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Abstract. Data-driven decision support systems rely on increasing a-
mounts of information that needs to be converted into actionable knowl-
edge in business intelligence processes. The latter have been applied
to diverse business areas, including governmental organizations, where
they can be used effectively. The Portuguese Food and Economic Safety
Authority (ASAE) is one example of such organizations. Over its years of
operation, a rich dataset has been collected which can be used to improve
their activity regarding prevention in the areas of food safety and eco-
nomic enforcement. ASAE needs to inspect Economic Operators all over
the country, and the efficient and effective generation of optimized and
flexible inspection routes is a major concern. The focus of this paper is,
thus, the generation of optimized inspection routes, which can then be
flexibly adapted towards their operational accomplishment. Each Eco-
nomic Operator is assigned an inspection utility – an indication of the
risk it poses to public health and food safety, to business practices and
intellectual property as well as to security and environment. Optimal
inspection routes are then generated typically by seeking to maximize
the utility gained from inspecting the chosen Economic Operators. The
need of incorporating constraints such as Economic Operators’ opening
hours and multiple departure/arrival spots has led to model the problem
as a Multi-Depot Periodic Vehicle Routing Problem with Time Win-
dows. Exact and meta-heuristic methods were implemented to solve the
problem and the Genetic Algorithm showed a high performance with
realistic solutions to be used by ASAE inspectors. The hybrid approach
that combined the Genetic Algorithm with the Hill Climbing also showed
to be a good manner of enhancing the solution quality.
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1 Introduction

Business Intelligence refers to the set of techniques and processes used by com-
panies or organizations to convert their information into actionable knowledge
which, when allied with Artificial Intelligence (AI) and Machine Learning (ML)
techniques, can result in powerful decision support systems. This is the case of
some governmental administrative institutions, which are currently optimizing
their complex operational processes by exploiting useful knowledge extracted
from a vast amount of data.

Some of these organizations have as mission the close supervision and con-
stant assessment of a large amount and geographically sparse of other entities.
In order to efficiently inspect the maximum possible entities an accurate and
flexible route plan must be built taking into account several constraints inherent
to the type of entities to be inspected in each operation.

In Portugal exists the Portuguese Food and Economic Safety Authority
(ASAE), responsible for supervising and preventing non-compliance with the
National and European legislation regarding the food and non-food sectors.
Some of their duties lies in the report of detected hazards in the food chain,
risk assessment and inspections to selected Economic Operators, either planned
or unplanned. It is a reference entity in consumer protection, public health,
safeguarding market rules and free competition by providing a public service of
excellence.

ASAE’s internal information system has a large dataset of portuguese Eco-
nomic Operators and historic complaints. This information can be used to deter-
mine the inspection utility through the definition of risk matrices and the num-
ber and type of complaints per Economic Operator. Their data can also be used
alongside external sources, using as much information as possible and enhancing,
this way, the solutions and the selection of Economic Operators to be inspected.

Given an inspection utility function, the inspection routes must be generated
such as to maximize the number of inspections to Economic Operators with the
maximum utility. The routes that are part of the solution should be adaptable
upon suggestions by the user, reflecting the nature of the work of the human
inspectors. Previous research has shown that vehicle routing optimization can
promote significant economic savings [10,17,26].

This problem was addressed in previous work [4] as a Multi-Depot Periodic
Vehicle Routing Problem with Time Windows, and approached it using both
exact and meta-heuristic methods. Although this was an operative solution,
some details need to be added as the inclusion of distinct departure and arrival
points, real opening hours of Economic Operators or dynamic inspection times.
Hybrid approaches that combined the Genetic Algorithm with the Hill Climbing
and Simulated Annealing were also implemented and put to the test.

The inclusion of these constrains turn the problem into a complex problem
of generation and optimization of inspection routes to assess the set of selected
Economic Operators. The developed models were then embedded in an Web
Application that allows ASAE’s collaborators to visualize geographically the
Economic Operators, assign utilities and generate inspections routes.
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The proposed methodologies to solve a problem that has existed for several
years are an considerable advantage. Although the paper focus on the application
to a specific food and economic safety context, the constraints can be easily
applied in other situations without significantly changing the analyzed behavior
of the algorithms.

The rest of the paper is structured as follows. Section 2, discusses the cur-
rently processes in use and data size. The formulation of the routing problem in
hands and related work are given in Sect. 3. Section. 4 explains the main choices
regarding the algorithms implementation and new additions from the previous
version [4]. Recent results and algorithms execution comparison appear in Sect. 5.
Section 6 shows the applicability of the methods by giving an overview of the
developed web application. In Sect. 7 we present the conclusions and pointed
some directions for future work.

2 ASAE’s Data Dimension and Key Procedures

There exist more than 3,500,000 Economic Operators currently registered in
ASAE’s internal database. Every year, the number of customer complaints
against Economic Operators, received via the complaint book or ASAE’s web-
site, surprass the 200,000. This number, which include the infractions implied
by the complaints themselves and the type of targeted economic activity, will
determine the utility of inspection. Consequently, complaint-targeted Economic
Operators should be more likely to be included in inspection operations.

The information system in use relies on multiple data sources and platforms
which, allied with the aforementioned numbers, make it difficult to automate
some processes such as:

i. the prioritization of Economic Operators that need to be supervised;
ii. the assignment of these Economic Operators to brigades of inspectors; and
iii. the determination of optimal inspection routes taking into account the min-

imization of travel distances or time.

The ASAE’s organic structure covers mainland Portugal and is divided into
three regional units. On a lower level there are a total of twelve operational
units with a specific number of inspectors and vehicles at their disposal. The
allocation and management of these resources occur at multiple levels but the
ones addressed here are the:

Operational – which focuses on the generation of the brigades inspection plans,
through the selection of specific Economic Operators to be inspected and the
definition of starting and finishing points for each brigade; and the

Brigade – which is responsible for making minor changes in the inspection plan
in real-time, due to unexpected reasons (such as the closure of an Economic
Operator).

The inspections planning and the visualization of georeferenced information
(Economic Operators) are two areas that can be improved. It is possible to
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enhance the selection of Economic Operators that maximize the usefulness of
being inspected in the inspections planning and also the generation of flexible
routes for the inspectors while minimizing the spent resources.

3 Routing Problem

The three processes listed in Sect. 2 can be interpreted and solved as a single
problem that falls into the family of Vehicle Routing Problems (VRP). This
problem is part of the logistics operations in almost any supply chain. The
approach to solve this complex combinatorial optimization problem lies in finding
the set of routes with overall minimum route cost which service all the demands
given: a fleet of vehicles with uniform capacity, a common depot, and several
costumer demands [22,25]. One of the first problems modeled as a VRP was the
Truck Dispatching Problem [14], which may be seen as a generalization of the
Traveling Salesman Problem (TSP) [16,19].

A VRP is usually modeled as a weighted graph

G = (V,A, C)

where: V = {v0, v1, ..., vn} is a set of vertices composed by the depot (vertex
v0) and various cities or customers to visit (vertex subset {v1, ..., vn}); A is the
set of arcs joining these vertices. Each arc (vi, vj), for i �= j, has a non-negative
distance cij associated with, and represented in the matrix C. In some cases,
these distances may be interpreted as travel costs or travel times. There is also
a set K of vehicles available at the depot. The problem’s purpose is to determine
the lowest cost vehicle route set, subject to the following restrictions [20]:

i. each city (vi) is visited exactly once by exactly one vehicle (k); and
ii. all vehicle routes start and end at the depot (v0).

A VRP also comprises four equations that model the objective function and
its restrictions [8,26]. Let xijk be a binary decision variable taking the value of
1 if vehicle k traverses the arc (vi, vj), and 0 otherwise and cij defined as above,
the minimum sum of costs of all the arcs is given by Eq. 1:

min

m∑

k=1

n∑

i=0

n∑

j=0

cijxijk (1)

With the constraint from Eq. 2 of a vertex being visited only once, with the
exception of the depot [4]:

n∑

i=0

m∑

k=1

xijk = 1,∀ j > 0 (2)

Equation 3 ensures that the number of the vehicles arriving at every customer
and entering the depot is equal to the number of the vehicles leaving [4]:

n∑

j=0

xijk =
n∑

j=0

xjik,∀ i ≥ 0, i �= j, ∀ k = 1, ...,m (3)
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Equation 4 ensures that all vehicle depart from the depot [4]:

n∑

j=1

m∑

k=1

x0jk = |K| (4)

Even though the classical VRP may provide very useful solutions in some real
life problems, the ASAE’s inspections routing problem have some constraints
that are not satisfied by the definition above, namely:

– Inspections can only take place during opening hours of the Economic Oper-
ators;

– The inspections plans may have a multiple days duration;
– The departure and arrival points of each brigade vehicle can be two distinct

points, since each operational unit has more than one parking spaces.
– An inspection plan is targeted to a specific economic activity or a set of

economic activities, which directly affects the Economic Operators selection
for inspection;

– Each operational unit is associated with a set of municipalities that make up
the geographical boundary on which the its brigades can operate. This limit
is well defined and must be respected without exception;

Many authors have already proposed several extensions and generalizations
by adding or removing constraints leading to different route design process [6,27].
The most relevant variations to the problem in hands are:

i. the Multi-Depot (MDVRP) that considers more than one depot/place
where the vehicles may start and arrive [18,23];

ii. the Periodic (PVRP) which assumes a multi-day planning with the capa-
bility to choose when to visit an Economic Operator [7]; and

iii. the Time Windows (VRPTW) that takes into account a list of visiting
schedules when each Economic Operator can be visited [9,28].

Combining them leads to a Multi-Depot Periodic Vehicle Routing Problem
with Time Windows (MDPVRPTW) [11]. In Fig. 1 is possible to see a solution of
MDPVRPTW in a geographical representation. The solution has four complete
inspection routes (set of green arrows) from three operational units (orange
circles) and eleven (out of thirteen) Economic Operators inspected (blue circles).

Fig. 1. MDPVRPTW representation [4]. (Color figure online)
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Finally considering the problem in hands, V = EO ∪ D is a set of nodes.
composed of depots d ∈ D and Economic Operators eo ∈ EO. A = {(vi, vj)}, i �=
j is the set of arcs that connect these nodes excluding the arcs that connect two
depots and the matrix C has the arcs travel times. There is also a set of brigades
B which will perform the inspections. Each brigade b ∈ B is a combination of a
vehicle w (from a set W of all available vehicles) and a set of inspectors Ib (a
subset of I of all inspectors) where |Ib| ≥ 2,∀b ∈ B.

Each brigade b ∈ B has also an associated work shift [SSb, ESb], where SS
and ES are starting and ending of the work shift time, respectively, similar to
Cordeau et al. [12] proposal.

Each Economic Operator eo has opening hours associated OHeo. This is a set
of time windows where they can be inspected. OHeo = {[otj , ctj ]eo : j = 1, . . .}
where otj and ctj are the opening and closing times of consecutive working
periods j in a day, respectively. Thus, if the arrival time at eo is not between
any pair of [otj , ctj ] ∈ OHeo, the brigade has to wait.

Every eo has also an expected time of inspection, represented by tieo, defined
according to the type of their economic activity [4].

Additionally, another key factor that must be taken into consideration is the
utility of inspecting a determined Economic Operator eo and can be defined as
ueo ∈ [0, 1]. This utility function is also known as the demand level at each node,
as the importance of the node in the network, etc. [1,2].

In this paper, the problem solving objectives are either the maximization
of the global utility (defined in Eq. 5) or the maximization of the number of
inspected Economic Operators in each day of inspection planning (defined in
Eq. 6). The solution must satisfy the constraints for the classical VRP with
Multi-Depot within the geographical limits of an operational unit, the time win-
dow of each Economic Operator and the brigade’s work shift:

max
∑

b∈B

∑

i∈V

∑

j∈EO
ujxijb (5)

max
∑

b∈B

∑

i∈V

∑

j∈EO
xijb (6)

Although the study of such methods is not a recent topic, the discussion on
how to achieve optimal solutions in less iterations/time is something that still
remains today. The reason behind that is that the TSP, the VRP and its variant
problems are NP-hard since they are not solved in polynomial time [9]. Due
to their complexity, many heuristics and meta-heuristic approaches have been
used to solve them as they can return solutions close to the optimum and present
lower (and often adjustable) execution times, even for large data sets. Despite the
problems’ difficulty, exact approaches have been developed like the branch and
cut algorithm [21], but because they require a high computational power they
are only feasible in small data sets. The difference between these two categories
is related to the behaviour of algorithms when determining the solution [20].
To the best of our knowledge, a Tabu Search heuristic is the most explored
technique to solve the Periodic Vehicle Routing Problem with Time Windows
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(PVRPTW) and the Multi-Depot Vehicle Routing Problem with Time Windows
(MDVRPTW) separately [13].

4 Flexible Routes Generation

The methodologies implemented to solve the problem involved one exact method,
three meta-heuristic methods and hybrid approaches that combined the Genetic
Algorithm with two meta-heuristics to achieve the best results. The concept
of inspection utility and its determination are presented in Sect. 4.1, while in
Sect. 4.2 the representation of the solution is described. Then, the details of the
implemented algorithms are included in Sects. 4.3 and 4.4.

4.1 Inspection Utility

The inspection utility function ueo is the basis for determining optimal inspection
routes. ueo must be interpreted as the gain of inspecting an Economic Operator
eo. The summed utilities of the inspected eo set is the component intended to
be maximized when solving the routing problem. The definition of ueo appears
in Eq. 7 as a weighted sum of n functions f(eo) defined based on some problem
context criteria and taking into consideration the eo.

ueo =
n∑

i=1

wifi(eo) (7)

So, for a given eo, ueo retrieve a value in the interval [0, 1] corresponding to the
gain of inspecting that eo. This gain would be higher to eo operating in certain
economic activities that pose higher risk in any of the scope inspected by ASAE.
Highlighted criteria taken into account include the following eo attributes:

i. the number and severity of pending complaints;
ii. previous inspections results (its inspections historic); and
iii. the operator’s economic activity.

Focusing only on the first criteria, each eo can have a number of pending com-
plaints received by ASAE and that have not yet been investigated or inspected.
These pending complaints have associated an estimated infraction severity based
on the complaint’s description. This evaluation is currently being inserted man-
ually by a collaborator but progresses have been made in the areas of automatic
complaint analysis and classification of the infraction severity [3,15]. The three
severity types are shown in Table 1, and their respective weights are used to
determine the severity score S assigned to each eo, represented in Eq. 8, where
SC is the set of severity classes, NC the number of complaints and SW the
severity weight.

Seo =
∑

sc∈SC
NCsc,eo SWsc (8)
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Table 1. Infraction severity classes and their weights.

Infraction severity - sc Weight - sw

Crime 4

Administrative infringement 2

Other 1

The determination of this first criterion’s function was done by allying the
empirical knowledge and experience from ASAE members with the analysis of
the distribution of the severity scores per Economic Operator, graphically visible
in Fig. 2 (the vertical axis is in logarithmic scale). In the figure there are only
represented 99% of the targeted Economic Operators which corresponds to a
maximum severity score of 32. The green bars show the absolute number of
Economic Operators with a given Severity Score and the orange line show the
cumulative percentage.

Fig. 2. Severity Scores distribution for received complaints in the year 2018. (Color
figure online)

Equation 9 is an exponential function to define a higher rate of change for
smaller SS. The rate of growth was defined with the ASAE field experts.

f1(eo) = −1.3−Seo + 1 (9)

4.2 Representation

The implemented methodologies described in the following sections are able to
solve the optimization problem in hands but require, among other data struc-
tures, a form of representation to hold the solution routes (inspection plan).
With regards to the inspection plan representation for |B| brigades, a set of
|B| + 1 lists is used. The first |B| lists include the actual inspection routes, while
the last list contains a set of Economic Operators that will not be inspected in
this plan. This form of representation allows us to deal with the periodic nature
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of the VRP, by planning daily and not requiring all Economic Operators to be
visited in one day. The Economic Operators are stored by inspection order in
the |B| generated routes. Figure 3 shows an inspection plan geographically rep-
resentation in detail by the example in Fig. 1, with four routes/brigades and
thirteen Economic Operators.

This representation is used by all with the exception of the genetic algo-
rithm, which, due to the crossover and mutation operations, requires another
form of representation. This adaptation is achieved by converting the multidi-
mensional list into a linearized single-dimensional one. For the specific repre-
sentation illustrated in Fig. 3, the individual in the genetic algorithm would be
[4, 7, 3, 5, 2, 11, 8, 12, 13, 10, 1, 6, 9]. To decode the individual back into the
routes, each eo is inserted sequentially in the routes until no more eo fit the
brigade’s work shift duration [28].

Fig. 3. Inspection plan representation and its meaning.

The information about the departing and arriving depots does not appear in
this inspection plan representation because it is kept in the brigades data struc-
ture alongside with other information such as work shift duration and departure
time.

4.3 Exact Approach

Exact methods are capable of determining the optimal solution but are well
known to require more computational effort than heuristic approaches. For the
problem in hands there are some real case scenarios where route generation is
targeting a small set of pre-filtered Economic Operators and brigades and which
allow exact methods to be employed.

The Branch and Bound algorithm is an exact methodology capable of solving
optimization problems as the Vehicle Routing Problem. For this specific problem,
a branching strategy that allows to traverse the whole solution space consists of
adding each possible Economic Operator to each brigade at a time. The bounding
occurs when the generated solution disrespects the work shift duration of any
brigade.

The application of the method to the specific problem is shown in Fig. 4.
The example includes three Economic Operators [1, 2, 3] with utilities of 0.05,
0.40 and 0.10, respectively, and two brigades. In the first node, every economic
agent is in the set of agents not inspected by any brigade, so the utility of the
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solution is 0. At each layer, an agent is removed from the last array and inserted
into one of the brigades.

Fig. 4. Branch and Bound applied to the routing problem [4].

4.4 Meta-heuristic Approaches

Regarding meta-heuristic approaches, three different methods were developed:

i. Hill Climbing,
ii. Simulated Annealing and
iii. Genetic Algorithm.

The main details are described in this section and these approaches allowed
to obtain a sufficiently good solution in a short execution time, when compared
to the Branch and Bound algorithm, for instance.

All the three meta-heuristic implementations require at least one initial solu-
tion to start. The initial solution is always valid, although it may not have a
high utility. It is generated by randomly allocating Economic Operators to each
brigade, ensuring that travel times and inspection durations fit in the brigade’s
work shift. The remaining Economic Operators are kept in the last list, as shown
in Fig. 3.

From this solution, Hill Climbing and Simulated Annealing approaches pro-
ceed to find the optimal solution out of all possible solutions (the search space).
The neighborhood function for the two methodologies is based on two equiprob-
able operators (Fig. 5):
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– Swapping consists of exchanging the order of two Economic Operators; swap-
ping can occur between two operators of the same brigade, from different
brigades or from one brigade and the list of uninspected Economic Opera-
tors.

– Repositioning consists of changing the position of an Economic Operator; just
as with swapping, repositioning can also occur within the same brigade, to a
different brigade or to the list of uninspected Economic Operators (removing
it from being visited).

Fig. 5. Neighborhood generation operations.

The implementation of Simulated Annealing has the specificity of prob-
abilistically accepting solutions with lower utility than the current solution.
Equation 10 shows the temperature update function determined by the cur-
rent iteration and total number of steps. Equation 11 shows the acceptance
probability formula in this specific application of the method.

temperature = 1 −
(

iteration
n of steps

) 1
100

(10)

p = e
new utility−best utility

temperature (11)

The probability of accepting solutions with lower utility is thus related with
the differences in utility and the number of iterations already performed (which
directly determines the temperature).

The Genetic Algorithm implementation followed the selection process sug-
gested by Zhu [28] – tournament selection. The implication in this selection
scheme is to give priority in mating to genetically superior chromosomes, while
allowing less good entities to be selected.

Two crossover processes were implemented: PMX and heuristic crossover.
The application of general-purpose crossover operations unavoidably produces
invalid offspring that have duplicated genes in one string.
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With Heuristic crossover, an arbitrary cut is made on both chromosomes
and one of the genes immediately following the cut position is chosen to be
maintained. The not selected gene is replaced or deleted to avoid duplication in
the following iterations. After this decision, an iterative process begins that tra-
verses the chromosomes and compares, in each iteration i, the distance between
the gene at position i and position i + 1 of both progenitor chromosomes. The
i + 1 position gene presenting lower distance to the previous gene is selected
to be part of the descending chromosome. The gene that was not selected is
either deleted or swapped with the selected gene. Figure 6 portraits the process
with two chromossomes of size 5. cij is the distance from gene i to gene j. Two
offsprings are generated, one from repositioning and the other from deletion.

Fig. 6. Heuristic crossover example (3 iterations).

PMX is a slightly different and not so complex process as it does not take
into account the distance between the Economic Operators. It starts by selecting
two arbitrary points, then swapping the portions of the chromosomes between
these points. In order to remove duplicate Economic Operators, a series of gene
swappings are performed within each chromosome. This crossover operation orig-
inates two descending chromosomes [28].

Following the crossover process, there is a low probability of the descending
chromosomes being mutated. The genetic approach encompasses four types of
mutations, equally likely to occur:

– Gene Repositioning: a gene (Economic Operator) is randomly selected and
repositioned at a random position inside the chromosome.
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– Gene swap: two genes (Economic Operators) are randomly selected and their
positions are swapped.

– Sequence Repositioning: a set of randomly selected consecutive genes is repo-
sitioned at a random position inside the chromosome (keeping their original
sequence).

– Sequence Swap: a set of randomly selected consecutive genes swap their posi-
tion with a gene (keeping their original sequence).

5 Results

The evaluation of the implemented methods was performed under a simulated
environment using multiple tests and experiments and allowed to collect rel-
evant information regarding the performance and solution quality of the four
algorithms and hybrid approaches.

Test were performed using a set of 500 randomly selected Economic Operators
from northern Portugal. The test set geographic distribution is displayed in
Fig. 7. In the figure are also visible three depots, that work as points of departure
and arrival of the brigades.

Fig. 7. Test set geographic distribution. (Color figure online)

From the 500 Economic Operators, a smaller subset of 20 operators (red
crosses on the map) was randomly selected to allow the comparison of the meta-
heuristic solutions with the Branch and Bound method. As such, two test cases
were setup.

Some considerations about every algorithm execution:

– Brigades always start their route at the same hour and their work shift have
the same duration of 8 consecutive hours.
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– Economic Operators real utility or opening hours were not used; they were
assigned a random utility instead and are assumed to be always open.

– Inspection time was fixed on 1 h for each Economic Operator.
– The values shown for meta-heuristic methods are always the average of 10

executions.
– For the Genetic Algorithm, executions were performed using a population of

100 individuals, with crossover probability, mutation probability and recovery
percentage of 85%, 5% and 4% respectively.

Varying parameters were:

– Objective Function: Maximize the total utility of inspected agents, or maxi-
mize the number of Economic Operators to be inspected.

– Brigades: Number of brigades and departure/arrival points.
– Stopping Criterion: Maximum number of iterations or maximum execution

time.

Varying the objective function and the number of brigades allowed us to
analyze the direct effect of these variables in the algorithms performance.

The results for the referred subsets are shown in Tables 2 and 3. The test set
results from Table 2 are related to the execution of the four approaches applied
to the subset of 20 Economic Operators and 1 brigade that starts and finishes
its shift in Depot 1. Table 3 presents the results for the algorithms execution
given the full test set of 500 Economic Operators and 27 brigades. The brigades
set is evenly distributed by the depots, that is, there are 3 brigades assigned to
each pair of departure and arrival depot.

Each results table is split into four sections corresponding to different test
cases with the number of iterations and execution times used as stop criteria.
The results for the two objective functions appear in two columns: maximization
of the global inspection utility (max ueo) and maximization of the number of
inspected Economic Operators (max inspected eo). Columns ueo and eo contain
the average of obtained inspection utilities and number of inspected Economic
Operators, respectively. The total number of iterations executed by the methods
appear in column i, while column best i shows the iteration where the best
solution was found. The average execution times are displayed in column t.

Each row stands for one algorithm execution: Branch and Bound (BB),
Hill Climbing (HC ), Simulated Annealing (SA), Genetic Algorithm with PMX
crossover (GA(P)) and Heuristic crossover(GA(H)). The Genetic Algorithm was
also combined with Hill Climbing and Simulated Annealing into a hybrid app-
roach. Using the solution obtained from the Genetic Algorithm, the two meta-
heuristics are applied (both executed with a stopping criterion of 100 itera-
tions without evolution) to verify if it significantly increase the previous solution
utility.
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Table 2. Results for 20 eos and 1 brigade.

Algo. max ueo max inspected eo

ueo best i i t eo best i i t

BB 5,6181 – – – 7,0 – – –

Max. i: 10000

HC 5,6181 574 10000 0,3922 6,4 2882 10000 0,3892

SA 5,6181 624 10000 0,3983 6,2 1258 10000 0,3986

GA(P) 5,6181 7 100 1,1358 7,0 21 100 1,1557

GA(H) 5,4826 64 100 1,6443 7,0 2 100 1,6350

Max. i: 100000

HC 5,6181 634 100000 3,8581 7,0 16283 100000 3,9408

SA 5,6181 583 100000 3,9795 7,0 19628 100000 4,0257

GA(P) 5,6181 13 1000 11,3204 7,0 43 1000 11,6694

GA(H) 5,6181 255 1000 16,6012 7,0 4 1000 16,2462

Max. t: 1s

HC 5,6181 626 25343 – 6,8 4982 25170 –

SA 5,6181 423 24727 – 6,9 10626 24414 –

GA(P) 5,6012 11 89 – 7,0 30 86 –

GA(P)+HC 5,6181 98 198 – 7,0 30 186 –

GA(P)+SA 5,6181 90 189 – 7,0 30 186 –

GA(H) 5,5037 32 61 – 7,0 2 61 –

GA(H)+HC 5,5097 75 175 – 7,0 2 161 –

GA(H)+SA 5,5093 71 171 – 7,0 2 161 –

Max. t: 2s

HC 5,6181 390 51267 – 6,8 10075 50451 –

SA 5,6181 652 48941 – 6,9 10344 47745 –

GA(P) 5,6181 21 176 – 7,0 31 174 –

GA(P)+HC 5,6181 21 276 – 7,0 31 274 –

GA(P)+SA 5,6181 21 276 – 7,0 31 274 –

GA(H) 5,6091 49 123 – 7,0 2 123 –

GA(H)+HC 5,6121 132 232 – 7,0 2 223 –

GA(H)+SA 5,6091 125 225 – 7,0 2 223 –

Through the global analysis of the obtained results, it is possible to conclude
that they are satisfactory with multiple approaches achieving close solutions
with approximately equal utilities as the exact method. The results also led to
conclude that, when a lower number of iterations was given, the HC and SA could
not achieve the optimal solution for the max inspected eo and the GA(H) for the
max ueo. By increasing the iterations limit, all of the metaheuristic approaches
were capable of determining a solution with equal utility as the solution found
by the Branch and Bound method.

When the algorithms were tested under the same execution time limit, HC
and SA performed well in the maximization of the inspection utility. They also
enhanced the solution quality obtained by the GA. For the maximization of
the number of inspected Economic Operators, GA(P) and GA(H) were able to
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consistently find optimal solutions and the fastest one was the heuristic crossover
with an average of 2 iterations. Considering the total number of steps and the
time to execute them the HC and the SA methods were the fastest to execute
each iteration with very similar times, followed by the GA(P) and the GA(H).

Table 3. Results for 500 eos and 27 brigades.

Algo. max ueo max inspected eo

ueo best i i t eo best i i t

Max. i: 10000

HC 98,7232 9881 10000 5,5247 149,4 9119 10000 6,0015

SA 97,6994 9903 10000 5,5530 148,4 8990 10000 5,9492

GA(P) 94,9479 84 100 21,4769 151,5 49 100 22,8349

GA(P)+HC 95,9764 386 486 21,7019 151,5 49 200 22,8958

GA(P)+SA 95,6239 251 351 21,6159 151,5 49 200 22,8978

GA(H) 96,7180 69 100 84,3511 178,3 62 100 89,6848

GA(H)+HC 96,9691 219 319 84,4806 178,3 62 200 89,7489

GA(H)+SA 97,3835 235 335 84,4901 178,3 62 200 89,7475

Max. i: 100000

HC 129,5417 98925 100000 55,0777 169,5 82586 100000 59,0404

SA 130,2098 98684 100000 54,6503 168,4 85063 100000 59,0773

GA(P) 106,4061 952 1000 216,7616 154,7 742 1000 228,8047

GA(P)+HC 106,6261 1142 1242 216,9005 154,7 742 1100 228,8688

GA(P)+SA 106,6185 1109 1209 216,8819 154,8 1005 1105 228,8688

GA(H) 102,4479 862 1000 877,2816 181,3 339 1000 845,2185

GA(H)+HC 102,9940 1178 1278 877,4526 181,3 339 1100 845,2795

GA(H)+SA 102,7018 1101 1201 877,4051 181,3 339 1100 845,2810

Max. t: 1s

HC 72,0507 1706 1755 – 128,7 1445 1647 –

SA 71,6273 1698 1750 – 127,2 1397 1653 –

GA(P) 71,9183 4 5 – 135,7 2 4 –

GA(P)+HC 73,9384 354 454 – 136,1 24 124 –

GA(P)+SA 73,4790 235 335 – 135,9 10 110 –

GA(H) 83,0392 0 1 – 157,7 0 1 –

GA(H)+HC 83,9257 206 306 — 157,7 1 101 –

GA(H)+SA 83,6991 134 234 — 157,7 1 101 –

Max. t: 2s

HC 80,9007 3493 3578 – 135,3 3163 3373 –

SA 82,6057 3487 3580 – 134,0 3105 3348 –

GA(P) 76,8735 8 10 – 140,4 8 9 –

GA(P)+HC 78,1521 229 329 – 140,5 12 112 –

GA(P)+SA 78,0103 200 300 – 140,5 17 117 –

GA(H) 86,1844 2 3 – 164,2 1 3 –

GA(H)+HC 86,8208 197 297 – 164,2 3 103 –

GA(H)+SA 87,4639 209 309 – 164,2 3 103 –
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As expected and against to what happened in the first experiment, the meth-
ods utilities solutions obtained for the larger dataset were more scattered.

Table 3 shows that regarding inspection utility maximization, all methods
were still improving their solution quality when the stopping criterion was met.
HC and SA presented similar utilities and were able to always slightly improve
the solution obtained by the GA. The solutions obtained by both crossovers in
GA were very similar, but the Heuristic one can generally find a better solution
in a earlier iteration than the PMX crossover.

Regarding the maximization of inspected Economic Operators, results fol-
lowed almost the same pattern from Table 2. In general, GA(P) and GA(H)
were able to find solutions with more Economic Operators inspected and almost
never taking advantage of the HC/SA complementary layer. Heuristic crossover
was again able to find a solution with higher utility than the other methods.

The time to perform each iteration kept the same distribution from the first
test case, with HC and the SA methods executing faster, followed by GA(P) and
GA(H).

6 Applicability

A crucial factor for being successful in solving sophisticated vehicle routing
problems (VRP) is to offer reliable and flexible solutions [24]. Taking this into
account, a Web application was designed [4,5]. It is the entry point to the visu-
alization and interaction with the routing algorithms. The application has two
main views or pages:

i. the Inspection Planning Form, shown in Fig. 8, which can be used to cus-
tomize route generation, and

ii. the Inspection Planning Overview, shown in Fig. 9, where it is possible to see
the solution and its details, also enabling editing and storing operations.

The Inspection Planning Form allows to input the custom conditions for a
new inspection plan generation. The input variables are directly correlated with
the ones specified in Sect. 3 and are the following:

– Objective Function: It is either the maximization of ueo or the maximization
of agents to be inspected;

– Starting Date: Starting date and time for the inspections route;
– Meal Break: Time interval where a 1 h break may occur;
– Economic Activities: List of economic activities to include in the solution

(may be empty to consider all registered Economic Operators);
– Brigade: List of brigades composed by:

– Vehicle: Vehicle to be used;
– Duration: Maximum amount of time to be spent on the field preforming
the inspections;
– Inspectors: List of inspectors (minimum of 2 per brigade);
– Starting/Finishing Points: Geographic location of the starting and finishing
points (the operational unit headquarter is used by default).
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Fig. 8. Input conditions page (multiple views).

The Inspection Planning Overview, portrayed in Fig. 9, presents the solu-
tions found from a geographical and chronological point of view. The routes are
outlined in the map and can be selected or toggled from the left sidebar. This
sidebar also contains main information about each brigade and global details of
the solution. It is also possible to generate a new solution by clicking on the
button “New Route”. In the bottom part there is a chronological view of the
events of the selected brigade on left sidebar.

Fig. 9. Web application overview.

The developed system can work as a decision support system for inspectors
by creating a daily plan for one or more brigades of inspectors and promote, this
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way, a maximum number of inspections in a day or the maximization of the utility
of inspected agents with an efficient use of resources. The inspection plan can be
consulted by any worker and the routes are manageable by workers who suggest
the additions/removals of Economic Operators. The inserted suggestions affect
directly the defined utility of each Economic Operator and force the previous
solution to be recalculated and presented.

7 Conclusions and Future Work

In this paper, we presented the modeling and resolution of a complex combi-
natorial optimization problem related with the inspections planning process of
ASAE. The generation and optimization of routes is not a novel problem and the
solutions presented always aim at determining the most effective route for a fleet
of vehicles to visit a set of points. The constraints of the problem at hands led
to classify it as an MDPVRPTW. To solve it, four base strategies were imple-
mented: one exact, three meta-heuristic methodologies and hybrid approaches
combining Genetic Algorithm with the Hill Climbing and Simulated Annealing.

Another key factor was the determination of an utility function capable of
determining the inspection utility of an Economic Operator based on the number
and severity of pending complaints, inspections historic and economic activity
area among others.

This work is integrated in an interactive platform capable of generating flex-
ible inspection routes targeted to support the decision of the ASAE’s personnel
and enhance current processes of Economic Operators selection for inspection
and inspections routing. It offers functionalities that facilitate the whole pro-
cess of selecting and assigning Economic Operators to the multiple brigades,
respects the main constraints from the original problem and allows platform
users to customize the desired inspection plan before and after the solution has
been generated, through the addition and removal of Economic Operators to be
inspected.

Regarding the methodologies performance, despite the fact that Heuristic
crossover (in the Genetic Algorithm approach) has a higher execution time per
iteration than the PMX option it was able to consistently find better solutions
specially with the larger dataset and the maximization of the inspected eo. This
phenomenon can be explained because it takes into consideration the minimiza-
tion of distances when performing the crossover. For the maximization of ueo
Hill Climbing and Simulated Annealing were able to achieve higher utility solu-
tions in the smaller dataset case and with a bigger execution time/number of
iterations. With time limited executions in the larger dataset, Genetic Algorithm
with Heuristic crossover was faster to determine greater solutions.

The development prospects for a project of this nature and scope are varied.
There are at least one feature missing and more testing is necessary, specially
on the field:

– Inclusion of break-time periods for inspectors and supervisors during the
inspection route. The fact that this period is flexible, relative to each brigade
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and can be different according to the start time of the inspection actions
makes it difficult to add to the methods currently implemented, but should
be taken into account in a next version of the system since it may compromise
the use of the routes in a real context.

– Test the whole system in the field with ASAE’s collaboration, to extract
metrics from algorithms in a real context and detect gaps that are not visible
in a simulated environment without professionals in the area.

Within respect to the break time periods some progresses have been made but
the work is still not complete. Regarding the second item a model was developed
to track the brigades and compare their real routes with the predicted by the
system to support the field-tests.

Within the scope of the project as a whole, there are development prospects
that will directly and indirectly affect the module of the generation of flexible
routes, such as:

– Implementation of risk matrices that will allow a determination of a more
accurate inspection utility.

– The new pending complaints are already being taken into account automati-
cally but the extraction of other new information from the ASAE system may
also improve the utility definition of specific Economic Operators.

– Development of a system in constant learning of visiting times to establish-
ments. The quality of the obtained solutions will increase by replacing the
manually inserted inspection times with the categorization of average control
times by economic operator’s area of activity.
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Food Safety. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S., Orovic, I., Moreira,
F. (eds.) WorldCIST 2020. AISC, vol. 1159, pp. 640–649. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-45688-7 64

6. Braekers, K., Ramaekers, K., Nieuwenhuyse, I.V.: The vehicle routing problem:
State of the art classification and review. Computers & Industrial Engineering 99,
300–313 (2016). https://doi.org/10.1016/j.cie.2015.12.007

7. Campbell, A.M., Wilson, J.H.: Forty years of periodic vehicle routing. Networks
63(1), 2–15 (2014)

8. Cardoso, S.R.d.S.N.: Optimização de rotas e da frota associada. Master’s thesis,
Universidade Técnica de Lisboa, Instituto Superior Técnico, Lisbon (2009)
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