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Abstract Recognizing human actions and analyzing human behaviors from
accelerometer data has become a challenging task. Hence, Human Action Recog-
nition (HAR) using inertial sensors have been addressed in a plethora of various
review papers. This chapter provides a detailed state of art survey of HAR exploiting
acceleration data. Considering different modalities, we prove that the accelerom-
eter is one of the most promising sensors in this field by presenting an overview
of its applications. In addition, we propose a comprehensive review of recent stud-
ies in this domain along different views: from data modalities to feature extraction
and classification steps. Moreover, we list the most publicly available databases that
include accelerometer data. Afterwards, we used a multi-level fusion framework that
includes signal-level, feature-level, score level and the decision level fusion in order
to improve the recognition performance. For the classification, we took advantage
of the support vector machine with features from the time-frequency domain. The
proposed framework was evaluated using three public datasets: WARD, MHAD and
Realdisp. The results obtained from the fusion techniques indicate that the score level
provides a satisfactory performance compared to the other levels and with the use of
each accelerometer separately.
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1 Introduction

Do the human actions developed in a day present a good image of the overall home-
ostasis of the person? The execution of an action such as sitting down or standing
for a long period, rather than jumping or lying down, and the speed of the accom-
plishment of these tasks present valuable information about a person’s daily activity.
It reflects his vitality, therefore his state of health and even his psychological state.
Hence, monitoring and supervising the activities of everyday living has become a
crucial task to enhance the quality of our lives.

Human actions can be classified into four classes, relying on their complexity:
gestures, actions, interactions and a group of activities (Aggarwal and Ryoo 2011;
Jegham et al. 2019). Gestures consist of elementary movements of a body part, for
example: ‘raising an arm’. Actions include gestures that are temporally ordered, for
instance: ‘walking’ or ‘waving’. In addition, interactions involve two persons ormore
as ‘two persons shaking hands’, also it exists a human-object interaction between
humans and objects, such as ‘a person is giving a cup to another’; finally, group
of activities that include several persons and/or objects such as ‘a group having a
meeting’.

The principal aim of human action recognition is automatically detecting and
analyzing human activities, then interpreting continuously and successfully the sit-
uation (Chen and Shen 2017). Thus, this filed of research has been unavoidable in
several areas including: health care (Ameur et al. 2016; Jain and Kanhangad 2018),
surveillance (Lejmi et al. 2017), human-computer interaction (Nuno et al. 2017),
virtual reality (Kwon et al. 2017), gaming (Namal et al. 2006), etc.

To guarantee the recognition and the analysis of human behavior, several
researchers have exploited different types of technologies in their work, including
cameras, Kinect, accelerometers, gyroscopes, microphones, MoCap (motion cap-
ture), RFID (radio frequency identification), etc.

In fact, the employment of microphones in the field of human behavior analysis
is becoming more and more important in various fields, such as robotic assistance,
action recognition, etc. However; the presence of noise and the distance of the person
with regard to the microphone are still a challenge (Rodomagoulakis et al. 2016).

Although several works have used RGB cameras because it provides rich infor-
mation of the scene, the recognition based on video sequence has its own limitations,
such as sensitivity to lighting, background disorder and occlusion (Jegham and Ben
Khalifa 2017; Chebli and Ben Khalifa 2018). In addition, this approach is limited
to a fixed area of view outlined by the camera position and for many people, who
feel uncomfortable when they are monitored continuously, cameras are intrusive
(Cornacchia et al. 2017; Lejmi et al. 2019).

Based on depth sensors that provide 3D action data, the human action recognition
has gained more improvement. For the Kinect, it is insensitive to changes in lighting
and ensures recognition of actions in the dark. Nevertheless, the subject must always
be present in the field of view of the Kinect and the images present different noise.
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Table 1 A summary of some limitations of different sensors for human action recognition

Sensors Limitations

Microphone – Presence of noise

– The distance of the person with regard to the
microphone

Camera – Conditions of acquisition

– Occlusions

– Intrusive

Kinect – The person must always be in the Kinect’s
point of view

– The images present different noise

– Requires different material sources

MoCap – Occlusions

– Constrained place

– Complex calibration and requires expensive
equipment

RFID – Objects must be equipped with RFID tags

– The person must wear an RFID

Motion capture is a sector of research in full evolution. However, the use of such
a technology requires a procedure of boring calibration and additional expensive
equipment. Furthermore, MoCap has many challenges, for example: occlusion and
a constrained space.

In the case of recognizing human actions from the radio-identification RFID,
which informs us about the place of the person, RFID labels must equip the objects,
which interact with the person, and the port of this sensor by the user is necessary.

A summary of some limitations of different sensors associated with human action
recognition is presented in Table1.

With the progress of microelectronics, human action recognition using wearable
inertial sensors, such as the accelerometer or the gyroscope, has been acquiring more
and more attentiveness from many researchers. Moreover, the integration of these
sensors into different devices, which become a part of people’s daily living (such
as: smartphones, smart watches, sport medical bracelet, etc.) has opened the way
to the advancement of the human action recognition. Among the technologies that
recognize human activities, inertial wearable sensors seem to be the most promising.
Indeed, their lightweight, small size, and low cost have attracted many researchers
(Mimouna et al. 2018). Moreover, the low energy consumption and the reduced
computational power provide a long-period recordings and continual interaction
compared with based-image processing systems.

Undoubtedly, wearing these sensors is easy and using such a technology can
ensure the recognition in darkness. Thanks to all these advantages, the accelerometer,
which provides 3-axis accelerations, has been exploited in a diversity of applications
in order to detect and analyze human activities.
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Furthermore, to enhance the recognition performance, some researchers proposed
to combine two different modalities to deal with several realistic events that may
appear in the real world, for instance, fusing data from a depth image and data from a
wearable inertial sensor as shown in Chen et al. (2015), Malawski and Gałka (2018).

To the best of our knowledge, this is the first research attempt to exploit the
potential of the triaxial accelerometer and its employment in various fields especially
in HAR. The aim of this chapter is: (i) to present an overview of the state of the art of
accelerometers’ applications and practicality we focus on the field of HAR exploiting
accelerometer data, and (ii) to expose a fusion framework which consists of coupling
several information acquired from numerous levels.

As we discussed, several modalities introduced to recognize human activities and
as the accelerometer seems to be the most effective; we will present an accelerom-
eter’s review and its applications in Sect. 2. The third section is reserved for intro-
ducing the field of human action recognition exploiting accelerometers data, in this
section we present challenges, various applications related to this field and several
approaches employed to guarantee action recognition. Datasets based on inertial
sensors are introduced in Sect. 4. We give a detailed description of the fusion frame-
work in Sect. 5. The experimental results are reported in Sect. 6. The seventh section
provides the conclusion.

2 Accelerometer’s Review and Applications

Accelerometers are used to determine the measurement of changes in velocity. There
exist two main modes of acceleration measured by this sensor: the first is the linear
acceleration, which is the acceleration measured when the change in velocity is
in the signal direction, and the second is the centrifugal acceleration, which is the
measurement of the displacement of an object in a circle.

The triaxial accelerometer measures the acceleration following three directions
X , Y and Z , as shown in Fig. 1 which represents accelerometer data acquired when
moving the phone. It is a kinematic sensor existing in several devices. In addition to
game consoles, mobile terminals and automobiles, accelerometers are now present
in a large number of connected objects; we mention intelligent textiles, connected
watches, cameras, prostheses, shoes, drones, robots, sports and medical bracelets,
etc.

Thanks to its many benefits, nowadays, the accelerometer is present in a variety
of applications which they will be detailed below.

Recently, monitoring road conditions become necessary to insure safety to vul-
nerable road users, and also to evaluate the state of the roads. Allouch et al. (2017),
developed an android application named RoadSense to predict road conditions using
the accelerometer and the gyroscope integrated into the smartphone. According to
the results, it guarantees high performance with an accuracy of 98.6%.

In augmented reality, Unuma and Komuro (2015) proposed a natural 3D interac-
tion system, the user can interact with virtual objects superimposed on the real image
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Fig. 1 Accelerometer sensor data acquired when moving the phone

using his hand. With the aim to insure natural interaction, a triaxial accelerometer is
fixed on the depth camera. Thus, when the user pushes a virtual ball, it rolls imme-
diately, and he can just find it when he displaces the mobile display even if the ball
quits the screen.

Over the last decade, prosthetics have been evolving owing to the advancement
of microelectronics sensors and their facility of incorporation to these prosthetics. In
(Beyrouthy et al. 2016), an EEG mind-controlled prosthetic arm is developed. This
smart prosthetic arm is controlled through brain commands and it is outfitted with
a network of sensors. This smart network provides the prosthetic arm with normal
hand movements and intelligent reflexes. Furthermore, the proposed prosthesis has
been developed in order to ameliorate the quality of life of patients with a low cost.

In work environments, accelerometers embedded in mobile phones are used for
detecting stress levels because it affects the health of workers. Data acquired from
the accelerometer was utilised to differentiate humans’ behaviours. For 8 weeks,
30 subjects with smartphones from two organizations participated in this study and
they noted their stress levels three times while working. Besides, three levels are
introduced: low, medium and high stress. An accuracy of 70% for user-specific
modal was achieved (Garcia-Ceja et al. 2016).

Also based on a network of sensors embedded in a mobile phone, including the
accelerometer and the GPS, Castignani et al. (2015) proposed a new application
named SenseFleet, which is capable of detecting risky driving events by identify-
ing several events, such as braking, steering, accelerating and over-speeding. More-
over, the obtained results show that the application is able to precisely identify risky
events, it can also differentiate between the drivers’ behaviours, for instance calm
and aggressive drivers.

Air pollution caused by gaseous emission from vehicles has been increasing with
the advancement of economy and vehicles. Traffic conditions are one of the most
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Table 2 A summary of accelerometer’s applications

Refs. Fields Applications

Chen and Shen (2017) Traffic – Monitoring roads conditions

– Detection risky driving
events

Jain and Kanhangad (2018) Augmented reality – The accelerometer provides
the tilt of the depth camera to
interact with virtual objects

Kowalczuk and Merta (2015) Robotic – Determination of the
position of a mobile robot

Kyberd and Poulton (2017) Medical – Prosthesis

– Diagnostic of the heart valve
disease

Garcia-Ceja et al. (2016) Healthcare – Detecting and monitoring
stress

Zhang et al. (2016) Pollution – Detecting driving events to
estimate the quality of vehicle
emission

Rastegari et al. (2017) Industry – Machinery maintenance

Höflinger et al. (2015) Biology – Monitoring movement
patterns in animal models of
disease

affecting elements of air pollution, thus, a method based on levels of service is pro-
posed in Zhang et al. (2016), to estimate emissions under various traffic conditions.
Accelerometer data was used to describe driving events, which are the characteristics
of the vehicle movements that affect the quantity of emission.

In the field of industry, accelerometers are widely used to give an account of the
vibration and its changes in the aim of permitting the user to monitor machines,
to detect faults and to minimize its suspension. Rastegari et al. (2017) focus on
condition based maintenance as regards to machine tools, particularly concentrating
on vibration monitoring approaches. Hence, accelerometers are fixed to the spindle
units, then, data are transferred to the computer as a dataset in order to be analysed.

A summary of accelerometer’s applications is provided in Table2 in the following.
In conclusion, the accelerometer is exploited in very fields, and is particularly

employed to ensure human action recognition, this point will be detailed in the
following section.
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3 HAR Using Accelerometer Data

3.1 Challenges

Although the human action recognition using accelerometers data continues to
progress, the recognition accuracy is affected bymany challenges in this field. Firstly,
people have different motion models: every subject has his unique style of execution
as shown in Fig. 2.

Moreover, for the same person, the action may differ from one repetition to
another: the action can be shorter or longer as provided in Fig. 3.

Furthermore, the placement of the on-body sensors presents an important defiance,
for example: when a person is jogging, the data collected from an accelerometer
attached to the wrist is different from data acquired from an accelerometer fixed to
the thigh. Figure4 presents signals recuperate from six different localizations.

In addition, the translation and the rotation of the sensor, when recording the
action, may influence the measurement so it may affect the recognition performance.
Thus, the number, the position and the type of the accelerometer are principally
related to the application. Besides, the complexity of actions and the transition period
between two successive actions lead to an additive challenge. Additionally, people
performing multiple activities simultaneously might cause confusions.

Fig. 2 Inter-class challenge
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Fig. 3 Intra-class challenge

Fig. 4 Signals acquired from six different positions
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3.2 HAR Applications

Analysing human actions using wearable sensors, as the accelerometer, has become
an increasingly unavoidable area of research in various fields including: medical,
virtual reality, sport, security, surveillance, education, etc. In the following, we will
expose several applications presented inTable3 to outline the use of the accelerometer
in HAR.

Surgeries are complex tasks accomplished in stressful areas (Zia et al. 2018).
Therefore, the immersive virtual reality provides virtual environments to surgeons
and trainees to be trained in realistic conditions to ensure the patient’s safety and
to attenuate errors. Various technologies are used in this field, including wearable
sensors, which track the user’s motions in order to gain surgical expertise (Dargar
et al. 2015).

Laghari et al. (2016) focused on developing a biometric authentication application
based on accelerometer data acquired from the smartphone. Indeed, the user performs
his signature by handling the phone in his hand and moving it. Ten volunteers par-
ticipated in this work; each subject had to perform his signature 6 times. The signal

Table 3 Applications of human action recognition using accelerometer data

Refs. Application field Applications

Dargar et al. (2015) Education – Training in virtual
environments to gain expertise

Zhang et al. (2015) Virtual reality – Training

Laghari et al. (2016) Security – Biometric authentication
application for smartphones

– Medical adherence

Pepa et al. (2015), Kau and
Chen (2015), Figueiredo et al.
(2016)

Medical – Diagnostic of various
diseases: Parkinson’s disease,
epilepsy seizure, Alzheimer’s
disease, etc.

– Fall accident detection

Sen et al. (2015) Healthcare – Monitoring sleep

– Diet monitoring

– Assessment of elderly people

Ferhat et al. Surveillance – Assessment of children’s
behaviours

Hung et al. (2015) Automation – Controlling the daily
environment

Hidayat et al. (2016) Gaming – Detecting gestures and
actions to play

Neto et al. (2009) Industry – Controlling an industrial
robot

Koskimäki and Siirtola (2014) Sport – Recognizing gym exercises
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matching was used as an identification approach. With regards to the traditional and
the graphical techniques, this method is more secure with a false rejection rate of
6.87%.

Kalantarian et al. (2017) proposed an android application implemented on a smart-
watch to detect various motions related to medical adherence. Furthermore, the sys-
tem detects when the bottle is twisted to open it using the accelerometer data and
then, the act of revolving the palm to retrieve the pill is identified using gyroscope
data. Although the system is sensitive to how to remove the pill, it needed less human
involvement for medication adherence with regard to nurses’ calls or other forms.

Parkinson’s disease is an advancing neurological disorder that affects the basal
ganglia. Freezing of Gait (FOG) is one of the most frequent motor disorders for
advanced Parkinson disease that can diminish the quality of life and it can be defined
as a gait disturbance. Pepa et al. (2015) proposed a smartphone-based application
that can detect FOG occurrences and is able to send an acoustic feedback to help
patients restore walking. In addition, tested on 18 patients, this method provides an
82.34% of sensitivity.

Kau et al. (2015) used the triaxial accelerometer and the electronic compass
integrated in the smartphone, which was located in the pocket of the subject to
detect fall accidents. If the system detects a fall event, it will send the user’s position
identified by the GPS to the rescue center via Wi-Fi or the 3G network. Thus, the
user can receive medical help straightaway. An accuracy of 92% is achieved using
this algorithm with 450 test actions of 9 types that include a fall event.

Wearable inertial sensors are nowadays used to assist therapeutic movements.
In (López et al. 2015), two sensors are worn on the forearm and the upper arm to
identify the quality of the patient’s movements and observe his/her recovery. Besides,
the aim of the study is to define intra and inter-group dissimilarity between a given
number of movements accomplished by young people, with regard to motions given
by therapists.

Human action recognition is used to analyse children’s behaviour and to follow
their health and development. Indeed, children’s actions can be limited to walking,
playing, sitting, sleeping and hand motion. A kindergarten system was developed
using acceleration information acquired from the accelerometer fixed on the child’s
hand, then, these information were anlysed to present a global state of the child’s
health to parents and child-minders (Kurashima and Suzuki 2015).

The assessment of the elderly people during their daily life became a crucial
challenge in order to ensure their safety, autonomy and healthcare. Ferhat et al.
focused on recognizing and monitoring elderly people using three inertial units that
were mounted on the chest, the right thigh and the left ankle. Additionally, based on
real-time technique and data transmission, the subject’s motions were continually
monitored by healthcare suppliers all along daily activities and abnormal events are
detected to intervene.

Over the last decade, home automation has become an important field of research
to control the daily environment. In (Hung et al. 2015), a hand gesture recognition
belt was developed using an accelerometer and a gyroscope to control a LED array
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lamp. Indeed, when the user shakes his hand up, the LED turns on and inversely.
Consequently, as the user’s palm is shaking, the luminosity of the LED can dims.

In the gaming word, the advancement occurs expeditiously. Hidayat et al. (2016)
used a Wii remote as a controller of a fighting game. The Wii remote transfers data
obtained from the accelerometer that detects gestures or motions of the hand. Then,
when the movement is identified, it will be visualized in the built based-Unity 3D
game as a player’s action.

Neto et al. (2009), developed a system based on two triaxial accelerometers, for
the purpose of controlling an industrial robot rather than programing it with typical
techniques. Furthermore, the sensorswerefixedon the human arms in order to capture
its gestures and postures, so the robot can start the movements approximately while
the user begins to perform a motion. Besides, a higher performance was achieved
using this approach with a recognition rate of 92%.

3.3 Related Work

Human action recognition using acceleration information has been employed in
several application areasmentioned previously; in fact, various approaches described
in this section have been proposed to address this challenge.

Pre-processing is considered as a one of the most critical steps that includes
replacing missing data or filtering it. Before the feature extraction step, raw data
acquired from sensors are generally divided into small segments using windowing
technique. In fact, various windowing approaches are used in this level: (i) sliding
window that is the most commonly used owing to its facility of implementation
and its guaranteed high accuracy, it consists of dividing signals into fixed length
windows with or without overlap; (ii) the defined activity windows that resides with
the division of the data based on the detection of activity changes; (iii) the defined
event windows, where pre-processing is needed to find particular events; (iv) the
dynamic sliding window that was developed to overpass the fixed-length of the
sliding window technique, the main idea of this novel activity signal segmentation
approach is that the window size could be dynamically adapted by using the signal
information to determine the most effective segmentation.

Afterwards, feature extraction is considered as a crucial step; which consists
of extracting quantities to characterize each performed action. Many researchers
tended to extract features commonly from: time domain, frequency domain and time-
frequency domain. Time domain characteristics include mean, maximum, median,
skewness, variance, etc. Frequency-domain features incorporate peak frequency, sig-
nal energy, also the calculation of the power spectral density (PSD) and the utilization
of the Fast Fourier Transform (FFT), etc. Furthermore, wavelet transform is the most
common technique used to extract features from the time-frequency domain. Adding
to this, it exists other techniques employed to extract features from accelerometer
signals to differentiate actions such as the Dynamic Time Warping (DTW).
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In many works, researchers employed a feature selection process, which consists
of selecting a subset of appropriate features from the original features, because the
use of inappropriate or redundant characteristics may decrease the performance of
the classifier. This process reduces the number of features and the computation time.
Generally, it exists three classes in feature selecting: (i) filter methods, (ii) wrapper
methods, (iii) hybridmethods. The filter-basedmethod evaluates featureswithout any
classifier, so it classes a set of selected features according to the estimated weights
of each feature. Different from the filter methods, wrapper, which ensures often the
best results, uses classifier accuracies to evaluate the selected subset. Eventually,
the hybrid methods consist of selecting the most appropriate features due to some
internal parameters of the machine-learning algorithm.

Feature vectors, obtained after extraction/selecting features from raw data, are
used in order to train the classification algorithm. Indeed, to ensure this step, many
machine learning techniques are employed, which are divided into two principal
approaches: supervised and unsupervised methods. In addition, the supervised tech-
niques are based on labeled activity data such as K-nearest neighbours (K-NN),
Artificial Neural Networks (ANN-s), Support Vector Machines (SVMs), Decision
tree (DT) and Random Forest (RF). Concerning the unsupervised approaches, which
are linked with unlabeled data, we can site the Hidden Markov Model (HHM), the
K-means, and the Gaussian Mixture Models (GMMs).

Some of the common works introduced to recognize and analyse human actions
are presented in the following.

In (López et al. 2015), Lopez et al. proposed a novel method to detect and char-
acterize walking and jogging using a triaxial accelerometer. Actually, the kurtosis of
wavelet coefficients or the autocorrelation of the acceleration data was used for the
detection. This methodology was tested on three different datasets of walking and
jogging.

Lubina et al. (2015) evaluated the application of artificial neural networks (ANNs)
to recognize human activities using accelerometer signals. Five accelerometers were
fixed on the back, two on the waist laterally and two on the ankles, and 25 subjects
were called to perform a set of predefined actions such as sitting down and walking.
The obtained signals were firstly filtered using a median filter, then they were par-
titioned into non-overlapping windows with a length of 0.5s. Afterwards, statistical
features were extracted, such as the mean, the sum of squares and the root mean
square to train the ANNs. Despite the fact that the implementation of the Fisher
Linear Discriminant shows that some features help to discriminate similar actions,
none of the axes or the features or the sensors can be neglected.

For monitoring daily life activities, Wang et al. (2016) used a single wearable
accelerometer that was attached to the waist and the left ankle respectively with
a view to diminish the effect of sensor placement. An ensemble empirical mode
decomposition (EEMD), which is a time-analysis technique is introduced in this
study. Then, feature selection is insured using a game theory to select relevant fea-
tures. K-NN and SVM are employed to classify human activities captured from
the waist and the ankle. Compared with other works, the results obtained using the
proposed method, which selects fewer features, show a better classification.
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Monitoring sleep has gained the attention of numerous researchers as it affects our
psychological and emotional health. Therefore, Yunyoung et al. (2016) focused on
identifying sleep quality based on the triaxial accelerometer and the pressure sensor,
and they used various physiological parameters. Additionally, data obtained from the
accelerometer determined the sleeping posture and activity. Besides, the proposed
algorithm based on a sensor fusion framework effectively detected sleeping and
waking situations.

Luštrek et al. (2015) suggested an approach to recognize indispensable lifestyle
activities of diabetic patients, using sensors embedded on the smartphone, in order to
monitor their lifestyle since it affects the disease. A set of activities was introduced
in this study such as eating, sleeping, working, and transport. Five volunteers carried
a smartphone and an EEG monitor during two weeks. Furthermore, several features
were derived from sensors, such as the user’s location, the ambient sound and the
acceleration features to train various classifiers to recognize the user’s action, such
as SVM, RF, and Naïve Bayes. Based on different experiments, the results obtained
show that the vote provides a higher accuracy, which combine several machine learn-
ing algorithms. To improve the classification rate, they proposed to introduce a final
machine learning approach, thus, the accuracy went from 0.77 to 0.88. Nevertheless,
it exists some misclassification between the activities such as eating and out.

Noor et al. (2015) proposed a new approach of activity signal segmentation using
triaxial accelerometer that consists of a dynamic slidingwindow.Themain aimof this
method is to recognize static and dynamic activities as well as transitional activities.
Initially, a small window size is adjusted to segment static and dynamic activity
signals, then the window length is extended in order to encompass the signal that it
can be sometimes longer than the initiated window. Moreover, the dynamic sliding
window is used to automatically determinate the optimum window size while the
signal is being evaluated. A triaxial accelerometer was fixed on the right waist and
three subjects performed several actions such as walking, sitting to lying, standing
to sit, etc. and each subject repeated each action five times. For pre-processing, a
moving average filter is employed, then a 3s sliding window is used to segment
the signal, after that the window length is limited to 1.5s with 50% overlapping
rate with the previous window. 117 features are extracted from raw data including
standard deviation, spectral entropy, maximum, etc. Afterward, relevant features
are selected using Relief-F method. Decision Tree was chosen to classify activities
which provided an accuracy of 96% and the transitional activities were effectively
recognized.

In (Tran and Phan 2016), sensors integrated on the smartphone were used to
develop an android real-time system that is able to recognize human actions. Six
actions were introduced such as walking, lying down and sitting. Furthermore, SVM
was employed to classify the actions and 248 features were extracted from raw data
including mean, minimum, energy, etc. The android system compares the performed
activity with its model. Thus an accuracy of 89.59% is achieved using this method.
A summary of several approaches introduced for human action recognition using
accelerometer data is provided in Table4.
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4 Datasets

A large number of public human action recognition datasets have been introduced
based on inertial sensors. We distinguish uni-modal and multimodal databases. This
section consists of a review of various databases that have been included to recognize
human actions captured from accelerometer data.

4.1 Uni-Modal Databases

4.1.1 MIT PlaceLab Dataset

This Dataset is one of the first public databases in this field of research. To record
this dataset, five accelerometers and a wireless heart rate monitor were utilised, each
accelerometer is mounted on the left and right arm, the left and right leg and one on
the hip. During a four-hour period, one person is asked to perform a set of activities
wearing these sensors, including house-holding activities, such as preparing a recipe,
cleaning the kitchen, doing the laundry and other types of everyday tasks, for instance
talking to the phone or answering emails. However, data existing in this database are
collected from one person, which could present a real problem because each person
has its own way to perform activities, so the characteristics of the action are poorly
represented.

4.1.2 UC Berkeley WARD Dataset

WARD (Wearable action recognition database) is a public human action recognition
dataset developed by theUniversity of California. It consists of continuous sequences
of human actions measured by a network of wearable motion sensors. The sensors
are attached at five body locations: the two wrists, the waist, and the two ankles.
Each wireless sensor includes a triaxial accelerometer and a biaxial gyroscope. The
database contains 20 subjects: 13 male and 7 female and includes a rich set of
activities that involve some of the most frequent actions in the daily life, such as
standing, sitting, walking and jumping. It is true that WARD covers the most typical
human actions and includes a sufficient number of persons, but some of the data is
missed due to battery failure.

4.1.3 USC-HAD

A single inertial sensor was used to evaluate 12 different actions performed by 14
subjects (7 males and 7 females): each action is repeated four times. This database
includes a considerable number of subjects of different sexes and the activities con-
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sidered are among the most basic and common human activities in people’s daily
lives. However, data is acquired form a single accelerometer

4.1.4 REALDISP (REAListic Sensor DISPlacement)

Realistic sensor displacement is a benchmark dataset dedicated for human action
recognition. This set was collected to evaluate the effects of sensor displacement in
activities recognition, “which can be caused by a loose fitting of sensors, or a dis-
placement by the users themselves”. Indeed, three scenarios were introduced: ideal-
placement, self-placement, and induced-displacement. The first scenario is “Ideal
placement” or default scenario, where sensors are arranged by the instructor on pre-
defined locations of the body. The second scenario is the “Self-placement”, where
the user is asked to position 3 sensors himself on the body part specified by the
instructor. This scenario tries to simulate some of the variability that may occur in
the day-to-day usage of an activity recognition system, involving wearable or self-
attached sensors. And for the last scenario, the instructor introduces a de-positioning
of the sensors using rotations and translations with respect to the ideal placement.
This database consists of 33 different physical activities that can be classified as
warming up, cooling down and fitness activities and it includes 17 subjects. Data
was measured from nine different sensors that contain a 3D accelerometer; a 3D
gyroscope, a 3D magnetic field orientation and a 4D quaternion that are attached
overall body parts.

Table5 lists a summary of some uni-modal publicly available databases using
accelerometers for human action recognition.

4.2 Multimodal Databases

4.2.1 CMU Multimodal Activity Database

This Database was developed in the Carnegie Mellon University that contains dif-
ferent multimodal measures of the human activity of subjects performing the tasks
involved in cooking and food preparation. It contains video, audio, RFID tags and
motion capture system based on-bodymarkers and physiological sensors such as gal-
vanic skin response (GSR) and skin temperature. In addition, 43 subjects were asked
to perform food preparation and cook five recipes while the sensors were placed
all over the body: both forearms and upper arms, left and right calves and thighs,
abdomen, and both wrists. This set involves a very large population but it is specific
to just cooking activities.
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Table 5 Summary of uni-modal publicly available databases using accelerometer data for human
action recognition. Ns : Number of Subjects. NA: Number of Accelerometers

Database Ns Actions NA Sensor
locations

Comments

MIT Place
Lab

1 10 activities:
Prepare a
recipe Do a
load of dishes
Search for
items, etc.

5 Right arm,
Left arm Right
leg, Left leg
Hip

– Just one
person
performing
the activities –
Activities
considered are
imprecise

USC Berkeley
WARD

20 13 activities:
Stand Sit Walk
Forward Walk
left-cercle,
etc.

5 Left wrist,
Right wrist,
Front centre of
the waist Left
ankle, Right
ankle

– Part of the
data is missing

USC-HAD 14 12 activities:
Walk forward
Walk left
Walk right
Walk up stairs,
etc.

1 Front right hip – Data
collected form
a single
accelerometer

Realistic
sensor
displacement
benchmark
dataset
(Realdisp)

17 33 activities:
Walking
Jogging
Running Jump
up Trunk
twist, etc.

9 Left calf, Left
thigh Right
calf, Right
thigh Back,
Left lower
arm Left
upper arm,
Right lower
arm, Right
upper arm

– The dataset
covers a wide
range of
physical
activities and
a number of
wearable
sensors

4.2.2 OPPORTUNITY Dataset

The opportunity dataset is collected from aEuropean research project calledOPPOR-
TUNITY,which concentrated on daily home activities especially on preparing break-
fast. This dataset includes different modalities such as accelerometers, gyroscopes,
magnetometers, microphones, and cameras. 12 subjects were asked to perform a
sequence of daily morning activities including grooming a room, preparing and
drinking coffee. Different modalities were used to collect data, such as a camera, a
microphone, an accelerometer, and a gyroscope.
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4.2.3 Berkeley MHAD: Multimodal Human Action Database

MHADcontains temporally synchronized and geometrically calibrated data acquired
from an optical motion capture system, multi stereo cameras from multiple views,
depth sensors, accelerometers and microphones. 11 subjects (7male and 7 female)
participated in the data collection and were asked to perform 11 actions with five
repetitions for each action, including jumping in place, jumping jacks, bending,
waving two hands. Prior to each recording, the subjects were given instructions on
what action to perform; however, no specific details were given on how the action
should be executed (i.e., performance style or speed). In addition, six accelerometers
were fixed on the wrists, ankles and hips, and the two Kinect were placed in opposite
directions. This database contains 660 action sequences.

4.2.4 UTD-MHAD: University of Texas at Dallas Multimodal Human
Action Dataset

UTD-MHAD is a publicly available multimodal human action recognition data set
collected fromaKinect and awearable inertial sensormeasuring a 3-axis : accelerom-
eter, velocity signals and magnetic strength. The dataset contains 8 subjects (4 female
and 4 male) and 27 different actions: right arm swiping to the left, right arm swiping
to the right, right hand waving, two-hand clapping, right arm throwing, crossing the
arms, etc. Each person repeats each action four times with the wearable inertial sen-
sor fixed on the subject’s right wrist or right thigh depending on whether the action
was mostly an arm or a leg type of action.

4.2.5 Huawei/3DLife Dataset

TheHuawei/3DLife is amultimodal dataset developed for a 3Dhuman reconstruction
and action recognition Grand Challenge in 2013. For this challenge, two datasets
were provided: Dataset 1 contains a synchronized RGB-plus-Depth video captured
by five Kinects, as well as multiple-Kinects audio and eight inertial sensors covering
the whole body. The inertial sensors were placed on: the left wrist, the right wrist,
the chest, the hips, the right ankle, the left ankle, the right foot and the left foot. This
dataset includes two sessions with different spatial arrangements of the sensors. 17
subjects performed a set of 22 repetitive actions, and each action was performed 5
times. It consists approximately 3740 captured gestures. The performed actions can
be classified into i) Simple actions that involve mainly the upper human body, ii)
Training exercises, iii) Sports related activities and iv) Static gestures.

With regard to Dataset 2, it was captured in Berlin and includes synchronized
multi-view HD video streams of multiple humans doing multiple actions. It consists
of 7 individuals performing a set of 26 different body movements.
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4.2.6 Multimodal Kinect-IMU dataset

This dataset has been originally collected to investigate transfer learning among
ambient sensing and wearable sensing systems. Nevertheless, the dataset may be
also used for gesture spotting and continuous activity recognition. It includes data
for three activity recognition scenarios, namely HCI (gesture recognition), fitness
(continuous recognition) and background (unrelated events). It comprised synchro-
nized 3D coordinates of 15 body joints, measured by a vision-based skeleton tracking
system (Microsoft Kinect), and the readings of 5 body-worn inertial measurement
units (IMUs. A single subject performs five kinds of geometric gestures with the
right hand in alternation 48 times. The locations of the IMUs devices are: the left
lower arm, the right lower arm, the back, the left upper arm and the right upper arm.

Table6 lists a summary of some multi-modal publicly available databases involv-
ing accelerometer sensor for human action recognition..

5 Fusion Framework

Although human action recognition promises to be highly effective, the exploita-
tion of multi-level fusion approaches can guarantee an excellent rate thanks to the
wealth of the information available in all stages of the human action recognition pro-
cess: acquisition, feature extraction, classification and decision. Thus, we introduce
a fusion framework that utilises accelerometers data.

Fusing data is the process of coupling data acquired from numerous sources
(in our case several accelerometers) allowing to assess the accuracy of the system.
Indeed, we distinguish two categories of merging: before correspondence and after
correspondence. The first category concerns the signal-level fusion and the feature
level fusion, and the second category involves fusion at the score level and fusion
at the decision level. The four levels of fusion shown in Fig. 5, are presented in the
following.

5.1 Signal-Level Fusion

The signal presents themodality acquired on-line or off-line (ex. Speech, Accelerom-
eter signal, Image, Video, etc.). At this level, the fusion is only possible when the data
are compatible: the sources produce signals of the same type. In our study, the signal
fusion technique includes the combination of 3-axes signals from the accelerometer
(X -axis, Y -axis and Z -axis).
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Table 6 Summary of multimodal publicly available databases using accelerometer data for human
action recognition. Ns : Number of Subjects

Database Ns Actions Sensors Accelerometers
locations

Comments

CMU Database 43 Food
preparation
Cooking five
recipes

Camera/
Microphone
Motion capture
Accelerometer,
etc.

Both forearms,
Upper arms,
Left/ Right
calves, Thighs,
Abdomen,
Both wrists

– This set is
concentrated
on a very
specific
category of
actions
(cooking)

Opportunity 12 Groom room,
Prepare coffee,
Clean up, etc.

Accelerometer/
Gyroscope
Microphone/
Camera, etc.

Wrist, Chest
Limb,
Shoulder Foot

– The database
covers only
morning
activities

Berkeley MHAD 11 11 actions :
Jumping in
place, Jumping
jacks, Bending,
Punching, etc.

12 cameras/ 2
Kinect 6
accelerome-
ters/ motion
capture/4
microphones

Wrists Ankles
Hips

– Data are
temporally
synchronized
and controlled

UTD-MHAD 8 27 actions :
jogging in
place, walking
in place, sit to
stand, etc.

– Kinect
Wearable
inertial sensor

The right wrist
or the right
thigh

– The dataset
covers a wide
range of
actions

Huawei/3DLife:
Dataset 1

17 22 actions :
Throwing,
Jumping Jacks
Squats, etc.

−5 Kinect -8
inertial sensors

Right/Left
wrist Chest,
hips,
Right/Left
ankle,
Right/Left foot

– This set
focuses on
various types
of actions

Multimodal
Kinect-IMU
dataset

1 Five kinds of
geometric
gestures
:Drawing a
triangle, etc.

– Kinect -5
inertial sensors

Left /Right
lower arm
Back Left/
Right upper
arm

– Just one
person
performed the
gestures

5.2 Feature Level Fusion

Features or attributes are characteristics extracted from the raw data. The feature
fusion level is the combination of the different feature vectors, obtained either from
the same modality or from different modalities. Therefore, the merging at this level
can consider homogeneous feature vectors and heterogeneous feature vectors.
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Table 7 Score level fusion rules. T is the number of matchers and s j presents the normalized
scores of the j th matcher. w j corresponds to the Equal error rate (EER) of the j th and F represents
the fusion score

Rule Equations

Sum F = 1

T

T∑

j=1
s j

Max F = max(s1, s2..., sT )

Min F = min(s1, s2..., sT )

Product F =
T∏

j=1
s j

Weighting F =
T∑

j=1
w j s j

5.3 Score Level Fusion

A score is a measure of similarity that corresponds to the distance between the test
sample and the reference sample. In fact, the fusion at this level presents a compro-
mise between the richness of the information and the facility of the implementation.
Actually, each classifier produces a matching score or several scores and the merging
process combines these measures to obtain the final score which will be then used
to produce the final decision. There exist two main approaches to combine scores:
the classification of scores and the combination of scores. Several rules exploited to
ensure the fusion of scores are presented in Table7.

5.4 Decision Level Fusion

It processes the outputs of the different classifiers. The decision level fusion consists
in assembling the decisions obtained from each classifier in order to obtain the final
decision. There are several methods for merging decisions, such as the AND and the
OR logic operator type rules, the majority vote, and the Dempster–Shafer theory.

Thus, we focused our attentiveness on characterizing the human actions in order
to gain a better classification accuracy by employing a fusion framework exploiting
every information obtained along the human action recognition process.

For the feature extraction, we opted for the discrete wavelet transform. The
Wavelet transform of a function f (x) is calculated using (1) as follows:

W f (i, τ ) =
∫ +∞

−∞
f (x)ψ�

i,τ (x)dx (1)

ψi,τ (x) = 1

2i
ψ

(
x − τ

i

)

(2)
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ψ is the wavelet mother.
The wavelet transform decomposes initially raw data into approximation coef-

ficients by employing low pass filter and detail coefficients by a high-pass filter.
Various levels are constructed as follows: the approximation signal required from
the previous level is decomposed into approximation and detail coefficients. The
desired decomposition level is determined after several repetitions of this process.

With regard to the classification, we exploit support vector machine SVM.
The experimentations associated to the fusion framework are presented in the

following section.

6 Experimental Results and Analysis

6.1 Results

To evaluate the effectiveness of our methodology, we chose three databases: WARD,
MHAD and Realdisp which were detailed in Sect. 5. The position of each accelerom-
eter related to each dataset is presented in Fig. 6.

In the interest of the fusion framework, we aimed firstly to select the sensors that
guarantee better classification rates for each dataset. In fact, these sensors will be
afterwards exploited in the fusion approach in order to provide a higher performance.

Therefore,we proposed to evaluate each accelerometer individually. The collected
data from the accelerometer sensor were firstly divided into N temporal windows
using the sliding window technique. The window length related to each database is
6 for WARD, 15 for MHAD and 9 for Realdisp. The number of segments N was

Fig. 5 An example of multi-level fusion using accelerometer data
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Fig. 6 Positions of the accelerometers for the three databases. a MHAD. bWARD. c Realdisp

Table 8 Recognition rates (%) for all accelerometers for the 3 databases

Accelerometer Recognition rate (%)

WARD MHAD Realdisp

A1 64 88 41

A2 64 86 49

A3 54 36 30

A4 72 68 50

A5 71 45 41

A6 – 50 51

A7 – – 51

A8 – – 43

A9 – – 48

determined based on several experimentations. Then, the features were extracted
from each window using the discrete wavelet transform with a Daubechies2 as a
wavelet mother. From the approximation coefficients, we extracted the mean and the
standard deviation and concerning the detail coefficients, we extracted the minimum
and the root mean square. These measures are computed over the three directions
(X , Y and Z ) within each temporal window. Furthermore, we took advantage of the
SVMwith RBF kernel to classify the actions. We considered 12 subjects for training
and 8 subjects for the test. Concerning MHAD, 7 subjects were reserved for training
and 5 persons for testing. Finally, for Realdisp 10 subjects were provided for the
learning base and 7 persons were preserved for testing.

Thus, the results relative to each accelerometer of the three datasets are presented
in Table8.
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Table 9 Recognition rates (%) for all levels of fusion

Database Fusion level

Signal Feature Score Decision

Sum Max Product AND Vote

WARD 75 88 88 82 88 72 78

MHAD 89 94 94 91 97 86 89

Realdisp 53 76 77 67 78 51 63

According to the results shown in Table8, we can observe that for the WARD
database the accelerometers attached to the ankles (A4 & A5) provide a better per-
formance in terms of accuracy. Indeed, the actions introduced in this dataset are
essentially linked with the motions of the feet such as “walking”, “going up and
down the stairs”, “Jumping”, etc. Accordingly, the sensors fixed on the ankles ensure
better recognition rates compared to the other sensors.

Form the results obtained from the six accelerometers considered on the MHAD
dataset, we notice that the accelerometers mounted on the left and the right wrist
ensure a better classification rates (A1 & A2). Based on the type of the actions
considered in this dataset, which are related to the hand motions (e.g. “clapping”,
“waving”, “punching”), the accelerometers worn on the hands can classify correctly
the classes. With regard to the accelerometers attached to the ankles, they are not
able to generate useful information because the actions are relatively static.

Regarding theRealdisp dataset, the accelerometers A4, A6 and A7 attached respec-
tively to the right thigh, the left lower arm and the left upper arm, seem to be the
most effective to distinguish the human actions introduced in this dataset. In fact, the
actions employed focus on the trunk, upper and lower extremities including actions
of translation, jumping and physical activities. Therefore, a part or all of the body
is moving during the performance of the actions; otherwise, the recognition rates
relative to the 9 accelerometers distributed at different positions are convergent.

After evaluating each sensor separately and with a view to obtain a higher recog-
nition rate and improve the classification, we proposed to employ the multi-level
fusion techniques. We fused the signals acquired from the 3 axis acceleration data
and we combined the features from the time-frequency domain from each chosen
sensor. For the score level, the Sum, the Max and the Product rules were exploited.
Finally, for the decision level, the rules AND and OR were employed.

In this step, we suggest involving the 3 accelerometers that guarantee the best
performance for each dataset based on the positions of the sensors and the results
obtained. ForWARD database accelerometer number 1, accelerometer number 4 and
accelerometer number 5 are chosen. In addition, A1, A2 and A4 are part of the stage
of fusion for MHAD. And for Realdisp, only A4, A6 and A7 are involved. Thus, the
results are presented in Table9.
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6.2 Discussion

We compared the recognition rates of the multi-level fusion framework with the
accuracies obtained from each accelerometer individually, we noticed that combin-
ing signals, features, scores or decisions guarantees a higher performance. In fact,
our approach exploits every information available in the recognition process from
acquisition to decision and leads to good results for the employed datasets as we
listed in Table9.

From Table9, we outline that the matching score level fusion outperformed the
other levels of fusion and achieved favorable performance compared with the uti-
lization of each sensor individually. Actually, compared with the other levels of
coupling, this level provides richer information as it fuses the distances between the
test samples and the reference samples.

Moreover, the classification accuracy using fusion scores is higher than the per-
formance found in the literature for MHAD database which is 97% against 94% in
Chen et al. (2015).

This improvement leads to a discrimination betweenmost of the actions as we can
see from Figs. 8 and 9 which represent the confusion matrices when fusing scores
related respectively to MHAD database and WARD database

In the intention to evaluate the effectiveness of our method, we compare the
confusionmatrix related to the use of each accelerometer individuallywith thematrix
obtained from the coupling of scores. Thus, we consider MHAD database as an
example, Fig. 7a, b and c correspond respectively to the confusion matrix of A1, A2

and A4.
As seen in Fig. 7a, the accelerometer A1 worn on the left wrist provides a good

discrimination between the actions as the accomplishment of most of the actions
requires the contribution of the left hand differently (waving, punching, throwing,
etc.). However, it can’t differentiate action 4 “Boxing” from action 7 “Clapping”
owing to the similarity of the behavior of arms. In addition, the misclassification
that occurs between action 8 “Throwing” and action 11 “Standing” can be explained
by the fact that the posture of the left hand is the same in these actions so the
accelerometer generates similar raw data.

From Fig. 7b, we notice that the distinction between action 5 and action 6 is
difficult using the accelerometer A2 fixed on the right, besides, the action 6 “waving
using the right hand” can be considered as a subset of the action 5 “waving using
both hands”.

Figure7c shows the confusion matrix when using the accelerometer A4 mounted
on the right hip, we notice that the recognition of classes: 9, 10 and 11 is improved
by this sensor because of its contribution to the accomplishment of these tasks: To
stand up then sit, Sit and Stand up. However, the system thus is unable to distinguish
between the other classes.

As seen in Fig. 8, combing the scores acquired from these sensors leads to a
discrimination between most of the actions, nonetheless, there remain some slight
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Fig. 7 Confusion Matrix related to MHAD a when using A1 b when using A2 c when using A4
(Actions: 1. Jump, 2. Jack, 3. Bend, 4. Punch, 5. Wave 2 hands, 6. Wave using the right hand, 7.
Clap 8. Throw 9. Sit+Stand, 10. Sit, 11. Stand)
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Fig. 8 Confusion matrix of MHAD database related to fusion scores for A1 & A2 & A4 (rule:
Product)

Fig. 9 Confusion matrix of WARD database related to fusion scores for A1 & A4 & A5 (rule:
Product)

misclassifications between the action “punching” and “clapping” because of the
similarity of hand movements.

As regards to WARD database, the misclassification occurs between the most
similar actions as “walk forward”, “walk right” or “walk left” as shown in Fig. 9.
Indeed, the walking speed differs from one person to another so the differentiation
of these actions is a challenging task.

Finally, the classification accuracies of ourmethod are encouraging as it decreases
the number of misclassifications and provides important recognition rates.
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7 Conclusions

In this chapter, an overview of different methodologies for human action recognition
using accelerometer data havebeen introduced.Afterwecovereddiverse sensors used
to recognize human actions, we proved that the accelerometer seems to be the most
efficient thanks to its benefits in this area of research. Furthermore, various applica-
tions related to human action recognition in many areas were outlined, and different
approaches existing in the literature were reviewed. Moreover, we reported some
publicly available datasets from human action recognition where the accelerometer
data was provided. Afterward, a multi-level fusion framework was introduced using
acceleration data from themost efficient accelerometers for each dataset used to eval-
uate this work. The multi-level fusion framework included a signal level, a feature
level, a score level and a decision level. According to the results, the recognition
rates were improved however; there remains some slight misclassification between
the most similar classes.
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