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Preface

In this book, we present recent developments in the field of biomedical sensors
and systems covering a wide range of sensors, methods, systems, and instrumen-
tation techniques for diagnosis, monitoring, treatment, and assistance. It provides
insights into theory, applications, and perspectives relevant to the field of biomed-
ical engineering, as well as the general paradigms and methodologies behind them.
Each chapter provides enrichment of understanding on a research topic along with a
balanced treatment of the relevant theories, methods, or applications. It reports on the
latest advances achieved in the corresponding field of biomedical engineering. This
book is a good reference for graduate students, researchers, educators, engineers,
and scientists.

This book is dedicated to recent developments in the field of sensors and includes
10 chapters in total, structured into two parts as follows.

The first part of this book focuses on human activity analysis, and comprises five
chapters:

• The first chapter entitled “A Survey of Human Action Recognition using
Accelerometer Data” provides a detailed state-ofthe-art survey of the human
action recognition by exploiting acceleration data.

• The second chapter entitled “Ultra Thin Nanocomposite In-Sole Pressure Sensor
Matrix for Gait Analysis” focuses on the design and implementation of thin
multi-walled carbon nanotubes (CNT)/polydimethylsil-oxane (PDMS) based
nanocomposite pressure sensors for the analysis of the foot pressure distribution.

• The third chapter entitled “Piezo-Resistive Pressure and Strain Sensors
for Biomedical and Tele-Manipulation Applications” is dedicated to sensors
based on carbon materials, which are gaining importance due to their high flex-
ibility, sensitivity, and medical compatibility. Specially, nanocomposite based
pressure and strain sensors offer a potential tool that helps to build the basis
for body-attached sensor networks.

• The fourth chapter entitled “Wireless Body Sensor Networks with Enhanced Reli-
ability by Data Aggregation Based on Machine Learning Algorithms” presents
a method for reducing energy consumption in a wireless body sensor network
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vi Preface

by data aggregation, which reduced the necessity of re-transmission of data and
improves at the same time the network lifetime.

• The fifth chapter entitled “Accelerated Moving Humans Detection Algorithm
usingCombinedGlobalDescriptors onGPUBased onCUDA”proposes an imple-
mentationof humanmovement detection algorithmonGPUbasedon the program-
ming language CUDA, in order to extract the image features using the Fourier
descriptor on GPU, and based on the histogram of orient gradient descriptor on
GPU.

• The sixth chapter entitled “Human Breathing Monitoring by Graphene Oxide
Based Sensors” introduces an impedimetric breath sensor based on a graphene
oxide film, deposited on a silver interdigitated electrode and a flexible substrate
having a very fast and extremely high sensitivity to the relative humidity in the
ambient.

The second part addresses electrochemical sensors for early screening and diag-
nosis of diseases as an emerging field with a special importance nowadays, and
comprises four chapters:

• The seventh chapter entitled “Impedimetrics Detection of Human Interleukin 10
on Diazonium Salt Electroaddressed Gold Microelectrode Surfaces” reports on
the development and the fabrication of gold microelectrodes based on silicon
by silicon technology, for multiplex detection of cytokines, which became an
important biomarker for the identification of end-stage heart failure during the
early phase of left ventricular assisted device implantation.

• The eighth chapter entitled “Review on Recent Advances in Urinary Biomarkers
Based Electrochemical Sensors for Prostate Cancer Detection” provides a review
about recent advances in the design of electrochemical biosensors for the quan-
tification of urinary biomarkers of prostate cancer, which is today one of the most
frequently diagnosed malignancy in man.

• Theninth chapter entitled “RecentAdvances inUltrasensitivemiRNABiomarkers
Detection” describes how MicroRNAs, giving insight into etiology and progres-
sion of several pathologies, can be detected by various biosensing technologies
that have been developed recently with signal amplification using functional
nanomaterials, nucleic acid circuitry, and enzymes.

• The tenth chapter entitled “Early Detection of Helicobacter Pylori Bacteria
in Complex Samples” provides a review about several detection methods, such as
stool antigen tests, fluorescent detectionmethods, calorimetric detectionmethods,
surface plasmon resonance detection methods, as well as electrochemical
methods.

Chemnitz, Germany
Sfax, Tunisia
January 2021

Olfa Kanoun
Nabil Derbel



About This Book

The book highlights recent developments in the field of biomedical sensors with a
focus on technology and design aspects of novel sensors and sensor systems.

Diagnosis plays a central role in healthcare and requires a variety of novel biomed-
ical sensors and sensor systems. This creates an enormous ongoing demand for
sensors for both everyday life as well as for medical care. Technologies concerning
the analysis of human activities as well as for the early detection of diseases are
moving into the focus of interest and form the basis for supporting human health and
quality of life.

As such, the book offers a key reference guide about novel medical sensors and
systems for students, engineers, sensors designers, and technicians.
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A Survey of Human Action Recognition
using Accelerometer Data

Amira Mimouna and Anouar Ben Khalifa

Abstract Recognizing human actions and analyzing human behaviors from
accelerometer data has become a challenging task. Hence, Human Action Recog-
nition (HAR) using inertial sensors have been addressed in a plethora of various
review papers. This chapter provides a detailed state of art survey of HAR exploiting
acceleration data. Considering different modalities, we prove that the accelerom-
eter is one of the most promising sensors in this field by presenting an overview
of its applications. In addition, we propose a comprehensive review of recent stud-
ies in this domain along different views: from data modalities to feature extraction
and classification steps. Moreover, we list the most publicly available databases that
include accelerometer data. Afterwards, we used a multi-level fusion framework that
includes signal-level, feature-level, score level and the decision level fusion in order
to improve the recognition performance. For the classification, we took advantage
of the support vector machine with features from the time-frequency domain. The
proposed framework was evaluated using three public datasets: WARD, MHAD and
Realdisp. The results obtained from the fusion techniques indicate that the score level
provides a satisfactory performance compared to the other levels and with the use of
each accelerometer separately.

Keywords Human action recognition · Accelerometer · Accelerometer
applications · Multi-level fusion
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2 A. Mimouna and A. Ben Khalifa

1 Introduction

Do the human actions developed in a day present a good image of the overall home-
ostasis of the person? The execution of an action such as sitting down or standing
for a long period, rather than jumping or lying down, and the speed of the accom-
plishment of these tasks present valuable information about a person’s daily activity.
It reflects his vitality, therefore his state of health and even his psychological state.
Hence, monitoring and supervising the activities of everyday living has become a
crucial task to enhance the quality of our lives.

Human actions can be classified into four classes, relying on their complexity:
gestures, actions, interactions and a group of activities (Aggarwal and Ryoo 2011;
Jegham et al. 2019). Gestures consist of elementary movements of a body part, for
example: ‘raising an arm’. Actions include gestures that are temporally ordered, for
instance: ‘walking’ or ‘waving’. In addition, interactions involve two persons ormore
as ‘two persons shaking hands’, also it exists a human-object interaction between
humans and objects, such as ‘a person is giving a cup to another’; finally, group
of activities that include several persons and/or objects such as ‘a group having a
meeting’.

The principal aim of human action recognition is automatically detecting and
analyzing human activities, then interpreting continuously and successfully the sit-
uation (Chen and Shen 2017). Thus, this filed of research has been unavoidable in
several areas including: health care (Ameur et al. 2016; Jain and Kanhangad 2018),
surveillance (Lejmi et al. 2017), human-computer interaction (Nuno et al. 2017),
virtual reality (Kwon et al. 2017), gaming (Namal et al. 2006), etc.

To guarantee the recognition and the analysis of human behavior, several
researchers have exploited different types of technologies in their work, including
cameras, Kinect, accelerometers, gyroscopes, microphones, MoCap (motion cap-
ture), RFID (radio frequency identification), etc.

In fact, the employment of microphones in the field of human behavior analysis
is becoming more and more important in various fields, such as robotic assistance,
action recognition, etc. However; the presence of noise and the distance of the person
with regard to the microphone are still a challenge (Rodomagoulakis et al. 2016).

Although several works have used RGB cameras because it provides rich infor-
mation of the scene, the recognition based on video sequence has its own limitations,
such as sensitivity to lighting, background disorder and occlusion (Jegham and Ben
Khalifa 2017; Chebli and Ben Khalifa 2018). In addition, this approach is limited
to a fixed area of view outlined by the camera position and for many people, who
feel uncomfortable when they are monitored continuously, cameras are intrusive
(Cornacchia et al. 2017; Lejmi et al. 2019).

Based on depth sensors that provide 3D action data, the human action recognition
has gained more improvement. For the Kinect, it is insensitive to changes in lighting
and ensures recognition of actions in the dark. Nevertheless, the subject must always
be present in the field of view of the Kinect and the images present different noise.
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Table 1 A summary of some limitations of different sensors for human action recognition

Sensors Limitations

Microphone – Presence of noise

– The distance of the person with regard to the
microphone

Camera – Conditions of acquisition

– Occlusions

– Intrusive

Kinect – The person must always be in the Kinect’s
point of view

– The images present different noise

– Requires different material sources

MoCap – Occlusions

– Constrained place

– Complex calibration and requires expensive
equipment

RFID – Objects must be equipped with RFID tags

– The person must wear an RFID

Motion capture is a sector of research in full evolution. However, the use of such
a technology requires a procedure of boring calibration and additional expensive
equipment. Furthermore, MoCap has many challenges, for example: occlusion and
a constrained space.

In the case of recognizing human actions from the radio-identification RFID,
which informs us about the place of the person, RFID labels must equip the objects,
which interact with the person, and the port of this sensor by the user is necessary.

A summary of some limitations of different sensors associated with human action
recognition is presented in Table1.

With the progress of microelectronics, human action recognition using wearable
inertial sensors, such as the accelerometer or the gyroscope, has been acquiring more
and more attentiveness from many researchers. Moreover, the integration of these
sensors into different devices, which become a part of people’s daily living (such
as: smartphones, smart watches, sport medical bracelet, etc.) has opened the way
to the advancement of the human action recognition. Among the technologies that
recognize human activities, inertial wearable sensors seem to be the most promising.
Indeed, their lightweight, small size, and low cost have attracted many researchers
(Mimouna et al. 2018). Moreover, the low energy consumption and the reduced
computational power provide a long-period recordings and continual interaction
compared with based-image processing systems.

Undoubtedly, wearing these sensors is easy and using such a technology can
ensure the recognition in darkness. Thanks to all these advantages, the accelerometer,
which provides 3-axis accelerations, has been exploited in a diversity of applications
in order to detect and analyze human activities.
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Furthermore, to enhance the recognition performance, some researchers proposed
to combine two different modalities to deal with several realistic events that may
appear in the real world, for instance, fusing data from a depth image and data from a
wearable inertial sensor as shown in Chen et al. (2015), Malawski and Gałka (2018).

To the best of our knowledge, this is the first research attempt to exploit the
potential of the triaxial accelerometer and its employment in various fields especially
in HAR. The aim of this chapter is: (i) to present an overview of the state of the art of
accelerometers’ applications and practicality we focus on the field of HAR exploiting
accelerometer data, and (ii) to expose a fusion framework which consists of coupling
several information acquired from numerous levels.

As we discussed, several modalities introduced to recognize human activities and
as the accelerometer seems to be the most effective; we will present an accelerom-
eter’s review and its applications in Sect. 2. The third section is reserved for intro-
ducing the field of human action recognition exploiting accelerometers data, in this
section we present challenges, various applications related to this field and several
approaches employed to guarantee action recognition. Datasets based on inertial
sensors are introduced in Sect. 4. We give a detailed description of the fusion frame-
work in Sect. 5. The experimental results are reported in Sect. 6. The seventh section
provides the conclusion.

2 Accelerometer’s Review and Applications

Accelerometers are used to determine the measurement of changes in velocity. There
exist two main modes of acceleration measured by this sensor: the first is the linear
acceleration, which is the acceleration measured when the change in velocity is
in the signal direction, and the second is the centrifugal acceleration, which is the
measurement of the displacement of an object in a circle.

The triaxial accelerometer measures the acceleration following three directions
X , Y and Z , as shown in Fig. 1 which represents accelerometer data acquired when
moving the phone. It is a kinematic sensor existing in several devices. In addition to
game consoles, mobile terminals and automobiles, accelerometers are now present
in a large number of connected objects; we mention intelligent textiles, connected
watches, cameras, prostheses, shoes, drones, robots, sports and medical bracelets,
etc.

Thanks to its many benefits, nowadays, the accelerometer is present in a variety
of applications which they will be detailed below.

Recently, monitoring road conditions become necessary to insure safety to vul-
nerable road users, and also to evaluate the state of the roads. Allouch et al. (2017),
developed an android application named RoadSense to predict road conditions using
the accelerometer and the gyroscope integrated into the smartphone. According to
the results, it guarantees high performance with an accuracy of 98.6%.

In augmented reality, Unuma and Komuro (2015) proposed a natural 3D interac-
tion system, the user can interact with virtual objects superimposed on the real image
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Fig. 1 Accelerometer sensor data acquired when moving the phone

using his hand. With the aim to insure natural interaction, a triaxial accelerometer is
fixed on the depth camera. Thus, when the user pushes a virtual ball, it rolls imme-
diately, and he can just find it when he displaces the mobile display even if the ball
quits the screen.

Over the last decade, prosthetics have been evolving owing to the advancement
of microelectronics sensors and their facility of incorporation to these prosthetics. In
(Beyrouthy et al. 2016), an EEG mind-controlled prosthetic arm is developed. This
smart prosthetic arm is controlled through brain commands and it is outfitted with
a network of sensors. This smart network provides the prosthetic arm with normal
hand movements and intelligent reflexes. Furthermore, the proposed prosthesis has
been developed in order to ameliorate the quality of life of patients with a low cost.

In work environments, accelerometers embedded in mobile phones are used for
detecting stress levels because it affects the health of workers. Data acquired from
the accelerometer was utilised to differentiate humans’ behaviours. For 8 weeks,
30 subjects with smartphones from two organizations participated in this study and
they noted their stress levels three times while working. Besides, three levels are
introduced: low, medium and high stress. An accuracy of 70% for user-specific
modal was achieved (Garcia-Ceja et al. 2016).

Also based on a network of sensors embedded in a mobile phone, including the
accelerometer and the GPS, Castignani et al. (2015) proposed a new application
named SenseFleet, which is capable of detecting risky driving events by identify-
ing several events, such as braking, steering, accelerating and over-speeding. More-
over, the obtained results show that the application is able to precisely identify risky
events, it can also differentiate between the drivers’ behaviours, for instance calm
and aggressive drivers.

Air pollution caused by gaseous emission from vehicles has been increasing with
the advancement of economy and vehicles. Traffic conditions are one of the most
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Table 2 A summary of accelerometer’s applications

Refs. Fields Applications

Chen and Shen (2017) Traffic – Monitoring roads conditions

– Detection risky driving
events

Jain and Kanhangad (2018) Augmented reality – The accelerometer provides
the tilt of the depth camera to
interact with virtual objects

Kowalczuk and Merta (2015) Robotic – Determination of the
position of a mobile robot

Kyberd and Poulton (2017) Medical – Prosthesis

– Diagnostic of the heart valve
disease

Garcia-Ceja et al. (2016) Healthcare – Detecting and monitoring
stress

Zhang et al. (2016) Pollution – Detecting driving events to
estimate the quality of vehicle
emission

Rastegari et al. (2017) Industry – Machinery maintenance

Höflinger et al. (2015) Biology – Monitoring movement
patterns in animal models of
disease

affecting elements of air pollution, thus, a method based on levels of service is pro-
posed in Zhang et al. (2016), to estimate emissions under various traffic conditions.
Accelerometer data was used to describe driving events, which are the characteristics
of the vehicle movements that affect the quantity of emission.

In the field of industry, accelerometers are widely used to give an account of the
vibration and its changes in the aim of permitting the user to monitor machines,
to detect faults and to minimize its suspension. Rastegari et al. (2017) focus on
condition based maintenance as regards to machine tools, particularly concentrating
on vibration monitoring approaches. Hence, accelerometers are fixed to the spindle
units, then, data are transferred to the computer as a dataset in order to be analysed.

A summary of accelerometer’s applications is provided in Table2 in the following.
In conclusion, the accelerometer is exploited in very fields, and is particularly

employed to ensure human action recognition, this point will be detailed in the
following section.
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3 HAR Using Accelerometer Data

3.1 Challenges

Although the human action recognition using accelerometers data continues to
progress, the recognition accuracy is affected bymany challenges in this field. Firstly,
people have different motion models: every subject has his unique style of execution
as shown in Fig. 2.

Moreover, for the same person, the action may differ from one repetition to
another: the action can be shorter or longer as provided in Fig. 3.

Furthermore, the placement of the on-body sensors presents an important defiance,
for example: when a person is jogging, the data collected from an accelerometer
attached to the wrist is different from data acquired from an accelerometer fixed to
the thigh. Figure4 presents signals recuperate from six different localizations.

In addition, the translation and the rotation of the sensor, when recording the
action, may influence the measurement so it may affect the recognition performance.
Thus, the number, the position and the type of the accelerometer are principally
related to the application. Besides, the complexity of actions and the transition period
between two successive actions lead to an additive challenge. Additionally, people
performing multiple activities simultaneously might cause confusions.

Fig. 2 Inter-class challenge
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Fig. 3 Intra-class challenge

Fig. 4 Signals acquired from six different positions
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3.2 HAR Applications

Analysing human actions using wearable sensors, as the accelerometer, has become
an increasingly unavoidable area of research in various fields including: medical,
virtual reality, sport, security, surveillance, education, etc. In the following, we will
expose several applications presented inTable3 to outline the use of the accelerometer
in HAR.

Surgeries are complex tasks accomplished in stressful areas (Zia et al. 2018).
Therefore, the immersive virtual reality provides virtual environments to surgeons
and trainees to be trained in realistic conditions to ensure the patient’s safety and
to attenuate errors. Various technologies are used in this field, including wearable
sensors, which track the user’s motions in order to gain surgical expertise (Dargar
et al. 2015).

Laghari et al. (2016) focused on developing a biometric authentication application
based on accelerometer data acquired from the smartphone. Indeed, the user performs
his signature by handling the phone in his hand and moving it. Ten volunteers par-
ticipated in this work; each subject had to perform his signature 6 times. The signal

Table 3 Applications of human action recognition using accelerometer data

Refs. Application field Applications

Dargar et al. (2015) Education – Training in virtual
environments to gain expertise

Zhang et al. (2015) Virtual reality – Training

Laghari et al. (2016) Security – Biometric authentication
application for smartphones

– Medical adherence

Pepa et al. (2015), Kau and
Chen (2015), Figueiredo et al.
(2016)

Medical – Diagnostic of various
diseases: Parkinson’s disease,
epilepsy seizure, Alzheimer’s
disease, etc.

– Fall accident detection

Sen et al. (2015) Healthcare – Monitoring sleep

– Diet monitoring

– Assessment of elderly people

Ferhat et al. Surveillance – Assessment of children’s
behaviours

Hung et al. (2015) Automation – Controlling the daily
environment

Hidayat et al. (2016) Gaming – Detecting gestures and
actions to play

Neto et al. (2009) Industry – Controlling an industrial
robot

Koskimäki and Siirtola (2014) Sport – Recognizing gym exercises
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matching was used as an identification approach. With regards to the traditional and
the graphical techniques, this method is more secure with a false rejection rate of
6.87%.

Kalantarian et al. (2017) proposed an android application implemented on a smart-
watch to detect various motions related to medical adherence. Furthermore, the sys-
tem detects when the bottle is twisted to open it using the accelerometer data and
then, the act of revolving the palm to retrieve the pill is identified using gyroscope
data. Although the system is sensitive to how to remove the pill, it needed less human
involvement for medication adherence with regard to nurses’ calls or other forms.

Parkinson’s disease is an advancing neurological disorder that affects the basal
ganglia. Freezing of Gait (FOG) is one of the most frequent motor disorders for
advanced Parkinson disease that can diminish the quality of life and it can be defined
as a gait disturbance. Pepa et al. (2015) proposed a smartphone-based application
that can detect FOG occurrences and is able to send an acoustic feedback to help
patients restore walking. In addition, tested on 18 patients, this method provides an
82.34% of sensitivity.

Kau et al. (2015) used the triaxial accelerometer and the electronic compass
integrated in the smartphone, which was located in the pocket of the subject to
detect fall accidents. If the system detects a fall event, it will send the user’s position
identified by the GPS to the rescue center via Wi-Fi or the 3G network. Thus, the
user can receive medical help straightaway. An accuracy of 92% is achieved using
this algorithm with 450 test actions of 9 types that include a fall event.

Wearable inertial sensors are nowadays used to assist therapeutic movements.
In (López et al. 2015), two sensors are worn on the forearm and the upper arm to
identify the quality of the patient’s movements and observe his/her recovery. Besides,
the aim of the study is to define intra and inter-group dissimilarity between a given
number of movements accomplished by young people, with regard to motions given
by therapists.

Human action recognition is used to analyse children’s behaviour and to follow
their health and development. Indeed, children’s actions can be limited to walking,
playing, sitting, sleeping and hand motion. A kindergarten system was developed
using acceleration information acquired from the accelerometer fixed on the child’s
hand, then, these information were anlysed to present a global state of the child’s
health to parents and child-minders (Kurashima and Suzuki 2015).

The assessment of the elderly people during their daily life became a crucial
challenge in order to ensure their safety, autonomy and healthcare. Ferhat et al.
focused on recognizing and monitoring elderly people using three inertial units that
were mounted on the chest, the right thigh and the left ankle. Additionally, based on
real-time technique and data transmission, the subject’s motions were continually
monitored by healthcare suppliers all along daily activities and abnormal events are
detected to intervene.

Over the last decade, home automation has become an important field of research
to control the daily environment. In (Hung et al. 2015), a hand gesture recognition
belt was developed using an accelerometer and a gyroscope to control a LED array
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lamp. Indeed, when the user shakes his hand up, the LED turns on and inversely.
Consequently, as the user’s palm is shaking, the luminosity of the LED can dims.

In the gaming word, the advancement occurs expeditiously. Hidayat et al. (2016)
used a Wii remote as a controller of a fighting game. The Wii remote transfers data
obtained from the accelerometer that detects gestures or motions of the hand. Then,
when the movement is identified, it will be visualized in the built based-Unity 3D
game as a player’s action.

Neto et al. (2009), developed a system based on two triaxial accelerometers, for
the purpose of controlling an industrial robot rather than programing it with typical
techniques. Furthermore, the sensorswerefixedon the human arms in order to capture
its gestures and postures, so the robot can start the movements approximately while
the user begins to perform a motion. Besides, a higher performance was achieved
using this approach with a recognition rate of 92%.

3.3 Related Work

Human action recognition using acceleration information has been employed in
several application areasmentioned previously; in fact, various approaches described
in this section have been proposed to address this challenge.

Pre-processing is considered as a one of the most critical steps that includes
replacing missing data or filtering it. Before the feature extraction step, raw data
acquired from sensors are generally divided into small segments using windowing
technique. In fact, various windowing approaches are used in this level: (i) sliding
window that is the most commonly used owing to its facility of implementation
and its guaranteed high accuracy, it consists of dividing signals into fixed length
windows with or without overlap; (ii) the defined activity windows that resides with
the division of the data based on the detection of activity changes; (iii) the defined
event windows, where pre-processing is needed to find particular events; (iv) the
dynamic sliding window that was developed to overpass the fixed-length of the
sliding window technique, the main idea of this novel activity signal segmentation
approach is that the window size could be dynamically adapted by using the signal
information to determine the most effective segmentation.

Afterwards, feature extraction is considered as a crucial step; which consists
of extracting quantities to characterize each performed action. Many researchers
tended to extract features commonly from: time domain, frequency domain and time-
frequency domain. Time domain characteristics include mean, maximum, median,
skewness, variance, etc. Frequency-domain features incorporate peak frequency, sig-
nal energy, also the calculation of the power spectral density (PSD) and the utilization
of the Fast Fourier Transform (FFT), etc. Furthermore, wavelet transform is the most
common technique used to extract features from the time-frequency domain. Adding
to this, it exists other techniques employed to extract features from accelerometer
signals to differentiate actions such as the Dynamic Time Warping (DTW).
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In many works, researchers employed a feature selection process, which consists
of selecting a subset of appropriate features from the original features, because the
use of inappropriate or redundant characteristics may decrease the performance of
the classifier. This process reduces the number of features and the computation time.
Generally, it exists three classes in feature selecting: (i) filter methods, (ii) wrapper
methods, (iii) hybridmethods. The filter-basedmethod evaluates featureswithout any
classifier, so it classes a set of selected features according to the estimated weights
of each feature. Different from the filter methods, wrapper, which ensures often the
best results, uses classifier accuracies to evaluate the selected subset. Eventually,
the hybrid methods consist of selecting the most appropriate features due to some
internal parameters of the machine-learning algorithm.

Feature vectors, obtained after extraction/selecting features from raw data, are
used in order to train the classification algorithm. Indeed, to ensure this step, many
machine learning techniques are employed, which are divided into two principal
approaches: supervised and unsupervised methods. In addition, the supervised tech-
niques are based on labeled activity data such as K-nearest neighbours (K-NN),
Artificial Neural Networks (ANN-s), Support Vector Machines (SVMs), Decision
tree (DT) and Random Forest (RF). Concerning the unsupervised approaches, which
are linked with unlabeled data, we can site the Hidden Markov Model (HHM), the
K-means, and the Gaussian Mixture Models (GMMs).

Some of the common works introduced to recognize and analyse human actions
are presented in the following.

In (López et al. 2015), Lopez et al. proposed a novel method to detect and char-
acterize walking and jogging using a triaxial accelerometer. Actually, the kurtosis of
wavelet coefficients or the autocorrelation of the acceleration data was used for the
detection. This methodology was tested on three different datasets of walking and
jogging.

Lubina et al. (2015) evaluated the application of artificial neural networks (ANNs)
to recognize human activities using accelerometer signals. Five accelerometers were
fixed on the back, two on the waist laterally and two on the ankles, and 25 subjects
were called to perform a set of predefined actions such as sitting down and walking.
The obtained signals were firstly filtered using a median filter, then they were par-
titioned into non-overlapping windows with a length of 0.5s. Afterwards, statistical
features were extracted, such as the mean, the sum of squares and the root mean
square to train the ANNs. Despite the fact that the implementation of the Fisher
Linear Discriminant shows that some features help to discriminate similar actions,
none of the axes or the features or the sensors can be neglected.

For monitoring daily life activities, Wang et al. (2016) used a single wearable
accelerometer that was attached to the waist and the left ankle respectively with
a view to diminish the effect of sensor placement. An ensemble empirical mode
decomposition (EEMD), which is a time-analysis technique is introduced in this
study. Then, feature selection is insured using a game theory to select relevant fea-
tures. K-NN and SVM are employed to classify human activities captured from
the waist and the ankle. Compared with other works, the results obtained using the
proposed method, which selects fewer features, show a better classification.
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Monitoring sleep has gained the attention of numerous researchers as it affects our
psychological and emotional health. Therefore, Yunyoung et al. (2016) focused on
identifying sleep quality based on the triaxial accelerometer and the pressure sensor,
and they used various physiological parameters. Additionally, data obtained from the
accelerometer determined the sleeping posture and activity. Besides, the proposed
algorithm based on a sensor fusion framework effectively detected sleeping and
waking situations.

Luštrek et al. (2015) suggested an approach to recognize indispensable lifestyle
activities of diabetic patients, using sensors embedded on the smartphone, in order to
monitor their lifestyle since it affects the disease. A set of activities was introduced
in this study such as eating, sleeping, working, and transport. Five volunteers carried
a smartphone and an EEG monitor during two weeks. Furthermore, several features
were derived from sensors, such as the user’s location, the ambient sound and the
acceleration features to train various classifiers to recognize the user’s action, such
as SVM, RF, and Naïve Bayes. Based on different experiments, the results obtained
show that the vote provides a higher accuracy, which combine several machine learn-
ing algorithms. To improve the classification rate, they proposed to introduce a final
machine learning approach, thus, the accuracy went from 0.77 to 0.88. Nevertheless,
it exists some misclassification between the activities such as eating and out.

Noor et al. (2015) proposed a new approach of activity signal segmentation using
triaxial accelerometer that consists of a dynamic slidingwindow.Themain aimof this
method is to recognize static and dynamic activities as well as transitional activities.
Initially, a small window size is adjusted to segment static and dynamic activity
signals, then the window length is extended in order to encompass the signal that it
can be sometimes longer than the initiated window. Moreover, the dynamic sliding
window is used to automatically determinate the optimum window size while the
signal is being evaluated. A triaxial accelerometer was fixed on the right waist and
three subjects performed several actions such as walking, sitting to lying, standing
to sit, etc. and each subject repeated each action five times. For pre-processing, a
moving average filter is employed, then a 3s sliding window is used to segment
the signal, after that the window length is limited to 1.5s with 50% overlapping
rate with the previous window. 117 features are extracted from raw data including
standard deviation, spectral entropy, maximum, etc. Afterward, relevant features
are selected using Relief-F method. Decision Tree was chosen to classify activities
which provided an accuracy of 96% and the transitional activities were effectively
recognized.

In (Tran and Phan 2016), sensors integrated on the smartphone were used to
develop an android real-time system that is able to recognize human actions. Six
actions were introduced such as walking, lying down and sitting. Furthermore, SVM
was employed to classify the actions and 248 features were extracted from raw data
including mean, minimum, energy, etc. The android system compares the performed
activity with its model. Thus an accuracy of 89.59% is achieved using this method.
A summary of several approaches introduced for human action recognition using
accelerometer data is provided in Table4.
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4 Datasets

A large number of public human action recognition datasets have been introduced
based on inertial sensors. We distinguish uni-modal and multimodal databases. This
section consists of a review of various databases that have been included to recognize
human actions captured from accelerometer data.

4.1 Uni-Modal Databases

4.1.1 MIT PlaceLab Dataset

This Dataset is one of the first public databases in this field of research. To record
this dataset, five accelerometers and a wireless heart rate monitor were utilised, each
accelerometer is mounted on the left and right arm, the left and right leg and one on
the hip. During a four-hour period, one person is asked to perform a set of activities
wearing these sensors, including house-holding activities, such as preparing a recipe,
cleaning the kitchen, doing the laundry and other types of everyday tasks, for instance
talking to the phone or answering emails. However, data existing in this database are
collected from one person, which could present a real problem because each person
has its own way to perform activities, so the characteristics of the action are poorly
represented.

4.1.2 UC Berkeley WARD Dataset

WARD (Wearable action recognition database) is a public human action recognition
dataset developed by theUniversity of California. It consists of continuous sequences
of human actions measured by a network of wearable motion sensors. The sensors
are attached at five body locations: the two wrists, the waist, and the two ankles.
Each wireless sensor includes a triaxial accelerometer and a biaxial gyroscope. The
database contains 20 subjects: 13 male and 7 female and includes a rich set of
activities that involve some of the most frequent actions in the daily life, such as
standing, sitting, walking and jumping. It is true that WARD covers the most typical
human actions and includes a sufficient number of persons, but some of the data is
missed due to battery failure.

4.1.3 USC-HAD

A single inertial sensor was used to evaluate 12 different actions performed by 14
subjects (7 males and 7 females): each action is repeated four times. This database
includes a considerable number of subjects of different sexes and the activities con-
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sidered are among the most basic and common human activities in people’s daily
lives. However, data is acquired form a single accelerometer

4.1.4 REALDISP (REAListic Sensor DISPlacement)

Realistic sensor displacement is a benchmark dataset dedicated for human action
recognition. This set was collected to evaluate the effects of sensor displacement in
activities recognition, “which can be caused by a loose fitting of sensors, or a dis-
placement by the users themselves”. Indeed, three scenarios were introduced: ideal-
placement, self-placement, and induced-displacement. The first scenario is “Ideal
placement” or default scenario, where sensors are arranged by the instructor on pre-
defined locations of the body. The second scenario is the “Self-placement”, where
the user is asked to position 3 sensors himself on the body part specified by the
instructor. This scenario tries to simulate some of the variability that may occur in
the day-to-day usage of an activity recognition system, involving wearable or self-
attached sensors. And for the last scenario, the instructor introduces a de-positioning
of the sensors using rotations and translations with respect to the ideal placement.
This database consists of 33 different physical activities that can be classified as
warming up, cooling down and fitness activities and it includes 17 subjects. Data
was measured from nine different sensors that contain a 3D accelerometer; a 3D
gyroscope, a 3D magnetic field orientation and a 4D quaternion that are attached
overall body parts.

Table5 lists a summary of some uni-modal publicly available databases using
accelerometers for human action recognition.

4.2 Multimodal Databases

4.2.1 CMU Multimodal Activity Database

This Database was developed in the Carnegie Mellon University that contains dif-
ferent multimodal measures of the human activity of subjects performing the tasks
involved in cooking and food preparation. It contains video, audio, RFID tags and
motion capture system based on-bodymarkers and physiological sensors such as gal-
vanic skin response (GSR) and skin temperature. In addition, 43 subjects were asked
to perform food preparation and cook five recipes while the sensors were placed
all over the body: both forearms and upper arms, left and right calves and thighs,
abdomen, and both wrists. This set involves a very large population but it is specific
to just cooking activities.
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Table 5 Summary of uni-modal publicly available databases using accelerometer data for human
action recognition. Ns : Number of Subjects. NA: Number of Accelerometers

Database Ns Actions NA Sensor
locations

Comments

MIT Place
Lab

1 10 activities:
Prepare a
recipe Do a
load of dishes
Search for
items, etc.

5 Right arm,
Left arm Right
leg, Left leg
Hip

– Just one
person
performing
the activities –
Activities
considered are
imprecise

USC Berkeley
WARD

20 13 activities:
Stand Sit Walk
Forward Walk
left-cercle,
etc.

5 Left wrist,
Right wrist,
Front centre of
the waist Left
ankle, Right
ankle

– Part of the
data is missing

USC-HAD 14 12 activities:
Walk forward
Walk left
Walk right
Walk up stairs,
etc.

1 Front right hip – Data
collected form
a single
accelerometer

Realistic
sensor
displacement
benchmark
dataset
(Realdisp)

17 33 activities:
Walking
Jogging
Running Jump
up Trunk
twist, etc.

9 Left calf, Left
thigh Right
calf, Right
thigh Back,
Left lower
arm Left
upper arm,
Right lower
arm, Right
upper arm

– The dataset
covers a wide
range of
physical
activities and
a number of
wearable
sensors

4.2.2 OPPORTUNITY Dataset

The opportunity dataset is collected from aEuropean research project calledOPPOR-
TUNITY,which concentrated on daily home activities especially on preparing break-
fast. This dataset includes different modalities such as accelerometers, gyroscopes,
magnetometers, microphones, and cameras. 12 subjects were asked to perform a
sequence of daily morning activities including grooming a room, preparing and
drinking coffee. Different modalities were used to collect data, such as a camera, a
microphone, an accelerometer, and a gyroscope.
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4.2.3 Berkeley MHAD: Multimodal Human Action Database

MHADcontains temporally synchronized and geometrically calibrated data acquired
from an optical motion capture system, multi stereo cameras from multiple views,
depth sensors, accelerometers and microphones. 11 subjects (7male and 7 female)
participated in the data collection and were asked to perform 11 actions with five
repetitions for each action, including jumping in place, jumping jacks, bending,
waving two hands. Prior to each recording, the subjects were given instructions on
what action to perform; however, no specific details were given on how the action
should be executed (i.e., performance style or speed). In addition, six accelerometers
were fixed on the wrists, ankles and hips, and the two Kinect were placed in opposite
directions. This database contains 660 action sequences.

4.2.4 UTD-MHAD: University of Texas at Dallas Multimodal Human
Action Dataset

UTD-MHAD is a publicly available multimodal human action recognition data set
collected fromaKinect and awearable inertial sensormeasuring a 3-axis : accelerom-
eter, velocity signals and magnetic strength. The dataset contains 8 subjects (4 female
and 4 male) and 27 different actions: right arm swiping to the left, right arm swiping
to the right, right hand waving, two-hand clapping, right arm throwing, crossing the
arms, etc. Each person repeats each action four times with the wearable inertial sen-
sor fixed on the subject’s right wrist or right thigh depending on whether the action
was mostly an arm or a leg type of action.

4.2.5 Huawei/3DLife Dataset

TheHuawei/3DLife is amultimodal dataset developed for a 3Dhuman reconstruction
and action recognition Grand Challenge in 2013. For this challenge, two datasets
were provided: Dataset 1 contains a synchronized RGB-plus-Depth video captured
by five Kinects, as well as multiple-Kinects audio and eight inertial sensors covering
the whole body. The inertial sensors were placed on: the left wrist, the right wrist,
the chest, the hips, the right ankle, the left ankle, the right foot and the left foot. This
dataset includes two sessions with different spatial arrangements of the sensors. 17
subjects performed a set of 22 repetitive actions, and each action was performed 5
times. It consists approximately 3740 captured gestures. The performed actions can
be classified into i) Simple actions that involve mainly the upper human body, ii)
Training exercises, iii) Sports related activities and iv) Static gestures.

With regard to Dataset 2, it was captured in Berlin and includes synchronized
multi-view HD video streams of multiple humans doing multiple actions. It consists
of 7 individuals performing a set of 26 different body movements.
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4.2.6 Multimodal Kinect-IMU dataset

This dataset has been originally collected to investigate transfer learning among
ambient sensing and wearable sensing systems. Nevertheless, the dataset may be
also used for gesture spotting and continuous activity recognition. It includes data
for three activity recognition scenarios, namely HCI (gesture recognition), fitness
(continuous recognition) and background (unrelated events). It comprised synchro-
nized 3D coordinates of 15 body joints, measured by a vision-based skeleton tracking
system (Microsoft Kinect), and the readings of 5 body-worn inertial measurement
units (IMUs. A single subject performs five kinds of geometric gestures with the
right hand in alternation 48 times. The locations of the IMUs devices are: the left
lower arm, the right lower arm, the back, the left upper arm and the right upper arm.

Table6 lists a summary of some multi-modal publicly available databases involv-
ing accelerometer sensor for human action recognition..

5 Fusion Framework

Although human action recognition promises to be highly effective, the exploita-
tion of multi-level fusion approaches can guarantee an excellent rate thanks to the
wealth of the information available in all stages of the human action recognition pro-
cess: acquisition, feature extraction, classification and decision. Thus, we introduce
a fusion framework that utilises accelerometers data.

Fusing data is the process of coupling data acquired from numerous sources
(in our case several accelerometers) allowing to assess the accuracy of the system.
Indeed, we distinguish two categories of merging: before correspondence and after
correspondence. The first category concerns the signal-level fusion and the feature
level fusion, and the second category involves fusion at the score level and fusion
at the decision level. The four levels of fusion shown in Fig. 5, are presented in the
following.

5.1 Signal-Level Fusion

The signal presents themodality acquired on-line or off-line (ex. Speech, Accelerom-
eter signal, Image, Video, etc.). At this level, the fusion is only possible when the data
are compatible: the sources produce signals of the same type. In our study, the signal
fusion technique includes the combination of 3-axes signals from the accelerometer
(X -axis, Y -axis and Z -axis).
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Table 6 Summary of multimodal publicly available databases using accelerometer data for human
action recognition. Ns : Number of Subjects

Database Ns Actions Sensors Accelerometers
locations

Comments

CMU Database 43 Food
preparation
Cooking five
recipes

Camera/
Microphone
Motion capture
Accelerometer,
etc.

Both forearms,
Upper arms,
Left/ Right
calves, Thighs,
Abdomen,
Both wrists

– This set is
concentrated
on a very
specific
category of
actions
(cooking)

Opportunity 12 Groom room,
Prepare coffee,
Clean up, etc.

Accelerometer/
Gyroscope
Microphone/
Camera, etc.

Wrist, Chest
Limb,
Shoulder Foot

– The database
covers only
morning
activities

Berkeley MHAD 11 11 actions :
Jumping in
place, Jumping
jacks, Bending,
Punching, etc.

12 cameras/ 2
Kinect 6
accelerome-
ters/ motion
capture/4
microphones

Wrists Ankles
Hips

– Data are
temporally
synchronized
and controlled

UTD-MHAD 8 27 actions :
jogging in
place, walking
in place, sit to
stand, etc.

– Kinect
Wearable
inertial sensor

The right wrist
or the right
thigh

– The dataset
covers a wide
range of
actions

Huawei/3DLife:
Dataset 1

17 22 actions :
Throwing,
Jumping Jacks
Squats, etc.

−5 Kinect -8
inertial sensors

Right/Left
wrist Chest,
hips,
Right/Left
ankle,
Right/Left foot

– This set
focuses on
various types
of actions

Multimodal
Kinect-IMU
dataset

1 Five kinds of
geometric
gestures
:Drawing a
triangle, etc.

– Kinect -5
inertial sensors

Left /Right
lower arm
Back Left/
Right upper
arm

– Just one
person
performed the
gestures

5.2 Feature Level Fusion

Features or attributes are characteristics extracted from the raw data. The feature
fusion level is the combination of the different feature vectors, obtained either from
the same modality or from different modalities. Therefore, the merging at this level
can consider homogeneous feature vectors and heterogeneous feature vectors.
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Table 7 Score level fusion rules. T is the number of matchers and s j presents the normalized
scores of the j th matcher. w j corresponds to the Equal error rate (EER) of the j th and F represents
the fusion score

Rule Equations

Sum F = 1

T

T∑

j=1
s j

Max F = max(s1, s2..., sT )

Min F = min(s1, s2..., sT )

Product F =
T∏

j=1
s j

Weighting F =
T∑

j=1
w j s j

5.3 Score Level Fusion

A score is a measure of similarity that corresponds to the distance between the test
sample and the reference sample. In fact, the fusion at this level presents a compro-
mise between the richness of the information and the facility of the implementation.
Actually, each classifier produces a matching score or several scores and the merging
process combines these measures to obtain the final score which will be then used
to produce the final decision. There exist two main approaches to combine scores:
the classification of scores and the combination of scores. Several rules exploited to
ensure the fusion of scores are presented in Table7.

5.4 Decision Level Fusion

It processes the outputs of the different classifiers. The decision level fusion consists
in assembling the decisions obtained from each classifier in order to obtain the final
decision. There are several methods for merging decisions, such as the AND and the
OR logic operator type rules, the majority vote, and the Dempster–Shafer theory.

Thus, we focused our attentiveness on characterizing the human actions in order
to gain a better classification accuracy by employing a fusion framework exploiting
every information obtained along the human action recognition process.

For the feature extraction, we opted for the discrete wavelet transform. The
Wavelet transform of a function f (x) is calculated using (1) as follows:

W f (i, τ ) =
∫ +∞

−∞
f (x)ψ�

i,τ (x)dx (1)

ψi,τ (x) = 1

2i
ψ

(
x − τ

i

)

(2)
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ψ is the wavelet mother.
The wavelet transform decomposes initially raw data into approximation coef-

ficients by employing low pass filter and detail coefficients by a high-pass filter.
Various levels are constructed as follows: the approximation signal required from
the previous level is decomposed into approximation and detail coefficients. The
desired decomposition level is determined after several repetitions of this process.

With regard to the classification, we exploit support vector machine SVM.
The experimentations associated to the fusion framework are presented in the

following section.

6 Experimental Results and Analysis

6.1 Results

To evaluate the effectiveness of our methodology, we chose three databases: WARD,
MHAD and Realdisp which were detailed in Sect. 5. The position of each accelerom-
eter related to each dataset is presented in Fig. 6.

In the interest of the fusion framework, we aimed firstly to select the sensors that
guarantee better classification rates for each dataset. In fact, these sensors will be
afterwards exploited in the fusion approach in order to provide a higher performance.

Therefore,we proposed to evaluate each accelerometer individually. The collected
data from the accelerometer sensor were firstly divided into N temporal windows
using the sliding window technique. The window length related to each database is
6 for WARD, 15 for MHAD and 9 for Realdisp. The number of segments N was

Fig. 5 An example of multi-level fusion using accelerometer data
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Fig. 6 Positions of the accelerometers for the three databases. a MHAD. bWARD. c Realdisp

Table 8 Recognition rates (%) for all accelerometers for the 3 databases

Accelerometer Recognition rate (%)

WARD MHAD Realdisp

A1 64 88 41

A2 64 86 49

A3 54 36 30

A4 72 68 50

A5 71 45 41

A6 – 50 51

A7 – – 51

A8 – – 43

A9 – – 48

determined based on several experimentations. Then, the features were extracted
from each window using the discrete wavelet transform with a Daubechies2 as a
wavelet mother. From the approximation coefficients, we extracted the mean and the
standard deviation and concerning the detail coefficients, we extracted the minimum
and the root mean square. These measures are computed over the three directions
(X , Y and Z ) within each temporal window. Furthermore, we took advantage of the
SVMwith RBF kernel to classify the actions. We considered 12 subjects for training
and 8 subjects for the test. Concerning MHAD, 7 subjects were reserved for training
and 5 persons for testing. Finally, for Realdisp 10 subjects were provided for the
learning base and 7 persons were preserved for testing.

Thus, the results relative to each accelerometer of the three datasets are presented
in Table8.
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Table 9 Recognition rates (%) for all levels of fusion

Database Fusion level

Signal Feature Score Decision

Sum Max Product AND Vote

WARD 75 88 88 82 88 72 78

MHAD 89 94 94 91 97 86 89

Realdisp 53 76 77 67 78 51 63

According to the results shown in Table8, we can observe that for the WARD
database the accelerometers attached to the ankles (A4 & A5) provide a better per-
formance in terms of accuracy. Indeed, the actions introduced in this dataset are
essentially linked with the motions of the feet such as “walking”, “going up and
down the stairs”, “Jumping”, etc. Accordingly, the sensors fixed on the ankles ensure
better recognition rates compared to the other sensors.

Form the results obtained from the six accelerometers considered on the MHAD
dataset, we notice that the accelerometers mounted on the left and the right wrist
ensure a better classification rates (A1 & A2). Based on the type of the actions
considered in this dataset, which are related to the hand motions (e.g. “clapping”,
“waving”, “punching”), the accelerometers worn on the hands can classify correctly
the classes. With regard to the accelerometers attached to the ankles, they are not
able to generate useful information because the actions are relatively static.

Regarding theRealdisp dataset, the accelerometers A4, A6 and A7 attached respec-
tively to the right thigh, the left lower arm and the left upper arm, seem to be the
most effective to distinguish the human actions introduced in this dataset. In fact, the
actions employed focus on the trunk, upper and lower extremities including actions
of translation, jumping and physical activities. Therefore, a part or all of the body
is moving during the performance of the actions; otherwise, the recognition rates
relative to the 9 accelerometers distributed at different positions are convergent.

After evaluating each sensor separately and with a view to obtain a higher recog-
nition rate and improve the classification, we proposed to employ the multi-level
fusion techniques. We fused the signals acquired from the 3 axis acceleration data
and we combined the features from the time-frequency domain from each chosen
sensor. For the score level, the Sum, the Max and the Product rules were exploited.
Finally, for the decision level, the rules AND and OR were employed.

In this step, we suggest involving the 3 accelerometers that guarantee the best
performance for each dataset based on the positions of the sensors and the results
obtained. ForWARD database accelerometer number 1, accelerometer number 4 and
accelerometer number 5 are chosen. In addition, A1, A2 and A4 are part of the stage
of fusion for MHAD. And for Realdisp, only A4, A6 and A7 are involved. Thus, the
results are presented in Table9.
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6.2 Discussion

We compared the recognition rates of the multi-level fusion framework with the
accuracies obtained from each accelerometer individually, we noticed that combin-
ing signals, features, scores or decisions guarantees a higher performance. In fact,
our approach exploits every information available in the recognition process from
acquisition to decision and leads to good results for the employed datasets as we
listed in Table9.

From Table9, we outline that the matching score level fusion outperformed the
other levels of fusion and achieved favorable performance compared with the uti-
lization of each sensor individually. Actually, compared with the other levels of
coupling, this level provides richer information as it fuses the distances between the
test samples and the reference samples.

Moreover, the classification accuracy using fusion scores is higher than the per-
formance found in the literature for MHAD database which is 97% against 94% in
Chen et al. (2015).

This improvement leads to a discrimination betweenmost of the actions as we can
see from Figs. 8 and 9 which represent the confusion matrices when fusing scores
related respectively to MHAD database and WARD database

In the intention to evaluate the effectiveness of our method, we compare the
confusionmatrix related to the use of each accelerometer individuallywith thematrix
obtained from the coupling of scores. Thus, we consider MHAD database as an
example, Fig. 7a, b and c correspond respectively to the confusion matrix of A1, A2

and A4.
As seen in Fig. 7a, the accelerometer A1 worn on the left wrist provides a good

discrimination between the actions as the accomplishment of most of the actions
requires the contribution of the left hand differently (waving, punching, throwing,
etc.). However, it can’t differentiate action 4 “Boxing” from action 7 “Clapping”
owing to the similarity of the behavior of arms. In addition, the misclassification
that occurs between action 8 “Throwing” and action 11 “Standing” can be explained
by the fact that the posture of the left hand is the same in these actions so the
accelerometer generates similar raw data.

From Fig. 7b, we notice that the distinction between action 5 and action 6 is
difficult using the accelerometer A2 fixed on the right, besides, the action 6 “waving
using the right hand” can be considered as a subset of the action 5 “waving using
both hands”.

Figure7c shows the confusion matrix when using the accelerometer A4 mounted
on the right hip, we notice that the recognition of classes: 9, 10 and 11 is improved
by this sensor because of its contribution to the accomplishment of these tasks: To
stand up then sit, Sit and Stand up. However, the system thus is unable to distinguish
between the other classes.

As seen in Fig. 8, combing the scores acquired from these sensors leads to a
discrimination between most of the actions, nonetheless, there remain some slight
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Fig. 7 Confusion Matrix related to MHAD a when using A1 b when using A2 c when using A4
(Actions: 1. Jump, 2. Jack, 3. Bend, 4. Punch, 5. Wave 2 hands, 6. Wave using the right hand, 7.
Clap 8. Throw 9. Sit+Stand, 10. Sit, 11. Stand)
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Fig. 8 Confusion matrix of MHAD database related to fusion scores for A1 & A2 & A4 (rule:
Product)

Fig. 9 Confusion matrix of WARD database related to fusion scores for A1 & A4 & A5 (rule:
Product)

misclassifications between the action “punching” and “clapping” because of the
similarity of hand movements.

As regards to WARD database, the misclassification occurs between the most
similar actions as “walk forward”, “walk right” or “walk left” as shown in Fig. 9.
Indeed, the walking speed differs from one person to another so the differentiation
of these actions is a challenging task.

Finally, the classification accuracies of ourmethod are encouraging as it decreases
the number of misclassifications and provides important recognition rates.
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7 Conclusions

In this chapter, an overview of different methodologies for human action recognition
using accelerometer data havebeen introduced.Afterwecovereddiverse sensors used
to recognize human actions, we proved that the accelerometer seems to be the most
efficient thanks to its benefits in this area of research. Furthermore, various applica-
tions related to human action recognition in many areas were outlined, and different
approaches existing in the literature were reviewed. Moreover, we reported some
publicly available datasets from human action recognition where the accelerometer
data was provided. Afterward, a multi-level fusion framework was introduced using
acceleration data from themost efficient accelerometers for each dataset used to eval-
uate this work. The multi-level fusion framework included a signal level, a feature
level, a score level and a decision level. According to the results, the recognition
rates were improved however; there remains some slight misclassification between
the most similar classes.
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Ultra Thin Nanocomposite In-Sole
Pressure Sensor Matrix for Gait Analysis

Dhivakar Rajendran, Bilel Ben Atitallah, Rajarajan Ramalingame,
Roberto Bautista Quijano Jose, and Olfa Kanoun

Abstract Gait analysis plays an important role in various applications such as health
care, clinical rehabilitation, sport training and pedestrian navigation. In order tomon-
itor the human gait, an interesting approach is to analyze the foot plantar pressure
distribution between the foot and the ground. In recent years, the emergence of
flexible, soft and lightweight sensors facilitates the rapid technological advances in
in-shoe foot pressuremeasurements, thereby especially carbon nanotubes-based sen-
sors provide an outstanding solution for the implementation of flexible, soft pressure
sensors in foot pressure distribution analysis. This chapter focuses on the design
and implementation of multiwalled carbon nanotubes (CNT)/polydimethylsil-oxane
(PDMS) based nanocomposite pressure sensors for the analysis of the foot pressure
distribution. The sensor is durable, stable and shows sensitivity of 3.3k�/kPa and
hysteresis smaller than 3.64% with maximum detectable pressure up to 217kPa,
which is suitable for the measurement of human foot pressure. The proposed sensor
has been implemented in a flexible in-sole, which is designed based on normal arch
foot anatomy. A total of 12 sensors are distributed in the heel, lateral back foot, mid-
foot and front foot. The foot pressure distribution for different persons while walking
and standing using nanocomposite sensor based in-sole were investigated by mea-
suring the changing in resistance of the pressure sensors, when pressure applied on
it. It shows that foot pressure distribution is higher in the fore foot and the heel while
person standing in normal position. While walking, initially the foot pressure is in
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the heel and then transferred to the entire foot and finally it is concentrated on the
fore foot.

Keywords Carbon nanotubes · Polydimethylsiloxane · Nanocomposites ·
Pressure sensors · Screen printing · Solution mixing · Gait analysis

1 Introduction

The foot is important for humans for the interaction with ground for standing and
locomotion. According to a institute of preventive foot health, an average human
walks about 160,000 km, which is equal to 4 times around the earth (Franklin et al.
2015). In last decades, humans are subjected to various foot problems such as bunions,
corns and calluses, hammertoes, heel pain, arch problems, chronic foot pain and dia-
betes related wounds (Crawford et al. 2020; Jeffcoate and Harding 2003). According
to the International Diabetic Federation, 327 million people in age groups of 20–
64 around the world and 58 million people in Europe were diagnosed for diabetes
and it will be increased to 438 million people in 2045 (Federation 2020). Indeed,
the diabetes mellitus accounts for over $1 billion per year in medical expenses
(Federation 2020). Furthermore, gait instability in the elderly and other balance
impaired individuals show the need of ways to analyze foot pressure distribution
to obtain gait balance improvements which is considered important both in sports
and biomedical applications such as forefoot loading during running, soccer balance
training and foot balancing during weightlifting (Walther et al. 2020). It is estimated
that around 13–59% people are subjected to foot injury during their daily activities
(Walther et al. 2020).

In this chapter after a literature review on gait analysis, we introduce a low
cost, highly durable, flexible binary nanocomposite consists of polydimethylsilox-
ane (PDMS) and multiwalled carbon nanotubes (MWCNT), which can reach high
sensitivity and wide detectable pressure range. These sensors were implemented in
a flexible in-sole where the design and sensor placement is based on the normal arch
foot anatomy. This chapter concludes with evaluation of the in-sole by analysing the
foot pressure distribution on a individual during walking and standing.

2 Gait Analysis

Gait analysis is important for providing the feet pressure distribution data to the
physicians and therapists, to diagnose foot problems and walking disorders in order
to find suitable treatments to patients and improving the gait stability during their
sports and daily activities. To study the locomotion and kinematics of the foot, var-
ious models have been adopted to represent the gait pattern. In early stage, two
dimensional models were considered to represent the foot. These models considered
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the foot as rigid body. Although the foot is a much more complicated structure with
many individual muscle layers, bones, and joints (Lyons et al. 2006). During 1940s
and 1950s, gait analysis was studied with the muscle activities during the different
phase of the gait cycle by free-body diagrams and calculations on the effect of knee,
hip and ankle joints (Lyons et al. 2006). In 1960s, many researchers employed math-
ematical modeling to demonstrate the motion of the body segments and actions of
different muscles (Abdul Razak et al. 2012). Later, kinetograph, which is an appa-
ratus for taking a series of photographs of moving objects for examination with the
kinetoscope was introduced to measure the foot pressure distribution during walking
motion in low cost measurement systems. The obtained kinetograph was analyzed
by x-ray images and can be improved by placing a black rubber mat with reflecting
pyramidal projecting fluid on a glass plate (Lyons et al. 2006). Further advances
in gait analysis came with introduction of more accurate kinematic instruments in
1980s, which results in improved kinematic studies using electronics rather than
images or visual observations that took a long time to gather information and also
force platforms and EMED systems were made available, which produced reliable
results in minutes (Zulkifli and Loh 2020). However, these advances in gait analysis
are still expensive, as it requires dedicated equipment for the motion capture. Late
1990s, foot pressure analysis was enhanced using EMED sys-tem, F-scan systems,
PEL-38 electronic podometer and piezoelectric sensors, which was placed under
the foot and motion analysis camera has been used to investigate the gait pattern
(Zulkifli and Loh 2020). However these systems were limited to the static foot pres-
sure measurement.

In 21st century, various low-cost conventional techniques such as silicone layer,
air bladder and optical fibers were used to enhance the foot pressure measurement
in both static and dynamic mode (Kong and Tomizuka 2008; Soetanto et al. 2011).
However, these techniques are not promising for the large deformation and repeating
pressure cycle because of its limited mechanical strength. Later newer technology
enabled electrical sensors to be implemented in the foot pressuremeasurement in two
methods: platform and in-shoe. Platform systems are constructed from a flat, rigid
array of pressure sensing elements arranged in a matrix configuration and embedded
in the floor to allow and follow normal gait. Both static and dynamic measurement
can be done in this system. But this system was restricted to the research laborato-
ries and lack of on-field implementation (Abdul Razak et al. 2012). In-shoe sensors
are flexible and embedded in the commercial shoes such that measurements reflect
the interface between the foot and the shoe (Abdul Razak et al. 2012). Commercial
sensors such as “Novel, Parotec, Tekscan, VistaMedical, Wahab” adopted both mea-
surement systems to enhance the quality of the foot pressure measurement, where
they can reach pressure range of 260kPa–1.034MPa and hysteresis of 0.05%–24%
(Abdul Razak et al. 2012). The evolution of stretchable and flexible sensors paved
the way for the many research works on the foot pressure analysis (Lou et al. 2017;
Nobeshima et al. 2016; Pyo et al. 2017). Stretchable sensors based on conductive
rubber, and conductive nanoparticles as nanofillers in soft polymers provides the
flexible, durable and stable foot pressure measurement. These sensors have different
layers, which act as artificial skin and it can reach sensitivity ranges from 0.1 W/N
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to 670 kW/N and detectable pressure from 3 to 600kPa (Lou et al. 2017; Nobeshima
et al. 2016; Pyo et al. 2017). To enhance the comfortability for the foot pressure mea-
surement systems, these stretchable sensors are implemented in textiles “E-Textile”
made of multiple layers such as carbon nano tubes coated polyester, graphene and
organic polymers, which is suitable for the pressure range 0.01–1.2 MPa (Lin et al.
2016; Lou et al. 2017). Despite its comfort, it is not durable for long time loading
application. In most of the works based on stretchable sensors employing MWCNT
as nanofillers, one of the best choice for matrix are soft polymers Thermoplastic poly
urethane, polyester, polyethylene terephthalate and PDMS (Polydimethylsiloxane).
This is due to that the soft polymer has low Young’s modulus can retain to its orginal
form faster than other polymers and it can be utilized for dynamic and high frequency
foot pressure applications like walking and running (Canavese et al. 2014; Cheng
et al. 2011; da Costa and Choi 2017; Huang et al. 2017; Karimov et al. 2015; Lee
and Choi 2008; Ramalingame et al. 2017a; Sepulveda et al. 2011; Shu et al. 2010;
So et al. 2013).

3 CNT/Polymer Pressure Sensor

Recently, various research works on CNT-based sensors, have been highly active
in interest for diverse applications. Such composites are obtained by introducing
enough dispersed CNTs into a polymer matrix that enables sensing capabilities in
the resulting nanocomposite. The conductivity and thus, the sensing properties of
these composites depend on numerous factors, such as the quality and kind of the
polymer matrix and the size, nature and concentration of the dispersed CNTs. When
compressive forces are transferred to the surface of these nanocomposites, the dis-
tributed conductive particles are induced to contact each other, resulting in formation
of more conducting paths than the already existing before applying the pressure and
hence reducing the electrical resistivity of the nanocomposite (Fig. 1).

Fig. 1 Resistve principle of CNT/polymer nanocomposite pressure sensor
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CNTs have been already incorporated in various polymer such as poly (methyl
methacrylate) (PMMA), polycarbonate (PC), poly(L-lactide) (PLLA), pol vinyl alco-
hol (PVA) and others, in order to fabricate pressure sensors (Sousa et al. 2015).
Among other nanocomposites, medical grade polydimethylsiloxane (PDMS) added
with CNTs results in a nanocomposite material with high biocompatibility and
flexibility, which suits pressure sensing application involving direct human contact
(Maddipatla et al. 2017).

3.1 Fabrication Process of CNT/PDMS Pressure Sensors

Solution mixing approach is used to fabricate the CNT/PDMS nanocomposites,
which involves sonication and mechanical stirring. These methods provide adequate
stress to de-bundle the CNTs and disperse it in the PDMS effectively (Ramalingame
et al. 2019). Tetrahydrofurane (THF) is used as common organic solvents, because it
is one of the optimum solvent to disperse the CNTs efficiently (Ramalingame et al.
2017b). 0.3 wt. %MWCNT (Sigma-Aldrich, O. D×L—4.5 nm ×0.5 nm ±3–6 µm,
95%) with THF and sonicated using Bandelin sonoplus for 20% of the total power
for 15min and then stirred magnetically using CAT-M27 for 60min, then mixed with
PDMS (CNT/THF:PDMS—1:1).

Themixture is sonicated for 30min at 50%amplitude and then stirredmagnetically
for 60min at 70 ◦C followed by sonication of 50% amplitude for 30min (Fig. 2).

Fig. 2 Fabrication of CNT/PDMS nanocomposite pressure sensor
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Curing agent is added at the ratio of 10:1 and mixed manually for 15min to mix
hardener uniformly in nanocomposite. Then, thin film is deposited over the Kapton
substrate using stencils printing with thickness of 200 µm in the rate 1 mm/s. Then
it is allowing for curing for 80 ◦C for 4h. Once it is cured its peeled off from the
Kapton and diced in 10 mm radius. In parallel, silver based interdigit electrode is
printed over Kapton using stencil printing at the rate of 1 mm/s and cured at room
temperature for 4h. Then thin film is placed over the electrode and encapsulated
using PET with the help of commercially available laminator.

The electrical conductivity of the MWCNT/PDMS nanocomposite pressure sen-
sor is measured using a digital multimeter Agilent 24401A. The conduction mech-
anism is based on the percolation theory and tunnelling effect where CNTs act like
metal-metal junctions form conduction paths between the electrode and polymer
will act like tunnelling barrier between CNTs. This phenomenon can be visualized as
three-dimensional resistors networks based on tunnelling effect (Kanoun et al. 2021).
Theoretically, two types of resistance can be seen in MWCNTs-PDMS nanocom-
posite films such as Rtube is intrinsic resistance of CNT, which will be around 0.2
k�/µm to 0.4 k�/µm (Kanoun et al. 2021). The second type is Rjunction, which is
further divided into contact resistance between CNTs (Rc) and tunnelling resistance
(RT ) between CNTs, which can be seen below:

R = Rtube + R junction (1)

RT = h2d

Ae2
√
2mλ

e
4πd
h

√
2mλ (2)

where d is the distance between CNT, h is the Planck constant, e is the quantum
of electricity, l is the barrier height of energy, m is the electron mass and A is the
cross-sectional area of the tunnel (Sepulveda et al. 2011). During initial applied force
of 1N, the nanocomposite sensor comes in contact with the underlaying electrode,
which results in abrupt decrease in resistance of the sensor. So, the sensor needs an
activation force of 1N to provide a stable measurement. Further increases in force
results in further decreases in resistance.

This behaviour can be explained by Eqs. (1) and (2), where the change in ori-
entation of conduction path results in change of Rc, change in tunnelling distance
results in change of RT , which in turn change the R junction and deformation of CNTs
change in Rtube, which results in overall resistance decreases (Kanoun et al. 2021).
FromFig. 3 it can be seen that the change in resistance gradually reduced at high force
(< ≈ 100kPa), which is due to less formation of conductive paths and once it reaches
a saturation point, there is no formation of new conductive paths (Kanoun et al. 2014).
At this point, the change in resistance at high pressure region is due to the intrinsic
resistance of CNTs, being slightly compressed.
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Fig. 3 Sensor behaviour for forward and reverse force cycle. Inside: Sensor behaviour for force of
3–217kPa

4 Implementation and Evaluation

In-sole design and sensor placement are mainly dependent on foot anatomy like flat
or high arched foot, clubfoot and an extra toe. Normally, a person is allowed to walk
over the PressureStat film during a normal stride where these films will give the
exact replica of the person footprint and sensors are placed in maximum pressure
bearing points, which is reflected as darken area in Pressurestat film (Stalin 2012).
In the work reported here, in-sole design is based on normal arch foot anatomy (UK
size 10) and sensor is placed based on the pressure distribution for that foot taken
from foot anatomy. A total of 12 sensors are distributed in the heel, lateral back foot,
midfoot and foot. In heel, three sensors are placed. Pressure distribution is less in mid
foot and so one sensor is placed. During the gait, the last phase of 1st stance will be
on the forefoot and so seven sensors are placed in this region to get more resolution
of pressure distribution in this region. The electrode layout is designed in adobe
illustrator 2020. Then the electrodes are fabricated by silver inkjet printing using
Diamtrix DMP-2850 obtaining 12 interdigitated electrodes plus a common ground.
Next the nanocomposite films were prepared using fabrication technique explained
above are placed over the electrodes and finally encapsulated with PET. Figure4
shows the electrodes layout and sensors placement on the in-sole; the sensors were
numbered as S1 to S12 according to their location in the in-sole.

To test and validate our system, we first implement a measuring system with the
help of Arduino microcontroller and a voltage divider circuit. A young adult subject
participated in the controlled experiment to validate the system. Pressure distribution
on the foot were analysed in stationary and dynamic phase. During stationary phase,
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Fig. 4 Electrodes layout and sensors placement on the in-sole

the in-sole was placed on the ground and the subject could stand on it. During the
dynamic phase, the insole was placed in each of the subject’s shoes, and the subject
was asked to perform different tests. Foot pressure data was recorded at time interval
of 50 ms in the excel file and then extracted from the database after the experiment
for further analysis.

4.1 During Stationary Phase

The aim of this experiment was to investigate the pressure distribution of the different
sections of the foot such as forefoot, mid foot and heel at the stationary scenario.
The subject was asked to do this test of each position for 7 s and 5s gap in-between
the different positions to ensure reliable and accurate results.

Figure5 shows the maximum change in relative resistance of the pressure sensors
placed on the in-sole when the person is asked to stand on it in different stationary
position such as initial contact, loading response and heel off, all the positions are
performed on the other leg support. Higher change in relative resistance means that
more pressure is applied on the respective position. In initial contact position, the
change in relative resistance of the sensors in the heel position are −79% to −86%.
This is because in initial contact position, only the heel is in contact with the ground
(in-sole) and most of the pressure will be applied on the heel position.
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Fig. 5 Varying foot level like walking in stationary phase

4.2 During Dynamic Phase

The aim of this experiment was to investigate the dynamic gait pattern on a single
leg during normal walking, which is considered as swinging leg and other one is
the supporting leg. The gait pattern is comprised by two stances, each stance has
five steps such as initial contact, load response, mid distance, terminal distance and
pre-swing. In this work, the signal is recorded for the 1st stance of the walking
(Fig. 6).

Figure7 shows that maximum change in relative resistance of pressure sensors
placed on the in-sole when the person subjected to normal walking. The first step of
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Fig. 6 Evaluation of electronic in-sole in dynamic phase

Fig. 7 Foot pressure distribution in different dynamic phase
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1st instance of normal walking is initial contact where the body weight is completely
focused on the heel of the swinging leg and so more pressure is applied on it. The
next instance is when the body weight is transferred and distributed from the heel
to the mid and fore foot of swinging leg. Despite of the pressure distribution, more
pressure is applied on the fore foot and the heel. When the swinging leg reaches
mid distance position, the respective foot is subjected to more pressure because the
body weight is transferred from the supporting foot while it is not in contact with
the ground. This can be seen from Fig. 7 that the change in relative resistance of the
swinging foot is increased from in the range of 10–15% from the previous position.
In terminal distance, the heel of the supporting foot and fore foot of the swinging
foot will come to contact with the ground.

The body weight is transferred on both feet and so the pressure applied on the fore
foot of the swinging leg is reduced compared to the mid distance position. This can
be seen as, the change in relative resistance of the swinging leg is re-duced further
in the range of 35%–45%.

5 Conclusion

In this chapter, after a brief analysis on variousmethods formonitoring the gait pattern
and foot pressure distribution, we introduced pressure sensor based on Multiwalled
carbon nanotubes (MWCNT) and polydimethylsiloxane (PDMS) with good sensi-
tivity and wide detectable pressure range for gait analysis. We reported the design
and fabrication technique of nanocomposites and pressure sensor based on CNT
polymer nanocomposites in order to achieve a low cost, highly durable and highly
sensitive sensing in-sole. The proposed sensors show sensitivity of 3.3k�/kPa in
the range of 110kPa and hysteresis of <3.64% with maximum detectable pressure
up to 217kPa. This chapter concluded with analysis of the foot pressure distribution
while the person standing in stationary phase and gait pattern of the person during
walking.
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Abstract Nowadays, the demand for flexible and wearable devices is significantly
increasing. Thereby, sensors based on carbon materials are gaining importance due
to their high flexibility, sensitivity and medical compatibility. Precisely, nanocom-
posite based pressure and strain sensors present an interesting potential of applied
force detection that helps to build the basis for body attached sensor networks. These
sensor principles based on polymer carbon nanotubes composites (PCN) will have
the capability for tracking finger movements, gestures and grasping. Therefore, sev-
eral studies are explored in hand muscle rehabilitation, sign communication and
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robotic telemanipulation. This chapter reviews developed carbon materials sensors
and integrated solutions for hand gestures/forces detection in the biomedical appli-
cation and robotic telemanipulation. In this context, a novel PCN strain and pres-
sure sensors were presented and investigated. An SBS (styrene-butadiene-styrene
rubber)/C-TPU (conductive thermoplastic urethane) strain sensor with 1mm as the
diameter is developed. The proposed sensor shows promising sensitivity and stretch-
ability performances with up to 50% of strain and gauge factor equal to 24. In the
other part, Poly-Dimethylsiloxane (PDMS)/Multiwalled carbon nanotubes (MWC-
NTs) pressure sensors are investigated. The results demonstrate excellent sensing
performance e.g. fast response to detect low pressure, high durability after 100 cyclic
loading/unloading test and high sensitivity up to 670kPa. Moreover, a hybrid hand
motion detection systemwas implemented for hand rehabilitation and gestures detec-
tion. The proposed sensors were attached to a glove that leads to the monitoring of
fingers’ movements and the palm pressure distribution.

Keywords Nanocomposite–sensors · Strain · Pressure · Rehabilitation ·
Tele-manipulation · Bio-application · Piezo-resistive · CNT · Hand gloves

1 Introduction

The demands of flexible, easy to use and energy-efficient electronic devices as well
as up to date technologies in health care monitoring are increasing in medical inves-
tigation and patient’s therapy (Williams et al. 2016). A statistics shows that there
are a huge numbers among existing people in this planet suffering from the mus-
cle diseases such us Williams syndrome (estimated to be affects 1 in 10,000 people
worldwide Lenhoff et al. 1997), and Stroke (about four million people are surviving
from stroke, and it is increasing reaching approximately 500,000 people each year
Boian et al. 2002) etc.Medical investigations studies demonstrate thatmostly of these
people suffer from significant disabilities in their motor capabilities, which limits the
patient’s independent living. The “Bureau of Labor Statistics” reported for stork sur-
vivors over 143,000 hand-related workplace injuries happened in 2015, and it is the
second most common body part to be injured (Burtney 2020). Despite increasing
hand-related problems around the world, only 3% of total health care systems is
devoted to the rehabilitation process (Boian et al. 2002). In order to recover partially
or totally themotor abilities of a patient, a rehabilitation process is requiredwhich can
take a few months to improve the ability of moving the hand in a normal way(Mulas
et al. 2005). Patients need intensive and repetitive tasks during their rehabilitation
until their hands reach the highest level of independence. Research has revealed that
duration, capacity, and intensity of the training session have a significant impact on
the motor rehabilitation improvement. In recent years, a deep research on rehabilita-
tion engineering applications was announced to provide a cost-efficient, comfort and
user-friendly rehabilitation systems, aims to enhance the quality of the rehabilitation
process. Stilli et al. (2018) develop a novel light-weight inflatable soft exoskeleton
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device for post-stroke patients. A pneumatic solution is proposed with comprehen-
sive mathematical model for hand sizes characterisation, which offers high-dosage,
adaptive and gradual rehabilitation therapy. Park et al. (2018) proposed a multimodal
sensing and interaction paradigm for a hand orthesis incorporating EMG armband,
bend and pressure commercial sensors. EMG is complemented by others sensing
modalities, where the bend and pressure provide the system information about pro-
posed rehabilitation movements. In this proof-of-concept implementation, several
diseases phenomena can be recorded such as muscle spasticity and abnormal muscle
synergies, which can enhance the medical understanding. Ergen and Oksuz (2019)
performed a grip analyses in order to investigate the load distribution and the contact
area and grasped objects. A special glove based attached pressure sensors was devel-
oped for collecting and recording instant data. This study was announced in hand
assessment area, where four common grip types (standard, lateral, pinch, and tripod
grips) were investigated in terms of load distribution and contact area related to the
palmar surface of the hand. Karime et al. (2011) develop an interactive rehabilitation
system based on an IMU sensor that is aimed to help in the recovery process of people
with wrist disabilities. A 2D golf game was designed as exercises platform, which
leads patient to perform daily exercises in joyful and interactive manners. Dovat
et al. (2008) developed a robotic interface based on biomechanical measurements,
which can assist the subject in opening and closing movements and can be adapted
to accommodate various hand shapes and finger sizes.

2 Nanocomposite Sensors

Among a number of smart nano materials, carbon nanotubes (CNTs) present an
important role in force sensing area due to their remarkable electrical, mechanical,
and electrochemical properties. Carbon nanotubes were classified to be outstanding
fillers materials in high-performance polymer composites for interaction with the
human body (Kanoun et al. 2021). In order to understand the conductive mecha-
nism of the nanocomposite pressure/strain sensors, the change of the CNT/polymer
interaction network under applied forces have to be studied first. In fact, the CNT
nano-fillers are usually dispersed in a polymer to improve the nanocomposite prop-
erties. The carbon nanotubes material is a rigid material with high electrical and
thermal properties. In general, a non-conductive polymer will be mixed to enhance
mechanical and dielectric properties. In this context, Dinh et al. (2011) proved that
the sensitivity of the carbon nanotubes embedded in the polymer is higher than the
sensitivity of the CNT films without embedded/integrated polymer. The nanocom-
posite sensors are built up of different types of polymer, which differs based on the
measurement range and the physical quantity measured.
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2.1 Pressure Sensors

2.1.1 Sensor Principle

After the nanocomposite fabrication, not all CNTs will participate in the conduc-
tive network formation due to the random dispersion in the polymer matrix (see
Fig. 1). The nanocomposite conductivity is induced by the CNT network by estab-
lishing conducting paths between electrodes. Based on the two-dimensional stick
percolation theory, each CNT is defined as straight stick responsible in constructing
the conductive network of the composite. With the increase of the conducting filler
content, the nanocomposite material pass from the insulation state to a conductive
state (Kanoun et al. 2014). This enables to accelerate the formation of the conduc-
tive network, which significantly, increases the magnitude of the current carrying
that passes through the conductive network (see Fig. 1). When the sensor is under
pressure, position, and orientation of the carbon nanotubes in the resistance network
change to cause a significant change of the conductive paths. Also, the applied pres-
sure creates a modification in both the geometry and the area of the CNT film. All
these factors cause a resistance variation of the nanocomposite pressure sensor.

As illustrated in Fig. 1, CNTs components were randomly dispersed in the poly-
mer network. These CNTs are connected by tunnelling transport of electron via
junction gaps (Wang and Ye 2013). Two types of resistance are defined to estimate
the resistance of a CNT film as expressed in the following:

RTotal = RCNT + R junction (1)

where RCNT is the intrinsic resistance of the carbon nanotubes itself, and R junction

is the inter-tube resistance resultant from the CNT/polymer interaction.

Fig. 1 Electrical conductive CNT network in a polymer matrix under pressure
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The typical value for RCNT is estimated between 0.2k�/µm and 0.4k�/µm.
The R junction resistance can be divided into two principle resistance Rcontact and
RT , where Rcontact is the physical contact resistance with the CNTs as calculated in
Eq. (2):

Rcontact = Ri j = 4li j
gCNTπd

(2)

The RT is the tunneling resistance for carbon nanotubes separated by small gaps
as expressed in Eq.3:

RT = Ri j = h2d

Ae2
√
2mλ

e
4πd
h

√
2mλ (3)

where d is the distance between CNT, h is the plank constant, e is the electricity
quantum, m is the electron mass, λ is the energy barrier and A is the cross sectional
area of the tunnel.

2.1.2 Recent Developments of Pressure Sensors: An Overview

Dinh et al. (2018) fabricated a pressure sensor based on carbon nanotubes yarns by
dry web-spinning and heat-treatment processes. A chemical vapor deposition (CVD)
process was used to achieve the growth of CNT forests on the silicon substrate. The
CNT forests spurned into yarns by a dry spinning process to results CNT yarns with
12µm of diameter. Then, to reduce the van der Waals interaction between adjacent
CNT, the CNT web on the silicon substrate was annealed in a furnace where the
temperature varies between 200 ◦C and 600 ◦C. The CNT yarns were mixed into a
web of acrylic elastomer using a thickness of 500µm. Experimental results exhibit a
high electrical and mechanical performance, where the resistance decrease by 2.8%
at a pressure threshold lower than 60kPa, a high sensitivity detected and Young’s
modulus was estimated approximately on 4.7 10−4 kPa−1 and 16GPa.

Jung et al. (2018) proposed a new concept of a nanocomposite pressure sensor
where a pyramidal protruding CNT/PDMS structure was developed. The nanocom-
posite material is restricted between two conductive electrodes due to the great elec-
trical properties of PDMS polymer. The top electrode and the bottom electrode are
fabricated by the polyethylene terephthalate (PET) films, which coated with tin-
indium oxide (ITO) by the means of the high conductivity characteristic. During the
unloading period, only the tip of the pyramid was in contact with the bottom elec-
trode. Contrariwise, the surface of contact increases under pressure, accordingly,
the resistance measurement decrease due to the augmentation of the CNT conduc-
tive paths in the resistor network. Experimental results demonstrate three different
linear sections according to the pressure applied. When the quantity of pressure sub-
jected between 0 to 25Pa, the sensor exhibits a sensitivity of 21,14kPa−1, between
25Pa to 250Pa of pressure the sensitivity decrease to 1.39kPa−1 and a low sen-
sitivity detected when applied more than 250Pa approximated to 0.08kPa−1. Gao
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et al. (2018) designed a wearable pressure sensor based on sandpaper-moulded car-
bon nanotube-polydimethylsiloxane (CNT-PDMS). Using the sandpaper moulding
method owing to its high efficiency and scalability, the pressure sensor was devel-
oped. First, the PDMS polymer was deposed onto the sandpaper with a grit number
of 1200. The microstructures are called to the PDMS layer and peeled off from the
sandpaper. Then the electrode was finished by coating the CNTs onto the sandpaper
moulded PDMS. Two proposed electrodes were needed and placed face to face to
form the final state of the pressure sensor. The device was tested under pressure
applied between 5Pa and 50kPa. The nanocomposite sensor illustrates a response
time approximated to 190ms, a sensitivity of 0.2kPa−1 at the limit pressure and high
stability where more than 5000 loading/unloading cycle are done.

Liu and Yan (2018) demonstrated a successful fabrication of a nanocomposite
pressure sensor based on the capacitance variation. The capillary pressure sensor was
composedof twoparallel plates based onCNTmaterial andPDMSpolymer including
a medium liquid as a dielectric medium.Where the capacitance was varied due to the
variation of the interspace between electrodes under pressure. The fabrication process
requires 3g of MWCNT with a diameter between 5–8nm and length between 10–
30µm were dispersed in 50g of ethanol using a mechanical homogenizer. After
defined time, a 32g of PDMS was mixed with the MWCNT/Ethanol solution. The
ethanol was completely removed after 5h at 80 ◦C and the printable ink is ready.
Then, using a 3D printing process, the capillary pressure sensor was fabricated. At
1kHz of frequency and under pressure, the capacitance variation was measured,
respectively, at the initial state, 30Pa, 90Pa, and 120Pa to get values of 0.08nF,
1.50nF, 3.56nF, and 4.92nF respectively. A high performance achieved for example
for sensitivity higher than 547.9kPa−1 and high durability after 500 pressing cycles.
Pyo et al. (2017) proposed a new structure for a sensitive pressure sensor using
CNT material, where the CNTs are designed as a coated polyester fabric. The multi-
walled carbon nanotubes with 20nm of a diameter and 10µm of a length, were
dispersed in deionized water DI by applying Carbon Nano Technology. Then, a
commercially polyester fabrics are dipped into the dispersed solution and rapidly
coated with MWCNT due to its absorption property to be finally dried in an oven at
120 ◦C.After the fabrication of the pressure sensors, many studies were done to prove
that the range of the variable resistance can be controlled by modulating the dipping
number. Under pressure, the nanocomposite sensor shows high electrical properties.
An external force is applied onto the coated polyester fabric the contact betweenCNT
decrease resulting in increasing the conductive pathways, consequently, the decrease
of resistance. When pressure is applied, the sensor shows two linear measurements.
Between 0 to 10kPa, the resistance varies due to the contact of CNT fibers. Once
the pressure exceeds 10kPa, the increase of fibers contact is detected owing to the
increase of resistance. Hence, a maximum sensitivity was measured by 10.63%/kPa
for a pressure of 10kPa.

Maddipatla et al. (2017) developed a capacitive sensor-based CNT and Poly-
dimethylsiloxane (PDMS), which is designed using screen printing. A dielectric
layer was integrated between plates based on PDMS polymer. Then, the CNT elec-
trodes are printed using CNT ink on PDMS layer with a thickness of 8.9µm and



Piezo-Resistive Pressure and Strain Sensors for Biomedical … 53

Fig. 2 Capacitive and resistive pressure sensors overview

average roughness of 0.8µm. The electrode was directly screen printed using con-
ductive CNT ink onto the PDMS. From experimental results, the capacitance range
variation was defined from 6.49pF to 7.02pF for a maximum pressure subjected
by 337kPa. The percentage of change of the capacitance compared with the based
capacitance value was estimated at 8.2%. A 0.021% change in capacitance per kPa
and a correlation coefficient of 0.9971 was also determined for the CNT-based pres-
sure sensor.Woo et al. (2014) present a highly elastic capacitive pressure sensor using
a combination of soft-lithographic replication and contact printing. The printing ink
is a mixture of 10%MWCNT dispersed on PDMS liquid, which was diluted with the
toluene. The sensor was composed of 16 individual capacitively-coupled pressure
sensing cells for increasing the pressure surface detection. Each cell is designed with
two MWCNT/PDMS sensing electrodes separated by ecoflex layer as a dielectric
layer. When no pressure applied, the initial capacitance was defined to be 2.66pF,
under pressure increases to attend 3.18pF with a relatively small stander deviation
of 0.36pF for 0.5MPa of subjected pressure (Fig. 2).

Ramalingame et al. (2019) developed a high-pressure sensor based on the multi-
walled carbon nanotube material, where the sensitive force/pressure information is
required. Therefore, a polydimethylsiloxane (PDMS) composite is used as a polymer
for MWCNT dispersion. With a non-complex fabrication process, 1 wt%.MWCNT
was mixed with PDMS polymer using tetrahydrofuran (THF) solvent as the disper-
sion medium. The pressure sensor exhibits a high sensing performance due to its fast
response to detected low pressure, high durability after 100 cyclic loading/unloading
test and high sensitivity up to 670kPa. A measurement system for hand movement
detection was proposed with high sensing capabilities of the fabricated pressure
sensor.
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2.2 Strain Sensors

2.2.1 Sensor Principle

A specific type of piezoresistive device that can be fabricated based on CPCs and
in particular on carbon nano-filled polymer composites is the mechanical strain sen-
sor. Its sensing principle relies on the modification of the percolated network upon
mechanically stressing or stretching the composite. Figure3 shows the principle of
a nanocomposite working as strain sensor. Mechanical deformation is applied to the
composite causing an impact on the structure of the percolated network (here shown
as a 1-dimensional linkage for explanatory purposes) which in turn changes the elec-
trical resistance of the composite. As illustrated in Fig. 3, the percolated network
is extended by the mechanical deformation and the contact distance between neigh-
bouring conductive particles is increased or interrupted (red circles in Fig. 3). By that,
the distance between neighboured CNTs increases and may surpass the tunnelling
distance (Hu et al. 2010).

This phenomenon was already reported for polymer/CNT sensors subjected to
unidirectional elongation (Hu et al. 2008). According to Hu et al. the increase of
distances between rod-like particles is an important factor affecting the electrical
resistance change in polymer/CNT strain sensors (Pham et al. 2008). At low defor-
mation (within the linear viscoelastic range) this process is reversible. In most cases,
the plastic regime of a thermoplastic composite should not have been reached upon
mechanical load. This is desirable for applications in which the developed sensor
material is intended to be used repeatedly. In general, while doing a piezoresis-
tive test the changes in electrical resistance are measured with time and afterwards
correlated to the applied mechanical deformation. Once the characteristic electri-
cal response of the composite is known upon mechanical deformation, it can be
correlated to a defined strain. In order to transduce from the electrical response to
mechanical deformation a transforming function is needed. A linear case, where the
change in electrical resistance is directly proportional to the mechanical strain, can
be denoted by the following equation:

Fig. 3 Electrical conductive
CNT network in a polymer
matrix under applied strain
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SGF ε = ΔR

R0
(4)

ΔR = Rmeasured − R0 (5)

where SGF is the strain gage factor, ε is the mechanical strain, R0 is the electric
resistance previous to load application.

The SGF is the coefficient that correlates the strain and the resistance changes and
it can be used to estimate the strain from a measured resistance. However, Eq. 4 is
only applicable for cases or deformation ranges where the deformation upon applied
load is linear. Elastomers for example have a non-linear behaviour. For these cases
the resulting curve can be fitted to a polynomial function from which the strain
can be obtained (Bautista-Quijano et al. 2013). Moreover, different gage factors can
be obtained depending on the deformation behavior of a composite upon loading.
For instance, Ku et al. found that two gage factors can be adjusted to fit a nonlinear
piezoresistive behaviour, where each follows the strain in the elastic and plastic zone,
respectively (Ku-Herrera et al. 2013).

2.2.2 Recently Developed Strain Sensors: An Overview

Wajahat et al. (2018) developed a flexible strain sensor for Human-machine inter-
face and health monitoring requirements. Using a meniscus-guided printing system,
the sensor was fabricated based on multi-walled carbon nanotubes (MWCNT) and
polyvinylpyrrolidone (PVP) polymer. To ensure high-performance measurement, a
cycle test during 1500 bending cycles was done at 2.0% of strain to demonstrate the
high stability response. In the same context, a gauge factor was estimated by 12.87
under compressive strain and 13.07 under tensile strain due to the MWCNT/PVP
reproducible response. When strain applied, a rearrangement contact of the MWC-
NTs was induced resulting in a change of the tunnelling distance between them,
consequently, a variation of the (ΔR/R0) resistance of the printed sensor. To exhibit
high performance of the sensor, finger glove was fabricated for detection of the fin-
gers movements and remote control of robotic equipment. Ko et al. (2018) designed
a conductive textile via vacuum-filtrated where the MWCNT powder was used as
a conductive material dispersed in deionized water (DI) solution. The investiga-
tion of the fabricated conductive textile was done based on its resistance variation.
Many studies have been conducted to ensure the stability of the sensor. Precisely,
a stretchability cyclic test was done at a strain rate of 0–20%. The nanocomposite
material shows a uniform resistance variation less than ±3% during 10.000 cycles
of stretching. To enhance the performance of the MWCNT/DI sensor, a motion-
sensing glove was proposed for the interaction with the human skin by the fingers
monitoring. Amjadi et al. (2014) suggest a sandwich structure of a new strain sensor.
Herein, highly stretchable polymer elastomer wrapped the nanocomposite of silver
nanowire network (AgNW) using PDMS elastomer as a dispersed solution in the
form of a sandwich structure (the AgNW thin film embedded between two layers of
PDMS polymer). Due to the high AgNW/PDMS interaction and the silver nanowires
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Table 1 Developed nanocomposite strain sensors and reported applications

Reference Nano-particles Polymer Fabrication
technology

Application

Wajahat et al.
(2018)

MWCNT PVP Meniscus-guided
printing

Robotic hand
control

Ko et al. (2018) MWCNT DI Vacuum-filtrated Conductive
textile glove

Amjadi et al.
(2014)

CNT Silicon Wet-spinning
assembly

Woven
glove/Wristlet

Tang et al. (2018) AgNW PDMS Sandwich
structure

Smart
glove/Avatar
robot

density, a strong piezoresistivity with tunable gauge factors was estimated between
2 and 14 with a 70% of a stretchability, which is noted for high stretchable and
wearable sensing response. A higher Young’s modulus of AgNWs was calculated
between 81 to 176GPa. The sensor response was studied by the 3D resistor network
behavior where the variation of resistance under strain was detected. Based on the
experimental and simulation results, a smart glove was developed by assembling
five nanocomposite sensors for detection of the fingers movements and the control
of an avatar robot. Tang et al. (2018) proposed a coaxial wet-spinning assembly
approach for developing a highly sensitive nanocomposite sensor. Using a pure sil-
icon elastomer as a polymer, the multi-walled carbon nanotubes are dispersed into
the prepared polymer solution. A core-sheath fibre strain sensor is fabricated based
on theMWCNT/Silicon interaction. The carbon nanotube polymeric composite core
of the stretchable fiber is surrounded by an insulating sheath, similar to conventional
cables and shows excellent electrical conductivity with a low percolation threshold
(0.74 vol %). The core-sheath fiber strain sensor shows a great performance by the
means of the high stretchability percentage about 300%, high reproducibility with
more than 10.000 cycles, great sensitivity by a large gauge factor range estimated on
1378 and Young’s modulus approximated equal to 0.49MPa. To explore the appli-
cation for the human motion detection, a commercial glove is developed where the
CSF sensor was attached to investigate the real response corresponding to the wrist
and human fingers movements (Table1).

3 Hybrid Glove with Implemented Pressure and Strain
Sensors

A real-time feedback system that can offer rehabilitation system for the patients
with fingers and wrist disabilities is presented. The proposed setup is a flexible,
portable, cost-effective home rehabilitation system, and it consists of a regular glove
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Fig. 4 Developed glove with attached strain and pressure sensors

mountedwith a nanocomposite filament-based strain sensor tomonitor the individual
finger movements and pressure sensors, that can monitor the pressure distribution
in the palm (Atitallah et al. 2019). The nanocomposite fiber strain sensor is placed
in each finger, and pressure sensors are placed inside the hand. Sensor placement
and the number of sensors depend on the finger movement and maximum pressure
distribution formed during the handling of the object and this can be altered depends
on patients’ need as well as doctor’s advice (Fig. 4).

3.1 SBS/C-TPU Strain Sensor

SBS (styrene-butadiene-styrene rubber) and the C-TPU (conductive thermoplastic
urethane) were weighted according to the desired composition and mixed in a glass
flask (Ramalingame et al. 2017c). This mixture is then added to an extruder device
were the pellets are melted at a temperature up to 250 ◦C under a constant pressure
exerted by the screw rotation. The mixture is pushed towards a heated metal die
where the filaments form by passing through the die hole (Torres et al. 2018). For
this study, a 1mm die hole is used, resulting in filaments of 1mm in diameter. The
resulting composite is a filament blend made of SBS and C-TPU. 12cm parts were
separated, andmetal clampswere attached as observed in Fig. 1. The initial resistance
of obtained filaments was approximately 1M� and obtained a gauge factor (GF)
equal to 24.

Several tests were carried out to determine the characteristics of the behaviours
related to the stretching operation including mechanical test, Hysteresis test, and
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Fig. 5 Hysteresis behaviour under applied strain-release cycle

cyclic test. Figure5 shows that the electrical resistance change increases upon increas-
ing strain and decreases upon load release. For instance, for a strain of 50% the
increase in electrical resistance change is as high as 1200%, which is indicative of
large sensitivity. The apparent low magnitude of resistance change corresponding to
low strain (≥5%) implies that the percolated network inside the fiber is not greatly
modified by small amounts of stretching, yet the change in resistance is as high as
∼10%. In order to study the behaviour of the fibers upon cyclic straining, loading-
unloading cycles were performed up to 60mm of elongation as shown in Fig. 6. The
electrical response of the filament is able to follow the applied cyclic strain. The fila-
ment shows an increase inmaximumelectrical resistance reachedwith each cycle and
results in higher values than the previous loading cycle until the 18th cycle where the
resistance value reached in further cycles remains the same. This can be due to a re-
accommodation of the polymer chains after releasing the load which in turn modifies
the way the MWCNTs are initially arranged inside the polymer. Nevertheless, in all
sensors evaluated the maximum and minimum electrical resistances remain similar
after a specific amount of cycles. This shows that higher repeatability in the electrical
response of the sensors is achieved once a determined amount of cycles is reached.
This behaviour can be due to CNTs re-accommodation occurring around deformed
elastomeric thermoplastic polymer chains at each stretching-shrinking step until no
more CNT re-accommodation takes place along the deformed polymer chains. This
in practical terms can be seen as a ‘training’ step in which the sensor has to be
subjected to a pre-defined amount of pre-stretching cycles to secure a repeatable
response and thus reducing the hysteresis.
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Fig. 6 Displacement and resistance measured on SBS/CTPU filaments upon cyclic evaluation

3.2 CNT/PDMS Pressure Sensor

A high-pressure sensor was developed based on the multi-walled carbon nanotube
material (MWCNT), where the sensitive force/pressure information is required.
Therefore, a polydimethylsiloxane (PDMS) composite is used as a polymer for
MWCNT dispersion. The fabrication process of the nanocomposite pressure sen-
sor is carried out in accordance with our prior work (Ramalingame et al. 2017a).
MWCNTs in the concentration of 1 wt.% are pre-dispersed in an organic solvent
(Ramalingame et al. 2017b) using sonication and magnetic stirring process and later
dispersed in PDMSwith higher amplitudes of sonication andmagnetic stirring. Later
this nanocomposite dispersion is mixed with a cross-linking agent to facilitate the
curing process of the polymerwhich is complete in 2h under a temperature of 120 ◦C.
The fabricated nanocomposite is then attached to a silver-based circular interdigital
electrode for electrical readout and can be utilized as either piezoresistive (Rama-
lingame et al. 2019) or piezo-capacitive (Ramalingame et al. 2017a) pressure sensor
based on the excitation signal and desiredmeasurement signal (see Fig. 7). This mod-
ule exhibits a high sensing performance due to its fast response to detect low pressure,
high durability and high sensitivity up to 670kPa. The sensor response was investi-
gated using a cyclic test after 100 cyclic loading/unloading. The resistance converges
approximately to the same range of values for every load cycle. Figure8 illustrates
the repetitive behavior of the sensor variation, where the resistance varies from 1k�
for low-pressure values to more than 15k� in high applied pressure values.
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Fig. 7 a Nanocomposite sensor based on MWCNT/PDMS polymer, b Equivalent circuit of the
pressure sensor

Fig. 8 Resistance variation under applied cyclic pressure test

3.3 Data Acquisition System

Based on the measured resistance value of each pressure/strain sensor unit, the corre-
sponding pressure/strain value can be calculated out. Practically, sensors are divided
into two groups. Each sensor group is controlled by one corresponding multiplexer.
Under the controlling information sent from the Arduino board, each multiplexer
will active only one channel at a time, and this activated channel is connected to one
sensor unit. This sensor unit together with the reference resistor Rref then forms a
voltage divider charged by 5V. An operational amplifier as voltage follower is used
to isolate the Arduino ADC out of the measurement circuit. The activated sensor
resistance value can be calculated as:

RSensor = Rref Vout

5 − Vout
(6)

where Rref is the given reference resistance value and Vout can be acquired by the
Arduino ADC. Hence, the resistance value of every sensor can be calculated one
by one. the piezo-resistive behavior of the nanocomposite sensor was considered.
Therefore, due to the increase in the number of conducting paths in the resistance
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Fig. 9 Sensor voltage variation range based on the reference resistance vector

network of the nanocomposite, the resistance will be decreased. The effect of tun-
neling resistance decreases while the current-carrying increases. For accurate and
high-resolution measurements, the choice of the appropriate resistance value is crit-
ical. It enables to cover the maximum range of the output sensor voltage Vs , taking
into account the range of the sensor resistance variation Rsensor . For this, a Matlab
algorithm is developed to calculate the maximum range of voltage variation of the
sensor. The defined resistance range was assumed between 5–500k� where the ref-
erence resistance should be calculated to obtain the maximum voltage sensor range.
An iterative computing algorithm is implemented, where for each value of the Rref

vector, the sensor voltage Vs is calculated by applying Eq. (7)

V s = Vcc
Rsensor

Rsensor + Rref
(7)

based on all other remaining sensor resistance vector to extract the maximum range
of Vs for each round.

At the end of this algorithm, the optimal value of Rref is obtained by considering
the maximum range value from the maximum range vector. As illustrated in Fig. 9,
the maximum output voltage range of Vs is expected for the measurement range
between 5–500k�, where the maximum Vs range equal to 4.3063V, corresponds
to 67K as a value of the reference resistance Rref . The calculated resistance value
of each sensor unit will be sent by the Arduino board through serial communication
protocol to the GUI software written in Python on PC.

For the pressure sensor units, their resistance value decreases when the given pres-
sure increases (from Fig. 10a, color yellow presents light pressure while blue color
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Fig. 10 Measurement result in the software system

Fig. 11 Practical experiments: a Holding the bottle with all fingers, b Holding the bottle with
thumb, fore and middle finger c Pressing the individual sensor

means great pressure). For the strain sensor units, their resistance value increases
when the strain increases (as the histogram in Fig. 10b).

In order to evaluate the working of the glove, we have recorded the movement
of the hand while holding a glass bottle. From Fig. 11, it can be inferred that while
holding a bottle, the pressure range is in the order: thumb, fore finger, middle finger,
ring finger, babby finger. Figure11b shows the pressure distribution while holding
the object with fore and middle finger. Individual sensors were evaluated which can
be seen in Fig. 11c.
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4 Conclusion

Among several intelligent nanoscale materials, carbon nanotubes (CNTs) show an
interesting behavior in the nanocomposite matrix based on their remarkable electri-
cal, mechanical, and electrochemical properties. In this context, a deep study was
carried out on polymer carbon nanotube composite based pressure/strain sensors
as well as their properties and working principles. Besides, nanocomposite sen-
sors present a highly accurate measurement unit in biomedical and telemanipulation
applications due to their flexibility and human body compatibility. In this paper, we
reported the design and implementation of a safe, flexible and easily transportable
electronic glove that can offer multiple hand movement possibilities for the recovery
process of the patients with hand-related problems. It consists of a hybrid system
including strain and pressure sensors for force distribution monitoring and gesture
tracking respectively.
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Abstract Wireless Body Sensor Networks (WBSNs) are widely used in Internet
of Things (IoT) based health care technologies, where the health status of patients
can be monitored through a group of small-powered and lightweight sensor nodes.
Energy consumption is thereby a major issue. One of the reasons for energy losses
in WBSN are retransmission process, when data collision takes place or data are
not received properly due to channel fading. In order to reduce the necessity for
data retransmission, we propose to reduce the transmitted data by applying data
aggregation techniques. This raises also the network lifetime by minimizing the
resources consumptionof the sensor nodes.Nevertheless, itmaydegrade significantly
the service quality metrics, such as data reliability and communication security. In
this chapter, an accurate data classification model for multiple health signals based
on different machine learning algorithms is proposed to ensure the reliability of data
aggregation. The performance evaluation shows that the Random Forest algorithm
is the best classifier in terms of accuracy (97%) and sensitivity (92%) under general
conditions.
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1 Introduction

Nowadays, Internet of Things (IoT) is supporting advancing digitalization in several
sectors. Many objects in daily life become thereby part of the internet supported by
communication and computing capabilities. In healthcare technologies, IoT involves
numerous types of inexpensive sensors, wearables and implants. In fact, persons
enjoy current medical healthcare services at everyplace, any time, and it improved
thereby their quality of life. A Wireless Body Sensor Network (WBSN) consists of
several sensors (Bahae et al. 2020) and represents a special case of aWireless Sensor
Network (WSN). Figure1 shows the WBSN based system for personal health care.

Each stage of this architecture is further explained in more detail as follows:

(1) The Intra-BSN (Tiers 1 in Fig. 1): In this stage, some sensors are placed on
the human body as (wearable sensors) or implanted under the skin as (in-body
sensors). Different kind of sensor can be used and integrated such as electroen-
cephalogram (EEG), electrocardiogram (ECG), electromyography (EMG), or
blood pressure (BP) measuring sensors. Therefore, the recorded data are sent
to the local processing unit (LPU) like: a smart phone, a tablet, or a computer
through wireless medium, and then the LPU transfers the data to the next stage.

(2) The Inter-BSN (Tiers 2 in Fig. 1): In this stage, the data transfer from Tiers 1
to Tiers 2 over one of the selected wireless communication technologies which
could be access point, Wi-Fi, or cellular base station. Collected data from this
stage need to be forwarded to Tiers 3.

(3) The Beyond BSN (Tiers 3 in Fig. 1): In this stage, the data is stored and analyzed
to make final decision about the health status. For that, data may be transferred
to doctors or hospitals and to intermediate family. In fact, received data should
be evenly accurate and reliable as required.

Fig. 1 WBSN based system for personal health care
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From recent study, the energy usage of each biosensor node and the data transmis-
sion reliability present a huge significance on WBSNs (Mehrani et al. 2020; Sabeeh
Hmoud Altamimi et al. 2020). The problem becomes more complicated in wireless
sensor networks with many nodes, where neighboring sensor nodes often have over-
lapping sensing ranges. That being the case, they sense the same phenomenon which
results in production of large volumes of redundant data. To reduce the amount of
data transmission, data redundancy is eliminated at intermediate sensor nodes by
performing data aggregation (Abbasian Dehkordi et al. 2020). Indeed, data aggre-
gation protocols that consider compromised nodes need improvements of reliability
(Kunal Kishan et al. 2020).

In this context, a WBSN needs a high degree of reliability as this immediately
affects the quality of patient monitoring (Tarique et al. 2020). A prime requirement
is that the health care experts receive the monitored data correctly. For this reason,
we enhance the data reliability at the receiving side that is meaning at Tiers 3. This
chapter surveys thewell known supervisedmachine learning algorithms used for data
classification of ECG, EMG and BP aggregated data. The main objective thereby is
the development of advanced and efficient decisionmakingmodel for cardiovascular,
muscle contraction and hypertension diseases. Due to the sensitivity and criticality
of the data carried and handled by WBSN, the accuracy is a critical issue and widely
discussed.

This chapter is structured as follows: In Sect. 2 a study of sate of the art is provided.
Then, the proposed methods are explained in Sect. 3, the simulations and results are
discussed in Sect. 4. Discussions relating to the implementation of the applied model
is given in Sect. 5. Finally, conclusion and remarks are drawn in the last section.

2 Related Works

Detecting abnormal medical data is pertinent to the life of the monitored patient
(Belhaj Mohamed et al. 2018, 2019, 2020). Over these years, a huge number of
healthcare applications based onmachine learning algorithms for improving decision
making have been proposed.

As stated in the reports published by several organizations, it may be seen that
about 50 million people are at risk of cardiovascular diseases around the world
(Verma et al. 2020). Furthermore, various types of heart diseases are the major usual
causes of mortality. Hence, the proposed work investigates an electrocardiogram
(ECG) classifying strategy using many techniques. The pre-processing process of
the proposed method is based on three essential steps as flows: removing ECG inter-
ference, peak points detection and feature extraction. In fact, their goal is to classify
the ECG signal database into normal or abnormal signal. For the classification pro-
cess, GWO-MSVM, SVM, Adaboost, ANN and Naive Baye are used in order to
extracted feature classification. The obtained precision of these algorithms is 99.9%,
94%, 93%, 87.57% and 85.28% respectively.
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Even though a huge research study for heart rate disease. In Plawiak et al. (2020)
new and efficient methods are introduced to detect myocardium dysfunctions. They
used 744 fragments of ECG signal database related to 29 patients from theMIH-BIH
Arrhythmia database. The suggested research using a new evolutionary-neural sys-
tem, based on the SVM classifier. The performance evaluation of the applied method
shows a high sensitivity (90.19%), specificity (99.39%), and accuracy (98.85%)
compared to the existing methods.

Many observations judge that the blood pressure measurements and prediction is
a significant factor for cardiovascular diseases. For that, it should be preserved under
regular control. The used data set by Alghamdi et al. (2020) is the oscillometric
wave forms of individuals using a cuff. These wave forms are divided on three
periodswhich are: the first period from the starting point to the systolic blood pressure
(SBP), the second period is between systolic blood pressure (SBP) and diastolic blood
pressure (DBP), and the third period is between diastolic blood pressure (DBP) and
the end of the waveform. For the estimation of SBP values using the kNN algorithm,
weighted kNN, and Bagged Trees, the obtained Mean Absolute Error (MAEs) are
3.590, 3.520, and 4.499, respectively and concerning the estimation of DBP, the
calculated MAEs are 11.077, 11.032, and 13.069, respectively.

It is necessary to focus on the major causes of the hypertension status. Several
research prove that it is associated with various risk factors and can be treated by
lifestyle modifications and medications. The objective (Alkaabi et al. 2020) nowa-
days is to yield a hypertension predictive model without the need of invasive clinical
procedures. As a reason that the machine learning provides the chance of having
a rapid predictive, authors evaluated several algorithms based on different patients
attributes for instance: age, gender, education level, employment, tobacco use, phys-
ical activity, abdominal obesity, history of diabetes, history of high cholesterol, etc.

All algorithms showedmoreor less similar performances: randomforest (accuracy
= 82.1%, Positive Predictive Value (PPV) = 81.4%, sensitivity = 82.1%), logistic
regression (accuracy = 81.1%, PPV = 80.1%, sensitivity = 81.1%) and decision
tree (accuracy = 82.1%, PPV = 81.2%, sensitivity = 82.1%). In terms of accuracy,
compared to logistic regression, while random forest performed similarly, decision
tree had a significantly lower discrimination ability (p-value<0.05)withAUCś equal
to 85.0, 86.9, and 79.9, respectively.

In addition to the ECG signal, a relevant study by Anand Kumar et al. (2020) pro-
vides an intuition experimental procedure to achieve the optimum results regarding
EMG classification using several machine learning models. For data analysis and
interpretations, they have used a data set consisting of the sEMG signals collected
from eleven subjects at five several upper limb position. The implementation of the
proposed Deep Neural Network (DNN) based system proves their efficiency fac-
ing the other existing classifiers. Hence, the average accuracy obtained among the
five subjects for DNN, SVM, kNN, Random Forest and Decision Tree is 98.88%,
98.66%, 90.64%, 91.78%, and 88.36% respectively.

In regard of EMG classification, a real-time automatic hand gesture recognition
was proposed (Andronache et al. 2020). The suggested model using completely
linked neural networks and temporal features extracted from the EMG signals. Con-
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sequently, the results of this study clearly show the accuracy of the proposed system
(99.31%) compared to previous work (99.78%), whereas doubling the number of
recognized gestures.

The proposed solutions ensure the function of machine learning algorithms for
diseases detection. However, they only deal with a single type of bio signals. They
do not take into consideration sensors that may be implanted in the leg, hand, fingers,
brain or in any other body part. To overcome this limitation, we propose an accurate
anomaly detectionmodel formedicalWSNbased on threemultivariate physiological
signals. The proposal is based on an accurate data aggregation process for energy
saving and reliability enhancement.

3 Proposed Model

Improving efficiency and reliability are fundamental to guarantee the success of the
WBSNs applications. In this section, we outline and discuss the aim process of the
investigated method described in Fig. 2.

As illustrated in Fig. 2, the first step consists three different vital signs from a
patient, which are the Electrocardiogram (ECG), Electromyogram (EMG) and Blood
Pressure (BP). In the second step, these sensed values are fused into one single signal
in order to reduce the amount of used energy. Recall that the data aggregation process
is based on feature extraction. In fact, the obtained data are combined from several
signal attributes. When data is aggregated, groups of sampling are replaced by a
summarized value, which are so close to the data source. Then, aggregated data will
be transferred wirelessly to the medical expert for further diagnosis. As mentioned
earlier, the focus will be on improving data reliability in Tiers 3.

Fig. 2 Flowchart of the proposed model
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Fig. 3 Outputs classification

Fig. 4 Applied ML steps

To this end, a suitable data classification model based on several supervised
machine learning (ML) algorithms such as Support Vector Machine (SVM), K-
Nearest Neighbors (K-NN), Random Forest (RF), Decision Tree (DT) and many
other algorithms is applied. Yet, performances evaluation are validated by simula-
tions carried out under Python tools. Finally, a comparative results based accuracy
and sensitivity metrics is derived.

For the system view, it is necessary to identify the extracted diseases. To accom-
plish this end, Fig. 3 introduce the major existing outputs from each examined signal.

A precise process is applied to validate the simulation results. These steps are
followed in order to train the studied ML algorithms. These are outlined in Fig. 4.
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Fig. 5 Part of the used aggregated data set

4 Performance Evaluation

4.1 Gathering Data

Gathering data is an essential step in solving any supervised machine learning prob-
lem. Indeed, the text classifier can only be as good as the data set it is built from. To
attain the data science goals, the world’s largest data science community “Kaggle”
with powerful tools and resources is used. For more clarification, Fig. 5 presents
some part from the finale used data set.

As shown in this data set, the proposed data classification is based on the feature
extraction process. The used attributes for the studied signal are: Age, sex, height,
weight, QRS, QRS duration, PR interval, QT interval, T interval, heart rate, standard
deviation, root mean square, min, max, zero crossing, systolic, and diastolic.

4.2 Data Preparation and Analysis

Before the fused data can be fed to a model, it needs to be transformed to a clear
format. First, the gathereddata samplesmaybe in a specificorder. Thus, it is necessary
to find the pairwise correlation of all columns in the data frame. Like shown in Fig. 6,
all the value in the diagonal equal to 1; that is meaning there isn’t any information
associated with the ordering of samples that influence the relationship between texts
and labels.

The process of training anmachine learning (ML)model involves providing aML
algorithm with training data to learn from. The training data must contain the correct
answer, which is known as a target or target attribute. In this case, three nominated
Target: TargetH for ECG signal, TargetM for EMG and TragetB for BP signal
are used. The presented pie diagram gives the outputs classification percent for each
studied signal.
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Fig. 6 Pairwise correlation: (left) ECG, (right) EMG, (down) BP

The classification of electrocardiogram (ECG) signals plays an important role in
diagnoses of heart diseases. Figure7a presents a pie diagram of ECG classification
divided into seven arrhythmia types. As shown, the highest detection probability is
derived for a normal condition until 64.8%. In addition, over 11.6% of the monitored
patient may suffers from ischemic changes which describe trouble to the small blood
vessels in the brain. The myocardial infarction is defined as the irreversible necrosis
of heartmuscle producing fromadecrease in blood supply to the heart due to coronary
artery occlusion. For that, the myocardial infarction for both old anterior and inferior
raises also a significant rate (4%) should be detected. Two others essential diseases
cause irregular heart rhythmswhich are the tachycardia and the bradycardia. The first
one is defined when a heart rate greater than 100 beats/min, and the second one when
the sinus node produces an electrical charge at a slower rate than normal (60–100
beats/min). Finally, the last classification is reserved for the others diseases related
to ECG signal.

The previous investigated signals result from changes in the muscle movements.
For this end, the EMG classification (see Fig. 7c) attain till 84.9% of contraction
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Fig. 7 Pie diagram for: a ECG, b BP, c EMG

which results from the coordinated trouble of each of the muscle cells. However,
merely 15.1% of training data proclaim a reset situation.

In this regard, as mentioned in the related works that the blood pressure measure-
ments are a significant factor for cardiovascular diseases. The pie diagram for the
BP also takes place. Like outlined in Fig. 7b, four significant citations are detected.
Indeed, 33.3% of the studied dataset indicates a normal health status. However, a
highest probability (39.7%) of a pre-hypertension situation is outlined. Two different
stages of hypertension are mentioned. They are characterized by abnormally high
blood pressure on the lining of the arteries. The major causes of this hypertension is
under stress or during physical exertion (Fig. 7).

4.3 Evaluation and Model Choice

For the systemmodel, it is necessary to outline the used supervised machine learning
(ML) algorithms. Thus, the training model is indicated in Fig. 8 below.

Like humans, machines are able of learning in several ways. Three machine learn-
ing strategies are identified which are supervised, unsupervised, and reinforcement.
In the current work, the focus will be on supervised learning algorithms, and the
well-known examples are applied.

As introduced in Fig. 10, the used algorithms are: Support VectorMachine (SVM),
Random Forest (RF), Decision Tree (DT), Gradient Boosting (GB), Logistic Regres-
sion (LR), Naive Bayes and the k-Nearest Neighbors (KNN).
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Fig. 8 Applied ML
algorithms

Firstly, the Support Vector Machine (SVM) which is greatly preferred by many
applications as it produces efficient accuracy with less computation power. Secondly,
the Random Forest (RF) is chosen for their flexibility. It ensures the network lifetime
without hyper-parameter tuning. A tree has many analogies in real life, a Decision
Tree (DT) can be used to visually and explicitly perform decision making. Besides,
the Gradient Boosting (GB) is typically used with decision trees of a fixed size as
base learners to enhance the optimization. Then, to assign observations for a discrete
set of classes Logistic Regression (LR) algorithm is used. Finally, two simple and
powerful algorithms for predictive modeling are used which are the Naive Bayes and
the k-nearest neighbors (KNN).

To properly perform a model, it should always determine if it will do a good
job of predicting the target on new and future data. Because future instances have
unknown target values, it need to check the accuracy metric of the ML model. Then,
this assessment is used as a proxy for predictive accuracy on future data. From this
observation, the data set has a total of 9072 data samples and it was divided into
(80%) for training and (20%) for testing. The model selection library of the Scikit
Learn contains the train test split method that allows to do this separation.

To describe the performance of a classification model, it is essential to calculate
the confusion matrix between actual and prediction outputs. In fact, the previous
mentioned algorithms are trained and the accuracy score for each signal is calculated.

In this subsection, only the obtained confusion matrices for ECG signal are pre-
sented in (Figs. 9, 10, 11 and 12). The same process is applied for the remaining
EMG and BP signals.

For more justification, the numerical results of calculated accuracy score for each
EMG and BP signals are displayed in Fig. 13.
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Fig. 9 Confusion matrix: a Gradient boost, b KNN

Fig. 10 Confusion matrix: a SVM, b Naive Bayes

Fig. 11 Confusion matrix: (left) Logic regression, (right) Decision tree
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Fig. 12 Confusion matrix based random forset

Fig. 13 Obtained accuracy: a EMG, b BP

After evaluation, to choose the best model classifier, the performance metrics in
terms of accuracy and sensitivity need to be discussed. For that, the mathematical
equation of accuracy score is expressed in (1):

Accuracyscore(%) = T P

T P + FP + T N + FN
(1)
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Table 1 Comparative results

Model name ECG EMG BP Sensitivity

Random forest 0.7631 0.9736 1.0000 0.9122

SVM 0.7368 0.9473 0.9605 0.8859

Logic regression 0.7105 0.9342 0.8157 0.8596

Decision tree 0.6973 0.9605 1.0000 0.8859

KNN 0.6842 0.9605 0.9342 0.8815

Gradient boost 0.6842 0.9736 1.0000 0.8201

Naive bayes 0.5789 0.9342 0.9078 0.8069

Where:

• T P: True Positive
• FP: False Positive
• T N : True Negative
• FN : False Negative

For a medical diagnosing, sensitivity refers to the test’s ability to correctly detect
ill patients who do have the condition. Mathematically, this can be expressed in (2)
as:

Sensi tivi t y (%) = T P

T P + FP
(2)

At last, the results are illustrated in Table1. From the comparative results, it is clear
that the Random Forest outperforms Support Vector Machine, Logic Regression,
Decision Tree, k-Nearest Neighbors, Gradient Boost and Naive Bayes in terms of
accuracy (76%, 97%and 100% forECG,EMGandBP respectively)with a sensitivity
percent equal to 91.22%.Yet, theGradientBoost algorithm raises also a high accuracy
score till 97.36%especially for EMGsignal. In other part,DecisionTree andGradient
Boost look as a good classifiers (until 100%) for a blood pressure movements. In
addition, the SVM, DT and KNN algorithms reach a high sensitivity level over
88%. Hence, a negative result in a test with high sensitivity is useful for ruling out
disease. A high sensitivity test is reliable when its result is negative, since it rarely
misdiagnoses those who have the disease. Thus, this decrease proves the reliability of
the three transferred aggregated medical signals based on different machine learning
algorithms. By this ways, the aggregation operation does not affect the signal quality
at receiving side, and the proposed approach recreates the signal/output for decision
making.

Finally, the Random Forest (RF) model has the highest accuracy and sensitivity.
So it is the better classifier in this case. The final applied step is to save this model
using the pickle operation for future prediction.



80 M. Belhaj Mohamed et al.

5 Discussion

Decision making based machine learning algorithms have been observed in diverse
fields, such as engineering (Cui et al. 2021), industry (Peters et al. 2020), physics
(Han et al. 2020) or biology (Bing et al. 2020). Actually, it seems that scientists have a
tight appreciation of the person risk. The reliability assessment in medical healthcare
applications is unavoidable because of the limit calculation speed, memory effects
and finite transmission velocity. Therefore, accuracy and sensitivity metrics have
been expressed more precisely in each training model.

6 Conclusion

In this chapter, a process for reliability assessment of multiple health signals has
been described. The system operators require several supervised machine learning
algorithms to evaluate decisionmaking at receiving side. In order to do it for multiple
physiological signals, an efficient data aggregation operation to reduce the amount
of used energy has been applied. By this manner, energy consumption could be
reduced and the data reliability is enhanced. The required results yield the efficiency
of the Random Forest algorithm in terms of accuracy (97%) and sensitivity (92%).
Furthermore, a future direction of research is the real implementation of the Random
Forest classifier and how to enhance the security communication in WBSN.
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Accelerated Moving Humans Detection
Algorithm using Combined Global
Descriptors on GPU Based on CUDA

Haythem Bahri, Marwa Chouchene, Randa Khemiri, Fatma Ezahra Sayadi,
and Mohamed Atri

Abstract Day by day, the ability to detect and to identify automatically the objects
among images and videos without constraint has becoming more and more impor-
tant. The security systems, robots, smartphones and smart devices need to know
the semantic meaning of image. The increase in object detection and identification
algorithms is essentially related to the increase in complex object specification and
authentication techniques. This could be resolved only when using the parallel archi-
tectures that can support heavy parallel processing such as GPU. In this chapter, we
propose to present an implementation of moving humans detection algorithm on
GPU based on the programming language CUDA. We proposed an implementation
of an algorithm to extract the image features using the Fourier descriptor on GPU.
We have proposed a second implementation to extract the image features based on
the HOG descriptor on GPU. To detect the moving objects, we have implemented
a background subtraction algorithm based on the GMM: Gaussian Mixture Model
on GPU. In order to integrate these implementations in the main moving humans
detection algorithm, the use of preprocessing and filtering techniques is necessary at
this level as well as the CCL: Connected Component Labeling method which allows
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extracting the Moving objects from the rest of the image. The implementation of
such kind of algorithm on GPU allows a great performance in terms of execution
time.

Keywords Human detection · Fourier descriptor · Compute Unified Device
Architecture · Histogram of oriented gradients · Support Vector Machine ·
Graphics Processing Unit · Gaussian Mixture Model

1 Introduction

The past decade has been marked by tragic events of an accidental or intentional
nature such as terrorist attacks. This has made companies more demanding in terms
of safety and prevention. As a result, digital video surveillance systems are now being
developed and installed in residential, public and work environments. This technol-
ogy has gradually become an essential means of contributing to the improvement of
security in cities.

The theory of video surveillance and its applications have grown considerably in
recent years with great results. However, they lack processing efficiency, speed of
execution and low energy consumption. These realities are serious drawbacks for
real-time applications, such as real-time people detection systems. There are dif-
ferent ways that video surveillance algorithms analyze data, but they are almost all
cumbersome and complex in terms of calculation. This increases the CPU power
consumption and runtime. Indeed, these systems are generally subject to execution
time constraints, typically real time. Unexpectedly, the treatments to be performed by
these applications are increasingly complex for several reasons, including: the con-
sideration of more sophisticated algorithms; increasing the resolution of the images
processed as well as that of their bit rate in a video acquisition; the complexification
of the nature of the targeted models; to quote only those.

As a result, meeting the time constraints becomes a more difficult challenge. One
way to overcome these problems is to wait for the video surveillance algorithms to
find new ideas for data processing or to try to implement heavy parts of an algorithm
on hardware such as FPGAs and GPUs. By taking advantage of the nature of the
hardware for parallel computing, the processing time can be significantly reduced
whilemaintaining low power for complex calculations. Specifically for GPUs, which
have become increasingly programmable over the last decades thanks to NVIDIA
the parallel computing leader with its intuitive CUDA or Compute Unified Device
software Architecture and its highly optimized GPGPU hardware. Data can be trans-
ferred into their vast memory and using billions of virtual threads, great results can
be obtained by extracting the inherent parallelism of a video surveillance algorithm.
All this boils down to better performance and realistic use of video surveillance
programs in everyday life.

The multi-core architectures and GPUs as graphics processing units are being
increasingly used in modern video surveillance systems because they provide energy
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and cost efficient platforms. Tomeet the real-time processing, we harness those kinds
of architectures by extracting data level parallelism in such algorithms. Video human
detection is a crucial step in many visual computing applications like human detec-
tion in video surveillance (Chen et al. 2014; Kumar et al. 2016), driving assistance
(Pedersoli et al. 2014; Campmany et al. 2016), roadside unit for intersection assis-
tance (Bauer et al. 2010; Weimer et al. 2011) and object movement verification and
tracking (Sankaranarayanan et al. 2008). Most of them have high computational
loads, storage, and bandwidth requirements. Hence the idea to implement that kind
of video surveillance algorithms like moving humans detection on GPUs and other
multi-core architectures.

In this paper, a parallel implementation of a human movement detection algo-
rithm on the GPU architecture is discussed in detail. At first, the paper focuses on
some algorithms such as Gaussian Mixture Model (GMM) to extract the foreground
from video on GPU. Secondly, some operating ran on the CPU such as the mor-
phological operator for noise removal in a video frame and Connected Component
Labeling (CCL) for identifying the foreground of moving object. Then two algo-
rithms are implemented on the GPU to extract the features from the moving object:
Fourier descriptor and Histogram of Oriented Gradients (HOG) descriptor. Finally,
the adopted classifier Support Vector Machine (SVM) uses the feature descriptors
to provide the classification result humans from non-humans moving objects. The
GPU algorithms were tested by executing different frame sizes on Geforce GTX480
GPU.

The structure of the paper is as follows: in Sect. 2, we explain the used methods
in the proposed moving humans detection algorithm. In Sect. 3, we detail the main
structure of our proposed algorithm and its implementation on GPU. Section4 is
devoted to experimental results and discussions of the implementation of the pro-
posed algorithm. In Sect. 5, we conclude our paper and we present future work.

2 Methods and Algorithms

The main goal of the proposed algorithms is to extract the image regions correspond-
ing to moving object from the rest of the video frame and then classify this object in
order to detect the human using SVM. Therefore, we use Gaussian Mixture Model
the most efficient background subtraction model to extract the foreground. After
that, we use some preprocessing to eliminate noisy areas in the foreground map as
blur and threshold filter. Next, we apply the morphological operator to provide more
compact regions without editing the original forms. Then we extract the Fourier and
the HOG descriptor for each moving object which will be an input of the adopted
classifier SVM. All steps of the global algorithm will be detailed in the following
subsections.
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2.1 Gaussian Mixture Model

TheGMMapproachwas initially proposed by Friedman andRussell in Friedman and
Russell (1997) to subtract the background. Later, many efficient updates of GMM
equations are given. Indeed, the GMM update equations are continually enhanced to
simultaneously select the appropriate number of components for each pixel, allowing
themodel to not fully adapt to the scenebut also reduces processing time and improves
the segmentation. Until themodel of Stenger et al. (2001) that suggests the number of
components of a hidden Markov model in an off-line training procedure. The GMM
stores M separated normal distributions for each pixel (parametrized by mean μi ,
variance σ 2

i , mixing weight ωi , where i = 1, 2…M) and M typically between 3 and
5 (depending on the complexity of the scene). The probability distributions for pixel
value It is expressed as follows:

P(It ) =
M∑

i=1

ωi N (It ;μi , σ
2
i I ) (1)

where P(It ) is the pixel value probability, it is shown for 1D pixel value It ∈
{0, 1. . .255}, M = 3, ωi = {0.3, 0.3, 0.4}, μi = {70, 120, 200}, σ 2

i = {25, 30, 10}.
In this method, a foreign object appearing in the scene will be represented by some
additional components with low weights and high variances. Therefore, we can con-
clude that the background-foreground segmentation can be achieved by selecting
the mixture of the N components of the highest weight to variance ratios as a back-
ground model, and the remainder as foreground model. Due to acceptance criterion,
theGMMcontains the intrinsic assumption that backgroundpixels have lowvariance.

The blend model contains both the model distributions of the background and
those of the foreground model. That is why the minimum logical value for the num-
ber of distributions is 3, so that 2 of them can be assigned to handle the bimodal
background of the scene and dedicate a distribution to describe the foreground. Once
the current state of i is estimated, a threshold must be defined to separate the model’s
background distributions from those belonging to the foreground model. Distribu-
tions likely to be part of the background are those with a high weight, and with low
variances.

To combine these two factors for each pixel, all existing distributions are classified
by a criterion of ωi/σi . This factor reaches its peak when ωi is large and inversely σi

small. Therefore, themost likelymixture components that canmodel the background
are those with small standard deviations (intensities do not vary much) and high
probability of occurrence. After the distributions are ranked on the basis of the factor
ωi/σi , the weights of the corresponding distributions are summed and the result is
checked with a predefined threshold:

B = argminb

(
M∑

i=1

ωi > T

)
(2)
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B is the minimum number of distributions belonging to the background among
the M distributions available for each pixel. T is the fraction of the overall weight
attributed to the model of the background. A low value of T corresponds to the uni-
modal case, usually a single distribution will correspond to the background. A high
value corresponds to themultimodal case, several distributionswill be included in the
background. A multimodal distribution is often caused by a repetitive background
motion such as the movement of leaves on a tree or flag. T is a value between 0
and 1. This threshold is a measure of the minimum part of the data that should be
taken into account by the merits. Thus, the weight of the most likely background
distributions are accumulated until the sum exceeds the threshold T . B is then the
number of these distributions.

2.2 Fourier Descriptor

Fourier descriptor is one of the tools that represent all image information’s in a coef-
ficients vector. This model uses Fourier Fast Transform (FFT) to extract different
features of an image. Those features were represented in coefficients vector that will
be used as an input for learning machine to identify their class (SVM, neuron net-
work, etc…). The descriptor includes all the information of the object in the image
and keeps the invariance characters when applying the geometric, noise and lighting
transformations. It can be in a global model to represent all pixels in the image or
in a local one where it shows a region of interest or interesting points. We can cite
some models of descriptor such as a color descriptors, shape descriptors and texture
descriptors. We are interested in shape descriptors model as an application domain.
In this context, we studied the Fourier descriptor for the images recognition and
classification. It uses the FFT to extract all information of a color image. The data
represented in a vector will be used as input to the classifier in order to identify its
class. Fourier descriptors can be used in various applications such as object recogni-
tion and forms, tracking of objects or person and real-time image recovery. We can
describe the Fourier descriptor steps as follows: initially, read the image then trans-
form these plans using FFT, afterward, group the FFT images blocks and calculate
the square modules of these resulting images and finally, apply the suitable algorithm
to determine the Fourier descriptor (Bahri et al. 2017).

2.3 Histogram of Oriented Gradients

The computation of the HOG is based on evaluating normalized local histograms of
image gradient direction in a dense grid. Thismethod tries to characterize local object
appearance and shape by the distribution of local intensity gradient directions. The
main advantage of the HOG representation is the fact that it is robust to illumination
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variance because gradient directions of local regions do not change with illumination
variations. It is also robust to small deformations because slight shifting and affine
deformations make small histogram value changes.

2.4 Preprocessing: Blur Filter, Thresholding and Opening
Morphological Operator

In our algorithm, we used two pretreatment tools in order to destroy the image noise
by the effect of background subtraction. The blur filter for smoothing the image and
eliminate noises and details and thresholding to differentiate the relevant pixels from
the rest. In the following we define these two processes to better understand their
choice in our contribution.

2.4.1 Blur Filter

The blur filter or also the homogeneous filter is the simplest method of smoothing
an image. You just have to calculate the neighborhood average of a pixel and give
that value. You must choose the right size of the smoothing matrix. If it is too big,
the small features of the image may disappear and the image looks blurry. If it’s too
small, you can not eliminate the noise from the image. Each channel of the input
image is processed independently. It is smooth by sliding its smoothing matrix on
the image. Each pixel value will be calculated based on the value of the array and
the overlapping pixel value of the original image. In mathematical terms, we do a
convolution operation on an image with a smoothing matrix. The matrix we apply
to an image makes the difference with the result of smoothing. What we do for this
filter affects the average values of the neighbors of a pixel.

2.4.2 Thresholding

Thresholding is the simplest segmentation method, it consists in separating the
regions of an image corresponding to objects that we want to analyze. This sep-
aration is based on the variation of intensity between the pixels of the object and the
pixels of background. To differentiate the pixels that interest us from the rest that will
ultimately be rejected, we compare the intensity of each pixel with a threshold. Once
the important pixels are separated correctly, we can set themwith a determined value
to identify them. That is, we can assign them a value of 0 corresponding to black or
255 corresponding to white or any other value that suits the needs. All thresholding
algorithms take a source image and a threshold value as input and produce an output
image by comparing the source pixel value with the threshold. If the source pixel
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is greater than the threshold, then the pixel of the output image receives a certain
value. Otherwise, if the source pixel is below the threshold, the output pixel receives
another value different from the first one.

2.4.3 Opening Morphological Operator

Mathematical morphology has rapidly become, since its introduction in the 1960s,
a fundamental theory of image processing and analysis. The operators it offers can
provide tools for the entire image processing chain, from pre-processing (filtering,
contrast enhancement) to segmentation and scene interpretation. One of the impor-
tant features of these operators is that they are non-linear. They make it possible to
transform the images, to extract characteristics, objects or even measurements by an
analysis associating properties of the objects themselves (shape, size, appearance…)
and properties of the context (local neighborhood or relations with other objects).
In the following, we introduce the four basic operations of mathematical morphol-
ogy: erosion, dilation, opening and closing. Some immediate applications of these
operations will be illustrated.

2.5 CCL: Connected Component Labeling

ConnectedComponent Labeling (CCL) is almost the basis of all algorithmic chains in
image processing when it comes to analyzing regions in a scene. More generally, it is
present when it is necessary to group related pixels. We also find it to label segments,
to detect contours, or to find optical character recognition ORC or Optical Character
Recognition. Standard algorithms use either the pixel approach or an approach based
on RLC or Run Length Coding. These two approaches use a large number of tests,
which is translated at the processor level by a blockage of the pipeline and therefore
a waste of time, because the result of a test is unpredictable. Finally and this is not
the least of its flaws, the pixel approach produced a lot of useless labels. Associated
component labeling is a computer vision operation that extracts the connectivity
information from a previously segmented image. This technique makes it possible
to go from the analysis level linked to the pixel scale to a level of analysis linked to
the information of the different regions of the image. It is a method widely used by
convex hull extraction, segmentation, hysteresis filtering or geodetic reconstruction
algorithms.
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Fig. 1 a-Bounding image,
b-External bounding image

3 Moving Humans Detection Algorithm and Its
Implementation on GPU

After the brief overview of the different methods used, we try to present the overall
context of the Moving humans detection algorithm based on these techniques. The
GMM presents the first and the main step to extract the foreground image using
the background subtraction implemented on GPU using CUDA (Pham et al. 2010).
Then, we applied on CPU at first the blur filter to reduce noise and detail image
and secondly the thresholds filter to eliminate noisy areas in the binary image, any
blob smaller than the threshold size is removed. Besides this refinement, we applied
the morphological operator as opening (erosion followed by dilation) or closing
(dilation followed by erosion) to clean-up spurious responses to detach touching
objects and fill in holes for single objects. Therefore, we performed the opening
operator to the binary image from the GMM on the CPU to provide more compact
regions without editing the original shapes. To find the relevant moving objects,
we used the Connected Component Labeling (CCL) model on CPU to extract both
images: the first is the external bounding image and the second is the bounding
image respectively from the binary and the original frame. In our algorithm, we have
succeeded in implementing on GPU the Fourier descriptor for the external bounding
image and the Histogram of Orient Gradient for the bounding image as shown in
Fig. 1.

The proposed algorithm that computes the Fourier descriptor of the external
bounding image is composed of three major stages. In the first stage, we resized
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Fig. 2 Implementation of moving humans detection algorithm

the external bounding image to 64 × 128. In the next stage, the FFT is computed and
shifted to extract the feature vector. Finally, the resulting vector is normalized.

To compute the HOG, the original image inside the bounding image is also resized
to 64 × 128. Then it is divided into 128 cells of size 8 × 8. We compute the HOG
direction for each cell and each histogram that is quantified into 9 bins for the gradient
direction range of −90◦ to 90◦. It is necessary to work towards normalizing the local
contrast of the gradient to reduce the effect of the image illumination variations. It
is achieved by spatially grouping cells into overlapping blocks.

One block consists of 2 × 2 cells and any two neighboring blocks have two cells
in common due to the overlapping. All the histograms of the block are concatenated
into a feature vector of dimension 36. Since the bounding image consists of 15 × 7 =
105 blocks, the content of this image is represented by a 36 × 105 = 3780 feature
vectors. After the extraction of the feature vectors from the external bounding and
the bounding image, we used SVM to determine whether themoving object is human
or not. Figure2 summarizes the multi-stage algorithm for video human detection.

Figure3 shows a sample output of our Moving humans detection algorithms on
a pedestrian video sequence. The first row shows selected frames from the original
video sequence. The second row presents the extraction of moving object using
GMM implementation on GPU. The third row processes the GMM output by blur
and threshold filtering respectively and more especially the morphological operators
processing. The last row shows the output after the prediction with SVM displaying
the bounding box and the contours around the detected human.
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Fig. 3 Sample output of our video surveillance algorithms of moving humans detection implemen-
tation on GPU

4 Experimental Results and Discussion

The experiments were carried out on a NVIDIA GeForce GTX480 graphic card
and an Intel Core I7-3770 3.40 GHz CPU with 8 GB memory. The GPU software
was coded in the programming language of CUDA Toolkits version 4.0. The CPU
software was created in Visual C++ 2010.

4.1 GMM Implementation on GPU

Figure4 compares the performance of a sequential and a parallel implementation of
GMM algorithm on different frame sizes. The result shows a significant speedup for
parallel GPU implementation going up to 14.7× when compared to the sequential
execution on CPU. Apart from the image data, GMM stores the background model
information of mean (μ), variance (σ ) and weight (ω) values in the memory which
need to be transferred back and forth from host to device memory for successive
frame computation.

We try to overlap the communication with computation time and, hence, we
are able to obtain significant speedup values. It can be observed that the speedup
increases with image sizes because of the increase in the total number of CUDA
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Fig. 4 Comparison of the
GMM implementation time
on CPU versus on GPU
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threads (each pixel is operated upon by one CUDA thread) which keeps the cores
busy. For optimization, we used sharedmemory for storing various Gaussianmixture
values thus reducing the memory access but in counterpart decreases the occupancy.

4.2 Fourier Descriptor Implementation on GPU

Figure5 compares the performance of a sequential and a parallel implementation of
Fourier descriptor algorithm for different frame sizes. As shown in Fig. 5, we are
able to get enormous speedup for the parallel GPU implementation going up to 5.4×
when compared to the sequential execution on CPU.

This important speedup is due to several factors. First of all, inputs of this algo-
rithm are binary values for each pixel which need very less memory for storing the
entire frame and thus the transfer time is reduced to the minimal. We could also
get maximum occupancy using CUDA Occupancy Calculator a spreadsheet able
to determine how many blocks of threads may run in parallel on a specific GPU,
depending on the number of resources (registers and shared memory) the threads
use.

4.3 HOG Implementation on GPU

Figure6 compares the performance of a sequential and a parallel implementation
of HOG algorithm using different frame sizes. Although HOG algorithm is hard to
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Fig. 5 Comparison of the
Fourier descriptor
implementation time on CPU
versus on GPU
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parallelize due to many dependencies, it was possible to obtain speedup up to 44.5×
for parallel GPU implementations, especially on small image sizes.

As shown in Fig. 6, the HOG implementation on GPU gave better results in
terms of execution time. In fact, while a GPU gives an execution time around a
few milliseconds, that on CPU exceeds 13.59 s. The overall execution time of HOG
algorithm affects directly the main time of the Moving Humans detection algorithm
where it resides the main process to extract all minutely details of the image.

Fig. 6 Comparison of the
HOG implementation time
on CPU versus on GPU
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Fig. 7 Comparison of the
GMM, Fourier descriptor
and HOG implementation
time on CPU versus on GPU
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4.4 Moving Humans Detection Algorithm Implementation on
GPU

To more explain the performance of our Moving Humans detection algorithm, we
tried in Fig. 7 to show the total execution time of all kernels running on GPU and on
CPU. These kernels serve to compute the GMM of the input video in order to extract
the moving object and to compute the features of moving object using Fourier and
HOG descriptors. The gain in execution time is more than 18 times at least and it is
more than 20 times at most. We can improve these results by using the GPU specific
memories such as constant, shared and texture memory.

The transfer time between the CPU and the GPU is not considerable but it should
not be neglected. Since the size of frame increase, the transfer time is proportionally
increases.

5 Conclusion

We have presented a hybrid approach for human detection in video surveillance
systems using several techniques. The proposed algorithm extracts the foreground
from the video surveillance to track the moving object. To achieve accuracy, we
combined texture and formbased representations to capture the human.We integrated
two kinds of feature descriptor Fourier descriptor and histogram of Orient Gradient
in SVM. Those techniques are implemented on GPU with successful for fast and
accurate human detection. In experimental result, we compared the performance
of CPU and parallel GPU implementations of GMM, Fourier descriptor, HOG and
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the entire detection chain. We show that the GPU parallel implementation achieved
significant speedups up to a factor of 14.7× for GMM, 5.4× for Fourier descriptor,
44.5× for HOG, and up to 20× for the set of these kernels in the algorithm in
comparison to CPU.

In our future work, we will implement the morphological operation and CCL in
parallel on the GPU, we will focus on the accuracy of the human detection since it
is one of the most important factors in video surveillance and we will explore our
results to reach the real time for each resolution video.
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Human Breathing Monitoring by
Graphene Oxide Based Sensors

Ammar Al-Hamry, Enza Panzardi, Marco Mugnaini, and Olfa Kanoun

Abstract Non-invasivemonitoring of human health is of a high importance for early
detection of illnesses and improving life quality. Breath monitoring is important
for detection of severe diseases such as lung cancer or sleep apnea. In this work,
we introduce a breath sensor based on a graphene oxide film deposited on silver
interdigitated electrode and a flexible substrate. The graphene oxide film was then
thermally annealed to partially reduce the graphene oxide. The measurements of
sensor impedance carried out at different humidity levels show a high decrease by
several orders ofmagnitudes by increasing the relative humidity. Sensitivity to humid
air results from the high hydrophilicity of the graphene oxide due to its oxygen
functional groups. The change of transport mechanism from Nyquist plot shows
the change of the sensor impedance from the capacitive behavior to a semicircle
of parallel resistance and capacitance. The sensors show an ultrahigh sensitivity to
humidity at high humidity values, a very low response time of less than one second
and an excellent repeatability of the measurements. For tracking human breathing,
the reaction on natural breathing was acquired by a digital oscilloscope together
with an IoT mobile application to visualize the results in real time and store them for
further processing. The sensor performance shows that it is suitable as a noninvasive
and flexible breath-monitoring sensor system. The proposed sensor can be a step to
flexible and cheap wearable sensors for detection of human breath and hazardous
breath airborne such as COVID-19.
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1 Introduction

Nowadays, IoT applications in medical care are of a high importance as they offer
continuous monitoring of data to enable remote and long term diagnosis. In this
context, sensors for non-invasive monitoring are considered as an important way for
human health check such as breath diagnosis (Kanoun et al. 2018). The analysis of
breath as an non-invasivemethod provides opportunities for detection of diseases and
represents an alternative approach of blood analysis (Econsultancy 2020; Kim et al.
2015). On the one hand, there are the exhaled breath sensors through which several
volatile organic compounds canbedetected and studied togive clue to certain diseases
(Lau et al. 2017). As examples, Si-doped epsilon-WO3 nanostructures (Righettoni
et al. 2012), SnO2-reduced graphene oxide (Zhang et al. 2015) and nanostructured
Pt-doped SnO2 sensors (Van Den Broek et al. 2018) were used to detect acetone in
the breath of diabetes patients.

On the other hand, other sensors are used to monitor breath dynamics connected
to diseases like sleep apnea. Several sensors were proposed, which utilize thermal
sensors, reduced graphene oxide sensor or carbon nanotubes-based sensors. Cac-
cami et al. (2018) developed wearable radiofrequency identification (RFID) inte-
grated in face mask based on graphene oxide sensors, which show low sensitivity
and low response time. A Graphite/silver nanoparticles-based sensor deposited on a
paper substrate was also characterized by different tests of humidity and breathing
with good stability, but it shows a rather low response time (Econsultancy 2020).
A multiwalled carbon nanotubes (MWCNT) sensor was also proposed where apnea
response and real tests were recorded in Balakrishnan et al. (2019). The study shows
the efficiency of carboxylic functionalized MWCNTs deposit by inkjet printing for
realization of sensitive and cost-effective humidity sensors. Vanadium oxide thin film
on PDMS substrate have been reported to have good response time for inhalation
and exhalation of 0.5 s (Liao et al. 2017).

In this contribution, we propose an easy processable and low-cost graphene
oxide (GO) based sensors for breath monitoring. GO is layered chemically derived
graphene containing oxygen functional groups (epoxy, hydroxyl, carboxyl and car-
bonyl). These functional groups make it an insulator with a resistance of hundreds of
Mega Ohms (Al-Hamry et al. 2016). The hydrophilic nature of GO changes by the
change of the oxygen quantity. Thus, the functional groups contained inGO influence
the sensitivity of GO and its derivative, the so-called reduced graphene oxide (rGO).
We propose to fabricate the sensor based on casting and optimal thermal annealing.
By proper thermal annealing, the optimized surface properties and a suitable mate-
rial sensitivity can be obtained. After optimization of preparation parameters, the
film with the highest sensitivity to relative humidity is selected and tested for breath
monitoring. In order to be able to store and analyze the measured data on long term,
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we realize an IoT solution able to visualize real time breath sensor data on a Mobile
Application.

2 Experimental Investigations

2.1 Sensor Preparation

GO utilized in this work was purchased from Grphenea Inc. with the initial con-
centration of 4mg/mL. The GO was diluted in deionized water to 1mg/mL. Slight
sonication is required to prevent agglomeration after dilution. The sensitive film was
fabricated by dispersing GO on silver interdigitated electrodes. These were initially
inkjet printed on the Kapton substrate and annealed at 170 ◦C. The line width and
finger spacing of the interdigitated electrodes ar 200 µm. The total area of the sensor
is 1cm2. The substrate was cleaned by isopropanol and dried by nitrogen. Then a
drop of 10 µL of GO was casted onto the electrodes to form a continuous network of
GO sheets. After deposition of GO, the GO was left overnight in a laboratory envi-
ronment until it dried out. In order to partially reduce GO, the sensor was thermally
annealed at two different temperatures i.e. 100 and 200 ◦C. After that, it was wired
by support of silver paste to realize the connection to the measurement setup.

2.2 Experimental Methodology

Atomic force microscopy (AFM) was performed using a Keysight 5600LS system
in order to investigate the morphology and structure of the deposited rGO. Humid-
ity measurement was carried out by the Agilent 4292A impedance analyzer in the
frequency range 40–110MHz. The sensor was inserted in bottles filled with differ-
ent saturated salt solutions having fixed-points of relative humidity of: 0, 11.3, 32.5,
52.3, 75.2, 84.3, and 97.3%RH, as shown in Fig. 1a. In order tomonitor the breathing
activity, an experimental setup was realized by using a flexible face mask to fix the
rGO sensor as shown in Fig. 1b.

The high ohmic GO sensor was connected to an experimental measurement sys-
tem using a voltage divider circuit to convert the sensor resistance variation to a
voltage variation. The circuit, as shown in Fig. 1b, is supplied by a constant voltage
battery source of 1.5V, where GO is the sensor element. The oscilloscope (LeCroy
waverunner 6050) is used to observe and remotely acquire data via a TCP/IP inter-
face. An ad-hoc LabView virtual instrument has been specifically developed to plot
and store the acquired data. A youth volunteer was asked to wear the mask and to
breath for some minutes to register the breath activity.

Temperature control was carried out using a hot plate from room temperature until
100 ◦C and the resistance was registered by a Keithly 2636 sourcemeter.
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Fig. 1 a rGO sensor and humidity measurements setup using saturated salt solutions and b breath
monitoring measurement setup and schematic of the measurement setup

The feasibility of the IoTmonitoringwas realizedusingpopular scripting language
i.e. JavaScript and by standard tools for design of android mobile applications.

3 Results and Discussion

Graphene oxide is semi-insulating by nature having a resistance in the order of hun-
dreds of M�. A reduction process is usually carried out e.g. by thermal annealing,
photonic or by chemical reduction (Al-Hamry et al. 2016). In this work, we inves-
tigate the process of thermal annealing of GO to make so-called rGO. The range of
reduction temperature was chosen so that the Kapton substrate withstands it in the
range between 100 ◦C and 200 ◦C.

3.1 Physical Characterization

In Fig. 2, UV-vis-NIR absorbance spectra of GO and rGO films are shown, which
were annealed at different temperatures. The absorbance increases by increasing
the annealing temperature. The spectra of GO show a peak around 260nm, which
indicates the π − π� transition ofC − C bond. A shoulder at 320nm is also observed
that indicates the n − π� plasmonic transition of C = O bonds (Thakur and Karak
2012). The shoulder at 320nm is still present in rGO100 ◦C absorption spectra and
is totally disappeared in case of rGO200 ◦C. This clearly indicates that the reduction
process takes place and the elimination of oxygen containing groups start. In addition,
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Fig. 2 UV-vis-IR spectra of
GO based films, untreated
and annealed at 100 ◦ and
200 ◦C

Fig. 3 AFM images of the
as deposited GO, Inset show
the roughness in the marked
line

for rGO100 ◦C, only partial reduction occurred where its resistance is still in order of
hundreds of M�.

AFM images of GO are reported in Fig. 3. The images show the layered stacked
structures of GOfilmwhere the roughness distribution within the film in the nanome-
ter range. The stacked structure and porous-like topography enable water molecules
to penetrate to interlayers of the film.
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3.2 Electrical Measurements and Humidity Influence

Impedance Spectroscopy has shown an outstanding performance in the characteri-
zation of materials and measurement of humidity (Tetuyev and Kanoun 2006). The
method allows measuring both real and imaginary part of conductivity at the same
time and at different frequencies. This delivers a deep knowledge about the conduc-
tivity behavior.

In Fig. 4, the impedance versus relative humidity of GO, rGO100 ◦C and rGO200 ◦C
is shown. The sensitivity behavior shows a dependency on reduction temperature.
For GO sensor, the impedance decreases remarkably at 52% RH. Similarly, for
rGO-100 ◦C, the impedance decreases more significantly at higher relative humidity
values by magnitude of 500 times, relative to initial value at 0% RH. However, for
the film reduced at higher temperature, rGO200 ◦C, the impedance shows a positive
slope. It increases linearly with humidity increase. In this case, the surface becomes
hydrophobic (Al-Hamry et al. 2016). Therefore, it is less sensitive to relative humid-
ity.

Nyquist diagram rGO100 ◦C is shown in Fig. 5. The behavior in the low humid-
ity range (0–52%) is capacitive with high resistive parts. A slight decrease of the
impedance due to the absorbed water molecules is observed. At these low humidity
values, charge transfer between water molecules and GO/rGO layers occurs. How-
ever, it is not efficiently increasing the charge carriers of the film (Zhang et al. 2014a).

At high humidity (75–97%), the equivalent circuit consists of a capacitance rep-
resenting the interaction of water and contacts and a resistance representing the
intrinsic resistance of the film. For GO reduced at higher temperatures, by increase
of water molecules the charge transfer is dominant and causes further increase of the
impedance. For GO and low reduced films the formation of water thin films has the
role of decreasing the impedance due to proton hopping (Zhang et al. 2014b). In addi-

Fig. 4 GO sensor
dependency to relative
humidity for non-annealed
GO films and rGO100 ◦C and
rGO200 ◦C films
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Fig. 5 GO100 ◦C dependency
to relative humidity in
Nyquist plot

tion, by increasing the reduction temperature, rGO films become more hydrophobic
which prevents the water attraction to its surface and prevents making continuous
water films. From the analysis of the humidity dependency tests, the rGO100 ◦C was
selected to realize a breath monitoring sensor. The advantage of rGO100 ◦C is that it
is insensitive to ambient room humidity and highly sensitive at high humidity. This
makes it useful to detect breath. In addition, it is temperature independent as long as
the temperature is lower than effective reduction temperature of GO. That means it
remains semi-insulating and insensitive to room ambient temperature as well.

The temperature dependency of the GO film was tested in a range from 30 to
100 ◦C. Figure6 shows that the resistance has values more than 10 M� up to 80 ◦C.
Between 30 and 40 ◦C, the resistance value is more than 43 M�. This value is
much higher than the resistance corresponding to 75% relative humidity, where the
resistance starts to drop drastically by increasing the humidity.

Therefore, temperature dependency at temperatures below 40 ◦C can be neglected
comparing to sensitivity of RH coming from breathing specially at room temperature
range 20–40 ◦C.

3.3 Breath Monitoring System and IoT Application

3.3.1 Breath Measurement

The experimental results of breath monitoring are shown in Fig. 7. The amplitude
varies according to the duration and the depth of the breath inhalation and exhala-
tion. The acquired results show an amplitude variation in the range 0–1.22V that
corresponds to a resistance variation of 5 M� approximately. The reported results in



104 A. Al-Hamry et al.

Fig. 6 Temperature dependency of reduced graphene prepared by thermal annealing at 100 ◦C

Fig. 7 a Breathing measurement over several cycles and b one cycle showing the response and
recovery time

Fig. 7a show the sensor signal for 40 swith a sampling rate 50Hz at room temperature
of approximately 23 ◦C.

In Fig. 7b, the response and recovery time by inhalation and exhalation are shown.
This figure shows that the sensor response and recovery times are 248ms and 784ms,
for inhalation and exhalation, respectively. These reaction times are lower than those
reported in several investigations (Caccami et al. 2018; Liao et al. 2017), which
indicates that the developed sensor is an ultrafast breath-monitoring sensor. This
property owes to the hydrophilic nature of graphene oxide and the tunability of the
humidity sensing properties. In Fig. 8, different breath patterns were registered at
respiration rates which confirms the ability of the sensor to determine respiration
rate and respiration depth. The graphs suggest that respiration rates from 12, 24 and
36 per minute for cases of deep, normal and fast breathing, respectively.
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Fig. 8 Detection of breath patterns

Fig. 9 a Schematic of an IoT based mobile visualization and b Breathing tracking at different rates

3.3.2 IoT Application for Breath Monitoring

TheGObased sensorwas connected toArduino in voltage dividerwith potentiometer
of 5 M� to control the sensitivity, Fig. 9. Basically, the resistance of the sensor goes
below 5 M� when the humidity is around 75%. At this point, according to voltage
divider Eq. (1), the voltage at the input of the Arduino will be 1

2Vc, where Vc is 5V
from Arduino voltage port.

Vin = Vc × RrGO100

R + RrGO100
(1)

The sensitivity to breath can be adjusted according to the ambient humidity by
changing the potentiometer to avoid any background measurement.

Raspberry-pi device was used for communication via Bluetooth, Wi-Fi and inter-
net. For data visualization from the breath sensor without delay, accuracy and speed
are very important. For this purpose, a robotic framework (Johnny-Five) was used
(Johnny-Five 2018) to getmaximum speed for reading data fromArduino. Thewhole
project was implemented with JavaScript and achieves maximum speed of 25 ms.

The sensor data can be visualized in different platforms i.e. web cloud and smart
devices such as smart mobile phone and android tablets. Raspberry-pi, using Jonny-5
enabled by Javascript (Node.js), collects data from Arduino, process data then send
data via Bluetooth and Wi-Fi to smart devices or web. Ionic3 hybrid mobile frame
work was used for development of the mobile application. PubNub Data Stream
Network (DSN) provides a global infrastructure and allows building and scale real-
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time apps and IoTdevices to publish the sensor data to be read in the browser (PubNub
2018). Figure9a shows the schematic of the data flow from sensor to data displaying
using different paths. Figure9b shows arbitrary respiration rhythms shown from a
screen shot of an android device.

4 Conclusion

A preparation procedure was developed to synthetize a sensitive GO film based on
reduced graphene oxide deposited on a flexible substrate. The GO film was reduced
at a low temperature under 200 ◦C and shows an ultrahigh sensitivity of impedance to
humidity,which is of the order of severalmagnitudes relative to initial value in the low
humidity range. In the humidity range greater than 50%, the impedance is decreasing
remarkably, so that it suitable for use in breath monitoring. The developed sensor
was used to track the human breathing and shows good sensitivity and repeatability.
The response time was found to be less than one second, i.e. 248 ms and 784 ms, for
inhalation and exhalation, respectively. A mobile application for breath monitoring
was developed for IoT based reading and visualization of data. As a sensor with very
fast response time, it is of high potential for further use in real-time breathmonitoring
applications. It is flexible, repeatable, fast, delivers easy processable signals and is
IoT compatible.
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Impedimetric Detection of Human
Interleukin 10 on Diazonium Salt
Electroaddressed Gold Microelectrode
Surfaces

Michael Lee, Abdoullatif Baraket, Monique Sigaud, Ammar Al-Hamry,
Nadia Zine, Olfa Kanoun, Joan Bausells, and Abdelhamid Errachid

Abstract In this chapter, we describe the development and fabrication of gold
microelectrodes based on silicon by silicon technology, for multiplex detection of
cytokines. Cytokines have become a crucial biomarker for the identification of end-
stage heart failure (ESHF) for patients during early phase of left ventricular assisted
device (LVAD) implantation. The microelectrode device consists of three gold work-
ing microelectrodes that were activated and 4-aminophenylacetic acid (CMA) was
electroaddressed onto individual gold WEs. The carboxylic acid functionalities
of the diazotated aromatic amine were activated through carbodiimide chemistry
and anti-interleukin-10 monoclonal antibodies (anti-IL-10mAb) were immobilized
onto the transducers surface. The interaction between the antibody-antigen (Ab-Ag)
was characterized by electrochemical impedance spectroscopy (EIS). Here, Nyquist
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plots have shown a stepwise variation due to the charge transfer resistance (Rct)
between the Ab activated surfaces with the detection of the human IL-10. For early
expression monitoring, commercial proteins of human IL-10 were analyzed between
1pg/mL and 100pg/mL. The protein concentrations within the linear range of 1–
50pg/mLwere detected and these values formulated a sensitivity of 0.008 (pg/mL)−1

(R2 = 0.9840). These preliminary results demonstrated that the developed biosensor
was sensitive to the detection of human IL-10 and the calculated limit of detection
(LOD) was measured at 0.156 (pg/mL)−1. To validate the biosensors response, the
experiment was repeated several times on different gold working WEs by applying
the same conditions. The overall relative standard deviation percentage (% R.S.D.)
was 4.9% which demonstrates the successful fabrication for the detection of human
IL-10 through diazonium salt electroreduction.

Keywords Biosensor · Diazonium salt · Interleukin-10 · Electrochemical
impedance spectroscopy · Cyclic voltammetry

1 Introduction

In recent years, there has been a phenomenal growth in the field of biosensor devel-
opment. The requirement of chemically-modified surfaces is of critical importance
for the immobilization of the biological material on the transducers surface. Such
development is essential in order to attain high sensitivity and selectivity for detection
during biorecognition processes (Mrksich and Whitesides 1995; Turner 2000). The
formation of functional groups (amino, carboxyl, etc.) in silicon chemistry applying
insulating materials such as silicon dioxide (SiO2) (Bras et al. 2004; Zhang et al.
2010), silicon nitride (Si3N4) (Caballero et al. 2012; Stine et al. 2007), aluminum
oxide (Al2O3) (Lee et al. 2014), and hafnium oxide (HfO2) (Lee et al. 2012) requires
silane chemistry. For conducting materials such as gold, one of the most commonly
used techniques is based on alkanethiol monolayers (Baraket et al. 2014; Zamfir et al.
2011). This technique has been extensively applied through self-assembled mono-
layers (SAMs) (Love et al. 2011) followed by carbodiimide chemistry. The SAMs
can be spatially controlled using microcontact printing (μCP) (Xia and Whitesides
1998) with structures observed at the nanometric scale (Renault et al. 2003).

Also, the electrochemical formation of polymers (for e.g. polypyrrole and polyani-
line) has been applied for sensing applications (Biloivan et al. 2006; Cosnier 2003).

The modification of surfaces through diazonium salts was first introduced by
Delamar et al. (1992). In thismethod, the diazonium salt is electrochemically reduced
by cyclic voltammetry (CV) and this creates an aryl centered radical due to the
spontaneous elimination of di-nitrogen. The resulting aryl radical can then form a
covalent bond with conducting and semi-conducting surfaces (Polsky et al. 2008b).
The modification of electrodes through diazonium salts is a promising alternative to
conventional techniques as previously described (e.g. silanes and thiols). This has
been demonstrated on a wide range of surfaces such as gold (Bernard et al. 2003;
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Corgier et al. 2009), glassy carbon (Liu et al. 2011; Polsky et al. 2007), semicon-
ductors (Pinson and Podvorica 2005; Stewart et al. 2004), screen printed electrodes
(Yáñez-Sedeño et al. 2018), carbon nanotubes (CNTs) (Bahr et al. 2001; Lee et al.
2004), CVD graphene (Eissa et al. 2015), graphene and reduced graphene oxide
composites (Ott et al. 2018).

Due to its simplicity, rapidity and versatility, diazonium salt grafting and func-
tionalization is widely used to attach organic layer on conductive substrate, cova-
lently immobilize biomolecules and nanomaterials or self-assembling of nanoparticle
(Yáñez-Sedeño et al. 2018). Aryldiazonium chemistry have been utilized for func-
tionalization of biosensor (Bagheryan et al. 2016) as well as cell immobilization
(Polsky et al. 2008a). Aryldiazonium covalent chemistry on different surfaces e.g.
graphene was achieved by self-assembly of thin layer of n-alkaline making masking
monolayer and by EC potential aryldiazonium is diffused through them to generate
aryl radicals on the surface (Tahara et al. 2018). Grafting end-moieties -OH, -COOH,
and -NH2 commercial surfactant to the surface of electrodes via aryldiazonium slats
was also demonstrated to form protective layer i.e. gold and metallic chromium
thin film (Tahara et al. 2018). Self-assembly of Fréchet-type dendron nanoparticles
(FDNs) nanoparticles (Krishnakumar and Gopidas 2017) and gold nanostructure
(Betelu et al. 2016) was carried out by covalent functionalization using different
aryldiazonium derivatives.

Corgier et al. (2005) conjugated 4-carboxymethylaniline to IgG antibodies and
diazotated the diazonium salt-modified antibody onto screen-printed graphite elec-
trode arrays (Corgier et al. 2005). Applying the same strategy, Polsky et al., immo-
bilized different antibodies onto glassy carbon electrodes (GCE) and gold electrode
arrays for the electrochemical detection of cytokines (Polsky et al. 2008b). However,
a concern of this technique is due to the reaction conditions applied during diazota-
tion. The conversion requires HCl (20mM) and NaNO2 (20mM) which may not be
compatible with all proteins (Radi et al. 2009). Therefore, a different approach has
been applied that first diazotates the diazonium for covalent grafting onto the sub-
strate surface. This is then followed by linker groups (for e.g., glutaraldehyde and
carbodiimides) for the immobilization of, for example, DNA (Harper et al. 2007)
and proteins (Bello-Gil et al. 2014). Despite different drawbacks such as creation of
multilayers, side reactions and surface heterogeneities for some surfaces, potential
solution have been developed (Jiang et al. 2017; Yáñez-Sedeño et al. 2018), such as
mixed monolayers, control over spatial distribution and the structure of mixed layer.

Left-ventricular assisted devices (LVAD) implanted into patients suffering from
end-stage heart failure (ESHF) has been established as an effective bridge to heart
transplantation (HT) by enabling the recovery of adequate cardiovascular hemody-
namic function (Caruso et al. 2010). During the first one month, patients are highly
susceptible to multiple organ failure syndrome (MOFS) and as a consequence, ulti-
mately lead to deaths.MOFS is influenced by the degree of the immunoinflammatory
response, independent of the presence of infection (Caruso et al. 2010). The inflam-
matory response is analyzed by cytokine mediators and early release of pro- and anti-
inflammatory cytokines have been observed in patients with a high risk of MOFS
(Beger and Rau 2007). Standard techniques such as enzyme-linked immunosorbent
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assays (ELISA) are implemented to the quantification of cytokines, though immobi-
lization, bio-conjugation, wascytokin h steps, and quantification requires increased
time and input from qualified personnel. Point of care devices utilizing biomarker or
HF management have been developed (Tripoliti et al. 2020). In regards of biosen-
sors, different approacheswere investigated to detect IL-10. Impedimetric diazonium
modified IL-10 and anti.IL1b were electrodeposited on gold substrate (Baraket et al.
2017). Moreover, Label-free capacitance impedimetric immunosensor based on the
immobilization of the human monoclonal anti-IL-10mAb onto polypyrrole (PPy)-
modified silicon nitride (Si3N4) substrates) was developed (Nessark et al. 2020).

For chronic heart failure (CHF) patients that have underwent LVAD implantation,
Caruso et al. (2010) have assessed IL-10 with other varying cytokines for patients
at high risk for MOFS during the first month post-LVAD implantation. Human IL-
10 plasma levels for 23 LVAD implanted patients were between the ranges of 0–
1.558pg/mL in the first 30days of LVAD support using ELISA. The authors ana-
lyzed samples within certain time frames to quantify exactly when patients were sus-
ceptible to higher levels of inflammation after surgery. Before LVAD implantation,
patients obtained minimal IL-10 inflammation (pre-implant) due to the circulating
cytokine (1-month survivors, 1.8pg/mL and non-survivors, 5.6pg/mL). Following
LVAD implantation, plasma samples were taken after 4h. At this critical stage, early
expression of human IL-10 peaked in comparison with other plasma samples ana-
lyzed within the 30 day period for survivors and non-survivors. Levels for IL-10
non-survivors (177.8pg/mL)were also higher than that of the survivors (56.2pg/mL).
Therefore, the authors have established that the elevated IL-10 levels in parallel with
other cytokines can play an important role in the development of adverse events early
after LVAD implantation.

In this chapter, we demonstrate the electrochemical behavior of gold microelec-
trodes through bare, activated, and 4-aminophenylacetic acid (CMA) functional-
ized surfaces using CV and electrochemical impedance spectroscopy (EIS) mea-
surements. The results demonstrate the successful functionalization of the gold
microelectrode through electrochemical methods. Afterwards, a biosensor was fab-
ricated with the immobilization of anti-IL-10 monoclonal antibodies (mAbs) onto
gold microelectrodes through 4-aminophenylacetic acid (CMA) electroaddressing.
Here, the detection of human IL-10 and its interferences were analyzed.

2 Experimental Investigations

2.1 Materials and Techniques

Chemicals, materials, and reagents: All chemicals were purchased from Sigma-
Aldrich, France apart from 4-aminophenylacetic acid (CMA) (98%) which was pur-
chased fromAcros Organics, France. PDMS (Sylgard 184) was purchased fromDow
Corning, France. The anti-human IL-10mAb, recombinant human (rh) IL-10, rh IL-
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8, and rh tumor necrosis factor-α (TNF-α) were purchased from R&D Systems,
France.

Imaging: Optical images were taken by optical microscopy (Leica EZ4D, Spain).

2.2 Fabrication of Gold Microelectrodes

The fabrication of the gold microelectrodes was developed at the CNM, Barcelona.
Here, p type silicon < 100 > with a diameter of 100mm and a nominal thickness of
525µm was applied. The process began with thermal oxidation of silicon to grow a
thick oxide layer (8000Å). A photoresist resin layer was deposited in order to pattern
the surface. To improve the adherence of gold microelectrodes a layer of Titanium
(Ti) (1nm) was applied as an intermediate layer that was followed with a sputtered
layer of gold (250nm). Afterwards, a photoresist resin was spin coated onto the sur-
face and exposed to UV through the developedmicroelectrodes photomask. This was
proceeded with plasma-enhanced chemical vapor deposition (PECVD) with two lay-
ers consisting of SiO2 (4000Å) and Si3N4 (4000Å), respectively. These layers acted
as passivation layers. A second photolithographic step was made to open passivation
on the gold working microelectrodes (300µm × 300µm) and the corresponding
electrical pads. After this step, the fabrication of the gold microelectrodes on silicon
was complete. The microelectrodes were then bonded to a printed circuit boards

Fig. 1 Optical image of the gold microelectrodes developed on silicon by silicon technology
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(PCB) and the electrical connections were made by wire bonding (K&S 4500 Series
Wire Bonders) in the usual manner. Finally, the microelectrodes were encapsulated
by passivation with an epoxy resin (EPO-TEKH 70 E-2 LC, France). The developed
gold microelectrodes are shown in Fig. 1.

2.3 Preparation of the Gold Microelectrode

The gold microelectrodes based on silicon were cleaned by rinsing with acetone
and then thoroughly rinsed with DI water. They were then dried under a stream of
nitrogen. The surface was then cleaned of organic contaminants using a UV/Ozone
cleaner (UV/O3 ProcleanerT M , NanoAndMore GmbH, Germany) for 30min.

2.4 Diazonium Electroaddressing

The gold microelectrode was rinsed in ethanol and immersed in a glass electrochem-
ical cell for the electroaddressing using CMA. Here, the device was connected to the
potentiostat (VMP3,EC-Lab, France)with an external reference electrode (Radiome-
ter (REF 421)) and counter electrode (Radiometer platinum wire (M231PT)) was
applied.

For the diazotation of 4-aminophenylacetic acid (CMA), 1mLof a 10mMsolution
of the aromatic amine was made-up in 1M aqueous HCl/ethanol 50:50 (v/v). This
was then mixed with 50µL of an ice-cold solution of sodium nitrite (10mg/mL)
in water/ethanol 50:50 (v/v) for 5min at 0 ◦C under magnetic stirring. The solution
was then added to 20mL of ice-cold 0.1M aqueous HCl/ethanol 50:50 (v/v). This
produced a 0.48mM solution of the diazonium salt. This is a modification of the
electrode preparation reported by Beger and Rau (2007), Squillace et al. (2017). The
final solution was kept at 0 ◦C and immediately used. The reductive adsorption of the

Fig. 2 Reaction scheme for the electroaddressing of CMA onto a gold substrate, followed by
activation with EDC/NHS, and the immobilization of the anti-IL-10mAb



Impedimetric Detection of Human Interleukin 10 on Diazonium Salt … 115

salt onto the electrode was achieved by four scans of CV between 0.3 and −1.1V at
80mV/s. The development of the biosensor can be observed in Fig. 2.

2.5 Biorecognition of Human IL-10

The goldmicroelectrodewas rinsed in phosphate buffered saline (PBS) and a solution
of EDC (0.4M) and NHS (0.1M) was made up in PBS (pH 7.4 at 10mM) and
incubated in the cell for 1h at room temperature. After this time, the cell was rinsed
with PBS.

The anti-human IL-10 was diluted to a concentration of 10µg/mL in PBS. The
modified microelectrode was incubated in the solution for 1h at 4 ◦C. The substrate
was then rinsed with PBS. The surface was then blocked with a 0.1% solution of
ethanolamine in PBS for 20min at room temperature. Afterwards, the microelec-
trodes were rinsed in PBS.

The human IL-10 was diluted in PBS to concentrations of 1, 5, 10, 15, 20, 30,
50, and 100pg/mL, respectively. The modified gold-anti-IL-10mAb microelectrode
was first measured by EIS followed by increasing concentrations of human IL-10.
Here, and after each measurement, the human IL-10 solution was incubated on top
of the gold microelectrodes for 30min at 4 ◦C. The substrate was then rinsed with
PBS.

CV measurements were made at: potential of 0.6V to −0.2V, scan rate at
100mV/s, and 3 cycles. EIS measurements were made at: potential of 0.228V, fre-
quency at 200kHz to 200mHz, and a sinus amplitude of 25mV. The electrolyte was
5mM of K3(Fe(CN)6/K4(Fe(CN)6 prepared in 400mL of PBS solution.

3 Results and Discussion

3.1 Electrochemical Measurements

3.1.1 Biosensor Development

After packaging of the biosensor, the device was connected to a potentiostat and its
electrochemical properties were observed. In Fig. 3a, the bare gold microelectrode
shows characteristic CV peak currents for the redox reaction with ferri/ferrocyanide
solution (Fig. 3a (black)). After UV/O3 cleaning, the peak currents increased which
demonstrates an improved quality of the active surface (Fig. 3a (red)). After diazo-
tation of CMA onto the gold microelectrode surface, the peak currents decreased
which demonstrates the functionalization of the gold surface with CMA. This is due
to the blocking behavior of the CMA on the modified gold microelectrode (Fig. 3a
(blue)) (Baraket et al. 2013).
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Fig. 3 a CV scans and b EIS measurements of: (black) Bare Au, (red) after UV/O3 activation, and
(blue) after CMA electroaddressing. c CV scan for the electroaddressing of CMA onto activated
gold microelectrodes with three scans of CV between 0.3 and −1.1 V at 80mV/s

For EIS measurements (Fig. 3b), the results were comparable to the CV measure-
ments. The charge transfer resistance (Rct) of bare gold was measured at 13.6k�
(Fig. 3b “ ”) and a decrease in the Rct was observed after UV/O3 activation at
11.0k� (Fig. 3b “ ”). This demonstrates that a cleaner surface has been obtained.
After CMA electroaddressing, the Rct increased to 37.1k� which corroborates with
CV that the gold microelectrode surface was functionalized with CMA (Fig. 3b
(“ ”)). The values of the fitting parameters can be found in Table1. The equivalent
electrical circuit (R1 + Q1/(R2 + W2) + Q3/R3)was applied for the simulation and
it formulated the best fit for the data. Here, the components can be explained as fol-
lows: R1 expresses the electrolyte solution (Rs). Q1 is the constant phase element
(CPE) (Qσ1 and Qα1 ) that is parallel with R2 for the first semi-circle which is in
series with W2 (S2) which is the Warburg resistance, Q3 is the CPE (Qσ3 and Qα3)
that is parallel with R3 for the second semi-circle and is designated as the Rct . For
the Zfit, the Nyquist plots were observed with Randomize + Simplex method, with
randomize stopped on 10,000 iterations and the fit stopped on 5,000 iterations.

In Fig. 3c, the electroaddressing of CMA onto the gold WEs is shown. Here, a
typical electroreduction of the CMA leads to the elimination of the nitrogenmolecule
and it produces an aryl radical (Pinson and Podvorica 2005; Radi et al. 2009). This
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Table 1 EIS fitting parameters the characterization of the gold microelectrodes development

R1 (k�) Q1
(μFsa−1)

R2 (k�) s2
(k�s−0.5)

Q3
(nFsa−1)

R3 (k�) X2

(1) Bare 0.3 ± 5.9 0.4 ± 0.2 4.1 ± 0.6 47.5 ±
695.2

128.7 ±
1.9

13.6 ±
64.9

0.002

Au “ ” ×10−3 ×10−3 ×10−3 ×10−3

(2) UV/O3 0.7 ± 2.9 3.1 ± 0.7 7.9 ± 1.1 39.6 ± 2.2 169.1 ±
1.4

11.0 ±
267.5

0.006

of Au
“ ”

×10−3 ×10−3 ×10−3 ×10−3

(3) After 10.2 ± 3 35.3 ± 0.3 7.5 ± 1.4 16.4 ± 3.3 734.5 ±
8.5

37.1 ±
222.6

0.002

CMA
“ ”

×10−3 ×10−3 ×10−3 ×10−3

radical then forms a covalent bond between the aryl group and the electrode surface
(Betelu et al. 2016; Mesnage et al. 2012; Pinson and Podvorica 2005).

A decrease during the second and third voltammetric cycles has demonstrated that
the surface has begun to be saturated with the CMA molecules. This is evidenced
with the calculation of the percentage coverage area of the CMA that was analyzed
by applying the relation (Corgier et al. 2005; Tlili et al. 2005):

θ = 100 ×
(
1 − Rbefore silanization

Rafter silanization

)
(1)

where, the R before and after silanization were obtained with the fitting program,
respectively. This was calculated at 70.4%. This percentage demonstrates that elec-
troaddressing of CMA was successful on the activated gold WEs using the applied
conditions.

3.1.2 Detection of Human IL-10

Figure4a, shows the Nyquist plots for the detection of human IL-10 at increased
concentrations (1–100pg/mL). Here, the Nyquist plot showed a stepwise variation
with increasingRctwhich demonstrates the successfully biorecognition of theAb-Ag
complex on the developed gold WEs through CMA functionalization.

Afterwards, the data was normalized using Z-fit and the equivalent electrical
circuit (R1 + Q1/(R2 + W )) was applied for the simulation and it formulated the
best fit for the data (Table2).

For biological measurements, for e.g., the detection of antigens, the given R1

values of the Ab followed by increasing concentrations of the Ag can be applied to
calculate the linearity, sensitivity, etc. for the applied biosensor. This is accomplished
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Fig. 4 a Nyquist plot for the detection of human IL-10 and b normalized data for the detection of
human IL-10 and interferences study using human IL-8 and human TNF-α

Table 2 Fitting parameters from the applied equivalent circuit for the detection of human IL-10

R1 (k�) Q2 (μFsa−1) R2 (k�) S2 (k�s−0.5) X2

Anti-IL-
10mAb

710.2 ± 0.5 0.8 ± 0.6 ×
10−3

21.5 ± 25.1 ×
10−3

3.6 ± 103.2 ×
10−3

0.027
(10µg/mL)

rh IL-10 683.7 ± 0.4 0.7 ± 0.4 ×
10−3

24.9 ± 21.1 ×
10−3

4.0 ± 79.6 ×
10−3

0.032
(1pg/mL)

rh IL-10 682.4 ± 0.3 0.6 ± 0.3 ×
10−3

25.8 ± 21.0 ×
10−3

6.0 ± 78.1 ×
10−3

0.033
(5pg/mL)

rh IL-10 660.3 ± 0.4 0.6 ± 0.2 ×
10−3

26.9 ± 21.7 ×
10−3

9.1 ± 76.8 ×
10−3

0.039
(10pg/mL)

rh IL-10 732.0 ± 0.4 0.6 ± 0.1 ×
10−3

27.9 ± 21.4 ×
10−3

10.7 ± 74.7 ×
10−3

0.037
(15pg/mL)

rh IL-10 633.1 ± 0.4 0.5 ± 0.1 ×
10−3

28.6 ± 21.4 ×
10−3

13.5 ± 73.3 ×
10−3

0.040
(20pg/mL)

rh IL-10 650.3 ± 0.4 0.5 ± 0.1 ×
10−3

30.9 ± 23.0 ×
10−3

16.7 ± 72.4 ×
10−3

0.041
(30pg/mL)

rh IL-10 641.6 ± 0.4 0.5 ± 0.2 ×
10−3

33.4 ± 24.0 ×
10−3

22.0 ± 69.8 ×
10−3

0.044
(50pg/mL)

rh IL-10 620.7 ± 0.4 0.5 ± 0.2 ×
10−3

34.3 ± 24.3 ×
10−3

24.5 ± 68.6 ×
10−3

0.045
(100pg/mL)

using the equation:
RAg − RAb

RAb
(2)

In Fig. 4b, the R1 and the concentration (C) of human IL-10 produced a linear
relationship towards its specific antibody. The linear dynamic range was observed
between 1pg/mL to 50pg/mL. At 100pg/mL, the biosensor was saturated. Here, a
sensitivity was observed at 0.008 (pg/mL)−1 with R2 = 0.9840.
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Applying the same conditions for the immobilization of anti-IL-10mAb, the
biosensor was analyzed for interferences using two inactive cytokines: human IL-8
and TNF-α, respectively. These are other prevalent biomarkers that are relevant to
LVADpatients. Here, the same concentrations (1–100pg/mL)were applied. Reduced
�R/R values that were significant to human IL-8 (red) at a sensitivity of 3.133×10−4

(pg/mL)−1 (R2 = 0.1026) and human TNF-α (blue) at a sensitivity of 1.077×10−4

(pg/mL)−1 (R2 = 0.1320) demonstrates that the sensitivity was much lower when
compared to human IL-10. This demonstrates that the developed biosensor was sen-
sitive and specific to only human IL-10.

The theoretical limit of detection (LOD) based on the standard deviation (SD) of
the response and the slope (S) was calculated using the formula LOD = 3(SD/S)
(Białk-Bielińska et al. 2011; Radi et al. 2009). The LOD was calculated at 0.156
(pg/mL)−1.

To validate the biosensors response, the experiment was repeated several times
on different gold workingWEs by applying the same conditions. The overall relative
standard deviation percentage (%R.S.D.) for the detection of human IL-10was 4.9%.
This proves the reproducibility of the biosensor.

4 Conclusions

In this study, we realized a surface functionalization of gold microelectrodes by for-
mulating a monolayer of CMA by electroaddressing. Surface modification on gold
working microelectrodes has enabled covalent bonding with the mAb and demon-
strated the effectiveness through electrochemical measurements. EIS has shown that
a detection can be realized with varying human IL-10 concentrations in the picogram
range. Here, a linear dynamic range was observed between 1 to 50pg/mL, which is
suitable for early phase detection.The level of interference attributable to non-specific
binding of inactive proteins showed that the developed biosensor was selective and
sensitive to only human IL-10.

Work is on-going to optimize all conditions, while future applications within
biological samples (for e.g., plasma) will determine the LOD, linearity, response
time, and sensitivity using these gold working microelectrodes. The increment of
the dynamic range to larger concentrations can express the high risk of MOFS as
a direct cause to implantation. Therefore, nanomaterials will be applied to improve
the dynamic range.
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Review on Recent Advances in Urinary
Biomarkers Based Electrochemical
Sensors for Prostate Cancer Detection

Meriem Mokni, Najla Fourati, Chouki Zerrouki, Ali Othmane,
Asma Omezzine, and Ali Bouslama

Abstract Prostate cancer (PCa) is the first most frequently diagnosed malignancy
in man in Europe and is the third major case of males’ cancer-related death. PCa
screening and diagnosis are therefore societal and public health issues. Prostate spe-
cific antigen is the routine marker, but it is not specific for PCa. Several promising
new biomarkers, including proteins, circulating tumor-derived DNA and RNA, and
metabolites, are currently under clinical and analytical evaluation. The most promis-
ing ones are probably those present in urine, a valuable biological fluid that contains
diverse biomarkers produced nearby by the prostatic tumour, and which can be easily
collected with non-invasive sampling procedure. For each type of biomarker, there
are already conventional assay techniques: namely ELISA and Western Blot for
proteins and RT-PCR for DNA and RNA. Despite their undeniable metrological per-
formances, these techniques remain expensive and require sophisticated equipment.
Hence there is a need for ultra-sensitive, reliable and disposable tools for preclinical
diagnosis of PCa. The most promising candidates are probably the electrochemical
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biosensors. In this review are thus presented the recent advances in the design of
electrochemical biosensors for the quantification of urinary biomarkers of prostate
cancer.

Keywords Prostate cancer · Urinary biomarkers · Electrochemical sensors

1 Introduction

According to the World Health Organization (WHO), cancer is the second leading
cause of death in the globally and accounted for one in six deaths in 2018 (World
Health Organisation 2018). In Europe, the 2020 estimates reveal that the most diag-
nosed males’ cancers are prostate, lung, colorectal, stomach and bladder (European
Commission 2020). The diagnosis and prognosis of prostate cancer (PCa) are thus of
prime importance. PCa is generally suspected when a mass is found in the prostate,
after a digital rectal examination (DRE), and/or a prostate specific antigen (PSA)
concentration in serum superior to the cut-off value of 10ng/mL. Diagnosis confir-
mation is obtained mainly by the Gleason score after biopsy (Chistiakov et al. 2018).
Although PCa is treatable at the early stages, it becomes castration resistant at the
advanced stages and difficult to treat. PCa causes are not yet completely understood,
but researchers have found several factors that might increase the risk of getting
it: age, family history, ethnic origin, diet, obesity.... Hence, a rapid and sensitive
diagnosis is essential before the cancer spread out to the other body organs.

Despite its use in routine clinical practice, PSA biomarker suffers from many
drawbacks, mainly its low specificity and low positive predictive value as its concen-
tration in patients sera, beyond the cut-off levels, may sometimes increases in benign
prostate hyperplasia (BPH) or during prostate’s manipulations (like digital rectal
examination). PSA can thus only be used as a screening test, while the definitive
diagnosis of prostate cancer requires a prostate biopsy (Duffy 2014).

Numerous novel diagnostic biomarkers are thus investigated in clinical uses to
detect PCa in patients with a disease or abnormal condition. According to their
molecular nature, these biomarkers can be roughly divided into three groups: DNA,
RNA and protein biomarkers (Eskra et al. 2019). Based on their “localisation”, the
biomarkers can be found into tissue, serum, tumour cells or urine. Figure1 gathers
PCa current early diagnostic biomarkers and the corresponding assay techniques.

This large number of PCa biomarkers reflects the complex analytical and regula-
tory challenges for applying biomarkers in prostate cancer care. In this review, we
have chosen to investigate only the urinary ones. In fact, compared to blood, where
activation of proteases and generation of proteolytic breakdown products takes place
within minutes of collection, urinary biomarkers are most stable and do not undergo
significant proteolysis within several hours of collection.

Moreover, urinary proteomics presents an attractive approach to cancer biomarker
discovery, not only for kidney/urological malignancies, but also for other systemic
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Fig. 1 Current early diagnostic biomarkers of PCa (Rice and Stoyanova 2018; Qu et al. 2014)

malignancies. They also offer a great chance for the development of novel, non-
invasive assays for the diagnosis, monitoring and the accurate diagnosis of PCa as
illustrated in Fig. 2.

Many advantages favour the use of urine, as a detection medium for cancer
biomarkers, over blood and tissues samples. First, urines are non-infectious for HIV
and less infectious for many other pathogens. They have also the advantages of being
readily available in large quantities using non-invasive collection procedures with a
relative stability (Dhondt et al. 2018; Truong et al. 2018). And finally, as the prostate
is connected to the urethra, all molecular changes especially caused by tumour inva-
sion and reorganization of the extracellular matrix are reflected in urine (Truong et al.
2018).

Several highly sensitive and selective instruments are involved in prostate cancer
diagnostic and prognostic. Enzyme-linked immunosorption assay (ELISA), which
relies on fluorescent labelling, is considered as the golden standard method. How-
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Fig. 2 Clinical implications
of urinary biomarkers

ever, ELISA has some limitations, like dependence on the labelled reagents, and
the reliance on skilled personnel. Emerging and promising approaches include real
time PCR (Tao et al. 2018; Wang et al. 2017), immuno-PCR (Khan et al. 2016),
electrochemical ELISA (Arya et al. 2018), and mainly biosensors.

These latter are analytical devices that combine an immobilized biological sensing
material and a transducer, to obtain a quantifiable signal that is proportional to the
concentrationof the analyte.Biosensors comprise three distinct components: (i) a bio-
recognition element to recognize and bind the analyte of interest; (ii) a transducing
element that converts the interactions of biomolecules into a quantifiable signal; and
(iii) a readout system. Several studies have reported the design of biosensors for
accurate, sensitive and early detection of cancers (Wang et al. 2006; Cheng et al.
2019; Cui et al. 2019), cancer metastasis monitoring (Cui et al. 2019; Quinchia et al.
2020) and further analyse effectiveness of anticancer chemotherapy drugs (Wang
et al. 2006).

Among the large variety of available biosensors, the electrochemical ones are
probably the most common ones, due to their relative ease of use, portability, high
sensitivity, accuracy, and reliability. They have therefore received increasing atten-
tion, and efforts are currently devoted to the design of ultrasensitive electrochemical
biosensors for cancer biomarkers detection.

Hereafter, an exhaustive summary to date on the electrochemical biosensors
designed for the detection of the urinary biomarkers of prostate cancer. We will
present the potential of each biomarker, prior to the functionalization strategy and
further metrological performances of the developed biosensors. Future challenges in
using electrochemical sensors for point-of-care testing are presented.
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2 Prostate Cancer Antigen: PCA3

Prostate cancer antigen (PCA3) is a prostate specific non-protein coding RNA, that
is highly expressed in prostate cancer cells and that is interestingly absent in non-
cancer prostate pathologies, such as BPH and atypical prostatitis (Chistiakov et al.
2018;Whitman et al. 2008). Despite its moderate sensitivity (66.27%) and specificity
of 80.94% (Wang et al. 2017), PCA3 test in urines, after DRE, can be considered
as a promising non-invasive screening test and has the potential to provide valuable
prognostic information (Whitman et al. 2008; Lee et al. 2020). Literature has reported
in fact that PCA3 can be used to predict tumours’ volumes and cancers stages and
that it can be a strong predictor of extracapsular extension when associated with
Gleason score (Truong et al. 2018; Whitman et al. 2008; Lee et al. 2020; Nakanishi
et al. 2008).

Fort all these reasons, the Food and Drug Administration (FDA) approved the
use of this biomarker for prostate cancer detection. In 2006, the Council of Europe
approved the PROGENSA PCA3 urine test, which measures the PCA3 mRNA level
normalized to that of PSAmRNA in urine. Six years later, theUSFDAadministration
takes the same decision and approved PROGENSA PCA3 urine test (Truong et al.
2018; Lee et al. 2020).

Despite its great interest, only two studies reported on electrochemical biosen-
sors for PCA3 detection. Soares et al. (2019) designed an impedance genosen-
sor by functionalizing the surfaces of gold interdigital electrodes with a film
of chitosan and multi-walled carbon nanotubes (MWCNT). They activated the
carboxylic groups of the MWCNT by amidation, using the couple N-ethyl-N-
(3-(dimethylamino)propyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS: 1/1,
M/M. Then, the formed NHS ester reacts the NH2 ending group of the PCA3 probe
(TTTTTTTCCCAGGGATCTCTGTGCTTCC with one NH2-ending group). In this
study, the authors have tested “synthetic” PCA3 with concentrations ranging from
0.1 fM to 1µM. The detection limit of the designed sensor was of order of 128 pM.

The second genosensor was designed by Rodrigues et al. (2021): layer-by-layer
films, containing alternating layers of gold nanoparticles stabilized with chondroitin
sulfate, were deposited on Dropsens printed carbon electrodes. The surfaces were
then functionalized with a complementary DNA sequence layer (PCA3 probe). Two
electrochemical techniques were investigated in this study: impedance spectroscopy
and cyclic voltammetry. The highest sensitivity was reached with the former tech-
nique. The corresponding detection limit was of order of 83 pM, is slightly inferior
to that of Soares et al. (2019).

Notice that for both designed sensors, the authors have not tested the detection of
PCA3 in urine samples.
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3 Sarcosine

Sarcosine (Fig. 3) is a non-proteinogenic amino acid generated by glycine-N-
methyltransferase in its biochemical cycle. This metabolite increases in urine during
the progression of prostate cancer and metastatic prostate, and is found in negligible
or even zero concentration in urine of healthy persons (Cernei et al. 2013). However,
its role in carcinogenesis remains yet unknown (Cernei et al. 2013).

Sarcosine test in urine samples has the advantage of differentiating the patients
with BPH from those with newly diagnosed prostate cancer. It can thus be considered
as a valuable biomarker for PCa with discriminative clinical significance (Yousefi
et al. 2020).

The usual technique for sarcosine detection is typically the high performance chro-
matography (Jiang et al. 2010). However, this method requires expensive equipment
and specific columns. Several electrochemical biosensors have thus been designed
in the last five years to detect sarcosine in urine.

Hroncekova et al. (2020) designed an enzymatic biosensor by immobilizing sar-
cosine oxydase on glassy carbon electrodes functionalized with Ti3C2TX MXene/
chitosan nanocomposite. The hydrogen peroxide generated by the enzymatic reac-
tion, in the presenceof sarcosine,was detectedby amperometry.The limit of detection
of this biosensor was equal to 91.4 nM.

Using the same strategy, Li et al. (2019) have reported the design of an ampero-
metric biosensor. The glassy carbon electrode was first modified by polyamic acid
(PAA) and then by the glutaraldehyde before sarcosine oxidase (SOX) immobilisa-
tion. This sensor conception, allowing the sarcosine oxidation and then the peroxide
liberation, was successfully used for the sarcosine detection in urine samples with a
LOD value of 0.4 nM.

To improve the stability and the selectivity of their sensor, Rebelo et al. (2014)
modified the carbon screen printed electrodes surfaces with a layer of metallic or
semiconductor nanoparticles before, or, during SOX immobilization. The authors
detected sarcosine in urine samples with a LOD value superior to those of the studies
cited above.

Consequently, the process of the electrode surface functionalization has a key
role in the design of sensitive sensors. The technology of molecular imprinting is
increasingly investigated in the modification of the working electrodes’ surfaces
of electrochemical sensors. It consists in creating imprints in a highly cross-linked
polymericmatrix. In general, themolecule of interest (template), adequate functional
monomers and a crosslinker are pre-polymerized together, during a fixed duration and

Fig. 3 Chemical structure of
sarcosine
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under optimized physicochemical parameters (pH, ionic strength, solvent, supporting
electrolyte, · · · ). Subsequently, bulk, or electrochemical polymerization process will
lead to the formation of polymeric chains which self-organize around the templates
through covalent, hydrogen or Van Der Waals interactions. Then, the templates are
removed from the vicinity the polymeric matrix, by using an extractor agent, leaving
imprints, with a complementary structure in terms of geometrical shape and chemical
functions, which are able to recognise the analytes of interest (Mattiasson and Ye
2015; Haupt et al. 2018).

Concerning Sarcosine detection, Tang et al. (2020) used Magnetic Fe3O4

nanoparticles embedded zeolitic imidazolate framework-8 (ZIF-8) and functional-
ized them with a molecularly imprinted polymer (MIP). The synthesized magnetic
Fe3O4@ZIF-8@MIP was self-assembled onto gold electrodes and used as the sens-
ing unit of the electrochemical sensor. The authors investigated the cyclic voltamme-
try technique to monitor the binding of sarcosine to the MIP and the further tests in
urine samples. The designed sensor has a limit of detection of 0.4 pM, largely inferior
to those obtained with the enzymatic modification (Hroncekova et al. 2020; Li et al.
2019; Rebelo et al. 2014). TheMIP based sensor sensitivity was equal 0.708µA/pM.

Özkütük et al. (2016) designed a MIP based potentiometric sensor for sarcosine
monitoring. Methacryloylamido histidine and ethylene glycol dimethacrylate were
the functional monomer and the cross-linking agent respectively. The MIP was syn-
thesized by emulsion polymerization. The designed sensor was selective of sarcosine
and its LOD was of order of 135 pM.

4 Engrailed-2 Protein

Engrailed-2 (EN2) is a transcriptional repressor and a member of group of
homeodomain-containing transcription factors called HOX genes that determine the
early identification of cells and tissues in initial embryonic development involving
transcriptional and translational regulation. The dysregulation of these genes occurs
in most common cancer (Marszall et al. 2015; Challacombe et al. 2013).

EN2 is expressed in prostate cancer and is secreted in urine but it is not found
in normal gland, making it a good potential diagnostic marker with a sensitivity
of 66.7% and a specificity of 88.2% (Morgan et al. 2011). Besides, Pandha et al.
reported that EN2 urinary levels reflected the volume and stage of the cancerous
tumour (Pandha et al. 2012). Interestingly, prior DRE is not required unlike for
PCA3 test, which improves the acceptability to the patients (Marszall et al. 2015).

EN2 essays for clinical PCa studies are using a typical enzyme-linked immunosor-
bent assay (ELISA) (Marszall et al. 2015; Morgan et al. 2011; Pandha et al. 2012;
Do Carmo Silva et al. 2017; Morgan et al. 2013; Killick et al. 2013; McGrath et al.
2013). As for EN2, only two electrochemical biosensors were reported in the lit-
erature. Prior to the fabrication of their sensor, Lee et al. (2015) designed a DNA
probe which specifically recognizes the EN2 protein. The authors used, as a start-
ing point, the DNA sequence (5’-TAATTA-3’) well known for its ability to strongly
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bind to EN2, and optimized then the affinity by modifying the extra sequences of
the specific binding sites. The impedimetric biosensor was elaborated by grafting
the DNA probes on gold electrodes modified by gold nanoparticles to increase the
sensitivity. The obtained sensor was tested in artificial biological media, and the limit
of detection was of order of 5.62 fM. It was however not been tested and validated on
urines from patients. Settu et al. (2017), used the same (5’-TAATTA-3’) to elaborate
a cyclic voltammetry biosensor using a screen-printed carbon-graphene electrode.
The principle is based on the activation of the surface of the electrode, rich in car-
boxylic groups, by the EDC/NHS couple in order to covalently graft the aptamer.
The announced limit of detection was of 38.5 nM, largely superior to that of (Lee
et al. 2015).

5 Micro-RNA (miRNA)

MiRNAs are described as small, 20–22 nucleotides non-coding RNAs that regulate
the expression of a multitude of target genes through binding to the 3’-untranslated
region (3’-UTR) of their target mRNAs (Zhou et al. 2017). It was reported that over
than 17 microRNA types are involved in prostate cancer and are known for their role
as oncogenes, tumour suppressors and metastasis regulators (Kanwal et al. 2017).
MiRNAs can thus be used as prognostic markers as they are commonly upregulated
in prostate cancer (Mohammadi et al. 2019).

Themost frequentmethods for the quantification and identification ofmicroRNAs
are based onmolecular biology techniques such as polymerase chain reaction (PCR),
DNA microarray, and Northern blot techniques (Mohammadi et al. 2019).

Numerous electrochemical genosensors have been designed formicroRNAdetec-
tion. They have the benefit of being sensitive enough to allow skipping the extraction
steps of microRNA from the body fluids and amplification steps by conventional
PCR (Mohammadi et al. 2019). However, most of them concerned the detection of
microRNA in blood samples (Mohammadi et al. 2019).

To the best of our knowledge, only one publication reported the conception of
electrochemical biosensor for the detection of miRNAs in urine. Smith et al. (2017)
designed an impedimetric biosensor, based on a modified glassy carbon electrode
(CGE), for the detection of miR21. The CGEwas modified by sulfonic acid and sub-
sequent chlorination prior to DNA probes grafting. The recognition was achieved by
hybridization between the DNA probes and micro RNA. The biosensor was selec-
tive, as it was able to discriminate between miR-21, three point-mutated miR-21
sequences, and miR-16. Its limit of detection was of order of 20 fM.
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6 α-Methylacyl-CoA Racemase (AMACR)

Alpha-methyl CoA-racemase (AMACR) is an enzyme involved in the catabolism
of bile acid metabolites and the β-oxidation of branched fatty acids (Ji and Chen
2019). The literature reported an over expression of AMACR protein in cancerous
tissues and their low expression in the benign ones (Jiang et al. 2013). Ouyang et al.
(2018) demonstrated that an AMACR test in urine sediments has a sensitivity of 70%
and a specificity of 71% and that a combine use of AMACR and PCA3 scores in
a dual-marker test increased sensitivity to 81% and specificity to 84%. Besides, Ji
and Chen (2019) demonstrated that the diagnostic model combining serum PSA and
urine AMACR has a better diagnostic value than PSA alone especially grey-zone
PSA patients and could reduce unnecessary biopsy.

AMACR can also be used as a follow-up tool for hormonal therapy. Suzue et al.
(2005) have carried out a study on patients with localized prostate cancer and who
were under hormonal treatment. They showed a significant decrease in AMACR
level expression. Further studies are however needed to explore correlation between
AMACR level and the treatment efficiency.

Concerning the field of biosensors, Wang and Yau (2014) designed, in 2014,
an immunosensor for AMACR detection in serum and urine, with a sensitivity of
0.0487 mA.mL/ng and 12.9 mA.mL/ng respectively. They used a sandwich structure
to detect the enzyme: a primary capture antibody grafted on the sensing area via
a polyaniline film and a secondary detection antibody conjugated to horseradish
peroxidase (HRP). The particularity of this biosensor is the use of a gating electrode
and applying a gating voltage to the immune complex to provide signal amplification.
The detection limit of the designed sensor was of order of 100ng/ml.

7 Microseminoprotein-Beta (MSMB)

Microseminoprotein-beta (MSMB) is a small non-glycosylated peptide (94 amino
acids) (Rebelo et al. 2016) that regulates cell growth by promoting apoptosis in
normal healthy prostate while in malignancy, the opposite phenomenon is observed
leading to uncontrolled growth of cells (Shrivastava et al. 2020). According to several
studies carried out by ELISAmeasurements on serum and urines, MSMB is reduced
in PCa in proportion to the tumour stage (Sjöblom et al. 2016).

To the best of our knowledge, only one electrochemical sensor has been reported
in the literature. Rebelo et al. (2016) designed a sensitive impedimetric sensor to
detect MSBM in urine and serum. Two types of MIPs were constructed. The first one
was obtained by the electropolymerisation of caffeic acid with MSBM in phosphate
buffer solution. The second one was constructed in the same conditions as the first,
but charged dopamine was added to increase the binding site label. The templates
were removed from the vicinity of the polymeric matrix by incubating the electrodes
overnight in aH2SO4 solution (1mol/l) at 45 ◦C.Tested in urine synthetic solution, the
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two MIPs based sensors presented a limit of detection of 0.18ng/ml and 0.079ng/ml
respectively. Their corresponding sensitivities, per decade of urine concentration,
were of order of 6.38µA and 13.52µA respectively.

8 TMPRSS2: ERG Transcripts

Chromosomal rearrangements seem to occur in prostate cancer, and specifically for
chromosome 21 which juxtaposes the 5’ untranslated region of TMPRSS2 to the
ERG oncogene and is observed in 40–80% of prostate cancers (Dhondt et al. 2018;
Sanda et al. 2017). The TMPRSS2 expression is regulated by androgens and codes
for the transmembrane serine protease 2 highly expressed by normal and cancerous
prostate cells. The gene ERG encodes transcription factors involved in regulating cell
growth, cell differentiation and carcinogenesis (Durand et al. 2010). The ERGgene is
activated by fusion with TMPRSS2 and might be responsible of tumour progression
and stimulation of the overexpression of transcription factors which could lead to
epigenetic reprogramming and a dysregulation of the pathways of apoptosis (Durand
et al. 2010). Diverse prospective observational studies highlighted the prognostic
value of the TMPRSS2:ERG transcripts in PCa (Sanda et al. 2017; Tomlins et al.
2016; Leyten et al. 2013). In fact, it has been demonstrated that TMPRSS2:ERG
transcript assay in urine after DRE adds important value in the prediction of clinical
tumour stage as well as biopsy Gleason score and extracapsular extension of the
tumour. Besides, combining urinary testing of PCA3 and TMPRSS2:ERG transcripts
allows to avoid unnecessary biopsy as they have together a robust sensitivity for
detecting aggressive PCa (Sanda et al. 2017; Tomlins et al. 2016).

There is no work published until now about development of a direct electrochem-
ical genosensors for the fusion gene assay in urine. However, Koo et al. reported an
amperometric readout strategy after amplification of RNA extracted from urine sam-
ples by reverse transcription recombinase polymerase amplification RT-RPA (Koo
et al. 2019).

9 Conclusion and Perspectives

Because of the clinical heterogeneity of the disease and the need to differentiate
cancer from inflammatory and benign conditions, using a single biomarker for a
robust clinical screening test for PCa is certainly not sufficient. Researchers have
thus begun testing the efficiency of assays combining sera and urinary biomarkers.
Urine is in fact a highly desirable biomarker medium as it can be collected by non-
invasive techniques.

This review highlighted the fact that there are many urinary biomarkers with a
large potential for PCa screening, but, today, none of them has reached a widespread
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use and the majority of them needs to be validated in real clinical and analytical
conditions to fulfil the European and American criteria for clinical use.

In contrast to its relative ease and robustness, the use of electrochemistry, as a
tool for the investigation of urinary biomarkers is yet limited, as shown by the small
number of publications related to this subject, but we are convinced of the great
potential offered by these devices, and of the tremendous contribution they could
bring to oncologists, like what the glucometer, has bring to the medical community.

Besides, themolecular imprinted polymer approaches associated to electrochemi-
cal transduction, offer a very promisingway to designMIP-based biosensors directed
towards simultaneous correlated detections of several pertinent biomarkers.
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Recent Advances in Ultrasensitive
miRNA Biomarkers Detection

Khouloud Djebbi, Mohamed Bahri, Mohamed Amin Elaguech, Rong Tian,
Shi Biao, Chaker Tlili, and Deqiang Wang

Abstract Recently,microRNAsgain a great interest in the bio-molecular field due to
their fundamental role in clinical diagnostics. In this chapter, we generally discussed
the biogenesis of microRNAs and the progress made for their detection. Researchers
have widely tried to investigate their effort to build a sensitive, selective, and accurate
platform formicroRNAdetection. To date, multiple techniques have been developed,
ranging from the old conventional method (northern blot, RT-PCR, microarrays)
to the newly established ones (biosensors, nanopores). However, given the various
challenges related to miRNA detection, such as low abundance, small size, and high
level of sequence similarity, different enzymatic and non-enzymatic amplification
approaches were successfully exploited to improve such devices’ sensitivity. Among
these strategies, HCR, RCA, nanomaterials, and the use of enzyme-based target
recycling like DSN enzyme. On the other hand, the combination of different methods
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has emerged as an ideal option for further enhancement of the sensitivity. In the end,
knowing that the expression of a single miRNA is not enough to identify one specific
disease, it is usually necessary to implant a simultaneous and multiplexed technique
for more sophisticated and efficient diagnostic tools.

Keywords MicroRNAs · Optical biosensing · Electrochemical biosensors ·
Field-effect transistor (FET) · Nanopores assay · Nanomaterials · Amplification
signal · Enzymes

1 MicroRNAs Overview

Around 98% of the human genome stand for non-proteins coding DNA. These spe-
cific regions are transcribed to generate functional non-coding RNAs (ncRNAs).
Among them,microRNAs one of the highly reviewed forms of ncRNAs.MicroRNAs
(miRNAs) are defined as a class of small endogenous RNAs including about 18–24
nucleotides. The Ruvkun and Ambros are the first groups to discover microRNA
(line-4) in 1993. Over since, this significant finding has revolutionized the molecular
biology field (Feinbaum et al. 2004; Wightman and Ruvkun 1993). MicroRNAs are
key features for RNA splicing and post-transcriptional regulation of gene expression.
To date, tremendous effort has been made in this field to comprehend the biogenesis
and the mechanism of miRNAs action.

1.1 MiRNA Biogenesis and Functions

MiRNA biogenesis process goes through different steps. In the nucleus, RNA poly-
merase II generally binds to a promoter of the genome sequence transcribes miRNA
genes, and so it generates the primiRNA with a length range from 1 to 3 kb. The
resulting transcript is then split with the microprocessor complex Drosha DGGR8
(DiGeorge Syndrome Critical Region 8), releasing a stem-loop of about 70–100
nucleotides named pre-miRNA. The latter is carried via the aid of Exportin-5 to the
cytoplasm, where the RNase-III enzyme Dicer will further cut it to obtain the 18–
24 dsmiRNA. Afterward, the subsequent miRNA is hydrolyzed into single strand
oligos. It yields the mature miRNA, which plays an essential and functional role
in the RNA-induced silencing complex (RISC) with the argonaute (AGO) protein
family. While the second miRNA strand termed “passenger” is frequently disinte-
grated or incorporated in downstream regulation effect along with the regulation
of miRNA homeostasis. Generally, the 3’-untranslated region (3’ UTR) represents
the miRNA/mRNA binding sites using complementary Watson-Crick base pairings.
Yet, miRNAs can interact with other regions, counting the 5’ UTR, gene promot-
ers, and coding sequences (Broughton et al. 2016). The RISC complex provokes
whether degradation or translational repression or sequestration/ destabilization via
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Fig. 1 Overview of miRNA biogenesis and regulation

a shortage of mRNA’s polyA tail from translational machinery. At the same time,
the microRNA hybridizes with its complementary mRNA target. Definite evidence
has pointed out that one unique miRNAmight have multiple targets, and similarly, a
single gene can be regulated by numerous miRNAs. The degree of complementarity
between miRNA and mRNA denotes a vital feature of the regulatory mechanism. A
superior level of complementarity facilitates the mRNA degradation due to its cleav-
age mechanism process. On the other hand, a mismatch induces the translational
repression mechanism (Fig. 1). It is ascertained that the human genome encodes for
more than 1000 miRNAs, which regulate in turn approximately 60% of gene expres-
sion in different biological activities (Yu and Pan 2012). The various processes in
whichmiRNAs are involved include cell proliferation, apoptosis, immunity, neuronal
patterning, hematopoietic differentiation, and fat metabolism,

1.2 MicroRNAs in Different Pathological Processes

MicroRNAs give insight into the etiology and the progression of several pathologies.
The expression profile of miRNA represents a core characteristic of all human dis-
eases. It is a double-edged sword. It can provoke the disease or suppress it since some
of these microRNAs are overexpressed in cells, tissues, VOC (volatile organic com-
pounds), vesicles like exosomes, and biological fluids (blood, saliva, cerebrospinal
fluid), while others are expressed at lower levels. For example, miRNA-21 is consid-
ered to be overexpressed in almost 80% of the tumor samples, while miRNA-143,
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Table 1 Some miRNA involved in various diseases

Disease Type of disease microRNAs Refs.

Cancer Lung cancer miR-155, miR-21,
miR-126, Let7,
miR-210

Wu et al. (2019)

Breast cancer miR-21, miR-16,
miR-17, miR-106a,
miR-126

Singh and Mo (2013)

Colorectal cancer miR-17-3p, miR-141,
miR-486-3p, miR-601

Schetter et al. (2012)

Ovarian cancer miR-200 family, Let7
family, miR-141

Chen et al. (2019)

Neurological disease Alzheimer’s disease miR-127-3p,
miR-34a-5p, miR-93,
miR-342-3p

Angelucci et al. (2019)

Parkinson disease miR-485, miR-29,
miR-30, miR-Let7

Goh et al. (2019)

Infectious disease HIV miR-21,miR -122,
miR-223,
miR-3162-3p

Tribolet et al. (2020)

VSV miR-197, miR-629,
miR-363, miR-132,
miR-122

Malaria miR-15a-3p,
miR-30c-5p,
miR-30e-5p

Diabetes Insulin resistance miR-195, miR-135a,
miR-7, miR-499,
miR-96

Feng et al. (2016)

Type 2 diabetes miR-1249, miR-320b,
miR-572, miR-126

Vascular disease Angiogenesis miR-221, miR-222,
miR-210, miR-130a,
Let7

Qin and Zhang (2011)

Atherosclerosis and
restenosis

miR-125a,b, Let7,
miR214, miR-146,
miR-145

miRNA-126, andmiRNA-145 are downregulated in approximately 80%of the tumor
samples. The first malady known to be allied with miRNA degradation was chronic
lymphocytic leukemia, and the identified two microRNAs were miRNA-15a and
miRNA-16-1 within locus 13q14 (Calin et al. 2002). Since then, many researchers
have focused onmicroRNAs’ role in producing genetic disorders throughmicroRNA
mediated chromatin reorganization or their implication in different human diseases
and their utility as drugs. In Table1, we listed multiple diseases associated with
microRNAs based on the previous works, for instance, upon a variety of inflam-
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matory stimuli, the level of miRNA-155, miRNA-147, miRNA146, and miRNA-9
increases markedly in macrophages. In cancer, two major microRNAs groups are
identified: one with putative -suppressive, including the microRNA Let-7 family
that plays a crucial role in stopping cancer cells’ growth and it is known as a “post-
transcriptional-gatekeeper” (Madison et al. 2015). The second group has oncogenic
proprieties such as miR-21, which has been discovered as an inhibitor of the tumor
suppressor PDCD4, promoting cancer’s invasion and metastasis (Asangani et al.
2008). Various microRNAs are reported to be related to neurodegenerative maladies
as Parkinson disease (increase level of miR-7 and miR-153) (Leggio et al. 2017) and
Alzheimer’s disease. For example, a high level ofmiR-125b stimulated Tau phospho-
rylation and aggregation by targeting phosphatases PPP1CA and DUSP6, whereas
its low level induced a reduction in Tau phosphorylation (Banzhaf-Strathmann et al.
2014). MicroRNAs are also implicated in cell development and proliferation and
other diverse pathological processes such as cardiovascular and autoimmune dis-
eases, diabetes, and so more.

This chapter aims to summarize, compare, and analyze various biosensing tech-
nologies that have been developed recently towards microRNAs detection and com-
prehensively highlight recent advances in improving the performance of miRNAs
biosensors with signal amplification using functional nanomaterials, nucleic acid
circuitry, and/or enzyme.

2 MicroRNA Detection

2.1 MicroRNA Detection Challenges

Recently, multiple studies have shed light on microRNAs as biomarkers for the
diagnosis of numerous diseases. Hence, the development of reliable and efficient
biosensors with -cost strategies for detecting microRNA is required. Due to their
unique characteristics, the analysis of microRNAs expression profile exhibits many
challenges. Among the latter, the low abundance of microRNAs in real samples since
it occupies a tiny fraction compared to the total RNA (around 0.01%) might affect
the sensitivity, the duration of the assay and appeal for further enrichment and ampli-
fication steps. Add to that their sequence similarity among the same family and their
stability to prevent accurate and selective detection. Another challenge associated
with microRNAs detection is their small size. This propriety causes difficulties for
a selective pairing of miRNAs and improves the cross-hybridization. Finally, the in
situ detection may engender a false positive signal if researchers use a mixture of
pre-miRNA and miRNA (Cissell et al. 2007). Based on these challenges, there is an
ultimate need to develop a sensitive, selective, accurate, and rapid miRNA detection
method.
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2.2 Conventional Techniques Used for miRNA Detection

Northern blotting is the first and most used microRNA detection method and is
still considered the gold standard for analyzing microRNA expression profiles. This
technique is based on the target miRNA’s hybridization captured on a nitrocellulose
membrane’s surface to a labeled probe. However, themajor shortcomings of northern
blotting are the high amount of sample loading (∼10–30µg), the low sensitivity with
a detection limit in the range of nanomolar, and radioactive tags probes (Cissell et al.
2007; Válóczi et al. 2004; Ouyang et al. 2019). To omit these drawbacks, researchers
tried to improve the detection of miRNAs via the use of locked nucleic acids (LNA)
as a detection probe instead of standard DNA probes. As a result, they found that
the sensitivity increases by 10-folds (Válóczi et al. 2004). Moreover, they employed
digoxigenin (DIG)—labeling probe as an alternative for the previous radioactive
probes. It has since proven that DIG has a short exposure time, high sensitivity,
longer shelf life, and increased safety than 32P-labeled probes (Kim et al. 2010;
Ramkissoon et al. 2006).

Quantitative PCR preceded by reverse transcriptome of miRNA to cDNA is also
classified as a standard strategy for short ncRNAs detection. The major problem
associated with this technique is the length of microRNAs that necessitate short
primers. The latter may affect the efficiency of the method since it influences the
melting temperature (Ouyang et al. 2019). Thus, researchers have made a great effort
to solve this problem by amalgamating LNA to themicroRNAprimer (Pritchard et al.
2015), and combining DNA probe with the ribonucleotides via exploiting miRNA in
the role of the template andT4 ligase.With the lattermethod, Zhang et al. were able to
detect as low as 0.2 fM of miRNA (Zhang et al. 2011). They also used digital droplet
PCR (ddPCR) since it is more accurate and sensitive in detecting miRNAs (Zhao
et al. 2018b). Even though this method has several advantages, it is cumbersome and
often used to validate or supplement other techniques (Ouyang et al. 2019). Biochip
technology or microarray is another method that was frequently used for microRNA
detection. A particular signal is generated to characterize the hybridization event
when the labeled DNA probe attached to a solid surface binds to the target miRNA
(Ouyang et al. 2019). This technique is designed for rapid and simultaneous detection
of different microRNAs. However, it is more expensive, low sensitive, and selective.
To ameliorate the detection results, scientists exploit nanomaterials and enzymes as
signal amplification techniques. On the other hand, they used LNA instead of DNA
probes for Tm normalization and better mismatch discrimination (Castoldi et al.
2006).

2.3 Emerging Techniques for microRNA Detection

Over the past decade, substantial scientific investments have been made to improve
conventionalmethods andbuild up a suitable selective, sensitive, andhigh-throughput
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platform to detect miRNAs such as biosensors. Recently biosensing gains great inter-
est for the detection of microRNAs. Biosensor is a bioanalytical device that permits
converting a biological reaction into a measurable signal in which there are different
forms of transducers, including optical, electrochemical, and electrical (field-effect
transistor and nanopore sensing). In this part, we will deal with these different strate-
gies for the detection of microRNA.

2.3.1 Optical Biosensing

Optical assays have been considered an emergent tool for miRNA detection due to
multiple advantages, including high sensitivity, convenience, and uncomplicated-
ness. Four types of assays are mainly involved in the optical sensing, fluorescent,
colorimetric, surface-enhanced Raman scattering (SERS), and surface plasmon res-
onance (SPR). This section will include different optical biosensor for micoRNAs
detection.

(1) Different probes used in optical sensing for microRNAs detection

Linear single-strand DNA/LNA/PNA represents the most used biological recogni-
tion unit formicroRNAdetection (Dave et al. 2019). The LNAprobe possesses a high
affinity towards small and highly similar targets and high thermal stability compared
to traditional DNA probes. Therefore, it allows for better discriminatory function and
better sensitivity (Silahtaroglu et al. 2004). PNA probe also gained great interest by
scientists due to its advantages, including its faster hybridization, stability, and resis-
tance to enzyme degradation (Vilaivan 2018). Molecular beacons (MBs) is another
different form of microRNA probe characterized by a hairpin shape. It is also widely
used for microRNAs detection. This probe is generally labeled from both ends, one
modified with a fluorophore and the second end tagged with a quencher. Once this
probe is hybridized with the target microRNA, the short double-strand will be dis-
sociated to generate a linear form, thus restoring its fluorescence (Tyagi and Kramer
1996; Mittal et al. 2019). MB is an excellent alternative for multiplexed microRNAs
detection (Lee et al. 2016) though; its major limitation is associated with the depleted
quenching effectiveness (Shu Zhu et al. 2019). A Y-shaped DNA probe can also be
investigated for microRNAs detection. It is formed when three oligonucleotides; two
probes, and a target DNA complementary binds to each other. This kind of probe is
sensitive to single base mismatch (Zhang et al. 2018; He et al. 2016).

On the other hand, one of the most used DNA nanostructures is a tetrahedron
with six double-helical edges, assembled by annealing four DNA strands with partial
complementarity. DNA tetrahedron have been used widely in microRNA detection
in recent years (Xu et al. 2016). This DNA shape has various characteristics, such
as good rigidity, enzyme resistance, and excellent cellular permeability (Goodman
et al. 2005). The choice of the right probe is based on the application itself and the
craved results.
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(2) Colorimetric sensor

Attributable to its advantages, including low cost and quick response, colorimetric
biosensor has become an appealing microRNA detection technique. It is based on
organic chromogenic substrates, such as ABTS and TMB to form colored products
via enzymatic catalysis (Zhu and Gao 2018). However, this type of biosensor lacks
sensitivity and selectivity compared to others. Hence, noble metal-based localized
surface plasmon resonance (LSPR) represents a better alternative for the traditional
colorimetric sensor for microRNAs detection since its first use by Joshi et al. (2014),
Bellassai et al. (2019). In most cases, researchers profited from AuNPs for the LSPR
based colorimetric sensor since they can control their colloidal aggregation and dis-
persion phases by utilizing the target analytes. The color of the solution and the
aggregation of nanoparticles are mainly influenced by the balance between particle
attraction and repulsion forces. In the case of aggregation, the reason can be attributed
to the “interparticle-crosslinking” or the “no crosslinking-aggregation” mechanism.
In this context, Huang et al. designed a colorimetric experiment for the detection
of miRNA-21 using AuNPs and DSN enzyme for better signal amplification. After
the different amplification cycles, the aggregation of AuNPs is derived by the use
of divalent cations (Mg+

2 ). The detection limit was about 50 pM with a linear range
from m 50 pM to 1 nM. This method shows great discrimination results even for a
single mismatch and it reveals high performance for biomedical application since it
was tested for cell lysates (Fig. 4) (Huang et al. 2019).

(3) Surface plasmon resonance (SPR) sensor

Surface plasmon resonance (SPR) represents the fact where the electrons of the sur-
face metal layer are excited via the light photons with a certain incidence angle and
then spread parallel to the metal layer (Fig. 2c). A slight variation in the reflective
index will occur in the analyte presence, making it possible for microRNAs detection
(Zeng et al. 2017). Nanomaterials represent an ultimate strategy for signal amplifica-
tion in SPR based biosensors. Mouzavi and his co-workers succeeded in developing
a dual hybridization biosensor based on the SPR on capped gold nanoslits using
magnetic nanoparticles as a target enrichment tool and signal amplification strategy
to detect the urinary miRNA-16-5p. They were able to reach 17 fM as a limit of
detection. This technique allocates the detection of the target miRNA in the urine of
acute kidney injury patients (Mousavi et al. 2015). Li and his co-workers developed
an SPR biosensor composed of two layers of graphene oxide-gold nanoparticles
(GO-AuNPs) composites (Fig. 2b). The first layer of the nanocomposite functional-
ized with the capture probe was immobilized onto the surface of Au film modified
with thiocyanuric acid In contrast, the upper layer (used for amplification) is mod-
ified with an assistant probe. In the presence of the target miR-141, both layers are
joined (Fig. 2a). The detection limit reached 0.1 fM, and the selectivity was tested
in the presence of different miRNA-200 family members (Li et al. 2017). Another
study by Wang’s group wherein they resorted to an SPR platform employing gold
film on which is immobilized the capture probe for miRNA-141 detection and gold
nanoparticles-decorated molybdenum sulfide where the assisted DNA that binds to
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Fig. 2 a SPR biosensor for microRNA-141 detection using AuNPs-MOS2 hybrids for signal
enhancement b SPR biosensor for microRNA-141 detection using double layers of graphene oxide-
AuNPs for signal enhancement c SPR detection principle. Reproduced with permission (Nie et al.
2017; Li et al. 2017)

a segment of miRNA-141 is linked. This enzyme-free method displays high sensi-
tivity with a limit of detection equal to 0.5 fM and high selectivity. Moreover, this
method has an excellent capacity for complex samples, such as human serum (Nie
et al. 2017).

(4) Surface-enhanced Raman scattering

SERS is a surface-sensitive method based on Raman scattering enhancement via the
use of irregular metal shells or nanostructures. Considering that the signal boost may
attain 1011-fold, SERS has become a captivating tool for disease-related microR-
NAs detection. For SERS, two significant theories exist; the electromagnetic theory
relies on the excitation of localized surface plasmons and the chemical concept
that aims to create charge-transfer complexes. Guo et al. designed a sandwich-type
method for simultaneous detection of three different microRNAs (miR-21, Let-7d,
and miR-141). In this study, they fastened thiol-containing Raman dyes on Au@Ag
nanosnowmen nanoprobes. They employed the gold substrate in SERS-active sub-
strates’ role, wherein they fixed the different capture probes. The limit of detec-
tion was 1.089 fM, 0.839 fM, and 1.019 fM, respectively (Guo et al. 2018). Some
groups took advantage of combining the use of nanomaterials with the enzyme-
based signal amplification such as DSN and exonuclease to improve the sensitivity.
For instance, Yang and his colleagues developed a sensitive platform for miR-155
detection based on TB@CaCO3 loading DNA microcapsule with the SERS active
substrate Si@Nafion@Ag. In the presence of the target miRNA and via the aid
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Fig. 3 SERS detection of the miRNA Let-7b using Fe3O4@Ag nanocomposites and DSN enzyme
for signal amplification. Reproduced with permission (Pang et al. 2016)

of enzymatic amplification strategy using duplex-specific nuclease, the Raman dye
(TB) was discharged from TB@CaCO3 composite. The achieved detection limit was
about 0.67 fM (Yang et al. 2018). Zhu’s group created a “signal-off” platform for
miRNA-21 detection by incorporating the T7-Exo enzyme as a recycling amplifica-
tion approach along with gold decorated silicon nanowire arrays. To ensure further
enhance the sensitivity of their SERS sensor; they employed Au nanostar probes to
provide a stronger electromagnetic field. Via this technique, they were able to detect
as low as 0.34 fM (Wen et al. 2019). Another study conducted by Xiao’s group
for Let-7b detection relies on the immobilization of DNA probe onto the surface of
Fe3O4@Ag NPs. When the hybridization with the target miRNA takes place, the
DSN initiates the target recycling cycles. The nanoparticles were collected using
a permanent magnet, and the SERS signal was measured (Fig. 3). This technique
possesses a fabulous limit of detection (0.3 fM) and an excellent recovery while
checking it for different cell lines (Pang et al. 2016).

(5) Fluorescence-based sensor

Fluorescence assay is themost predominantlymethod used formicroRNAbiosensing
(Ye et al. 2019). It depicts the fact that a fluorescent dye or molecule absorbs and
emits light. In the absorption phase, the fluorescent tag is excited by light with high-
energy (short wavelength), stimulating electrons’ transition within the fundamental
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Fig. 4 Principle of the fluorescent and colorimetric biosensor using AuNPs designed for
microRNA-21 detection based on DSN assisted target recycling. Reproduced with permission
(Huang et al. 2019)

state’s molecule to the excited state. Once in this state, and within nanoseconds (the
fluorescence lifetime), the electrons will release their stored energy and rest back to
the ground state, generating an emitted photonwith lower energy (longerwavelength)
compared to the absorbed light (Zhu and Gao 2018). Recently, a new fluorescence
approach called fluorescence resonance energy transfer or Förster resonance energy
transfer (FRET) has gained great interest inmiRNAs detection. This strategy relies on
energy transmission from a fluorescent donor to an acceptor. Twomain conditions are
needed for FRET: (i) the donor’s emission wavelength corresponds to the fluorescent
acceptor’s excitation wavelength, and (ii) the distance between them does not exceed
10 nm (Sapsford et al. 2006).

Attributable to the effect of the considerable limitations, many nanomaterials can
directly engender fluorescent emissionswith the exalted significant harvest, excellent
photo-stability, and long fluorescence lifetime, including quantum dots (QDs). Jie et
al. reported a multiplexed fluorescent sensor for detecting miRNA-141 and miRNA-
21 using two different kinds of quantumdot (CdSe@ZnS andCdTe) probes and target
recycling amplification strategy. The thiolated hairpin DNA probe was immobilized
onto themagnetic bead’s surface decoratedwithAunanoparticles (MB@Au).During
hybridization with the target miRNAs, Exo III-based target recycling is unthreaded,
generating short ssDNA sequences attached to the surface of MB@Au. Afterward,
the latter is hybridized with QDs fluorescent probes that will activate the cleavage
by adding Nb.BbvCI enzyme followed by magnetic separation and underwent for
fluorescence measurements. The achieved detection limit for miR-21 and miR-141
was 1.5 pM (Jie et al. 2017).

Nanomaterials can also serve as effective fluorescence quenchers (Fig. 5). For
instance, some of these nanomaterials, such as gold nanoparticles (AuNPs), (Huang
et al. 2019) graphene, (Tan et al. 2019) WS2, (Xi et al. 2014) were investigated
to detect miR-21 using DSN based signal amplification. The calculated limit of
detectionwas 50 pM, 1.5 pM, and 300 fM, respectively.Moreover, the same approach
for miRNA Let-7a detection was used employing metal nanomaterials such as a
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Fig. 5 Principle of the fluorescence quenching: a using graphene oxide, b using gold nanoparticles

magnetic bead, and they were able to detect as low as 300 fM (Shen et al. 2015). Xie
group reported a fluorescent-based biosensor to detect miRNA-141 using graphene
oxide and rolling circle amplification along with Exo III. This method exhibits a
good selectivity and sensitivity along with high performance when testing the spiked
miRNA in the human serum, and the LOD was about 0.1 aM (Li et al. 2019). All
these methods show tremendous results for the selectivity test towards mismatches
and different miRNAs families. The exploitation of nanomaterials for fluorescent
sensors not only expands the selectivity, the sensitivity, and the performance of the
detection of clinical biomarkers (miRNA), but also it opens the door to plenty of
novel approaches to conceive fluorescent sensors.

2.3.2 Electrochemical Biosensor for miRNA Detection

Electrochemical methods exhibit superior benefits own to their capability of minia-
turization, selectivity, and capability compared to other analytical techniques, which
uplift it to have widespread use in agriculture, food, environment fields, and med-
ical application (Bahri et al. 2019). Also, electrochemical biosensors demonstrated
pleasant for serving simple, fast, and point of care analysis. The transduction ele-
ment for such a genosensor can be in multiple materials: glassy carbon, gold, indium
tin oxide, graphite, or the modification of these materials using multiples nanoparti-
cle, nanotubes and/or nanowires. The fundamental principle in the electrochemical
detection of miRNAs is measuring the variations either in the electrode properties
(resistance or capacitance) or in the electrochemical tag’s signal against the target
miRNA hybridization with the complementary probe.
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(1) Impedimetric miRNA biosensors

Electrochemical impedance spectroscopy (EIS) is a useful detection technique that
delivers crucial information while modification processes like; hybridization, nanos-
tructure formation, and bio-functionalization. Furthermore, EIS is a powerful tool
for surface adsorption explore and electrochemical reaction mechanisms investiga-
tion (Tlili et al. 2005, 2003) . When it comes to miRNA detection, EIS has been
employed because it is label-free and practical. Some works detail EIS as a detection
strategy for miRNA (Erdem et al. 2017) while others describe it as a characterization
method (Erdem et al. 2015). Peng and Gao (2011) suggested an electrochemical
impedance-based biosensor using a novel sensing protocol via the amplification
of miRNA’s electrochemical detection and greatly enhanced sensitivity and speci-
ficity. The developed biosensor was based on a direct ligation procedure through a
direct tag of miRNAs with ruthenium oxide nanoparticles (RuO2 NPs). The RuO2

NPs-initiated polymerization of 3, 3’-dimethoxybenzidine (DB), and the hybridized
miRNA strands and free capture probe (CP) strands guided the deposition of poly(3,
3-dimethoxybenzidine) (PDB). Whereas the biosensor surface was made of a mixed
monolayer of 4-mercaptoaniline and oligonucleotide capture probes on a gold elec-
trode. Following this protocol, and after 60min of incubation into DB/H2O2 mixture,
the developed biosensor showed a linear charge transfer resistance-concentration
relationship from 6 fM to 2 pM and a detection limit (LOD) of 3 fM (Fig. 6a).

Similarly, using PDB polymerization strategy, Gao and co-workers suggested
another label-free detection of circulating miRNAs in blood along with miRNAs
extracted from cultured cells with a detection limit of 2 fM (Gao et al. 2013a)
(Fig. 6b). Graphene oxide modified pencil graphite electrode (PGE) was also utilized
for electrochemical detection of miRNA-34a and showed appealing discrimination
of the target miRNA against miRNA-155, miRNA-660, and miRNA-15a in buffer
medium and in the fetal bovine serum (Congur et al. 2015) (Fig. 6c). In another work,
the graphene-modified disposable pencil graphite electrode (GME) was utilized by
Ozsoz team (Kilic et al. 2015), wherein they used voltammetric and impedimet-
ric detection techniques for the detection of microRNA-21. They reported a high
performance of the suggested technique toward miRNA-21 in both buffer and cell
lysates samples with a LODof 2.09µg/mL. Zhang et al. (2016) developed an electro-
chemical impedance biosensor with immobilization-free for amplified detection of
miRNA-21. In their work, they have used a strategy based on a duplex-specific nucle-
ase (DSN) assisted target recycling and capture probe enriched from the solvent to
the magnetic glass carbon electrode surface (as a working electrode) using magnetic
beads. Due to the low activity of duplex-specific nuclease (DSN) to ssDNA, capture
probes cannot be hydrolyzed in the absence of miRNA-21. However, in the presence
of the target miRNA-21 forming DNA-RNA heteroduplex through the hybridization
with the capture probes, theDSNhydrolyzed the target-binding portion of the capture
probe while liberating the intact miRNA-21 to be hybridized with another capture
probe and a second hydrolization cycle is starting. Finally, all capture probes were
digested. Moreover, real sample measurements were made using human serum sam-
ples from breast cancer patients selective attempts toward miRNA-21 detection. By
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Fig. 6 Examples of impedimetric miRNA biosensors strategies. a Experimental principle of the
amplified detection of miRNA based on RuO2 NP. b Schematic illustration of the label-free biosen-
sor for electrochemical detection of femtomolar microRNAs. c The working strategy of the impedi-
metric Detection of microRNA at Graphene Oxide Modified Sensors. d Experimental principle of
immobilization-free electrochemical impedance biosensor based on DSN assisted target recycling
for amplified microRNA detection. a Reproduced with permission (Peng and Gao 2011), b Repro-
duced with permission (Gao et al. 2013a), c Reproduced with permission (Congur et al. 2015), d
Reproduced with permission (Zhang et al. 2016)

employing such a strategy the developed biosensor displayed an ultrahigh sensitivity
for miRNA-21 with a LOD of 60 aM (Fig. 6d).

(2) Amperometric miRNA biosensors

Amperometry is an electroanalytical method based on the current resulting from
the application of a constant oxidizing or reduction potential and respect to time
to a working electrode (indicator). Usually, the magnitude of the obtained current
depends on the concentration of the oxidized or reduced substance. Thus this method
can be used for various analytical applications.

(a) Chronoamperometry

Chronoamperometry is a time-dependent method where the square-wave potential
is applied to the working electrode. The current to time measurement of the elec-
trode fluctuates depending on the diffusion of the solution immersed in the bulk
analyte toward the sensor surface. Therefore, chronoamperometry can be applied to
detect current-time dependence for the diffusion-controlled process occurring at an
electrode, which varies with analyte concentration. For example, Liu et al. (2014)
developed a label-free and highly-sensitive strategy using triple signal amplification
via AuNps, AP and p-aminophenol (p-AP) redox cycling for miRNA detection into
a range of 10 fM–5 pM (Fig. 7a), with a limit of detection (LOD) of 3 fM. The fol-
lowed strategy was based on the difference between RNA and DNA structures. The
DNA probes were first immobilized onto the Au electrode, then it hybridized with
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Fig. 7 Examples of electrochemical detection of miRNA strategies. a Schematic illustration of
the label-free detection of miRNA using triple signal amplification of APBA-biotin-AuNPs, SA-
ALP, and the p-AP redox-cycling reaction. b Amplified voltammetric detection of miRNA via the
emergence of conductingmagneticmicrobeads and ferrocene-capped gold nanoparticle/streptavidin
conjugates. c miRNA-21 detection using signal amplification of DSN and ECC redox cycling via
AuNPs/MOS2 modified electrode. a reproduced with permission (Liu et al. 2014), b reproduced
with permission (Lu et al. 2016), c reproduced with permission (Shuai et al. 2017)

the target miRNA. The cis-diol ribose sugar group at the end of the miRNAs chain
interacted with the 3-aminophenylboronic acid (APBA)/biotin-modified AuNPs via
a boronate ester covalent bond. The obtained complex was then consented to react
with the streptavidin-conjugated alkaline phosphatase through the biotin-streptavidin
interaction. After accumulating the 4-aminophenylphosphate (p-APP) substrate, the
enzymatic conversion from p-APP to p-AP developed. The resulting p-AP possibly
cycled via a chemical reducing reagent after its electro-oxidization on the electrode,
thus increasing the anodic current. In another work, Castaneda et al. (2017) com-
bined the electrocatalytic amplification (ECA), and duplex-specific nuclease (DSN)
catalyzed amplification for the detection of miRNA. In their work, they have used Pt
nanoparticles to enhance the catalytic electrochemical reaction on inert Au ultrami-
croelectrodes (UMEs) after miRNA-capture probe hybridization followed by DSN
enzyme reaction on DNA.

(b) Chronocoulometry

Compared to chronoamperometry, Chronocoulometry is also similar, except that
the readout is a charge variation in function of time. Chronocoulometry exhibits
the advantages of effective integration in terms of reducing the noise signal,
where it is easy to distinguish and separate the capacitive charge and the faradic
charge. Masud et al. (2017) developed a nonenzymatic, amplification-free, and
highly sensitive miRNA based on gold-loaded nanoporous iron-oxide nanocubes
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(Au@NPFe2O3NC). The assay displayed a remarkable selectivity toward miRNA21
with a detection limit down to 100 fM in cell lines and tissue samples from
oesophageal squamous-cell carcinoma patients. Whereas, Miao et al. (2016) demon-
strated an electrochemical miRNA biosensor based on DSN enzyme, which relied
on the cleavage of DNA-RNA hybrid duplex cleavage by DSN and the miRNA tar-
get association with [Ru(NH3)6]3+ upon introduction of AuNPs due to DNA1 and
DNA2 probes hybridization. The used method exhibited a LOD as low as 50 aM into
a dynamic range from 0.1 fM to 100 pM. This direct detection method without the
requirement of miRNA conversion to cDNA also showed excellent discrimination
of miRNA family in real complex sample formed of throat swabs H1N1 influenza-
infected patients diluted with sterile saline.

(3) Voltammetric miRNA biosensors

Voltammetry method is classified as an electroanalytical technique, where the cur-
rent measurement is achieved at a potential ramp. The wide variety of methods in
which the applied potential may be varied leads to numerous type of voltammetric
techniques, including Cyclic voltammetry (CV), Square wave voltammetry (SWV),
and Difference pulse voltammetry (DPV) (Rezaei and Irannejad 2019).

(a) Cyclic voltammetry (CV)

CV is widely used to get useful information about redox potentials and explore
the mechanisms and kinetics parameters involved in electroactive analyte solutions’
reactions. When it comes to miRNA detection CV technique can be used for label-
free and labeled detection. Label-free detection of miRNAs is generally a simple
method where no additional labeling steps are required, making it less time con-
sumption, more practical, and usually low cost compared to label-based methods.
The plurality of the label-free miRNA biosensors approaches is based on identifying
electroactive nucleic acid base signals before and after hybridization. AuNPs have
been widely used and so popular for nucleic acid-based detection strategies. Follow-
ing the same strategy of dsDNA and ssDNA’s adsorption ability on AuNPs, Li et al.
(2016) developed a let-7a miRNA biosensor with a LOD of 16 fM in human breast
adenocarcinoma cells. Lu et al. (2016) reached a lower LOD of 0.14 fM usingAuNPs
based method and the higher loading density of biotinylated hairpin-structured DNA
probes that opened after hybridization and further interacted with ferrocene-capped
streptavidin-conjugated (Fig. 7b).

(b) Square wave voltammetry (SWV)

SWV technique is one of themost sensitive and fastest pulse voltammetry techniques.
The obtained detection limits are comparablewith those obtained using spectroscopic
and chromatographic techniques (Simões and Xavier 2017). In one study, Tran et
al. (2013) have used the SWV to detect miRNA-141 by taking the advantage of the
quinone group existing inside the nanostructured polymer film containing an elec-
troactive polymer and carbon nanotube. The presence of the target microRNA-141
generated a signal-on response resulting from the enhancement of the polymer. The
detection of prostate cancer biomarker mir-141 was achieved using square wave
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voltammograms leading to a LOD of 8 fM. In a similar context, Labib et al. (2013)
designed a three-mode experience electrochemical biosensor based on hybridization,
protein displacement, and P19 protein binding for the detection and quantification of
miRNAswith a LODof 5 aMwithout the requirement of PCR amplification.MiRNA
biosensors-based hybrid nanomaterials also showed a greatly enhancement of sen-
sitivity and limit of detection. For example, an interesting hierarchical flower-like
Au nanostructure that exhibits a large surface area and thus enhances the sensitivity
up to 1 fM also enables discrimination of the target miRNA from cervical cancer
cells (HeLa) and lung cancer cells (A549) (Su et al. 2016). Besides the AuNPs,
ruthenium nanoparticle (RuO2) was also used for miRNA detection along with high
conductivity and a robust catalytic activity (Peng et al. 2010).

(c) Difference pulse voltammetry (DPV)

DPV is a technique that implicates applying amplitude potential pulses on a lin-
ear ramp potential. Using DPV, a base potential value is selected at which there
is no faradaic reaction and is applied to the electrode. The bias potential is raised
between pulses with equal increments. The current is instantly measured before the
pulse application and at the end of the pulse. Consequently, the difference between
them is registered. Label-free detection of miRNA based on DPV measurements
was also widely used, leading to high discrimination of the target biomolecules
along with high sensitivity and a low limit of detection (LOD). Kilic et al. (2013)
suggested an alternative procedure in which they used the P19 viral protein as a
bio-recognition element for label-free electrochemical detection of miRNA-21 due
to its particular binding ability RNA duplexes. The developed mir-21 biosensor was
based on the oxidation signal of tryptophan in p19 protein afore and after interac-
tion of the protein with miRNA hybrid and displayed a picomolar detection limit in
real samples measurement. The selectivity test was proven with two control exper-
iments, firstly via a non-complementary miRNA (miRNA-192), which leads to a
non-hybridization or p19 sequencing. Whereas the second test was based on glucose
oxidase enzyme (GOX) instead of p19, confirming the specificity of protein toward
the double-stranded RNA (dsRNA).

Yang et al. (2009) also developed a label-free electrochemically inactive inosine-
substituted probe sequence that was utilized to get an assay with a yes/no signal
when the target miRNA was detected using the DPV technique. Isin et al. (2017)
modified the graphene oxide onto the surface of a pencil graphite electrode (PGEs)
and the modified electrode was used for the first time for voltammetric monitoring
of miRNAs-34a biomarker related to Alzheimer disease. The CA/GO/PGE charac-
terization was investigated via CV, EIS, and scanning electron microscopy (SEM).
The GO concentration, DNA probe concentration, and miRNA-34a were optimized.
Thus, under the optimum conditions, the developed biosensor exhibited a LOD of
7.52 µg/mL into a linear concentration range from 5 to 35 µg/mL.

Although these methods display a more straightforward, fast solution for miRNA
detection and quantification, but still required sensitivity enhancement that could
not be met most of the time, modifying the surface properties or the electrode’s
conductivity via metal nanoparticles, electroactive materials or taking advantage of
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enzymes for the signal amplification could significantly lower the limit of detec-
tion and enhance the biosensor’s sensitivity. Electroactive materials such as methy-
lene blue (MB) and meldola’s blue (MDB) have been employed as electroactive
redox labels for hybridization indicators in electrochemical nucleic acid as well as
miRNA biosensors. UsingDPV technique, Kilic et al. (2012) studiedmiRNAs detec-
tion based on alkaline phosphatase (AP) enzyme. In this work, kilic and coworkers
described an assay usage of (PGE) for oligonucleotide capture probe immobilization
via EDC/NHS chemistry to record the α-naphthol oxidation signal of AP enzyme
after the hybridization with target mir-21. Similarly, Rafiee et al. (2016) developed
a simple electrochemical miRNA biosensor using methylene blue (MB) as an elec-
troactive intercalator.

The DPV technique was used to study the oxidation of MB associated with the
hybridization event between the probeDNAand the targetmiRNA-21. This approach
displays a high selectivity and sensitivity with a LOD of about 84.3 fM. In another
study, Kapton et al. (2017) reported an electrochemical sensor for the detection of
mir-21 extracted from breast cancer cell (MCF-7) based on Meldola’s blue (MDB)
reduction. Wherein, they employed the electropolymerized polypyrrole modified
pencil graphite as an electrode (PPy/PGE). This method displayed a high sensitivity
and a LOD of 0.17 nM.

Hybrid nanomaterials also showed superior features for miRNA detection, like
molybdenum disulfide (MOS2) microcubes (Shuai et al. 2017) and tungsten oxide-
graphene composites (Shuai et al. 2016). Shai et al. (2017) designed an ultrasensitive
electrochemical biosensor for miRNA detection using hollowmolybdenum disulfide
(MOS2) microcubes and DSN enzyme was used for signal amplification.

Firstly, the biotinylated ssDNA probe was immobilized onto AuNPS/MOS2
modified electrode for streptavidin-conjugated alkaline phosphatase combination
(Fig. 7c). When the DSN cleaves the formative duplexes of the capture probes and
miRNAs, the biotin group strips from the electrode’s surface, and the streptavidin-
conjugated alkaline phosphatase is not able to be attached to the electrode surface.
Subsequently, ascorbic acids create the electrochemical-chemical-chemical redox
cycling and making the electrochemical response in the attendance of ferrocene
methanol and tris (2-carboxyethyl) phosphine. The suggested method exhibits a
LOD of 0.086 fM into a concentration range from 0.1 fM to 0.1 pM. Additionally,
the biosensor showed a successful capability to detect target miRNA-21 in human
serum samples.

2.3.3 Field-Effect Transistor (FET)

Additionally to the electrochemical detection method, field-effect transistor (FET)
is also a prominent part of the electrical detection. Recently, label-free detection
based FET biosensors has shown great attention and prospects considering no elec-
trochemical tags. However, attain high capability detection and sensitivity. Gao et al.
(2013b) reported the design of an ultrasensitive, real-time, and label-free detection of
miR-21 using silicon nanowire (SiNWs) field-effect transistor biosensor array. The
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sensing channel of silicon nanowires was synthesized via optical lithography and
anisotropic self-stop etching. Further, the obtained device was functionalized with
3-aminopropyltriethoxysilane (APTES). The terminal carboxyl group of the capture
probe DNA was then conjugated to the amine group of the APTES-modified SiNWs
via EDC/NHS chemistry. The described strategy leads to the detection of miR-21
with a LOD of 1 fM and high selectivity for single-nucleotide polymorphism dis-
crimination.

Graphene a 2D sheet of sp2 bonded carbon atoms sparked research on 2Dmaterials
that are blooming at a tremendous rate owing to its unique properties, such as high
carrier mobility, low electrical noises, ease of fabrication and functionalization, and
large active detection area (Hwang et al. 2020). Song et al. (2020) developed a
3D graphene FET (GFET) biosensor, ssDNA as a probe was immobilized with 1-
pyrenebutanoic acid succinimidyl ester (PBASE) as a molecule linker.

Themanufactured biosensor showed a linear detection response in a concentration
range of 100 pM–100 nM with high sensitivity of about 35 mV/nM and a LOD of
100 pM. Femtomolar miRNA detection was also proposed by Zhang team (Cai et al.
2015) based on GFET decorated gold nanoparticles.

The emerge of gold nanoparticles with peptide nucleic acid (PNA) employment
instead of DNA leads to a higher hybridization efficiency with a LOD as low as 10
fM.What’s more, the obtained assay exhibits accurate discrimination of complemen-
tary miRNA from non-complementary miRNA and one-base mismatched miRNA.
Very recently, Gao et al. (2020) reported a free labeling and flexible GFET biosensor
along with robust performance, specific and ultrasensitive detection of miRNA. The
DNA probes were immobilized onto the graphene channel via π − π stacking inter-
action without molecules linker or surface functionalization. The proposed biosensor
finished the miRNA detection in only 20 min and displayed a detection ability down
to 10 fM.

Molybdenum disulfide (MOS2) as a transition metal dichalcogenides (TMDCs)
material has also added exceptional value to the electrical measurement-based
biosensors field-effect transistor. MOS2, with its direct-to indirect tuning structure
as varying its layer number from single layer to bulk, respectively (Sarkar et al.
2014). Numerous studies on MOS2 have fully emphasized its extraordinary poten-
tial for electronic components. Also MOS2-based biosensors for DNA or proteins
detection have been reported (Sarkar et al. 2014). Furthermore, a label-free ultra-
sensitive biosensor platform using MOS2 FET gadgets were developed for breast
cancer biomarker (miRNA-155) in human serum and cell line samples (Majd et al.
2018). The developed biosensors displayed high mobility of 1.98 × 103 cm2V−1

s−1 and a LOD of 0.03 fM under a complementary target miRNA-155 concentration
range from 0.1 fM to 10 nM. Table2 is resuming and illustrating the conventional
development methods of miRNA biosensors based field-effect transistors.
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Table 2 Conventional development methods of miRNA biosensors based field-effect transistors
Surface

functionalization with
Sensing
materialFET structure

DNA
probe miRNA

Work
example LOD

SiNW FET

GFET

MoS2 FET

Silicon
Nanowires

Graphene

TMDCs (MoS2)

Adsorption

Adsorption

PBASE +
NH2 Probe

AuNPs +
SH Probe

APTES +
NH2 Probe Gao et al.,

2013

Cai et al.,
2015

Song et al.,
2020

Gao et al.,
2020

Majd et al.,
2018

1 fM

10 fM

100 fM

10 fM

0.03 fM

2.3.4 Nanopore Technology

Nanopore technology has a strong potential to enhance the development of low coast
high-performance single-molecule sensing platforms. Nanopore-based sensors have
been successfully used as a detection platform for different biological targets, such
as DNAs, aptamers, and MicroRNAs (Wanunu 2012; Zhao et al. 2018a; Sultan and
Kanavarioti 2019). The detection principle of nanopore-based sensors is inspired
from the Coulter classical counter routine; a nanopore chip is embedded inside a
flow cell between two chambers (cis and trans). The two reservoirs are filled with an
ionic buffer (KCL, LiCl, CsCl2 · · · ). The application of an electric potential through
2 Ag/AgCl electrodes will force electrons to move from one chamber to another,
establishing a current baseline called open pore current. When the target molecule
is added to one side of the flow cell, the molecules will be driven to pass through
the pore under the applied potential. The passage of the molecules through the pore
will temporarily block the pore and prevent electrons from circulating. However, a
current drop will appear in the as-established baseline current whenever a molecule
passes through the pore. The main parameters to extract from a nanopore sensor are
the current drop intensity and the dwell time, which are the characteristics of the
target (Lee et al. 2018). Nanopore sensors are divided into two families biological
and synthetical nanopores (Fig. 8). The first family is based on a protein channel
embedded directly within the lipid bilayer. In contrast, the second one is founded on
a nanometric pore drilled in a free-standing membrane (Shi et al. 2017).

(1) Biological nanopore
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Fig. 8 a Biological nanopore. b Solid state nanopore

So far, several studies have been published based on biological nanopores to detect
different microRNAs. In one study Ryuji Kawano and his team developed an alpha-
hemolysin (αHL) nanopore-based miRNAs sensor that utilizes isothermal amplifi-
cation and asymmetric nanopore measurement for indirect and label-free detection
of miRNA-20. In their work, they have reported the detection of miR-20a with a limit
of detection (LoD) of 1 fM. This ultra-low concentration was mainly achieved by
designing the three-way junction structure with the catalytic enzyme reaction using
miRNA-20 as the input and poly-thymines (polyT20) as outputs molecules. This
approach can be applied for ultra-low concentration detection of other microRNAs
biomarkers by simply changing the nucleotide sequences of the DNA template and
primer (Zhang et al. 2017). Another work reported by Ivica et al. was based on α-
hemolysin pore for the detection of miR155, which is considered as a lung cancer
biomarker. In their work, the target MicroRNA was firstly hybridized with a specific
probe. Then, the prob-miRNA duplex was unzipped before translocating through the
pore. In order to improve the analytical performance of their nanopore assay, they
have studied the effect of different salt gradients between the nanopore chambers
and the DNA probe design effect. Based on their funding, the 8-fold KCl gradient
enabled a linear relationship between pulse frequency and miRNA concentration in
the range of 100 pM–100 nM with a limit of quantification of 100 pM (Ivica et al.
2017).

For the sake of selective simultaneous detection of different microRNA targets by
using a biological nanopore sensor, Li-Qun Gu and his team have done innovative
work and succeed in detecting four different microRNAs miR-155, miR-182-5p,
miR-210, and miR21. The approach is based on designing different barcodes probes
and attach each one to a target microRNA.

However, the interaction between the probe and the target could modulate the
ion flow through the nanopore. Resulting in a specific signature attributed to each
complex (barcode probe + target) (Zhang et al. 2014). Moreover, a novel method
based on an α-hemolysin pore was proposed by Tian et, al. to selectively detect
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Fig. 9 Cationic peptide-PNA probe hybridized microRNA selective detection principle. Adapted
with permission from (Tian et al. 2013)

microRNA in a nucleic acid mixture (Fig. 9). They have proposed to form a dipole
complexbyhybridizing apolycationic peptide-PNAprobewith the targetmicroRNA.

However, the application of a voltage bias, opposed to the bias needed to capture
the nucleic acids, will drive the complex to pass through the pore, and the other
nucleic acid will be pushed away. The selectivity test in the presence of nucleic acids
and different other microRNAs proved that this approach could be used in a complex
solution (Tian et al. 2013).

(2) Solid-state nanopore

Besides biological nanopore, solid-state nanopores with all their diversity have also
been commonly used to detect MicroRNA. Taking the example of micropipette
nanopore, Hao Wang et al. used a micropipette nanopore to detect miRNA-21 as

Fig. 10 Working principle of the nanopipette nanopore sensor. Adapted with permission from
Wang et al. (2019)
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a lung cancer biomarker (Fig. 10). The team has used an innovative strategy, and the
target microRNA was hybridized with neutral peptide nucleic acid (PNA) modified
Fe3O4—Au nanoparticles, then the complex Fe3O4-Au-PNA-miRNA was translo-
cated through the nanopipette nanopore by a positive potential application and elimi-
nating neutral Fe3O4-Au-PNA. The authors were able to detect the miRNA-21 in the
range of 2–50nM in PBS with a limit of detection of 2 nM. Moreover, they demon-
strated that their proposed sensor can be potentially applied to detect miRNA-21 in
complicated samples (Wang et al. 2019). In the same context, Wanunu et al. have
succeeded in detecting miR122a using a 5 nm pore drilled on a 10 nm thick silicon
nitride membrane. In their platform, the miR122a was first hybridized with a spe-
cific probe, then the DNA probe/miRNA-122 was enriched by binding to the viral
proteinp19-modified magnetic beads and finally translocated through the nanopore.
In this work, they have studied several microRNA probes and the effect of the mem-
brane thickness. Under the optimal conditions, the sensor could detect concentrations
at the femtomolar level (Wanunu et al. 2010).

(3) Comparison between biological and solid-state nanopore

Although the sensing principle of the solid-state and biological nanopore is the
same, the choice of an appropriate platform depending on the application and the
experiment’s chemical environment, the key differences between the two categories
are the adjustment of the pore size, which is adjustable for the solid solid-state
nanopores (synthetic nanopores) and not adjustable for the biological nanopores
because the proteins’ size is unchangeable, and they always keep the same size and
shape. The other key difference is the resistivity of harsh chemical conditions; solid-
state nanopores are more immune to rough chemical conditions. While biological
nanopores are more suitable for surface modification (Shi et al. 2017). However,
the first commercialized nanopore platform, and so far, the most used platform is
based on biological nanopores delivered in 2014 by Oxford Nanopore Technology
(Plesivkova et al. 2019).
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Abstract Helicobacter Pylori (HP) bacteria is considered as one of themost capable
pathogens in colonizing the human gastrointestinal tract. It is a dangerous carcinogen
bacterium that infects about 50% of humans. Infection with HP may begin during
childhood and can persist lifelong. Thus, detecting HP at an early stage is very
important to prevent developing symptoms. Consequently, reliable detection tech-
niques of HP for in-vitro samples are very important. In-vitro detection can include
contaminated food, water, public sanitary facility, and any contaminated environ-
ment. Several techniques are available for detection of HP in complex samples, such
as polymerase chain reaction (PCR) test and urea breath test (UBT). However, these
techniques usually need excessive sample processing, complex instruments, trained
personnel, and long detection time. Nowadays, detection of pathogens in complex
samples is becoming very important as they are becoming more resistant to antibi-
otics. In this contribution we review detection methods of HP and address thereby
important findings in stool antigen tests, fluorescent detection methods, calorimetric
detection methods, Surface Plasmon Resonance detection methods as well as elec-
trochemical methods. In addition, we provide perspectives for future developments
in this important and challenging field.
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1 Introduction

Helicobacter pylori (HP) is a spirally-shaped gram-negative pathogen. It is a very
dangerous bacteria such that infection with HP is strongly linked to gastrointestinal
ulcers that may lead to cancer (Kusters et al. 2006). Mainly, it attacks stomach’s
epithelial cells targeting its apical surface, and with the help of its flagella tail-like
which aids its movements, then it attaches itself through outer membrane proteins
(Salama et al. 2013). Unlike other most bacteria, HP can persist lifelong in harsh
acidic environment of human stomach (Königer et al. 2016). HP is very contagious,
as it contaminated half of the world’s population (Amieva et al. 2016). It worth not-
ing that not all HP strains are severely pathogenic (Ali et al. 2019). The methods of
transmission of HP may include human-to-human contact and contact to contami-
nated surfaces (Chauhan et al. 2018). Contaminated food, water and tools, untreated
wastewater, toilets, and lack of hygienic habits are the main known pathways of HP
transmission through indirect human interaction (Ng et al. 2017).Most HP infections
occur during childhood and can begin to affect the host’s life from that stage or later
(Chen et al. 2019; Hong et al. 2019). Therefore, the possibility to detect HP at low
concentrations, such as screening in contaminated mediums or in monitoring cases
after eradication, is highly needed. In general, detection methods must be selective,
sensitive, repeatable, reliable, cost-effective, and not time-consuming. Furthermore,
compatibility with with point-of-care (POC) devices is a plus.

Several techniques available for HP detection both invasively and non-invasively
such as: mass spectroscopy (MS), Giemsa stain, surface plasmon resonance (SPR),
fluorescence techniques, polymerase chain reaction (PCR), and hematoxylin and
eosin (H&E) stain, urea breath test (UBT), colorimetric andfluorescent-based biosen-
sors, electrochemical biosensors, lateral flow devices (LFD) and enzyme-linked
immunosorbent assay (ELISA) kits (Ali et al. 2019; Chen et al. 2019; Hong et al.
2019; Nosrati et al. 2017; Khalilpour et al. 2016). However, most of the proposed
invasive and non-invasive techniques are used to diagnose human infections after
symptoms have been developed (Nosrati et al. 2017). Besides, non-invasive detec-
tion techniques in complex samples generally suffer from several drawbacks such as
the need for excessive sample preparation, long incubation period, poor sensitivity
and/or specificity, the need for imaging and color comparison techniques and lack
of complete quantitative results (Khalilpour et al. 2016).

For sensors to meet the quality criteria (ASSURED: Affordable, Sensitive, Spe-
cific,User-friendly,Rapid andRobust, Equipment-free andDeliverable to end-users).
Kosack et al. (2017) formulated by the World Health Organization (WHO), this sug-
gests careful choice of novel materials, novel biosensor structure and design, suitable
fabrication techniques and efficient POC data analysis devices (Jaradat and Ibbini
2019). Therefore, there is still a current demand to produce simple but highly sensitive



Early Detection of Helicobacter Pylori Bacteria in Complex Samples 167

and specific HP sensors for complex clinical and environmental samples. Therefore,
to achieve ultrasensitive biosensor enough for early detection, current strategies rely
on using biomarkers and affinity sensing approach strategies without relying on PCR
amplification step (Peng 2017). These approaches can include electrochemical, flu-
orescence, colorimetric, and SPR based biosensors.

This chapter highlights the following concerns about HP detection: firstly, the
importance of in-Vitro detection of HP at early stage and for eradication monitor-
ing; It highlights the necessity for developing a powerful ultrasensitive HP in-vitro
detection method and illustrates its impact on fighting this pathogen. Secondly, the
evaluation of recent in-vitro detection methods: it criticizes the reliability of in-vitro
detection methods proposed in literature, categorized according to the main trans-
duction approach proposed by scientists and researchers, with each method’s pros
and cons are discussed. Thirdly, experience methodology and results of the authors
are briefly discussed. In, addition, conclusions and future perspectives toward HP
detection in complex sample are briefly summarized and discussed. Conclusion of
the strengths and limitations for each detection approach are presented. Finally, it
presents future perspectives and outlines for possible directions in HP early detection
in complex sample.

2 Importance of HP In-Vitro Detection

This section illustrates the importance of detecting HP bacteria at very low con-
centrations in complex samples. Usually, the first exposition to HP can occur at a
very early stage of human life, i.e. during childhood (Chen et al. 2019). In addi-
tion, HP re-infection monitoring after eradication starts with monitoring at very low
bacterial culture count. On the other hand, contaminated mediums like food, water
and communal facilities usually have very low concentration of HP (Khalilpour et al.
2016). With noting that scientists are reporting an increasing resistance of HP toward
treatment with antibiotics, therefore, the detection of HP before infection or at early
stage is very important in several ways (Khalilpour et al. 2016; Peng 2017). Firstly,
early detection can help diagnose host children and help protect them from negative
consequences of future possible infection with such dangerous pathogen. Especially
that HP can cause irreversible damages to the GI tract and may lead to GI tract mal-
functioning whichmay affect children’s diet and nutrition throughout puberty (Toller
et al. 2011). Secondly, the bacteria eradication using the traditional triple treatment
is not a guarantee that the bacteria is not coming back because bacteria resistance
for antibiotics is increasing (Mégraud 2012). Therefore, eradication success rate is
dropping, thus, detecting the bacteria after the eradication will help in evaluating
the eradication process itself, which is particularly important to determine the next
medical intervention required (Mégraud 2012). Finally, the detection in complex
samples at very low concentrations can help diagnose the contaminated mediums.
This particularly helps in determining the routes of HP transmission. For example,
simple HP in-vitro test can be incorporated in quality assurance routine tests such
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as testing supply water, vegetables or other food products for HP contamination.
However, detecting HP contaminations of communal spaces may help to reduce the
susceptibility of cross-infection between users of communal facilities. Thus, detect-
ing HP in complex samples will greatly help in fighting disease spread and reducing
its negative impact on human life.

3 Recent Advances in In-Vitro HP Detection

Since the discovery of HP in 1982, several detection techniques have been proposed
to fight this pathogen (Ali et al. 2019). Most of these techniques were relying on
using invasive methods and usually used to detect HP in patients with symptoms
(Nosrati et al. 2017). Such invasive methods are beyond the scope of this chapter.
Non-invasive in-vitro detection of HP is especially important for its casual simplicity,
more comfortable for patients, more cost-effective, higher potential for use in POC
devices and their need for less sample preparation (Jaradat and Ibbini 2019; Nosrati
et al. 2017). UBT is very famous non-invasive detection method, in which a C13

or C14 labeled false urea should be drunk by the patient (Chey 2000). However,
this method mainly relies on measuring the amount of CO2 gas produced by bacteria
activity. Although this test is non-invasive, it is not designed for early-stage detection
nor for in-vitro detection. Because at low concentrations of bacteria, the production
of CO2 is very low and the test itself requires infrastructure.

3.1 HP Stool Antigen (HpSA) Test

HP in-vitro detection methods usually depend on utilizing HP biomarkers like anti-
gens, DNA and outer membrane proteins (OMP’s) as evidence for existence of HP
(Jaradat and Ibbini 2019). One of the famous in-vitro detection methods is the HP
stool antigen (HpSA) test. This method depends on detecting the antigen which the
human body produces as a response to HP infection with the help of PCR test as sig-
nal amplification aid (Shimoyama 2013). Stool, saliva, and blood serum can contain
HpSA, and with the help of conventional serological techniques like ELISA, HSpA
can be easily detected. Although its test is sufficiently simple and compatible with
POC devices, recent studies started to question its reliability as a detection method
because the number of false-negative results produced increases (Chen et al. 2019;
Khalilpour et al. 2016). With utilizing PCR test for body antigen, HpSA can not be
used to test contaminated medium like food and water. In addition, current detection
technology trends are centered toward avoiding the PCR amplification.
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3.2 Fluorescent Detection Methods

Fluorescent techniques are basedon spectrochemical analysismethodoffluorescence
phenomena in which entities of an analyte will be excited by irradiation at a spe-
cific wavelength. Then the target entities will emit radiation at different wavelength,
usually longer wavelength, which will be measured as a readout (Dolatabadi et al.
2011). Different fields of sciences widely use fluorescence techniques for several
characteristics such as availability of several dyes and its inherent sensitivity. These
properties put fluorescence as a promising sensing technique (Liu et al. 2017). Sev-
eral dyes exist with four main families based on its synthesis: peptides and proteins,
synthetic polymers, and multi-component compounds (Liu et al. 2013; Stockert and
Blázquez-Castro 2017).

Fluorescent dyes based on synthetic semiconductor quantum dots (QD’s) can be
utilized asmotifs for antibodies to function as sensing probes (Stockert andBlázquez-
Castro 2017). QD’s are characterized by SPR, because they emit a specific wave-
length and angle of radiation when exposed to UV-Vis electromagnetic waves. QD’s
are commonly functionalized with biological receptors like DNA strands and anti-
body antigens for biosensor applications (Feng et al. 2014). Therefore, attaching the
QD’s to the receptor antibody-antigen will change the surface properties of the QD’s
affecting their fluorescence properties (Wang et al. 2010). Thus, when HP antibody
immunogenically interacts with the recipient antigen, another surface change occurs
modulating the radiation angle, the intensity of radiation, or wavelength of the fluo-
rescent wave (Feng et al. 2014; Nezami et al. 2017; Wang et al. 2010). Quantifying
such fluctuations can lead to specifically quantifying the bacteria’s existence and
concentration.

Recent literature reports several fluorescent sensors and proof of concepts for
in-vitro detection of HP. For example, Liu et al. (2017) reported a fluorescent sensor
based on CuInS2 QD conjugated with single-stranded HP DNA (ssDNA) aptamer
bounded to graphene oxide (GO) substrate. In this sensor, if HP complementaryDNA
is absent, then the ssDNA is adsorbed on GO which quenches the QD fluorescence
(Liu et al. 2017). But if the complementary HP DNA is introduced then ssDNA will
bound to it to form a double-stranded DNA (dsDNA). Formation of dsDNA disturbs
the adsorption resulting in restoring the fluorescence activity of QD but at different
intensity.

A novel method proposed by Chen et al. (2019) by using immunomagnetic beads
(IMP’s) bonded to monoclonal antibody (mAbs). mAbs attached with IMP were
utilized to immunogenically capture and magnetically extract HP from the complex
sample. The immunocomplex then eluted and exposed to fluorescence QD’s con-
jugated with polyclonal antibodies (pAbs) probe. The interaction of pAbs/QD with
HP alters the fluorescence of HP. Hong et al. (2019) proved the possibility to use
a pH-sensitive fluorescence probe based on benzothiazole conjugated with hydrox-
ythiophene (T2(OH)B). This sensor relies on the fact that HP secrets urease enzyme
which is able to neutralize the acidic surrounding of the bacteria by catalyzing urea
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hydrolysis to enable its survival in the harsh stomach environment. As a result, PH
is locally altered resulting in altering the fluoresce of the fluorescent probe.

Akashi et al. (2019) proposed a detection method based on γ -glutamyl hydrox-
ymethyl rhodaminegreenfluorescent probe (gGlu-HMRG).This probe can reactwith
HP γ -glutamyl transpeptidase (GGT), produced by HP, to produce immediate fluo-
rescence. Therefore, gGlu-HMRG proved to detect infection of HP in ex-vivo gastric
biopsy. The activity of HP to produce GGT was quantified by this fluorescent probe
assay by determining fluorescence intensity changes. In this work, gGlu-HMRG in
HP-negative cultures resulted in considerably less fluorescence than in HP-positive
samples after incubation for 15 min. Although the assay sensitivity and specificity
were lower than 90%, this assay can be promising in rapid HP detection for ex-vivo
specimen.

HP detection in complex samples using fluorescence-based strategies still require
bulky instruments, or at the most portable end, still needs imaging technologies such
as smartphone equippedwith a proper toolkit and software, especiallywhen detection
is at low concentrations or quantification is required (Chen et al. 2019; Dolatabadi
et al. 2011; Jaradat and Ibbini 2019; Nosrati et al. 2017; Liu et al. 2013). Therefore,
fluorescent techniques generally have lower chances to be effectively utilized as
precise quantitative detection methods especially in remote regions. In addition, it
usually needs relatively longer test durations (Akashi et al. 2019; Hong et al. 2019;
Liu et al. 2017).

3.3 Colorimetric Detection Methods

Colorimetric analysis methods determine the existence and concentration of analyte
using a color reagent (Zarei et al. 2017). Its application ranges from inorganic to
organic and biological samples (Vilela et al. 2012). Biological analyte detection using
colorimetric sensor usually relies on a shift of absorbed or reflected light intensity
when a biologically labeled-reagent complex interacts with the analyte (Vilela et al.
2012). Colorimetric properties alternation is due to change of physical properties of
the probe upon interaction with the target (Ali et al. 2019).

Few colorimetric sensors for detection of HP in complex sample without PCR
amplification were reported by researchers. For example, Ali et al. (2019) reported a
colorimetric-based sensingmethod utilizing a protein-activated DNA/RNA-cleaving
property of fluorescent DNAzyme (deoxyribozymes or DNA enzymes) activated
by HP protein. Where DNAzymes are synthetic single-stranded DNA (ssDNA)
molecules able to catalyze specific chemical reaction. DNA-RNA substrate cleavage
occurs at a specific ribonucleotide junction (R) in a close proximity of a quencher
(Q) and a fluorophore (F) where it suppresses the fluorescence to its minimum, with
the existence of a quencher (Tram et al. 2012). But once the protein assisted cleavage
occurs, the quencher is released resulting in much stronger fluorescence. In Ali et al.
(2019), DHp3T4 is the DNA segment with full cleavage activity but with shortest
DNAzyme sequence possible. HP protein is obtained using the crude extracellular



Early Detection of Helicobacter Pylori Bacteria in Complex Samples 171

mixture (CEM) methodology, in which residue entities left behind by the bacteria
in its complex sample are collected and used as HP specific activator. In their work,
DHp3T4 is bound with urease and attached to agarose beads for immobilization and
after addition of HP CEM to the sensing assay, it can result in freeing urease which
is collected by centrifugation. Adding the extract to phenol-red and urea solution
results in urease hydrolyzing urea which releases ammonia that makes the medium
to become more basic (higher pH) which changes the fluorescent color from yellow
to red . This methodology uses stool sample with very good limit of detection (LOD)
of 104cf umL−1 (Ali et al. 2019). They also prepared a paper-based version of the
sensing platform with semi-quantitative results.

3.4 Surface Plasmon Resonance Detection Methods

Biosensors based on SPR are extensively utilized as a powerful method to monitor
biological interactions in real-time, mainly, due to the highly specific binding with
biological entities (Wang et al. 2016). Label-free and high-throughput are the main
intrinsic properties of SPR technique in measuring affinity interactions and/its kinet-
ics (Wang et al. 2016). In SPR sensors, biological entity attached to a nanostructure
surface will serve as receptor for the analyte. The interaction of the receptor and
analyte will locally alter the refractive index in the interaction vicinity on the nanos-
tructured surface (Lazcka et al. 2007). The shift in refractive index value is measured
by SPR sensor apparatus (Nishimura et al. 2000).

Nishimura et al. (2000), made use of immunological response between HP urease
and its monoclonal antibodies utilizing a commercially available phenol-red based
assay kit. The kit utilizes the binding behavior of HP’s urease monoclonal antibodies
attached on 50-nm thick gold-coated sensor chip. Due to bacteria surface comprised
of several proteins and biological structures, the SPR-based apparatus utilized a
measuring cell for the sample containing HP and another reference cell for a sample
without HP cells to neutralize the non-specific binding effect. In this study, it was
reported that the LOD reached down to 2 × 107 bacteria/ml.

In another study, Fabini et al. (2016) proposed an isothermal titration calorime-
try system with SPR capabilities based on monitoring the binding of HP’s nickel-
dependent regulatory protein (NikR) (HpNikR) through Ni(II) with DNA. However,
this measurement method requires complicated setup and not very suitable for POC
applications andmore oriented to drug research (Fabini et al. 2016). SPRmethodolo-
gies have significant limitations such as cross-sensitivity to molecules with analyte-
similarly-structured molecules, non-specific SPR response on sensor surface from
non-target biological entities, intrinsic alteration in refractive index due to environ-
mental and compositional oscillation of the complex samples, and non-suitability
for POC as it requires complex devices and setup (Nosrati et al. 2017; Wang et al.
2016; Lazcka et al. 2007; Nishimura et al. 2000; Fabini et al. 2016).
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3.5 Electrochemical Detection Methods

Electrochemical transduction based nano-biosensors usually rely on surface engi-
neering of an electrochemical probe to achieve sensitive and specific bio-sensitivity
(Jaradat and Ibbini 2019). Electrochemical biosensors exhibit amazing performance
with respect to other competitive sensing approaches (Talebi Bezmin Abadi 2014). It
possesses inherently superior sensitivity, better reproducibility, and more portability
(Kaushik et al. 2018; Smith et al. 2019). Standard electrochemical-transduction-
based sensor uses the three-electrode configuration: working electrode (WE), ref-
erence electrode (RE) and counter electrode (CE) (Makableh et al. 2020). In these
electrodes, the WE and CE are surface engineered and can be functionalized using
the same nanotechnological approach. However, further functionalization could be
applied on WE surface by utilizing bio-affinity receptors to enhance specificity
toward biomarker analytes (Maduraiveeran et al. 2018;Makableh et al. 2020). Cyclic
voltammetry (CV), differential pulse voltammetry (DPV), square wave voltammetry
(SWV) and electrochemical impedance spectroscopy (EIS) are typical electrochem-
ical measurement setups used in sensing applications . Electrochemical detection of
HP in complex samples usually utilizes ssDNA hybridization or protein thorough
antigen-antibody reactions (Maduraiveeran et al. 2018).

Recently, several electrochemical biosensors have been proposed, for e.g. Peng
(2017) introduced an electrochemical gold electrode functionalized with single-
stranded DNA probe (ssDNA) biosensor, with β-cyclodextrin (β-CD) DNA as elec-
troactive material. In this senor, occurrence of DNA hybridization results in accumu-
lating the β-CD on sensor surface. The proposed sensor detected HP in excrement
using DPV measurement technique with results comparable to ELISA strategy at
concentrations as low as 5 nM.

In another recent study, Jain et al. (2020) producedHPbiosensor utilizing nanoma-
terials and cytotoxin-associated gene (CagA) antibody-antigen. This electrochemical
sensor is label-free immunosensor based on triple-structured sensor surface designed
for the noninvasive HP detection in stool sample (Jain et al. 2020). They utilized an
Au-bare electrode electropolymerized with the biologically compatible polyindole
carboxylic acid (Pin5COOH) which is recognized for its good electroconductivity.
Followed by deposition of carboxylatedmulti-walled carbon nanotubes (c-MWCNT)
layer where the c-MWCNT solution was improved by ultrasonication (Jain et al.
2020). c-MWCNTs is a well-known semiconductor material for its superior galvanic
and mechanical properties with large surface area enhancing electronic transfer at
electrode surface (Makableh et al. 2020). The carboxylated terminal of MWCNTs
is utilized in immobilizing antibodies by crosslinking (Maduraiveeran et al. 2018).
It was followed by Electrodeposition of titanium oxide nanoparticles (TiO2) nano-
particles to utilize its enhanced biological conjugation and stability at long-term
(Jain et al. 2020). For specificity, the authors further cross-linked the c-MWCNTs on
sensor surface with anti-CagA antibody. The electrochemical characterization was
performed using EIS, SWV and CV, which resulted in sensor LOD as low as 0.1
ng/mL with sensor half-life of 6 weeks.
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Electrochemical sensing utilizes potentiostat devices for analysis resulting in
being more suitable for POC applications (Fort et al. 2019). In addition, electro-
chemical sensors usually use minimal sample and/or reagent amounts without the
need for bulky instruments resulting in more affordable cost (Essousi et al. 2019).
Moreover, electrochemical sensors fabrication is more cost-effective by utilizing
the screen-printed electrode technology enabling fully-functional disposable elec-
trodes. Electrochemical sensors are inherently ultrasensitive and when combined
with nanotechnology and nanomaterials may result in enabling early detection of
HP in complex clinical samples and without the need for PCR preamplification step.

4 Conclusions and Future Perspective

HP is a very serious and dangerous pathogen that can cause several gastrointestinal
disorders that may lead to cancer. Detecting HP at early stages, after eradication and
in contaminated in-vitro environments is very important to control and fight this per-
sistent pathogen. Several biosensors with different approaches and methodologies
have been proposed for HP detection in complex samples based on optical, elec-
trochemical and ELISA based methods. Optical methods like, fluorescence, SPR
and colorimetric based sensing, have a high sensitivity and excellent selectivity.
However, such approaches usually should be backed-up with bulky optical analysis
devices. Additionally, they need a long test time. Apart from that, electrochemical-
based biosensors have inherently higher sensitivity that enables detection at very low
concentrations which is useful for early detection. Their cost-effective property is
making it a good candidate for POC devices, especially for their simple handling,
except that they still suffer from false-positive results due to complex sample elec-
trolytes. Table1 summarizes different sensing techniques and their performance.

Consequently, HP biosensor that is compatible with the ASSURED standard for
healthcare outlined by WHO in complex samples still a major challenge. Thus,
recent research trends focus on developing biosensor that are sensitive, selective,
reproducible, rapid, more affordable, compatible with POC units and able to work
in complex sample like stool, saliva food and water. Possible routes to enhance
HP biosensors range from using more unique HP biomarkers to enhance sensor
specificity with less sample pretreatment. Successful HP biosensor can greatly help
fighting HP spread and may be included in antibiotic resistance studies of pathogens
in general. Successful pathogenbiosensors canbeutilized in quality assurance routine
tests in several facilities such as factories, hospitals, restaurants, water management
stations as well as personal care.
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Table 1 Limit of detection LOD, incubation time and linearity range LR of detection methods for
of HP bacteria

Detection method LOD Linear range Detection time Reference

Optical-
fluorescent

0.46 pM 1.25–875 pM ∼80 min Liu et al. (2017)

Optical-
fluorescent

102 CFU� mL−1 10−1 − 106 CFU
mL−1

∼120 min Chen et al. (2019)

Optical-
fluorescent

190 nM Not reported ∼60 min Hong et al. (2019)

Optical-
fluorescent

Not reported Not reported ∼15 min Akashi et al.
(2019)

Optical-
colorimetric

104 CFU mL−1 103 − 106 CFU
mL−1

∼20 min Ali et al. (2019)

Optical-SPR 2 × 106

bacteria/ml
Not reported Not reported Nishimura et al.

(2000)

Electro-chemical 0.15 nM 0.3 nM–0.24µM >90 min Peng (2017)

Electro-chemical ∼0.77 pM 0.77–61.5 pM >12 min Jain et al. (2020)
�Colony-forming unit (i.e. only viable bacteria cells are counted)
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