did not control 
for potential confounders, such as medication [76]. In an earlier study, we found 
higher titers of antibodies to various pathogens in patients with schizophrenia 
than in healthy controls, a phenomenon we named the “infectious index” [77]. 
Another study showed that the mothers of people with schizophrenia spectrum 
disorders had higher second-trimester levels of the pro-inflammatory cytokine 
IL-8 than controls [78].

Possible mechanisms of the association between early life infection and schizo-
phrenia are of interest because schizophrenia is a disease of late adolescence/early 
adulthood. Many studies in animal models have shown that early infection or 
immune activation influences several neurodevelopmental processes, including 
dopaminergic and glutamatergic neurotransmission [40, 79]. In humans, studies on 
some infections [80] and a cohort study of bacterial infection are examples that 
support this explanation [68]. Furthermore, increased levels of cytokines or CRP in 
childhood predict an increased risk for schizophrenia [81].

Infection in adulthood also increases the risk of developing schizophrenia. A 
large epidemiological register study in Denmark found a higher risk for schizophrenia 
and schizophrenia spectrum disorders in people hospitalized for autoimmune 
disorders or severe infections, particularly in patients with both diseases [82]. 
However, the study found no evidence that early exposure to infections, including 
prenatal exposure, increased the risk for schizophrenia [82, 83].
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14.5	 �Inflammation and CNS Volume Loss

Neuroimaging studies have not shown marked inflammation-related changes in 
schizophrenia, although they have found CNS volume reductions in first-episode 
schizophrenia and progressive volume loss in the further disease course [84–87]. 
People with schizophrenia showed decreased brain volume, i.e., lower volumes of 
the right posterior cingulum and left entorhinal cortex and higher volumes of the 
ventricles, after prenatal exposure to higher maternal IL-8 levels (measured in 
assays from archived prenatal sera) [88], and volume loss in schizophrenia was 
found to be associated with an increased genetic risk for greater production of the 
immune marker IL-1β [89].

The peripheral benzodiazepine receptor is expressed on microglia and is upregu-
lated in inflammation [90]. Positron emission tomography (PET) studies therefore 
used radiolabeled PK11195, a ligand for the receptor, to estimate microglial activa-
tion in the CNS and found that binding of PK11195 is higher in schizophrenia, 
indicating neuroinflammation [91–93]. Another PET study used DAA1106, another 
marker of microglial activation, to investigate the brains of people with chronic 
schizophrenia and found a correlation between binding of the marker and positive 
symptoms, as well as the duration of the disease [94].

14.6	 �Anti-Inflammatory Treatment in Schizophrenia

Treatment with anti-inflammatory drugs, such as celecoxib (a cyclooxygenase-2 
[COX-2] inhibitor) and acetyl salicylic acid, has positive effects in schizophrenia 
and schizophrenia spectrum disorders [95, 96], providing support for an involvement 
of inflammation in the disease. In a 6-week prospective, double-blind, randomized 
controlled trial in patients receiving risperidone for an acute schizophrenic episode, 
outcome was significantly better in the add-on celecoxib group (n = 25) than in the 
add-on placebo group (n = 25) [97]. Cognition also improved significantly more in 
the celecoxib group [98]. A pooled analysis (n  =  90) of the data from this and 
another 6-week study of celecoxib add-on to risperidone found that the duration of 
illness influenced the effects of celecoxib; i.e., the drug was beneficial in patients 
with a duration of illness <2 years but not superior to placebo in case of a longer 
illness duration [99] (see Fig. 14.1).

Other studies also provided support for the hypothesis that duration of illness is 
an important factor in the efficacy of anti-inflammatory treatment in schizophre-
nia. In a 6-week study of celecoxib add-on treatment in patients with first-mani-
festation schizophrenia being treated with amisulpride, the Positive and Negative 
Syndrome Scale (PANSS) positive, negative, total, and general psychopathology 
scores improved more in the celecoxib add-on group than in the placebo add-on 
group [102]. However, an 8-week double-blind study comparing celecoxib and 
placebo augmentation in continuously ill outpatients with schizophrenia receiv-
ing stable antipsychotic treatment found no benefit of celecoxib [103]. In addition, 
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a meta-analysis of eight studies (six of celecoxib and two of acetylsalicylic acid) 
found significant effects in first-episode but not chronic schizophrenia [104].

A possible explanation for the importance of the duration of illness for the 
efficacy of anti-inflammatory agents may be neuroprogression (Müller 2017). We 
know from studies of first- and second-generation antipsychotics that the efficacy 
of these treatments is worse in chronic schizophrenia than in acute schizophrenia. 
However, so far anti-inflammatory treatment in schizophrenia has been studied for 
a maximum of 8 weeks (see above). Furthermore, short-term anti-inflammatory 
treatment also has poor efficacy in chronic inflammatory diseases. Therefore, lon-
ger studies are needed to evaluate anti-inflammatory treatment in chronic schizo-
phrenia [105].
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Fig. 14.1  Comparison of disease duration on the effects of celecoxib add-on therapy to risperi-
done. Patients with a disease duration <2 years and celecoxib treatment had a better outcome than 
patients with a disease duration >2 years and placebo and both groups of patients with a disease 
duration of more than 2 years (results not statistically significant). Reprinted from [100] by permis-
sion of Oxford University Press and [101] Copyright © 2017 Karger Publishers, Basel, Switzerland. 
Cox celecoxib, PANSS Positive and negative syndrome scale
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Studies are also needed to investigate potential predictors of treatment response 
to anti-inflammatory treatment. Earlier studies found that a higher amount of 
inflammation is associated with worse response to antipsychotics [106–109]. The 
question remains open whether higher levels of inflammation predict a better 
outcome to anti-inflammatory treatment, as was shown for anti-TNF treatment and 
celecoxib in major depression [28, 110]. So far, no immune-related predictive 
markers for anti-inflammatory treatment have been identified.

14.7	 �Other Potential Inflammation-Related Treatments 
in Schizophrenia

As mentioned earlier, microglia play a role in CNS inflammation, and CNS inflamma-
tion is hypothesized to be involved in schizophrenia. Thus, studies have examined 
whether agents that can cross the blood-brain barrier and inhibit microglia activation 
may be useful in schizophrenia. One such drug is the antibiotic minocycline. Minocycline 
was studied in animal models of schizophrenia, where it was shown to have positive 
effects on cognition [111]. In a double-blind, placebo-controlled study, add-on minocy-
cline improved negative symptoms of schizophrenia [112, 113]. In addition, case reports 
described positive effects on the overall symptom spectrum [114].

Studies have also found some positive effects of other anti-inflammatory sub-
stances, such as acetylcysteine and omega-3 fatty acids [115] and interferon-gamma, 
a cytokine that stimulates the monocytic type 1 immune response [116]. Interferon-
gamma may not be a viable treatment option, though, because it can have adverse 
effects on the immune system and is thus probably a “double-edged sword” in psy-
chiatric diseases, as it is in cancer [117].

Monoclonal antibodies to pro-inflammatory cytokines have also been proposed 
as a potential treatment for schizophrenia, and treatment appears to be feasible and 
potentially efficacious, warranting further research [118].

14.8	 �Conclusion

In the context of research on the immune system and inflammation, it is important 
to note that drug treatment, smoking, stress levels, sleep patterns, etc., can affect 
results. Nevertheless, research appears to support a role of immunological and 
inflammatory processes in the pathogenesis of schizophrenia. Data have been 
obtained from a range of approaches, including studies on the role of proinflammatory 
cytokines in the disease; the effects of cytokines on tryptophan/kynurenine 
metabolism and glutamatergic neurotransmission; the binding of markers of 
inflammation in imaging studies; genetics; and the effects of anti-inflammatory 
drugs. Further research is required, particularly into a potential association of 
inflammation with volume loss in the CNS and the importance of the duration of 
illness for treatment outcome. However, findings so far, in particular on the positive 
effects of anti-inflammatory treatment in schizophrenia, are encouraging.
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