Chapter 14 )
Soil Microbial Diversity and Metagenomics i

Sandeep Sharma and Sukhjinder Kaur

Abstract The management of soil fertility for sustainable and productive agricul-
ture embroils understanding of chemical, physical, and primarily biological compo-
nents of soil. The soil microbiome ability to predict noticeable changes in soil
properties as they are involved in nutrient cycling, soil structure formation, decom-
position of organic matter, and plant growth promotion. The microbial diversity
prevailing in the soil can be explored either through culture-based or recently
through novel genomic approaches that proved to be powerful tool in microbe-
centric studies and delivers more comprehensive assessment of microbial functions.
Soil metagenomics holds unusual potential to enhance crop production and to
discover several unexploited soil microorganisms, their functions and genes for
diverse applications. In this book chapter, special emphasis has been highlighted
on the role of metagenomics for unlocking the soil microbiome and its processes in
different management practices.

Keywords Metagenomics - Management practices - Soil microbiome - Soil
enzymes - Soil fertility

14.1 Introduction

Environmental soil degradation with long-term continuous cropping involving uti-
lization of chemical fertilizers leads to the imbalance or reduction in nutrient
availability and fertility of soil (Dong et al. 2012). The management of soil to ensure
its long-term productivity, stability, and fertility is of paramount importance for plant
growth. The maintenance of the physical and chemical soil fertility is driven by the
metabolic repertoire of the soil microorganisms (Sabale et al. 2019). The soil
biological fertility relies on the microbial community, which is termed as the
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indicators of soil health that directly impacts the functioning of soil ecosystem. Thus,
the soil health comprises biological, chemical, and physical properties of soil but is
mostly dependent on the activity of microorganisms. The biological measurement of
soil health can be inferred from certain robust indicators (e.g. microbial diversity,
enzyme activity, and soil organic matter content) that can provide instant informa-
tion about the current status of soil (Rincon-Florez et al. 2013). Among different soil
health indicators, there is increased concern in studying soil microorganisms in their
specific environments, as microbial diversity is closely linked to soil structure and
function. Moreover, soil microorganisms rapidly respond to any kind perturbations
(Jacoby et al. 2017).

14.2 Soil Microbiome

The soil microbiome is indispensable as it performs key soil services including
organic matter decomposition, biogeochemical cycling, aggregates formation, gas-
eous exchange, and plant growth promotion (Christopher 2017; Naylor et al. 2020).
The soil represents the most diverse habitats consisting complex assemblages of
bacteria, archaea, viruses, fungi, and other microbial eukaryotes which are collec-
tively referred as the “soil microbiome” (Fierer 2017; Jansson and Hofmockel 2020).
The estimate suggests 1000—10,000 bacterial species in per gram of agricultural soils
as inferred from the 16S rRNA gene phylotypes (Attwood et al. 2019). The reservoir
of microbial communities in soil improves plant growth by affecting nutrients
availability, aids in crop residue recycling along with determination of
agroecosystems productivity (Van-Der Heijden et al. 2008). The sustainable agri-
culture depends on the diversity of soil microbes that influences soil fertility.
Therefore, the present day research focuses more in managing soil microbiome
(Dubey et al. 2019).

The characterization and classification of soil microbiome by typical cultivation
approaches (plate count and most probable number) have underestimated the micro-
bial diversity as largest proportion of soil bacteria still remain uncharacterized
(Dupont et al. 2016). The majority of the soil isolated microbes belonged to the
phyla, namely Proteobacteria, Actinobacteria, Firmicutes, and Bacteroidetes, as
these are cultivated easily under laboratory conditions (Hirsch et al. 2010). Due to
severe constraints in isolation methods, there is need for switching to the molecular
and genetic level approaches that will unearth more comprehensive picture of soil
microbiome by discovering new microbial players through in-depth characterization
(Agrawal et al. 2015; Sabale et al. 2019). During the last few years, significant
improvement has been seen in the development of certain biomarkers and macro-
molecular probes, rapid and reliable measurements of soil microbial communities
(Arias et al. 2005). The measurement of microbial diversity can be classified into
phenotypic and molecular based approaches. The determination of true microbial
diversity using phenotypic techniques is difficult due to lesser accuracy of the
extraction or detection methods (Agrawal et al. 2011). Thus, soil microbiologists
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have attempted to ameliorate molecular methods. This book chapter emphasized on
the recent methods adopted for evaluating soil fertility with focus on strategies for
identifying microbial communities via metagenomics.

14.3 Molecular Approaches for Measuring Soil
Microbiome

The molecular approaches to analyze soil microbiome are DNA-based methods,
microscopic observation of root colonizing labeled microbes, and labeled nutrient
substrates. These new molecular, enzymatic, and organism-based methods have
complimented the existing physico-chemical properties and possess ability to eval-
uate the soil diversity and composition. All the techniques are properly evaluated for
their potential to differentiate among various types of soils and their significance in
the ecosystem. The current molecular strategies have led to the discovery of unusual
microbial diversity, majority of which was uncharacterized so far because of
non-culturable nature (Agrawal et al. 2015). Molecular techniques to determine
microbial diversity in soil can be categorized into PCR-dependent and
PCR-independent techniques. Nucleic acid re-association/hybridization, carbon
source utilization profile/community level, physiological profile (CLPP)/BIOLOG,
fatty acid methyl ester (FAME) analysis, phospholipids fatty acid (PLFA) analysis
are PCR-independent approaches used for measuring microbial communities. Some
of the limitations of the aforementioned techniques include dominance of culturable
community and preferring microbes that can utilize the available carbon sources.
These methods mainly signify metabolic diversity rather than microbial diversity
(Fakruddin and Mannan 2013).

144 PCR-Based Approaches

The initial molecular approach for investigating biological community depends on
the cloning of target genes isolated from environmental samples (DeSantis et al.
2007). Majority of the genetic fingerprinting techniques relies on PCR amplification
which provides information regarding the genetic makeup of microbes. The pro-
karyotic diversity, identification, and phylogenetic relationships are provided by
PCR-based 16S rDNA profile. PCR-based fingerprinting methods of microbial
communities involves the extraction of DNA from a culture, a bioreactor, or an
environmental sample, followed by the amplification of rRNA/rDNA using the
Polymerase Chain Reaction (PCR), and finally an analysis of the DNA amplification
products (Ngom and Liu 2014). The PCR-based approaches are distributed into two
groups depending on the differential electrophoretic migration on agarose or poly-
acrylamide gels: (1) size-dependent migration, viz. T-RFLP, ARISA/RISA, RAPD,
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SSCP, LH-PCR and (2) sequence-dependent migration which includes denaturing
gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis
(TGGE). In all the above-mentioned techniques, community structure of microbial
populations can be evaluated from the amplified fragments generated by selected
primers. Thus, 16S rDNA-based PCR techniques such as DGGE, TGGE, single-
strand conformation polymorphisms (SSCPs), amplified ribosomal DNA restriction
analysis (ARDRA), terminal restriction fragment length polymorphisms (T-RFLPs),
and ribosomal intergenic spacer analysis (RISA) offer comprehensive information
regarding community richness, evenness, and composition present in a sample
(Rawat and Johri 2014). All the PCR-based techniques are suitable for tracing the
dominant members of the community in complex soil environment with selective
amplification of shorter fragments comprising weaker secondary structures (Rincon-
Florez et al. 2013). Moreover, these methods are time-consuming with
low-throughput, PCR biased and prefer easily extractable DNA that usually leads to
confusing and unsuitable results. Further, microarrays have also been developed
with already known gene sequences from public databases with regular updating of
new gene and genome sequences. But, the application of this technology for
reviewing environmental sample still presents numerous limitations (He et al.
2012; Ngom and Liu 2014). Thus, to avoid the hindrance in evaluation of soil
microbial communities, metagenomics combined with bioinformatics have been
recently used and these new methods are more reliable in soil microbial diversity
studies (Liu et al. 2006).

14.5 Concept of Metagenomics

Although several molecular approaches have been proposed but recently, the explo-
ration of entire genomes existing in a soil sample, i.e. metagenomics, has provided a
new strategy for studying microbial diversity bypassing the isolation and cultivation
methods of individual species (Mocali and Benedetti 2010). The outgrowth of
genomics and metagenomics demonstrated promising strategies that possess the
ability to discover the hidden diversity of microbes along with their function in a
well-defined manner. Further, advanced sequencing technologies recognized as the
Next-Generation Sequencing (NGS) performs the analysis of soil-extracted micro-
bial community DNA directly. The NGS resulted in the production of vast volume of
data in a rapid and cost-effective manner. The ability to group the entire genome of
any related organisms has permitted evolutionary and comparative studies on large
scale that were impossible earlier (Weinstock 2012). The sequencing of soil by
metagenomics offers understanding of microbial ecology that is beneficial or detri-
mental to crop production with the aim to improve agricultural sustainability
(Petrosino et al. 2009). The concept of metagenomics and other associated strategies
have become the prime technology in many research areas attributed to its efficiency
for sequencing large volume of data. This technological advancement has generated
a new direction for sequencing large-scale projects (Petrosino et al. 2009).
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Metagenomics is basically community genomics which provides access to the
genetic makeup of whole communities of organisms present in different ecosystems.
It involves the isolation of soil DNA, fragmentation, and insertion of DNA into
appropriate vectors followed by DNA cloning and transformation of suitable host
cells and then delivering a metagenomic library and further screening of the clone
library (Mocali and Benedetti 2010). In metagenomics, the combined genome is
randomly sampled from simultaneously existing microbial communities and then
sequenced (Ghazanfar et al. 2010). Through the direct assessment of collective
genome, metagenomics possesses the potential to provide detailed insight about
genetic diversity, species composition, development, and interactions with the
microbial communities prevailing naturally in the environment (Fakruddin and
Mannan 2013). Mass genome sequencing based shotgun analysis, genomic
activity-driven studies aimed to find exact microbial functions, phylogenetic or
functional gene expression analysis of genomic sequences, and next-generation
sequencing strategies for evaluating entire gene content in environmental samples
are the four sub-categories of unselective/untargeted and targeted metagenomics
based on the various screening methods. The unselective/untargeted metagenomics
involves shotgun analysis and next-generation sequencing, whereas targeted
metagenomics includes activity and sequence-driven studies. Due to the cost-
effectiveness and ease in DNA sequencing techniques, unselective metagenomic
approach has been preferred widely (Neelakanta and Sultana 2013). Targeted
metagenomics commonly sequences in parallel and extremely target genes, serving
ribosomal RNA (rRNA) as evolutionary clocks. This biomarker relied on the
massive databank of rRNA gene sequences (more than 200,000) collected for the
reconstruction of the universal Tree of Life which increased exponentially due to
targeted and untargeted sequencing. The rRNAs of all the organisms are sufficiently
related to each other that they can be recognized as the same molecule but different
enough that the differences are a good measure of evolutionary distance (Perito and
Cavalieri 2018).

In sequence-based metagenomics, the researcher’s emphasis on finding the
complete genetic sequence, i.e., the arrangement of all the nucleotide bases (A, C,
G, and T) found in the DNA strands of a sample. The sequence obtained can then be
analyzed in several ways which includes utilization of community’s sequence in
determination of entire genome of a specific organism or this sequence can also be
used to analyze the genome of the community as a whole that offers insight about
evolution and population ecology. Further, the function-based metagenomics
involves screening of metagenomic libraries for several functions/products, such
as genes involved in nutrients cycling and metabolic pathways, vitamins or antibi-
otics produced by microbes in a community. Scientists can recognize various
functions through this method that was known in microbes. Recently through
advances in function-based metagenomics technology, researchers can also directly
extract novel proteins from a microbial community and identify their metabolites
involved in cellular processes. Therefore, the study of soil fertility indicators through
metagenomic approach will enhance the soil biological system, which in turn pro-
motes soil fertility and improved productivity.
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14.5.1 Metagenomic-Based Studies on Soil Microbiome

The advancement in high-throughput molecular biology methods over the last
decades has resulted in significant increase in the understanding of the soil
microbiome (Nannipieri et al. 2019). The metagenomic approach showed enormous
potential in unlocking myriad of functions which include identification of
uncultivated or new phyla possessing novel traits, understanding metabolic and
biochemical activity of microbial players, functional diversity of microbes, finding
shifts in microbial diversity associated with stress and disease tolerant plants (K&hl
et al. 2014; Dubey et al. 2019). The additional target of metagenomic-based studies
is to gain insights into biochemical cycling of nutrients (C, N, P, S, and other
elements) summarized in Fig. 14.1 (Myrold et al. 2013). One international effort
focusing on sequencing and interpreting the soil metagenome was proposed by
combining the abilities of the global scientific community (Vogel et al. 2009) and
named the project as the Terra Genome. This international sequencing consortium
possesses primary objective of complete sequencing of a reference soil metagenome.
The soil system selected for research is Park Grass, an internationally recognized
agroecology field experiment that has been running for more than 150 years at the
UK agricultural sciences institute, Rothamsted Research (Fujii et al. 2009).

The rhizospheric and phyllospheric bacterial population of Basmati rice in
Pakistan were studied using metagenomic approach by Rasul et al. (2020). The
results described the dominance of phylum Proteobacteria, Chloroflexi,
Actinobacteria, and Firmicutes at different sites in the rhizosphere than
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Fig. 14.1 Summary of the various soil aspects studied by metagenomics
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phyllosphere. The plant growth promoting genera, Azospirillum, Bacillus,
Brevibacillus, Mesorhizobium, Paenibacillus, Streptomyces, and Sphingomonas
were also abundant in rhizosphere. WoZniak et al. (2019) compared rhizospheric
and endophytic microbiome of Paulownia trees by Illumina MiSeq sequencing and
described higher bacteria and fungi in endosphere samples. The abundant bacterial
phyla reported were Actinobacteria and Proteobacteria. The rhizospheric fungal
diversity includes Ascomycota, Mortierellomycota, and Basidiomycota, whereas the
endophytic diversity involves Olpidiomycota, Oomycota, Ascomycota, and
Basidiomycota. Hara et al. (2019) identified functional N,-fixing bacteria associated
with sorghum through omics approaches. Here, the roots extracted bacterial cells
were studied by metagenome and proteome. Majority of the sequences were
assigned to nif HDK of Bradyrhizobium species.

Ahmed et al. (2018) assessed the microbial diversity in the two rhizospheric
saline soil samples through metagenomic approach and observed the dominance of
halophilic/halotolerant phylotypes affiliated to Proteobacteria, Actinobacteria,
Gemmatimonadetes, Bacteroidetes, Firmicutes, and Acidobacteria. Identification
of osmotolerant clones SSR1, SSR4, SSR6, SSR2 harboring BCAA_ABCtp,
GSDH, STK_Pknb, and duf3445 genes confirmed their function in osmotolerance.
The soil metagenomic libraries also reported the abundance and diversity of phos-
phatase genes using functional metagenome analysis. Similarly, Molina-
Montenegro et al. (2018) compared the rhizospheric microbiome using shotgun
metagenomic technology and found abundance of bacterial species (98%) followed
by eukaryota (1.77%) and archaea (0.22%). The major genera reported in the
rhizospheric  soil  were  Proteobacteria, Actinobacteria,  Bacteroidetes,
Acidobacteria, and Firmicutes. Metagenomic shotgun sequencing and functional
annotation by means of eggNOG functional categories showed that metabolism was
the highest represented category, followed by cellular process and signaling, and
information storage and processing. In the category metabolism, the highest char-
acterized terms were amino acid transport and metabolism, energy production and
conversion, carbohydrate transport and metabolism, and inorganic ion transport and
metabolism. Baeza et al. (2017) evaluated fungal sequences from Antarctica by
amplicon metagenomic analysis and found 87 genera and 123 species, from which
37 genera were not reported previously. Lecanoromycetes and Eurotiomycetes were
dominant the fungal classes.

The metagenomic DNA from bulk soil of tomato, vegetables, and native forest
extracted by Val-Moraes et al. (2013) represented uncultured fungi. The individual
amplified sequences matched with Glomeromycota, Fungi incertae sedis, and
Neocallimastigomycota. The tropical mangrove soil microbial diversity was char-
acterized by Ismail et al. (2012) through the metagenome of a Malaysian mangrove
soil sample and its microbial ecological roles via next-generation sequencing (NGS).
Shotgun NGS data analysis revealed high diversity of ecologically essential
microbes from bacteria and archaea domains. Also, an unusually high number of
archaea was observed along with abundance of Deltaproteobacteria.
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14.5.2 Metagenomic Insight of Soil Management Practices

Agricultural intensification for increased production resulted in severe food security
and adverse impacts on soil fertility, nutrient leaching, and increased greenhouse gas
emissions (Hartman et al. 2018; Souza et al. 2018). These conventional agriculture
based strategies have affected the biodiversity and functionality of soil microbiome
through curtailment of functions performed by microbes and reduction in their
species (Souza et al. 2018). Moreover, these practices alter soil physico-chemical
as well as biological properties which act as valuable indicators of soil quality and
health (Carbonetto et al. 2014). Thus, the adoption of soil conservation practices is
required to prevent soil degradation and to maintain active soil biota (Souza et al.
2013). Numerous conservation practices such as tillage, organic fertilization, crop
rotations/successions and crop residues retention have resulted in improved sustain-
ability and have promoted beneficial ecosystem services (Srour et al. 2020). Soil
metagenomics also unravels the understanding of different soil management
approaches (such as tillage, organic fertilizer amendments) aimed for enhancing
plant productivity and nutrient acquisition (Attwood et al. 2019). Furthermore, the
understanding of aforementioned functions associated with soil microbiome will
play an essential role in management of soil fertility. Some of the recent studies
highlighting diversity analysis among various soil management practices through
metagenomics are summarized in Table 14.1.

14.5.3 Functional Metagenomic-Based Insight of Soil
Enzymes

The soil enzyme activities (B-glucosidase, cellulose, protease, urease, and phospha-
tase) are directly involved in the nutrient cycling (such as carbon, nitrogen, and
phosphorus) and reflect the metabolic requirements of soil microorganisms, which
are important in the processing and recovery of key nutrients from detrital inputs and
accumulated soil organic matter (Burns et al. 2013; Yang et al. 2017). Soil enzymes
are crucial for the functioning of soil because of their role in decomposition and
transformation processes (Jesus et al. 2016). The activity of soil enzymes is directly
related to the metabolic requirements of the soil community and the available
nutrients present in soil. The soil enzymes are categorized into hydrolases and
oxidases that decompose substrates and release nutrients to the soil. Another
enzyme, urease is associated with microbial N acquisition, as it catalysis the urea
decomposition. Microbially produced hydrolytic enzyme, p-1,4-glucosidase decom-
poses polysaccharides whereas acidic and alkaline phosphatase are associated with
P-acquisition (Hai-Ming et al. 2014). The most studied enzymes from the soil
metagenome are esterase and lipase attributed to wide potential in industry (Lee
and Lee 2013). The molecular methods deliver valuable information on expression
and potential of enzymes targeting the abundance of enzyme-encoding genes or
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transcribed sequences (Baldrian 2009). The soil microbiome harbors numerous
novel enzymes which are identified by various metagenosmic studies and summa-
rized in Table 14.2.

The application of metagenomic approaches for evaluating soil microbiomes
and related functions has facilitated the better understanding of taxonomic, genetic,
and functional characteristics of soil microbial community (Fierer et al. 2012).
Still there are challenges that need to overcome by combining application of
metatranscriptomics, metaproteomics, and metabolomics that are helpful to fill
knowledge gaps about genes/protein expression and metabolic interactions (Jansson
and Hofmockel 2018). Metatranscriptomics involves study of microbial RNA
transcripts produced in a particular ecological sample (Baldrian et al. 2012).
Metatranscriptomics approach immediately deciphers gene regulatory response as
majority of bacteria exhibit transcriptional gene control that permits quick adaption
to change altered environmental conditions at the sampling time (Moran 2009). The
steps performed in this technique comprise extraction followed by reverse transcrip-
tion, amplification, and lastly sequencing of transcripts. The transcript obtained is
highly unstable and has shorter life span which is a major bottleneck to this
technology (Cabellos-Ruiz et al. 2010). Meta-transcriptomic approach is widely
preferred for unfolding microbial nutrient cycling (Barua et al. 2017).

Next, metaproteomics is the characterization of the microbial proteins (Ngom and
Liu 2014) extracted from a sample, followed by fractionation, separation using
liquid chromatography or two dimension polyacrylamide gel and then detection
with tandem mass spectrometry (Zhang et al. 2010). Lin et al. (2013) conducted the
metaproteomic profile of rhizospheric soil for elucidation of mechanism involved in
yield decline of ratoon sugarcane. The results revealed 143 protein spots with high
resolution and repeatability including 38 differentially expressed proteins involved
in carbohydrate/energy, amino acid, protein, nucleotide, auxin and secondary metab-
olisms, membrane transport, signal transduction and resistance, etc. Thus,
metagenomics is the predictive of community potential and combining it with the
metaphenome will reveal the functional potential of soil communities and links
between community genes and functions.

14.6 Conclusion

Soil microbiome plays an imperious role in cycling of nutrients, mineralization,
enzymes production, and improvement of indispensable soil processes that impacts
soil fertility. Owing to drawbacks of traditional plate count techniques, molecular
methods have offered a desired alternative for exploring soil microbiome. The
taxonomists have developed various molecular techniques that permit rapid analysis
of desired traits within microbial communities. Several PCR and non-PCR based
techniques have been developed to explain functional profiling of natural microbial
communities. The advancement in sequencing tools has resulted in the advent of
novel and rapid molecular method known as integrated omic approaches that
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constitutes metagenomics, transcriptomics, metaproteomics, and metabolomics.
Metagenomics techniques are based on the direct analysis of DNA extracted from
environmental samples and have circumvent the steps of isolation and culturing of
microbes. No single technique till date can measure the whole microbial diversity.
Biases are introduced at each treatment step as all of these techniques present
advantages as well as drawbacks. Advanced screening approaches involving
function-driven and sequence-dependent metagenomics will provide deeper insights
of soil metagenome that will aid in sustaining crop management and soil fertility.
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