
On the Combination of Game-Theoretic
Learning and Multi Model

Adaptive Filters

Michalis Smyrnakis1(B) , Hongyang Qu2 , Dario Bauso3,4 ,
and Sandor Veres2

1 Science and Technology Facilities Council, Daresboury, UK
michail.smyrnakis@stfc.ac.uk

2 Department of Automatic Control and Systems Engineering,
University of Sheffield, Sheffield, UK
{h.qu,s.veres}@sheffield.ac.uk

3 Jan C. Willems Center for Systems and Control ENTEG,
Faculty of Science and Engineering, University of Groningen Nijenborgh, Groningen,

The Netherlands
4 Dipartimento di Ingegneria, Università di Palermo,

Viale delle Scienze, Palermo, Italy
d.bauso@rug.nl

Abstract. This paper casts coordination of a team of robots within
the framework of game theoretic learning algorithms. In particular a
novel variant of fictitious play is proposed, by considering multi-model
adaptive filters as a method to estimate other players’ strategies. The
proposed algorithm can be used as a coordination mechanism between
players when they should take decisions under uncertainty. Each player
chooses an action after taking into account the actions of the other play-
ers and also the uncertainty. Uncertainty can occur either in terms of
noisy observations or various types of other players. In addition, in con-
trast to other game-theoretic and heuristic algorithms for distributed
optimisation, it is not necessary to find the optimal parameters a priori.
Various parameter values can be used initially as inputs to different mod-
els. Therefore, the resulting decisions will be aggregate results of all the
parameter values. Simulations are used to test the performance of the
proposed methodology against other game-theoretic learning algorithms.

Keywords: Game-theoretic learning · Distributed optimisation ·
Multi-model adaptive filters · Robot teams coordination · Fictitious
play · Bayesian games · Potential games · State based games ·
Stochastic games

1 Introduction

Teams of robots can be used in many domains such as mine detection [69], med-
ication delivery in medical facilities [16], formation control [45,58] and explo-
ration of unknown environments [31,55]. A common feature shared by these
c© Springer Nature Switzerland AG 2021
A. P. Rocha et al. (Eds.): ICAART 2020, LNAI 12613, pp. 73–105, 2021.
https://doi.org/10.1007/978-3-030-71158-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71158-0_4&domain=pdf
http://orcid.org/0000-0003-1416-3727
http://orcid.org/0000-0002-1643-8926
http://orcid.org/0000-0001-9713-677X
http://orcid.org/0000-0003-0325-0710
https://doi.org/10.1007/978-3-030-71158-0_4

74 M. Smyrnakis et al.

applications is that robots should either minimise a cost function or maximise
a utility function in a distributed fashion. Thus, the resulting problem can be
formulated as an distributed optimization one. Distributed optimisation arises
also in several applications such as in smart grids [2,66], disaster management
[25,57], robot team coordination [51,52], sensor networks [23,24,32,68], water
distribution system optimisation [2,66] and scheduling problems [61].

In each of the aforementioned applications, the agents need to coordinate to
achieve a common goal. If the desired task requires distributed optimisation of
a utility or cost function, then the resulting problem turns into a game where
each agent optimizes a portion of the common objective function based on local
information. In such a scenario, game theory provides formal tools to assess the
quality of the solution obtained.

As in [59], in this paper we address two kinds of uncertainty that can be arise
in a game theoretic learning process that can be applied in robotic scenarios. The
first one is related to uncertainty of measurements. Consider the case where, the
robots do not have access to the other robots’ states, or if the communication
channel is noisy or involves faulty sensors, we say that the game has imperfect
information, and the robots have to make a decision under uncertainty. Uncer-
tainty can lead to wrong decision. For example, wrong decisions could be made
when the positions of other robots are inferred by noisy odometry or noisy cam-
era input. Another example in which noisy observation can have impact on the
coordination process of a robot team is the case of a fleet of Unmaned Aerial
Vehicles (UAVs) that need to take images of an area in order to identify the
growth of the crops. The images should be taken from various angles. However,
it is not always possible for a UAV to know the exact position and bearing of
the other UAVs, and therefore, to make correct decisions about when to change
photo-shooting angles.

The second form of uncertainty is related with various states or types that
the environment or other robots can be. This uncertainty can be in the form
of incomplete information. A team of UAVs can know the weather conditions
for their tasks, “good” or “bad” weather for example, up to a certain proba-
bility. Consider also the case where, each member of a robotic team can be in
various possible states regarding its battery life, affecting the possible choices
they have. On another setup the choices robots are making in a current snap-
shot of their mission could affect their future choices.Stochastic, state based and
Bayesian games are two categories of games which can be used in order to model
distributed optimisation task under those types of uncertainty.

In this paper, we propose a novel game-theoretic learning algorithm, which
can be used as a coordination mechanism among robots playing either com-
plete information games with noisy observations or Bayesian games or Markov
games. In detail, it is a synchronous algorithm, where Extended Kalman Fil-
ters Fictitious Play (EKFFP) [60] is combined with multi-model adaptive filters
(MMAFs) [9]. The novelty of our algorithm is that the joint distribution of
the uncertainty and the observed actions of other players’ action are used to
make decisions. Robots use multiple models to solve their optimisation task.

On the Combination of Game-Theoretic Learning 75

Each model is either a probabilistic representation of the noisy observations
model of the other players’ states or of the state of the world. Each model of
MMAF represents a part of uncertainty and the final decision making is based
on a weighted average over all the models.

Note here that a sequence of Bayesian games can also be used to describe
partially observable games and decentralised partial observable Markov decision
process (dec-POMDPs) [15]. Thus the proposed methodology can be used as
a coordination mechanism for each individual Bayesian game (sub-tasks) till a
solution to the dec-POMDP is found.

Another advantage of our algorithm, is that in contrast to EKFFP and var-
ious heuristic distributed optimisation algorithms, there is no need to tune any
parameters. Therefore, there is no need to decide in advance the value of the
EKFFP parameters. Instead, random valuations of these parameters can be used
simultaneously. Each valuation predicts other robots’ strategy from a different
angle, which is represented by different models. Therefore, it is easier to adapt
to evolution of other robots’ strategy.

This article is an extended version of [59]. This version considers more types of
uncertainty which are related with two new categories of games, namely stochas-
tic and state based games. In addition, the basic game theoretic definitions and
learning algorithms were explained in more detail. Also, additional information
is provided regarding the implementation details of the proposed algorithm.

The rest of the paper is organised as follows. Next section contains a brief
description of related work. In Sect. 3, a brief description of the game-theoretic
notions that will be used in the rest of the paper are presented. In Sect. 4, the
learning algorithm EKFFP is presented. Section 5 describes our fictitious play
based algorithm, which integrates multi-model adaptive filters and extended
Kalman filter. Section 6 discusses some implementation details of our algorithm
and game-theoretic learning algorithms in general. In Sect. 7, we evaluate our
algorithm in several case studies. In Sect. 8, we summarise our findings and
present our future work.

2 Related Work

Distributed learning under noisy observation was considered in [27]. Particle
swarm algorithms subjected to intrinsic noise was applied in [42] and [13]. In
[21], noisy observations in a different context from this work were investigated,
as no directly any knowledge about the noisy observation was used, such as
their probability distribution. In [11], the uncertainty was dealt within a game
theoretic framework under a simplified assumption that players use the same
strategy through the iterations of the game.

Various approaches have been adopted to solve Bayesian games including:
Bayesian action graph games [22], Multi-agent influence diagrams [26] and New-
ton method [19]. The difference between these approaches and the proposed
algorithm is that their goal is to find the optimal strategy. However, the search
for an optimal solution in cooperative Bayesian games is an NP-hard problem

76 M. Smyrnakis et al.

[65], and thus, is not tractable. On the other hand, in our algorithm players take
into account the other players’ actions and their possible types when updating
their desired action until they reach to a commonly accepted solution, which is
usually an equilibrium point to the problem. In [15], an approximate solution
was proposed based on an alternating maximisation algorithm, but this is not
applicable when robots choose their actions simultaneously. Smooth fictitious
play [43] and a variant of fictitious play for Bayesian games with continuous
states [44] have been used to solve auctions in a competitive environment, which
is not applicable in cooperative games on which this work is focused.

Various reinforcement learning techniques have been proposed as solutions to
stochastic games. Examples include minimax Q and Q-learning in [30], decentral-
ized Q-learning, distributed Q-learning, hysteretic Q-learning, and WOLF PHC
in [34]. In [54] Classic fictitious play has also been used in order to solve a Markov
games that used in order to model robotic arm manipulators. In [33] a log-linear
process was proposed to solve state based games. When in [29] a two-memory
better reply algorithm was proposed. In contrast, the proposed algorithm since a
different model is used for each possible state of the game. Moreover, the model
of each state is updated only when the state is active which allows to have a
more accurate estimate of opponents’ strategies in each state.

3 Game-Theoretic Definitions

This section contains a brief description of some game theoretic definitions that
will be used in the rest of the paper.

3.1 Normal Form Games

A game Γ in normal form is defined as a tuple

Γ = 〈I, {Ai}i∈I , {ri}i∈I〉,
where

– I is the set of indices of all players;
– Ai is the set of all possible actions of player i and the set product A = ×i∈IAi

is the set of all joint actions;
– ri : A → R is the utility (reward) function of player i, which computes the

reward that the player gains after a joint action is selected.

Joint action a, can be written as a = (ai, a−i), where a−i is the joint action of all
players but i. A strategy of player i is a probability distribution over its action
space, and let Δi denote the set of all the probability distributions over Ai. Each
player uses a strategy σi ∈ Δi to choose its action. Similarly to actions, a joint
strategy σ ∈ Δ is defined as an element of the set product Δ = ×i∈IΔi, and
σ−i is a joint strategy of all players but i.

In this paper we consider iterative games. In these games, a game is repeat-
edly played along a discrete sequence of time instances called rounds or iterations

On the Combination of Game-Theoretic Learning 77

when each player chooses their actions based on their strategies, the history of
the observed joint actions in the played iterations of the game and the rewardse
allocated to them.

A player uses a pure strategy when it deterministically chooses actions, there-
fore it puts all its mass function in a single action ai ∈ Ai such that σi(ai) = 1.
When this is not the case, we call such a strategy, mixed strategy. The expected
reward of player i, given its opponents’ strategies σ−i, is denoted by ri(σi, σ−i).
If σi is a pure strategy with σi(ai) = 1, the expected reward can be written as
ri(ai, σ−i).

The most common deterministic decision rule in game theory is the so-called
best response (BR) by which players choose the actions which maximise their
expected rewards. Formally, the action that a player i will choose, given its
opponents strategies σ−i, is

BRi(σ−i) = argmax
ai∈Ai

ri(ai, σ−i). (1)

A normal form game Γ can be either a competitive or a coordination game,
depending on its utility function. In competitive games, players have conflicted
interests, while in coordination games, they maximise their reward when a com-
mon goal is achieved. Table 1 depicts the players’ rewards of a zero-sum game,
which is an canonical example of competitive games. There are two players in
this game: the row player playing actions b1 and b2 and the column player play-
ing a1 and a2. Each entry in the table represents the reward they receive when
the corresponding joint action is played. For example, entry 1,−1 means that the
row player receives 1 and the column player receives −1 when they play joint
action (b1, a1). Therefore, the reward a player gains is what the other player
looses. Similarly, Table 2 presents the rewards of a coordination game where
both players receive the same reward.

Table 1. Zero sum game.

a1 a2

b1 1,−1 −1,1

b2 −1,1 1,−1

Table 2. Coordination game.

a1 a2

b1 1,1 0,0

b2 0,0 2,2

78 M. Smyrnakis et al.

A joint strategy σ̃ = (σ̃i, σ̃−i) that satisfies

ri(σ̃i, σ̃−i) ≥ ri(σi, σ−i) ∀i ∈ I,∀σi ∈ Δi

is a Nash equilibrium [38]. Nash in [38] showed that every game has at least one
equilibrium, i.e., there is at least one strategy σ̃ where players do not benefit
from deviating from it unilaterally. A Nash equilibrium can be either mixed or
pure if the strategy σ̃ is a mixed or a pure strategy respectively.

A class of games of particular interest is potential games. In [36], it was shown
that distributed optimisation tasks can be cast as potential games. Hence, the
search of an optimal solution in a distributed optimisation problem can be seen
as searching for a Nash equilibrium in a potential game. A game Γ is a potential
game if the rewards of all players can be replaced by a potential function φ such
that ∀a = (ai, a−i) ∈ A and ∀ā = (āi, ā−i) ∈ A:

ri(ai, a−i) − ri(āi, ā−i) = φ(ai, a−i) − φ(āi, ā−i).

[36] showed that every potential game has at least one pure Nash equilibrium.

3.2 Bayesian Games

A Bayesian game, or game of incomplete information, is defined as a tuple

G = 〈I, {Θi}i∈I , {Ai}i∈I , {p(θi)}θi∈Θ,i∈I , {ri}i∈I〉,

where

– I is the set of player indices;
– Θi is the set of types belonging to player i and Θ = ×i∈IΘi;
– Ai is set of possible actions of player i;
– ri : A → R is the utility function of player i.

Each type of a player represents a possible internal state of the player. At any
time, a player can only be in one of its types. The type of a player constitutes
its private information, in the sense that each player i knows the type that it
is in. In contrast, the other players only know the probability that player i can
be in a certain type at that moment. If θi ∈ Θi is considered as the state of the
environment, i.e., the type of a player is the state of the environment (world),
then all players have the same types and thus Θi = Θj , ∀i, j ∈ I. The expected
reward of a player in a Bayesian game is then estimated as:

ri(σi, θi) =
∑

θ−i∈Θ−i

p(θ−i)ri(σi, θi, σ−i, θ−i). (2)

A Bayesian Nash equilibrium is defined as

σi ∈ argmax
ai∈A

p(θi|θ−i)ri(σi, θi, σ−i, θ−i)

On the Combination of Game-Theoretic Learning 79

Hence a Bayesian Nash equilibrium is a Nash equilibrium of the expanded
game in which each player action space of pure strategies is the set of maps from
Θi to Ai.

As an example, consider a task allocation scenario: two robots 1 and 2 need
to collaborate to finish two tasks: easy and difficult. The difficult task can be
performed efficiently only if both robots work together on it. Robot 1 can do
both tasks at the same efficiency, and hence it has only one type. Robot 2
has two types A and B. In type A, robot 2 can do the easy task with greater
efficiency than the difficult task, while in type B, it performs both tasks with
the same efficiency. Furthermore, robot 2 always knows its type, while robot 1
only knows that with probability p robot 2 is in type A, and with probability
1 − p is in type B. In this game, the world has a unique state and thus does not
affect robots’ types. Table 3 illustrates an example of the utility function in this
Bayesian game.

Table 3. Reward matrices of a two players Bayesian game.

Type A

task difficult easy

difficult 10,6 5,10

easy 8,5 6,8

Type B

task difficult easy

difficult 9,10 5,4

easy 8,6 7,5

Each matrix of Table 3 represents the rewards that robots receive. The single
type robot is the row player of the game, and the other robot is the column
player. If robot 2 is in type A, then both robots receive the rewards in the left
matrix, while when it is type B, they receive the reward in the right matrix. For
example, the entry 5, 10 of the left matrix means that when robot 1 performs
the difficult task and robot 2 does the easy task and is in type A. In this case,
robot 1 receives 5 unit of reward and robot 2 receives 10 units. We reinforce here
that at any time of game playing, robot 2 knows exactly which reward matrix
is used, while robot 1 makes decisions based on the probability distribution of
types of robot 2: p and 1 − p for the left and right matrix respectively.

3.3 Stochastic Games

Stochastic games [53] is considering as a multi-agent extension of Markov Deci-
sion Processes. In these games the joint actions of the players can change the
game that is played. Consider the following case which describes a stochastic
game. Two players play repeatedly the zero sum game that is depicted in Table 1,
but when the joint actions b1, a1 or b2, a2 is played then the game that the two
players will play will change with probability p to the coordination game that is
described in Table 2 and will play this game for the remaining repetitions of the
game that should be played.

80 M. Smyrnakis et al.

More formally a stochastic game G is defined as a tuple G = (Q, I, A,
P, {ri}i∈I), where

– Q is a finite set of states
– I is a finite set of players
– A = ×i∈IAi is a finite set of joint actions available for each state in Q.
– P is a |Q| × |A| × |Q| transition probabilities matrix with |Q| and |A| denot-

ing the cardinality of Q and A respectively. Thus, P (q, a, q̃) will denote the
probability that a state q̃ will be visited from state q when the joint action a
will be played.

– ri : Q×A → R is the utility function of player i, with ri(q, {ai}i∈I) denoting
the reward that a player will gain if a joint action is played while the game
is in state q.

The expected reward that players try to maximise in a stochastic game given
a discount factor β ∈ [0, 1) and a mixed strategy σ is defined as:

r̃i(q, σ) =
∞∑

t=0

βt
E

(
ri(q, a)|q0 = q

)
.

The Nash equilibrium in the case of the stochastic games is defined as a joint
strategy σ̃i such as:

r̃i(q, σ̃) ≥ r̃i(q, (σi, σ̃−i)∀σi ∈ Δi∀i ∈ I.

As an example consider a simple scenario where two UAVs that will have to
choose between two areas to monitor, area A and area B. Area A is a narrow
and if both robots choose to monitor it there is a chance to crash. Therefore,
it is possible that the robots wont be able to monitor any area for the rest of
their mission. This problem can be formulated as a stochastic game with the
following elements: Q = x, y, where state x represents the state that UAVs are
functioning and y the state that the UAVs have crashed. The actions that the
UAVs have in state x are A and B and they have no action in state y since they
have crashed. The rewards of the robots are presented in Tables 4 and 5 for the
states x and y respectively.

The transition probabilities when the game is in state x for each possible
joint action is given by

Px =

⎡

⎢⎢⎣

x y

(A,A)
2
3

1
3

(A,B) 1 0
(B,A) 1 0
(B,B) 1 0

⎤

⎥⎥⎦.

On the Combination of Game-Theoretic Learning 81

Table 4. Reward of both players in state x. The left number of each tuple represents
the rewards of the first robot (row player), and the second the rewards of the second
robot (column player).

A B

A (10,9) (6,5)

B (1,7) (3,8)

Table 5. Reward of both players in state y.

No action

No action (0,0)

Each row of Px represents a joint action and each column represents the
possible new state of the game either x or y. When the game is on state y
will remain in that state for ever. Under this set up this stochastic game has a
pure strategy Markov equilibrium the joint action (A,B) which wouldn’t be the
equilibrium of the game if the game had only a single state state x.

State-Based Games. State-based games [33] are a simplified version of
stochastic games. Similarly to stochastic games are defined as G = (Q, I, A,
P, {ri}i∈I), but the players are myopic and thus they aim to maximise their cur-
rent expected reward instead of discounted future rewards. Another important
difference between stochastic and state-based games is that the in state based
games the players are expected to have the same action in all the different states
of the game. In these games the notion of recurrent state equilibrium have been
proposed [33], which is defined as the tuple of joint action and state (a∗, q∗) such
as:

– q∗ ∈ Q(a∗|q)∀q ∈ Q(a∗|q∗), where Q(a∗|q) ⊆ Q is the set of reachable states
from initial state q when the joint action a is always selected.

– ri(q, a∗) ≥ ri(q, aia∗,−i)∀ai ∈ Ai,∀q ∈ Q(a∗|q∗),∀i ∈ I.

Consider the case where they should choose to cooperate or not in order to
perform a task. Each time that they choose an action the state of the game can
change. An example is the a state-based game presented in [29]. There are three
states x, y and z and in each of them corresponds a different game, namely coor-
dination game, prissoners’ dielemma and maching pennies. The reward functions
of these games are depicted in Tables.

82 M. Smyrnakis et al.

Table 6. Reward of both players for the coordination game. The left number of each
tuple represents the rewards of the first robot (row player), and the second the rewards
of the second robot (column player).

Cooperate Not cooperate

Cooperate (4,4) (1,3)

Not cooperate (3,1) (2,2)

Table 7. Reward of both players for prisoners’ dilemma. The left number of each tuple
represents the rewards of the first robot (row player), and the second the rewards of
the second robot (column player).

Cooperate Not cooperate

Cooperate (2,2) (0,3)

Not cooperate (3,0) (1,1)

Table 8. Reward of both players for matching pennies game. The left number of each
tuple represents the rewards of the first robot (row player), and the second the rewards
of the second robot (column player).

Cooperate Not cooperate

Cooperate (−1,1) (1,−1)

Not cooperate (1,−1) (−1,1)

The transition probabilities from each state are given by the following transition
matrices:

Px =

⎡

⎢⎢⎣

x y z

(A,A) 0 1
3

2
3

(A,B) 0 0 1
(B,A) 0 1

2
1
2

(B,B)
1
2

1
2 0

⎤

⎥⎥⎦, Py =

⎡

⎢⎢⎣

x y z

(A,A) 0 1 0
(A,B) 0 1

4
3
4

(B,A) 0 1 0
(B,B)

3
5

2
5 0

⎤

⎥⎥⎦, Pz =

⎡

⎢⎢⎣

x y z

(A,A) 0 0 1
(A,B) 0 0 1
(B,A) 0 1 0
(B,B) 0 1 0

⎤

⎥⎥⎦ (3)

where action A and B correspond to actions cooperate and not cooperate
respectively. The recurrent equilibria for this state-based game are the action
state pairs (BB, x) and (BB, y)

4 Learning Algorithms

A distributed optimisation task can be cast as a game [67]. However, the formu-
lation of the optimisation task as a game does not directly provide a solution to
the game. A coordination mechanism between the robots is needed especially in
cases where autonomy is a desirable property of the robot team. Game-theoretic
learning algorithms can be used by robots to choose a joint action to solve the

On the Combination of Game-Theoretic Learning 83

Fig. 1. General procedure of game-theoretic learning algorithms.

game. The canonical example of game-theoretic learning algorithms is fictitious
play (FP). Fictitious play is an iterative learning algorithm. Figure 1 illustrates
the general procedure of game-theoretic learning algorithms.

In each iteration t, each player estimates other players’ strategies, and based
on these estimates, chooses an action using the best response decision rule. At
the initial iteration, i.e., t = 0, every player i maintains some arbitrary, non-
negative weights κi→j

t for each other player j as the estimation of their strategy.
In particular, κi→j

t (aj) is the weight for action aj ∈ Aj of player j. At successive
iterations, players update their weight functions based on other players’ chosen
actions. The update of player i’s weight function for player j is computed as
follows [18]:

κi→j
t (aj) = κi→j

t−1 (aj) +
{

1 if aj = aj
t−1

0 otherwise
(4)

where aj
t−1 is the action that player j chooses at iteration t − 1. Based on these

weights, player i then estimates player j’s strategy using the following equation:

σj
t (a

j) =
κi→j

t (aj)
∑

aj∈Aj κi→j
t (aj)

. (5)

84 M. Smyrnakis et al.

Fictitious play converges to the Nash equilibrium in many classes of games,
such as 2 ×2 games with generic payoffs [35], zero sum games [46], games that can
be solved using iterative dominance [37], 2 × n games [4] and potential games
[36]. However, this convergence can be very slow [18] because of the implicit
assumption that all players use the same strategy throughout the game. In [56]
and [60], variants of fictitious play were proposed, which were based on particle
filters and extended Kalman filters respectively. These algorithms assume that
players adapt their strategies through the iterations of the game. In both vari-
ants, the fictitious play process is described as a hidden Markov model (HMM).
Each player maintains some unconstrained propensities1, which are responsible
for their strategies. In each iteration of game playing, each player aims to predict
other players’ propensities, i.e., hidden layer of the HMM, by using the history
of other players’ actions, i.e., observations layer of the HMM. Figure 2 illustrates
the evolution of propensities of player i through the iterations of the game and
how they are related to strategies and actions.

Fig. 2. Propensities propagation throughout the game. The propensity xi
t at time t

depends only on the propensity at time t − 1. Moreover, the strategy σi
t of player i at

time t depends only on the propensity of the same iteration, and the action ai
t that the

player chooses depends only on its strategy at the same iteration as well.

More formally, let xi(ai) denote the propensity of player i to play action ai,
and ai

t the action of player i at the t-th iteration of the fictitious play process.
The probability at which each player estimates about the propensity of other
players is

p(xj(aj)|aj
0, a

j
1, . . . , a

j
t) ∀j ∈ I \ {i},∀aj ∈ Aj . (6)

This probability was evaluated using particle filters in [56] and extended
Kalman filters in [60]. In this paper, we only consider the variant of fictitious
1 The strategies are probability distributions. Thus, when a dynamical model is used

to propagate them, new estimates are not necessary to lay in the probability distri-
butions space. For that reason, the intentions of players to choose an action, namely
propensities, which are not bounded to probability distribution spaces, are used [56].

On the Combination of Game-Theoretic Learning 85

play based on extended Kalman filters. But the same methodology can be easily
applied to the variant with particle filters. As each player estimates the propen-
sity of every other individual player separately, only inference over a single “oppo-
nent” player, say player j, will be presented in the rest of the paper.

4.1 Extended Kalman Filter Fictitious Play (EKFFP)

This variant of fictitious play is based on the assumption that players have
no prior knowledge about other players’ strategies, and thus, an autoregressive
model can be used to propagate the propensities [56]. In addition, inspired from
the sigmoid functions that are used in neural networks to connect the weights
and the observations, a Boltzman formula is used to relate the propensities with
other players’ strategies [5]. The following state space model is used to describe
EKFFP:

xj
t (a

j) = xj
t−1(a

j) + ξj
t−1

Iaj
t=aj (aj) = h(xj

t (a
j)) + ζj

t (7)

where Iaj
t=aj (aj) is the measurement equation, which relates the propensities to

the actions of the players. The noise of the propensity process, ξj
t−1 ∼ N(0, Ξ),

which comprises the internal states, has zero mean and covariance matrix Ξ. The
error, ζt ∼ N(0, Z), of the observations has zero mean and covariance matrix Z.
This error occurs because a discrete 0–1 process, such as the best response in
Eq. (1) is represented through the continuous Boltzmann formula h(·) in which
τ is a “temperature parameter”. The components of the vector h, are evaluated
as:

h(xj(aj)) =
exp(xj(aj)/τ)∑

ak∈Aj exp(xj(ak)/τ)
. (8)

The behaviour of the EKFFP algorithm at the t-th iteration of a game can be
described as follows. At first, player i uses the EKF process, which is based on
the state space in Eq. (7), to predict other players’ propensities. Player i then
using these estimates, evaluates player j’s strategy of choosing an action aj ∈ Aj ,
σj

t (aj), as follows:

σj
t (a

j) =
exp(x̄j

t (ak)/τ)
∑

ak∈Aj exp(x̄j
t (ak)/τ)

, (9)

where x̄j
t (ak) is player i’s prediction of the propensities of player j in order

to choose action ak ∈ Aj based on the state equations in Eq. (7) and using
observations up to time t − 1. Player i then uses the estimates in Eq. (9) to
choose an action using best response in Eq. (1). After all players have chosen an
action, they use the EKF update process to correct their estimates about other
players’ strategies in the light of the recently observed actions. Then, the next
iteration of EKFFP starts with t = t+1. The EKF estimations can be computed
by any standard textbook procedure, such as in [49]. Algorithm 1 summarises
the fictitious play algorithm when EKF is to predict other robots’ strategies.

86 M. Smyrnakis et al.

Algorithm 1. Extended Kalman filter fictitious play [60].

1: while t < max iterations do
2: for all j ∈ I \ {i} do
3: Predict other players’ propensities for the next iteration t + 1 using the state

equations in Equation (7).
4: Use the beliefs about other players’ strategies in Equation (9) and choose an

action using BR in Equation (1).
5: Observe other players’ actions
6: for all j ∈ I \ {i} do
7: Update estimates of player j’s propensities using extended Kalman Filtering

to obtain x̄j
t(a

k).
8: t = t + 1

5 Multi-model Adaptive Filter EKFFP (Source: [59])

5.1 Multi-model Adaptive Filters

The EKFFP process requires the definition of the covariance matrices Ξ and Z
for the random variables ξ and ζ respectively. The performance of the learning
algorithm is affected by the values of these covariance matrices. In [60] specific
values were proposed for those covariance matrices, although these values are
not optimal for all games. In this work, we propose a new approach that uses
many models, each of which represents a pair of covariance matrices Ξ and Z.
This approach then uses a weighted sum of these models in order to obtain an
estimate of other players’ propensities, instead of estimating the propensities
from a single pair of covariance matrices. For Bayesian games, players can have
a propensity estimate for each state of the nature or each type of other players.

The framework that allows many models to be considered under the EKFFP
process is multiple model adaptive filters [6,9,10]. Let L be the set of all models
that are used. Instead of estimating the propensity in Eq. (6), each player should
estimate

p(xj(aj), l|aj
0, a

j
1, . . . , a

j
t), (10)

where l ∈ L is one of the possible models, each of which either refers to a pair
of covariance matrices for potential games, or the state of the nature or another
player’s type Θi in Bayesian games.

To simplify notations, we use ãj
t to denote (aj

0, a
j
1, . . . , a

j
t). The estimate of

other players’ propensities in Eq. (10) can be written as:

p(xj(aj), l|ãj
t) = p(l|ãj

t)p(xj(aj)|l, ãj
t), (11)

where p(xj(aj)|l, ãj
t) for a given l is the standard EKF estimate of other player’s

propensity and p(l|ãj
t) can be seen as the weight factor of each model.

On the Combination of Game-Theoretic Learning 87

Using Bayes rule, the probability p(l|ãj
t) can be written as:

p(l|ãj
t) =

p(ãj
t |l)p(l)

∑
l∈L p(ãj

t |l)p(l)
, (12)

where p(l) is the prior distribution of the model l. The probability p(ãj
t |l) can

be written as

rlp(ãj
t |l) = p(aj

t , a
j
t−1, . . . , a

j
0|l) (13)

= p(aj
t , a

j
t−1, . . . , a

j
1|aj

0, l)p(aj
0|l)

...
= p(aj

t |ãj
t−1, l)p(aj

t−1|ãj
t−2, l) · · · p(aj

0|l).

The propensities are described by the hidden Markov model, so they are condi-
tionally independent, and thus, Eq. (13) can be written as:

p(ãj
t |l) =

q=t∏

q=0

p(aj
q|l). (14)

5.2 Multi-model Adaptive Filters EKFFP (MMAF-EKFFP)

Let |L| denote the cardinality of set L, and xj
t,l(a

j) the propensity of player j,
playing action aj at the tth iteration under model l. In the multi-model adaptive
filters EKFFP process, each player uses |L| models for the propensity of each
other player. In particular, each model is a state model:

xj
t,l(a

j) = xj
t−1,l(a

j) + ξj
t−1,l

I l
aj
t=aj (a

j) = h(xj
t,l(a

j)) + ζj
t,l. (15)

For each of these models, player i uses the EKF process to predict player j’s
propensity, i.e., x̃j

t,l(a
k), in order to choose an action ak ∈ Aj under model l.

This prediction is weighted using Eq. (12). The estimate of player j’s propensity
to choose action ak ∈ Aj is then the sum of the weighted estimates of each
model:

x̄j
t,ak =

∑

l∈L

p(l|ak)x̃j
t,l(a

k), (16)

where p(l|ak) is evaluated using Eq. (12) and (14). Then Eq. (9) can be applied to
evaluate player j’s strategy. Each model of the estimates of player j’s propensity
are updated using the standard EKF process under the light of the new action
player j has chosen. Algorithm 2 and Fig. 3 summarise the MMAF-EKFFP
algorithm.

88 M. Smyrnakis et al.

Algorithm 2. MMAF-EKFFP, [59].

1: while t < max iterations do
2: for all j ∈ I \ {i} do
3: for all l ∈ L do
4: For each model l predict other players’ propensities for the next iteration

t + 1, using Equation (15).
5: Evaluate x̄j

t(a
k) using Equation (16)

6: Compute the beliefs about other players’ strategies using Equation (9), and
choose an action using BR in Equation (1)

7: Observe other players’ actions
8: for all j ∈ I \ {i} do
9: for all l ∈ L do

10: Update each model’s estimate of other players’ propensities using extended
Kalman filter to obtain x̄j

t(a
k)

11: t = t + 1

6 Implementation Details

In this section, we discuss some implementation details in robotics of the MMAF-
EKFFP algorithm and of game-theoretic learning algorithms in general.

6.1 Utility Functions

Utility functions have been used in robotics as a metric of robots’ performance
in various applications such as [8,40,62–64,70]. Utility functions can incorporate
various aspects of a coordination task such as the cost a robot pays to perform
an action, the reward that will be produced if a task is completed successfully,
and the aptness of a robot to perform a specific task. In Sect. 7.1, an example of
a utility function for a task allocation problem [1] is presented.

Methodologies for designing a utility function is out of the scope of this
paper. Nonetheless, we mention here that wonderful life utility (WLU) [67] is
a methodology for constructing a utility function, which allows coordination
tasks to be cast as potential games. An important property of potential games,
especially useful in robotic applications, is that they have at least one pure Nash
equilibrium. Therefore, there is at least one optimum joint action where robots
will not deviate from it unilaterally.

6.2 Robots’ Decisions

As any iterative learning algorithm, our algorithm assumes that a specific game
can be iteratively be played and a final decision is reached either when the algo-
rithm converges to an equilibrium or when the maximum number of iterations
is reached. In robotics, this can be seen as the following coordination mecha-
nism. The robots in each iteration choose an action which they intent to play
and makes aware the other robots for its intentions, i.e., by communicating this

On the Combination of Game-Theoretic Learning 89

Fig. 3. The MMAF EKFP process [59].

intention to the other robots. Based on this information, they update their esti-
mates about other players strategies and update the action they are intended to
choose. The action that the team of robots will execute will be the joint action
of the final iteration of the learning algorithm.

6.3 Complexity

The computational complexity of the EKF algorithm is upper bounded by the
complexity of inverting a matrix O(n3) [7], where n is the rank of the inverted
matrix. Therefore the additional computational complexity of EKFFP when it is
compared with classic FP is upper bounded by O((|I|−1)|Ak|3), where Ak (k ∈
I) is the largest set of actions among all players. Similarly, for MMAF-EKFFP
it is O(|M|(|I| − 1)|Ak|3), where |M| denotes the number of models which are
used. The difference of the two algorithms is of a multiplicative magnitude of
M. This computational difference can be vanished if the computations of each
model m ∈ M are executed in parallel.

6.4 Stopping Criteria

A general and crucial issue with learning algorithms is about stopping criteria,
namely, the criteria for which the robots stop the iterative game playing stage
(coordination stage) and make a decision. An obvious choice is when a maximum
number of iterations is reached. This number should depend on the size of the
game, number of robots and their available actions, the problem of interest and
constraints which arise from it. For example, in cases where the communication
is expensive or robots should make decisions in real time, the maximum number
of iterations cannot be arbitrarily large.

90 M. Smyrnakis et al.

If the optimal solutions for the task of interest, and therefore the Nash equi-
libria, are known, then the coordination state can be terminated before the
maximum number of iterations is reached. It can be stopped when the joint
action is one of the Nash equilibria or the reward of the selected joint action is
not less than a constant ε from the equilibrium reward.

Even in cases where no Nash equilibria of the game are known, it is still
possible to have a stopping criterion before the maximum number of iterations is
reached. Coordination can be established if the learning algorithm has converged
to a specific joint action. Convergence to a specific joint action can be defined as
the repeated choice for c iterations of his particular joint action. Note here that
there is no fixed c which can be used for all games. The size of the game and its
nature should be taken into account when c is defined.

Depending on the application and the need to converge to a Nash equilibrium,
different combinations of the aforementioned criteria can be used.

6.5 Example of a Sequence of Bayesian Games

In [14], it was shown that dec-POMDPs can be cast as a sequence of Bayesian
games. In this section, we present a process of implementing a sequence of
Bayesian games to solve a coordination task. Consider the task allocation prob-
lem between two robots with rewards shown in Table 3 in Sect. 3. Depending to
the type of robot 2, there are two pure Nash equilibria where robots can converge.
The first one is (easy, easy) when robot 2 is of type A and (difficult, difficult)
when robot 2 is of type B. In order to accomplish their mission robots should
finish both the easy and the difficult task. Independently of the action the robots
will choose for this game, they will have accomplish only half of the necessary
tasks. Therefore the players will have to play a sequence of games in order to
finish both tasks, easy and difficult. The first game is the one with rewards
depicted in Table 3. Another game should be defined in order to complete the
unselected task, after making a decision based on the first game. An example of
such a game is defined in Table 9. There the robots should choose if they will
both try to finish the remaining task or only one should try or none of them
should try. Note here that the game depicted in Table 9 makes the two robots
coordinate and choose to do the remaining task together. Nonetheless, depend-
ing on the nature of the problem another reward matrix can be used in order to
allow robots having different behaviours.

Table 9. Reward matrices of the Bayesian game for the remaining action.

Type A

do not do

do 10,10 −5,0

not do −5,0 0,0

Type B

do not do

do 10,5 −5,0

not do 0,−10 0,0

On the Combination of Game-Theoretic Learning 91

7 Simulation Results

7.1 Results in Potential Games (Source: [59])

In this section the performance of the proposed algorithm, MMAF-EKFFP, is
compared against the one of EKFFP in a resource allocation task. This is the
vehicle-target assignment game which was introduced in [1]. In this potential
game, N robots and M targets are placed in an area. The goal of each robot is
to engage a target in order to destroy it. The actions of each robot are simply the
choice of a target to engage. Each robot can choose only one target to engage, but
a target can be engaged by many robots. The probability robot i has to destroy
a target m is assumed to be independent of the probability another robot j has
to destroy the same target. The probability that a target m will be destroyed is
computed as:

1 −
∏

i:ai=m

(1 − pim),

where pim is the probability at which the robot i can destroy target m.
The reward that robots will share is the sum of the rewards each target m

will produce if a specific joint action a is selected:

rglobal(a) =
∑

m∈M

rm(a), (17)

where rm(a), is defined as the product of target’s m value Vm and the probability
it can be destroyed by the robots which engage it. More formally, we can express
the utility that is produced by target m as follows.

rm(a) = Vm(1 −
∏

i∈I:ai=m

(1 − pim)). (18)

Multiple cases of the vehicle target assignment game were considered, with
varying number of robots. In particular 20 targets and N = {20, 30, 40, 50, 60}
robots were considered. The simulations were run in a computer with dual Intel
Xeon E5-2643 v2 processors (3.50 GHz, 6 cores) and 384 GB memory. The
probability that each robot i can destroy a target m was set to be proportional
to their euclidean distance. For each case, we run MMAF-EKFFP with six and
twelve models respectively. Each model represents a pair of covariance matrices
Ξ and Z. In all cases, the values of Ξ and Z were uniformly sampled from the
interval (0, 0.1]. Comparisons are also made with the classic EKFFP with Ξ
and Z defined as in [60]. We reinforce here that there does not exist a universal
combination of Ξ and Z which maximises the performance of EKFFP for all
games [60]. The parameters which are reported in [60] are suggestive. Therefore,
the question which arises is which pair of parameters Ξ and Z maximise the
performance of EKFFP for the games of interest. MMAF-EKFFP provides a
solution to this problem, since many combinations of Ξ and Z can be used
as part of different models. Then the players will select actions based on the
weighted sum of these models. The results presented in this paper are averaged

92 M. Smyrnakis et al.

over 200 runs for each case. In each run, target values Vm were uniformly chosen
from (0, 10]. The target and the robot positions were uniformly chosen from [0, 1].
This results in different scales of reward function. In order to make comparison
feasible, the following normalised version of the global utility was used:

rtotal =
rglobal∑

m Vm
.

As it is depicted in Fig. 4, MMAF-EKFFP with multiple models performs
better than the classic EKFFP, which uses only a single model.

Fig. 4. Average reward over 200 runs of the vehicle target assignment game, [59].

In addition, MMAF-EKFFP with 6 and 12 models perform similarly when
cases with up to 40 robots are considered. When more players are considered,
having more models improves the results of the algorithm.

It is expected that MMAF-EKFFP has heavier computational cost than
EKFFP as the number of models is increased. Nonetheless as it is shown in
Table 10, the running time of MMAF-EKFFP is in the same level as EKFFP
because it is implemented using parallel computing, taking advantage of the
multiple cores which many development platforms already have in robotics. In
this experiment, each model is processed by an individual thread, which then
runs in an individual physical computation core.

Remark. This game can be also solved by message passing algorithms like max-
sum [17]. However, the size of search table and the size of the messages that
need to be exchanged between agents render the application of these methods
prohibitive complex in real time applications. In particular, if each robot were
using maxsum algorithm, then it should update and transmit 2050 messages. This
is because a robot can engage any of the 20 available targets and the reward of
a robot i depends on the joint action a−i of all the other robots.

On the Combination of Game-Theoretic Learning 93

Table 10. Time in seconds that 20 iterations needed for various number of models
EKF fictitious play, from [59].

20 robots 30 robots 40 robots 50 robots

EKFFP 0.0649 ± 0.0042 0.1133 ± 0.0130 0.1548 ± 0.0109 0.2321 ± 0.0227

MMAF-EKFFP (6 models

sequential)

0.3243 ± 0.0263 0.5909 ± 0.2247 1.1428 ± 0.1618 1.6509 ± 0.3116

MMAF-EKFFP (12 models

sequential)

0.7773 ± 0.0327 1.3294 ± 0.1102 2.2283 ± 0.2177 3.0378 ± 0.2063

MMAF-EKFFP (6 models

parallel)

0.0568 ± 0.0013 0.0906 ± 0.0034 0.1326 ± 0.0059 0.1918 ± 0.0105

MMAF-EKFFP (12 models

parallel)

0.0616 ± 0.0030 0.1091 ± 0.0065 0.1619 ± 0.0071 0.2326 ± 0.0192

7.2 Games with Noisy Rewards (Source: [59])

This section contains the simulation results in a scenario where the robots receive
noisy observations of the other robots’ actions. Noisy observations denote obser-
vations which for some reason is incorrect. Consider the case where two UAVs
monitor a part of a field in order to decide if fertilisation is needed. The best
results are obtained when one UAV flies at the top of the area and the other flies
at the sides of the area. This scenario can be modelled as a two player game,
which is depicted in Table 11. If both UAVs choose to go at the top of the area
of interest, they will collide and they will receive some negative rewards. On the
other hand, if they both choose to fly at the side of the area, then they will gain
no reward because the quality of the images they gather will be poor. Finally,
some positive reward is generated only if the two UAvs make different decisions.
Note that the natural choice of the two UAVs is to choose to fly at the side of
the area. They change their decision only when they believe with probability
greater than 0.8 that the other UAV will choose to go at the side of the area of
interest. In addition, each UAV can observe correctly the intention of the other
UAV with probability p in every iteration of the coordination process.

Remark. In this paper, we assume that each robot knows the probability dis-
tribution of noisy observations, either by having some prior knowledge about its
sensors’ specification or using some methods to estimate that distribution as the
one proposed in [47] to estimate this distribution.

Table 11. UAVs’ rewards for the game with noisy observations.

Top Sideways

Top −4,−4 0,1

Sideways 1,0 0,0

Figure 5 shows the results of MMAF-EKFFP and EKFFP for the game with
rewards depicted in Table 11. As it is shown here the percentage of times that

94 M. Smyrnakis et al.

MMAF-EKFFP converged to a Nash equilibrium is always greater than 50%.
This is significantly better than the results reported in [11], where the results of
Generalised Weakened fictitious play (GWFP) [28] and Filtered Fictitious Play
(FFP) [11]. The probability of converging to a Nash equilibrium reached zero
when the 50% or more of the observations were faulty for FFP. For the case of
GWFP the probability of converging to a Nash equilibrium reached zero when
the 30% or more of the observations were faulty. Note here that even EKFFP
performs better than FFP and GWFP since the probability of converging to a
Nash equilibrium reached zero when the 80% or more of the observations were
faulty.

The minimum probability of convergence to a Nash equilibrium for the
MMAF-EKFFP algorithm is observed when the 50% of the observations were
faulty. This is because the observations had exactly the same chance to be cor-
rect or faulty. When players know that the probability of a faulty observation is
greater than a correct one, they use this information and increase their chances
to converge to an equilibrium point.

Fig. 5. Probability to converge to Nash equilibrium as a function of the percentage of
the correctly observed opponents’ actions, [59].

7.3 Results in Bayesian Games (Source: [59])

The majority of the methods that are used to solve Bayesian games, such as
Agent Security via Approximate Policies (ASAP) [41], Mixed Integer Program-
ming Nash (MIP Nash) [50], brute force search methods [39] or Multiple Lin-
ear Programs [12] tries to find the Bayes Nash equilibrium with the highest
reward. In order to solve the Bayesian game in Table 3, we can transform it into
a strategic form game using Harsanyi’s transformation [20], and search for the
Nash equilibrium of this new game. An example of Harsanyi’s transformation
is depicted in Table 12, where the Bayesian game of Table 3 has been cast as a

On the Combination of Game-Theoretic Learning 95

strategic form game, with probabilities p and 1 − p of the second player being
of type A or B. In this game, robot 1 is the row player and robot 2 the column
player.

Note here that as the second robot can be of any of the two types in the
strategic form game, its actions consist of all the possible combinations of its
actions in the two games. Therefore, in the strategic form representation of
Table 3, the second robot has four possible actions EADB , EAEB ,DADB ,DAEB ,
where EADB denotes selecting the easy task if it is of type A and the difficult
task if it is of type B etc.

The game with rewards in Table 12 have three Bayes-Nash equilibria. Two
pure Bayes-Nash equilibria and one mixed. The joint actions (difficult,DADB)
and (easy,DAEB) are pure Bayes-Nash equilibria. The mixed Bayes-Nash equi-
librium exists when p > 1

5 : robot 1 chooses the difficult task with probability
5p−1
5−p and robot 2 chooses DADB with probability 2

3 . Nonetheless, even find-
ing the Bayes-Nash equilibria does not answer to the question which action the
robots should choose if they are playing any of the two games. For example if
the type of robot 2 is A, then the equilibrium of the actual game which will be
played is easy;easy, as it can be seen from Table 3. On the other hand, if the
type of the robot 2 is of type B then the equilibrium of the actual game which
will be played is difficult, difficult.

Table 12. Strategic form game’s rewards, of the Bayesian game of Table 3 as a function
of p.

Robot 2

EADB EAEB DADB DAEB

Robot 1 Difficult 9 + p, 10 − 4p 5 + 5p, 4 + 2p 9 − 4p, 10 5, 4 + 6p

Easy 8, 6 − p 7 + p, 5 8 + 2p, 6 − 2p 7 − p, 5 + 3p

On the other hand, the proposed algorithm allows robots to learn what the
other robots are doing, and evaluate the probability of choosing a particular
sequence of actions given that they are of a specific type. Then based on this
knowledge, they choose the action that maximises their expected reward condi-
tional to the possible types of the other players.

Now we study the performance of MMAF-EKFFP in two games with incom-
plete information. The first game had at least one pure strategy Nash equilib-
rium, and the second has only a mixed strategy Nash equilibrium.

The first game is the one depicted in Tables 3 and 9. MMAF-EKFFP always
converged to the pure Nash equilibrium of the game, and therefore, the two
robots always chose to work on the same task (easy or difficult) jointly.

The second example which is considered comes from a security problem [41].
In security games, a group of security robots try to secure some areas of interest
and an attacker robot tries to invade these areas. In [3,48], the security robots
cannot be physically present in all the areas of interest at the same time. Instead,

96 M. Smyrnakis et al.

they can choose among various patrol routes. Security robots choose the route
and the areas they will patrol based on the importance of the areas or the
likelihood at which an attacker robot will be appear etc. The security problem
can be cast as a two player game [41]. If there are M areas of interest, then the
action of the security robots will be the d-tuple (d ≤ m) of the areas which the
robots will patrol. The order by which the robots visit the areas is also taking
into account. For instance, in the case of three areas {1, 2, 3}, each petrol order,
e.g., 1 ← 2 ← 3 or 1 ← 3 ← 2, is a different action. The attacker robot can
choose any of the M available areas to invade. Assume that the security robots
can choose from K patrolling routes. The reward of the security robots ri(k)
(k ∈ K) and that of attacking robot rj(m) (m ∈ M) are estimated respectively
as follows.

ri(k) =
{−ui(ai) if aj �∈ ai

paici + (1 − pai)(−ui) if aj ∈ ai,
(19)

where ui(ai) is the value of area ai to the security robots, pai is the probability
that the security robots can catch the attacker in the ai area, ci is the reward
to the security robots if the attacker is caught:

rj =
{

uj if aj �∈ ai

−pajcj + (1 − paj)(uj) if aj ∈ ai,
(20)

where ui(aj) is the value of area aj to the attacker robot, paj is the probability
that the security robots can catch the attacker when patrolling area aj , and cj

is the cost to the attacker robot if it is caught.
Consider the case where two areas are available and the actions available to

security robot are 1 ← 2 and 2 ← 1 respectively. In addition, assume that the
attacking robot can be of two types A and B. The above reward function, when
similar parameters to [41] are used, can be modelled as a Bayesian game as it is
depicted in Table 13.

Table 13. Reward matrices of the attacking and security robot for two different types
of attacking robot. The top table is the game played when the attacking robot is of
type A.

Areas 1,2 Areas 2,1

Area 1 −1,0.5 −0.125,−0.125

Area 2 −0.375,0.125 −1,0.5

Areas 1,2 Areas 2,1

Area 1 −1.2,0.4 −0.025,−0.025

Area 2 −0.275,0.125 −1.2,0.4

On the Combination of Game-Theoretic Learning 97

When the attacker is type A, the optimal policy for the security robots, which
leads to a Nash equilibrium, is to choose a mixed strategy and play action 1 ← 2
with probability 0.58 and 2 ← 1 with probability 0.42. The mixed strategy for
the attacking robot is to choose area 1 with probability 0.375 and area 2 with
probability 0.625. If attacker is of type B, the security robots’ optimal policy
is to choose a mixed strategy by playing action 1 ← 2 with probability 0.35
and 2 ← 1 with probability 0.65. The mixed strategy for the attacking robot
is to choose area 1 with probability 0.39 and area 2 with probability 0.61. The
security robots assume that the attacking robot is of type A with probability 0.9
and of type B with probability 0.1. Figure 6 illustrates the probability with which
the attacking robot, chose Area 1 when it was of type A. The performance of
MMAF-EKFFP was compared with EKFFP and the asynchronous best response
algorithm which proposed in [15] in order to solve Bayesian games. As it can
be seen from Fig. 6, MMAF-EKFP converged to the Nash equilibrium of the
game while the two other algorithms failed to converged to a value close to
the Nash equilibrium. Similarly, Fig. 7 depicts the probability with which the
security robot chose action 2 ← 1. As it can be observed from Fig. 6, MMAF-
EKFP converged to the Nash equilibrium, while the other algorithms failed to
converged to a value close to the Nash equilibrium. Similar results were obtained
for various combinations of the probabilities with which the attacking robot could
be of type A or B. In particular, the differences in the results between the case
where the attacking robot is of type A with probability 0.9 and the case when
it is of type B with probability 0.1, are less than 0.01 from the reported results
in Figs. 6 and 7.

Fig. 6. Probability of the attacking robot to choose area 1 when it is of type A as a
function of the number of iterations. The solid line represents the Nash equilibrium,
the squared-line the MMAF-EKFFP algorithm, the dashed line the Asynchronous Best
response and the dotted line the EKFFP algorithm, [59].

98 M. Smyrnakis et al.

Fig. 7. Probability of the security robot to choose action 2 ← 1 when the attacking
robot is of type B as a function of the number of iterations. The solid line represents
the Nash equilibrium, the squared-line the MMAF-EKFFP algorithm, the dashed line
the Asynchronous Best response and the dotted line the EKFFP algorithm, [59].

7.4 Results on Stochastic and State-Based Games

In this section the results obtained for two scenarios of state based games are
presented. The first is the game that was described in Tables 6, 7 and 8, with the
corresponding transition probabilities of Eq. 3. This state space game was played
for 100 replications and in each replication 100 iterations of the state-based
game where played. In this game, the players that used EKFMMAF fictitious
play, where playing the recurrent equilibrium of the game. In particular, 57% of
the times they were selecting the (Not cooperate, Not cooperate) action of the
coordination game, and 43% of times they were selecting the (Not cooperate,
Not cooperate) of the prisoners’ dilemma game.

Consider the game that it is depicted in Fig. 8. In this game two robots
located in squares 1 and 3 respectively should reach the square with number 8
where their target is. When a robot is in a particular square this represents a
specific state. Even though the available actions of the players are the same in
all states, different behaviours can emerge when a robots are in different squares.

The robots can move either one square forward, or one square backwards, or
one square at the left or one square at the right. If they both choose to move
to the same square, case of possible collision, then only one is can go to the
new square with probability 1

2 , while the other one stays at its current cell. In
addition, the robots can transition from squares 1 and 3 to squares 4 and 6
respectively with probability p. One iteration of the game finishes when at least
one robot reaches the square number 8.

On the Combination of Game-Theoretic Learning 99

Fig. 8. State-based game of two robots. The robots (brown square and blue cycle)
should reach their target on square number eight (orange triangle). (Color figure online)

Fig. 9. Sequence of actions when probability p = 0.4. (Color figure online)

Table 14. Percentage of times that each robot reached its target.

p % of times only robot 1
reached cell #8

% of times only robot 2
reached cell #8

% of times both robots
reached cell #8

0.4 0.54 0.46 0

0.5 0.44 0.56 0

0.6 0.48 0.04 0.48

0.7 0.22 0.02 0.76

0.8 0.02 0.04 0.94

100 M. Smyrnakis et al.

Table 14 shows the percentage of times that either only a single robot or
both robots managed to reach their target. As expected better coordination
achieved when p ≥ 0.6. In particular, as it is depicted to Figs. 9 and 10, both
players where choosing to towards the square number two, since it would give
them better chances to reach their target. When p ≥ 0.6 the robots manage to
coordinate and one of was selecting as its first action square 2 while the other
was choosing squares 4 and 6 respectively, Figs. 11, 12 and 13.

Fig. 10. Sequence of actions when probability p = 0.5. (Color figure online)

Fig. 11. Sequence of actions when probability p = 0.6. (Color figure online)

On the Combination of Game-Theoretic Learning 101

Fig. 12. Sequence of actions when probability p = 0.7. (Color figure online)

Fig. 13. Sequence of actions when probability p = 0.8. (Color figure online)

8 Conclusions and Future Works

A new game-theoretic learning algorithm based on EKFFP and multi-model
adaptive filters has been proposed. This new algorithm can take into account
various forms of uncertainty.

The performance of the proposed algorithm was tested in various games, that
are related to robotic applications. The experimental results showed that it can
provide better solution than the classic EKFFP algorithm and can be run as
fast as the latter if implemented using parallel computing.

As future work the proposed algorithm will be applied in robotic platforms
with various computing capabilities, in scenarios that can be formulated as
games. This will to test the applicability of the proposed methodology in real
life scenarios.

102 M. Smyrnakis et al.

References

1. Arslan, G., Marden, J.R., Shamma, J.S.: Autonomous vehicle-target assignment: a
game-theoretical formulation. J. Dyn. Syst. Meas. Contr. 129(5), 584–596 (2007)

2. Ayken, T., Imura, J.i.: Asynchronous distributed optimization of smart grid. In:
2012 Proceedings of SICE Annual Conference (SICE), pp. 2098–2102. IEEE (2012)

3. Beard, R.W., McLain, T.W.: Multiple UAV cooperative search under collision
avoidance and limited range communication constraints. In: Proceedings of 42nd
IEEE Conference on Decision and Control, vol. 1, pp. 25–30. IEEE (2003)

4. Berger, U.: Fictitious play in 2xn games. J. Econ. Theory 120(2), 139–154 (2005)
5. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press,

Oxford (1995)
6. Blair, W., Bar-Shalom, T.: Tracking maneuvering targets with multiple sensors:

does more data always mean better estimates? IEEE Trans. Aerosp. Electron. Syst.
32(1), 450–456 (1996)

7. Bonato, V., Marques, E., Constantinides, G.A.: A floating-point extended Kalman
filter implementation for autonomous mobile robots. J. Signal Process. Syst. 56(1),
41–50 (2009)

8. Botelho, S., Alami, R.: M+: a scheme for multi-robot cooperation through negoti-
ated task allocation and achievement. In: 1999 IEEE International Conference on
Robotics and Automation, 1999, Proceedings, vol. 2, pp. 1234–1239 (1999)

9. Brown, R.G., Hwang, P.Y.: Introduction to Random Signals and Applied Kalman
Filtering: With Matlab Exercises and Solutions. Wiley, New York, 1 (1997)

10. Caputi, M.J.: A necessary condition for effective performance of the multiple model
adaptive estimator. IEEE Trans. Aerosp. Electron. Syst. 31(3), 1132–1139 (1995)

11. Chapman, A.C., Williamson, S.A., Jennings, N.R.: Filtered fictitious play
for perturbed observation potential games and decentralised POMDPs. CoRR
abs/1202.3705 (2012). http://arxiv.org/abs/1202.3705

12. Conitzer, V., Sandholm, T.: Choosing the best strategy to commit to. In: ACM
Conference on Electronic Commerce (2006)

13. Di Mario, E., Navarro, I., Martinoli, A.: Distributed learning of cooperative robotic
behaviors using particle swarm optimization. In: Hsieh, M.A., Khatib, O., Kumar,
V. (eds.) Experimental Robotics. STAR, vol. 109, pp. 591–604. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-23778-7 39

14. Emery-Montemerlo, R.: Game-theoretic control for robot teams. Ph.D. thesis, The
Robotics Institute. Carnegie Mellon University (2005)

15. Emery-Montemerlo, R., Gordon, G., Schneider, J., Thrun, S.: Game theoretic con-
trol for robot teams. In: Proceedings of the 2005 IEEE International Conference
on Robotics and Automation, ICRA 2005, pp. 1163–1169. IEEE (2005)

16. Evans, J.M., Krishnamurthy, B.: HelpMate R©, the trackless robotic courier: a per-
spective on the development of a commercial autonomous mobile robot. In: de
Almeida, A.T., Khatib, O. (eds.) Autonomous Robotic Systems. LNCIS, vol. 236,
pp. 182–210. Springer, London (1998). https://doi.org/10.1007/BFb0030806

17. Farinelli, A., Rogers, A., Jennings, N.: Agent-based decentralised coordination for
sensor networks using the max-sum algorithm. Auton. Agents Multi-Agent Syst.
28, 337–380 (2014)

18. Fudenberg, D., Levine, D.: The Theory of Learning in Games. The MIT Press,
Cambridge (1998)

19. Govindan, S., Wilson, R.: A global newton method to compute Nash equilibria. J.
Econ. Theory 110(1), 65–86 (2003)

http://arxiv.org/abs/1202.3705
https://doi.org/10.1007/978-3-319-23778-7_39
https://doi.org/10.1007/BFb0030806

On the Combination of Game-Theoretic Learning 103

20. Harsanyi, J.C., Selten, R.: A generalized Nash solution for two-person bargaining
games with incomplete information. Manage. Sci. 18(5-part-2), 80–106 (1972)

21. Hennig, P.: Fast probabilistic optimization from noisy gradients. In: ICML, no. 1,
pp. 62–70 (2013)

22. Jiang, A.X., Leyton-Brown, K.: Bayesian action-graph games. In: Advances in
Neural Information Processing Systems, pp. 991–999 (2010)

23. Kho, J., Rogers, A., Jennings, N.R.: Decentralized control of adaptive sampling in
wireless sensor networks. ACM Trans. Sen. Netw. 5(3), 1–35 (2009)

24. Kho, J., Rogers, A., Jennings, N.R.: Decentralized control of adaptive sampling in
wireless sensor networks. ACM Trans. Sen. Netw. (TOSN) 5(3), 19 (2009)

25. Kitano, H., et al.: RoboCup rescue: search and rescue in large-scale disasters as a
domain for autonomous agents research. In:1999 IEEE International Conference on
Systems, Man, and Cybernetics, 1999. IEEE SMC 1999 Conference Proceedings,
vol. 6, pp. 739–743. IEEE (1999)

26. Koller, D., Milch, B.: Multi-agent influence diagrams for representing and solving
games. Games Econ. Behav. 45(1), 181–221 (2003)

27. Kostelnik, P., Hudec, M., Šamulka, M.: Distributed learning in behaviour based
mobile robot control. In: Sinac, P. (Ed) Intelligent Technologies-Theory and Appli-
cations IOP press (2002)

28. Leslie, D.S., Collins, E.J.: Generalised weakened fictitious play. Games Econ.
Behav. 56(2), 285–298 (2006)

29. Li, C., Xing, Y., He, F., Cheng, D.: A strategic learning algorithm for state-based
games. Automatica 113, 108615 (2020)

30. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learn-
ing. In: Machine Learning Proceedings 1994, pp. 157–163. Elsevier (1994)

31. Madhavan, R., Fregene, K., Parker, L.: Distributed cooperative outdoor multirobot
localization and mapping. Auton. Rob. 17(1), 23–39 (2004)

32. Makarenko, A., Durrant-Whyte, H.: Decentralized data fusion and control in active
sensor networks. In: Proceedings of 7th International Conference on Information
Fusion, vol. 1, pp. 479–486 (2004)

33. Marden, J.R.: State based potential games. Automatica 48(12), 3075–3088 (2012)
34. Matignon, L., Laurent, G.J., Le Fort-Piat, N.: Independent reinforcement learners

in cooperative Markov games: a survey regarding coordination problems. Knowl.
Eng. Rev. 27(1), 1–31 (2012)

35. Miyasawa, K.: On the convergence of learning process in a 2x2 non-zero-person
game (1961)

36. Monderer, D., Shapley, L.: Potential games. Games Econ. Behav. 14, 124–143
(1996)

37. Nachbar, J.: Evolutionary’ selection dynamics in games: convergence and limit
properties. Int. J. Game Theory 19, 59–89 (1990)

38. Nash, J.: Equilibrium points in n-person games. Proc. Nat. Acad. Sci. U.S.A. 36,
48–49 (1950)

39. Oliehoek, F.A., Spaan, M.T., Dibangoye, J.S., Amato, C.: Heuristic search for iden-
tical payoff Bayesian games. In: Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems, vol. 1, pp. 1115–1122. International
Foundation for Autonomous Agents and Multiagent Systems (2010)

40. Parker, L.: ALLIANCE: an architecture for fault tolerant multirobot cooperation.
IEEE Trans. Robot. Autom. 14(2), 220–240 (1998)

41. Paruchuri, P., Pearce, J.P., Tambe, M., Ordonez, F., Kraus, S.: An efficient heuris-
tic for security against multiple adversaries in Stackelberg games. In: AAAI Spring
Symposium: Game Theoretic and Decision Theoretic Agents, pp. 38–46 (2007)

104 M. Smyrnakis et al.

42. Pugh, J., Martinoli, A.: Distributed scalable multi-robot learning using particle
swarm optimization. Swarm Intell. 3(3), 203–222 (2009)

43. Rabinovich, Z., Gerding, E., Polukarov, M., Jennings, N.R.: Generalised fictitious
play for a continuum of anonymous players. In: Proceedings of the 21st Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 01 July 2009, pp. 245–250
(2009)

44. Rabinovich, Z., Naroditskiy, V., Gerding, E.H., Jennings, N.R.: Computing pure
Bayesian-Nash equilibria in games with finite actions and continuous types. Artif.
Intell. 195, 106–139 (2013)

45. Raffard, R.L., Tomlin, C.J., Boyd, S.P.: Distributed optimization for cooperative
agents: application to formation flight. In: 43rd IEEE Conference on Decision and
Control, 2004. CDC. vol. 3, pp. 2453–2459. IEEE (2004)

46. Robinson, J.: An iterative method of solving a game. Ann. Math. 54, 296–301
(1951)

47. Rosen, D.M., Leonard, J.J.: Nonparametric density estimation for learning noise
distributions in mobile robotics. In: 1st Workshop on Robust and Multimodal
Inference in Factor Graphs, ICRA (2013)

48. Ruan, S., Meirina, C., Yu, F., Pattipati, K.R., Popp, R.L.: Patrolling in a stochastic
environment. In: 10 International Symposium on Command and Control (2005)

49. Sakka, S.: Bayesian Filtering and Smoothing. Cambridge University Press, Cam-
bridge (2013)

50. Sandholm, T., Gilpin, A., Conitzer, V.: Mixed-integer programming methods for
finding nash equilibria. In: Proceedings of the National Conference on Artificial
Intelligence, vol. 20 (2005)

51. Semsar-Kazerooni, E., Khorasani, K.: Optimal consensus algorithms for coopera-
tive team of agents subject to partial information. Automatica 44(11), 2766–2777
(2008)

52. Semsar-Kazerooni, E., Khorasani, K.: Multi-agent team cooperation: a game theory
approach. Automatica 45(10), 2205–2213 (2009)

53. Shapley, L.S.: Stochastic games. Proc. Nat. Acad. Sci. 39(10), 1095–1100 (1953)
54. Sharma, R., Gopal, M.: Fictitious play based Markov game control for robotic

arm manipulator. In: Proceedings of 3rd International Conference on Reliability,
Infocom Technologies and Optimization, pp. 1–6 (2014)

55. Simmons, R., Apfelbaum, D., Burgard, W., Fox, D., Moors, M., Thrun, S., Younes,
H.: Coordination for multi-robot exploration and mapping. In: AAAI/IAAI, pp.
852–858 (2000)

56. Smyrnakis, M., Leslie, D.S.: Dynamic opponent modelling in fictitious play. Com-
put. J. 53, 1344–1359 (2010)

57. Smyrnakis, M., Galla, T.: Decentralized optimisation of resource allocation in dis-
aster management. In: Preston, J., et al. (eds.) City Evacuations: An Interdis-
ciplinary Approach, pp. 89–106. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-43877-0 5

58. Smyrnakis, M., Kladis, G.P., Aitken, J.M., Veres, S.M.: Distributed selection of
flight formation in UAV missions. J. Appl. Math. Bioinform. 6(3), 93–124 (2016)

59. Smyrnakis, M., Qu, H., Bauso, D., Veres, S.M.: Multi-model adaptive learning for
robots under uncertainty. In: Rocha, A.P., Steels, L., van den Herik, H.J. (eds.)
Proceedings of the 12th International Conference on Agents and Artificial Intel-
ligence, ICAART 2020, Valletta, Malta, 22–24 February 2020, vol. 1, pp. 50–61
(2020)

60. Smyrnakis, M., Veres, S.: Coordination of control in robot teams using game-
theoretic learning. Proc. IFAC 14, 1194–1202 (2014)

https://doi.org/10.1007/978-3-662-43877-0_5
https://doi.org/10.1007/978-3-662-43877-0_5

On the Combination of Game-Theoretic Learning 105

61. Stranjak, A., Dutta, P.S., Ebden, M., Rogers, A., Vytelingum, P.: A multi-
agent simulation system for prediction and scheduling of aero engine overhaul.
In: AAMAS 2008: Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems, pp. 81–88, May 2008

62. Timofeev, A., Kolushev, F., Bogdanov, A.: Hybrid algorithms of multi-agent con-
trol of mobile robots. In: International Joint Conference on Neural Networks, 1999.
IJCNN 1999, vol. 6, pp. 4115–4118 (1999)

63. Tsalatsanis, A., Yalcin, A., Valavanis, K.P.: Dynamic task allocation in cooperative
robot teams. Robotica 30, 721–730 (2012)

64. Tsalatsanis, A., Yalcin, A., Valavanis, K.: Optimized task allocation in cooperative
robot teams. In: 17th Mediterranean Conference on Control and Automation, 2009.
MED 2009, pp. 270–275 (2009)

65. Tsitsiklis, J.N., Athans, M.: On the complexity of decentralized decision making
and detection problems. IEEE Trans. Autom. Control 30(5), 440–446 (1985)

66. Voice, T., Vytelingum, P., Ramchurn, S.D., Rogers, A., Jennings, N.R.: Decen-
tralised control of micro-storage in the smart grid. In: AAAI, pp. 1421–1427 (2011)

67. Wolpert, D., Tumer, K.: A survey of collectives. In: Tumer, K., Wolpert, D. (eds.)
Collectives and the Design of Complex Systems, pp. 1–42. Springer, New York.
https://doi.org/10.1007/978-1-4419-8909-3 1

68. Zhang, P., Sadler, C.M., Lyon, S.A., Martonosi, M.: Hardware design experiences
in ZebraNet. In: Proceedings of SenSys 2004, pp. 227–238. ACM (2004)

69. Zhang, Y., Schervish, M., Acar, E., Choset, H.: Probabilistic methods for robotic
landmine search. In: Proceedings of the 2001 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2001), pp. 1525–1532 (2001)

70. Zlot, R., Stentz, A., Dias, M.B., Thayer, S.: Multi-robot exploration controlled by a
market economy. In: IEEE International Conference on Robotics and Automation,
2002. Proceedings. ICRA 2002, vol. 3 (2002)

https://doi.org/10.1007/978-1-4419-8909-3_1

	On the Combination of Game-Theoretic Learning and Multi Model Adaptive Filters
	1 Introduction
	2 Related Work
	3 Game-Theoretic Definitions
	3.1 Normal Form Games
	3.2 Bayesian Games
	3.3 Stochastic Games

	4 Learning Algorithms
	4.1 Extended Kalman Filter Fictitious Play (EKFFP)

	5 Multi-model Adaptive Filter EKFFP (Source: [59])
	5.1 Multi-model Adaptive Filters
	5.2 Multi-model Adaptive Filters EKFFP (MMAF-EKFFP)

	6 Implementation Details
	6.1 Utility Functions
	6.2 Robots' Decisions
	6.3 Complexity
	6.4 Stopping Criteria
	6.5 Example of a Sequence of Bayesian Games

	7 Simulation Results
	7.1 Results in Potential Games (Source: ch4msicaart)
	7.2 Games with Noisy Rewards (Source: ch4msicaart)
	7.3 Results in Bayesian Games (Source: ch4msicaart)
	7.4 Results on Stochastic and State-Based Games

	8 Conclusions and Future Works
	References

