
Cost-Sensitive Semi-supervised
Classification for Fraud Applications

Sulaf Elshaar and Samira Sadaoui(B)

Department of Computer Science, University of Regina, 3737 Wascana Parkway,
Regina, SK S4S 0A2, Canada

{elshaars,Samira.Sadaoui}@uregina.ca

Abstract. This research explores Cost-Sensitive Learning (CSL) in the
fraud detection domain to decrease the fraud class’s incorrect predic-
tions and increase its accuracy. Notably, we concentrate on shill bidding
fraud that is challenging to detect because the behavior of shill and legiti-
mate bidders are similar. We investigate CSL within the Semi-Supervised
Classification (SSC) framework to address the scarcity of labeled fraud
data. Our paper is the first attempt to integrate CSL with SSC for fraud
detection. We adopt a meta-CSL approach to manage the costs of mis-
classification errors, while SSC algorithms are trained with imbalanced
data. Using an actual shill bidding dataset, we assess the performance
of several hybrid models of CSL and SSC and then compare their mis-
classification error and accuracy rates statistically. The most efficient
CSL+SSC model was able to detect 99% of fraudsters and with the low-
est total cost.

Keywords: Cost-sensitive learning · MetaCost · Cost matrix ·
Semi-supervised classification · Misclassification errors · Imbalanced
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1 Introduction

1.1 Problem and Motivations

Even though the auction industry is a lucrative marketplace, e-auction sites are,
however, attractive to dishonest moneymakers due to the anonymity of bidders,
flexibility of bidding, and cheap auction services [1]. In 2015, the Internet Crime
Complaint Center reported 21,510 auction fraud complaints and a monetary
loss of $19 million [12]. The illicit activities can occur before the auctions take
place (ex. misrepresentation of items), during the bidding period (ex. shill bid-
ding and bid shielding), and after the auctions are completed (ex. no delivery
of items and fee stacking). Among the auction scams, Shill Bidding (SB) is con-
sidered the most difficult fraud to detect due to its similarity to the normal
bidding behaviour. Consequently, the SB fraud goes undetected by the victims.
Via alternate accounts, shill bidders compete on behalf of a seller (the auction
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owner) by elevating the item price without being detected. SB is still plaguing
the auction sector, as shown by several lawsuits that have been filed against
dishonest sellers because SB fraud led to substantial financial losses for hon-
est consumers [1]. SB detection is a challenging problem to address due to the
following aspects: 1) thousands of auctions are held every day in auction compa-
nies, like eBay and TradeMe, 2) auctions may involve a large number of bids and
bidders, 3) auctions may have long biding duration, like seven or ten days, and
4) SB identification must be made in real-time to avoid financial losses for buy-
ers. Therefore, we adopt Machine Learning (ML) to tackle these real-life fraud
scenarios. Nevertheless, we are confronted with three significant classification
problems:

• Unavailability of Labeled SB Data: Annotating multi-dimensional SB
data is a challenging operation. Generally speaking, labeling training data
is carried out by the experts of the application domain, sometimes with the
help of ML techniques [1]. Still, this operation is very time-consuming.

• Absence of Misclassification Costs: Classical ML algorithms do not take
into account the costs of misclassification errors and treat errors of all the
classes equally. This behaviour is not appropriate in fraud detection appli-
cations where the incorrectly predicted fraud data should possess a penalty.
The latter should be the highest one as the fraud data is the target for inves-
tigation.

• Presence of Class Imbalance: Fraud datasets are imbalanced. The skewed
class distribution degrades the accuracy of ML algorithms [1]. Additionally,
the fraud class, which is the most significant output, is misrepresented since
the learning methods are influenced by the majority (normal) class.

In the previous paper [9], we addressed the labeled data scarcity problem
using Semi-Supervised Classification (SSC) algorithms because they require only
a few labeled data to be trained. Hence, we were able to check the ground truth of
the few annotated SB data. Moreover, we empirically demonstrated that having
a few annotated data during the training stage returned a satisfactory perfor-
mance. We also determined the optimal amount of labeled SB data that leads to
the highest accuracy. Besides, SSC can outperform supervised classification, as
shown in [8]. However, SSC algorithms do not consider the costs of the misclas-
sification errors of the two classes (Normal and Fraud). In fraud detection, this
lack means that there is no difference between misclassifying a legitimate activity
(normal bidding behaviour) and misclassifying a fraudulent activity (shill bid-
ding). Nevertheless, we know that the risk of predicting a shill bidder as a normal
bidder is more serious than the opposite case. Therefore, it becomes essential to
take into account the misclassification costs for our fraud classification problem.

1.2 Contributions

In this present study, we explore Cost-Sensitive Learning (CSL) to manage both
the misclassification costs and imbalanced data on the one hand, and reduce the
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incorrect predictions of the two classes on the other hand. In this case, we can
assign a higher penalty for the fraud data that went undetected (false negatives).
Indeed, we are more concerned about detecting fraudulent activities, so that we
can take action against auctions infected by SB by canceling the auction before
processing the payment of the item and suspending the accounts of shill bidders.
We incorporate CSL into the Semi-Supervised Classification (SCC) framework.
However, an SSC algorithm utilizes one or more baseline supervised classifiers
that require data to be balanced. CSL addresses the skewed class imbalance
at the algorithm level, i.e., without modifying the training datasets. Over- and
under-sampling methods can also tackle imbalance data [1,9]. When adjusting
the class distribution, over-sampling adds synthetic data to the minority class,
but these data do not represent actual observations. Under-sampling method
deletes some data from the majority class, which may discard essential data
for the learning task. Hence, adopting CSL can be beneficial in handling the
imbalanced learning problem since it employs only real bidding behaviour. We
use a real SB dataset for which a small subset has been already labeled and
evaluated in [9].

In our work, we take advantage of a meta-CSL approach, called MetaCost,
to train semi-supervised classifiers with few labeled data that are imbalanced.
We select this approach for several reasons: 1) it can be used by any type of
classification algorithm, 2) it is easy to combine with a SSC algorithm, and 3)
it uses ensemble learning to achieve much stronger performance, especially for
unstable classifiers. With MetaCost, SSC algorithms will be able to consider
the costs of misclassification errors of both classes while learning from the SB
dataset. For this purpose, we define a cost matrix specifically for our SB detection
problem.

We develop multiple hybrid classification models of CSL and SCC based
on the cost matrix. More precisely, by varying the cost penalties of the fraud
class, the most important class as it is the target for investigation, we assess
and compare the accuracy and misclassification error rates of several CSL+SSC
models using statistical testing. In this present study, we employ two different
SSC collective packages: Chopper and Yatsi. Since in [9], CollectiveIBK returned
an average performance, so in this present paper, we consider a new approach
called Yatsi. We keep Chopper as it produced a very good performance. More-
over, we also show that the CSL+SSC model outperforms the non cost-sensitive
SSC model developed in [9] with the same SB dataset. This research is the
first attempt to integrate CSL to the SSC environment in the fraud detection
domain. Besides, to the best of our knowledge, we found only one recent paper
that merged CSL with SSC but outside the fraud detection field, as discussed in
the related work section.

We organize our paper as follows. In Sect. 2, we examine recent studies on
CSL in the fraud detection domain and one study combining CSL and SSC. In
Sect. 3, we describe the SB training dataset developed from commercial auctions
and bidder history. In Sect. 4, we specify the cost matrix and describe the Meta-
Cost method for our fraud detection application. In Sect. 5, we discuss multiple
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SSC algorithms based on two different approaches, Yatsi and Chopper, as well
as the hyper-parameter tuning of both CSL and SSC methods. In Sect. 6, we
conduct an experimental evaluation and comparison of several CSL+SSC mod-
els trained on a few labeled data that are imbalanced. In Sect. 7, we present
essential findings of our work as well as some future research directions.

2 Related Work

This section reviews representative studies on cost-sensitive learning, specifically
in the fraud detection domain. This review will allow us to examine the costs
assigned to the incorrect prediction of the fraud class. Nevertheless, prior works
have almost exclusively focused on detecting fraud in credit card transactions.
We believe this limitation is due to the availability of training datasets, on the
one hand, and complaints of victims who reported the fraud on the other hand.
Moreover, the ability to label transactions as normal or fraud provided valuable
support to the research. Several studies examined SSC for fraud detection, but
we found only one recent paper that combined CSL and SSC to the best of our
knowledge.

The study [3] investigated the ensemble of CSL and Bayesian network to
detect credit card fraud. The annotated training dataset was provided by “UOL
PagSeguro”, a Brazilian online payment company. For the CSL task, the authors
adopted two methods to deal with imbalanced data: instance re-weighing and
class probability threshold. To assess the fraud model’s performance, they con-
sidered two metrics only: F1-score and the cost named “economic efficiency”.
However, due to data privacy, they did not mention the actual values of costs.
Instead, they provided an equation to compute the costs from the transactions,
which is used in the current system of PagSeguro company. The class probability
threshold led to the best accuracy. Moreover, the authors stated that a model
with a high accuracy does not necessarily have a low cost.

Another research [17] also detected credit card fraud based on CSL. First,
the authors collected labeled data from an anonymous bank from 2012 to 2013.
Additionally, they considered the deviation from the normal behavior of cus-
tomers as a sign of fraud. Next, they defined an equation to calculate the costs
from the transactions, but they did not provide the cost amounts in the experi-
ments. For the classification task, they employed Random Forest (RF) and then
the hybrid version of CSL and RF. The findings demonstrates that utilizing CSL
reduced the misclassification errors of the fraud class by 23%.

The paper [10] incorporated CSL to Neural Networks to detect credit card
fraud. The dataset was supplied by the company “BBVA Data & Analytics,”
which consists of anonymous card transactions for 2014 and 2015. Besides, the
company also provided the fraud claims, which made it easier to label customers
as normal or fraud. The authors removed a large number of transactions because
the dataset was highly imbalanced, with a ratio of fraudulent to normal data
equals to 1:5000. They considered the cost as the amount of money associated
with the fraud activities detected by the model. Based on the monetary cost,
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the experiment showed that the fraud model achieved similar accuracy that was
previously attained by other costly models. However, the values of the cost were
not given in this study, and it was not clear how the CSL matrix was employed
in the supervised framework.

The study [11] examined how different values of the cost of False Negatives
(i.e., fraud wrongly classified as normal) can affect the performance of CSL
models. The authors trained the Bayes Minimum Risk algorithm along with
several base CSL classifiers using different values of FN costs. They trained
the CSL classifiers with a credit card dataset published in 2009 by the UCSD
repository. First, they adopted the average number of transactions as the value
of the FN cost, and then used numerous random values that are lower or larger
than the average value. The results showed that CSL models produced different
results when using different costs of FNs. The lower the FN cost, the better the
model performance.

In [18], the authors utilized a cost-sensitive Decision Tree method to mini-
mize the misclassification errors when detecting fraud in credit card data. The
labeled dataset was provided by an anonymous bank. The authors varied the
costs of FNs based on the available limit of the credit card transactions. The
experiments demonstrated that the hybrid model CSL+Decision Tree outper-
formed traditional classifiers, such as Artificial Neural Networks, Decision Trees
and SVM, in terms of accuracy, true positive rate, and misclassification errors.

Very recently, [23] developed an ensemble GMDH Neural Network method
based on CSL and SSC to identify customers with good or bad credit. This scor-
ing can assist financial companies to make decisions regarding customer loan
approval. The authors assessed the proposed method with an old public labeled
credit scoring dataset (from 2009 to 2011). Intending to fill the gap in the litera-
ture, they used CSL to handle imbalanced data and SSC because, in many cases,
the labels were not provided. The accuracy results showed that the developed
model was superior to standard SSC models, such as CoBag, Semi-bagging, and
Tri-training. The experiments also proved that fewer labeled samples led to a
better scoring performance.

3 Fraud Dataset Overview

We developed a reliable SB dataset using a large collection of commercial auc-
tions of eBay and their bidder history too [7] (see Table 1). We rigorously prepro-
cessed the two crawled datasets, auctions and bidders. Then, we implemented
a collection of nine SB strategies exposed in Table 1. For more details about
the fraud patterns and their measurement algorithms, consult the article [7].
Subsequently, for each bidder in each auction, we evaluated the metric of each
SB pattern. This measurement task resulted in an SB dataset consisting of 9291
samples (after removing outliers). An SB sample denotes the behaviour of a bid-
der in an individual auction, which is Normal or Fraud. It is a vector of eleven
elements: Bidder ID, Auction ID, and the nine SB patterns. With this granular-
ity, we can act against each auction infected by fraud to avoid a monetary loss
for the winning bidder.
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In a subsequent work [9], we appropriately labeled a small portion of the SB
dataset to conduct the semi-supervised classification task. For this purpose, we
first combined two data clustering techniques, X-means and Hierarchical clus-
tering, to produce clusters of bidders of high quality. Then, we proposed a new
approach to detect fraudulent activities or anomalies in each cluster based on
the biddersŚB scores in that cluster and the Three Sigma Rule. Lastly, we exper-
imented to determine the minimal sufficient amount of labeled data statistically
to achieve the highest accuracy [9]. In Table 1, we can observe that the SB
labeled subset is imbalanced with a ratio of Normal to Fraud samples equals
to 5:1.

4 Cost-Sensitive Learning Framework

4.1 Cost Matrix for SB Fraud

Real-life detection applications can be endowed with different types of costs that
can be utilized to improve further their prediction outcome. The costs are mostly
financial, as the cost of hiring experts, or using specific devices, or conducting
additional tests. However, the cost can also be non-financial but paramount,
such as the cost of identifying the disease carrier as not carrying it, or the cost
of classifying a fraudster as a genuine bidder. In our specific problem, we cannot
estimate the monetary cost because we do not know objectively the loss that
occurs when the classification result is erroneous. However, we know for sure
that the risk of classifying a shill bidder as a normal bidder is higher than the

Table 1. Fraud dataset and its labeled subset.

Number of auctions 1399

Number of bidders 1100

Bidding duration 1, 3, 5, 7 and 10 days

Number of samples 9291

Fraud predictors - Bidder tendency

- Bidding ratio

- Last bidding

- Auction bids

- Starting price

- Early bidding

- Winning ratio

- Buyer rating based on items

- Bid retraction

Labeled subset Normal Fraud

(total: 945) 791 154

Unlabeled subset 8346
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risk of classifying a normal bidder as a shill bidder. So, it becomes essential to
consider the penalties for the wrong predictions in our SB detection application.

In a two-class classification problem, a prediction can be one of four outcomes:
True Positive (TP) and True Negative (TN) are the correct predictions whereas
False Positive (FP) and False Negative (FN) are the incorrect predictions. In
our application, FPs represent honest bidders misclassified as shill bidders, and
FNs shill bidders mislabeled as honest bidders. CSL-based models utilize a cost
matrix to assign relevant costs for the misclassification errors. Generally speak-
ing, if the costs are known apriori or can be provided by the experts of the
application domain, we can assign different costs for the incorrect predictions
and different benefits for the correct predictions. In this case, the cost matrix
can be provided directly to the cost-sensitive classifiers. Nevertheless, in our clas-
sification problem, the costs are unknown. We are more interested in detecting
fraudulent bidding behaviour so that we can take action against infected auc-
tions. Therefore, we put more penalty on the fraud samples that went undetected
(i.e., FNs).

As presented in Table 2, we set the cost matrix to 2 × 2 because we have two
target classes. Since we are not studying the profits of the correct predictions, we
assign to their penalties the default value i.e., CostTP = CostTN = 0. Regarding
the mislabelled instances, we set the penalty of FPs to “1”; however no rules
can be found in the literature for choosing the values for the FN penalty. After
examining the literature, the most common costs employed in past empirical
studies ranged from 1 to 10. As an example, the paper [15] used the values of 1,
2, 3, 4, 6 and 10, [5] selected 2, 5 and 10, and [14] chose 2, 3, 4, 5, 6, 7, and 8.
We note that no reasons have been mentioned for choosing certain values over
others.

We vary the FN costs from 2 to 5 and keep FP cost equal to 1 with the
sole purpose of preventing more penalties on the SSC models when they predict
instances incorrectly. First, we choose the values of 2, 3, 4 and 5 because they
are the most common in previous research. Second, we do not consider values
that are higher than the class imbalance ratio of 5:1 of our labeled SB subset
(see Table 1). A higher value means too many penalties on the classifiers, which
may lead to many errors when classifying normal bidders as fraudsters. Table 2
presents our cost matrix for the CSL+SSC models.

Table 2. Cost matrix for SB classification.

Predicted class

Normal Fraud

Actual class Normal 0 1

Fraud 2, 3, 4, 5 0
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The goal of the CSL is to develop a classifier with the lowest total cost, which
is calculated as follows [15]:

TotalCost = CountFNs ∗ CostFN + CountFPs ∗ CostFP (1)

where CountFNs denotes the count of FNs and CountFPs the count of FPs.

On another note, CSL models are capable of dealing efficiently with imbal-
anced data at the algorithm level. Consequently, the SSC algorithms will learn
from the real bidding behavior of users since we are not altering the SB subset,
unlike with data sampling techniques.

4.2 MetaCost Learning

Traditionally, to make a two-class classifier cost-sensitive, a CSL algorithm mod-
ifies the proportion of training samples when the misclassification errors have
different penalties. This technique, called data stratification, consists of modi-
fying the proportion of the minority class because it has the highest risk. The
goal here is to minimize the prediction errors of this class [6]. Changing the pro-
portion of the minority class can be done by either duplicating the instances or
re-weighting the instances to the relative cost of errors of FNs and FPs [13]. The
disadvantage of the first option is that it changes the training dataset, but our
goal is to consider only the real behaviour of bidders. On the other hand, if data
stratification is done by re-weighing the instances, we are forced to utilize only
those algorithms that possess this capability. Thus, we prefer not to be restricted
to a specific type of learning algorithm that has the ability of re-weighting data
samples.

Due to the disadvantages mentioned above, we adopt a meta-CSL approach,
called “MetaCost”, which can make any classifier cost-sensitive but without data
stratification [5]. MetaCost is appropriate for our fraud classification problem
owning to the following factors:

• It can be utilized by any type of classification algorithm, supervised and
semi-supervised, and algorithms that can re-weight or not the instances.

• It is the best candidate to manage the penalties of multi-class classifiers [13].
MetaCost works by wrapping the cost-minimizing concept around the classi-
fier but without knowing its internal procedures [5].

• It uses the concept of bagging together with the costs. Bagging produces
very accurate probability estimates for unstable classifiers, which are achieved
by creating many bootstrapping randomly. Bootstrapping together with the
cross-validation optimization method allows a classifier to be trained with a
wide variety of samples.

• It employs ensemble learning in which the final prediction decision is made by
several classifiers using the weighted majority voting. A fraud model based on
multiple classifiers’ decisions is much stronger than the best model obtained
by one classifier.
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We first specify the misclassification costs of both classes in MetaCost as
shown in the cost matrix. We then develop four CSL+SSC models by integrating
MetaCost into each classification algorithm. Each SSC algorithm employs base
classifiers that are trained with the labeled SB subset (imbalanced).

5 Experiment Framework

5.1 SSC Algorithms

Regarding the SSC framework, we select two different collective packages, called
“Chopper” [21] and “Yatsi” (Yet Another Two-Stage Idea) [4]. Chopper is an
ensemble learner that works only for the two-class classification task. It employs
a first classifier to label the testing data after being trained with the labeled
subset. This classifier determines the distributions for all the testing data and
then ranks the data based on the difference between two confidences (classes).
The new training dataset is then supplied to a second classifier, which again
determines the distributions for the remaining testing data. The Yatsi approach
conducts the classification in two phases: 1) it trains the first classifier with
the small portion of labeled data, 2) it employs the classifier to transform the
unlabeled data into weighted data (called pre-labeled data), and lastly 3) after
merging the original labeled data and pre-labeled data, it uses KNN to produce
the classes of the pre-labeled data using the following approach: KNN sums the
weights of the nearest neighbours of the pre-labeled data, and then label those
data with the class that has the largest summation of weights.

We customize Chopper and Yatsi with the classification algorithms that are
commonly adopted in the field of fraud detection, including Naive Bayes (NB),
Random Forest (RF), J48 (implementation of Decision Trees C4.5) and IBK
(implementation of KNN). More precisely, we develop Chopper with NB as the
first classifier and RF as the second classifier. With Yatsi, we train Yatsi-J48,
Yatsi-KNN, and Yatsi-NB.

5.2 Parameter Tuning

We optimize the hyper-parameters of the SSC models using a predefined class
named “CVParameter” of Weka toolkit. This class determines the optimal values
of the parameters using Cross-Validation (CV). However, we need to supply
which parameters to be tuned, and their range of values. We train the SSC
algorithms using 10-fold CV and perform ten runs to obtain more stable SB
classifiers.

For the second classifier of Chopper, we first set the range of the two RF
hyper-parameters: the Number of Iterations (NI) from 50 to 300 and the Maxi-
mum Tree Depth (MTD) from 1 to 50. CVParameter returns the optimal clas-
sifier with the lowest FNR using the best parameter values: 100 for NI and
12 for MTD. We train Yatsi-KNN classifier by setting the number of Nearest
Neighbours (NNs) to 5 because this value led to the lowest FNR. We choose the
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KDTree search algorithm to accelerate the NN search. We also assign the value
of 1.0 (default value) to the weighting factor for unlabeled data. Lastly, we tune
the two hyper-parameters of J48: the pruning tree confidence factor with the
optimal value of 0.75, and the minimum number of data per leaf with the best
value of 2.

For the ensemble learning task used by MetaCost, we assign the number of
bagging iterations to 10 and the batch size to 100. These default values are the
most preferred when the prediction is performed [21].

5.3 Performance Metrics

Since we are more concerned about detecting shill bidders, we, therefore, focus
on the fraud data. Moreover, the CSL+SSC models that we develop are trained
directly with the imbalanced SB subset. Hence, we choose the most relevant
performance metrics for imbalanced data and correctly predicted fraudsters.

• Recall returns the ratio of shill bidders correctly and wrongly classified.

Recall =
TP

TP + FN
(2)

• False Negative Rate (FNR) measures the ratio of shill bidders wrongly clas-
sified as normal bidders.

FNR =
FN

FN + TP
(3)

• False Positive Rate (FPR) calculates the ratio of normal bidders wrongly
classified as fraudulent.

FPR =
FP

FP + TN
(4)

• Kappa Statistic (Kappa) computes the agreement between actual and pre-
dicted classes while correcting the agreement that happens by chance.

KappaStat =
Pobserved − Pchance

1 − Pchance
(5)

• Area Under the ROC Curve (AUC) informs us of how much a classifier can
differentiate between the normal and fraud class. The closer the AUC value
is to 1, the better is the classification model.

6 Evaluation and Comparison

6.1 Performance Results

We first report in Table 3, 4, 5 and 6 the performance results of the four SB
classifiers by varying the misclassification cost of the fraud class. The results are
then discussed and compared in the next sections.
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Table 3. CSL+SSC performance when Penalty is 2, “*” indicates the model is signif-
icantly worse while “**” significantly better.

CSL+Yatsi-KNN CSL+Yatsi-NB CSL+Yatsi-J48 CSL+Chopper

Kappa 0.66 0.14* 0.71 0.76**

FNR 0.03 0.1* 0.04 0.01

FPR 0.36 0.77* 0.27 0.28

Recall 0.97 0.9 0.96 0.99

AUC 0.92 0.76* 0.86* 0.97

Cost 137 308 177 100

Table 4. CSL+SSC Performance when Penalty is 3, “*” indicates the model is signif-
icantly worse.

CSL+Yatsi-KNN CSL+Yatsi-NB CSL+Yatsi-J48 CSL+Chopper

Kappa 0.65 0.19* 0.7 0.75

FNR 0.05 0.12* 0.05 0.03

FPR 0.31 0.69* 0.25 0.27

Recall 0.95 0.88 0.95 0.97

AUC 0.93 0.79* 0.86* 0.96

Cost 182 398 147 151

Table 5. CSL+SSC Performance when Penalty is 4, “*” indicates the model is signif-
icantly worse while “**” significantly better.

CSL+Yatsi-KNN CSL+Yatsi-NB CSL+Yatsi-J48 CSL+Chopper

Kappa 0.62 0.27* 0.67 0.72**

FNR 0.07 0.15* 0.07 0.04**

FPR 0.29 0.56* 0.23 0.25**

Recall 0.93 0.85* 0.93 0.96**

AUC 0.93 0.79* 0.88* 0.96

Cost 231 449 174 191

Table 6. CSL+SSC Performance when Penalty is 5; “*” indicates the model is signif-
icantly worse while “**” significantly better.

CSL+Yatsi-KNN CSL+Yatsi-NB CSL+Yatsi-J48 CSL+Chopper

Kappa 0.62 0.28* 0.66 0.7

FNR 0.09 0.19* 0.08 0.05**

FPR 0.24 0.48* 0.22 0.23**

Recall 0.91 0.81* 0.92 0.95**

AUC 0.93 0.79* 0.88* 0.95

Cost 280 511 216 238
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Fig. 1. Learning curves of CSL+SSC models with different penalties.

6.2 Misclassification Errors

In terms of minimizing the misclassification error of the fraud class, the classi-
fication model with the lowest cost is the best. As presented in Table 3, when
the cost penalty is 2, CSL+Chopper provided the lowest cost of 100 followed
by CSL+Yatsi-KNN with 137. Regarding the other penalties of 3, 4 and 5,
CSL+Yatsi-J48 returned the lowest cost of 147, 174 and 216 respectively, which
is followed by CSL+Chopper with a gap of 4, 17 and 22 respectively. On the other
hand, CSL+Yatsi-NB has the highest cost across all the penalties. Moreover, as
illustrated in Fig. 1, the learning curves of the CSL+SSC models demonstrate
that the misclassification errors increase dramatically when the penalties are
increasing. Therefore, the best performing model is CSL+Chopper with the cost
penalty of 2.

6.3 Statistical Comparison

We also compare all the accuracy of the four classifiers based on the statistical
testing T-test. The symbol “*” indicates significant worse performance while
“**” significant better performance.

• When the cost penalty is 2, the accuracy of CSL+Chopper is significantly
better with KappaStat because 76% of data are really correctly classified,
and not by chance. There is no significant difference with the other metrics.
CSL+Yatsi-NB is significantly worse across all the metrics.

• When the cost penalty is 3, we observe no significant difference between
CSL+Yatsi-KNN, CSL+Yatsi-J48 and CSL+Chopper. However, CSL+Yatsi-
J48 returned the worse AUC of 0.86. CSL+Yatsi-NB is again the worst across
all the metrics.
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• When the cost penalty is 4, the performance of CSL+Chopper is again signif-
icantly better with KappaStat because it outperforms CSL+Yatsi-KNN by
10%, produced 3% less false negatives, and detected 99% of fraud. CSL+Yatsi-
NB is the worst across all the metrics.

• When the cost penalty is 5, CSL+Chopper is significantly better in terms
of FNR, FPR and Recall. However, there is no statistical difference between
CSL+Chopper and CSL+Yatsi-KNN in terms of KappaStat and AUC. The
worst AUC values were generated by CSL+Yatsi-J48 and CSL+Yatsi-NB.

In conclusion, the most performing hybrid model is CSL+Chopper, which
provided the lowest total cost of 100 when penalizing the classifier with the cost
of 2. We observe that 76% of the predictions are really correctly classified and not
by chance, only 1% of shill bidders are undetected, and 28% of normal bidders
are misclassified. Moreover, by comparing CSL+Yatsi-IBK with CSL+Chopper,
we find out that both models are very accurate in classifying bidders into normal
and fraudsters with a Recall of 0.97 and 0.99 respectively.

Furthermore, the classifier CSL+Chopper outperforms the regular Chopper
model developed in [9] by minimizing the misclassification error of the fraud class
by 14% and increasing the accuracy by 17%. Indeed, Chopper (using re-balanced
data) returned a FNR of 0.15 and CSL+Chopper (using original imbalanced
data) a FNR of 0.01. Chopper provided a Recall of 0.82 and CSL+Chopper a
Recall of 0.99. Since these gaps are significant in the fraud detection field, we can
conclude that CSL+SSC classifier is the best fit for our fraud detection problem.

7 Conclusion and Future Work

In our study, we successfully incorporated a meta cost-sensitive learning method
into the semi-supervised classification environment to achieve three essential
benefits: 1) learn with few labeled data because it is time-consuming to anno-
tate multi-dimensional fraud data, 2) manage the costs of misclassification errors
so that the fraud class, which is the target of the investigation, has the highest
penalty, and 3) tackle the imbalanced learning problem at the algorithm level, so
that only the real behaviour of bidders/users is considered during training. Using
a real fraud dataset, we conducted an in-depth evaluation and comparison of the
performance of several hybrid models of cost-sensitive and semi-supervised clas-
sifiers. CSL+Chopper (based on Naive Bayes and Random Forest) is the most
performing model concerning the error minimization and accuracy maximiza-
tion. This fraud model was able to detect 99% of shill bidders with the lowest
total cost of 100. Also, CSL+Chopper outperforms the regular Chopper.

For future work, we plan to investigate the interactive active learning method.
The latter first chooses the most relevant data and then asks the developer or
expert to suggest a label for the chosen data. Our goal is to examine how semi-
supervised classifiers would be affected by the selected labeled data. We are also
interested in conducting a comparison of our semi-supervised classifiers with the
chunk-based incremental classification method defined in [2]. The latter has also
been used to tackle the scarcity of labeled data in the fraud detection domain.
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