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Preface

Southeast Asia is one of the most rapidly developing areas in the world with all of the
corresponding changes to the environment: population growth, urbanization,
landuse including the intensification of agriculture, ecosystem destruction including
deforestation, hydrological changes, and soil degradation, pollution, as well as
climate change. These are superimposed on a background of exceptionally high
natural biodiversity. In this book, our aim is to examine how the changing environ-
ment is likely to influence the diversity of parasites present, with particular emphasis
on those affecting the human population.

Chapter 1 discusses the situation facing populations of vertebrate and invertebrate
host species in Southeast Asia. For wild populations, environmental changes includ-
ing hunting for products for traditional medicines, the pet trade, and bush meat, as
well as massive habitat destruction are likely to cause population declines and local
extinctions. In contrast, synanthropic species are likely to benefit from human
expansion.

In Chap. 2, Kittipong Chaisiri and Serge Morand use modern statistical methods
to determine how the biodiversity and species association patterns of helminths
change in relation to human landuse habitats using the Rattus rattus-complex from
mainland Southeast Asia as the research object. They show that human landuse
alteration in the form of peridomestic habitats leads to high levels of helminth
diversity associated with the hosts’ synanthropic behavior. In addition, they report
the predominance of positive associations between parasite species compared with
negative associations suggesting that affected areas may show multiple parasite
transmission.

Chapter 3 addresses the topic of the importance of intestinal protozoa for humans
throughout Southeast Asia. Kotchaphon Vaisusuk and Weerachai Saijuntha review
the available information on Giardia duodenalis, Entamoeba histolytica, Crypto-
sporidium, and Blastocystis sp., providing tables with comprehensive data on the
countries involved, the source population for the data, the prevalence found with the
sample size, followed by the relevant references. In addition, new life cycle diagrams
have been provided. The authors conclude that a relatively high prevalence of
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intestinal protozoa infection is common among children and HIV/AIDS patients in
Southeast Asia, and that these intestinal protozoa should be considered of major
public health importance.

Trematodes are frequent parasites of humans and animals throughout Southeast
Asia affecting millions of people and causing considerable morbidity and mortality.
Chapter 4 discusses this group of parasites and the freshwater snail intermediate
hosts. There are a considerable number of human trematodes of public health
importance. These can be found in the intestines, bile ducts of the liver, lungs, and
blood vessels. The intermediate hosts include fish, snails as well as other inverte-
brates. Infection may occur by consumption of certain plant species living in
association with freshwater habitats. Saijuntha et al. also consider the transmission
route via contaminated food and water as well as a variety of traditionally cooked
dishes.

In Chap. 5, Sanpool and co-workers consider the community of nematodes found
in the human gut. They point out that our knowledge of the nematodes inhabiting the
human gut is still far from complete. This chapter reviews and highlights important
aspects of human nematode infections that affect public health in Southeast Asia.
The authors emphasize the importance of molecular identification and genetic
diversity providing the relevant phylogenetic trees for Strongyloides stercoralis
and S. fuelleborni, hookworm, Ascaris suum, Trichuris trichiura and T. suum and
Enterobius vermicularis.

Thanchomnang et al. in Chap. 6 review the medically important tapeworms that
are of public health concern in Southeast Asia (Taenia spp., Echinococcus spp.,
Hymenolepis spp., Spirometra spp., Sparganum proliferum, Dibothriocephalus
spp.) with emphasis on molecular identification and genetic diversity. For each
species or species group, information is provided on classification, geographic
distribution, the parasite’s biology and infection, molecular identification, and
genetic diversity.

Chapter 7 deals with blackflies and the parasites that they transmit. Black flies are
vectors of human and livestock disease agents. Even without transmission of
pathogens, black fly biting can affect human and animal welfare through nuisance
and irritation. A total of 456 black fly species arranged in eight subgenera of the
genus Simulium are found in Southeast Asia. A minimum of seven species will bite
humans, two of which are considered as pests in northern Thailand. Three species
have been found carrying filarial parasites of animals including two unidentified
species of the genus Onchocerca. As most work on blackflies and the diseases that
they transmit in their region have taken place only within the last two decades,
further studies are required to evaluate the impact on human and animal health.

Ticks are the most important vectors of animal diseases and the second most
important vector of human diseases worldwide. Nevertheless, in spite of a recent
influx of publications, comparatively little is known about the role of ticks in disease
transmission in Southeast Asia. In this region, they are found on most reptiles, birds,
and mammals species, including humans. Some information already indicates that
they act as vectors of viral, bacterial, and protozoan pathogens of animals and
humans throughout the region. In Chap. 8, Saijuntha et al. provide an overview of
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the tick fauna of mainland and insular Southeast Asia, show the pathogens that the
ticks transmit, and consider future changes in the structure of tick communities.

As with other areas of the world, global climate change is already impacting
Southeast Asia. Petney and Andrews discuss these effects as well as potential future
scenarios in Chap. 9. In Southeast Asia, substantial increases in temperature and
regional changes in rainfall patterns are expected, with some areas experiencing
weather conditions and others increased drought. Among the factors discussed are
severe weather events, sea level rise, salinization, and drought induced wild fires.
This information is then extrapolated to include parasite communities and the host
communities on which they are reliant to complete their life cycles. As the authors
indicate, potentially dramatic and dynamic changes will occur, however, our data
base is still limited and studies of local and regional parasite communities are
essential for our understanding of climate impact on human and animal health.

All of the chapters report a considerable lack of research in parasites and changing
parasite distributions and associations within Southeast Asia. In addition, they show
that older identification techniques based on morphology are frequently inadequate
to identify the parasites of concern. Thus, more recent molecular techniques should
be more commonly used, particularly in epidemiological studies, to provide accurate
information for prevention and control strategies. Given the significance of parasites
for human and animal health in the area, these research deficits should be strongly
addressed.

Karlsruhe, Germany
Khon Kaen, Thailand

Trevor N. Petney

Maha Sarakham, Thailand Weerachai Saijuntha
Düsseldorf, Germany Heinz Mehlhorn
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Chapter 1
The Changing Biodiversity of Parasite Hosts
in Southeast Asia

Weerachai Saijuntha and Trevor N. Petney

Abstract Parasites and their hosts form an integrated system with the parasites life
cycle being based on maintaining transmission. Any changes within this system are
most likely to influence the transmission potential. Species specific parasites in
endangered animals will die out with these hosts. Parasites whose host population
benefits from environmental changes, such as generalist and synanthropic species,
will have transmission advantages due to the increased frequency with which they
encounter suitable hosts. Increasing urbanization suggests that synanthropic hosts
for parasites affecting humans will increase in prevalence unless suitable changes in
pest control and hygiene are implemented, especially in tropical countries. In
contrast, parasites of wild animals will become less frequent as their environment
is disturbed or destroyed.

Keywords Parasites · Hosts · Ecology · Distribution · Population ecology

1.1 Introduction

All parasite species require at least one host while most species require one or more
intermediate hosts or a vector to complete their life cycle. Any change in the density
or dynamics of the host population will invariably lead to changes in the population
dynamics of the parasite species involved. In many cases, the control of parasite
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populations occurs via the deliberate reduction of the host or vector population
(Arneberg et al. 1998; Merino et al. 2011). The development of resistance of
intermediate hosts or vectors to control mechanisms can lead to a resurgence of
the parasitic disease involved (Ranson et al. 2011; Ranson and Lissenden 2016). In
order to determine possible future scenarios for the public health relevance of
parasitic diseases it is therefore necessary to understand the dynamics of the host
population and its interaction with other species within the ecological community
involved.

1.2 Overall Situation: Changing Patterns of Diversity

Environmentally, Southeast Asia is undergoing massive changes with continually
growing human populations (Gaughan et al. 2013; United Nations, Department of
Economic and Social Affairs, Population Division 2019), reduced and frequently
fragmented natural habitats (Fox et al. 2012; Richards and Friess 2016), increased
agricultural areas, in particular monocultures such as rubber and oil palm (Ziegler
et al. 2009; Dallinger 2011; Fox et al. 2012), high levels of pollution, for example,
via pesticides and fertilizers (Novotny et al. 2010; Chau et al. 2015), as well as global
factors such as climate change (see Petney et al. 2021). In addition, vertebrate and
invertebrate populations are at risk via hunting for the pet trade, traditional medi-
cines, and bush meat (Harrison et al. 2016). These factors are likely to interact
causing synergistic effects that may be difficult to predict but will increase the risk of
a reduction in distributional areas and potentially species extinction (Brook et al.
2008). They will lead to overall reductions in biodiversity (Gray et al. 2018).

On the other hand, although the increase in human dominated lands leads to
disadvantages for wild living species, there are advantages for synanthropic species
due to the reduction in natural diversity due to a reduction in the number of habitats/
microhabitats available (Bowen et al. 2007; Alkemade et al. 2009; Guetté et al.
2017). Synanthropic species include murid and other rodents (see Chaisiri and
Morand this volume; Morand et al. 2019), bird species, such as the domestic pigeon
(Yap and Sodhi 2004), as well as invertebrates such as various fly species that are
capable of transporting parasite species (Graczyk et al. 1999, 2005) and mosquito
vectors that live in human effluent (Chaves et al. 2009). These are likely to benefit
substantially by human presence with the invasion of new areas and increased
population size potentially leading to increase in transmission rates.

1.3 Terrestrial Vertebrates

The biodiversity of terrestrial vertebrates is declining worldwide at a dramatic rate
(WWF 2018, 2020). This is also true for Southeast Asia. The overall estimate for
biodiversity loss lies by 13–85% (Sodhi et al. 2010), while for Southeast Asia Sodhi
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et al. (2004) list potential extinctions of mammals of approximately between
25–60%, birds 15–30%, reptiles 5–25%, and amphibians between 5 and 45% by
2100. This does not consider the high potential for numerous taxa to actually contain
groups of cryptic species, which would be likely decrease the estimated distribu-
tional area and population size of the individual species within the group (Bickford
et al. 2007; Francis et al. 2010; Saijuntha et al. 2017, 2019a, b). Hughes (2017)
shows that most of the biodiversity hotspots in Southeast Asia are not incorporated
into protected areas.

In contrast, synanthropic species living in close contact with humans (Fig. 1.1)
are likely to benefit from human presence. For example, Wenz-Muecke et al. (2013)
compared groups of long-tailed macaque (Fig. 1.1a) with frequent contact with
human modified environments, including human food. They showed that the inten-
sities of infection with Strongyloides fuelleborni and of an intestinal fluke (probably
Haplorchis sp.) were substantially lower in the sylvatic groups. The authors con-
cluded that the macaque populations in peri-urban habitats change their behavior in
such a way as to increase the likelihood of infection with human parasites, poten-
tially increasing the threat to humans by a new zoonotic source. The variable squirrel
(Fig. 1.1c) is common in peri-urban and urban areas where it utilizes human
constructions such as power lines and building for daily movement (Kobayashi

Fig. 1.1 Free-ranging animals usually feeding close to human communities; long-tailed macaque
(a, Macaca fascicularis) photo by Weerachai Saijuntha, hog badger (b, Arctonyx collaris) photo
courtesy by Komgrit Wongpakam, variable squirrel (c, Callosciurus finlaysonii) photo courtesy by
Supaporn Teamwong, stray dog (d, Canis familiaris) photo by Weerachai Saijuntha, wild pig (e,
Sus scrofa) photo courtesy by Ubon Tangkawanit, banteng (f, Bos javanicus) photo courtesy by
Watee Kongbuntad
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et al. 2018). It has been introduced to countries external to Southeast Asia, presum-
ably via the pet trade (Oshida et al. 2007; Bertolino et al. 2004; Bertolino and Lurz
2013), where it is known to harbor endoparasites (d’Ovidio et al. 2014). Stray and
companion dogs (Fig. 1.1d) are an everyday occurrence in most if not all areas where
humans are found. They (as well as domestic cats) also harbor parasites of signif-
icance to public health (Hinz 1980; Jittapalapong et al. 2007, 2009). Wild boar
(Fig. 1.1e) are common throughout Southeast Asia where they may be involved in
peri-urban cycles of parasites such as Trichinella spiralis (Pozio 2001; Thi et al.
2014).

In contrast, the hog badger (Fig. 1.1b) is listed as vulnerable on the International
Union for the Conservation of Nature Red List (Chutipong et al. 2014; Gray et al.
2018). The banteng (Fig. 1.1f) is listed as endangered (Nguyen 2009; Rahman et al.
2019).

Numerous species of birds are likely to become endangered due to environmental
change, particularly habitat destruction (Castelletta et al. 2000; Sodhi 2002) or the
pet trade (Sodhi et al. 2006; Harris et al. 2017). Figure 1.2 shows eight species with a
very wide distribution. Species A–D are more reclusive and do not frequent human
habitats while species E–H are found more commonly on agricultural land on ponds
(Robson 2005).

Various species of bird, particularly those associated with freshwater environ-
ments, can act as final hosts of parasites relevant to public health (Chai et al. 2009),
for example, the intestinal flukes Haplorchis pumilio and H. taichui both of which
have high prevalences in humans in some areas of mainland and island Southeast
Asia (De et al. 2003; Belizario Jr et al. 2004; Chai et al. 2007, 2010;
Watthanakulpanich et al. 2010).

1.4 Reptiles

Worldwide, reptiles are subjected to numerous changes that threaten their existence.
Gibbons et al. (2000) list as the most significant threats: habitat loss and degradation,
introduced invasive species, environmental pollution, disease, and unsustainable use
and climate change.

Southeast Asian reptiles are particularly subject to habitat change, as well as the
pet and traditional medicine trades (Koch et al. 2013; Natusch et al. 2019; Marshall
et al. 2020). Climate change is likely to cause significant changes to the likelihood of
reptile survival. Bickford et al. (2010) hypothesize, based on known physiological
and ecological tolerances, that within 50 years reptiles in Southeast Asia will no
longer be able to adapt to due to temperature dependent sex determination, higher
metabolic rates, and less bio-available water.

A significant problem here is the fact that some common species, also sold as pets
and medicines, occur as species complexes that have not yet been fully elucidated.
The tokay gecko (Gekko gecko) is used as a traditional medicine, particularly in
China and Malaysia (Caillabet 2013), for a variety of diseases including AIDS,

4 W. Saijuntha and T. N. Petney



cancer, asthma, tuberculosis, diabetes, skin disease, and impotence (Bauer 2009). It
is estimated that between 2–5 million dried specimens are exported annually from
Thailand (Laoong and Sribundit 2006) and 1.2 million specimens from Java (Nijman
et al. 2012). Other specimens come from Lao PDR and Cambodia (Kongbuntad et al.
2016). These tokays are mostly exported to China and Malaysia for use as a
traditional Chinese medicine. Work by Saijuntha and colleagues on the tokay
gecko (Gekko gecko), a species also found in residential areas (Thirakhupt et al.
2006), has demonstrated highly significant genetic differences between populations
from different localities and indicates that this taxon comprises a number of species,
the detailed distributions and ecologies of which are either only rudimentarily known
or not known at all (Kongbuntad et al. 2016; Saijuntha et al. 2019a, b).

Fig. 1.2 Diversity of some common birds found in Khon Kaen Province, Thailand; brown shrike
catching a frog (a; Lanius cristatus), Brahminy kite catching a fish (b; Haliastur indus), yellow
bittern eating a fish (c, Ixobrychus sinensis), common kingfisher catching a fish (d, Alcedo atthis),
little grebe catching a fish (e, Tachybaptus ruficollis), little egret catching a fish (f, Egretta garzetta),
Asian openbill stork eating an apple snail (g, Anastomus oscitans), grey-headed swamphen catching
an apple snail (h, Porphyrio indicus), photos courtesy by Supaporn Teamwong
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1.5 Fish

Fish act as the intermediate hosts for a wide variety of parasites in Southeast Asia. Of
particular importance are the liver flukes Opisthorchis viverrini in the Mekong basin
and Clonorchis sinensis from central Vietnam northwards, as well as certain species
of intestinal fluke (Chai et al. 2009; Saijuntha et al. 2019a, b). As with other host
groups there are major dynamic changes taking place in Southeast Asian fish
populations, however, these are related to the freshwater rather than the land
environment. Flowing freshwater ecosystems in Southeast Asia are being exploited
by the construction of many dams for water catchment both as reliable sources of
water for human use as well as for generating hydroelectric power (Grumbine and
Xu 2011; Hecht et al. 2019). This has a major impact on the environment including
human livelihoods (Sovacool and Bulan 2011). Fish represent the major source of
protein for much of the Southeast Asian human population with a reduction in the
fish catch being predicted after dam construction (Orr et al. 2012).

Many species of fish in the Mekong River are migratory (Poulsen et al. 2002)
with dams severely restricting or completely cutting off this annual movement
(Dugan et al. 2010; Ziv et al. 2012; Stone 2016; Golden et al. 2019). In addition,
water level, which is strongly correlated with discharge and water current, appears to
be the major trigger for migration. The thresholds or change in water level, discharge
or current trigger the migration of 30 species of Mekong fish (Baran 2006).

Opisthorchis viverrini is the major risk factor for developing biliary cancer
(cholangiocarcinoma) in those countries bordering the Mekong River in Southeast
Asia. This is a disease of major public health significance with very high mortality
rates, particularly in the rural populations of northern and northeastern Thailand and
Lao PDR (Khuntikeo et al. 2018). Transmission occurs through the ingestion of raw
or undercooked cyprinid fish (Fig. 1.3) containing the parasite’s infective
metacercariae (Grundy-Warr et al. 2012).

1.6 Invertebrates

The conservation status of invertebrates is less well understood than that of verte-
brate species, although invertebrates, especially those with a freshwater component
to their life cycle, frequently act as intermediate hosts or vectors for parasites of
public health significance. Indications are that environmental change will lead to
major changes in freshwater ecosystems in tropical Southeast Asia (Dudgeon 1992,
2000; Giam et al. 2010). In addition, invertebrate species, such as house flies, can act
as transfer hosts for parasite species without being necessary for the parasite’s life
cycle. Zieritz et al. (2018) found that seven unionid mussel subfamilies are native
East and Southeast Asia with species richness being highest in Southeast Asia for
four species. Only 24% (61) of species have a known conservation status post-1980,
with data for the Philippines, Laos, Indonesia, Myanmar, and Malaysia being
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particularly limited. The authors indicate that habitat modification, including the
damming of rivers, and increasing pollution levels are likely to act as major threats to
the maintenance of populations.

Notable vectors in Southeast Asia are Anopheles species transmitting malaria
(Trung et al. 2004), and as the main vector of filariasis Culex quinquefasciatus, with
a more limited contribution by Aedes and Mansonia spp. (Dickson et al. 2017).
These are major diseases causing significant morbidity and mortality throughout the
region (WHO 2016; Barber et al. 2017; Dickson et al. 2017). Environmental change
can act in two ways: Anopheles dirus, one on the main vectors of malaria on
mainland Southeast Asia, is a sylvatic species requiring shady, slow flowing streams
for egg laying. Forest destruction in Thailand has substantially reduced the distribu-
tional area of malaria, especially in the northeast of the country, as suitable habitats
for this vector are missing (Petney et al. 2009). On the other hand, certain species

Fig. 1.3 Diversity of cyprinid fish second intermediate hosts ofOpisthorchis viverrini found in Chi
River in Mekong Basin, Maha Sarakham Province, Thailand; Smith’s barb or Pla Mang (in Thai) (a,
Puntioplites proctozystron), Siamese mud carp or pla soi khao (b, Henicorhynchus siamensis), red
tailed tinfoil (c, Barbodes altus), Java barb or ta-phian (d, Barbodes gonionotus), pla sood (e,
Hampala dispar), tinfoil barb (f, Barbodes schwanenfeldii), photos courtesy by Komgrit
Wongpakam
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such as Culex quinquefasciatus is decidedly synanthropic breeding in water, includ-
ing effluent, with a high organic content (Easton 1994).

Parasite transfer occurs when the species carrying the parasite to a new host is not
a necessary component in the parasites life cycle. Thus various species of Diptera
can transfer human pathogens (Sallehudin et al. 2000; Baldacchino et al. 2013;
Khamesipour et al. 2018). For the domestic fly,Musca domestica, Khamesipour and
colleagues list 1 species of amoeba and 11 genera of helminths containing at least
15 species that are transferred by this species. The transfer of these parasites within
urban and peri-urban areas is likely to be facilitated by this species.

1.7 Animal Trade

In addition to changes in the environment, there is a massive trade in wild vertebrates
and invertebrates (Nijman 2010; OECD 2019; Scheffers et al. 2019; Krishnasamy
and Zavagli 2020) for use in traditional medicine (Lee et al. 2014; Fig. 1.4a), the pet
trade (Bush et al. 2014) and, in some areas, bush meat (Lee et al. 2014; Fig. 1.4b, c).
Figure 1.4d illustrates birds captured for release at Buddhist temples as a means of
gaining merit. Harrison et al. (2016) list as the proximate causes for the increased
hunting of wild animals, improved access to forests and markets, improved technol-
ogy, and increases in the demand for bush meat, products for tradition medicine, and
the pet trade. They conclude that hunting poses the most significant, direct threat to
endangered vertebrate survival in Southeast Asia, and that the current trend is
non-sustainable.

1.8 Effect on Parasites

Parasites show a wide spectrum of host usage from species infecting only a single or
few hosts, for example, the tick Amblyomma crenatum occurs only on rhinoceros, to
more generalist species such as Rhipicephalus microplus occurring predominantly
on members of the family Bovidae, to various species of the tick genus Ixodes (e.g.,
Ixodes ricinus) that can parasitize a wide range on mammal, bird, and reptile hosts
(Guglielmone et al. 2014). Here, host specificity can be severely detrimental to wild,
endangered hosts (Saijuntha et al. this volume) but advantageous to synanthropic
species. Thus Rhipicephalus sanguineus sensu lato, a parasite predominantly of
domestic dogs, can be found in association with humans and their canine pets
worldwide (Guglielmone et al. 2014). A reduction in the wild host spectrum or
population size will reduce the population size and likely survival of a parasite
species as the probability of encountering a host, and in the case of adults, a host with
a potential mate will be reduced. Once a lower threshold is reached not enough hosts
will be available for parasite survival. The more host specific the parasite, the less
likely it is to survive.
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In the case of synanthropic hosts, it is likely that the host population size will be at
least stable (if no control measures are undertaken) or increase depending on the
extent of human influence on the environment. This will increase the likelihood of
parasite transmission.

1.9 Consequences for human and Animal Health

Humans and their domestic and stock animals can be affected by: (1) parasites that
prefer synanthropic hosts are more likely to be transmitted due to their association
with humans (Pozio 2000; Chaisiri and Morand this volume); and (2) human
encroachment on wild habitats is likely to bring people into contact with novel
and potentially dangerous parasites to which they have no acquired immunity (Patz
et al. 2000; Thompson 2013; Mackenstedt et al. 2015); (3) parasite switching or
concentration in hosts likely to contact humans by the elimination of other wild hosts
(Pfäffle et al. 2015).

Fig. 1.4 Animal trade in Thailand: tokay geckos dried for export as Chinese traditional medicine
(a), moles for sale for cooking in a local market (b), turtles (c) and scaly-breasted munia (d,
Lonchura punctulata) for sale to be released for making merit in a temple, (photos courtesy by
Warayutt Pilap)
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The most likely hosts of parasites that can potentially affect humans and their
companion and stock animals are other mammals. It is possible the closer the
relationship the more likely that transmission will occur. For example, the malaria
parasites Plasmodium knowlesi and P. cynomolgi infect primate species from South-
east Asia. Both are now known to switch to human hosts presumably via close
contact with their natural hosts (Vythilingam et al. 2008; Imwong et al. 2019).
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Chapter 2
Species Richness and Species Co-occurrence
of Helminth Parasites in the Rattus
rattus-Complex Across Stratified Habitat
Landuse Types in Mainland Southeast Asia

Kittipong Chaisiri and Serge Morand

Abstract This chapter explores some aspects of parasite ecology of helminth
infection in the Rattus rattus-complex from mainland Southeast Asian countries.
Diversity and species association patterns of helminths were assessed in relation to
human landuse habitats. A substantial helminth diversity remains undiscovered, with
at least 32 parasite species being found. We also discuss potential zoonotic species.
Human landuse alteration, i.e. peridomestic habitat, appears to be a hotspot for
helminth diversity. This trend is also associated with behavioral traits of the host
species which commonly represent habitat generalists. We also examine the pres-
ence of helminth versus helminth association patterns using a species co-occurrence
probabilistic model. Similar to previous findings, positive associations were more
prominent than negative, although persistent negative associations occurred between
some certain nematode taxa. Understanding the associated factors influencing par-
asite colonization, diversity and species association patterns is important in parasite
ecology research. This knowledge could provide valuable information for the
development of predictive models in disease ecology based on host traits and
host–parasite or parasite–parasite interactions, as well as geographical and ecolog-
ical parameters, particularly landuse alteration by human activities in the
Anthropocene.
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2.1 Studies on Murid Rodents and their Helminth Fauna
from Mainland Southeast Asia

Due to their excellent adaptability to different environments, rodents are one of the
most diverse groups of mammals on the planet. They represent over 450 genera and
more than 2200 species, covering nearly one third of the current mammalian
diversity (Wilson and Reeder 2005; Burgin et al. 2018). Among the Rodentia,
murid rodents (Family Muridae: Old World rats and mice) are the most diversified
taxon (Fabre et al. 2012). Rodents occupy nearly all terrestrial ecosystems in all
continents (with the exception of Antarctica and excluding invasive rats and mice),
from fertile areas (e.g., primary and secondary forests), human land alteration (e.g.,
agricultural fields and cities), to harsh landscapes (e.g., deserts and frozen lands).
They are usually thought of as threats to humans or pests, and are also recognized as
prime disease carriers of several zoonotic parasites and pathogens (Morand et al.
2006; Meerburg et al. 2009; Centers for Disease Control and Prevention 2017).
Meerburg et al. (2009) presented an extensive review of over 60 pathogens of public
health importance that are carried by rodents, i.e. several species of microparasites
(viruses, bacteria, and protists) and macroparasites (helminths).

In Southeast Asia, murid rodents are also present in a wide range of habitats
including forests, grassland, agricultural areas, and human settlements, and some
species are commonly found in large cities, on streets, in fresh food markets, and
public parks (Aplin et al. 2003; Blasdell et al. 2015; Stuart et al. 2015; Paladsing
et al. 2020). Palmeirim et al. (2014) and Blasdell et al. (2015) reported several
patterns of habitat preferences for murid rodents in Southeast Asia using published
data from studies in Thailand, Lao PDR, and Cambodia. Some rodent species show
specific habitat preferences, e.g. Rattus norvegicus and R. exulans prefer human
build-up habitats (synanthropic species); R. argentiventer, R. sakaeratensis, and
Bandicota indica prefer lowland rice fields; and Maxomys surifer and Leopoldamys
edwardsi in forest areas. On the other hand, some species show a more generalist
ecology with no clear habitat preference. They tend to be present in more than one
habitat type, e.g. Niviventer fulvescens, Berylmys berdmorei, and B. bowersi occur
between forest and upland agricultural fields. There is one exceptional rodent
species, R. tanezumi (black rat or Oriental house rat) that has been reported as a
habitat generalist (low habitat preference), occurring in all types of habitats. Regard-
ing the issue of cryptic species among the black rat complex, mitochondrial DNA
markers separate this problematic taxon into the three lineages: R. rattus (R1),
R. tanezumi (R2), and unnamed Rattus species phylogenetic R3 (Pagès et al.
2010). On the Indochinese Peninsula, only R. tanezumi and Rattus species phylo-
genetic R3 have been recorded so far. The two lineages are recognized as the Asian
black rats, whereas the true R. rattus (R1) has never been found in the region based
on genetic markers (Pagès et al. 2010; Aplin et al. 2011; Paladsing et al. 2020). Here,
we will apply the term “Rattus rattus- complex” as representative for these lineages
throughout this study. Because the species has adapted well to the changing envi-
ronment of Southeast Asia (Chaisiri et al. 2015; Morand et al. 2015), R. tanezumi
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may potentially act as a “bridge species” hosting parasites and pathogens that can
spread from one habitat to others.

Helminthiases are parasitic diseases caused by macroparasitic worms (i.e., ces-
todes, trematodes, nematodes, and acanthocephalans) that are frequently considered
as neglected diseases. To date, there are a growing number of studies on the ecology
of parasitic infections in small mammals, particularly the host species living close to
humans, such as rodents. A number of potential zoonotic helminth species carried by
rodents have been documented, e.g. trematodes: Echinostoma spp., Plagiorchis
muris; cestodes: Hymenolepis diminuta, Hymenolepis nana, Raillietina spp.; nem-
atodes Angiostrongylus cantonensis, Capillaria hepatica (syn. Calodium
hepaticum), Cyclodontostomum purvisi; and the acanthocephalan: Moniliformis
moniliformis (Chaisiri et al. 2015; McGarry et al. 2015; Jarvi et al. 2017; Ranjbar
et al. 2017). Apart from these zoonotic species, a great diversity of rodent specific
helminths has also been widely reported. Almost 60 helminth species have been
documented in Southeast Asia, with 13 species of cestodes, 15 species of trema-
todes, about 30 species of nematodes, and one species of acanthocephalan (Wiroreno
1978; Pham et al. 2001; Claveria et al. 2005; Paramasvaran et al. 2005; Chaisiri et al.
2012; Mohd Zain et al. 2012; Pakdeenarong et al. 2014; Ribas et al. 2016; Chaisiri
et al. 2017). Previous studies have revealed that helminth species richness and
prevalence of infection can vary substantially based on different factors, including
host species identity, gender, and maturity, as well as geographical distribution and
human-modified habitat (Chaisiri et al. 2012; Krasnov et al. 2012; Mohd Zain et al.
2012; Palmeirim et al. 2014). Regarding habitat and landuse, rodents living in
undisturbed habitats, i.e. forest and forested areas, seem to harbor a greater helminth
diversity than those living in habitats with high human activity, i.e. households and
human built-up land (Chaisiri et al. 2012; Pakdeenarong et al. 2014; Palmeirim et al.
2014; Chaisiri et al. 2017). This information is important not only to assess the
existence of potential zoonotic health threats for humans, but also for updating
research in ecological parasitology, as parasitism is an important interaction com-
ponent for ecosystem functioning. Healthy and balanced ecosystems are often those
characterized as parasite-rich (Cable et al. 2017). Studies on parasite transmission
dynamics through the estimation of parasite abundance and diversity are of impor-
tance to monitor the links between biodiversity and health in fast changing
environments.

In this chapter, we investigate a diverse assemblage of gastrointestinal helminths
in the Rattus rattus- complex collected from the Southeast Asian mainland countries:
Thailand, Lao PDR, and Cambodia. Using ecological analysis approaches, we assess
helminth diversity and patterns of species assemblage across stratified human-
dominated habitats. In addition, association patterns among helminth species are
investigated using a probabilistic model of species co-occurrence.

2 Species Richness and Species Co-occurrence of Helminth Parasites in the. . . 19



2.2 Helminth Diversity in the Rattus rattus- Complex Based
on Geographical Distribution and Stratified Habitats

A dataset on rodents and their helminths was extracted from several research projects
conducted in Southeast Asia (from 2008 to present): community ecology of rodents
and their pathogens in a changing environment (CERoPath: ANR07 BDIV012);
local impacts and perceptions of global changes: biodiversity, health and zoonoses in
South-East Asia (BioDivHealthSEA: ANR 11 CPEL 002); predictive scenarios of
health in Southeast Asia: linking land use and climate changes to infectious diseases
(FutureHealthSEA: ANR 17 CE35 0003 02); and potentially zoonotic infectious
diseases at animal–human interface in Bangkok metropolitan: extensive investiga-
tion in Urban Public Park (MRG6180023). Data on helminth infections in murid
rodents were collected from 22 study sites in 3 countries: Thailand (14 sites;
Bangkok, Buriram, Chantaburi, Chiang Rai, Kalasin, Kanchanaburi, Loei, Nakhon
Ratchasima, Nan, Phayao, Prachuab Khiri Khan, Songkhla, Tak, and Udon Thani);
Lao PDR (4 sites; Champasak, Houaphan, Luang Prabang, and Vientiane); and
Cambodia (4 sites: Mondolkiri, Pursat, Sihanouk, and Steung Treng) (Fig. 2.1). In
brief, at each study site, rodent trapping was divided equally into three different

Fig. 2.1 Distribution of rodent sampling sites across the three mainland Southeast Asian countries:
Thailand, Lao PDR, and Cambodia. Pixel colors on the map represent associated land cover labels.
The size of red circles indicates helminth species richness corresponded to each site
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types of habitats with respect to human landuse (anthropization index), spanning low
to high levels of disturbance, i.e. forest, peridomestic area, and human settlement.

After rodent euthanization, the gastrointestinal tracts were isolated and examined
for helminth infections (see Chaisiri et al. 2012, 2017; Pakdeenarong et al. 2014;
Palmeirim et al. 2014; Paladsing et al. 2020). To control for host taxonomic effects,
we selected only helminth data from the R. rattus-complex for the following
analyses. A high diversity of gastrointestinal parasites (32 species) was recorded in
the species complex (n ¼ 813), including cestodes (5 species), trematodes (5 spe-
cies), nematodes (21 species), acanthocephalans (1 species), and pentastomids
(1 species). Nine possible zoonotic helminths were found with trematodes:
Echinostoma malayanum, E. revolutum and Plagiorchis muris; cestodes:
Hymenolepis diminuta, H. nana and Raillietina celebensis; nematodes:
Gongylonema neoplasticum and Cyclodontostomum purvisi; and the acanthoceph-
alan: Moniliformis moniliformis. These species have been reported to infect humans
in this region and also worldwide (Bhaibulaya and Indrangarm 1975; Rougier et al.
1981; Hong et al. 1996; Berenji et al. 2007; Pasuralertsakul et al. 2008; Toledo and
Esteban 2016; Panti-May et al. 2020).

Helminth diversity, observed helminth species richness (HSR), species richness
estimators (1st ordered Jackknife and Chao1) and Shannon diversity index (H0) were
estimated across study sites and habitat types using the “BiodiversityR” package
(Kidnt and Coe 2005) implemented in R freeware (R Core Team 2020). Helminth
diversity in the R. rattus-complex differed with respect to geographical distribution
and habitat type (Table 2.1). Rodents from several locations, e.g. Chiang Rai,
Chantaburi, Luang Prabang, Nan, Mondolkiri and even public parks in a big city
like Bangkok harbored a great diversity of helminth species. There was no
significant association between helminth species richness and latitudinal gradient
(Spearman correlation R ¼ 0.466, t ¼ 1.826, p ¼ 0.092; see also Fig. 2.1). Unlike
free-living organisms, much of the current relationship between parasite diversity
and latitudinal gradient is unclear (Poulin and Morand 2000). However, Preisser
(2019) revealed in their meta-analysis a trend to high helminth species richness
(particularly nematode species richness) with lower latitude in cricetid rodents.

In terms of human-dominated habitats, R. rattus-complex species trapped from
peridomestic habitat exhibited a greater helminth diversity (Jack1 ¼ 40.97, Chao
¼ 64.91 and H0 ¼ 1.58) than those living in human settlements (Jack1 ¼ 25.96,
Chao¼ 27.13 and H0 ¼ 1.54) and forest areas (Jack1 ¼ 13.98, Chao¼ 13.98 and H0

¼ 1.42). Helminth species accumulation curves illustrate differences in parasite
species richness among categorized habitats (Fig. 2.2). Peridomestic areas, as a
transitional habitat (in a sense of ecotone) between forest and human settlement,
appeared to be a hotspot for helminth species richness. Such an agricultural resource-
rich landscape in a peridomestic area, e.g. fragmented habitats with field crops,
plantations, orchards, and fallows, potentially provide favorable conditions for
helminth transmission (Froeschke and Matthee 2014). Besides, Morand and Bordes
(2015) pointed out that apart from other intrinsic (e.g., host attributes, investment in
immune defenses, population density, and geographical range) and extrinsic deter-
minants (e.g., landuse characteristics, meteorological conditions, and season), host
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Table 2.1 Diversity observations and estimation of gastrointestinal helminth infection in the
Rattus rattus-complex from mainland Southeast Asia: comparison among study sites and habitat
types

Group n HSR Jack1 [95% CI] Chao [95% CI] H0 [95% CI]

Site

Bangkok (THA) 132 14 17.96
[17.07–18.84]

19.9
[18.6–21.19]

1.58
[1.5–1.65]

Buriram (THA) 35 5 5 [3.28–6.72] 5 [2.48–7.52] 0.94
[0.78–1.09]

Champasak (LAO) 13a 4 4.92 [2.09–7.74] 4.15 [0.01–8.28] 1.16
[0.91–1.41]

Chanthaburi (THA) 61 12 17.9
[16.59–19.2]

29.7
[27.79–31.61]

1.04
[0.92–1.15]

Chiang Rai (THA) 57 14 18.91
[17.56–20.25]

20.14
[18.16–22.11]

0.88
[0.76–0.99]

Houaphan (LAO) 13a 6 8.76
[5.93–11.58]

8.76
[4.62–12.89]

0.56
[0.31–0.81]

Kalasin (THA) 33 7 7 [5.23–8.77] 7 [4.41–9.59] 1.45
[1.29–1.61]

Kanchanaburi (THA) 23 5 6.91 [4.78–9.03] 6.91
[3.81–10.01]

1.35
[1.16–1.53]

Loei (THA) 26 8 9.92
[7.92–11.91]

8.96
[6.03–11.88]

1.06
[0.88–1.23]

Luang Prabang (LAO) 82 12 16.93
[15.80–18.05]

24.34
[22.69–25.98]

1.07
[0.97–1.17]

Mondolkiri (CAM) 46 9 12.91
[11.40–14.41]

14.86
[12.66–17.05]

0.92
[0.78–1.05]

Nakhon Ratchasima 3a 6 8.66
[2.77–14.54]

11.33
[2.72–19.93]

0.89
[0.36–1.41]

Nan (THA) 56 10 13.92
[12.55–15.28]

15.89
[13.89–17.88]

1.42
[1.29–1.54]

Prachuap Khiri Khan
(THA)

35 7 9.91
[8.18–11.63]

9.91
[7.39–12.42]

1.48
[1.32–1.63]

Pursat (CAM) 33 7 8.93
[7.15–10.70]

8.93
[6.33–11.52]

1.34
[1.18–1.49]

Sihanouk (CAM) 37 9 9.97
[8.29–11.64]

9.24
[6.79–11.68]

1.73
[1.58–1.87]

Songkla (THA) 53 4 4 [2.6–5.4] 4 [1.95–6.05] 1.38
[1.25–1.51]

Steung Treng (CAM) 6a 0 NA NA NA

Tak (THA) 9a 3 3.88 [0.48–7.27] 3.44 [0–8.41] 0.76
[0.23–1.28]

Udon Thani (THA) 1a 1 1 [0–11.19] 1 [0–15.9] NA

Vientiane (LAO) 8a 5 6.75
[3.14–10.35]

5.87
[0.61–11.13]

1.31
[0.99–1.62]

Habitat type

Forest 104 12 13.98
[11.38–16.57]

13.98
[8.91–19.05]

1.42
[1.41–1.43]

(continued)
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habitat specialization (behavioral trait) also explained the variation in parasite
species richness. In mainland Southeast Asia, the R. rattus-complex (i.e.,
R. tanezumi and Rattus species phylogenetic R3) has been well documented as
habitat generalists (low habitat preference) occurring in all types of habitats
(Palmeirim et al. 2014; Blasdell et al. 2015). Host species that forage in more diverse
habitats tend to be exposed to a greater number and diversity of parasites than habitat
specialist species. Moreover, roaming in a variety of habitats could increase contact
rates with other host species, resulting in an increasing chance for parasite sharing
particularly generalist parasite species (low host specificity) (Morand and Bordes
2015).

Host-parasite network analysis (bipartite) was conducted to explore the interac-
tions and patterns of helminth species assemblage among different habitat types.
This was performed using “vegan” (Oksanen et al. 2013) and “bipartite” packages
(Dormann et al. 2009) in R freeware. Network modularity, a measure of clustering
(modular) structure within the host–parasite network was also computed using the
“computeModules” function and illustrated graphically using the “plotModuleWeb”
function. The higher the modularity, the more sub-communities are dependently
clustered in the network (Dormann et al. 2009; Fortuna et al. 2010). Host–parasite

Table 2.1 (continued)

Group n HSR Jack1 [95% CI] Chao [95% CI] H0 [95% CI]

Peridomestic 431 29 40.97
[39.69–42.24]

64.91
[62.41–67.4]

1.58
[1.57–1.58]

Settlement 227 19 25.96
[24.2–27.71]

27.13
[23.69–30.56]

1.54
[1.53–1.55]

Abbreviation: N number of host examined, HSR observed helminth species richness, Jack1 first-
ordered Jackknife, Chao Chao richness estimator and H0 Shannon diversity index
aIndicate the groups with too low a sample size that were excluded from subsequent analyses
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Fig. 2.2 Helminth species accumulation curves among different habitats. These represent the mean
values with their standard deviations from random permutations of the data
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association at the whole community level (all study sites) was explored among the
three habitats and 32 helminth species through a bipartite plot and assessment of
network modularity (Fig. 2.3). Again, we found a similar trend; the majority of
parasite species occurred in the R. rattus-complex from peridomestic areas. The
analysis identified three modules (or subgroups) of host–parasite association pattern
(network modularity ¼ 0.325) with Group 1 that includes three helminths species in
forests and peridomestic habitats, potentially involving in sylvatic cycle; Group
2 with ten helminth species strictly found in peridomestic habitat; and Group
3 with ten species recorded in peridomestic and human settlement habitats, showing
adaptation to anthropogenic activities. In addition, there were another ten helminth
species: Raillietina sp., H. diminuta, Heterakis spumosa, Syphacia muris,
Physaloptera ngoci, Protospirura siamensis, Pterygodermatites sp.,
G. neoplasticum, and Trichostrongylidae sp. found in all habitat types (habitat
generalists). These ten species were ignored in the network modularity analysis as
they were present everywhere, and they are not shown in Fig. 2.3.

2.3 Helminth Species Co-occurrences in the Rattus
rattus-Complex

Helminth species co-occurrence from the host–parasite dataset was investigated
using a probabilistic model of species co-occurrence implemented in the “co-
occur” package (Griffith et al. 2016), R freeware (R Core Team 2020). The

Fig. 2.3 Composite panel of identified modules based on bipartite network analysis of helminth
species assemblages among different habitat types
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probabilistic model of species co-occurrence allows us to obtain the probability that
paired species in a dataset co-occur at frequencies either lower or higher than the
observed frequencies of co-occurrence (Veech 2013). In the sense of pairwise
co-occurrence patterns, the analysis classifies paired-association patterns into three
categories: positive, negative, or random parasite–parasite associations based on a
preferable significance level. Positive association occurs, if one parasite mutually
enhances the presence and transmission of another parasite species (Johnson and
Hoverman 2012; Lass et al. 2012; Dallas et al. 2019). In contrast, direct competition
between parasite species for host resources and internal niche space, as well as
through an indirect alteration of host immune regulation against another species,
would generally lead to a negative association (Holland 1984; Sousa 1992; Frontera
et al. 2005; Griffith et al. 2016).

Here, helminth species co-occurrence analysis was performed at a global scale
(all sites), a local scale (by study sites), as well as at the levels of habitat type and host
gender to identify patterns of species associations. For the global scale analysis, the
probabilistic model revealed significant association patterns (positive and negative
associations) among the 12 selected helminth species (Table 2.2 and Fig. 2.4). The
model was applied to those paired species whose expected number of co-occurrences
was greater than 1.0 with a significance level at 95% to classify species associations.
Of the 528 species pair combinations, 457 pairs (86.55%) were removed from the

Table 2.2 List of 12 selected helminths in the Rattus rattus-complex from the Southeast Asian
mainland with the number of species pairs to classified co-occurrence patterns (positive, negative,
or random associations)

Helminth species Taxonomic group
Target
organ

Number of species
co-occurrence patterns (pairs to
the others)

Positive Negative Random

Raillietina sp. Cestoda: Davaineidae SI 3 4 4

Raillietina celebensis Cestoda: Davaineidae SI 2 1 8

Hymenolepis diminuta Cestode:
Hymenolepididae

SI 3 1 7

Capillaria gastrica Nematoda: Capillariidae ST 5 0 6

Capillaria sp. Nematoda: Capillariidae ST 2 0 9

Protospirura
siamensis

Nematoda: Spiruridae ST 1 1 9

Physaloptera ngoci Nematoda:
Physalopteridae

ST 1 2 8

Gongylonema
neoplasticum

Nematoda:
Gongylonematidae

ST 4 2 5

Pterygodermatites sp. Nematoda: Rictulariidae SI 6 3 2

Trichostrongylidae Nematoda:
Trichostrongylidae

SI 5 4 2

Heterakis spumosa Nematoda: Heterakidae LI 2 1 8

Syphacia muris Nematoda: Oxyuridae LI 5 0 6

ST stomach, SI small intestine, LI large intestine

2 Species Richness and Species Co-occurrence of Helminth Parasites in the. . . 25



analysis because the expected co-occurrence was lower than 1.0, and 71 pairs were
retained for analysis. The nematode Pterygodermatites sp. was the species with the
greatest number of positive associations (6 pairs), followed by Capillaria gastrica
(5 pairs), Syphacia muris (5 pairs), and Trichostrongylidae (5 pairs), whereas the
parasite species with the most negative associations (4 pairs) was
Trichostrongylidae. Raillietina sp. and Capillaria sp. in the stomach, while
Protospirura siamensis showed mostly random associations (9 pairs for each spe-
cies), followed by Raillietina celebensis (8 pairs), Physaloptera ngoci (8 pairs), and
Heterakis spumosa (8 pairs). Positive associations (20 species pairs) were more
common than negative associations (9 species pairs). This is in accordance to a
general trend from previous studies suggesting that positive associations are more
common than negative associations in the helminth infracommunities of small
mammals, i.e. bats and rodents (Lotz and Font 1991; Behnke et al. 2005; Dallas
et al. 2019), or birds (Forbes et al. 1999). Several factors may explain how some
parasite species facilitate colonization by another species when the environmental
conditions are suitable for transmission and establishment in either definitive or
intermediate hosts. In addition, immune-mediated interactions among hosts and
parasites can play an important role. In the case of successive infections, the first
parasite species may induce immuno-suppression, facilitating the establishment of
subsequent infections by other parasite species (Graham 2008). However, in con-
trast, immunity triggered by an earlier parasitic infection may result in the subse-
quent inhibition of another parasite infection, particularly against microparasites
(Jolles et al. 2008; Salgame et al. 2013). In addition to these, differences in helminth
species association patterns are potentially influenced by other extrinsic or intrinsic
factors, e.g. host maturity, gender, behavior, and exposure history, as well as habitat

Fig. 2.4 A heatmap visualization of the paired helminth species revealed by a species
co-occurrence analysis. Blue, orange, and gray labels indicate significant positive-, negative-, and
random association patterns, respectively
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and seasonal variation (Haukisalmi and Henttonen 1993; Forbes et al. 1999; Behnke
2008; Telfer et al. 2008; Johnson and Buller 2011).

Investigation at different levels (whole dataset, by host gender, habitat type, and
study site) revealed paired helminth species with significant positive associations
(facilitation), e.g. G. neoplasticum, Pterygodermatites sp., H. diminuta, S. muris,
P. ngoci, Pterygodermatites sp., Raillietina sp., Trichostrongylidae, and S. muris—
Trichostrongylidae. In contrast, pairs with a significant negative association (com-
petition) included Pterygodermatites sp.—Trichostrongylidae, G. neoplasticum—

Fig. 2.5 A checkerboard of positive associations among paired helminth species across different
analysis levels: whole dataset, by host gender, habitat, and study site. Significant associations are
labeled in blue. The paired species with prominent associations are highlighted in bold. M male,
F female, Set settlement, Peri peridomestic, For forest, BKK Bangkok, CHR Chiang Rai, KAL
Kalasin, LOE Loei, LPB Luang Prabang, MDK Mondolkiri, PUR Pursat
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Trichostrongylidae, and Pterygodermatites sp.—Raillietina sp. (see more details in
Figs. 2.5 and 2.6). Interestingly, the two pairs of negative association:
Pterygodermatites sp.—Trichostrongylidae and Pterygodermatites sp.—Raillietina
sp. shared the same microhabitat in the hosts; all of them parasitize the small
intestine. Almost all positive association pairs were the helminths infecting different
target organs, with the only exception being Raillietina sp.—Trichostrongylidae
(both were found in the small intestine). Negative association was likely to occur
when the two parasites shared the same host tissue, probably because they compete
for similar host resources and/or for space. This observation is in line with a recent
study of parasite communities in small mammals from the Sonoran Desert, New

Fig. 2.6 A checkerboard of negative associations among paired helminth species across different
analysis levels: whole dataset, by host gender, habitat, and study site. Significant associations are
labeled in orange. The paired species with prominent associations are highlighted in bold. M male,
F female, Set settlement, Peri peridomestic, For forest, BKK Bangkok, CHR Chiang Rai, KAL
Kalasin, LOE Loei, LPB Luang Prabang, MDK Mondolkiri, PUR Pursat
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Mexico (Dallas et al. 2019). Our findings are solely based on the analysis of a
probabilistic model. Controlled infection studies should be performed for investi-
gating potential explanatory factors and mechanisms.

The results also indicated that trichostrongylid nematodes, Clade V: Strongylida
(Durette-Desset et al. 1999) tended to compete (negative association) with spirurid
nematodes Clade III: Spirurida (Nadler et al. 2007), G. neoplasticum and
Pterygodermatites sp., and there is no positive association shown between the two
nematode taxa. Similar observations were reported in previous studies: antagonistic
interactions between Metastrongylus apri, Clade V: Strongylida (Carreno and
Nadler 2003) and Ascaris suum, Clade III: Ascaridida (Nadler and Hudspeth
2000) in experimental pigs (Frontera et al. 2005). Negative associations between
parasites from different clades, which suggest taxonomic and evolutionary influ-
ences, should be explored.

2.4 Conclusions

Our understanding of host–parasite diversity in Southeast Asia remains rudimentary.
Here we examine the Rattus rattus species complex to explore diversity and species
association patterns of helminth infections in relation to the effect of human-
dominated habitats in mainland Southeast Asian countries. The analyses presented
here show that this synanthropic species complex maintains a high diversity of
helminth species in peridomestic habitats and acts as a bridge between forested
areas and human settlements. A deeper understanding of associated factors favoring
parasite colonization, diversity and species association patterns is needed at the
interface between hosts and their habitats in fast changing environments in Southeast
Asia. The methods used in this chapter are a way to improve our knowledge, but call
for further studies in the fields of parasite ecology and disease ecology. We propose,
as a future perspective, to extend the analyses to a larger scale, e.g. all rodent species
endemic in the region, exploring other ecological factors influencing parasite diver-
sity and uncovering mechanisms of parasite co-occurrences in the host population
while taking into account the evolutionary biology of this diversified group. In
addition, the study on parasite association patterns can be extended to other
co-occurring organisms within the same host such as the microbiome and virome.
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Chapter 3
Intestinal Protozoa: Their Role as Human
Pathogens and Zoonoses

Kotchaphon Vaisusuk and Weerachai Saijuntha

Abstract Intestinal protozoa are single-celled eukaryotic microorganisms with
nearly 10,000 species being parasitic in many invertebrates and most vertebrates.
Intestinal protozoan infections are among the most common worldwide and contrib-
ute significantly to the burden of infectious diseases. While the morbidity and
mortality caused by parasitic diseases affect people mainly in developing countries,
protozoa also cause significant illness (e.g., outbreaks) in developed countries. These
diseases are much more common in the tropics, including Southeast Asia, wherever
sanitation is poor, making them a major health problem. Hence, it is crucial to have
an enhanced understanding of the current status of the epidemiology of intestinal
protozoan infections. In this review we provide an update on intestinal protozoan
infections in Southeast Asian countries covering the diseases caused by Giardia
duodenalis, Entamoeba histolytica, Cryptosporidium, and Blastocystis sp. Among
them Giardia duodenalis is the best-known cause of protozoan gastrointestinal
disease, producing significant but not life-threatening gastrointestinal distress and
diarrhea. Dysentery, however, caused by E. histolytica is probably the most danger-
ous intestinal protozoan infection, although Cryptosporidium and Blastocystis
sp. may cause diarrhea in healthy individuals and result in intractable, life-
threatening illness in patients with acquired immunodeficiency syndrome or other
immunosuppressive diseases.
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3.1 Introduction

Protozoan infections contribute significantly to the burden of gastrointestinal illness
worldwide. Intestinal protozoa are single-celled eukaryotic microorganisms. There
are more than 20,000 protozoan species of protozoa known and of these approxi-
mately 10,000 are parasites found in invertebrates and in almost all vertebrates. It has
been estimated that as much as 60% of people worldwide are infected with intestinal
parasites (World Health Organization (WHO) 1987). Intestinal protozoan infections
are worldwide and are among the most common infection with 3.5 billion people
being infected and some 450 million people are sick as a result of an infection
(Haileeyesus and Beyene 2009). Protozoa have a rather simple and more primitive
structure than other members of the animal kingdom. They contain membrane-
bound nuclei and intra cellular organelles, and most protozoa have at least in some
stages of their life cycle, structures such as flagella, cilia, or pseudopodia, which
enable them to move, and, for some species, to obtain nutrients. The traditional
classification of protozoa is based on their specific structures for movement
(e.g. flagellates, ciliates, amoeba). Most protozoa are microscopic and typically
live in moist conditions, and the majority are free-living. Protozoa may multiply
asexually by binary or multiple fission, but some of them are capable of sexual
reproduction too.

The morbidity and mortality due to parasitic diseases affect people mainly in
developing countries. Protozoa, however, also cause significant illness in developed
countries (Ortega et al. 2008). Several species of enteric protozoa are associated with
diarrheal illnesses in humans, with some causing severe debilitating illness, espe-
cially in immunosuppressed people (Kucerova et al. 2011). These infections may
cause anemia, malnutrition, and other physical and mental impairments especially in
children. Symptoms of infection may include diarrhea, stomach pain, nausea or
vomiting, bloating, liver abscesses, colitis, fatigue, etc. It is important to understand
the epidemiology and appropriate prevention strategies for intestinal protozoan
infections in order to limit and control the cause of the disease (Zeibig 1997).
Giardia, Cryptosporidium spp., Dientamoeba fragilis, Entamoeba spp. (including
non-pathogenic species), and Cyclospora cayetanensis are the most common path-
ogenic protozoa reported in developed settings (Fletcher et al. 2012). A parasite
which is often referred to as a protozoan is Blastocystis, which is one of the most
common intestinal parasites worldwide. For practical reasons, this organism has
been included in this chapter on intestinal protozoan infections.

3.2 Giardia duodenalis

Giardia duodenalis (syn. Giardia lamblia and Giardia intestinalis) is a flagellated
protozoon giving rise to giardiasis, one of the most common gastrointestinal infec-
tions of mammals, including people, with a worldwide distribution. The trophozoite
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of G. duodenalis is a pear-shaped cell, with a length, width, and thickness of 12–15,
6–8, and 1–2 μm, respectively (Fig. 3.1). Trophozoites contain two nuclei
surrounded by nuclear envelopes and have a complex cytoskeleton, which maintains
their shape and anchors the four pairs of flagella, the median body, and the ventral
disk. The flagella are composed of microtubules in a typically eukaryotic 9 +
2 arrangement and are built from basal bodies located between the nuclei. The
median bodies are formed by an irregular set of microtubules that have a comma-
shaped structure, which varies in size and thickness, and are located transversally,
perpendicular to the central axis. Cysts of G. duodenalis are oval in shape and range
in size from 10 to 12 μm (range: 8 to 19 μm) (Garcia et al. 2018). These oval cysts are
thick-walled with four nuclei and several internal fibers. The cyst wall is 0.3–0.5 μm
in thickness and is formed by an outer filamentous layer and an inner membranous
layer including two membranes that enclose the periplasmic space. The cyst wall is
composed of carbohydrates in the form of N-acetylgalactosamine polymers and cyst
wall proteins. The cytoplasm of the mature cyst contains four nuclei, the contracted
flagella, and fragmented portions of the ventral disc (Fig. 3.1).

In contrast with G. duodenalis trophozoites, G. duodenalis cysts are infective. As
few as 10 cysts can cause an infection (Rendtorff 1954). Cysts are ingested by
consuming fecally contaminated food or water or by more direct fecal-oral self-
transmission. They can survive outside the body for several months and are also
relatively resistant to chlorination, UV exposure, and freezing. When cysts are
ingested, the low pH of the stomach acid triggers excystation, in which phase the
activated flagella breaks through the cyst wall. This occurs in the small intestine,
specifically in the duodenum. Excystation releases trophozoites, with each cyst
producing two trophozoites. Within the small intestine, the trophozoites reproduce
asexually (longitudinal binary fission) and either float free in the lumen or attach to
the intestinal mucosa. Trophozoites may encyst in the small intestine on their
passage toward the colon. Encystation occurs most likely as a result of exposure to
bile salts and/or fatty acids and is stimulated by an alkaline environment. It can also
be triggered by water reabsorption in the colon (Bingham and Meyer 1979). Both

Fig. 3.1 Giardia duodenalis trophozoites stained with Giemsa (a) and cysts stained with trichrome
(b) (Photo by Kotchaphon Vaisusuk)
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cysts and trophozoites are then passed in the feces, and the cysts are infectious
immediately or shortly after being shed. Person-to-person transmission is possible.
Many groups of animals are commonly infected, thus serving as a zoonotic reservoir
(Fig. 3.2).

Giardia duodenalis is an important pathogen in both human and veterinary
health. Evaluation of the extent of zoonotic transmission of the infection requires
molecular characterization as there is considerable genetic variation within the

Fig. 3.2 Giardia cysts are hardy and can survive for several months in cold water. Infection occurs
by ingestion of cysts present in contaminated water, food, or by a direct fecal-oral route. In the small
intestine, excystation results in the release of trophozoites. After release trophozoites multiply by
longitudinal binary fission, remaining in the lumen of the proximal small bowel where they are
found free in the lumen or attached to the mucosa by their ventral sucking discs. Encystation occurs
as the parasites transit toward the colon. The cyst is the stage found most commonly in
non-diarrheal feces. Because the cysts are infectious when passed in the stool or shortly afterwards,
person-to-person transmission is possible. Many major animal groups can serve as a reservoir of
zoonotic Giardia infections (Picture by Naruemon Bunchom)
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species G. duodenalis. To date, eight major genetic groups (assemblages) have been
identified, two of which (A and B) are found in both humans and non-human hosts,
whereas the remaining six (C to H) are host-specific and do not infect humans (Feng
and Xiao 2011; Cacciò and Lalle 2015). Assemblages C and D are canine-specific.
However, assemblages A, B, and E have also been reported in dogs (Li et al. 2015;
Thompson et al. 2008). The course of the disease is highly variable, ranging from
asymptomatic infection to acute or chronic diarrheic illness (Liu et al. 2012). The
laboratory diagnosis of Giardia spp. still relies mainly on a microscopy-based
demonstration of cysts or trophozoites in stool samples, but several
immunologically-based assays and molecular methods are also available for diag-
nosis (Verweij and Stensvold 2014). The prevalence of Giardia infection is mark-
edly higher in developing regions of the world where Giardia is common in both
children and adults. In recognition of the burden of disease caused by Giardia and to
underline its link to poverty, the WHO has included it in the list of neglected disease
since 2004. G. duodenalis has been detected in humans and animals in all regions of
Southeast Asia. The distribution of G. duodenalis infection is shown in Table 3.1.

The pathogenesis of giardiasis is only partially known. Giardia is able to attach to
the surface of the intestinal villi. It is assumed that a severe Giardia infection
involves a layer of trophozoites which covers many regions of the gut wall and
thus interferes with the absorption of nutrients. The mechanisms by which
G. duodenalis produces chronic diarrhea and malabsorption remain to be clearly
defined. Many infections are associated with mild to moderate mucosal damage as
evidenced by animal models of infection. Possible mechanisms include direct
physical injury, release of parasite products such as proteinases or lectins, and
mucosal inflammation associated with T cell activation and cytokine release. Other
possible mechanisms of malabsorption include associated bacterial overgrowth and
bile salt deconjugation, bile salt uptake by the parasite with depletion of intraluminal
bile salts, and inhibition of pancreatic hydrolytic enzymes. Thus, there is no single
mechanism to explain the diarrhea and malabsorption associated with giardiasis, and
currently, the pathogenesis should be regarded a multifactorial process (Farthing
1993).

Although progress has been made with regard to the diagnosis of giardiasis using
non-morphology-based methods, examination (usually of feces) by microscopy
generally remains the backbone of the diagnosis of intestinal parasitic infections
overall owing to the fact that this method enables the detection of large number of
parasitic species, including helminths. In Europe, standard methods in the laboratory
diagnostics of enteric parasitoses, including Giardia, comprise direct microscopic
examination of wet mounts and examination of concentrated feces. There is, how-
ever, an increasing trend toward the routine use of fixatives, permanent staining, and
multiple sampling techniques, as these methods have been proven to considerably
enhance the diagnostic yield. Advances in the biomedical sciences, however, have
resulted in morphology-independent laboratory diagnosis of giardiasis. Immunoas-
says for the detection of copro-antigens are gradually being introduced in routine
diagnostic laboratories, particularly so in laboratories processing large numbers of
samples. PCR-based methods not only have superior sensitivity and specificity, but
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Table 3.1 The distribution of G. duodenalis infections in humans in different regions of
Southeast Asia

Country
Population/
source

Prevalence
(% )

Sample size
(n) References

Cambodia

Battambang Province,
northwestern
Cambodia

Schoolchildren 31.50 308 Liao et al. (2017)

Angkor Hospital for
Children (AHC) in
Siem Reap, North-
Western Cambodia

Children aged
under 16 years

27.70 498 Moore et al. (2016)

Dong village, Rovieng
district, Preah Vihear
Province

Humans 18.30 218 Inpankaew et al.
(2014)

Provincial Hospital in
Siem Reap

Cambodian
children

8.00 16,372 Moore et al. (2012)

Tonle Sap Lake School-aged
children

4.20 1616 Chhakda et al.
(2006)

Southeast of Phnom
Penh

Kindergarten
and
Schoolchildren

2.90 623 Park et al. (2004)

Kampong Cham
Province

Primary school
Children

3.20 251 Lee et al. (2002)

Indonesia

Mlati, Sleman, DIY Children and
adults

5.02 179 Sari et al. (2020)

Dr. Soetomo General
Hospital, Surabaya

HIV/AIDS
patients

5.73 122 Prasetyo (2010)

Rancabali tea planta-
tion, Bandung District

Children 29.00 92 Widajanti et al.
(2003)

Jakarta Women
workers

22.03 903 Suriptiastuti (2006)

Malaysia

Orang Asli Selangor Aged 2–15
years

24.90 281 Al-Mekhlafi et al.
(2005)

Seven states of
Malaysia

Children and
adults

11.6 1330 Choy et al. (2014)

Aboriginal participants
residing in Jelebu,
Gerik and Temerloh
States

Aged 2–74
years

16.03 611 Anuar et al. (2015)

Hulu Terengganu and
Kemaman districts of
Terengganu

Aged �
15 years

8.60 340 Elyana et al. (2016)

Temerloh, Pahang Children and
adults

12.10 and
8.29

473 (wet sea-
sons ¼
256 and dry

Noradilah et al.
(2019)

(continued)
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Table 3.1 (continued)

Country
Population/
source

Prevalence
(% )

Sample size
(n) References

seasons ¼
217)

Malaysia Migrant
workers in
Malaysia

10.80 388 Sahimin et al.
(2016)

Lao PDR

Rural Laos Children and
adults

68.90 891 Chard et al. (2019)

Lak Sip village, Luang
Prabang Province

Children and
adults

6.56 305 Ribas et al. (2017)

Mahosot Hospital,
Vientiane

Children 0.50 191 Phetsouvanh et al.
(1999)

Thailand

Pathum Thani Province Aged 10–82
months

37.7 106 Saksirisampant et al.
(2003)

Mae Chame district,
Chiang Mai Province

Aged 3–19
years

2.21 781 Saksirisampant et al.
(2004)

Ang Thong, Ayut-
thaya, and Suphanburi
Provinces

Aged 3–12
years

1.25 1037 Saksirisampant et al.
(2006)

Sangkhlaburi, a rural
district in the west of
Thailand

Pre-school chil-
dren 3–60
months

23.3 472 Wongstitwilairoong
et al. (2007)

Chachoengsao
Province

Primary
schoolchildren

6.20 531 Ratanapo et al.
(2008)

Villagers at the Thai/
Myanmar border

Children and
adults

2.5 204 Prasertbun et al.
(2012)

Samut Sakhon
Province

Myanmar in
Thailand

14.10 284 Nuchprayoon et al.
(2009)

Vietnam

Hoa Binh All ages 3.00 2522 Verle et al. (2003)

Da Nang city 1–11 years 20.80 48 Ögren et al. (2016)

Da Nang city 18–48 years 11.30 80 Ögren et al. (2016)

Myanmar

South Dagon and
Hlaing Thar Yar dis-
tricts, Yangon

Schoolchildren
and guardians

3.40 821 Kim et al. (2016)

The Philippines

Metro Manila Children 11.60 284 Baldo et al. (2004)

The Philippines Patients 2.00 3456 Natividad et al.
(2008)

Barangays villages Children and
adults

19.20 412 Weerakoon et al.
(2018)
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also enable Giardia assemblage identification; however, only a few diagnostic
laboratories are equipped well enough to undertake these methods. These new
methods may aid diagnosis and should be considered for adoption into the routine
diagnostic algorithm. Once they have been evaluated fully and compared with
accepted methods in individual laboratories or through inter-laboratory quality
assurance investigations, they can be regarded as an adjunct to the conventional
detection and identification techniques used for laboratory diagnosis (Monis et al.
1999, 2009)

Fenbendazole and metronidazole are the most common drugs used to treat
Giardia infections. Many medicinal products combine several active substances
and often include febantel, which is converted into fenbendazole by metabolism.
Thus, products containing febantel are efficacious, but only if the treatment lasts
long enough. A clinical cure of diarrhea is desired. However, some infections are
self-limiting, and it is reasonable to forgo treatment for patients with mild symptoms
and/or contraindications to antimicrobial therapy. Metronidazole has been the drug
of choice to treat giardiasis at a single high dose or multiple low doses. Tinidazole is
an alternative drug used as single dose or as multiple doses. Albendazole, the drug of
choice for several types of helminthiasis, has been found to be effective for the
treatment of giardiasis (Gardner and Hill 2001). Lalle and Hanevik (2018) reported
that clinical giardiasis is heterogeneous, with a high variability in the severity of
clinical disease. It can become chronic or may be followed by post-infectious
sequelae. An alarming increase in cases refractory to the conventional treatment
with nitroimidazoles (i.e., metronidazole) has been reported in low prevalence
settings, such as in European Union countries and especially in patients returning
from Asia.

3.3 Entamoeba histolytica

Entamoeba histolytica is a non-flagellated protozoan enteropathogen infecting
around 50 million individuals globally (World Health Organization (WHO)
1997a, b). It can cause both intestinal and extraintestinal amoebiasis. Infection arises
primarily from fecal-oral transmission through the consumption of contaminated
drinking water or food containing cysts. Upon ingestion, the cysts multiply into
trophozoites and colonize the colonic mucosa of the host, using lectin and cysteine
proteases as virulence factors, leading to host invasion (Kantor et al. 2018). The size
of the trophozoite (Fig. 3.3a) is usually 15–20 μm. It may contain erythrocytes that
apparently have been ingested when coming into contact to erythrocyte, which,
however, are not common in the lumen of the intestine. The diameter of the cysts
(Fig. 3.3b), which are released into the environment by fecal shedding, is 10–14 μm.
A fully developed cyst contains four nuclei. Cigar-shaped chromatoid bodies may be
seen inside the cyst too (Ryan and Ray 2004).

Infection is acquired upon the ingestion of cysts from fecally contaminated food
or water. Because of the protection conferred by their walls, cysts may survive for
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days to weeks in the external environment. When a cyst of E. histolytica reaches the
lower part of the ileum or cecum, excystation occurs, and an amoeba with four nuclei
emerges. This divides by binary fission to form eight trophozoites. These migrate to
the large intestine and may lodge in lumen or submucosal tissues. These trophozoites
grow and multiply by binary fission in the large intestine. A number of trophozoites
are discharged into the lumen of the bowel and are transformed into cystic forms,
which are unable to excyst in the same host and therefore rely on transfer to another
susceptible host via a phase in the external environment (Fig. 3.4).

Infection by E. histolytica occurs by ingestion of mature four-nucleated cysts in
fecally contaminated food or drinking water. Excystation occurs in the small intes-
tine and trophozoites are released, which migrate to the large intestine. The tropho-
zoites multiply by binary fission and produce cysts, and both stages may be passed in
the feces. Cysts may survive for days to weeks in the external environment and are
responsible for further preparation. Trophozoites passed in the stool are rapidly
destroyed once outside the body. If ingested they would not survive exposure to
the gastric environment. Hence, the ingestion of trophozoites alone could not lead to
an infection. In many cases, some trophozoites remain confined to the intestinal
lumen of individuals which may act as asymptomatic carriers, passing only a small
number of cysts in their stool. However, in a minor proportion of the cases,
trophozoites invade the intestinal mucosa resulting in invasive disease and commen-
surate pathological manifestations.

Entamoeba histolytica predominantly infects people and other primates. This
parasite is worldwide responsible for up to 100,000 deaths per year in the human
population (World Health Organization Initiative for Vaccine Research: Parasitic
Diseases 2011), thus placing it second to malaria in mortality due to protozoan
parasites. Previously, it was thought that 10% of the world population was infected
with E. histolytica, but after the detection of the species E. dispar, at least 90% of
these infections are thought to represent infections by this non-pathogenic species

Fig. 3.3 Entamoeba histolytica trophozoite with ingested red blood cells (a) and an immature cyst
(b) stained with trichrome (Photo by Kotchaphon Vaisusuk)
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(World Health Organization (WHO) 1997a, b). The distribution of E. histolytica
infection in humans in different regions of Southeast Asia is shown in Table 3.2.

Entamoeba histolytica infection can be divided into symptomatic and asymptom-
atic cases. Patients may present with intestinal amoebiasis, including amoebic colitis
with diarrhea, abdominal pain, and tenderness. Sometimes the signs resolve sponta-
neously without intervention, and sometimes the infection becomes chronic. The
clinical signs of amoebiasis vary. The onset is often gradual, with patients reporting
several weeks of symptoms. Profuse, watery diarrhea might be noted. E. histolytica
may invade the colonic mucosa, and even if no blood is seen, occult blood in stools is
almost always positive (Samuel and Stanley 2003). Generally, simultaneous colonic
infection is seen in 50% of patients, presenting with ulcers commonly near the
ileocecal valve and cecum (Bhatia and Sundaram 2019). Patients may also present
with nausea, vomiting, weakness, weight loss, and referred pain to the shoulder in
some cases. Patients may or may not present with jaundice (Bansal et al. 2016).

Diagnosis of E. histolytica relies in part on the detection of trophozoites or cysts
in stool or colonic mucosa of patients. Direct smear examination on stained materials
is performed microscopically. The presence of hematophagous amoebic trophozo-
ites and cysts in a stool sample suggests an E. histolytica infection (González-Ruiz
et al. 1994). As Entamoeba trophozoites generally degenerate rapidly in unfixed
stool samples and refrigeration is not recommended, samples should be preserved
with in a fixative (sodium acetate–acetic acid–formalin (SAF), 10% formalin, or
modified polyvinyl-alcohol (PVA) which preserves the parasite’s morphology and
allows concentration and permanent smears to be performed. Stool culture followed
by isoenzyme analysis has been considered as the “gold standard” for many years
(Strachan et al. 1988). However, PCR methods become more popular and have been
increasingly applied due to the possibility to differentiate E. histolytica from

Fig. 3.4 Cysts and trophozoites of Entamoeba histolytica are passed in fecal material. Cysts are
typically found in formed stool, whereas trophozoites are typically found in diarrheal stool (Picture
by Naruemon Bunchom)
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Table 3.2 The distribution of E. histolytica infection in humans in different regions of
Southeast Asia

Country
Population/
source

Prevalence
(%)

Sample
size (n) References

Cambodia

Battambang Province Schoolchildren 17.50 308 Liao et al. (2017)

Preah Vihear Province Children and
adults

31.60 218 Schär et al. (2014)

Kampong Cham Province Primary school
children

0.80 251 Park et al. (2004)

Indonesia

Dr. Soetomo General Hos-
pital, Surabaya

HIV/AIDS
patients

61.50 122 Prasetyo (2010)

Jakarta Women
workers

14.53 903 Suriptiastuti (2006)

Malaysia

Malaysia Migrant
workers in
Malaysia

11.60 388 Sahimin et al. (2016)

Orang asli, Malaysia Children and
adults

3.20 500 Anuar et al. (2012)

Peninsular Malaysia Children and
adults

9.15 426 Ngui et al. (2012)

Orang asli, Malaysia Children 22.50 71 Hartini and Kamel
(2009)

Sabah Children and
adults

21.00 150 Aza et al. (2003)

Lao PDR

Lak Sip village, Luang
Prabang Province

Children and
adults

2.62 305 Ribas et al. (2017)

Thailand

Saraburi Province 4–15 years 1.10 263 Assavapongpaiboon
et al. (2018)

Mueang district, Nakhon
Ratchasima Province

Children and
adults

11.70 214 Kitvatanachai et al.
(2008)

Institutions for mentally
handicapped people

Children and
adults

7.10 993 Sirivichayakul et al.
(2003)

Vietnam

Central Vietnam Adults 11.20 383 Blessmann et al.
(2003)

Myanmar

South Dagon and Hlaing
Thar Yar districts, Yangon

Schoolchildren
and guardians

1.20 821 Kim et al. (2016)

Laiza, Myanmar Adults 15.17 903 Sun et al. (2012)

The Philippines

Barangays (villages), the
Philippines

Children and
adults

12.10 412 Weerakoon et al.
(2018)

Metro Manila, the
Philippines

Children 2.90 284 Baldo et al. (2004)
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non-pathogenic amoeba. Diagnosis can additionally be reached by endoscopy of the
large intestine and analysis of tissue biopsies taken. Some 89.5–100% of patients
with E. histolytica infection are seropositive, and most patients with an amoebic liver
abscess have leukocytosis, raising creative protein, positive serology, and negative
blood cultures (Ferreira et al. 2020).

The WHO guidelines recommend that drinking water should be prevented from
becoming contaminated by human waste and that adequate protection is provided
during the transportation of potable water supplies. The boiling of drinking water for
1 min or the addition of iodine to drinking water supplies is highly recommended to
sanitize water sources from E. histolytica cysts prior to human consumption (World
Health Organization (WHO) 2019). Health education in inculcating healthy personal
habits, sanitary disposal of feces, and hand washing are important control measures.
Although waterborne transmission of Entamoeba is lower than that of other intes-
tinal protozoans, protecting water supplies from being contaminated will lower
considerably endemicity and epidemics. The treatment of amoebiasis may typically
include the administration of nitroimidazole derivatives (metronidazole, tinidazole,
ornidazole). Human amoebic colitis is treated with metronidazole (both luminal and
tissue amoebicides), followed by a luminal agent (paromomycin, iodoquinol or
diloxanide furoate) to eradicate colonization (Samuel and Stanley 2003).

3.4 Cryptosporidium

Cryptosporidium is a tiny protozoan parasite that infects the microvillous region of
epithelial cells in the digestive and respiratory tract of vertebrates. It is also an
obligate intracellular parasite of humans and other mammals, birds, reptiles, and
fish. Environmentally resistant oocysts shed by infected hosts can survive adverse
conditions in the environment for months until ingested by a new suitable host.
Oocysts of C. hominis/C. parvum are spherical with a diameter of 4–6 μm. Thick-
and thin-walled oocysts are formed (Fig. 3.5). The thin-walled oocysts may excyst
within the same host and thus start a new life cycle (autoinfection). This may lead to
a heavily infected epithelium of the small intestine, resulting in increasing
malabsorptive effects and secretory diarrheas. The thick-walled oocyst is excreted
with the feces and is environmentally robust.

People are infected orally by Cryptosporidium oocysts found in their own or other
people's feces. This is the environmentally resistant transmission life cycle stage of
the parasite, due to a very robust oocyst wall that protects the four sporozoites
against physical and chemical damages. The infectious dose is very low and the
prepatent period varies from days to weeks. Sporozoites being released inside the
intestine from the oocyst penetrate the gut epithelial cells and multiply through
asexual and sexual cycles, resulting in oocysts that have already sporulated inside the
host and are readily infectious when they are set free in the environment (Fig. 3.6).

Cryptosporidium, a waterborne parasite belonging to the subphylum
Apicomplexa, has been recognized as a major cause of an increasing number of

46 K. Vaisusuk and W. Saijuntha



water-associated disease outbreaks in the past 10 years. It is transmitted through the
intake of food and water contaminated with transmissible oocysts (Slifko et al. 2000;
Karanis et al. 2007; Efstratiou et al. 2017). Cryptosporidiosis has its highest health
impact in developed nations through foodborne, waterborne, or direct person-to-
person transmission, as well as by zoonotic outbreaks of diarrheas (Yoder and Beach
2010). In developing countries, cryptosporidiosis is also one of the main causes of
diarrhea and malnutrition in children and AIDS patients (Xiao and Ryan 2015). To
date, isolates of Cryptosporidium have been assigned to at least 27 species and more
than 60 genotypes that cannot be distinguished based just on morphology (Fayer and
Santin 2009; Fayer 2010; Traversa 2010; Elwin et al. 2012; Ren et al. 2012; Kváč
et al. 2013). Cryptosporidium spp. live in the brush borders of the gastrointestinal,
respiratory, and renal epithelium of different vertebrates where they introduce
enterocolitis, diarrhea, and cholangiopathy in humans (Chalmers and Davies
2010). Cryptosporidium parvum is a major cause of diarrheal excretions of humans
worldwide. Global statistics on the prevalence of C. parvum shows that it infects up
to 50 million people worldwide (World Health Organization Initiative for Vaccine
Research: Parasitic Diseases 2011) depending on the local hygienic situation. In
Asia and Africa, the infection occurs in from 5 to 10 million people. The epidemi-
ology of human cryptosporidiosis and its associated species of Cryptosporidium can
be very complex. Cryptosporidium hominis is hypothesized to be specific for
humans and thus might be transmitted exclusively via anthroponotic pathways. In
contrast, C. parvum appears to be capable of exploiting anthroponotic or zoonotic
transmission routes, with infected cattle or small ruminants (sheep or goats) acting as
reservoir hosts (Caccio 2005; Thompson et al. 2008; Robertson 2009). Improved
means of transport, increased inter- and intra-country migrations and a burgeoning
tourism trade have also enhanced the potential for the spread of some infectious

Fig. 3.5 Cryptosporidium spp. oocysts in a fecal sample are stained red with a modified acid-fast
stain (Photo by Kotchaphon Vaisusuk)
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diseases (particularly those with direct modes of transmission), including crypto-
sporidiosis. Presently, a number of Southeast Asian countries face a severe, and
likely underestimated, problem with HIV/AIDS, due to its high prevalence and rapid
spread, with patients being susceptible to severe cryptosporidiosis (Anonymous
2008). The distribution of Cryptosporidium infection is shown in Table 3.3.

Fig. 3.6 Sporulated oocysts, containing four sporozoites, are excreted by infected hosts within
feces and possibly also via other routes such as respiratory secretions. Transmission of Cryptospo-
ridium cysts occurs mainly by contact with contaminated water (e.g., drinking or recreational water)
or food. Many outbreaks have probably showed in waterparks, community swimming pools, as day
care centers. Zoonotic and anthroponotic transmissions of Cryptosporidium occur by contract to
infected animals or exposure to water contaminated by the feces of infected animals. Following
ingestion (and possibly inhalation) by a suitable host, excystation occurs inside its intestine (Photo
by Naruemon Bunchom)
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Cryptosporidiosis in immunocompetent patients is either asymptomatic or causes
self-limiting diarrhea, which may be accompanied with abdominal cramps and mild
fever. In the acute phase, the diarrhea is watery. In children under 2 years patients
may show severe dehydration and increased diarrhea (Flanigan et al. 1992). Cryp-
tosporidiosis can cause outbreaks of travelers’ diarrhea. The incubation period for
symptoms of illness is approximately 7 days (range 1–14 days), and the illness is
usually self-limiting, with a mean duration of 6–9 days. Relapses are common;
reports indicate 1–5 additional episodes in 40–70% of patients. The predominant
symptom is diarrhea, watery, sometimes with mucus but rarely bloody, and some-
times profuse. The pathogenesis is not well understood, but transport affecting the
intestinal epithelium is probably the main cause of the diarrhea. Other symptoms
include nausea, abdominal cramps, vomiting, fatigue, loss of appetite, and fever. The
shedding of oocysts may continue after the cessation of the disease symptoms.

Table 3.3 The distribution of Cryptosporidium infection in humans in different regions of
Southeast Asia

Country
Population/
source

Prevalence
(%)

Sample
size (n) References

Cambodia

Angkor Hospital for Children (AHC)
in Siem Reap, North-Western
Cambodia

Children 7.70 498 Moore et al.
(2016)

Indonesia

Jakarta, Indonesia HIV/AIDS
patients

4.90 318 Kurniawan
et al. (2009)

General Hospital, Indonesia HIV/AIDS
patients

52.50 122 Prasetyo (2010)

Malaysia

Malaysia Migrant
workers

3.10 388 Sahimin et al.
(2016)

Hospitals, Malaysia HIV/AIDS
patients

5.20 346 Iqbal et al.
(2012)

Lao PDR

Hospitals, Lao PDR HIV/AIDS
patients

6.60 137 Paboriboune
et al. (2014)

Thailand

Rural areas in Thailand Children
and adults

0.14 697 Prasertbun et al.
(2019)

Hospitals in Khon Kaen Province HIV-sero-
positive
patients

11.5 78 Pinlaor et al.
(2005)

Bamrasnaradura Hospital HIV-
infected
patients

12.8 156 Saksirisampant
et al. (2002)

The Philippines

Barangays (villages), the Philippines Children
and adults

21.80 412 Weerakoon
et al. (2018)
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Immunocompetent individuals clear the infection and Cryptosporidium-associated
mortality is rare among the immunocompetent population. The studies on Crypto-
sporidium in humans show a clear distinction between infection and illness. Infec-
tion and colonization of the pathogens within the intestinal tract can occur without
any symptoms of gastro-enteritis (Percival et al. 2004). Protracted infection lasting
for months or years may spread to the hepatobiliary tract, causing cholangiohepatitis,
cholecystitis or choledochitis, or to the pancreatic duct, leading to pancreatitis
(Hayward et al. 1997).

The diagnosis of Cryptosporidium infection is based on oocysts in fecal samples
which are colored by modified acid-fast stain (AFS), which is the most common
staining technique used (Weber et al. 1991). Several commercial ELISA or immu-
nofluorescence assays have been developed for Cryptosporidium diagnosis (Garcia
et al. 2003). In addition, PCR technologies provide a specific diagnosis up to species
and genotype levels with high sensitivity (Okhuysen et al. 2001). Specific medical
therapy has been developed for cryptosporidiosis. Antiparasitic drugs including
nitazoxanide, paromomycin, macrolide, spiramycin, azithromycin, and rifaximin
have been approved to treat cryptosporidiosis; however, their efficacy is still limited,
specifically in severely affected immunocompromised people, and drug treatment is
uncertain with probably limited efficacy. Infection responds best to an improved host
immune status, for example, by means of HAART (Rossignol et al. 1998; Huang and
White 2006).

3.5 Blastocystis sp.

Blastocystis is a single-celled parasite colonizing the intestinal tract of humans and
numerous animal hosts, including insects and reptiles. Transmission occurs through
the fecal-oral pathway, mainly by ingesting food or drink contaminated with
Blastocystis cysts and potentially by close contact with human and non-human
hosts colonized by Blastocystis. Blastocystis exists in various morphological
forms. These include, but may not be limited to, the vacuolar, granular, amoeboid,
and cyst forms. The size of the vacuolar form ranges between 2 and 200 μm in
diameter, and the number of nuclei also varies too, with an average of four nuclei per
cell (Fig. 3.7). The cyst form is generally smaller than the vacuolar form, with sizes
ranging between 2 and 5 μm in diameter. Similar to the vacuolar form, a thin surface
coat is also observed in the cyst form. It may survive for up to 19 days in water at
normal temperature, up to one month at 25 �C, and for as long as 2 months at 4 �C.
The granular form is somewhat similar to the vacuolar form, but is distinguished by
the presence of multiple granules, especially within the central vacuole. Their
diameters range between 3 and 80 μm. The granules might appear as myelin-like
inclusions, droplets of lipid, tiny vesicles, or crystalline granules. The size of the
amoeboid form is considerably smaller, measuring between 2 and 7 μm. Studies
suggest the presence of extended pseudopodia, a Golgi apparatus, and mitochondria-
like structures within the cytoplasmic extensions of the pseudopods. Unlike ameba,
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the pseudopods in Blastocystis are not responsible for locomotion (Dunn et al. 1989;
Tan et al. 2001; Yoshikawa et al. 2004; Tan 2008).

After ingestion of the cyst, the parasite undergoes excystation in the terminal
ileum, cecum, and/or large intestine of humans and develops into vacuolar forms.
Encystation occurs during the passage along the large intestines, and cysts are then
voided in the feces. The fecal cysts (Fig. 3.8) may be covered by a fibrillar layer,
which is gradually lost during cyst development (Moe et al. 1997; Zaman et al.
1997).

The most common shape found in human stool is the cyst, which varies tremen-
dously in size reaching from 6 to 40 μm. The thick-walled cyst shape is present in the
stools is believed to be responsible for external transmission on the fecal-oral route
by ingestion of contaminated water or food, exposure to infected animals or expo-
sure to water contaminated by feces of infected animals. The cysts infect epithelial
cells of the digestive tract and multiply asexually. Vacuolar forms of the parasite lead
to multivacuolar and amoeboid shapes. The multivacuolar shape develops into a
precyst that subsequently develops into a thin-walled cyst, which is thought to be
responsible for autoinfection. The amoeboid form develops into a precyst, which
later develops into a thick-walled cyst by schizogony. The thick-walled cyst is
excreted in the feces.

Blastocystis is considered as a cosmopolitan enteric protist with a worldwide
distribution. It is the most frequently detected during micro-eukaryote epidemiolog-
ical surveys. Many carriers probably suffer with no or little abdominal or intestinal
discomfort. Some authors report that symptoms caused by this protist comprise
abdominal pain, constipation, diarrhea, flatulence, and irritable bowel syndromes
(IBS). Prevalence varies widely from country to country and within various

Fig. 3.7 Light microscope
image of Blastocystis
sp. shapes from fecal culture
(40� magnification).
V vacuole, N nucleus (Photo
by Kotchaphon Vaisusuk)
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communities of the same country. In general, developing countries have a higher
prevalence of the parasite than developed countries. This has been linked to poor
hygiene, exposure to animal feces, and the consumption of contaminated food or

Fig. 3.8 The life cycle and transmission of Blastocystis hominis (Photo by Naruemon Bunchom)
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water. Blastocystis infections are ubiquitous in people as well as in animals. Many
host species have their specific Blastocystis species suggesting phases of
co-evolution. The prevalence reported varies according to geographical region, but
is generally higher in developing countries (22.1–100%) than in developed countries
(0.5–23.1%), which might be related to differences in hygiene standards, type of
waste disposal, frequency of exposure to animals, and the consumption of contam-
inated uncooked food or water (Ramírez et al. 2014; Seyer et al. 2017). Based on
SSU-rDNA genotyping, high genetic variability was observed for Blastocystis spp.,
and 17 known subtypes (ST1-ST17) have been reported. Of these, subtypes 1–9
have been found in humans, with ST1–ST4 as the prevalent subtypes identified in
>90 of investigations. Some human subtypes were also observed in animals, e.g.,
ST3 in non-human primates, ST5 in cattle and pigs, and ST7 in birds. Additionally,
ST5 was commonly detected in pigs and their in-contact handlers (piggery staff) in
Australia, indicating the zoonotic potential of this subtype (Li et al. 2007; Moosavi
et al. 2012; Ronald et al. 2012; Alfellani et al. 2013; Roberts et al. 2013; Mattiucci
et al. 2016). The high prevalence of Blastocystis and its pathogenic potential are
indicative of its importance in Southeast Asia. The distribution of Blastocystis
infection is shown in Table 3.4.

Symptoms commonly attributed to infection with Blastocystis are nonspecific and
include diarrhea, abdominal pain, cramps, discomfort, and nausea. Profuse watery
diarrhea has been reported in acute cases, although this may be less pronounced in
chronic cases. Fatigue, anorexia, flatulence, and other nonspecific gastrointestinal
effects may also be associated with Blastocystis infections. Fever has been reported,
particularly in acute cases, but has not been noted in other studies. Other reported
signs and symptoms sometimes include occurence of leukocytes in feaces, rectal
bleeding, eosinophilia, hepatomegaly and splenomegaly, cutaneous rashes, and
itching. One study has indicated that joint pains and swelling may result from
infection of the synovial fluid by Blastocystis.

Traditionally, Blastocystis has been diagnosed by light microscopic examination
of fecal material based on morphological features, which may either aid at or confuse
the identification of the species involved. Wet mounts, either unstained or stained
with iodine, may be used. Aqueous nigrosin has been used as a counterstain in wet
mounts, and trichrome staining of fixed smears has been recommended for routine
use in the diagnosis of Blastocystis. Serologic testing has been used in an attempt to
identify patients with Blastocystis infections, however only with a very limited
success. A lack of humoral immune response was found by Chen et al. (1987)
using immunoblotting techniques with antigens from cultured Blastocystis isolated
from four patients. Only immunoglobulin G was examined in the study, but further
investigations may show a response with other immunoglobulin subclasses. Invasive
techniques have occasionally detected Blastocystis in the intestine, but have not been
evaluated and are not recommended as routine methods for diagnosis. Fluid aspi-
rated during endoscopy has been used to detect Blastocystis in the lumen of the small
intestine and in the cecum. Culture from fecal material appears to have no advan-
tages over light microscopy of fresh fecal material for the detection of Blastocystis,
and requires increased time, costs, and personnel. It also has been reported that
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culture was successful only if large numbers of Blastocystis were present in the fecal
material. Thus, cases with small numbers of organisms may not be detected. Any
increase in the detection efficiency appears to be due to an increase in size and due to
the “typical” vacuolar appearance of Blastocystis cells in culture and detection of the
organisms by light microscopy. However, it must be recognized that shapes other
than the vacuolar form of Blastocystis may be present in the human intestinal tract
and found in fecal material. The detection of such forms in cultures of fecal material
has not been assessed. The number of organisms present in the original sample
cannot be determined investigating cultured material (Kukoschke et al. 1990; Zierdt
1991; Hazen 1993).

There is no clear evidence supporting the rationale of treating Blastocystis with
anti-parasitic drugs. It is important to mention that currently, no drug has been
identified that can consistently eradicate Blastocystis from the human intestinal

Table 3.4 The distribution of Blastocystis sp. infection in humans in different regions of
Southeast Asia

Country
Population/
source

Prevalence
(% )

Sample
size (n) References

Cambodia

Battambang Province, Northwestern
Cambodia

Schoolchildren 4.9 308 Liao et al.
(2017)

Indonesia

Jakarta Women
workers

6.56 903 Suriptiastuti
(2006)

Jakarta, Indonesia HIV/AIDS
patients

72.40 318 Kurniawan
et al. (2009)

Malaysia

Perak and Pahang, Peninsular
Malaysia

Children and
adults

20.40 500 Anuar et al.
(2013)

Pahang state, Malaysia Schoolchildren 25.70 300 Abdulsalam
et al. (2012)

Aboriginal community, Pahang,
Malaysia

Children and
adults

46.2 473 Noradilah
et al. (2017)

Lao PDR

Lak Sip village, Luang Prabang
Province

Children and
adults

14.80 305 Ribas et al.
(2017)

Champasak, Lao PDR Children and
adults

51.70 60 Sanpool et al.
(2017)

Thailand

Simum subdistrict, Mueang district,
Nakhon Ratchasima Province

Children and
adults

5.60 214 Kitvatanachai
et al. (2008)

The Philippines

Barangays (villages), the Philippines Children and
adults

58.70 412 Weerakoon
et al. (2018)

Metro Manila, the Philippines Children 40.70 284 Baldo et al.
(2004)
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tract. This is probably one of the main reasons why the number of successful
randomized controlled treatment trials on Blastocystis is very limited. Antiprotozoal
drugs, particularly the use of metronidazole, have been recommended for the
treatment of Blastocystis infections. In combination with a luminal agent such as
paromomycin, it might be able to ensure at least the temporary eradication of
Blastocystis from the intestine. Thus, control measures include good personal
hygiene, improvement in community sanitary facilities, and education to prevent
fecal contamination of the environment and ingestion of contaminated material.

3.6 Conclusions

A relatively high prevalence of intestinal protozoan infections is common among
children and HIV/AIDS patients in Southeast Asia, and to date these intestinal
protozoa are considered of major public health importance. The difficulty experi-
enced in accurately diagnosing intestinal protozoan infections might be a key reason
why these pathogens and the diseases they cause are often neglected. The high
prevalence of protozoan parasite infections in children and HIV/AIDS patients
requires quick implementation of educational programs for children, their families,
and their communities. Health education regarding hygienic practices at the school
and community levels should be implemented to reduce the prevalence of intestinal
protozoan parasites among these children. This should be done in parallel with
comprehensive studies of the prevalence in geographical areas that have not been
studied in Southeast Asia. As more sensitive techniques become available, for
instance, the detection of parasite DNA by polymerase chain reaction and immuno-
logical antigen detection by monoclonal antibody assays, more parasitic infections
will probably be detected. Currently, studies of the molecular genetic diversity of
intestinal protozoa are few, therefore, in the future, more extensive molecular genetic
studies should be conducted which can then form a sound basis for the development
and instigation of effective treatment and prevention programs to deal with disease
outbreaks.
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Chapter 4
Biodiversity of Human Trematodes
and Their Intermediate Hosts
in Southeast Asia

Weerachai Saijuntha, Ross H. Andrews, Paiboon Sithithaworn, and
Trevor N. Petney

Abstract A diverse range of human trematodes commonly dwell in the intestine,
bile ducts of the liver, lung, and blood vessel infecting millions of people in
continental Southeast Asia. Similarly, their life cycles involve a diverse range of
intermediate hosts comprising aquatic plants, snails, fish, and other invertebrates. A
sound knowledge of the biodiversity of these trematodes and their intermediate hosts
is critically important for the development and establishment of future prevention
and control programs on trematodiases in Southeast Asia. Therefore, this chapter
will focus on the biology, life cycles, species diversity, and genetic diversity of
medically important trematodes including their intermediate hosts and their distri-
bution in Southeast Asia. The chapter will also examine the route of transmission via
food and water as well as a variety of traditionally cooked dishes and raw attitudes
that pose significant risks of trematode infection in people throughout
Southeast Asia.
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4.1 Introduction

Southeast Asia is one of the major biodiversity hotspots in the world. Four biodi-
versity hotspots have been defined and located in this region, namely the Sundaland,
Wallacea, the Philippines, and Indo-Burma biodiversity hotspots (Myers et al.
2000). There is also a high diversity of trematodes and similarly of their hosts’ life
cycles. Southeast Asian people are susceptible to infection by at least 50 species of
digenetic trematodes (those that utilize more than one host in their life cycle),
including intestinal flukes, liver flukes, lung flukes, and blood flukes (Johansen
et al. 2010).

Trematodes belong to the class Trematoda of the phylum Platyhelminthes that
comprises two orders, monogenean and digenean trematodes. Only the digenean
parasites are of medical importance to people, and these are the focus of this chapter.
Almost all of them are cosmopolitan that are obligatorily parasitic infecting inver-
tebrate intermediate and vertebrate definitive hosts. Their life cycles are complex
involving at least two hosts. The first intermediate hosts are usually freshwater
snails, while the second intermediate hosts are usually aquatic invertebrates and
occasionally vertebrates (Toledo and Fried 2019).

In Southeast Asia, a diverse group of species of digenean trematodes have been
found to infect and cause disease in people (Utzinger et al. 2010). For instance, there
are liver flukes causing fascioliasis, opisthorchiasis, and clonorchiasis, lung flukes
which are the causative agents of paragonimiasis, intestinal flukes causing
echinostomiasis and heterophyiasis, as well as blood flukes causing schistosomiasis.
Of these digenean trematodes, two species of liver flukes, Opisthorchis viverrini and
Clonorchis sinensis, have been classified as group 1 carcinogens, which act as the
causative agents of bile duct cancer (cholangiocarcinoma; CCA) (WHO 1995). On
the other hand, paragonimiasis, which is caused by a diverse group of lung flukes in
the genus Paragonimus, is another important foodborne trematode distributed
throughout Southeast Asia. The most diverse groups of human trematodes in
Southeast Asia are the intestinal flukes, echinostomatids in the family
Echinostomatidae and heterophylids in the family Heterophyidae. People suffer
from schistosomiasis caused by Schistosoma japonicum throughout the Philippines
and Indonesia, whereas in some restricted areas in the lower Mekong Basin, for
instance, in Lao PDR, Cambodia and in Myanmar, schistosomiasis is caused by the
closely related species, S. mekongi (Toledo and Fried 2019).

Worldwide almost all trematodiases affect the poorest people, predominately in
rural areas. Many factors contribute to the high prevalence of infections, including a
lack of education, poverty, malnutrition, a lack of food inspection, and/or poor
sanitation (Fried et al. 2004). As the second intermediate hosts are a highly diverse
group of edible animals and the metacercariae of some species are found on food
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plants that are consumed as part of regular daily meals, the consumption of raw or
partially cooked aquatic plants and animals is the major risk factor leading to the
high levels of infection found throughout Southeast Asia (Toledo and Fried 2019).

4.2 Biology and Life Cycle of Trematodes

Almost all trematodes are hermaphroditic displaying obligate alternation between
sexual and clonal reproduction over their life cycles, with the exception of members
of the family Schisotsomatidae which have separate sexes. They have traditionally
been classified based on the human organ(s) they inhabit, namely intestinal flukes,
liver flukes (including pancreatic flukes), lung flukes, and blood flukes (Fig. 4.1).
Structurally, trematodes are flat and elongated parasitic worms whose outer surface
(tegument) contains microvilli that both protect the worm and act as a nutrient
absorptive surface. Adult worms possess anterior and ventral suckers, which are
useful in maintaining their attachment to host tissue. Trematodes possess a blind
intestine that originates from the anterior sucker and provides additional absorptive

Fig. 4.1 Adult worms of (a) lung fluke, Paragonimus heterotremus; (b) liver fluke, Opisthorchis
viverrini, (c) blood fluke, Schistosoma japonicum [(a)–(c) photos courtesy by Thongchit
Thanchomnang], (d) intestinal fluke; Hypoderaeum conoideum (photo by Weerachai Saijuntha)
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capacity. Insoluble intestinal contents are regurgitated through the apical sucker,
whereas liquid waste may be expelled through specialized excretory cells (flame
cells).

The digenean life cycle of a parasitic trematode (Fig. 4.2) typically consists of the
definitive host, usually a vertebrate, including people, where the flukes reproduce
sexually. Although self-fertilization may occur in some species, cross-fertilization is
the most extended form of reproduction during the adult stage (Carbonell and Fried
2019). The first intermediate hosts, in which asexual reproduction occurs, are
typically species of aquatic snails. Asexual reproduction produces cercariae, which
are motile forms of the worm. After being shed by the first intermediate hosts,
cercariae infect second intermediate hosts by percutaneous penetration, or they
encyst on aquatic plants until consumed by vertebrate hosts, in which further
development occurs. The aquatic plants include morning glory and water mimosa,
and the aquatic animal hosts, naiads, tadpoles, freshwater snails (Fig. 4.3), and crabs
as well as a large number of freshwater cyprinid fish (Toledo and Fried 2019).

As almost all trematodes are transmitted to people via eating food (foodborne
transmission), these trematodes are known as “foodborne trematodes.” The blood
flukes of the family Schistosomatidae, however, do not require a second intermediate
host, but their cercariae will shed from their first snail intermediate hosts, then swim
freely and penetrate directly into their primary hosts (waterborne transmission),
hence, they have been termed “waterborne trematodes” (Toledo and Fried 2019).
The trematode life cycle is completed when eggs shed by adult worms are excreted
in the host feces where they hatch to release ciliated miracidiae, subsequently
infecting a suitable intermediate host. However, most trematodes are zoonotic,
which includes many vertebrate and mammal species as their definitive and reservoir
hosts, including humans. Thus, programs for the effective prevention and control of
infection of these zoonotic trematodes should also focus on their zoonotic life cycles
(Fig. 4.2).

4.3 Diversity of Human Trematodes

The trematodes or flukes are a diverse group which includes 18,000–24,000 species
(Kostadinova and Pérez-del-Olmo 2019). Of these, at least 54 species play signifi-
cant, medically important roles as they infect large numbers of people, including
populations throughout Southeast Asia (Table 4.1). Their classification has predom-
inantly been based on the organ they infect/inhabit in people, namely intestinal
flukes, liver flukes (including pancreatic fluke), lung flukes, and blood flukes
(Fig. 4.1).
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4.3.1 Intestinal Flukes

Intestinal flukes are the largest group of human trematodes, consisting of at least
41 species belonging to 22 genera and 8 families distributed throughout Southeast
Asia (Chai et al. 2009a, 2018). The most diverse group are echinostomatids in the
family Echinostomatidae consisting of 16 species in 7 genera, with members of the
genus Echinostoma being the most common causative agents of human
echinostomiasis in Southeast Asia (Toledo and Esteban 2016). The next diverse
group comprises the heterophyids in the family Heterophyidae, which constitutes
13 species belonging to 7 genera, while the family Plagiorchiidae contains 4 species

Fig. 4.3 Snail intermediate hosts of digenetic trematodes found in Thailand (a) Pomacea
canaliculata; (b) Pomacea maculata; (c) Pila polita; (d) Pila ampullacea; (e) Filopaludina
martensi martensi; (f) Filopaludina sumatrensis polygramma; (g) Melanoides tuberculata; (h)
Lymnaea (Radex) rubiginosa; (i) Indoplanorbis exustus; (j) Gyraulus convexiusculus; (k)
Hydrobioides nassa; (l) Bithynia funiculata; (m) Bithynia siamensis goniomphalos; (n) Bithynia
siamensis siamensis (photo courtesy by Naruemon Bunchom)
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in 1 genus. The family Lecithodendriidae includes two species in two genera, and the
remaining six families have one species in one genus (Table 4.1) (Chai et al. 2009a).
People who suffer from intestinal fluke infection can present with severe epigastric
or abdominal pain with diarrhea, fatigue, malnutrition, and anemia (Toledo et al.
2019).

In mainland Southeast Asia the main disease foci are found along the Mekong
River basin with a corresponding high prevalence of infection by echinostomes
(Chai et al. 2020; Toledo et al. 2019). Almost all of the echinostome species have
recently been reported to infect riparian people in Thailand, Lao PDR, Cambodia,
and Vietnam (Chai et al. 2018). For example, Artyfechinostomum malayanum,
Echinostoma revolutum, Echinochasmus japonicus, and Euparyphium sp. have
recently been recovered from people in Savannakhet and Khammouane Provinces
in Lao PDR (Chai et al. 2012). Most recently, Echinostoma ilocanum and
Echinostoma aegyptica have been reported to infect riparian people in Savannakhet
Province, Lao PDR (Chai et al. 2018, 2020). Echinostoma mekongiwas also recently
reported as a new species that is morphologically and molecularly distinct from the
other members of 37 collar-spined group infecting riparian people along the Mekong
River in Cambodia (Cho et al. 2020).

Heterophyids are another diverse group of intestinal flukes with the prevalence of
infection in people being high in the lower Mekong River basin (Chai et al. 2009b).
This is similar to Haplorchis spp., Centrocestus formosanus and Procerovum
varium which are endemic and infect people in many countries in Southeast Asia
(Chai and Jung 2017). Moreover, the other genera/families, such as Plagiorchis
muris, Phaneropsolus bonnei, Fasciolopsis buski, and Gastrodiscoides hominis are
found to be widespread throughout many countries in Southeast Asia (Table 4.1).
The remaining intestinal trematodes infecting people are rare and either have
restricted endemic areas or their infection levels still remain underestimated.

4.3.2 Liver Flukes

The liver flukes found in Southeast Asia consist of at least six species belonging to
five genera and three families (Table 4.1). These liver flukes are Opisthorchis
viverrini and Clonorchis sinensis which belong to the family Opisthorchiidae, two
species of the genus Fasciola, i.e. F. gigantica and F. hepatica in the family
Fasciolidae, and Dicrocoelium dentriticum and Eurytrema pancreaticum in the
family Dicrocoeliidae (Table 4.1). While E. pancreaticum occurs mostly in pancre-
atic ducts, it is rarely found in liver bile ducts (Ishii et al. 1983).

Opisthorchis viverrini is the most medically important liver fluke causing signif-
icant public health problems in Southeast Asia. It is classified as group 1 carcinogen
as it is the causative agent of liver and bile duct cancer (cholangiocarcinoma; CCA)
in people. It is widespread throughout the lower Mekong Basin covering Thailand,
Lao PDR, Cambodia and southern Vietnam, as well as Myanmar (Petney et al.
2018). At least 10 million people are currently infected in Southeast Asia, with the
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highest incidence of CCA in the world occurring in northeast Thailand (Petney et al.
2018). Clonorchis sinensis is also classified as a group 1 carcinogen, but in Southeast
Asia it is restricted to the central-northern region of Vietnam (Doanh and Nawa
2016). These liver flukes are fish-borne and are transmitted by eating raw or partially
cooked freshwater cyprinid fish (Grundy-Warr et al. 2012). However, there is a
report of O. viverrini-like flukes infecting ducks in Vietnam, but there is no infor-
mation of infection in people.

The genus Fasciola is originally a liver fluke of ruminants and consists of two
principal species, F. gigantica and F. hepatica that also cause fascioliasis in people
(Mas-Coma et al. 2019). The adult stage of these two species differs in size, which
can be used to differentiate the species. Hybrid strains between these two species
have been recorded as showing an intermediate morphological form and hence have
been classified as Fasciola sp. (Mas-Coma et al. 2019). Fascioliasis is one of the
most important zoonoses distributed worldwide, including Southeast Asia. Infection
in people is caused by eating aquatic plants contaminated with infective
metacercariae. Human fascioliasis has been reported at a quite low prevalence in
Southeast Asia but there are no comprehensive reports on the current situation
relating to infection in people in Myanmar, Thailand, or Vietnam (Tran et al. 2001).

Dicrocoelium dentriticum and Eurytrema pancreaticum mainly infect animals,
thus infection of people, when it occurs, is accidental, rare, and restricted to some
areas in the Philippines and Malaysia, respectively (Kumar 1999). People have also
been found to be accidental hosts when they have eaten raw ants and grasshoppers,
the second intermediate hosts of D. dentriticum and E. pancreaticum, respectively
(Kumar 1999).

4.3.3 Lung Flukes

There are currently at least 14 species of the lung flukes in genus Paragonimus that
have been identified in Southeast Asia (Yoshida et al. 2019). Of these, four species
Paragonimus westermani, P. heterotremus, P. pseudoheterotremus, and
P. philippinensis have been reported to infect people causing paragonimiasis (Blair
2019). As the eggs of these lung flukes have morphological characteristics that are
very similar, egg morphology alone cannot be used for species differentiation. Thus,
species identification of lung flukes infecting people requires several methods, such
as adult worm expulsion and specific serological or molecular diagnosis (Blair
2019).

The most common causative agent of paragonimiasis in people in Southeast Asia
is P. heterotremus (Yoshida et al. 2019). Human paragonimiasis caused by
P. heterotremus infection has been reported in Cambodia, Lao PDR, Myanmar,
Thailand, and Vietnam (Yoshida et al. 2019). P. heterotremus infects people in at
least 10 Provinces in Thailand (Kusolsuk et al. 2020). The most common
paragonimiasis in Vietnam is also caused by P. heterotremus (Doanh et al. 2013).
Paragonimus westermani causing human paragonimiasis in Southeast Asia has been
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diagnosed in the Philippines and Thailand (Blair 2019), and crabs containing the
metacercariae of P. westermani were found in Cambodia, Lao PDR, Malaysia,
Philippines, Thailand, and Vietnam (Blair 2019). Recently reported as a valid
species, P. pseudoheterotremus (Waikagul 2007) has been detected in a patient’s
sputum in Thailand by molecular genotyping using the CO1 sequence (Intapan et al.
2012). However, due to the variation found in the metacercariae it is still controver-
sial whether P. heterotremus and P. pseudoheterotremus are valid species or just
represent geographical genetic variation within a single species (Doanh et al. 2015).
Paragonimus philippinensis has recently been recovered from people and is found
specifically in the Philippines (Ito et al. 1978).

4.3.4 Blood Flukes

There are three principal species belonging to the genus Schistosoma in Southeast
Asia, namely S. japonicum, S. mekongi, and S. malayensis, which are the main
causative agents of human schistosomiasis in this region (Gordon et al. 2019).
Symptoms in people caused by schistosomiasis vary from hardly detectable to
very serious. The most important human blood fluke in Southeast Asia is
S. japonicum, which is still of considerable economic and public health concern in
several areas of the Philippines and Indonesia, with an estimated 0.17–1.7% and 3%
prevalence of infection, respectively (Zhou et al. 2010). Approximately 6.7 million
people live in endemic areas of S. japonicum in the Philippines with 200,000 people
estimated to be infected (Coutinho et al. 2005). While S. japonicum is currently
endemic in three very isolated areas, namely Lindu, Napu, and Bada Valleys in
Central Sulawesi Province, Indonesia, there is mounting evidence that the preva-
lence of S. japonicum infection is increasing in these areas (Satrija et al. 2015).

The second species is Schistosoma mekongi which has foci of distribution and
transmission in the Mekong Delta (Gordon et al. 2019). The potential human
population at risk from S. mekongi infection is currently estimated at over 1.5
million, with around 800 people infected in Lao PDR and around 2000 in Cambodia
(Muth et al. 2010). The Khong and Mounlapamok districts in Lao PDR, and Ban
Hat-Xai-Khong Island and San Dan, Sambour District in Kratie Province in Cam-
bodia have recently been reported as remote areas of S. mekongi infection (Gordon
et al. 2019). Transmission of S. mekongi has been discovered not only in tributaries
of the Mekong river, but also within the Mekong Basin, namely at Sa Dao in the Xe
Kong river of Cambodia (Attwood et al. 2004; Sinuon et al. 2007). Recent studies
indicate that schistosomiasis has been emerging/re-emerging around Lake Inlay in
central Myanmar. For instance, a schistosomiasis outbreak occurred in Rakhine
State, Myanmar, with more than 400 confirmed cases and more than 800 suspected
cases in 2018 (Gordon et al. 2019). Currently, the status of schistosomiasis in
Myanmar is being assessed by molecular methods which have found that its
causative agent is indeed S. mekongi (Wai et al. 2017).
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Schistosoma malayensis was first described as S. japonicum from foreign
nationals from China and Singapore living in Malaysia, with the later classification
as S. malayensis (Chuah et al. 2019). To date, human infections in Malaysia appear
to be restricted to West (peninsular) Malaysia and more specifically to the Jelai and
Tembeling river systems that drain into the Pahang River in Pahang State. In general,
cases of S. malayensis have been found in aboriginal Malaysians (Orang Asli) living
in rural areas (Chuah et al. 2019). However, a low prevalence in people was
observed, suggesting that people are not important hosts for this parasite, while
Rattus muelleri and Rattus tiomanicus have been recorded as the main definitive
hosts (Greer et al. 1988).

4.4 Diversity of Snail Intermediate Hosts

Snails are ubiquitous in freshwater bodies throughout tropical countries, especially
in Southeast Asia, and a number of species are considered to be of medical
importance since they serve as intermediate hosts of many trematode species
(Fig. 4.3). Over 350 species of snails worldwide are estimated to be of possible
medical or veterinary importance (Madsen and Hung 2014). Of these at least
45 species belonging to 26 genera of 7 families and are distributed within Southeast
Asia where they act in the transmission of human trematodes (Table 4.2) (Madsen
and Hung 2014; Lu et al. 2018).

At least nine and six species in two and four genera of snails occur in the families
Ampullariidae and Viviparidae, respectively. These snails commonly act as inter-
mediate hosts of intestinal flukes, such as the echinostomatids A. malayanum,
E. revolutum, E. ilocanum, and H. conoideum (Madsen and Hung 2014; Lu et al.
2018). Moreover, the snails in these families are eaten as a common food in
Southeast Asia, for example “goi hoi,” which is prepared from raw apple snails or
boiled snails (sometimes partially cooked) mixed in papaya salad called “tum hoi,”
or grilled snails known as “jee hoi” (Fig. 4.4). Even if these snails have been fried or
boiled, the metacercariae of trematodes may not be completely destroyed. Studies
have found that snails that have been boiled still contained infective metacercariae of
E. revolutum, and that a high intensity of heat is needed with a cooking time of at
least 19.2 min to completely destroy all metacercariae (Sulianti 2008). Thus, it is
highly likely that inappropriate or undercooking of these snails in traditional dishes
will contain infective metacercariae. Studies have found that the high rate of
E. revolutum infection in children in Pursat Province, Cambodia, was due to these
children eating partially cooked snails (see grilled snails in Fig. 4.4) after school
from roadside stalls near their homes, and E. ilocanum was also recovered from the
villagers in Oddar Meanchey Province, Cambodia (Sohn et al. 2011a, b).

There are three taxa of the genus Bithynia, family Bithyniidae, namely Bithynia
funiculata, B. siamensis goniomphalos, and B. s. siamensis that act as the principal
first intermediate hosts of the carcinogenic liver fluke, O. viverrini. In addition,
cercariae and metacercariae of other trematodes, such as echinostomes, have been
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Table 4.2 The families and species of snails acting as intermediate hosts for trematode species

Family Genus and Species Trematodes

Ampullariidae Pila ampullacea Echinostomes

Pila globosa Echinostomes

Pila gracilis Echinostomes

Pila luzonica Echinostomes

Pila pesmei Echinostomes

Pila polita Echinostomes

Pila scutata Echinostomes

Pomacea canaliculata Echinostomes

Pomacea maculata Echinostomes

Bithyniidae Bithynia funiculata Opisthorchis viverrini, echinostomes,
heterophyids

Bithynia siamensis
goniomphalos

O. viverrini, echinostomes, heterophyid

Bithynia siamensis siamensis O. viverrini, Clonorchis sinensis,
echinostomes, heterophyids

Parafossarulus
manchouricus

C. sinensis

Digoniostoma truncatum Heterophyids

Hydrobioides nassa Echinostomes

Lymnaeidae Austropeplea philippinensis Fasciola spp.

Austropeplea ollula Fasciola spp.

Bullastra cumingiana Fasciola spp.

Lymnaea (Radix) viridis Fasciola spp.

Lymnaea (Radix) auricularia Fasciola spp.

Lymnaea (Radix) swinhoei Fasciola spp.

Lymnaea (Radix) rubiginosa Fasciola spp., echinostomes

Radix quadrasi Fasciola spp.

Planorbidae Hippeutis (Helicorbis)
umbilicalis

Fasciolopsis buski, echinostomes

Segmentina (Polypylis)
hemisphaerula

F. buski

S. (Trochorbis) trochoideus F. buski

Indoplanorbis exustus Echinostomes

Gyraulus convexiusculus Echinostomes

Gyraulus sarasinorum Echinostomes

Pomatiopsidae Neotricula aperta Schistosoma mekongi

Oncomelania quadrasi Schistosoma japonicum

Oncomelania lindoensis S. japonicum

Robertsiella gismanni S. japonicum

Thiaridae Brotia asperata Paragonimus spp.

Brotia costula Paragonimus spp.

Melanoides tuberculata Paragonimus spp.

Sermyla riquetii Paragonimus spp.

(continued)
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Table 4.2 (continued)

Family Genus and Species Trematodes

Tarebia granifera Paragonimus spp.

Thiara scabra Paragonimus spp.

Viviparidae Bellamya javanica Echinostomes

Bellamya philippinensis Echinostomes

Filopaludina sumatrensis
polygramma

Echinostomes

Filopaludina martensi
martensi

Echinostomes

Taia polyzonata Echinostomes

Viviparus angularis Echinostomes

Fig. 4.4 Variety of dishes cooked from freshwater snails of the families Ampullariidae and
Viviparidae, the risk trematode infection in Southeast Asia. (a) Papaya salad with snails or “tum
hoi,” (b) spicy snail salad or “goi hoi,” (c) grilled snails or “jee hoi,” (d) boiled snails or “tom hoi”
(photos by Weerachai Saijuntha)
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found in the same species of Bithynia snails (Bunchom et al. 2020). Other species of
snails, for instance, Digoniostoma truncatum and Hydrobioides nassa are interme-
diate hosts of heterophyids and echinostomes, respectively (Madsen and Hung 2014;
Bunchom et al. 2019). Furthermore, B. s. siamensis and Parafossarulus
manchouricus in the family Bithyniidae have been reported as intermediate hosts
of C. sinensis in Vietnam (Madsen and Hung 2014).

The family Lymnaeidae contains seven species in four genera that act as the
principal intermediate hosts of fasciolid flukes, i.e. Fasciola spp. (Lu et al. 2018). Of
these, the genus Lymnaea (Radix) is the most diverse and widespread in Southeast
Asia (Madsen and Hung 2014), while the family Planorbidae comprises six species
in four genera. Of these, three species, Hippeutis (Helicorbis) umbilicalis,
Segmentina (Polypylis) hemisphaerula, and Segmentina (Trochorbis) trochoideus
act as the principal intermediate hosts of F. buski, while the others Indoplanorbis
exustus, Gyraulus convexiusculus, G. sarasinorum are intermediate hosts of
echinostomatids (Table 4.2). The species of snails in these families are commonly
found throughout Southeast Asia, especially in rice fields. After harvesting farmers
release ducks to feed on the snails in their rice fields, which act to maintain and
complete the life cycle of parasitic trematodes via a zoonotic cycle. A high preva-
lence of infection of echinostomes in free-grazing ducks has been reported in
Thailand (Saijuntha et al. 2013).

The family Thiaridae consists of six species in five genera, which are the sole
intermediate hosts of lung flukes in the genus Paragonimus. Of these, Melanoides
tuberculata is the sole intermediate host for the most common causative agent of
human paragonimiasis, P. heterotremus, which is widespread throughout Southeast
Asia (Madsen and Hung 2014). The snails in the family Pomatiopsidae serve as the
intermediate hosts of blood flukes, namely Oncomelania quadrasi, O. lindoensis,
and Robertsiella gismanni acting as the intermediate hosts of S. japonicum, while
Neotricula aperta is the sole intermediate host of S. mekongi (Madsen and Hung
2014; LoVerde 2019). A potential way to control and prevent schistosomiasis in
remote areas is the eradication of snail intermediate hosts, which was successfully
achieved in Japan, where schistosomiasis due to S. japonicum was eliminated by
eradication of intermediate snail hosts, Ocomelania sp. (Takaka and Tsuji 1997).

4.5 Diversity of Second Intermediate Hosts and Sources
of Transmission

Transmission of digenetic trematodes to people in Southeast Asia is almost entirely
due to the regular consumption of food containing infective metacercariae. The
variety of second intermediate hosts is a key to the successful maintenance, dis-
persal, and transmission of foodborne trematodes via foodborne transmission. There
are aquatic animals and cyprinid species of fish acting as second intermediate hosts,
as well as edible plants on which metacercariae are found, which are eaten as
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common, traditional daily meals in Southeast Asia. While waterborne transmission
is known as the major transmission vehicle of schistosomiasis, some other trema-
todes can occasionally be transmitted via drinking untreated water from natural
sources (Utzinger et al. 2010).

4.5.1 Foodborne Transmission

Freshwater plants harbor the metacercariae of the liver fluke genus Fasciola and the
intestinal fluke genus Fasciolopsis which are the causative agents of fascioliasis and
fasciolopsiasis, respectively, in people (Hillyer 1988). There are a range of edible
freshwater plants that can be contaminated by the metacercariae of these flukes, such
as morning glory, water mimosa, water fern, and gotu kola (Mas-Coma et al. 2018).
In rural areas, these plants are usually harvested from natural puddles, then washed
and eaten without heating. Thus, eating these plants without heating/boiling poses a
high risk of Fasciola infection (Mas-Coma et al. 2018). In addition, an experimental
study suggested that people consuming raw liver dishes from fresh livers infected
with juvenile flukes could become infected resulting in subsequent fascioliasis (Taira
et al. 1997; Mas-Coma et al. 2018). Moreover, the water chestnut, water caltrop,
lotus, bamboo, and other edible fresh water plants have been shown to act as sources
of infection for fasciolopsiasis (Grackyk et al. 2001).

A variety of aquatic invertebrates, such as snails, tadpoles, dragonfly naiads,
crayfish, crabs, shrimps, and insect larvae act as the second intermediate hosts of
foodborne trematodes in Southeast Asia. The lung fluke genus Paragonimus is
transmitted by freshwater crabs or crayfish containing encysted metacercariae of
Paragonimus spp. (Blair 2019). An alternative route of Paragonimus infection is the
ingestion of raw meat from a mammalian paratenic host (Blair 2019). Intestinal
flukes, however, are mainly transmitted via edible snails, dragonfly naiads, insect
larvae, shrimps, and freshwater fish (Table 4.1). Local people usually eat these
aquatic animals raw or partially cooked causing foodborne trematodiasis. In the
case of the liver flukes D. dentriticum and E. pancreaticum, people have been found
to be infected after accidentally eating raw ants and grasshoppers (Kumar 1999).

Cyprinid fish are the most diverse freshwater species acting as second interme-
diate hosts of trematodes. For instance, at least 60 cyprinid species (Table 4.3) have
been found to be contaminated by the metacercariae of the liver flukes O. viverrini
and C. sinensis in Southeast Asia (Saijuntha et al. 2019). Moreover, species of
cyprinid fish are also the second intermediate hosts of several other trematodes,
such as some species of intestinal flukes, heterophyids, and echinostomatids
(Table 4.3). There are reports of a high prevalence of heterophyids, namely
Haplorchis spp., Centrocestus formosanus, Stellantchasmus falcatus and
echinostomatids, i.e. Echinochasmus japonicus infection in cyprinid fish from wild
and fish-farming communities in Vietnam (Nguyen et al. 2007; Tran et al. 2008; Van
et al. 2010), Thailand (Kumchoo et al. 2005), and Lao PDR (Eom et al. 2015).
Therefore, consumption of raw or partially cooked cyprinid fish, including other
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aquatic animals and edible aquatic plants are the major risk factors for trematode
infection and subsequent disease in Southeast Asia (Fig. 4.5). Zoonotic trematodes
have also been detected in raw fish dishes served in restaurants in Vietnam (Tran
et al. 2009).

Fig. 4.5 Sources of foodborne trematode infection via eating raw, partially cooked, or fermented
edible aquatic plants and animals. This figure shows a favorite dish “som tum tad” or “papaya salad”
in the northeast of Thailand style of cooking which frequently combines a variety of aquatic plants
and animals (photo courtesy by Weerachai Saijuntha)
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4.5.2 Waterborne Transmission

Schistosomiasis is predominantly transmitted via water contact. Local people who
live in remote areas are at high risk of infection by drinking contaminated water.
Larval forms of the blood fluke Schistosoma can penetrate into the skin and people
subsequently develop schistosomiasis (LoVerde 2019). Not only the blood flukes,
but some other trematodes are occasionally transmitted via water. For instance,
metacercariae of Fasciola, Fasciolopsis, and Paragonimus can also encyst on the
surface of water, and hence, people can be accidentally infected by drinking fresh
untreated water contaminated with the metacercariae of these trematodes (Weng
et al. 1980; Mas-Coma et al. 2018; Wang et al. 2008).

4.6 Genetic Diversity

A variety of molecular methods/markers have been used to examine the genetic
diversity of human trematodes in Southeast Asia. Since the molecular era, multilocus
enzyme electrophoresis (MEE) has been applied to investigate the systematics,
genetic diversity, and population structure of several important human trematodes
in Southeast Asia. In more recent times, DNA markers/techniques have been
introduced to explore the phylogenetic relationships, genetic diversity and popula-
tion genetics of these trematodes. Most information on the genetic diversity of
human trematodes has been from comprehensive molecular/genetics studies, pre-
dominantly on the intestinal echinostomatids and heterophyids, the liver flukes
O. viverrini and C. sinensis, lung flukes in the genus Paragonimus, and blood flukes
in the genus Schistosoma. The following sections, therefore, will focus on the
genetic diversity of these flukes.

4.6.1 Echinostomatids and Heterophyids

The taxonomy of these intestinal flukes, especially the echinostomatids in the family
Echinostomatidae is still controversial as there are many synonyms represented in
several species. Morphological characterization is often not sufficiently robust for
accurate species identification; therefore, molecular genotyping has been used to
provide independent molecular/genetic data for morphospecies differentiation.
Genetic variation investigations of human echinostomes in the genera Echinostoma,
Artyfechinostomum and Hypoderaeum, and heterophyids in the genus Haplorchis
have been undertaken using MEE and several independent DNA markers.

Comprehensive studies on the systematics and genetic variation of
echinostomatids in the family Echinostomatidae in Thailand and Lao PDR have
been extensively conducted during the past 10 years. Genetic differentiation
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investigations between Echinostoma (Artyfechinostomum) malayanum and
Echinostoma revolutum (Saijuntha et al. 2010a), and E. revolutum and
Hypoderaeum conoideum (Saijuntha et al. 2010b) have been conducted by MEE,
specifically allozyme electrophoresis. Subsequently, a series of studies were con-
secutively initiated, for instance, on investigations of genetic variation examining
spatial and temporal populations of E. revolutum (Saijuntha et al. 2011a), and
genetic variation and phylogenetic relationships of E. revolutum, A. malayanum,
H. conoideum, and Echinoparyphium recurvatum (Saijuntha et al. 2011b). Later, the
genetic differentiation between A. malayanum and A. sulfratyfex based on internal
transcribed spacer sequences was examined (Tantrawatpan et al. 2013). Following
these studies, mitochondrial DNA sequence analyses of 37 collar-spined
echinostomes collected from domestic ducks in Thailand and Lao PDR revealed
the presence of two species, E. revolutum and E. miyagawai, which were classified
into genetic groups corresponding to the different continents, namely Eurasian
(Europe and Asia), American, and Australian genetic groups (Nagataki et al. 2015).

In addition, the genetic variation and phylogenetic relationships of H. conoideum
were examined by nuclear and mitochondrial sequence analyses (Tantrawatpan and
Saijuntha 2020a). Most recently, nuclear intron sequence analyses revealed a degree
of heterozygosity, which has provided potential genetic markers for population
genetic studies of E. revolutum and E. miyagawai (Saijuntha et al. 2020). Based
on ND1 sequence variation, multiplex PCR was successfully developed to differen-
tiate A. malayanum, E. ilocanum, E. revolutum, and H. conoideum (Tantrawatpan
and Saijuntha 2020b). The eggs of echinostomes are often morphologically similar
to the eggs of Fasciola, Fasciolopsis, and Paragonimus flukes, which can lead to
difficulties in distinguishing this diagnostic life cycle stage. Based on the magnitude
of genetic differences between these flukes, several molecular techniques, such as
real-time PCR, have been developed to accurately differentiate the eggs of these
species (Tantrawatpan et al. 2016).

Genetic diversity investigations of heterophyids, Haplorchis taichui collected
from people from Ha Giang, Thanh Hoa, and Quang Tri Provinces in Vietnam,
have been reported. Based on mitochondrial CO1 sequence analysis, three genetic
groups related to localities of collection have been confirmed by Dung et al. (2013).
More recently, ribosomal transcription units have been used to demonstrate the
phylogenetic identification of common heterophyids in Vietnam. A phylogenetic
tree inferred from 28S rDNA sequences of trematodes clearly confirmed the status of
each of the common species of Vietnamese heterophyids, namely Centrocestus
formosanus, Haplorchis pumilio, H. taichui, H. yokogawai, Procerovum varium,
and Stellantchasmus falcatus (Le et al. 2017). However, the eggs of heterophyid
flukes are very similar morphologically to the liver fluke O. viverrini, thus several
molecular techniques have been developed based on the genetic differences between
these flukes, such as pyrosequencing to accurately differentiate eggs of O. viverrini,
C. sinensis, H. pumilio, H. taichui, and S. falcatus (Tantrawatpan et al. 2014a).
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4.6.2 Genera Opisthorchis and Clonorchis

Genetic diversity investigations of O. viverrini were initiated by MEE techniques
using three enzyme loci to investigate the genetic variation of O. viverrini recovered
from people (Sueblingvong et al. 1993). Subsequently, 33 enzyme loci (genetic
markers) were established for genetic variation studies of O. viverrini by the MEE
(allozyme) technique (Saijuntha et al. 2006). Of these, 32 enzyme loci were confi-
dently used to study the systematics, genetic variation, and population genetics of
O. viverrini. This demonstrated that O. viverrini has a population genetic
sub-structure which is related to defined wetland (catchment) systems in Thailand
and Lao PDR (Saijuntha et al. 2007). DNA markers/techniques, such as random
amplified polymorphic DNA (RAPD), nuclear and mitochondrial DNA sequencing,
microsatellite DNA including MEE have also been used for comprehensive genetic
investigations of O. viverrini examining a variety of factors, such as spatial, tempo-
ral, and different host species (Sithithaworn et al. 2012; Petney et al. 2018). Based on
such comprehensive studies, O. viverrini has now been defined as a “species
complex” or “O. viverrini sensu lato” containing at least six genetically distinct
groups correlated with five different wetland (catchment) systems in Thailand and
Lao PDR (Saijuntha et al. 2007; Kiatsopit et al. 2014). Mitochondrial and nuclear
DNA sequence variation of O. viverrini was also analyzed (Saijuntha et al. 2008;
Pitaksakulrat et al. 2018). Subsequently, microsatellite markers were initially char-
acterized (Laoprom et al. 2010) and then used for micro-scale population genetic
investigations of O. viverrini populations in Khon Kaen Province, Thailand
(Laoprom et al. 2012). Recently an additional novel genetic group from Sakon
Nakhon Province, Thailand has been discovered by nuclear and mitochondrial
DNA sequences including microsatellite DNA analyses (Namsanor et al. 2020).

Genetic diversity data for C. sinensis in Southeast Asia, particularly in Vietnam is
very limited, with only a few studies that have been conducted using mitochondrial
DNA sequences (Chelomina et al. 2014) and microsatellite DNA analyses (Nguyen
et al. 2015). Mitochondrial CO1 sequencing has been used to explore the genetic
diversity of C. sinensis within and between two geographical populations from
Vietnam and Russia (Chelomina et al. 2014). There is a report using molecular
detection that C. sinensis infects people in eastern Thailand (Traub et al. 2009), but
later studies could not detect C. sinensis in the same geographical area (Buathong
et al. 2017). More comprehensive studies on the systematics and genetic variation of
C. sinensis in Vietnam and adjacent areas are urgently required. In addition, as the
two species of liver flukes, C. sinensis and O. viverrini are endemic in Vietnam,
multiplex PCR has been developed to differentiate these liver flukes based on their
genetic differences (Le et al. 2006).
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4.6.3 Genus Fasciola

The liver flukes Fasciola gigantica and F. hepatica, including the intermediate
(hybrid) form, Fasciola sp., have been genetically characterized in most countries
in Southeast Asia. As morphological characters alone are often insufficient to
accurately identify these fasciolid flukes, especially the egg stage as well as the
hybrid form, molecular genetic techniques/markers have been developed for accu-
rate genetic differentiation. For example, the PCR-RFLP patterns of ITS sequences
can be used to differentiate the three fasciolid flukes (Ichikawa and Itagaki 2010).
Moreover, there are several reports of aspermic Fasciola occurring in Southeast
Asian countries (Itagaki et al. 2009; Ichikawa et al. 2011; Chaichanasak et al. 2012).
PCR-RFLP of ITS1 revealed that aspermic Fasciola flukes in Thailand are identical
to the F. gigantica genetic type (Chaichanasak et al. 2012), and this genetic type has
been also found in Vietnam (Itagaki et al. 2009) and Myanmar (Ichikawa et al.
2011). Based on this molecular method a current survey of fasciolid flukes in
Malaysia has found only F. gigantic types (Diyana et al. 2020), while both
F. gigantica and F. hepatica genetic types have been found in the Philippines
(Valino et al. 2017).

Several mitochondrial DNA sequences, however, have been used as genetic
markers for intra-specific genetic variation investigations of the fasciolid flukes in
Southeast Asia. Mitochondrial ND1 genotyping demonstrated that the aspermic
fasciolid haplogroup was clearly genetically separated from the F. gigantica and
F. hepatica haplogroups (Ichikawa et al. 2011; Chaichanasak et al. 2012). Moreover,
F. gigantica was separated into Asian and African clades, while aspermic Fasciola
clustered closely and was related to F. gigantica (Ichikawa et al. 2011; Nguyen et al.
2012). Based on genetic characterization studies it has been suggested that aspermic
Fasciola may be expanding its distribution to non-endemic areas in Southeast Asia
through the migration of domestic animals (Ichikawa et al. 2011; Chaichanasak et al.
2012). Most recently, novel DNA markers, such as the intron sequences of the
taurocyamine kinase gene, have been characterized to explore genetic diversity and
heterogeneity of the Fasciola flukes (Saijuntha et al. 2018). Intron sequence analyses
revealed that DNA hybridization between F. gigantica and F. hepatica occurs and
the hybrid form was identified. The study suggested that Fasciola sp. was closely
related to both F. gigantica and F. hepatica based on the ratio of genetic materials of
each species contained in the individual hybrid form (Saijuntha et al. 2018).

4.6.4 Genus Paragonimus

Genetic variation of the lung flukes in the genus Paragonimus, which is endemic in
Southeast Asia, has predominantly been undertaken by nuclear and mitochondrial
DNA sequencing. These have been widely used for taxonomic and genetic diversity
investigations (Blair et al. 2016). The most common species in the P. heterotremus
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complex have received the principal focus in studies examining genetic diversity in
Southeast Asia. Early studies using a total of 18 enzymes (encoded by 20 loci) of
P. heterotremus from Thailand were compared by MEE analyses with three Japa-
nese species, P. ohirai, P. miyazakii, and P. westermani. This study found that
P. heterotremus was more closely related to P. miyazakii than the other species
(Agatsuma et al. 1992). The ITS2 and CO1 sequences have been used to investi-
gate the genetic variation of P. heterotremus and P. pseudoheterotremus in Thailand
and Myanmar. This study revealed that P. heterotremus from Thailand, Vietnam,
and China formed a separate distinct phylogenetic clade. Metacercariae from
Phitsanulok Province, Thailand, were found to be distinct from all others (Sanpool
et al. 2013). However, the results indicated that P. heterotremus and
P. pseudoheterotremus are not specifically genetically distinct from each other
(Sanpool et al. 2013). This evidence was supported by a later study which showed
that P. heterotremus and P. pseudoheterotremus isolates in Vietnam formed a
P. heterotremus complex consisting of three genetic groups with strong geographical
origins. According to these results, P. heterotremus and P. pseudoheterotremus
should be considered geographically isolated populations of the P. heterotremus
complex (Doanh et al. 2015). The results from these studies show that there is
considerable genetic variation in the P. heterotremus complex in Southeast Asia.

Due to the genetic differences found in the CO1 sequence between
P. heterotremus and P. pseudoheterotremus, a subsequent study of
P. pseudoheterotremus in people in Thailand based on the CO1 sequence of DNA
extraction from sputum showed that the sample was more similar to
P. pseudoheterotremus (98–100%) than P. heterotremus (90–95%) (Intapan et al.
2012). Based on the DNA variation of the ITS2 region, a DNA pyrosequencing
technique was successfully developed to differentiate 6 species of Southeast Asian
Paragonimus, i.e. Paragonimus bangkokensis, P. harinasutai, P. heterotremus,
P. macrorchis, P. siamensis, and P. westermani (Tantrawatpan et al. 2014b). Most
recently the intron sequence of taurocyamine kinase has successfully been charac-
terized and used to differentiate these six species, including P. pseudoheterotremus,
as well as providing evidence of DNA hybridization between P. heterotremus and
P. pseudoheterotremus (Tantrawatpan et al. 2021).

4.6.5 Genus Schistosoma

Genetic diversity of S. japonicum in the Philippines and Indonesia has been com-
prehensively investigated based on geographical and host factors using mitochon-
drial DNA and microsatellite markers. Microsatellite markers have been isolated and
characterized for S. japonicum and have shown that there is significant polymor-
phism between the different geographical isolates, making them highly useful for
studying genetic diversity and the population genetic structure of this parasite
(Shrivastava et al. 2003). For example, a study of mitochondrial and microsatellite
markers of S. japonicum lineages from Indonesia, the Philippines, and Chinese
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Taiwan has shown that the lineages were clearly distinct from each other and from
those in mainland China (Yin et al. 2015). A further study using three mitochondrial
gene sequences revealed that the isolates in the Philippines clustered closely to the
isolates from Yunnan and Zhejiang Provinces in China, but were clearly distinct
from the Japanese isolate (Chen et al. 2015). Microsatellite DNA analyses revealed a
high level of transmission across human and animal host species, particularly
between dogs and humans in the Philippines, which provides evidence for the role
of dogs in transmission. This should be considered when planning and introducing
control programs (Rudge et al. 2008). More recently, microsatellite DNA has been
used to explore geographical strain differentiation between S. japonicum in the
Philippines, where results suggested that geographical separation should be consid-
ered as one of the factors accounting for the observed differences between
S. japonicum populations endemic in the Philippines (Moendeg et al. 2017).

Information on the genetic diversity of S. mekongi and S. malayensis is very
limited, with only a few studies on DNA sequence information published. Phyloge-
netic analyses based on DNA sequences revealed that S. malayensis clustered as a
sibling species of S. mekongi (Blair et al. 1997; Lockyer et al. 2003). Mitochondrial
DNA sequence analyses of four populations of S. mekongi from Cambodia and Lao
PDR showed that the three populations were distinguishable by mitochondrial loci
(Attwood et al. 2008). Investigations on the genetic diversity within and among the
S. malayensis and S. mekongi populations should be conducted and expanded to
include more geographical isolates using additional polymorphic loci, such as
microsatellite DNA, which has been successfully used for genetic diversity and
population genetic analyses in the related species S. japonicum.

4.7 Conclusions

Human trematodes and their hosts in Southeast Asia are extremely diverse. Studies
of their systematics, genetic diversity, and population genetics have commenced for
a few species, but the majority of species infecting people in Southeast Asia still
need more comprehensive, multidisciplinary studies. New species and new foci
continue to be discovered and these need further research concerning their preva-
lence in the human population across their distributional ranges, as well as their life
cycles, biology, and ecology. Species complexes of several trematodes have been
detected, which now require comprehensive studies to define and understand their
species level systematics, phylogenetic relationships, and population genetic struc-
ture. As there is a diverse range of edible plants contaminated with metacercariae and
animals which act as intermediate hosts, studies should also examine the
co-evolution or co-adaptation between trematodes and these plants and intermediate
hosts and their definitive hosts. In conjunction with the above disciplines, biodiver-
sity and genetic diversity investigations of host life cycles will provide essential
information for the instigation and development of effective control and prevention
programs against the trematodes that are endemic in Southeast Asia.
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Chapter 5
The Community of Nematodes Inhabiting
the Human Gut

Oranuch Sanpool, Tongjit Thanchomnang, Hiroshi Yamasaki,
Wanchai Maleewong, and Pewpan M. Intapan

Abstract Southeast Asia is a tropical region in which a variety of parasitic diseases
are endemic. Research into nematodes that inhabit the human gut is still in progress.
However, there are sporadic gaps in the knowledge of species found in Southeast
Asia, and there has been no attempt to extensively collate and integrate these data.
This chapter reviews important highlights of the available information on nematodes
that infect humans and that affect public health in Southeast Asia, with an emphasis
on molecular identification and genetic diversity. This knowledge may be important
for better understanding of nematodes that inhabit the human gut in these countries.

Keywords Human nematodes · Strongyloides stercoralis · Hookworms · Capillaria
philippinensis · Ascaris lumbricoides · Trichuris trichiura · Enterobius vermicularis

5.1 Introduction

Gastrointestinal nematodes are the causative agents of parasitic diseases in the
human body around the world and are mostly found in tropical countries where
there is poor hygiene. Worldwide, more than 1.5 billion people are infected with
soil-transmitted helminths (World Health Organization 2019). The effects of
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helminths on human health include abdominal disorder, anemia, malnutrition, and
impairment of growth and development in young people. The gastrointestinal
nematodes commonly found in humans living in Southeast Asian countries are
soil-transmitted helminths such as Ascaris lumbricoides, Trichuris trichiura,
Trichostrongylus species, Strongyloides stercolaris, and hookworms (Necator
americanus and Ancylostoma duodenale). The routes via which these parasites infect
the human body are generally divided into skin penetration by infective larvae and
consumption of fresh food contaminated by nematode eggs. Moreover, nematode
parasites that cause watery diarrhea, such as Capillaria philippinensis, are also found
in the same places. Humans can become infected with C. philippinensis by eating
raw cyprinid freshwater fish that contain infective larvae. People living in Southeast
Asian countries prefer to eat traditionally fermented fish, which are undercooked;
they do not like eating cooked fish.

The gold standards for diagnosis of nematode infection in the human gut are
parasitological techniques for detection of parasite objects in fecal samples—i.e.,
eggs, larvae, or adults—by using a simple smear technique, the formalin–ether
concentration technique, the Kato–Katz technique, etc. (World Health Organization
1991). However, these methods are time consuming and need experienced person-
nel. Molecular techniques are the most beneficial tools used for supportive diagnosis
and for studying epidemiology and genetic diversity.

5.2 Nematodes That Infect the Human Small Intestine

5.2.1 Strongyloides Species in Southeast Asian Countries
(Strongyloides stercoralis and Strongyloides
fuelleborni)

5.2.1.1 Parasite Distribution and Human Behavior Risk Factors
for Infection

More than 50 species of Strongyloides are obligate gastrointestinal nematodes in
vertebrates (mammals, birds, reptiles, and amphibians) (Speare 1989). Two main
species—S. stercoralis and S. fuelleborni–like forms (including S. fuelleborni
kellyi)—can infect humans. The parasites spread to humans by contact with soil.
In endemic areas, infected persons defecate on the ground, where homogonic and
heterogonic developments of the parasite take place and result in production of
infective filariform larvae within a week. Rainfall helps spread infective larvae, but
heavy rainfall resulting in flooding is detrimental to larval development because
larvae are deprived of oxygen, which is essential for their growth and development
(Anamnart et al. 2013). Human occupations involving soil contact are a predisposing
factor for infection. Gardening in bare feet and farming activities, causing suscep-
tibility to skin penetration by larvae, have been shown to be important risk factors
(Senephansiri et al. 2017). Worldwide, strongyloidiasis is widely distributed,
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infecting 30–100 million people living in tropical and subtropical zones (Bethony
et al. 2006). The overall estimated prevalence is between 10% and 40% among
human populations in tropical and subtropical countries (Schär et al. 2013). More-
over, prevalence rates of up to 75% have also been found among refugees and
immigrants in developing countries. Similar prevalence rates reported between 1992
and 2011 demonstrate that the global prevalence rates are as high as 50% in some
areas of West Africa, the Caribbean, Southeast Asia, tropical regions of Brazil,
Cambodia, and temperate regions of Spain, where there are humid soils and
improper disposal of human feces. The prevalence increases between the age of
<6 years and peaks in middle age, then it may decline (Forrer et al. 2018) or remain
the same (Sithithaworn et al. 2003). Men who work in close contact with soil appear
to have a higher prevalence than women (Wongsaroj et al. 2008; Forrer et al. 2018;
Jongsuksuntigul et al. 2003).

S. fuelleborni is also prevalent in human populations in Africa and Southeast
Asia. The first record of S. fuelleborni infection in humans was reported in Zimba-
bwe (Grove 1989), and infections were subsequently shown to be distributed widely
in sub-Saharan countries (e.g., the Central African Republic, Cameroon, and Ethi-
opia) (Pampiglione and Ricciardi 1971; Hasegawa et al. 2010) and in Southeast
Asia, including Thailand (Thanchomnang et al. 2017). This parasite is common
among Old World primates, including Rhesus macaques (Macaca spp.)
(Sandground 1925). In addition, S. fuelleborni kellyi has been reported in humans
in Papua New Guinea (Ashford et al. 1992).

S. fuelleborni–like nematodes have been found in human feces in Papua New
Guinea (Kelly et al. 1976). The worm was well described and was later found to
cause swollen belly sickness in infants, which is occasionally fatal, among the
Kamea people in Papua New Guinea (Vince et al. 2005). The worm was named
S. fuelleborni kellyi after the first author of the 1976 publication (Ashford et al.
1992). A survey in children under 5 years of age revealed an infection rate of 27%,
with varying intensity, as demonstrated by the fecal egg count (King and Mascie-
Taylor 2004).

5.2.1.2 Evidence and Identification of Strongyloidiasis in Humans

The prevalence of strongyloidiasis has been shown to be high in remote areas of
Southeast Asia. With use of an agar plate culture (APC) method, rhabditiform and
filariform larvae are detectable (Fig. 5.1). Surveys in northeastern Thai populations
have shown prevalence rates of 23.5% (Jongsuksuntigul et al. 2003) and 28.9%
(Sithithaworn et al. 2003), and a prevalence of 20.6% has been observed in southern
Thailand (Wongsaroj et al. 2008). Other surveys have revealed prevalence rates of
48.6% among villagers in Cambodia (Forrer et al. 2018) and 41.0% in Laos
(Laymanivong et al. 2016). In cases of autoinfection, rhabditiform larvae in the
intestine molt rapidly in response to certain stimuli and develop into filariform
larvae, which penetrate the intestinal wall. Autoinfection may explain the persistence
of worms in chronic infections in humans (Gill et al. 2004). Definitive diagnosis
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relies on direct stool examination of eggs or larvae. Normally, the rhabditiform
larvae of S. stercoralis are easy to identify under a microscope, but the small
numbers of larvae in feces in asymptomatic and chronic cases can make them
problematic to identify. Moreover, the appearance of larvae in stools fluctuates;
thus, several samples are required to confirm the infection (Requena-Méndez et al.
2013). Conventional stool examination techniques used in health centers or hospitals
include the direct simple smear, the cellophane thick smear, and the formalin–ether
concentration technique (FECT), in which Strongyloides eggs (S. fuelleborni) or
larvae (S. stercoralis) are detected and identified microscopically. Special stool
techniques such as the Baermann method, Harada–Mori filter paper method, water
emergence method, charcoal culture method, and agar plate culture method detect
Strongyloides or hookworms in stools on the basis of development of filariform
larvae in a soil environment and their crawling ability. Several methods include
detection of antibodies or worm antigens in serum or other samples, but they await
standardization and mass production to make them available to community hospitals
and health centers worldwide. The sensitivities and specificities of both direct and
indirect methods have been reviewed and summarized by Requena-Méndez et al.
(2013). Molecular detection of larvae in stools has been developed to increase the
sensitivity of detection. Indirect methods may be used in epidemiological surveys, as
well as in diagnosis of strongyloidiasis.

Phylogenetic analysis of samples from community cross-sectional surveys in
Laos has revealed parasite specimens belonging to S. stercoralis. Mitochondrial
cytochrome c oxidase subunit I gene (cox1) sequencing has revealed that
S. stercoralis has high diversity (24 haplotypes) (Laymanivong et al. 2016).
Sequence analysis of 18S ribosomal RNA (18S rRNA) and cox1 in Strongyloides
samples from humans in Thailand has revealed that the species are S. stercoralis and
S. fuelleborni (Thanchomnang et al. 2017). A median-joining network has shown

Fig. 5.1 An agar plate stool culture survey for Strongyloides infection in a monkey. (a) A monkey
living close to a human house in Laos. (b) The agar plate technique used for culturing Strongyloides
at a survey site in Laos. (c) Various developmental stages of S. fuelleborni moving on an agar plate
after 2 days of examination
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that the S. stercoralis cox1 sequences fall into 43 known distinct haplotypes
(Thanchomnang et al. 2017).

Polymerase chain reaction (PCR) is now widely used for detection of
Strongyloides in biological samples. In an epidemiological survey of strongyloidi-
asis among school-aged children in northwestern Ethiopia, PCR revealed a higher
prevalence (13.4%) than the Baermann and FECT techniques did (Amor et al. 2016).
PCR can be used for follow-up analysis after ivermectin treatment (Repetto et al.
2018). Janwan et al. (2011) designed duplex real-time PCR to detect different
intestinal parasites, which resulted in higher specificity and sensitivity than those
of conventional parasitological methods. Nested PCR has also been developed, and
its reported sensitivity is 100% (Sharifdini et al. 2015). In conclusion, molecular
techniques not only enable detection of Strongyloides in specimens but also allow
accurate identification of Strongyloides species, regardless of the development stage.

5.3 Genetic Diversity of Strongyloides and Related Species
in Humans

S. stercoralis and S. fuelleborni were first reported in a human community that had
contact with long-tailed macaques in Thailand (Thanchomnang et al. 2019). More-
over, dogs have been found to be reservoir hosts for possible transmission of human
strongyloidiasis in Thailand (Sanpool et al. 2019). PCR-amplified 18S rRNA and
cox1 sequences have been used to identify the Strongyloides species present in
human communities that have contact with long-tailed macaques in Thailand, and
to assess the genetic diversity of the worms. The phylogenetic relationship of
S. stercoralis and related species from Southeast Asia are shown in Fig. 5.2.
S. fuelleborni has been genetically differentiated from S. stercoralis.

5.3.1 Hookworms and Related Roundworms (Necator
americanus, Ancylostoma duodenale, Ancylostoma
ceylanicum, Trichostrongylus colubriformis,
and Trichostrongylus axei)

5.3.1.1 Parasite Distribution and Human Behavior Risk Factors
for Infection

Hookworm infections in humans commonly cause socioeconomic and public health
problems. Globally, the number of infected persons is approximately 1 billion
(Schneider et al. 2011). Hookworm infections also causes iron deficiency anemia,
resulting in mental retardation and growth insufficiency in children (Crompton
2000). A. duodenale and N. americanus are important species causing infection in
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Fig. 5.2 A maximum-likelihood phylogenetic tree based on partial mitochondrial cytochrome
c oxidase subunit I gene (cox1) sequences (552 base pairs) of Strongyloides stercoralis and S.
fuelleborni. Bootstrap scores (>90%, percentages of 1000 replications) are presented for each node.
The sequences of Strongyloides species, obtained from the GenBank database, are indicated with
their accession numbers and country name (Sanpool et al. 2019)
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humans (Chan et al. 1994). A. duodenale is commonly distributed in the Middle
East, North Africa, India, Australia, and Europe, while N. americanus is widespread
in Latin America and the Caribbean, sub-Saharan Africa, East Asia, and Southeast
Asia (de Silva et al. 2003). In addition, zoonotic disease caused by Ancylostoma
hookworms such as A. ceylanicum, A. braziliense, and A. caninum has been reported
as a potentially significant public health problem in many areas (Mahdy et al. 2012).

Trichostrongylus species are common helminths in the digestive tract of herbiv-
orous animals, especially livestock, and are widespread throughout the world (Yong
et al. 2007). Most species occur in humans only by accidental infection, but a few
pose considerable clinical and public health problems (Beaver et al. 1984). Human
trichostrongyliasis cases have been reported sporadically in African countries and in
many other countries, including Iran, Laos, Thailand, South Korea, China, the USA,
and Australia (Ghadirian and Arfaa 1975; Beaver et al. 1984; Panasoponkul et al.
1985; Jariya et al. 1988; Boreham et al. 1995; Gutierrez et al. 2006; Sato et al. 2011),
while T. colubriformis (Fig. 5.3) has been found in Thailand and Laos
(Panasoponkul et al. 1985; Sato et al. 2011).

5.3.1.2 Evidence and Identification of Hookworm and Trichostrongylus
Infections in Humans

Although hookworm infections are still highly prevalent in Thailand (Jiraanankul
et al. 2011; Jex et al. 2011), zoonotic hookworm disease caused by A. ceylanicum
has been detected by copro-DNA methods in central parts of Thailand (Traub et al.
2008; Jiraanankul et al. 2011) and Laos (Sato et al. 2010).

Trichostrongylus adults are small nematodes (2–10 mm long by 50–80 μmwide),
without distinct buccal capsules, which become embedded in the mucosa of the
host’s small intestine. Infection in humans is acquired through consumption of food
or water contaminated with animal feces, which are used routinely as fertilizer. After
reaching the small intestine, the larvae mature within 3–4 weeks and lay eggs.

Fig. 5.3 Eggs detected from stool examination. (a) A hookworm egg. (b) A Trichostrongylus
colubriformis egg
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Trichostrongylus spp. eggs are elongate–oval in shape and hyaline shelled, with
more pointed ends than those of hookworm eggs. The average size of
Trichostrongylus eggs is 85 � 45 μm (Sato et al. 2011), whereas hookworm eggs
are oval but have broadly rounded ends, with an average size of 60� 40 μm (Beaver
et al. 1984). The egg morphologies of Trichostrongylus and hookworms are similar,
and differential identification can be achieved only by parasitology experts. An
increase in global population movement inside adjacent Asian countries may possi-
bly affect parasite distribution in Thailand. Clinical symptoms of trichostrongyliasis
are abdominal pain, diarrhea, weakness, leukocytosis, and eosinophilia (Wallace
et al. 1956; Wall et al. 2011). There is still a lack of hospital-based data on human
trichostrongyliasis in Thailand, and the clinical features of only a few cases have
been presented in the literature (Panasoponkul et al. 1985; Jariya et al. 1988).

5.3.1.3 Genetic Diversity of Hookworms and Trichostrongylus Species
in Humans

Recently, molecular identification of hookworms and Trichostrongylus species
found in infected humans in Southeast Asian countries such as Thailand, Laos,
and Myanmar was reported (Phosuk et al. 2013a, 2013b; Aung et al. 2017). The
species of hookworms recovered from humans were A. duodenale, A. ceylanicum,
and N. americanus, and the Trichostrongylus species recovered were
T. colubriformis and T. axei. The phylogenetic relationships between hookworms
and Trichostrongylus species that infect populations in Southeast Asia has been
evaluated (Fig. 5.4). These genetic data are important for epidemiological investi-
gations and control (Phosuk et al. 2013a).

5.3.2 Capillaria philippinensis

5.3.2.1 Parasite Distribution and Human Behavior Risk Factors
for Infection

Intestinal capillariasis caused by C. philippinensis, a fish-borne nematode, is an
important emerging zoonotic nematodiosis and has become more prevalent in recent
years (McCarthy and Moore 2000). Fish encounter the infective eggs or larvae in
water containing the feces of infected birds or humans. Humans are infected by
consuming raw or undercooked small freshwater fish that the infective larvae are pre-
sent. The parasite can reproduce within an individual host, resulting in a large
number of worms in the small intestine. Consequently, if the parasite burden
increases to massive levels, it can cause disease. Infections in humans were first
recorded in the Philippines (Chitwood et al. 1968; Beaver et al. 1984). More cases
have since been reported in the Philippines (Belizario et al. 2010), Indonesia
(Chichino et al. 1992), Laos (Soukhathammavong et al. 2008), Japan (Cross
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1992), Taiwan (Chen et al. 1989), India (Kang et al. 1994), Iran (Hoghooghi-Rad
et al. 1987), and Egypt (Youssef et al. 1989; Mansour et al. 1990). There is also
evidence that capillariasis has been transported to Europe from people’s movement
or migration an outside source (Chichino et al. 1992; Dronda et al. 1993; Austin et al.
1999). In Thailand, human cases have been reported in at least 25 provinces (Saichua
et al. 2008). The first outbreak in Thailand was found in Sisaket Province in the
northeast, where there were 20 cases with nine deaths (Kunaratanapruk et al. 1981).

5.3.2.2 Evidence and Identification of Human Capillariasis

Human capillariasis is routinely diagnosed by examination of eggs, larvae, and/or
adult C. philippinensis in the patient’s feces. The egg is peanut shaped and light
brown in color, with an average size of 36–45 � 21 μm (Fig. 5.5d). At the adult
stage, both females and males are slender (capillary-like) in shape. The adult male is
smaller than the female, and its posterior part has a long spicule covered with a
sheath (Fig. 5.5a). The posterior half of the female’s body contains a genital tract and
vulva, which opens in the midbody, and a row of eggs can be seen in the uterus
(Fig. 5.5c). Detection of antigens/antibodies by serological testing is used for

Fig. 5.4 A maximum-likelihood phylogenetic tree based on the internal transcribed spacer
2 (ITS2) region of hookworm species, obtained from the GenBank database, with their accession
numbers and country name
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supportive diagnosis. An immunoblotting technique (Intapan et al. 2006) and a rapid
diagnostic immunochromatographic device (Intapan et al. 2017) to detect antibodies
in human sera are now available. Sadaow et al. (2018a) reported the clinical and
epidemiological characteristics of 85 intestinal capillariasis patients in a hospital-
based study in Thailand. The clinical manifestations—which included chronic
diarrhea, borborygmus, abdominal pain, marked weight loss, muscle weakness,
fatigue, dizziness, anorexia, and edema, as well as protein and electrolyte loss—
are important for clinicians caring for patients in endemic areas to recognize.
Infection could be avoided by expanded health communication from the responsible
authorities. A public health control strategy is important to reduce the morbidity and
mortality caused by this helminth disease in Thailand.

Molecular diagnosis using a specific nested PCR for detection of
C. philippinensis in feces on the basis of amplification of small ribosomal subunits
has been reported (El-Dib et al. 2015). This copro-DNA method can be useful for
improved diagnosis and better understanding of transmission by detection of
C. philippinensis DNA in intermediate hosts and reservoir hosts, and it can also
help to improve strategies for surveillance and prevention of the disease.

Fig. 5.5 Capillaria philippinensis recovered from a human. (a) A male adult with a long spicule
inside the posterior end; a spicular sheath is attached to the tail. (b) A larviparous larva found in a
stool. (c) A female adult; the vulva opens in the midbody and a row of eggs is seen in the uterus. (d)
The egg is peanut shaped, with a thick shell and flattened plugs at the bipolar ends
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5.3.2.3 Prospective Genetic Diversity of Capillaria philippinensis
and Related Species

There is still a lack of studies on the genetic diversity of C. philippinensis and related
species in Southeast Asian countries. Molecular studies are need and would improve
our understanding of the biology and transmission of C. philippinensis.

5.3.3 Ascaris lumbricoides

5.3.3.1 Parasite Distribution and Human Behavior Risk Factors
for Infection

A. lumbricoides is the largest nematode (roundworm) parasitizing the human intes-
tine. It is one of the principal soil-transmitted helminths worldwide, infecting an
estimated 819 million people (Holland 2013; Pullan et al. 2014). Ascariasis has been
considered a neglected tropical disease by the World Health Organization and is very
prevalent in rural areas and those with poor hygiene (Dold and Holland 2010).

5.3.3.2 Evidence and Identification of Ascariasis in Humans

Ascaris suum is an intestinal roundworm found in pigs (Fig. 5.6a) but can cause
human ascariasis (Arizono et al. 2010). A. lumbricoides and A. suum are

Fig. 5.6 (a) An adult female Ascaris suum found in a pig. (b) Fertile eggs of an Ascaris species
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morphologically similar and closely related (Fig. 5.7). There has been a debate as to
whether they are distinct species; the final conclusion is that only a single species is
involved (Leles et al. 2012; Shao et al. 2014). The reported prevalence rates of
Ascaris infection in humans in Laos have ranged from 4.0% to 11.6% (Laymanivong
et al. 2014, 2016).

5.3.3.3 Genetic Diversity of Ascaris lumbricoides and Related Species

Several molecular–epidemiological investigations using polymorphic markers
(internal transcribed spacer [ITS]-1, cox1, the NADH dehydrogenase subunit
1 gene (nad1), and microsatellite DNA markers) have explored the specificity of
the two Ascaris species to their respective hosts and their taxonomic status (Leles
et al. 2009; Iñiguez et al. 2012; Cavallero et al. 2013). Furthermore, knowledge on
transmission dynamics and hybridization of Ascaris species has been gained by
DNA sequencing, PCR restriction fragment length polymorphism (PCR-RFLP), and
microsatellite marker techniques (Arizono et al. 2010; Cavallero et al. 2013; Betson
et al. 2014; Jesudoss Chelladurai et al. 2017).

Fig. 5.7 A maximum-likelihood phylogenetic tree based on partial mitochondrial cytochrome
c oxidase subunit I gene (cox1) sequences of Ascaris lumbricoides and A. suum, obtained from
the GenBank database, with their accession numbers and country name. Zoonotic cross-
transmission occurs between pig and human ascariasis
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Recently, Sadaow et al. (2018b) reported the first molecular confirmation of
Ascaris species in Thailand, Laos, and Myanmar. Sequence chromatograms of
PCR-amplified ITS1 revealed a hybrid genotype from two human ascariasis cases
in northern Thailand. All ITS2 sequences showed 100% identity with
A. lumbricoides and A. suum. A phylogenetic tree of cox1 sequences (Fig. 5.7)
shows A. lumbricoides (which infects humans) and A. suum (which infects pigs)
grouped in the same clade; thus, it is concluded that zoonotic cross-transmission
between pigs and humans has occurred in these countries.

5.3.4 Trichuris trichiura and Related Species

5.3.4.1 Parasite Distribution and Human Behavior Risk Factors
for Infection

Human trichuriasis, caused by T. trichiura, is a soil-transmitted helminth infection. It
is grouped among the important neglected tropical diseases by the World Health
Organization (Hotez et al. 2009; Dunn et al. 2016). An estimated 600–800 million
people are infected worldwide (Bethony et al. 2006; Dunn et al. 2016). Various
Trichuris species have been found in mammalian hosts: T. suis in swine, T. vulpis in
canines, T. ovis in sheep, T. skrjabini in goats, and T. muris in mice (Liu et al. 2013).
Among these, it is thought that T. vulpis (Márquez-Navarro et al. 2012) and T. suis
(Kradin et al. 2006; Liu et al. 2014) can establish persistent active infections in
humans. T. trichiura and T. suis adults can be discriminated on the basis of
morphological parameters and biometrical determinations (Cutillas et al. 2009).
However, differentiation of these species by egg morphology is difficult.

5.3.4.2 Evidence and Identification of Trichuriasis in Humans

Human trichuriasis is usually asymptomatic and can present with mild symptoms.
Persons with heavy infections can experience diffuse colitis, chronic diarrhea,
abdominal cramps, rectal tenesmus, and rectal prolapse (Dunn et al. 2016;
Stephenson et al. 2000), some of which have important health consequences (Lenk
et al. 2016). The prevalence of human trichuriasis is high in Central African
countries, South India, and Southeast Asia (de Silva et al. 2003), and it can be
high in children (Stephenson et al. 2000), particularly schoolchildren (aged
5–14 years) (Azira and Zeehaida 2012). In the lower Greater Mekong Subregion,
the following prevalence rates of trichuriasis have been reported: 8.5% in Laos
(Laymanivong et al. 2014), 57% in Myanmar (Montresor et al. 2004), 4.1% in
Cambodia (Yong et al. 2014), and 6.3% in pregnant women in southern Thailand
(Liabsuetrakul et al. 2009). Trichuriasis is diagnosed routinely by identification of
Trichuris eggs in fecal specimens (Ok et al. 2009). The eggs of different species of
Trichuris are very similar, making it difficult to differentiate between species on the
basis of egg morphology (Cutillas et al. 2007) (Fig. 5.8).
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Molecular techniques are increasingly being used as supportive tools for identi-
fication at the species level (Liu et al. 2013, 2014). Several molecular markers are
useful for identification of Trichuris spp., including nucleotide sequences of ITS1,
ITS2, nuclear 18S rRNA, and cox1 (Cutillas et al. 2007; Doležalová et al. 2015;
Meekums et al. 2015).

5.3.4.3 Genetic Diversity of Trichuris trichiura and Related Species

Discrimination of closely related Trichuris species has been reported by Callejón
et al. (2013). Recently, molecular identification of the species of Trichuris eggs
collected from human fecal samples in Laos, Myanmar, and Thailand has been
reported (Phosuk et al. 2018). A phylogenetic tree based on the ITS2 sequences of
Trichuris species and related species is shown in Fig. 5.9. The molecular evidence of
T. trichiura and T. suis infection in humans is clear, and greater awareness of the
zoonotic potential of T. suis infection is needed in Southeast Asian countries.
Molecular systematic, taxonomic, and diagnostic studies in human populations
associated with T. trichiura and T. suis are important for epidemiological
investigations.

5.3.5 Enterobius vermicularis

5.3.5.1 Parasite Distribution and Human Behavior Risk Factors
for Infection

E. vermicularis, a pinworm, is a global helminth parasite causing enterobiasis in
humans. It is especially common in temperate climates. Approximately 4–28% of

Fig. 5.8 An
unembryonated Trichuris
trichiura egg in human
feces. It is barrel shaped and
thick shelled, with a mucoid
plug at each end, and is
50–55 μm long by
20–25 μm wide
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children are infected worldwide (Bethony et al. 2006). In Thailand, the prevalence of
E. vermicularis infection among primary schoolchildren ranges from 0.19% to
38.82% (Jongsuksantigul et al. 1992; Kaewkes et al. 1983; Nithikathkul et al.
2001; Polseela et al. 2004; Saksirisampant et al. 2006). The prevalence is generally
related to local levels of public health support, education, and personal hygiene
(Li et al. 2015). Human enterobiasis is also closely associated with high population
density, socioeconomic status, and the infant habit of thumb sucking (Kim et al.
2013). In addition, reinfection with enterobiasis occurs commonly by the fecal–oral
route.

Fig. 5.9 A maximum-likelihood phylogenetic tree based on partial internal transcribed spacer
2 (ITS2) sequences of Trichuris trichiura and T. suis found in humans, clearly showing their close
relationship and the zoonotic potential of T. trichiura and T. suis infections in human hosts when
placed in context with other Trichuris species
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5.3.5.2 Evidence and Identification of Enterobiasis in Humans

The parasitological method used for E. vermicularis diagnosis is microscopic iden-
tification of eggs collected in the perianal area. E. vermicularis eggs are transparent,
elongate–oval in shape, and slightly flattened on one side (Fig. 5.10). They are
usually embryonated when shed. The presence of adult worms is also diagnostic
when they are found in the perianal area. Female worms emerge in the perianal area
to lay eggs at night, resulting in perianal itching and irritation (Cerva et al. 1991).
Eggs become infective within a few hours of being laid and can survive for several
days on clothing or bed linen.

5.3.5.3 Genetic Diversity of Enterobius vermicularis and Related Species

Primeval evidence of E. vermicularis has been found. Parasite DNA from
pre-Columbian human coprolites, dating back 6110 years, has been sequenced and
found to be very similar to that of extant E. vermicularis (Iñiguez et al. 2006). In
Thailand, Tomanakan et al. (2018) reported the first molecular identification of
E. vermicularis from schoolchildren and documented genetic variation among
eggs by using sequence analyses of cox1 and ITS2. All ITS2 sequences were
identified as E. vermicularis. Phylogenetic analysis of E. vermicularis cox1
sequences shows 66 haplotypes: six haplotypes from Thailand are in cluster A,
with sequences from Japan and Korea, and five haplotypes are in cluster B, with
sequences from Japan, Iran, Poland, Greece, and Denmark (Nakano et al. 2006).
However, no sequence from a Thai haplotype is in cluster C of E. vermicularis,
which has been found in captive chimpanzees in Japan. The phylogenetic tree shows
high genetic diversity among E. vermicularis sequences, with closely related trans-
mission in humans and primates (Fig. 5.11).

Fig. 5.10 An Enterobius
vermicularis egg. It is
characteristically
asymmetrical about the long
axis, being distinctly
flattened on one side and
elongate–oval in shape. An
infective larva is seen inside
the egg
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Fig. 5.11 A maximum-likelihood phylogenetic tree based on partial mitochondrial cytochrome
c oxidase subunit I gene (cox1) sequences of Enterobius vermicularis. This is a new construction
from the GenBank database, modified on the basis of a report by Tomanakan et al. (2018). The
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Chapter 6
Molecular Identification and Genetic
Diversity of Cestodes in Southeast Asia

Tongjit Thanchomnang, Oranuch Sanpool, Hiroshi Yamasaki,
Pewpan M. Intapan, and Wanchai Maleewong

Abstract Southeast Asia is geographically divided into two sub-regions, Mainland
Southeast Asia and Maritime Southeast Asia. The former includes Cambodia, Lao
PDR, Myanmar (Burma), Peninsular Malaysia, Thailand, and Vietnam, and the latter
includes Indonesia, the Philippines, East Malaysia, Brunei, Singapore, and East
Timor. These tropical countries all have an environment and host populations
suitable for infective helminths. Approximately ten million people in this region
live in poor sanitary environments and are affected by a variety of neglected parasitic
helminths and protozoan infections. In this chapter, we review the medically impor-
tant tapeworms that are of public health concern in Southeast Asia with emphasis on
molecular identification and genetic diversity.
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6.1 Introduction

Southeast Asia is geographically divided into two sub-regions, Mainland Southeast
Asia and Maritime Southeast Asia, both of which are located in the sub-tropical and
tropical zones. Approximately ten million people live in poor sanitary environments
and economic poverty in this region and are exposed to diverse neglected parasitic
helminths and protozoan infections, as well as other pathogens. In this chapter, we
review the medically important tapeworms that affect public health in
Southeast Asia.

Tapeworms causing human cestodiasis belong to the orders Cyclophyllidea and
Diphyllobothriidea (Platyhelminthes: Cestoda), which show differences in morphol-
ogy, life cycles, and pathology (Sato et al. 2015). The order Cyclophyllidea includes
15 families of which the Taeniidae and Hymenolepididae contain genera including
human-infecting species; Taenia (Linnaeus, 1758), Echinococcus (Rudolphi, 1801),
and Hymenolepis (Rudolphi, 1819), respectively (Jones et al. 1994). The genus
Taenia consists of nearly 50 species (Loos-Frank 2000; Hoberg et al. 2001; Hoberg
2006), whereas the genus Echinococcus is composed of nine species (Nakao et al.
2007; Thompson 2017). Taeniosis, caused by Taenia solium, Taenia saginata, and
Taenia asiatica, is an important disease with public health concerns in Southeast
Asia (Ito et al. 2003a). Echinococcosis is not endemic in Southeast Asia, but
sporadic cases have been reported (McManus 2010). Hymenolepidiosis in humans
is caused by Hymenolepis nana and Hymenolepis diminuta that are also endemic in
Southeast Asia.

The order Diphyllobothriidea (previously Pseudophyllidea) (Kuchta et al. 2008)
contains a large group of tapeworms parasitic in mammals, birds, amphibians, and
reptiles (Bray et al. 1994). The family Diphyllobothriidae includes the most impor-
tant genera for human infections: Spirometra (Mueller, 1936), Sparganum (Diesing,
1854), Dibothriocephalus (Lühe, 1899), and Diphyllobothrium (Cobbold, 1858).
The most important species in Southeast Asia are Spirometra spp., Sparganum
proliferum, and Dibothriocephalus spp. (Chai et al. 2005; Scholz et al. 2009;
Schauer et al. 2014; Kuchta et al. 2015a; Waeschenbach et al. 2017; Yamasaki
2018).

6.2 Taenia saginata (Beef Tapeworm), Taenia solium (Pork
Tapeworm), Taenia asiatica (Asian Tapeworm)

6.2.1 Classification/Geographic Distribution/Biology
and Infection

The taxonomy of human-infecting species, T. saginata, T. solium, and T. asiatica,
has been well documented (Ito et al. 2003a; Nakao et al. 2002; Jeon and Eom 2013;
Flisser 2013; Sato et al. 2015). Taenia solium is phylogenetically different from
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T. saginata and T. asiatica, while T. saginata and T. asiatica are phylogenetically
closely related and have diverged from a common ancestor (Hoberg et al. 2001;
Hoberg 2006). However, natural hybrids between T. asiatica and T. saginata have
been found in Thailand, Lao PDR, and China where these two species occur
sympatrically, and taxonomic problems in the differentiation of T. saginata and
T. asiatica have been raised (Okamoto et al. 2010; Yamane et al. 2012, 2013; Sato
et al. 2018).

Taenia solium is distributed worldwide, except in some regions where people do
not eat pork for religious reasons, and is endemic in Southeast Asian countries,
Nepal and India (Schantz et al. 1998; Schantz 2006; Willingham 3rd and Engels
2006; Willingham 3rd et al. 2010; Ito et al. 2019). Taenia saginata also has a
worldwide distribution and is endemic across Southeast Asia (Anantaphruti et al.
2013; Okamoto et al. 2010; Sanpool et al. 2017; Sato et al. 2018; Ito et al. 2019;
Eichenberger et al. 2020). To date, T. asiatica is limited to 11 Asian countries (South
Korea, Japan, China, Taiwan, the Philippines, Thailand, Vietnam, Lao PDR, Indo-
nesia, Nepal and India) (Eom et al. 2009, 2020; Yamasaki et al. 2017).

Pigs serve as the intermediate hosts of T. solium and T. asiatica in which the
oncosphere develops into a larval cysticercus. Cattle are the intermediate host for
T. saginata. The larval cysticercus of T. solium develops in the muscle, tongue, and
brain of pigs, but T. asiatica has a different viscerotropism from T. solium, occurring
mainly in the pig liver (Eom et al. 2020). Humans are the only definitive hosts for
these three Taenia species.

Humans become infected by eating raw or undercooked pork, pig viscera, or beef.
The larva develops into an adult worm in the small intestine in humans and the adult
tapeworms shed gravid proglottids filled with numerous eggs, which are shed with
the stool. The eggs are ingested by intermediate hosts and develop into cysticerci in
muscle tissue (Fig. 6.1) and other organs. In the case of T. solium, if humans ingest
the eggs, oncospheres hatched from eggs can develop into cysticerci in subcutaneous
tissues, muscle, and eyes, causing cysticercosis. The most serious form is
neurocysticercosis that develops in the central nervous system (Schantz et al.
1998; Ito et al. 2003a, b). Neurocysticercosis is a major cause of epileptic seizures
in endemic areas and is occasionally fatal (Schantz et al. 1998; Ito et al. 2003a, b). In

Fig. 6.1 Taeniid cysticerci as sources of infection to humans. (a) T. solium cysticerci in pork, (b)
T. saginata cysticerci in beef
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contrast, T. saginata and T. asiatica cause mild illness in humans, such as abdominal
pain, diarrhea, and pruritus in the perianal area (Pawlowski and Murrell 2001; Ooi
et al. 2013; Yamasaki et al. 2021a).

6.2.2 Molecular Identification and Genetic Diversity

Morphological observation of human-infecting Taenia species is important for
diagnosis (Fig. 6.2). However, classical identification is not always possible due to
the morphological similarities of the eggs (Fig. 6.3), larval cysticerci and adult
worms, especially in Asian regions where these three species occur sympatrically
and human taeniosis is commonly reported as imported cases (Ito et al. 2003a, 2006;
Yamasaki et al. 2004). The only reliable and accurate approaches for the

Fig. 6.2 Taenia saginata adult worm recovered from an infected human stool in Lao PDR

Fig. 6.3 Human-Taenia eggs isolated from uteri in gravid proglottids. (a) T. solium, (b)
T. saginata, (c) T. asiatica. Eggs are yellowish-brown in color, spherical in shape, and surrounded
by embryophores with radial striations
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differentiation of the Taenia species are DNA-based methods. Several molecular
methods targeting various DNA markers have been established: PCR-restriction
fragment length polymorphism (RFLP) methods (Bowles and McManus 1994;
Gasser and Chilton 1995), loop-mediated isothermal amplification (LAMP)
(Nkouawa et al. 2012), species-specific DNA probes (Chapman et al. 1995), BESS
T-base method (Yamasaki et al. 2002), PCR for the differentiation of T. saginata and
T. solium (González et al. 2004), multiplex PCR (Yamasaki et al. 2004), a nested
PCR system (Mayta et al. 2008), a high-resolution multiplex PCR assay (Jeon et al.
2009), and pyrosequencing (Thanchomnang et al. 2014). These methods are impor-
tant not only for discriminating Taenia species but also for accumulating epidemi-
ological and epizoological information (Yamasaki et al. 2004; Thanchomnang et al.
2014).

There have been several studies on the genetic diversity of human Taenia species
(Nakao et al. 2002; Anantaphruti et al. 2013; Rostami et al. 2015; Solano et al. 2016;
Sanpool et al. 2017). Anantaphruti et al. (2013) identified 14 haplotypes among
73 T. saginata samples from Thailand based on partial cox1 sequences. Sanpool
et al. (2017) identified 53 haplotypes among 98 complete cox1 sequences in
T. saginata from Asia and other continents. These haplotype network analyses
demonstrate that T. saginata has a high genetic diversity and can be differentiated
even in localities found close to one another within Southeast Asia (Anantaphruti

Fig. 6.4 Median-joining haplotype network based on the complete cox1 sequences of Taenia
saginata. Each circle represents one haplotype and the size is proportional to the frequency of the
haplotypes. Slashes indicate numbers of nucleotide differences inferred as having occurred between
nodes. The colors represent the different countries
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et al. 2013; Sanpool et al. 2017). Haplotype network analyses revealed that global
isolates of T. saginata are genetically divided into five groups (A, B, C1, C2 and D)
(Fig. 6.4). Interestingly, T. saginata isolates from Lao PDR and northeastern
Thailand belonged to either Group A or B. Taenia saginata from western
Thailand clustered in groups C1, C2, and D, and populations from the northeast
and western Thailand were found to be genetically distinct, suggesting that the
spread of T. saginata in Thailand and Lao PDR is associated with different move-
ment routes of human and cattle from China (Sanpool et al. 2017). Phylogenetic
analysis of cox1 sequences has revealed that T. solium is different from T. saginata
and T. asiatica, while T. saginata and T. asiatica are closely related (Fig. 6.5).

6.3 Echinococcus Spp. (Hydatid Worm, Dog Tapeworm,
Fox Tapeworm)

6.3.1 Classification/Geographic Distribution/Biology
and Infection

The taxonomy of the genus Echinococcus was controversial for many years; how-
ever, an accurate classification has been established based on molecular evidence
(Nakao et al. 2007, 2013) and has been recently reviewed (Thompson 2017). The
genus Echinococcus consists of 9 species: E. granulosus, E. multilocularis, E.
equinus, E. ortleppi, E. canadensis, E. felidis, E. shiquicus, E. vogeli and
E. oligarthra. Echinococcus granulosus, E. ortleppi, and E. canadensis have been
reported as species causing cystic echinococcosis (CE) (Thompson 2017; Kern et al.
2017; Yousofi Darani and Jafari 2020), which is highly endemic in central Asia,
western China, South America, eastern Africa, and Mediterranean countries (Wen
et al. 2019). Echinococcus multilocularis is widely distributed in the northern
hemisphere (from Eurasia to North America, including Japan), where it causes
serious alveolar echinococcosis (AE) in humans (Wen et al. 2019; Deplazes et al.
2017; Vuitton et al. 2015; Gottstein et al. 2015). Echinococcus felidis and
E. shiquicus are so far known from Africa and China, respectively. Echinococcus
vogeli and E. oligarthra are limited to the Neotropics. CE and AE are not common in
Southeast Asia (McManus 2010), however human cases have been sporadically
reported in Thailand (Riengchan et al. 2004; Waikagul et al. 2006; Morakote et al.
2007) and Singapore (Teo et al. 1983). In Thailand, 22 cases of CE and two cases of
AE were recorded from 1936 to 2005. Most Thai patients were migrant workers
from the Middle East where CE is endemic, and only a few cases were indigenous
(Waikagul et al. 2006), including a CE case reported in 2004 (Riengchan et al.
2004). A Thai patient with AE was recorded, but she was considered to have been
infected in Switzerland where she lived from 1983 to 1993 (Warnnissorn et al.
2006). Two CE cases caused by infection with E. ortleppi were reported in Vietnam
(De and Van 2017). Natural infections of E. granulosus in dogs were reported in
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Sulawesi, Indonesia (Carney et al. 1974) and in wild dogs (Cuon alpines ¼ Cyon
primaerus) in South Vietnam (Le and Vu 1967).

Life cycles of Echinococcus species involve many herbivores and rodents as
intermediate hosts and carnivores as the definitive hosts. The intermediate hosts
become infected by ingesting the eggs, and the parasite then develops into larval
stages in the visceral organs, mainly the liver. The canids, as definitive hosts, can be
infected by ingesting the intermediate hosts as prey, and the larvae develop into adult

Fig. 6.5 Maximum-likelihood phylogenetic tree based on the cox1 sequences (1620 bp) of
T. saginata, T. asiatica, and T. solium. Bootstrap scores (>90%, percentages of 1000
pseudoreplications) are presented at each node. The sequences of Taenia species obtained from
GenBank are indicated with their accession numbers and country codes (LAO, Lao People’s
Democratic Republic; THA, Thailand; IDN Indonesia; KHM, Cambodia; PHL, Philippines; IND,
India; NPL, Nepal; JPN, Japan; KOR, Korea; TWN, Taiwan; CHN, China). Echinococcus
granulosus was used as an outgroup
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tapeworms in the small intestine of these hosts. Humans act as accidental interme-
diate hosts and acquire an infection by ingesting eggs (Agudelo Higuita et al. 2016;
Thompson 2017).

The diagnosis of AE in a Thai patient was based on the typical macroscopic
multivesicular lesion and the characteristic histological findings of the parasite in the
liver, the long-term stay of the patient in an endemic area, and evidence of an
infection risk in the area. The rarity of AE in Thailand contributes to the lack of
familiarity of the condition by medical personnel, the non-availability of diagnostic
tools such as serologic tests, and inexperience in diagnosis and management
(Warnnissorn et al. 2006). No echinococcosis diagnosed by DNA analysis has
been reported for this area (McManus 2010).

6.4 Hymenolepis Spp. (Dwarf Tapeworm, Rat Tapeworm)

6.4.1 Classification/Geographic Distribution/Biology
and Infection

The family Hymenolepididae is a large group consisting of approximately 230 and
620 cestode species in mammals (rodents, insectivores, and bats, etc.) and birds,
respectively (Haukisalmi et al. 2010). Hymenolepis nana and Hymenolepis diminuta
are well-known human-infecting species, however the taxonomy of some species in
the genus Hymenolepis, including H. nana, is still controversial (Haukisalmi et al.
2010).

Hymenolepis nana occurs worldwide and is one of the most common species
among children under poor hygiene conditions, while H. diminuta has been less
frequently found in various areas of the world, including Southeast Asia (Cross
1999). Human hymenolepidiosis caused by H. nana has been reported in Thailand
(Sirivichayakul et al. 2000; Sithithaworn et al. 2003), Myanmar (Sahimin et al.
2016), Laos (Pakdeenarong et al. 2014; Ribas et al. 2017), Cambodia (Chhakda et al.
2006; Yong et al. 2014), Vietnam (Le Hung et al. 2005), and Indonesia (Cross et al.
1976; Toma et al. 1999; Prasetyo 2016).Hymenolepis diminuta infections in humans
have also been reported in Thailand (Wiwanitkit 2004), Malaysia (Sinniah 1978;
Rohela et al. 2012), and Indonesia (Cross et al. 1975; Stafford et al. 1980).
Hymenolepis nana, H. diminuta, and Hymenolepis sp. have been found in rats in
Malaysia and risks to human health are of concern (Paramasvaran et al. 2005; Zain
et al. 2012).

Most of the hymenolepidid species require arthropod intermediate hosts, mainly
small beetles (Coleoptera), in which eggs develop into cysticercoids. Adult worms
parasitize the small intestine of the definitive hosts, rodents and humans (Cross 1999;
Montgomery and Richards 2018). Human hymenolepidiosis due to H. nana is
frequently contracted by human-to-human transmission through directly ingesting
the eggs contaminating house dust, food, and water under poor hygienic conditions.
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Hymenolepis diminuta infections are less frequent than H. nana infections, but occur
in humans by the accidental ingestion of small beetles in stored cereal crops (Bogitsh
et al. 2012; Montgomery and Richards 2018).

The molecular identification of Hymenolepis species has not been performed in
Southeast Asian countries. Recently, molecular analysis has revealed that a species
genetically closely related to Hymenolepis hibernia is a human-infecting species in
China, and this species is genetically different from H. nana and H. diminuta
(Nkouawa et al. 2016). Sargison et al. (2018) demonstrated that H. diminuta and
H. hibernia, which are morphologically similar species, are genetically different.
These findings indicate that humans might also be infected with unknown cryptic
species. However, the identification of H. diminuta using molecular analysis is still
rare in human infections in Southeast Asia. The molecular identification of
hymenolepidid cestodes is necessary to determine the presence of cryptic species,
to improve diagnosis, genetic characterization of the etiological agents, and epide-
miological tracking of the disease (Mirdha and Rehman 2013).

6.5 Spirometra Spp. (Dog Tapeworm, Cat Tapeworm)
and Sparganum proliferum

6.5.1 Classification/Geographic Distribution/Biology
and Infection

The genus Spirometra includes 46 nominal species (Scholz et al. 2019), of which
only four are currently accepted as valid species (Kuchta and Scholz 2018; Scholz
et al. 2019). However, the classification of the Spirometra species remains contro-
versial and the validity of many species has not been verified (Waeschenbach et al.
2017; Kuchta and Scholz 2018; Scholz et al. 2019). Spirometra erinaceieuropaei is a
well-known species causing human sparganosis and spirometriosis in Asia (Liu et al.
2015). Recently, Spirometra decipiens and Spirometra ranarum have been reported
from Asia (Eom et al. 2015; Jeon et al. 2015, 2016, 2018a, b); however, the
morphological identification of these three species, including S. erinaceieuropaei
from Asia has been questioned (Waeschenbach et al. 2017; Kuchta and Scholz 2018;
Scholz et al. 2019). Molecular revision of Spirometra species from Asia has revealed
that two species occur in this area both of which are different from
S. erinaceieuropaei from Europe (Yamasaki et al. 2021b). Sparganum proliferum
is genetically classified in the family Diphyllobothriidae (Miyadera et al. 2001).

Spirometra species are widely distributed worldwide, including Southeast Asia
(Lao PDR, Thailand, Myanmar, Cambodia, Vietnam, and Indonesia) (Jongthawin
et al. 2014; Le et al. 2017). Sparganum proliferum has been found in Asia (South
Korea, Japan, Taiwan, Thailand), Reunion Island (east of Madagascar), North and
South Americas; however, the adult worm is unknown (Beaver et al. 1984; Miyazaki
and Toh 1988; Miyazaki 1991; Kikuchi and Maruyama 2020).

6 Molecular Identification and Genetic Diversity of Cestodes in Southeast Asia 129



Spirometra species require two intermediate hosts and the definitive hosts to
complete their life cycles (Miyazaki and Toh 1988). The first intermediate hosts are
freshwater copepods, in which a coracidium develops into a procercoid, and the
second intermediate hosts in which a procercoid develops into a plerocercoid are
amphibians and reptiles. Plerocercoids can survive for as long as a year in the second
intermediate and paratenic hosts, such as amphibians, reptiles, birds, wild boar, and
humans (Miyazaki and Toh 1988; Liu et al. 2010; Lee et al. 2013; Zhang et al. 2014;
Jeon et al. 2016; Kołodziej-Sobocińska et al. 2016; Yamasaki et al. 2017) (Fig. 6.6).
Canids and felids are the most common definitive hosts, in which the plerocercoid
develops into an adult worm (Miyazaki and Toh 1988; Liu et al. 2015). Sparganum
proliferum probably has a life cycle similar to other Spirometra species; however,
nothing definite is known about this (Beaver et al. 1984; Miyazaki and Toh 1988;
Miyazaki 1991). Humans are accidental hosts who become infected by ingesting the
plerocercoids harbored in the flesh of the second intermediate or paratenic hosts and
by drinking water polluted with cyclopoid copepods harboring the procercoids. The
use of frog meat as a poultice is possibly a cause of the infection in certain Asian
countries (Beaver et al. 1984; Miyazaki and Toh 1988; Miyazaki 1991).

Sparganosis is classified into two forms, non-proliferative and proliferative
sparganosis. The former is caused by infection with Spirometra species, whereas
the latter is caused by infection with S. proliferum. Non-proliferative sparganosis has
been reported in Asia (Cho et al. 1975; Chung et al. 2000; Yoshikawa et al. 2010;
Anantaphruti et al. 2011; Jongthawin et al. 2014; Kim et al. 2018; Li et al. 2019;
Zhang et al. 2020), with the subcutaneous types being most common, especially in
the thigh (Kudo et al. 2017), breast (Anantaphruti et al. 2011; Koonmee et al. 2011;
Boonyasiri et al. 2013, 2014), abdominal subcutaneous tissues, and inguinal region
(Yoshikawa et al. 2010), where the plerocercoid forms a nodule and presents as a
creeping eruption. Ocular sparganosis is prevalent in Thailand, Vietnam, and China

Fig. 6.6 Spirometra plerocercoids (spargana). (a) Spargana in the subcutaneous tissues of Chinese
rat snake (Ptyas korros) from Lao PDR, (b) Sparganum samples isolated from P. korros from
Cambodia
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where people traditionally use frog-flesh poultices for open wounds and lesions of
eyes (Miyazaki and Toh 1988; Wiwanitkit 2005; Anantaphruti et al. 2011). Plero-
cercoids can also invade the central nervous system and cause serious disease
(Lv et al. 2010; Shirakawa et al. 2010; Boonyasiri et al. 2013, 2014) including
blindness, paralysis, and even death. They are a major threat to human health (Qiu
and Qiu 2009; Anantaphruti et al. 2011). In contrast, proliferative sparganosis is an
extremely rare disease and 13 out of 18 cases reported from the world have been
reported in Asia: six from Japan, three from Thailand, two from Taiwan, and one
case each from South Korea and China (Kikuchi and Maruyama 2020). In cases of
proliferative sparganosis the bones are destroyed by the invasion of worms. This has
been diagnosed in two Thai patients (Settakorn et al. 2002; Laovachirasuwan et al.
2015), and two out of three fatal cases reported in Japan (Aoshima et al. 1989;
Kikuchi and Maruyama 2020).

6.5.2 Molecular Identification and Genetic Diversity

Adult worms of Spirometra species have been identified based on the morphology of
their reproductive system, especially the number and shape of the uterine coils (Faust
et al. 1929). However, since the morphology varies as tapeworms develop, it is not
an appropriate criterion for identifying Spirometra species (Iwata 1972). Since
definite morphological criteria for distinguishing Spirometra species have not been
established, visual identifications can lead to many misidentifications and much
confusion (Scholz et al. 2019). The most reliable tools for identifying plerocercoids
and the adult worms of Spirometra species are molecular methods; however, only
the DNA sequences of S. proliferum are available as credible reference data
(Miyadera et al. 2001; Kikuchi et al. 2020).

The phylogenetic tree and haplotype network of Spirometra species from Asia
based on complete cox1 sequences are shown in Figs. 6.7 and 6.8, respectively.
Spirometra species from Asia are divided into two clades, Type I and Type II, and
haplotypes of Asian Spirometra Type I formed a phyletically differentiated network
that is not star-like (Yamasaki et al. 2021b). It is interesting that S. erinaceieuropaei,
S. decipiens, and S. ranarum from Asia are not monophyletic and are nested within
Type I, indicating that Type I (¼ Spirometra mansoni) and Type II (¼ undescribed
Spirometra sp.) are different species (Yamasaki et al. 2021b; Kuchta et al. 2021).
The genetic diversity of Type I has been studied, but little is known about the genetic
diversity of Type II because of the scarcity of samples examined (Yamasaki et al.
2021b).
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6.6 Dibothriocephalus and Diphyllobothrium Spp. (Broad
Tapeworms)

6.6.1 Classification/Geographic Distribution/Biology
and Infection

The genus Diphyllobothrium is currently assigned for broad tapeworms parasitic in
marine mammals, such as whales and dolphins as the definitive hosts, while the
genus Dibothriocephalus is assigned for broad tapeworms parasitic in terrestrial
mammals and birds as the definitive hosts (Waeschenbach et al. 2017). The former
includes Diphyllobothrium stemmacephalum (the type species of the genus) and
Diphyllobothrium balaenopterae (syn. Diplogonoporus balaenopterae), and the
latter includes well-known Dibothriocephalus latus (the type species of the genus,

Fig. 6.7 Maximum-likelihood phylogenetic tree based on the complete cox1 sequences of
Spirometra species from Asia. Bootstrap scores (>90%, percentages of 1000 pseudoreplications)
are presented at each node. The sequences from GenBank are indicated with their accession
numbers and country codes (LAO, Lao People’s Democratic Republic; THA, Thailand; MMR,
Myanmar; JPN, Japan; KOR, Korea; CHN, China). Dibothriocephalus nihonkaiensis was used as
an outgroup
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syn. Diphyllobothrium latum) and Dibothriocephalus nihonkaiensis (syn.
Diphyllobothrium nihonkaiense). Dibothriocephalus species are distributed in the
temperate to subarctic zones in Holarctic (Eurasia, North America), but only two
species,Dib. latus andDibothriocephalus dendriticus, occur in Neotropics (southern
Chile and Argentine). Dibothriocephalus latus and Dib. nihonkaiensis are well
known as the most frequent etiologic agents of human diphyllobothriosis (Dick
et al. 2001; Chai et al. 2005; Scholz et al. 2009; Kuchta et al. 2015a; Yamasaki
2018). Dibothriocephalosis/diphyllobothriosis is an extremely rare disease in South-
east Asia. Two human cases due to Dib. latus infections had been reported in
Malaysia in 2002 and 2006 (Rohela et al. 2002, 2006); however, the identification
of the etiological agents was questionable (Yamasaki 2018). The increase of
dibothriocephalosis due to Dib. nihonkaiensis is globally expected, including South-
east Asia, because of the globalization of the fresh or chilled Pacific salmon trade and
the increasing popularity of raw salmon dishes, such as sashimi and sushi (Yamasaki
2018; Ikuno et al. 2018). Indeed, two human cases due to D. nihonkaiensis, diag-
nosed by cox1 sequencing, were recently reported in Singapore with the possible
source considered to be imported salmon (Ko et al. 2019).

Broad tapeworms require two intermediate hosts and the definitive host to
complete their life cycles. The life cycle of Dib. nihonkaiensis is as follows (Scholz
et al. 2009; Kuchta et al. 2015a; Yamasaki 2018): the first intermediate hosts are
unknown, but are probably marine or blackish zooplanktonic copepods in which the
coracidium develops into a procercoid. This is then ingested by the second

Fig. 6.8 Median-joining haplotype network of Spirometra species from Asia based on the com-
plete cox1 sequences (1566 bp). Each circle represents one haplotype and the size of the circle is the
number of the haplotype. Numbers in parentheses indicate numbers of nucleotide differences
inferred as having occurred between nodes. The colors represent the different geographical origins
(countries)
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intermediate hosts, Pacific salmon, in which the procercoid develops into a plero-
cercoid. The plerocercoid develops into an adult worm in the small intestine of the
definitive hosts, including humans. The source of human infection is raw or
undercooked Pacific salmon (Arizono et al. 2009). The adult worm matures within
1 month, and long strobilae are excreted from the anus while defecating. Despite
being a long tapeworm, clinical signs are generally mild, and light abdominal pain
and diarrhea may present occasionally. The diagnosis is routinely performed based
on the morphology of the proglottids and eggs in the feces in the laboratory.
Dibothriocephalus and Diphyllobothrium species are difficult to distinguish because
of their morphological similarity. Dibothriocephalosis and diphyllobothriosis cases
diagnosed by DNA-based methods are being increasingly reported. Thus, many
molecular methods using different genetic markers have been developed for the
identification of diphyllobothriid tapeworms: e.g. PCR and DNA sequencing (Yera
et al. 2008; Wicht et al. 2010a), multiplex PCR (Wicht et al. 2010b), PCR-RFLP
(Yamasaki et al. 2014), and pyrosequencing (Thanchomnang et al. 2016).

To date, no human infections caused by Dip. stemmacephalum and Dip.
balaenopterae or Adenocephalus pacificus have been reported in Southeast Asia
(Yamasaki et al. 2012, 2016; Kuchta et al. 2015a, b); however, it may be present in
this region because the sources of infection to humans are marine fish that are a
common food item throughout the area.

6.7 Conclusion Remarks and Research Needs

The molecular identification and genetic diversity of Taenia spp. and Spirometra
spp., the common tapeworms causing human diseases in Southeast Asia, have been
widely reported. However, the molecular study of T.asiatica is still limited and
requires more consideration. Moreover, the larval agents causing cysticercosis
remain a neglected topic in most part of the areas. The regional prevalence and
molecular study of cyclophyllidean tapeworms, i.e. Dipylidium caninum and unclas-
sified species, Hymenolepis spp. and Echinococcus spp. are still lacking. Further-
more, lack of knowledge of the interesting broad tapeworms belonging to the genera
Dibothriocephalus and Diphyllobothrium requires additional research. It is notable
that infections with these tapeworms are becoming important and globally due to the
transport of fresh meat, the movement of people, changing consumption habits and
food preparation, as well as personal hygiene. The incidences of the infections are
possibly rising and need further studies. Presently, reliable molecular tools have
been established for studying taxonomy and diversity. Our understanding of the
molecular identification and genetic diversity of these parasites is necessary to help
to improve diagnosis, genetic characterization of the etiological agents, epidemio-
logical tracking and epizoology, as well as for the implementation of specific control
measures. It is the responsibility of all stakeholders to force active networks linking
researchers to define and implement surveillance and control methodologies.
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Chapter 7
Black Fly Diversity and Impacts on Human
Welfare in Southeast Asia

Pairot Pramual

Abstract Black flies (Diptera: Simuliidae) are insects of medical and veterinary
importance because some of them are vectors of human and livestock disease agents.
Even without transmission of pathogens, black fly biting can affect human and
animal welfare through nuisance and irritation. More than 2300 species of black
flies have been recorded globally and about 20% of these occur in Southeast Asia
(SE Asia). A total of 456 black fly species arranged in eight subgenera of the genus
Simulium are found in this region. Although there is a long history (>100 years) of
black fly study in some countries in SE Asia, extensive explorations began less than
two decades ago. Recent advances in taxonomy using morphological, cytological,
and molecular approaches have provided a backbone for other aspects of black fly
study in this region. At least seven species are known as human-biters and two are
considered pests in northern Thailand. Three black fly species (Simulium nodosum
Puri, S. nigrogilvum Summers and S. asakoae Takaoka and Davies) in SE Asia have
been found carrying animal-origin filarial parasites including two unidentified spe-
cies of the genus Onchocerca that possibly cause human zoonotic onchocerciasis. At
least two species (S. asakoae and S. chumpornense Takaoka and Kuvangkadilok) are
possible vectors of avian parasites of the genus Leucocytozoon and Trypanosoma.
However, further study is required to evaluate the impacts of black flies either
directly (i.e. transmission of disease agents to humans) or indirectly
(e.g. economic impact). In addition, it is highly likely that areas of high diversity
await exploration in Laos, Cambodia, and some parts of Vietnam.
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7.1 Biology

Black fly (Fig. 7.1) is the common name of the insects belonging to the family
Simuliidae of the order Diptera. The family Simuliidae is divided into two sub-
families, Parasimuliinae Smart and Simuliinae Newman. Only one genus belongs to
the subfamily Parasimuliinae, namely, Parasimulium Malloch, which contains only
four species. The remaining extant black fly species are all members of the subfamily
Simuliinae, which includes two tribes, Prosimuliini Enderlein and Simuliini New-
man. Prosimuliini is comprised of six genera and 144 species. Simuliini is comprised
of 23 genera with 2183 extant species (Adler 2020).

Black flies are aquatic insects because their immature stages (i.e. egg, larva, and
pupa) inhabit flowing water. They have two adaptations that may explain their
requirement for running water: respiratory and food-filtering mechanisms. The
black fly larva receives oxygen from water through the permeable cuticle into the
trachea system (Crosskey 1990). Flowing water is typically rich in dissolved oxy-
gen, and is, therefore, suitable to the respiratory system of the black fly larva. The
larva obtains food with a pair of labral fans that, in flowing water, are used to filter
food that is comprised of organic matter, diatoms, and filamentous algae (Crosskey
1990).

Black fly eggs (Fig. 7.2) are ovoid,<0.5 mm in length, white in color initially but
turning brown as they age (Adler et al. 2004). The number of eggs produced by
females varies greatly from <20 to almost 800. Size and number of eggs are
negatively related and so species that lay bigger eggs usually produce a smaller
number of them (Malmqvist et al. 2004). The female black fly lays her eggs on
various substrates such as rocks, fallen leaves, wood or even plastic bags that are in
the flowing water. In tropical regions, black fly eggs usually hatch within 3–6 days
but temperate species may take up to 6 months (Crosskey 1990).

The larva of the black fly (Fig. 7.3) is vermiform but expands posteriorly. Body
length varies from 5 to 15 mm and color from white or light brown to dark brown or

Fig. 7.1 Female of
Simulium nigrogilvum
Summers biting a human in
Chiangmai province,
northern Thailand
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dark green. The larval body is divided into three sections: head, thorax, and
abdomen. The head is well-sclerotized with a prominent pair of food gathering
organs, the labral fans (Fig. 7.3). The ventral area of the head capsule possesses a
postgenal cleft (Fig. 7.3), which has uncertain function but is a taxonomically
important character because it varies from species to species. The thorax has a

Fig. 7.2 Eggs of black fly

Fig. 7.3 Larva of black fly, Simulium nakhonense Takaoka & Suzuki

7 Black Fly Diversity and Impacts on Human Welfare in Southeast Asia 145



substrate attachment and locomotion organ, the thoracic proleg (Fig. 7.3) apically
bearing rows of tiny hooks used for attaching to silk deposited on a substrate. On the
lateral side of the thorax are gill histoblasts (Fig. 7.3) that become the gills (i.e., the
respiratory organs) of the pupa. The abdomen is generally wider than other parts
because within it there is a large pair of salivary or silk glands. This organ becomes
larger with age of the larva as it prepares to make silk for the pupal cocoon. At the
posterior end of the abdomen are rows of tiny hooks called the posterior circlet,
similar to those of the thoracic proleg, and also used to attach the larva to silk on a
substrate. There are from four to nine larval instars although more generally there are
seven (Crosskey 1990). The final instar larva is easily recognized by its black gill
histoblasts (Fig. 7.3). Development time from first to last instar depends on species
and environment. The most important environmental factor affecting larval devel-
opment is temperature. Species in temperate regions can take months to develop but
those in tropical areas generally need only 1–2 weeks to complete the larva stage.

Black fly pupae (Fig. 7.4) have two parts, the pupal body and the cocoon.
The pupal body lives within the cocoon and has a shape resembling that of the
adult. The pupal body has three parts: head, thorax, and abdomen. There are

Fig. 7.4 Pupa of black fly, Simulium nakhonense
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prominent structures called “gills” on the lateral sides of the thorax. Pupal gills vary
in shape, size, number, and arrangements of filaments (Fig. 7.5) and are, therefore,
valuable characters for species identification. The pupal cocoon has two main
shapes, slipper-shaped and boot-shaped (Fig. 7.6). There are additional characters
of the cocoon that are also taxonomically important including presence/absence of
lateral windows or presence/absence of an anterodorsal projection (Fig. 7.6). The
pupa develops into an adult within 2–3 days but can take weeks depending on the
temperature (Adler et al. 2004).

Immature stages of black flies use a wide range of running water habitats. It is
well recognized that different black fly species prefer different stream habitats
(McCreadie and Adler 1998). Factors that are associated with species distribution
include stream width, depth, velocity, elevation, riparian vegetation, and presence/
absence of a water impoundment (Hamada and McCreadie 1999; Hamada et al.
2002; McCreadie et al. 2004; Pramual and Kuvangkadilok 2009; Pramual and
Wongpakam 2010). For example, S. aureohirtum Brunetti in Thailand is associated
with small streams with very low velocity in open areas. In contrast, S. nakhonense
Takaoka & Suzuki and S. angulistylum Takaoka & Davies complex both prefer large
and fast-flowing streams with more cover (Pramual and Kuvangkadilok 2009).
Many black fly species are habitat specialized and in SE Asia, two main types of
habitat specialization are recognized: high elevation and highly calcareous streams.
Many species occupy only high-elevation habitats, such as members of subgenus
Montisimulium Rubtsov and the S. vernum species-group of subgenus Nevermannia

Fig. 7.5 Variation in gills of black flies (cocoons of S. aureohirtum and S. oblongum have been
removed)
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Enderlein. Species from Thailand that are restricted to highly calcareous streams
include S. weji Takaoka, S. chaliowae Takaoka and Boonkemtong, S. lampangense
Takaoka and Choochote, S. takense Takaoka and Choochote, and S. triglobus
Kuvangkadilok and Takaoka (Thaijarern et al. 2018). Population genetic studies
have found that black fly species that require specialized habitats show high levels of
population genetic structure due to patchy distribution of the suitable habitat
(Pramual and Wongpakam 2013; Pramual and Pangjanda 2015).

The adult black fly (Fig. 7.7) has a stout body ranging between 1.2 and 6.0 mm in
length (Crosskey 1990; Adler et al. 2004). Most adults have black or dark brown
ground color but some species, such as S. nigrogilvum Summers (Fig. 7.8) from
Thailand and Vietnam, have yellow pollinosity. Males and females can be recog-
nized by differences in their eye facets. Female have eye facets that are evenly sized
while males have larger facets on the upper half of the eye and smaller ones on the
lower half.

Fig. 7.6 Cocoon shapes of black fly pupae. (a) slipper-shaped in Simulium baimaii Kuvangkadilok
& Takaoka, (b) slipper-shaped with lateral windows in Simulium bullatum Takaoka & Choochote,
(c) boot-shaped in Simulium chaliowae Takaoka & Boonkemtong, and (d) slipper-shaped with long
anterodorsal projection in Simulium chomthongense Takaoka, Srisuka & Choochote
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Fig. 7.7 Adult black flies, Simulium nakhonense (a) male and (b) female (Photograph by
Dr. Chaliow Kuvangkadilok)

Fig. 7.8 Simulium nigrogilvum (a) larva, (b) pupa (cocoon removed), and (c) adult female
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7.2 Medical and Veterinary Importance of Black Flies

Both sexes need sugar as an energy source but almost all females also need blood
protein from homeothermic vertebrates (i.e. birds and mammals) to complete their
ovarian cycle. More than 90% of the world black fly species need a blood meal from
mammals (mammalophily) or birds (ornithophily) (Adler and McCreadie 2019).
Some species can feed on birds and mammals, such as S. asakoae Takaoka &
Davies, which feeds on humans (Choochote et al. 2005) and domestic chickens
(Pramual et al. 2020) in Thailand. Some black fly species can complete their ovarian
cycle without need for a blood meal (i.e. autogenous species) such as S. aureohirtum
Brunetti (Takaoka and Noda 1979; Takaoka 1989) that is geographically widespread
in SE Asia.

Although many species of female black flies need a blood meal, only about 10%–

20% of all species are actually considered pests of humans and livestock (Adler and
McCreadie 2019). This biting habit makes them rank third in importance amongst
arthropods that transmit disease agents to human and animals (Adler and McCreadie
2019). The most significant disease agent transmitted by black flies is Onchocerca
volvulus. This filarial nematode is the causative agent of human onchocerciasis (river
blindness). At least 27 black fly species or members of species complexes transmit
this disease agent (Adler and McCreadie 2019).

Human onchocerciasis was first reported in 1875 on the western coast of Africa
and now occurs in 31 countries in Africa and two in South America, although
previously it occurred in four South American and two Central American countries
(WHO 2019). It affects 20.9 million people who have been infected with
O. volvulus. Among these, 14.6 million have skin disease and 1.15 million have
visual loss (WHO 2019). Recently, this disease was eliminated from Colombia,
Mexico, Ecuador, and Guatemala (Rodríguez-Pérez et al. 2015; Guevara et al. 2018;
WHO 2019). In addition to human onchocerciasis, black flies can also transmit other
Onchocerca species among wild and domesticated animals. At least 11 Onchocerca
species are transmitted to animals such as deer, moose, wild boar, cattle, and reindeer
by at least 20 black fly species (Adler and McCreadie 2019). Some of these
Onchocerca species can occasionally be transmitted to humans and cause a disease
termed “zoonotic onchocerciasis” which has been reported in many countries
(Takaoka et al. 2012).

In addition to filarial species of the genus Onchocerca, black flies are also vectors
of three other filarial nematodes, namely Dirofilaria ursi, Mansonella ozzardi, and
Splendidofilaria fallisensis (Adler and McCreadie 2019). The Simulium venustum
Say complex is a vector of D. ursi transmitted among bears in North America. At
least five species and species complexes of black flies in South America are vectors
of M. ozzardi transmitted to humans (Adler and McCreadie 2019). This filarial
nematode causes a disease called “mansonellosis,” which has low pathogenicity
and is almost asymptomatic. However, infection of M. ozzardi occasionally causes
itching, enlarged lymph glands, and joint pains (Ta-Tang et al. 2018). Two black fly
species, S. anatinum and S. rugglesi in North America are vectors of S. fallisensis in
ducks (Anderson 1968).
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In addition to filarial nematodes, black flies also transmit other disease agents
such as viruses and protozoa to animals including economically important livestock.
Two black fly species, S. notatum and S. vittatum, in America are vectors of the
vesicular stomatitis virus. Cattle, horses, pigs, goats, llama, and sheep are hosts of
the vesicular stomatitis virus (Adler and McCreadie 2019). Black flies are major
vectors of the avian blood protozoan genus Leucocytozoon. Almost 50 species of the
genus Leucocytozoon have been described but molecular genetic investigations
show that diversity is much greater (Fecchio et al. 2020). All of the Leucocytozoon
species are transmitted by black flies except for Leucocytozoon (Akiba) caulleryi that
has a biting midge of the genus Culicoides as the vector (Valkiūnas 2005). At least
21 species of black flies have been reported as vectors of Leucocytozoon (Adler and
McCreadie 2019). Infection of Leucocytozoon can cause a disease known as
leucocytozoonosis, occurring in both wild and domestic birds. However, effects of
the disease vary between protozoa and host species. Co-infection with other blood
protozoa of the genera Plasmodium and Haemoproteus, which are typically trans-
mitted by mosquitoes, can increase virulence of the disease in the hosts (Pigeault
et al. 2018).

7.3 Biodiversity of Black Flies in Southeast Asia

Southeast Asia (SE Asia) is among the most biodiverse regions in the world. Despite
covering only 4% of the Earth’s land area, about 20–25% of the global flora and
fauna inhabit Southeast Asia (Woodruff 2010). More than 15,000 plant species are
endemic to this region. Southeast Asia also ranks second among species richness in
freshwater ecosystems (Woodruff 2010). The wealth of biodiversity of SE Asia is a
result of complex geological historical, and climatic conditions ranging from sub-
tropical to tropical, and great variation in elevation (0–4101 m of Mt. Kinabalu).
This complexity of geology and climatology created a wide variety of ecoregions
that are suitable for a diversity of living organisms (Woodruff 2010). Although rich
in diversity, this region is one of the most threatened biodiversity hotspots (Myers
et al. 2000) because it is also experiencing a high rate of diversity loss (Sodhi et al.
2010).

The family Simuliidae in Southeast Asia has a long history of study. For example,
the first black fly species, S. nigrogilvum, was reported in Thailand from more than a
century ago (Summers 1911). However, extensive taxonomic study began
<40 years ago in some countries such as the Philippines (Takaoka 1983) and
Thailand (Takaoka and Suzuki 1984; Takaoka and Choochote 2004) and more
recently in Malaysia (Takaoka and Davies 1995) and Indonesia (Takaoka and
Davies 1996). Study of biodiversity-rich countries, such as Vietnam, started only
<5 years ago (Takaoka et al. 2017a) and some countries, such as Cambodia and
Laos, are totally unexplored. Despite this limitation, Southeast Asia holds nearly
20% (456 of 2331) of the world black fly species. All black fly species reported in SE
Asia thus far belong to eight subgenera of the genus Simulium Latreille s. str.
(Table 7.1). No other genera have been recorded in the region. Species of two
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subgenera, Simulium Latreille s. str. and Gomphostilbia Enderlein, are the major
components of the black fly faunas of SE Asia. These two subgenera make up of
nearly 80% (362 from 456 species) of black fly species in this region.

Among eight subgenera found in SE Asia, Daviesellum Takaoka & Adler and
Wallacellum Takaoka are endemic to the region. The former two subgenera are
small, with only two and 17 species, respectively. Two additional subgenera
(i.e. Asiosimulium and Gomphostilbia) have the majority of their species endemic
to SE Asia. Asiosimulium has seven species recorded globally and six of these are
found in SE Asia and one is found in Nepal (Adler 2020). Most Gomphostilbia
(176 from 271 species) occur in SE Asia (Adler 2020).

Black flies are thought to have originated in cool, mountainous environments as
members of old lineages such as the genera Parasimulium Malloch, Gymnopais
Stone, Helodon Enderlein, and Prosimulium Roubaud, which are all restricted to
cool habitats in the Northern Hemisphere (Adler et al. 2010). Because no members
of these ancestral lineages occur in SE Asia, it has been proposed that black flies in
SE Asia were derived from ancestral lineages in the northern areas of the Palearctic
region that moved southward during glacial periods (Takaoka 2017). The subgenus
Gomphostilbia probably evolved and radiated in SE Asia. Two cosmopolitan
subgenera, Simulium and Nevermannia Enderlein, dispersed from the Palearctic
during glaciations and extended their distributions southward to Australia. The
subgenus Montisimulium Rubtsov has a center of distribution in the Palearctic.
Eight species are found in Southeast Asia, mainly at high elevations (>1000 m
above sea level) and they presumably evolved from an ancestor derived from high-
latitude areas in the Palearctic region and then moved southward during the glaci-
ations (Takaoka 2017).

Ten SE Asian black flies were originally discovered to be species complexes
(Table 7.2). Another species complex that occurs in SE Asia is the S. ornatipes
Skuse complex. However, populations of this species complex were cytologically
examined only in Australia and associated islands (Bedo 1977, 1979). There is no
report on the cytogenetic variation of S. ornatipes in Indonesia.

Most studies of cytological species complexes in SE Asia have taken place in
Thailand, but there are also some reports from Malaysia and Vietnam. Despite this
geographic bias of cytological examinations, high diversity at the chromosomal level
has already been highlighted for the black flies in Vietnam (Adler et al. 2016). There
are additional examples of hidden diversity. For example, the S. tani complex is
geographically widespread, having been recorded in Malaysia, Myanmar, Indonesia,
Thailand, Taiwan, and Vietnam. Cytological examinations revealed that this nom-
inal species consists of 12 cytoforms (Tangkawanit et al. 2009; Adler et al. 2013,
2016), the largest species complex in the Oriental region. Molecular genetic study
has shown that some cytoforms are genetically distinct and probably represent valid
species (Low et al. 2016).

Habitat-specialized black fly species, particularly those occupying high eleva-
tions, also show high diversity. Populations that use high-elevation habitats are
geographically isolated by lowland areas and are thus isolated on “ecological
islands,” analogous with those occurring on oceanic islands. For example, high
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levels of genetic differentiation at both molecular and chromosome levels have been
reported in the S. feuerborni complex. This species occurs only in high-elevation
habitats at >700 m above sea level (Pramual and Wongpakam 2013; Pramual et al.
2015). It is not only show high genetic divergence between geographically isolated
populations, but cryptic diversity at individual high-elevation sites for the
S. tenebrosum complex (Adler et al. 2019) and S. chomthongense complex (Adler
et al. 2020), which inhabit the highest mountain (i.e. Doi Inthanon, 2565 m above
sea level) in Thailand. Other types of habitat-specialized species, such as those using
highly calcareous streams, also show similar patterns with those of high-elevation
habitats. Population genetic study in S. weji, an endemic species of Thailand that has

Table 7.2 Black fly species complexes in Southeast Asia

Subgenus/
Species Cytoform Reference

Gomphostilbia

Simulium
angulistylum
complex

Three cytoforms (A, B, C), all in Thailand Pramual and Kuvangkadilok
(2012)

Simulium
sheilae complex

Two cytological lineages, all in Thailand Jitklang et al. (2008)

Simulium
siamense
complex

Seven cytoforms (A, B, C, D, E, F, G), all in
Thailand

Kuvangkadilok et al. (2008),
Pramual and Wongpakam
(2011)

Nevermannia

Simulium
chomthongense
complex

Two cytoforms (A, B), all in Thailand Adler et al. (2020)

Simulium
feuerborni
complex

Four cytoforms (A, B, C, D): Two cytoforms
(A, B) in Thailand, one cytoform (C) in
Malaysia and one cytoform (D) in Indonesia

Pramual and Wongpakam
(2013),
Pramual et al. (2015)

Simulium

Simulium
doipuiense
complex

Six cytoforms (A, B, C, D, E, F): two
cytoforms (A, B) in Thailand, four cytoforms
(C, D, E, F) in Vietnam

Tangkawanit et al. (2009);
Adler et al. (2016)

Simulium
fenestratum
complex

At least two cryptic species in Thailand based
on chromosome polymorphisms.

Thaijarern et al. (2018)

Simulium
malayense
complex

Three cytoforms (A, B, C): cytoforms A and B
in Thailand and cytoform C in Malaysia.

Thaijarern et al. (2018)

Simulium tani
complex

Twelve cytoforms (A, B, C, D, E, F, G, H,
I, K, L, B2): Nine cytoforms (A–I) in
Thailand, one cytoform (K) in Malaysia, one
(L) cytoform in Taiwan and one
(B2) cytoform in Vietnam.

Tangkawanit et al. (2009);
Adler et al. (2013, 2016)

Simulium
tenebrosum
complex

Two cytoforms (A, B) in Thailand Adler et al. (2019)
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immature stages associated with highly calcareous streams, revealed a high level of
genetic differentiation even between geographically close populations (Pramual and
Pangjanda 2015). The results of these studies indicate that there is possibly hidden
diversity in many morphologically described species. Given the morphological
homogeneity of the Simuliidae, it is, therefore, necessary to use an integrated
approach to uncover hidden diversity (e.g. Ilmonen et al. 2009; Adler and Huang
2011; Pramual and Kuvangkadilok 2012; Diaz et al. 2015).

It has been suggested that adaptation to different ecological niches is mediated by
chromosomal inversions driving sympatric speciation in black flies (Rothfels 1989).
Although it is difficult to know whether speciation is sympatric or allopatric, there is
evidence indicating that different cytoforms are ecologically different (Adler
and Kim 1984; Adler 1988; Adler and McCreadie 1997; Boakye et al. 1998; Pramual
and Kuvangkadilok 2012). For example, the immature stages of two cytoforms
(B and C) of S. angulistylum complex in Thailand are associated with different
habitats. Cytoform B occurs in low (<600 m) elevation habitats, whereas those of
the cytoform C are found on high mountains (>1000 m above sea level). These
cytoforms are also molecularly different with>3.1% sequence divergence, based on
Kimura 2-parameter model (Pramual and Kuvangkadilok 2012). Thus, they are
probably different biological species. This indicated that chromosomal variations
potentially promote species differentiation through ecological shifts (Kirkpatrick and
Barton 2006).

Molecular population genetic and phylogeographic studies of black flies in SE
Asia have revealed that historical climatic and environmental changes during the
Pleistocene potentially influenced the present day genetic structure and diversity of
these insects. During the Pleistocene, there were cycles of cool/dry and warm/humid
conditions with approximately 100,000-year intervals. During the cool/dry periods,
most stream habitats of immature black flies potentially dried up, resulting in
population restriction. Once the climate changed to warm/humid condition, streams
began to flow and, thus, populations of black flies began expanding.
Phylogeographic studies in some black fly species in Thailand found evidence of
population expansion dating back to the Pleistocene (Pramual et al. 2005; Thaijarern
et al. 2014). Pleistocene climatic and environmental change could also have been
driving species diversification of black flies in Thailand, particularly for species
occupying high-elevation habitats (Adler et al. 2019).

7.4 Public Health Important of Black Flies
in Southeast Asia

There are no reports of human onchocerciasis or other human diseases related to
black flies in SE Asia thus far. The main problems associated with black flies in this
region are due to the effects of biting. Skin dermatitis as a result of black fly biting is
a reaction of the immunoglobulin E (IgE) against salivary gland proteins and other
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active molecules released during biting (Hellberg et al. 2009; Schaffartzik et al.
2009; Hempolchom et al. 2019). Characterization of the IgE-binding proteins in the
salivary glands of S. nigrogilvum, a black fly pest species in northern Thailand,
detected nine proteins that are involved in allergic reactions (Hempolchom et al.
2019). Different people respond differently to the effects of black fly bites. The most
common reaction when bitten by black fly is a small red spot with oozing blood
followed by swelling (Fig. 7.9), although some people may be allergic and have
more serious symptoms, such as vomiting, headache, or fever. Recovery usually
follows within a few weeks.

Among the 456 black fly species reported in SE Asia, the human-biting habit is
only reported from Thailand. Seven taxa are known to bite humans (Table 7.3),
namely, S. asakoae, S. chamlongi Takaoka & Suzuki, S. doipuiense Takaoka &
Choochote complex, S. nigrogilvum, S. nodosum, S. tenebrosum Takaoka, Srisuka &
Saeung complex, and S. umphangense Takaoka, Srisuka & Saeung (Choochote et al.
2005; Pramual et al. 2016; Takaoka et al. 2017b). Two additional species,
S. monglaense and S. myanmarense, originally described from Myanmar were
recorded as human-biting species in Thailand based on COI sequence similarity of
the specimens morphologically identified as S. asakoae (Jomkumsing et al. 2019).
Simulium asakoae could be readily differentiated from other closely related species

Fig. 7.9 Reaction on human skin to bites of Simulium nodosum in Mae Hong Son province,
northern Thailand
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by the larva, pupa, and adult male (Takaoka and Davies 1995; Takaoka et al. 2018a).
However, morphological differentiation of females is difficult because they lack
reliable diagnostic characters. Recent study has shown that COI barcoding
sequences can successfully differentiate closely related species of the S. asakoae
species-group, including S. myanmarense and S. monglaense (Low et al. 2020).
Thus, COI sequences of some human-biting specimens from northern Thailand
originally identified as S. asakoae complex were similar to those of
S. myanmarense and S. monglaense, suggesting that these species could also occur
in Thailand and are human-biters (Jomkumsing et al. 2019).

Among black fly species that bite humans, only two species, S. nigrogilvum
(Fig. 7.8) and S. nodosum (Fig. 7.10), are considered pests and only in some areas in
northern Thailand. Simulium nigrogilvum has been recorded in Thailand, Myanmar,
and Vietnam (Adler 2020) and was first recognized as a human-biting species in
northern Thailand (Takaoka et al. 2003) where it was considered a pest in some areas
(Adler and McCreadie 2019). Simulium nigrogilvum occurs at mid–high elevations
(849–1589 m above sea level) and is a common human-biter at these areas
(Choochote et al. 2005; Pramual et al. 2016). Seasonal observations revealed two

Table 7.3 Species of black flies in Southeast Asia regarded as potential pests and vectors of disease
agents to humans and other animals

Species Disease agent Reference

Human-biting

Simulium asakoae Unidentified
filarial parasites

Fukuda et al. (2003), Ishii et al. (2008)

Simulium nigrogilvum Unidentified
filarial parasites
Onchocerca sp.

Fukuda et al. (2003), Saeung et al.
(2020)

Simulium nodosum Onchocerca sp. Takaoka et al. (2003), Ishii et al.
(2008)

Simulium chamlongi – Choochote et al. (2005), Jomkumsing
et al. (2019)

Simulium doipuiense complex – Pramual et al. (2016)

Simulium tenebrosum complex
(reported as S. rufibasis)

– Choochote et al. (2005), Pramual et al.
(2016), Takaoka et al. (2019)

Simulium umphangense – Takaoka et al. (2017b)

Water buffalo-biting

Simulium nodosum Onchocerca sp. Takaoka et al. (2003)

Simulium nakhonense – Takaoka et al. (2003)

Chicken-biting

Simulium asakoae Leucocytozoon
sp.
Trypanosoma sp.

Jumpato et al. (2019), Thaijarern et al.
(2019), Pramual et al. (2020)

Simulium chumpornense Leucocytozoon
sp.
Trypanosoma sp.

Jumpato et al. (2019), Thaijarern et al.
(2019), Pramual et al. (2020)

Note that all reports are from Thailand
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peaks of abundance for adult females attracted to humans, one in the dry season
(March) and another at the beginning (June) of the rainy season (Choochote et al.
2005). The pattern of adult abundance was thought to be related to the availability of
the stream habitat of the immature stages. However, thus far, little is known about
the ecology of the immature stages of S. nigrogilvum.

Simulium nodosum was first reported biting humans in India (Lewis 1974) and
later in northern Thailand (Takaoka et al. 2003). In addition to humans, S. nodosum
also bites buffalo (Takaoka et al. 2003). Simulium nodosum has a high rate of biting
activity in the cool–dry season (Jan–May), with a peak in March (Takaoka et al.
2003; Ishii et al. 2008). The daily biting rate of this species is mostly unimodal with a
main peak in late afternoon (16.00–18.00) (Takaoka et al. 2003). Comparison among
human-biting species in Thailand indicates that S. nodosum is most abundant in
low-elevation areas (Choochote et al. 2005; Pramual et al. 2016). This is consistent
with ecological observations of the larval habitat, which found that this species has a
limited elevation range, occurring only at around 800 m above sea level

Fig. 7.10 Simulium nodosum (a) larva, (b) pupa, (c) male, and (d) female. (Male and female
photograph by Dr. Chaliow Kuvangkadilok)
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(Tangkawanit et al. 2011). Although S. nodosum is among the most abundant
human-biting species in lowland areas, geographic distribution of its biting habit is
localized. All reports thus far for the human-biting habit of S. nodosum are from the
northern regions, although large numbers of immature stages were present in western
Thailand (Kanchanaburi province) where there are no reports of human-biting
(Chaiyasan and Pramual 2016). In addition to Thailand, S. nodosum has been
reported from Vietnam and Myanmar (Adler 2020). However, no biting habits of
this species have been reported in these countries. Therefore, further examinations
would be useful for a better understanding of the role of S. nodosum as a pest and
vector.

Many areas in northern Thailand include popular tourist places such as Doi
Inthanon National Park, Chiangmai province, Phu Soi Dao National Park, Uttaradit
province, Mae Wong National Park, Kamphaeng Phet province, where black fly
biting is common. There has been at least one case of local people in Huai Mo
village, Doi Saket district, Chiangmai province, needing to visit the hospital because
of a serious allergic reaction to black fly biting. Economically, black fly biting can
cause direct and indirect costs. People living in areas where biting is common need
some kind of personal protection and anti-itching medicines (Adler et al. 2004).
Black fly biting can reduce the number of tourists in the national parks, thus
decreasing income to the parks and also to local people who depend on the tourism
industry. Estimates in other regions indicate that black fly outbreaks can cause losses
of several million US dollars (Adler et al. 2004; Sarıözkan et al. 2014). However,
there is no formal study of the economic impact of black fly biting in Thailand or
other countries in SE Asia.

In addition to the role as pests of humans and other animals such as cattle, buffalo,
and domestic chicken, black flies in SE Asia are potentially also vectors of human
disease agents (Table 7.3). Three black fly species, S. asakoae, S. nigrogilvum, and
S. nodosum, were reported as vectors of filarial parasites in Thailand (Takaoka et al.
2003; Fukuda et al. 2003; Ishii et al. 2008). The filarial larvae of a possible
Onchocerca sp. was detected in wild adult females of S. nodosum and
S. nigrogilvum. The filarial larvae found in S. nodosum in northern Thailand are
similar to those reported infecting cattle in Japan, suggesting the possibility that this
black fly species is a vector of the Onchocerca sp. transmitted among cattle and
buffalos in Thailand (Takaoka et al. 2003; Ishii et al. 2008). Two filarial species were
found in S. nigrogilvum in Thailand. One adult specimen from Chiang Mai province,
northern Thailand, had an unknown filarial species of Onchocerca or a genus of
Dirofilariinae (Fukuda et al. 2003). Four specimens of S. nigrogilvum from Tak
province, western Thailand, had larvae of Onchocerca sp. (Saeung et al. 2020). In
addition, a filarial larva, possibly of bird origin, in the subfamily Splendidofilariinae
or Lemdaninae was also detected in S. asakoae (Ishii et al. 2008).

Detection of filarial parasites, possibly of the genus Onchocerca, in at least two
human-biting black fly species in Thailand suggested that the flies potentially
transmit these parasites to humans. The unidentified Onchocerca spp. found in
S. nodosum and S. nigrogilvum in Thailand are most likely transmitted among
animals. Occasionally these parasites are transmitted to humans and can develop
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into zoonotic onchocerciasis (Takaoka et al. 2012). There are 37 cases of zoonotic
onchocerciasis reported globally (Saeung et al. 2020). Although zoonotic onchocer-
ciasis has not been reported in SE Asia, the vector species have been postulated
(i.e. S. nigrogilvum, S. nodosum) (Takaoka et al. 2003; Fukuda et al. 2003; Ishii et al.
2008; Saeung et al. 2020), thus there is high possibility of the disease can be found in
humans.

Although black fly research in SE Asia started more than a century ago, the last
two decades have seen more extensive studies. Species checklists along with
morphological keys (Hadi and Takaoka 2018; Takaoka et al. 2017a, 2018b, 2019)
and DNA barcode databases (e.g. Pramual et al. 2011, 2016; Pramual and Adler
2014; Jomkumsing et al. 2019; Low et al. 2020) have expanded rapidly in this
region. This recent strong taxonomic works make SE Asia among the most advanced
in black fly taxonomy. Taxonomic information provides an important backbone for
other research. Detection of filarial parasites (Takaoka et al. 2003; Fukuda et al.
2003; Ishii et al. 2008; Saeung et al. 2020) and avian blood protozoa (Table 7.3)
(Jumpato et al. 2019; Thaijarern et al. 2019; Pramual et al. 2020) highlight the
possible significance of these insects as vectors of disease agents in both humans and
livestock. However, information regarding pest and vector roles is limited to
Thailand. There is a need for further investigation of these roles in countries
(e.g. Malaysia, Myanmar, and Vietnam) where pest and vector species such as
S. nodosum, S. nigrogilvum, and S. asakoae occur, and will be useful for under-
standing the regional impacts on human welfare. Potentially species-rich countries
such as Laos and Cambodia, which thus far are totally unexplored, will increase
knowledge of species diversity of black flies in SE Asia.
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Chapter 8
Ticks: A Largely Unexplored Factor
in Disease Transmission

Weerachai Saijuntha, Trevor N. Petney, Ross H. Andrews, and
Richard G. Robbins

Abstract Tick species occur on most reptiles, birds, and mammals, including
humans. They are major vectors of viral, bacterial, and protozoan pathogens of
animals and humans worldwide. There is currently increasing interest in the tick
species and the pathogens that ticks transmit in Southeast Asia, although substantial
gaps in our knowledge remain. Here we provide an overview of the tick fauna of
mainland and insular Southeast Asia, the pathogens that the ticks transmit, and likely
future changes in the structure of tick communities.
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8.1 Introduction

Formal tick research in Southeast Asia dates from the final years of Western
colonialism, which yielded seminal works by Toumanoff (1944, Vietnam), Anastos
(1950, Indonesia), and Kohls (1950, the Philippines; 1957, Malaysia), to cite some
noteworthy examples. It then underwent a period of minimal interest prior to the
Vietnam War, when both American and Russian workers conducted major surveys
in a number of Southeast Asian countries (Petney et al. 2007). This was followed by
continuing efforts, particularly by Harry Hoogstraal and coworkers, until
Hoogstraal’s untimely death in 1986 (Petney et al. 2007). Recently there has been
an upsurge of interest in both the taxonomy of Southeast Asian ticks (Apanaskevich
and coworkers) and the pathogens that these ticks may transmit (Ahantarig et al.
2008; Petney et al. 2019; Low et al. 2020; Sharifah et al. 2020). In this chapter we
summarize current information on tick biodiversity in Southeast Asia, the role of
ticks as disease vectors, and the rapidly changing dynamics of tick ecology in this
part of the world.

Southeast Asia has been identified as a region with a higher extinction potential
for many species than most other areas worldwide (Schipper et al. 2008; Hughes
2017); indeed, this region is undergoing a biodiversity crisis (Sodhi et al. 2004,
2010; Bickford et al. 2012). There are various factors responsible for this situation,
predominantly habitat destruction and fragmentation (Crooks et al. 2017; Tölle et al.
2017; Imai et al. 2018); for example, the massive increase in oil palm and rubber
plantations at the expense of natural forest areas (Ziegler et al. 2009; Yaap et al.
2010; Gatti et al. 2019), subsistence hunting, the exotic pet industry, and the Oriental
“pharmaceutical” industry (Gray et al. 2017), all of which are exacerbated by rapid
increases in the human population (Bickford et al. 2012).

Many of the wild reptile, bird and mammal hosts of parasites, including ticks,
have been reduced in numbers and their populations restricted to fragmented habi-
tats, increasing the risk of local extinction (Bordes et al. 2015; Fig. 8.1). Thus, some
species of ticks with a limited host range are vulnerable to extinction along with their

Fig. 8.1 A female
Amblyomma supinoi from
Myanmar. This is a
relatively rare, endangered
species found
predominantly on tortoises
in mainland Southeast Asia.
Photo courtesy of James
L. Occi, Center for Vector
Biology, Rutgers
University, New Jersey,
USA (see Robbins and Platt
2001)
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hosts. Durden and Keirans (1996) list six species (from a total of 48, 12.5%) from
Southeast Asia as endangered, while Mihalca et al. (2011) list 10 (from 63, 15.9%)
as co-endangered with their hosts (Table 8.1). Both estimates will probably have to
be increased as escalating land use changes lead to destruction of natural habitats
(Zhao et al. 2006).

By contrast, the increase in stock numbers (particularly cattle, Smith et al. 2018)
has substantially increased the number of potential hosts for ticks, and tick-borne
diseases, at least for those tick species that are able to utilize these animals as hosts.
The large numbers of stray dogs (Traub et al. 2015) also provide suitable hosts for a
variety of tick species capable of pathogen transmission (Irwin and Jefferies 2004;
Petney et al. 2019).

8.2 The Tick Fauna

Southeast Asia has a substantial tick fauna. Petney et al. (2019) listed 97 species
from continental Southeast Asia, to which a number of new or reinstated species
have been added (Dermacentor laothaiensis andD. pasteuri, both found in Lao PDR
and Thailand, Apanaskevich et al. 2019, 2020) (Table 8.2).

There is no similar summary of species for insular Southeast Asia; however, a list
of species known only from islands within the region is provided in Table 8.3. A
large number of endemic species occur in this area, some of which are found on
specific islands or small island groups; for example, Amblyomma robinsoni and
A. komodoense parasitize Komodo dragons (Guglielmone et al. 2014), large varanid
lizards that are found on five small islands within the Lesser Sunda Islands of
Indonesia (Ciofi et al. 1999).

In general, the tick fauna of Southeast Asia is strongly biased toward the genus
Haemaphysalis, followed by substantial numbers of Amblyomma and Dermacentor.

Table 8.1 Endangered tick
species in Southeast Asia.
Modified and enlarged after
Durden and Keirans (1996)
and Mihalca et al. (2011)

Ixodidae

Amblyomma babirussae

clypeolatum

crenatum

javanense

komodoense

robinsoni

supinoi

Haemaphysalis borneata

capricornis

kadarsani

palawanensis

psalistos

vietnamensis
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The genus Ixodes is poorly represented, and very few Hyalomma and Rhipicephalus
have been found in this region (Table 8.2). There are also relatively few represen-
tatives of the soft tick family Argasidae.

The tick faunal community can be defined at different levels: region, country,
ecosystem, host, and microhabitat, and in the case of maritime countries the island

Table 8.2 Number of species
per tick genus in continental
Southeast Asia (modified after
Petney et al. 2019)

Family/genus Number of species

Argasidae

Argas 3

Ornithodoros 2

Ixodidae

Amblyomma 17

Dermacentor 12

Haemaphysalis 43

Hyalomma 2

Ixodes 14

Nosomma 1

Rhipicephalus 6

Total 101

Table 8.3 Tick species found
only on islands in
Southeast Asia

Family/genus Species

Ixodidae

Amblyomma (4) komodoense

kraneveldi

robinsoni

soembawense

Dermacentor (1) confragus

Haemaphysalis (13) bartelsi

borneata

celebensis

hirsuta

kadarsani

luzonensis

mjoebergi

psalistos

renschi

rusae

sumatraensis

susphilippensis

toxopei

Ixodes (2) collocaliae

cordifer

Argasidae

Ornithodoros collocaliae
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(s) occupied. Although recent species lists for mainland Southeast Asian countries
are available in Petney et al. (2019), no such up-to-date lists are available for the
island countries (note: Dermacentor laothaiensis and D. pasteuri were described
after Petney et al. (2019) in Apanaskevich et al. 2019, 2020).

There are numerous country lists, most of which are dated. The older works listed
in the introduction to this chapter have recently been supplemented by Phan (1977,
Vietnam), Tanskul et al. (1983, Thailand), Kolonin (1995, Vietnam), and Kwak
(2018, Singapore).

There are also some local or province lists that provide an indication of the tick
faunas present at smaller scales. For example, Vongphayloth et al. (2016) surveyed
the tick fauna of two protected areas in Nakai District, Khammouane Province, Lao
PDR. Sampling was carried out by dragging vegetation in two habitats (mountainous
primary forest and valley secondary forest), thus providing an indication of the tick
species present in certain natural/semi-natural tick habitats within a defined political
jurisdiction. Vongphayloth et al. (2016) identified 11 species belonging to five
genera (Amblyomma, Dermacentor, Haemaphysalis, Ixodes, and Rhipicephalus).

A number of other local surveys, often focusing on a restricted host spectrum,
have provided valuable information on broad-scale, potentially non-interacting tick
species within tick communities (Hoogstraal et al. 1968, 1972; Durden and Watts
1989; Durden et al. 2008; Mariana et al. 2008; Ishak et al. 2018).

Because national boundaries are artificial constructs that generally do not con-
form to ecological zones, they are of relatively little value in defining the distribu-
tions of tick species. Of more relevance are the ecosystem characteristics themselves,
as these define both the hosts found in an area and the microclimate available to ticks
when they are detached from their host. This is of vital importance because appro-
priate temperatures and relative humidities are critical for tick survival (Needham
and Teel 1991). Nevertheless, many tick species found in the same habitat may not
be part of, or may exist peripheral to, an interactive community. This is often the case
with birds, which may range over vast, ecologically unrelated areas. For example,
Haemaphysalis megalaimae is a parasite specific to the avian family Megalaimidae,
the Asian barbets (previously classified in the Capitonidae, the New World barbets),
which are widespread in Southeast Asia (Guglielmone et al. 2014).

Although the tick fauna of Southeast Asia is relatively well known morpholog-
ically, considerable molecular work will be required to confirm some morphological
descriptions. This is particularly true of several recently described Dermacentor
species, all of which parasitize the ubiquitous wild boar (Sus scrofa) (Petney et al.
2019), calling the concept of allopatric speciation into question. The value of modern
molecular methods can be gauged by the example of Rhipicephalus (Boophilus)
microplus sensu lato (s.l.), which a decade ago was thought to constitute a single
taxon distributed widely throughout the tropics. In 2012, Estrada-Peña et al. showed
that the Australian population in fact represented a previously described species, R.
(B.) australis. Thereafter, Roy et al. (2018) showed that R. (B.) microplus (s.l.)
(Fig. 8.2) consists of at least five species and that morphological methods alone
cannot effectively distinguish these. A similar situation exists in the case of the
brown dog tick Rhipicephalus sanguineus (Fig. 8.3), which consists of at least two
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species (Nava et al. 2015; Sanches et al. 2016). As these species are frequently
encountered and occur on common hosts, it seems likely that less abundant species
with patchy distributions, particularly those found only on islands and that do not
parasitize migratory birds, may well represent species complexes. The elucidation of
such complexes is of obvious importance when considering the potential role of
particular tick species in pathogen transmission.

8.3 Tick Genetic Diversity

Investigations of the genetic diversity of Southeast Asian ticks have largely focused
on Malaysia, where the molecular phylogeny of Ixodes granulatus was described
based on the mitochondrial CO1 sequence (Lah et al. 2014) and subsequently used to

Fig. 8.2 Rhipicephalus microplus sensu lato females in different stages of engorgement from cattle
in northeast Thailand (photo by Weerachai Saijuntha)

Fig. 8.3 An engorged and an unengorged female Rhipicephalus sanguineus sensu lato from a dog
in northeast Thailand (photo by Weerachai Saijuntha)

170 W. Saijuntha et al.



identify the different life history stages of this tick (Lah et al. 2016). Additionally,
the cattle tick Rhipicephalus microplus in Malaysia was characterized using 16S
rRNA and CO1 sequences, revealing four genetically divergent groups within
Malaysian R. microplus and the identification of three principal genetic assemblages
worldwide (Low et al. 2015). More recently, CO1 sequence variation of Malaysian
Haemaphysalis species has been investigated (Ernieenor et al. 2017). Of 19 imma-
ture tick specimens collected from four localities, 16 were molecularly identified as
Haemaphysalis hystricis, and three as H. humerosa, with sequence homologies of
97–99% and 86–87%, respectively. Low intraspecific variation (<0.3%) but high
interspecific value (>15%) among H. hystricis was also observed (Ernieenor et al.
2017).

Some investigations of Southeast Asian tick genetic diversity have been
conducted in areas outside Malaysia, such as a study of Bm86 mRNA sequence
variation among R. microplus populations collected from cattle across Thailand,
which revealed the presence of 6–9 genetically distinct groups related to Thai
geography, all clearly separable from Neotropical R. microplus (Kaewmongkol
et al. 2015). In Vietnam, Hornok et al. (2015) presented molecular evidence to
show that more than one species may exist under the names Ixodes simplex and
Ixodes vespertilionis. And most recently, high genetic diversity has been reported in
six species of hard ticks—Haemaphysalis kitaokai, H. longicornis, H. shimoga,
Ixodes ovatus, Rhipicephalus haemaphysaloides, and R. microplus—from a
China-Myanmar border county, where specimens were analyzed using 16S rRNA
and CO1 sequences. New species or subspecies closely related to H. kitaokai,
H. shimoga, I. ovatus, and R. haemaphysaloides probably exist in this area
(Li et al. 2018).

Fig. 8.4 Ixodes kopsteini
female collected from a
wrinkle-lipped free-tailed
bat (Chaerephon plicatus,
family Molossidae) from
Phaya cave, Loei Province,
Thailand (Photo by
Weerachi Saijuntha)
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8.4 Tick Biodiversity on Host Species

Individual hosts or host populations commonly harbor a number of tick species.
Intensive studies of such on-host communities have been conducted throughout
southern Africa, where tick-borne diseases of livestock are a major veterinary
problem (MacLeod 1970; Horak et al. 1979, 2001; Smith and Parker 2010;
Nyangiwe et al. 2011). The veterinary concerns caused by ticks and their economic
impact led directly to investigations of southern African ticks and tick-borne dis-
eases (De Kock 1945; Horak et al. 2018). Communities of different tick species also
occur on wildlife and companion animals (Petney and Horak 1997; Neves et al.
2004; Matthee et al. 2010; Anderson et al. 2013). Such communities can influence
the potential transmission dynamics of pathogens when more than one species can
act as a vector for the same disease-causing agent (Pfäffle et al. 2013). If two or more
species that transmit different pathogens occur on a host, then infection with multiple
pathogens can occur, leading to greater morbidity or mortality (Petney and Andrews
1998).

Perhaps due to a lack of perceived medical and veterinary significance of ticks in
Southeast Asia, relatively little research has been carried out on tick communities in
this area. Tanskul et al. (1983) provide a tick-host list for Thailand, unfortunately
without listing the number of hosts examined. Of the 39 bird species listed, a single
tick species was found on 33, and 2 tick species were found on 6 bird species. Eight
tick species were found on domestic cattle (Bos spp.), while 8 wild artiodactyl
species were infested with an average of 3.6 tick species. Wild carnivores were
found with an average of 2.6 tick species, insectivores with 3.0 (the common tree
shrew, Tupaia glis, had 7 species), bats with an average of 1 species, lagomorphs
with 3, tapir (Perissodactyla) with 4, pangolins with 1, and rodents with 2.3. Reptiles
averaged 1.7 tick species/host species.

Such figures are all likely to be underestimates due to generally low host sample
sizes and recent additions to the number of tick species known to be present. For
example, humans, who are not natural hosts for ticks, were found to be parasitized by
15 tick species. Tanskul et al. (1983) list seven species from dogs in Thailand,
whereas for mainland Southeast Asia 18 tick species have been recorded (Petney
et al. 2019). Even given these caveats, the data clearly show that individual host
species harbor tick communities with potential interactions between species.

There are numerous small-scale surveys, also often with low sample sizes, that
nonetheless provide an indication of the potentially interactive tick community on
individual host species. Robbins et al. (1997) identified three species of tick from an
Asian golden cat (Catopuma temminckii), including adults of Haemaphysalis
asiatica and Rhipicephalus haemaphysaloides, as well as nymphs of an
undetermined Amblyomma species. Grassman Jr et al. (2004) collected six species
of ticks from eight species of carnivore, finding four tick species on Prionailurus
bengalensis (leopard cat), three on Martes flavigula (yellow-throated marten),
Neofelis nebulosa (clouded leopard) and Cuon alpinus (dhole), two on Catopuma
temminckii, and a single species on Pardofelis marmorata (marbled cat), Arctictis
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binturong (binturong), and Viverra zibetha (large Indian civet). Other Southeast
Asian studies of ticks on wildlife include Audy et al. (1960), Munaf (1978), and
Madinah et al. (2011).

Sahara et al. (2019) identified 1575 ticks on 26 cattle from five different areas of
Indonesia. They found infestations with Rhipicephalus microplus, Haemaphysalis
bispinosa, and Rhipicephalus pilans, with the cattle from three areas infested by both
R. microplus and R. pilans. A survey within the Myanmar-Chinese border area of
Yunnan Province (which is biogeographically related to mainland Southeast Asia,
Yang et al. 2004, Zhu 2017) revealed that goats harbored four tick species
(R. microplus, R. haemaphysaloides, I. ovatus, and H. longicornis) and cattle two
(R. microplus and R. haemaphysaloides). The taxonomic situation was complicated
because R. haemaphysaloides and I. ovatus each fell into three phylogenetic groups,
with intergroup genetic distances higher than is normal between tick species.
Haemaphysalis longicornis ticks also clustered into two separate clades, indicating
that more than one species group could be present (Li et al. 2018).

Movement of hosts can also lead to the simultaneous transmission of one or more
tick species. For example, a king cobra (Ophiophagus hannah) exported from
Malaysia to Taiwan was infested with Amblyomma cordiferum and A. varanense,
with females of both species being present (Norval et al. 2009). And the dramatic
increase in commerce and communication between Southeast Asia and the rest of the
world is almost certain to result in the importation of exotic tick species, as in the
case of two male specimens of the Neotropical sloth tick Amblyomma varium
collected from a male and female of the southern two-toed sloth (Choloepus
didactylus) that were shipped to Wildlife Reserves Singapore in 2012 (both tick
specimens, identified by RGR, have been deposited in the permanent research
collections of the Peabody Museum of Natural History at Yale University, accession
numbers YPM-ENT 300786–300787).

Very few tick species are specific parasites of a single host species. Most species
have some preference for a group of hosts. Thus, a number of Dermacentor species
occur most commonly on wild boar (Vongphayloth et al. 2018), while others prefer
bats, tortoises, snakes and lizards, and particular mammal species (e.g., Amblyomma
javanense on pangolins, Manis spp.) (Kwak et al. 2018; Petney et al. 2019). In
addition, the immature stages of some tick species may have host preferences that
differ from those of the adults (Petney et al. 2019). This mixture of hosts and life
history stages complicates efforts to define tick communities (Petney and Horak
1997), requiring a knowledge of host species utilization by both adults and imma-
tures in order to ascertain potential pathogen transmission pathways. Bats
(Chiroptera) are unusual as they can act as hosts for both argasid and ixodid ticks,
potentially allowing for the transfer of pathogens between these two families
(Table 8.4).
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8.5 Ticks as Vectors

Ticks are known to be major vectors of human and animal viral, bacterial, and
protozoan diseases worldwide (de la Fuente et al. 2008; Guglielmone and Robbins
2018). Although this is also the case for Southeast Asia, comparatively little large-
scale work has been done in this region (Petney et al. 2019). However, with the
advent of molecular taxonomic methods, local studies have revealed a large number
of hitherto unknown pathogenic agents, particularly members of the Rickettsiaceae
(Rickettsia, Ehrlichia, and Anaplasma) (Petney et al. 2019; Low et al. 2020), the
pathogenic potentials of which remain to be determined.

Petney et al. (2019) list a single argasid (20% of the known total number of
Southeast Asian species) and 25 ixodids (26%) as potential vectors for human
pathogens: one Argas species, three Amblyomma, five Dermacentor, one Ixodes,
13 Haemaphysalis, and three Rhipicephalus. This contrasts with potential vectors of
pathogens of wildlife, stock and companion animals, with three (60%) argasids, all
belonging to the genus Argas, and 14 ixodids (14%) (three Amblyomma, two
Dermacentor, seven Haemaphysalis, and two Rhipicephalus). In both cases, a
large number of unidentified tick species were associated with potential pathogens.
Low et al. (2020) list 14 species of ixodid tick associated with rickettsiae in
Southeast Asia (we know of no record of Amblyomma integrum from this region)
from a variety of wild, companion and stock animals as well as humans.

8.6 Pathogen Identification

The advent of molecular methods has made pathogen identification relatively rapid
and precise (Solano-Gallego et al. 2016; Lempereur et al. 2017; Seesao et al. 2017).
It has, however, led to the discovery of a large number of pathogen species that have
yet to be taxonomically defined, i.e., agents lacking a binomial name. Thus, in
continental Southeast Asia, Petney et al. (2019) listed 14 known bacterial pathogens
or potential pathogens of humans and 17 species with no biologically correct
designation. For vertebrate animals the situation was slightly better for bacteria,

Table 8.4 Argasid and ixodid tick species recorded from bats in Southeast Asia. Ixodes simplex
and I. vespertilionis may be species complexes (Guglielmone et al. 2020). Ixodes kopsteini, an
unusual species in which the eggs hatch in the dead body of the female, is shown in Fig. 8.4

Family Tick species

Argasidae Argas pusillus

Argas vespertilionis

Ornithodoros batuensis

Ixodidae Ixodes kopsteini

Ixodes simplex

Ixodes vespertilionis
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with 16 known and 16 unnamed species, while there were eight species in each
category for protozoa. Most of the publications commenting on unnamed microbial
species are very recent, and the ticks or hosts in which the potential pathogens were
discovered represent a minuscule subset of those that occur in the region. We
therefore expect a large increase in the number of undescribed pathogen species as
more tick species and hosts are examined.

8.7 Pathogen Diversity

Wild animals are a potential source of a variety of bacterial and protozoan pathogens
in Southeast Asia. Kho et al. (2015) examined 12 Amblyomma varanense and nine
Amblyomma helvolum from seven Python molurus (Indian rock python) and six
A. helvolum from a single Naja sumatrana (equatorial spitting cobra) from Johore,
Malaysia. They found two potentially novel spotted fever group rickettsiae in the
ticks: Candidatus Rickettsia sepangensis was determined from an engorged
A. varanense with a high sequence similarity to Rickettsia tamurae. Candidatus
Rickettsia johorensis was present in two samples from A. helvolum and two
A. varanense ticks; it is closely related to Rickettsia raoultii. Anaplasma and
Ehrlichia DNA was also found in seven and two ticks, respectively. Thus, four
potentially new pathogens were found in a small sample of ticks from two host snake
species.

In a similar study, Sumrandee et al. (2014b) examined five A. helvolum from
single specimens of Python bivittatus bivittatus (Burmese python), Xenochrophis
piscator (Asiatic water snake), and Ptyas korros (Indo-Chinese rat snake) and found
that all ticks contained rickettsia, while an additional four Ophiophagus hannah
(king cobra) infested with 19 ticks were again all infected with rickettsia. Five
potentially novel species of rickettsia were found, with some isolates sequencing
close to Rickettsia belli and R. raoultii. In addition, ticks from the same snakes
yielded Francisella-like species (Sumrandee et al. 2014a) and Hepatozoon species
(Sumrandee et al. 2015). In their 2015 study, Sumrandee et al. found Theileria
species in Haemaphysalis lagrangei, Ha. obesa, and Rhipicephalus microplus from
sambar deer (Rusa unicolor) and Hepatozoon species in Dermacentor auratus and
D. atrosignatus from wild boar.

Domestic and stray dogs also harbor a number of tick-borne pathogens through-
out Southeast Asia, including Babesia vogeli, B. canis, Ehrlichia canis, and
Hepatozoon canis, with multiple species infections possible (Irwin and Jefferies
2004; Inpankaew et al. 2016; Petney et al. 2019). The vectors potentially include
18 species of ticks that have been found infesting dogs (Petney et al. 2019).

There is also considerable scope for potential human infection. Fever of unknown
origin is commonplace in Southeast Asia, and some infections are probably caused
by tick-borne pathogens (Aung et al. 2014; Kho et al. 2016).

Parola et al. (2003a) tested ticks collected from animals, people, and vegetation
on the Thai-Myanmar border and from Vietnam. Six hundred and fifty specimens
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representing 13 species were collected and analyzed for Anaplasma, Ehrlichia, and
Rickettsia species. Three species each of Anaplasma and Ehrlichia were found, as
well as two species of Rickettsia. They then examined the blood of 46 patients with
fever for rickettsial infection and found that eight were infected with spotted fever
group rickettsia, of which only one, an infection with R. felis, does not have a tick-
host cycle (Parola et al. 2003b).

8.8 Dynamic Changes in Tick and Tick-Borne Pathogen
Communities

Southeast Asia is undergoing a period of major change, including massive increases
in the human population (Jones 2013), changes in land-use away from natural
habitats to urban, suburban, and agricultural land (Zhao et al. 2006), and climate
change (Petney et al. this volume). During the nineteenth century, European trav-
elers, such as Mouhot (1863, 1864) Wallace (1869) and Warington-Smyth (1895),
described Southeast Asian countries as having limited access to rural areas, with
natural vegetation predominating over agricultural land. The same situation was
reported in the 1930s by May (1949). Now, much of Southeast Asia is connected by
roads, aviation, and marine and freshwater navigation (Bowen Jr 2016; Kaffashi
et al. 2016). The transition from natural habitats to human-influenced environments
has a number of implications for the tick fauna of this region:

1. Reduction in natural habitats will reduce the number of potential tick host species,
particularly the larger species that require larger territories to survive. In many
areas, this will reduce and potentially eliminate hosts for ticks with a limited host
range.

2. Habitat fragmentation will have the same effect unless large enough areas are
preserved (Lynam and Billick 1999; Trisurat et al. 2010; Gibson et al. 2013).

3. Removal of natural habitats will bring humans into potential contact with tick
species transmitting novel pathogens (Estrada-Peña et al. 2014; Loh et al. 2016).

4. Increases in urban and peri-urban environments will lead to increases in
synanthropic vertebrate species that will act as hosts for their own tick faunas
(Klimant et al. 2015; Hassell et al. 2017; Morand et al. 2019).

5. A spectrum of tick-borne diseases will emerge in these altered environments
(Rizzoli et al. 2014; Noden et al. 2017).

6. Increases in grazing and pasture land for stock animals will lead to increased
populations of those tick species that feed on these hosts, with consequent
increases in tick-transmitted diseases.

7. There will be a consequent increased need for tick control and for greater
knowledge of tick-borne diseases by physicians and veterinarians.
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8.9 Conclusions

Ticks are common parasites of wild, stock, and companion animals in Southeast
Asia, where there is an increasing recognition of their medical and veterinary
significance. This has led to a number of studies that show the complexity of the
tick communities inhabiting different ecosystems and infesting different hosts, as
well as to recognition of the potential pathogens that they do or could transmit.
Although the tick fauna is relatively well known, little information is available
concerning interactions within tick communities and their relation to the epidemiol-
ogy of tick-borne diseases.
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Chapter 9
Parasite Diversity, Dynamics, and Climate
Change

Trevor N. Petney, Paiboon Sithithaworn, and Ross H. Andrews

Abstract Global climate change is now evident across the globe and appears to be
accelerating. In Southeast Asia this will lead to substantial increases in temperature
and regional changes in rainfall patterns with some areas experiencing wetter
conditions and others increased drought. Complicating factors include severe
weather events, sea level rise, and drought-induced wild fires. As parasites are reliant
on the external environment during parts of their life cycle and are endothermic, such
changes will influence both the chances of parasite survival and population dynam-
ics. In addition, hosts will also be influenced by these factors compounding the
effects of climate. Our database is still limited and studies of local and regional
parasite communities are essential for our understanding of climate impact on human
and animal health.
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9.1 Introduction

Global climate change does and will continue to have a major impact on the
environments in which animals live (Nunez et al. 2019; Sheldon 2019; Román-
Palacios and Wiens 2020), and in spite of a growing recognition of its general
significance for the human population, insufficient is being done to reduce it to an
“acceptable” level (IPCC 2019; Forster et al. 2020). Our knowledge of climate
change is an ongoing process with ever improving predictive models providing a
basis for our understanding of future scenarios (O'Neill et al. 2017; Zhu et al. 2019).
A very recent estimate suggests that the most likely range of average temperature
increase with doubling of the CO2 concentration in the atmosphere lies between
2.6 �C and 3.9 �C with an increase of 4.5 �C being possible although unlikely
(Sherwood et al. 2020). In addition to increasing temperatures and changing patterns
of rainfall, severe weather events, sea level rise, and drought-induced wild fires will
become more frequent, leading to additional environmental damage (Anticamara
and Go 2017; Van de Pol et al. 2017; Salmo III et al. 2019; Lin et al. 2020; Stephens
et al. 2020). These changes will have a major effect on the human population
(Xu et al. 2020) and the parasites using humans and animals as hosts (Carlson
et al. 2017).

With respect to parasite biodiversity, climate change will affect both the parasite
in its free-living environment and the hosts which it requires to complete its life
cycle. Potential effects relating to parasites include changes in the environment
leading to reduced biodiversity, host extinctions or invasions in certain areas,
increases or decreases in habitats for vectors or intermediate life history stages and
changes in population dynamics, particularly for species whose breeding season is
influenced by temperature and rainfall (Marcogliese 2008, 2016; Rohr et al. 2011;
Chevalier et al. 2016; Short et al. 2017). Temperature related changes may include a
speeded up life cycle leading to more generations/year, increasing the area of
transmission, or pathogenicity, or possibly breaking the synchronization between
host and parasite (Zhou et al. 2008; Mas-Coma et al. 2009; Polley and Thompson
2009; Paull and Johnson 2011; Short et al. 2017).

Rohr et al. (2011) predict that specialist parasites and those with complex life
cycles are more likely to go extinct than generalist parasites and that range shifts
could expose hosts to novel parasites, which might lead to more severe disease. In
contrast, Molnár et al. (2013) suggest a “shelter effect” in which behavioral thermo-
regulation by the intermediate host can act as a buffer for the larvae of indirectly
transmitted parasites against the temperature extremes found as a consequence of
global warming. Clearly, before any conclusions can be drawn sufficient field data
must be collected from a variety of parasite species before any generalization can
be made.

In addition, drought, flooding, or increasing temperatures may lead to tipping
points beyond which the parasite or a host cannot survive (Altizer et al. 2013;
Cizauskas et al. 2017). These could be induced by metabolic ecology (how well
environmentally buffered the parasite species is), host body size, with larger wild
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hosts being more susceptible to extinction, and the ecology of transmission and
persistence. The ability to switch hosts can lead to the survival of a parasite species
but also harbors the possibility of increasing pathogenicity (Rohr et al. 2011),
something that we are all now aware of (Touati et al. 2020). Carlson et al. (2017)
estimated extinction rates for eight major parasite clades. Their model suggests that
5–10% of species will become extinct by 2070 from habitat loss due to climate
change. They found that ectoparasites such as ticks are more likely to become extinct
than endoparasites. The extinction of hosts may lead to up to 30% of parasitic worm
species dying out. Nevertheless, in some areas parasite species richness may increase
due to climate driven invasions.

9.2 The Situation in Southeast Asia

Although models of climate change predict substantial changes in temperature (Zhu
et al. 2020) and precipitation, local variation is likely to occur (Tangang et al. 2019).
Thus, general models covering the entirety of Southeast Asia may not be locally
valid. Nevertheless, Amnuaylojaroen and Chanvichit (2019) predict a general reduc-
tion in rainfall by (�1)–(1) mm/day, with temperature increasing by up to 2–3 �C.
The authors predict a higher likelihood of drought in both the dry and rainy seasons.
Based on projected rainfall changes, simulations predict a significant decrease in
rainfall over western maritime Southeast Asia during the inter-monsoon periods but
no change during the wet season (Kang et al. 2019). Ge et al. (2019) show, based on
their model, that extreme precipitation events are likely to increase across Southeast
Asia with temperature increases of 1.5 �C and 2.0 �C.

Tangang et al. (2019) modelled potential changes for rainfall in Thailand to the
end of the twenty-first century based on regional changes in the summer and winter
monsoons. They showed regional variation between the southern areas and the rest
of the country with respectively up to 15% drier and wetter conditions during the dry
season (October to May). During the wet season (June to September), drier condi-
tions are predicted for the whole country with the magnitude of change being >40%
in some cases. The current situation can be gauged by considering Fig. 9.1. Currently
monsoon rainfall leads to temporary, massive increases in flow levels in rivers and
streams with consequent inundation of flood plains. Either increasing or decreasing
levels of rainfall would have significant impacts on local freshwater ecosystems.

For Malaysia, Ngai et al. (2020) predict a decrease in the rainfall frequency over
Malaysia with rainfall intensity and extremes over the Peninsular Malaysia likely to
decrease in winter and increase in summer and autumn towards 2100. An extreme
decrease in rainfall frequency and extremes is predicted for western Peninsular
Malaysia (�4 to �8%). In some areas the likelihood of drought will increase
(Tang et al. 2019).

The island states of Indonesia and the Philippines are particularly susceptible to
climate change. The Philippines is predicted to have higher water availability with
increased but more variable patterns of river flow and flooding (Tolentino et al.
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2016; Cabrera and Lee 2018). Rainfall patterns in Indonesia are tied to the presence
or absence of El Nino (Chandrasa and Montenegro 2020) which are exacerbated by
climate change (Thirumalai et al. 2017). Based on models and observational data, El
Niño substantial increased the probability decreasing rainfall in the dry season in
Indonesia with increasing temperatures due to human-induced climate change (King
et al. 2016). In general, the El Nino Southern Oscillation (ENSO) has a major effect
on the Southeast Asian climate. It is also increasing in frequency (Freund et al. 2019)
and will continue to do so even after the global mean temperature has stabilized
(Wang et al. 2017). During the 2015–2016 El Nino event there was a significant
drought leading to substantially reduced photosynthesis (Qian et al. 2019). In
general it has a significant effect on the natural and agricultural environments (Ismail
and Chan 2019; Qian et al. 2019). El Nino will reduce precipitation whereas La Nina
will increase it (Sun et al. 2020). ENSO also interacts with human driven climate
change leading to positively feedback on increasing temperature and the number of
drought events (Thirumalai et al. 2017; Rifai et al. 2019).

As with precipitation, the likelihood of extreme heat waves with high tempera-
tures and long duration (>60 days) will increase in Southeast Asia by the end of the
century (Jia et al. 2019; Villafuerte et al. 2020). For Borneo, models indicate that the
minimum temperature will increase by 3.3–4.7 �C and the maximum by 3.0–4.6 �C.

Fig. 9.1 The Songkhram River in the northeast of Thailand. During the rainy season the water level
can rise by as much as 18 m with a flood plain covering up to 1850km2 in an exceptional year
(Petney et al. 2009) (photo T.N. Petney taken at the beginning of the dry season 2012)
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This is a very substantial increase which will significantly impact the ecology of this
island (Sa’adi et al. 2020). In particular, the increase in night temperatures is likely to
be higher than during the daytime (Li 2020; Sa’adi et al. 2020).

With reduced precipitation and higher temperatures, there is also likely to be an
increase in wild fires (Vadrevu et al. 2019). El Nino is also associated with an
increasing risk of wildfires leading to a measurable increase in atmospheric CO2,
thus exacerbating climate change.

In addition to changes in precipitation and temperature, other climate associated
changes include sea level rise affecting low lying areas (in southern Vietnam there is
also a significant subsidence of land particularly in the Mekong Delta area) (Erban
et al. 2014; Jevrejeva et al. 2016; Tang 2019). For Southeast Asia the estimated mean
sea level rise is 0.3 m by 2040 (Jevrejeva et al. 2016).

To summarize, although local variation is possible the general picture is for
increasing temperatures, more frequent extreme weather events both in terms of
heavy precipitation as well of droughts, wildfires and, in low lying, coastal areas,
loss of habitat due to increasing sea levels.

9.3 Influence on Parasite Biodiversity

Climate change can influence parasite biodiversity in a number of ways via a number
of causes depending on local conditions. Causal factors leading to biodiversity
changes are higher temperatures, more or less rainfall, extreme weather events,
and rising sea levels. The biomes present are mangroves, tropical forests (dry and
moist broadleaf) and freshwater ecosystems including lakes and rivers (Olson et al.
Olson and Dinerstein 2002; Abell et al. 2008). In addition, some parasite species and
their hosts can be found plentifully in agricultural settings, for example in commonly
found rice paddy-fish systems and aquaculture (dos Santos and Howgate 2011;
Kiatsopit et al. 2012; Petney et al. 2013; Clausen et al. 2015) as well as in urban
areas (Anh et al. 2007; Zain et al. 2012; Himsworth et al. 2013; Simonsen and
Mwakitalu 2013).

Significant changes in climate, such as drought, frequent flooding and wildfires,
or indeed sea-level rise, can cause sufficient changes to the physico-chemical
environment to lead to niche modification and a reorganization of the animal and
plant community (Walther et al. 2002; Sheldon 2019), including the vectors and
hosts of parasites (Brooks and Hoberg 2007; Cizauskas et al. 2017). Thus, consid-
eration of climate change and parasites implies changes in host and parasite
biodiversity.
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9.4 Mangroves

Changes to mangroves along the coastline of Southeast Asia will predominantly be
due to rising sea levels (Saintilan et al. 2020). These authors found that there is a
>90% likelihood that mangroves will not adapt to a sea level rise of >6.1 mm/year;
however, the sea level rise is predicted to reach more than 7 mm/year by 2050
(Church et al. 2013; Bamber et al. 2019).

From the parasite point of view, mosquitoes and mosquito transmitted parasites
are most likely to be effected. Chaiphongpachara and Sumruayphol (2017) carried
out a study of coastal mosquitoes in an area containing mangroves in Samut
Songkhram province, a central province lying southwest of Bangkok, Thailand.
The most abundant species were Anopheles epiroticus (37.13%), Culex sitiens
(34.92%), and C. quinquefasciatus (27.66%) (n ¼ 488) with C. quinquefasciatus
being the main vector ofWuchereria bancrofti and Brugia malayi in Southeast Asia
(Dickson et al. 2017), A. epiroticus is considered to be a secondary vector of malaria,
with particular relevance in coastal regions (Sumruayphol et al. 2010; Tananchai
et al. 2019). It occurs in coastal brackish water sites from southern Vietnam to
peninsular Malaysia (Manguin et al. 2008). The vector capacity for human patho-
gens by Culex sitiens remains insufficiently studied. Other species found in this
study were Aedes aegypti and Culex gelidus. Only A. epiroticus and C. sitiens were
found in significant numbers within 200 m of the sea; however, both species were
negatively correlated with mangroves (A. epiroticus significantly), A. epiroticus
positively, significantly correlated with the presence of green algae and C. sitiens
with temporary but not permanent pools. C. sitiens was found to be the dominant
brackish water species in other studies in Malaysia (Ismail et al. 2018) and Thailand
(Prummongkol et al. 2012). At least for these species, the maintenance of mangrove
areas may inhibit the development of vector-mosquito populations.

9.5 Tropical Forests

The forests of Southeast Asia are mostly aseasonal. Large-scale seasonal variations
in both temperature and rainfall influence tree phenology and species distributions in
the marginal tropical forests, whereas seasonality in rainfall is the influential factor in
the monsoon tropics (Deb et al. 2018). The impact of climate change is already being
felt with increasing tree mortality leading to changes in forest structure and species
composition (Hérault and Gourlet-Fleury 2016; Margrove et al. 2015). Deb et al.
(2018) indicate that the forest ecosystems of Southeast Asia are highly vulnerable to
climate change.

Tropical Southeast Asian forests are amongst the world’s most biodiverse areas
(Olson and Dinerstein 2002). They are currently undergoing an era of unprecedented
destruction (Laurance 2007; Kim et al. 2015; Chisholm et al. 2016; Namkhan et al.
2021) with a subsequent loss of biodiversity (Sodhi et al. 2004; Estoque et al. 2019).
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This will be enhanced by climate change with drought increasing in some areas and
with the increasing likelihood of extreme weather events and wildfires; the destruc-
tion of these forests will also feed back to increase global warming (Chen et al. 2017;
Mitchard 2018).

Much of the work on wildfires in Southeast Asia deals with those occurring in
peat deposits (Page and Hooijer 2016; Lin et al. 2019); however, forest ecosystems
are also in danger (Brando et al. 2019).

Changes in forest habitat will influence a variety of parasites, for example
changes in the tick species present are likely to occur with forest destruction with
concurrent changes in host availability and microclimate, as well as with an increas-
ing tendency towards drought conditions (Saijuntha et al. 2021a). When forest is
converted to agricultural land, particularly for grazing, the tick community will
change towards those species using stock animals as hosts and away from those
using native animals. Flea and louse communities are likely to be influenced in a
similar way due to a reduction in available host species.

Disease vectors also respond to changes in forest systems: one of the main vectors
of malaria in Thailand, Anopheles dirus has a preferred larval habitat of shallow,
slow flowing streams in forest habitats with adaptations to temporary habitats
(Rampa Rattanaritikul et al. 1995; Obsomer et al. 2007). It is the major vector of
forest malaria in many areas of mainland Southeast Asia (Oo et al. 2003; Sanh et al.
2008; Maeno 2017; Nguitragool et al. 2019). With the destruction of large forested
areas, and increasing temperatures and the likelihood of drought driven by climate
change the natural habitat of this species is likely to be reduced. With the removal of
forest, particularly for agriculture, other vectors of malaria are likely to dominate
(Rampa Rattanaritikul et al. 1995).

There is evidence that primates from forests damaged by extreme climate events
show a higher level of parasitism those in undisturbed forests (Behie et al. 2014).

9.6 Cities, Towns, and Villages

These accumulations of humans are the most likely areas in which direct parasite
transmission can occur as the contact rate between individuals and the likelihood of
hand to mouth transmission (particularly where sanitary hygiene is poor) are high. In
addition, urban areas provide the natural habitat for a variety of human associated
hosts such as rats (Zain et al. 2012). Clearing vegetation from such areas will also
increase incident radiation and asphalted roads and reflection from the facades of
buildings will contribute to the development of heat islands with temperature
increases caused by both global warming and land use change (Lee et al. 2017). In
addition there is likely to be a scarcity of clean water and an accumulation of gray
(waste) water (McIntosh 2014).

Increased temperatures combined with urban drought and the predominance of
wastewater will likely change the composition of parasite vector communities
(Petney and Taraschewski 2011). Wastewater with a high content of organic matter
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provides a suitable habitat for C. quinquefasciatus, a major vector of W. bancrofti
(Simonsen and Mwakitalu 2013) and can also act as suitable habitat for various
helminth species (Ngoen-klan et al. 2010).

Ascaris lumbricoides probably has sufficient resistance to temperature and dry
environments to continue to successfully inhabit Southeast Asian cities (Blum and
Hotez 2018). Other helminths of public health significance can infect rodent species.
Zain et al. (2012) found a community of 11 helminth species (seven nematodes,
three cestodes and one acanthocephalan) from 450 Rattus rattus and R. norvegicus in
Kuala Lumpur, Malaysia. Of these Hymenolepis nana is a well-known human
pathogen (Sirivichayakul et al. 2000; Thompson 2015) and Angiostrongylus
malayensis is possibly a human pathogen (Prociv et al. 2000).

Hookworms are common parasites, particularly in the tropics and subtropics.
Necator americanus and Ancylostoma duodenale occur worldwide, while
A. ceylonensis is also found in Southeast Asia with N. americanus and
A. ceylonensis occurring most frequently depending on location (Jiraanankul et al.
2011; Ngui et al. 2012; Inpankaew et al. 2014). Climate change is thought to be a
possible cause for the switching of species dominance. For example, the dominance
of N. americanus may switch to an Ancylostoma species due to increasing temper-
atures and drought as Ancylostoma species can undergo arrested developmental as
perpetual larvae in human tissues, thus surviving environmental extremes (Blum and
Hotez 2018).

9.7 Agricultural Land

There have been major increases in agricultural land throughout Southeast Asia
(Imai et al. 2018; Zeng et al. 2018) with considerable implications for human health
(Burkett-Cadena and Vittor 2018; Shah et al. 2019). Much of the change occurs via
forest destruction, dominated by increases in wood and food production. The
destruction of forests opens land to increased incident radiation and thus to both
flooding and drought potential (Prăvălie 2018), as well as releasing carbon into the
atmosphere feeding back positively on global warming (Lawrence and Vandecar
2015). The area under a variety of high yield cash crops, such as rubber, oil palm,
and coffee, has increased massively over the last two decades (Fox and Castella
2013).

Shah et al. (2019) performed a meta-analysis which showed that people exposed
to an agricultural setting in Southeast Asia are on average 1.74 (CI 1.47–2.07) times
more likely to be infected with a pathogen than those unexposed, with oil palm,
rubber, and non-poultry based livestock farming being significantly associated with
hookworm and malaria infections.

Rubber plantations have shown unprecedented growth (Ziegler et al. 2009). In
2009, Petney et al. predicted that such plantations would offer the shade and small
streams ideal as breeding sites for Anopheles dirus, a major vector of malaria in
Thailand. Since this time a variety of malaria vectors have been collected in rubber
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plantations (An. aconitus, An. barbirostris s.l., An. campestris, An. dirus s.l.,
An. latens, An. maculatus s.l., An. minimus s.l., An. philippinensis, An.
pseudowillmori, Anopheles umbrosus sensu lato (s.l.)), with their significance
depending on the location of the plantation, its age and the season of collection
(Tangena et al. 2016; Sumarnrote et al. 2017; Pimnon and Bhumiratana 2018).

Thellmann et al. (2019) have shown that climate change leading to particularly
dry years could have a significant effect on the water balance via higher evapotrans-
piration rates increasing periods of water scarcity. Nevertheless, for the Greater
Mekong Subregion the area suitable for rubber cultivation will potentially increase
to 50% in 2030 compared to 44.3% at the turn of the century (Golbon et al. 2018).

The transmission of filariasis is also potentially influenced by climate change. Of
the filarial species in Southeast Asia Brugia malayi is the predominant species
Brunei, Darussalam, Indonesia, Malaysia, and Vietnam while W. bancrofti predom-
inates in Lao PDR, Philippines, and Myanmar. Both species occur in Cambodia, the
southern Philippine islands, and Thailand (Noordin et al. 2013). A third species,
B. timori, is confined to the Lesser Sunda Islands on Indonesia (Fischer et al. 2004).

In the Philippines Mansonia uniformis and Ma. bonneae, both vectors of
B. malayi, breed in rice paddies (Cabrera and Jueco 1972). Rice fields are also a
significant habitat for the life cycle of trematodes with snails as intermediate hosts.
The liver fluke Opisthorchis viverrini (Kiatsopit et al. 2012) is the major risk factor
for developing cholangiocarcinoma in the Lower Mekong Region (Khuntikeo et al.
2018a). This is a major cause of mortality and socio-economic distress for rural
families in this area (Khuntikeo et al. 2018b). The success of the life cycle of the
parasite in rice fields is enhanced by rice farmers buying fish for rice-fish agriculture,
with the likelihood that the fish supplied by hatcheries and nurseries and which act as
second intermediate hosts are already infected (Pitaksakulrat et al. 2013; Oron et al.
2015). The Bithynia snail first intermediate hosts already occur in most freshwater
ecosystems throughout the area (Petney et al. 2013).

In addition, other trematode pathogens can be found in snail intermediate hosts in
rice fields, including Haplorchis taichui, H. pumilio and various echinostome
species (Saijuntha et al. 2013; Madsen et al. 2015; Sato et al. 2015).

How will climate change influence the diversity of rice field parasites? Three
factors come into play, increasing temperature, reduced or increased rainfall and
extreme weather events. Estimates suggest that rice yield will continue to be reduced
as climate change increases (Prabnakorn et al. 2018, 2019). Increasing temperature
will most likely speed up the life cycle of the ectothermic intermediate hosts, as well
as the parasites, potentially leading to more rapid population growth. Decreasing
rainfall and increasing drought conditions, for example in northeast Thailand, may
reduce suitable habitat for the intermediate hosts thus reducing population levels.
This is particularly true for species with limited salt tolerance, but may be an
advantage for species preferring more saline conditions (Kim et al. 2016; Hintz
and Relyea 2019) providing salinity does not rise above lethal thresholds as the
northeast of Thailand lies on a saline geological formation and water salinity will
increase with climate change (Pholkern et al. 2018). The survival ofO. viverrini eggs
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is also dependent on salinity, above a threshold of which the eggs do not survive
(Sereewong et al. 2018).

The effect of drought was determined for Bithynia siamensis goniomphalos, the
first intermediate host of Opisthorchis viverrini. This led to a population collapse
with the drying out of its pond habitat, with few specimens surviving deep in the
remaining mud. Infection rates with O. viverrini plummeted during this time. With
sufficient rainfall, the population of B. s. goniomphalos increased rapidly
(Brockelman et al. 1986; Chaiyasaeng et al. 2019).

Drought is also likely to increase soil salinization, particularly in areas such as
northeast Thailand where sub-surface salt layers occur (Kohyama et al. 1993). This
can influence land-use and subsequently parasite host distribution.

In Southeast Asia three members of the genus Schistosoma that are pathogens of
humans are known, S. japonicum, S. malayensis, and S. mekongi. Schistosoma
japonicum is the most common pathogen of humans in parts of Southeast Asia
and China, and is the only human pathogenic schistosome in the Philippines and the
Celebes (Indonesia) (Yang and Bergquist 2018). It is frequently found together with
its snail intermediate hosts in rice fields (Abao-Paylangco et al. 2019). Models based
on climate change and the biology of S. japonicum show an increased risk of
infection throughout the region (Yang and Bergquist 2018). Schistosoma malayensis
is only found in parts of the Malay Peninsula, while S. mekongi occurs in parts of
Cambodia, Lao PDR, and Thailand (Gordon et al. 2019).

9.8 Natural Freshwater Ecosystems

Southeast Asia has some of the most extensive, endangered, wetland ecosystems in
the world (Dudgeon 2002) containing very high levels of biodiversity (Abell et al.
2008). These wetlands are currently under threat from a number of factors including
human population growth and the conversion of natural habitats to agricultural land
(destruction, extensive water use, pollution, canalization, dam construction), as well
as transborder conflicts, all of which will be influenced by climate change, particu-
larly drought and extreme weather events (Dudgeon 2002, 2019; Welcomme et al.
2016; Williams and Patricola 2018). These changes are likely to have a significant
effect on the transmission of parasites with freshwater aspects in their life cycles
(Sithithaworn et al. 2012; Pitaksakulrat et al. 2013; Ziegler et al. 2013). As indicated
above, the increasing human population is not only reducing the extent of natural
freshwater ecosystems via land-use change, but also increasing the amount of
wastewater, potentially contaminated with parasites, into such systems (Zhao et al.
2006; Evans et al. 2012).

Freshwater fish and crustaceans are a major protein source in inland areas of
mainland Southeast Asia where it is traditional to eat them either raw, fermented, and
generally undercooked (Petney et al. 2018; Saijuntha et al. 2019). The breeding
season of many commercially important species is coordinated with the rise in water
level in the monsoon season during which time they move from the rivers into the
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flood plains. As the water recedes they move back into rivers and streams (Tanaka
et al. 2015). These organisms are intermediate hosts of a variety of parasite species
pathogenic to humans, for example Opisthorchis viverrini a liver fluke that is the
major risk factor for human cholangiocarcinoma in the region (Khuntikeo et al.
2018a), Haplorchis (Onsurathum et al. 2016), and Paragonimus species (Yoshida
et al. 2019). Figure 9.2 shows bamboo constructions well above the water level of
the Songkhram River to which fish traps are tied during the rainy season.

Communities of parasites and hosts can be extensive, for example a large number
of freshwater snails act as hosts for a wide variety of trematodes of both medical and
veterinary importance (Saijuntha et al. 2021b). Mard-arhin et al. (2001) examined
the parasite community in snails and fish from natural freshwater ecosystems in
northern Thailand. They found eight taxa of helminth parasite none of which could
be identified to species level. A variety of other studies have found similar results
with relatively high parasite diversity in such natural systems (Saenphet et al. 2001;
Wongsawad et al. 2004; Kiatsopit et al. 2016; Veeravechsukij et al. 2018).

The north and northeast of Thailand are subject to droughts that are likely to
increase with climate change, potentially leading to increases in salinity in both
urban and rural areas (Arjwech et al. 2019). The salt originates from lacustrine salt

Fig. 9.2 Preliminary construction of fish traps (Lob yuen) along the Songkhram River in northeast
Thailand. The water flow is from left to right and the water level will rise to above the top horizontal
bar on the construction. The fish move into the dense bamboo vegetation for protection during the
breeding season. (Photo T.N. Petney)
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layers lying between layers of shale and sandstone (Tabakh et al. 1998). These salt-
affected soils limit drainage during the monsoon season, during which the salt moves
towards the soil surface where it deposits via evaporation during the dry season
(Fig. 9.3) (Sinanuwong and Takaya 1974). High surface salt concentrations leaching
into freshwater systems during the monsoon season will likely to influence the
distribution and longevity of intermediate hosts as well as their cercariae, for
example O. viverrini (see above).

Southeast Asia is one of the regions most likely to be affected by sea level rise
worldwide (see above, Schuerch et al. 2018). Sea level rise will convert near coastal
freshwater habitats into brackish or saltwater habitats (Ahmed et al. 2019), reducing
the risk of infection with parasites associated with freshwater, but increasing the risk,
for example of malaria, transmitted by salt or brackish water vectors (Sumruayphol
et al. 2010; Tananchai et al. 2019). As with agricultural rice field systems, a variety
of natural wetland systems also act as habitats for parasites. In the Philippines
S. japonicum and its snail intermediate hosts are also found on wet soil surfaces,
swamps, ponds, and streams (Gordon et al. 2019).

Fig. 9.3 Salt deposited on the soil surface in Nakhon Ratchasima province in Northeast-Thailand.
The photograph is courtesy of the German Federal Institute for Geosciences and Natural Resources
from the project “Salinisation of soils in the province of Nakhon Ratchasima (Northeast-Thailand)”
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9.9 Evolution and Adaptation

Superimposed on all of these factors is the possibility of short-term evolutionary
changes leading to the adaptation of species to the new environmental conditions
imposed on them (Hoffmann and Sgro 2011; Bush et al. 2016; Nogués-Bravo et al.
2018; Kelly 2019) or shifts due to phenotypic plasticity (Hoberg and Brooks 2015).
Evolution can occur over short periods of time in the face of environmental change
(ecological evolution) (Thompson 1998; Schoener 2011), a phenomenon also found
in parasites (Kelehear et al. 2012; Weclawski et al. 2013, 2014) and hosts (Duffy
et al. 2009; Mateos-Gonzalez et al. 2015). The significance of host-parasite interac-
tions in relation to climate change remains to be studied in the field in detail for a
sufficient time (Sibley 2019).

9.10 Conclusions

Climate change will have a significant impact on parasites and parasite communities
that respond to increasing temperatures, extreme weather events and changes in the
hydrodynamics of the area in which they live. Southeast Asia represents a spatial
mosaic with some areas likely to experience increasing drought conditions while
other will experience increased precipitation. However, most of the predictions both
in relation to local climate and to the parasites’ response to climate change are based
on models. What are urgently needed are long-term case studies tracking climate in
association with parasite diversity as well as the dynamics and distribution of
individual parasite and host species. In addition, comparatively little is known
about “non-pathogenic” parasites of wild animals, indicating that our knowledge
of the true biodiversity of parasites is inadequate.
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Chapter 10
Praziquantel: An Efficacious
Pharmaceutical Compound to Treat
Human and Animal Infections Due
to Trematodes and Cestodes

Heinz Mehlhorn

Abstract The anthelminthic compound praziquantel acts against flatworms
(platyhelminthes) like tapeworms and bloodsucking worms (trematodes) in case
they have infected humans or animals. The present chapter shows its history and
ongoing activity.

Keywords Trematodiasis · Schistosomiasis · Tapeworm disease · Fluke control

10.1 History

This compound—being named as Biltricide—was developed starting in the early
years after 1970 during a research project between the international pharmaceutical
companies Bayer AG in Leverkusen and Merck in Darmstadt, Germany being
named at first praziquantel and first marketed in the year 1980 as Biltricide®. Later
followed trade names like Cesol®, Cysticide®, etc. in the case of use in humans and
Tremazol®, Droncit®, Drontal®, Equimaxx®, etc. in the cases of treatment of
animals. Its structural formula is shown in Fig. 10.1. Until today no significant
loss of efficacy has been developed and thus praziquantel remained the drug of
choice to keep humans and animals free from infections by eventually life threaten-
ing cestodes and trematodes.
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10.2 Use of Praziquantel

The compound praziquantel is orally applied and has to be given at fixed intervals
and in different dosages depending on the tissue localization of the parasite in the
host. It works in humans and vertebrate animals and even in aquarium fish speci-
mens. Since more than 30 years praziquantel is constantly used in many countries
(e.g. Europe, Thailand, China, Africa: see the book in this series on effects in
Zanzibar: Sino-African Cooperation for Schistosomiasis Control in Zanzibar). The
German company Merck KGaA offered to the WHO for 10 years more than
25 million tablets of praziquantel per year as contribution to the worldwide elimi-
nation trials of human schistosomiasis. This sum was even increased to 250 million
tablets per year. They were successfully used in many countries without introduction
of any signs of resistance. However, as long as the worms are not fully eliminated,
reinfections remain immanent and their spreading may increase again since wild
animals remain as fully active sources for new infections.

In contrast to adults very young children should not become treated with
praziquantel. Before this background a cooperation was started by Merck Company
(Darmstadt) in the year 2012 together with the Swiss Institute for Tropical Medicine
and Public Health, Astellas Pharma Inc., TI Pharma, and the Bill and Melinda Gates
Foundation to develop a suitable therapy for very young children. A success would
be very helpful for these very young children and would interrupt the often noted
transmission of these worms from these children to adult humans.

As it is the case in many other chemical/pharmaceutical compounds praziquantel
is not completely free from side effects. The severeness of potential effects depends
on the age and fitness of treated persons and thus the use of praziquantel should be
done under strict control of physicians (especially in cases when also other medical
compounds are used at the same time). However, praziquantel strongly helps to
eliminate/avoid severe symptoms of disease in cases of infections by trematodes or
cestodes (Table 10.1, Figs. 10.2 and 10.3).

Important The dosage of praziquantel and the period of uptake depend strictly on
the advice of the caring physician, who will control the reactions of the patient. The
dose and the timing of drug uptake also depend on the number of invaded
Schistosoma species.

Fig. 10.1 Structural
formula of praziquantel
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Table 10.1 Attributes of praziquantel

Molar mass 312,41 g�Mol�1

Sum formula C19H24N2O2

Melting point 136 �C racemic compound
110 �C enantiomers

Solubility • Difficult, slow in water
• Easy in dichloromethane and ethanol

Toxicological data • 2840 mg�kg�1 rats (LD50, orally)
• 24,540 mg�kg�1 mice (LD50, orally)
• >200 mg�kg�1 dogs (LD50, orally)

Induction of potential
side effects

Headache, vomiting, loss of appetite, dizziness, myalgia, fatigue,
urticaria, increased body temperature

Fig. 10.2 Light micrograph
of a couple of adult
Schistosoma mansoni
worms. The male worm
transports permanently the
female in a ventral fold.
Both male and female have
sucked the here dark
appearing blood of the host
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