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Abstract. The problem of feature selection has been an area of considerable
research in machine learning. Feature selection is known to be particularly dif-
ficult in unsupervised learning because different subgroups of features can yield
useful insights into the same dataset. In other words, many theoretically-right
answers may exist for the same problem. Furthermore, designing algorithms for
unsupervised feature selection is technically harder than designing algorithms for
supervised feature selection because unsupervised feature selection algorithms
cannot be guided by class labels. As a result, previous work attempts to dis-
cover intrinsic structures of data with heavy computation such as matrix decom-
position, and require significant time to find even a single solution. This paper
proposes a novel algorithm, named Explainability-based Unsupervised Feature
Value Selection (EUFVS), which enables a paradigm shift in feature selection,
and solves all of these problems. EUFVS requires only a few tens of milliseconds
for datasets with thousands of features and instances, allowing the generation
of a large number of possible solutions and select the solution with the best fit.
Another important advantage of EUFVS is that it selects feature values instead
of features, which can better explain phenomena in data than features. EUFVS
enables a paradigm shift in feature selection. This paper explains its theoretical
advantage, and also shows its applications in real experiments. In our experi-
ments with labeled datasets, EUFVS found feature value sets that explain labels,
and also detected useful relationships between feature value sets not detectable
from given class labels.
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1 Introduction

Feature selection is one of the classical problems of machine learning. While many
methods have been developed for supervised learning because the problem is relatively
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easy given the presence of class labels, in unsupervised learning, no such labels are
available and the problem is classically hard.

In supervising learning, a target phenomenon is predetermined and is described in
a dataset through class labels associated with individual instances. Each instance of the
dataset is a vector of values of the same dimensionality, and each dimension is referred
to as a feature. The objective of feature selection in supervised learning is to select
as few features as possible with high explanatory ability of the target phenomenon.
Since it is theoretically evident that fewer features cannot have more explanatory abil-
ity, the objective of supervised feature selection is to find an optimal balance to this
trade-off between the number of features and the explanatory ability that they bear.
The explanatory ability of features, however, can be understood in multiple ways. One
typical way is to define it through statistical or information-theoretic indices like cor-
relation coefficients and mutual information. Another is to define it as the potential
predictive power of the features, which can be measured by accuracy of prediction by
classifiers, when the values of the features and the class labels of instances are input
into the classifiers. Different definitions of explanatory ability may lead us to differ-
ent conclusions to the question of what is the best result of feature selection. In fact,
feature selection methods for obtaining high explanatory ability defined through statis-
tical and information-theoretic indices are categorized as filter-type feature selection,
while methods belonging to the wrapper-type and embedded-type feature selection aim
to realize high predictive performance for particular classifiers. Nevertheless, it is com-
mon in any case that the target phenomenon is given and unchanging, and instances’
class labels play a critical role in feature selection.

In contrast, unsupervised feature selection operates without a definite solution or
source of truth, because a target phenomenon is not pre-defined. What counts as the
“right” result in unsupervised feature selection is unclear. We refer to this as the indefi-
niteness problem. It is as if we were traveling without knowing our destination, and had
to decide if we reached the right destination when we arrived.

One possible solution to the indefiniteness problem is using clustering to gener-
ate pseudo-labels for each instance. Clustering is the process of categorizing instances
based on their similarity. For example, when instances are plotted as points in a
Euclidean space, similarity between two instances can be defined as the Euclidean dis-
tance between the corresponding points. By assuming that clusters define class labels,
we can reduce unsupervised feature selection to supervised feature selection. Even-
tually, some unsupervised feature selection algorithms proposed in the literature first
determine pseudo-labels through clustering and then apply supervised feature selection
to explain the pseudo-labels [8,9,12].

Using clustering to generate pseudo-class labels, however, does not solve the indef-
initeness problem, because diverse definitions of similarity exist, and different defini-
tions lead to different sets of selected features. For example, the L∞ distance between
(x1, . . . ,xn) and (y1, . . . ,yn) is identical to max{|xi − yi| | i = 1, . . . ,n} and evidently
yields a totally different similarity measure than the Euclidean distance does. This issue
also occurs for other methods known in the literature like methods to select features so
as to preserve manifold structures [4,7,25] and data-specific structures [21,22].
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In principle, the indefiniteness problem cannot be solved, as shown by the following
thought experiment. A DNA array of human beings determines a sequence of genes, and
each gene corresponds to an individual biological function. Given a particular biologi-
cal function, for example, a particular genetic disease, identifying the gene that causes
the function is nothing more than supervised feature selection: each gene is a feature.
Unsupervised feature selection for a DNA array requires to identify some gene without
specifying a particular biological function, and we see that, in theory, a great number of
right answers exists.

Thus, in this paper, we accept the indefiniteness problem as an inherent limitation
of unsupervised feature selection and propose a new approach to address this issue.
The key is the development of an unsupervised feature selection algorithm with the
following properties:

– High time efficiency
– Hyperparameters for selecting different features

By leveraging such an algorithm, we can run many iterations of the algorithm with dif-
ferent hyperparameter values and can obtain many different answers (sets of features).
From these results, we choose the most appropriate answer according to our purpose.

In fact, the main contribution of this paper is to propose a novel algorithm, namely,
Explainability-based Unsupervised Feature Value Selection (EUFVS), which is both
highly efficient and has hyperparameters for selecting different feature sets. In fact,
EUFVS requires only a few tens of milliseconds to obtain a single answer for a dataset
with thousands of features and thousands of instances. EUFVS is based on the algorithm
presented in [19]. For example, EUFVS selects feature values instead of features. This
idea was initially introduced in [19] and yields the advantages of more concrete and
more efficient interpretation of selection results. On the other hand, EUFVS has two
key differences:

– EUFVS is theoretically based on the novel concept of explainability;
– EUFVS takes two hyper-parameters rather than a single hyper-parameter, which
change the search space of the algorithm in two independent directions, and as a
result, can output a wider range of answers.

This paper is organized as follows. Section 2 introduces some mathematical nota-
tions and explains some mathematical concepts used in this paper. Section 3 compares
supervised and unsupervised feature selection in more detail, and Sect. 4 explains the
advantages of feature value selection over feature selection. In Sect. 5, we introduce the
concept of explainability and our algorithm, EUFVS. Section 6 is devoted to reporting
the results of our experiments to evaluate effectiveness of our algorithm.

2 Formalization and Notations

In this paper, a datasetD is a set of instances, and F denotes the entire set of the features
that describe D. A feature f ∈ F is a function f : D → R( f ), where R( f ) denotes the
range of f , which is a finite set of values.
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More formally, we canonically determine a probability space as follows and can
view features as random variables. We define a sample space Ω as ∏ f∈F R( f ) and a
σ-algebra Σ as P(Ω), the power set of Ω. Then, the dataset D introduces an empir-
ical probability measure p : P(Ω) → [0,1]: For an element vvv ∈ Ω, p({vvv}) is deter-
mined by the ratio of the number of occurrences of vvv in D to the size of D, that is,
p({vvv}) = |{x∈D|x=vvv}|

|D| ; For a set S ∈ P(Ω), we let p(S) = ∑vvv∈S p({vvv}). Evidently, the
triplet (Ω,Σ, p) determines a probability space, which is also known as an empirical
probability space. Furthermore, we identify a feature f with the projection π f : Ω →
R( f ), and hence, we can view f as a random variable. Thus, we can view f in two dif-
ferent ways, as a function f : D → R( f ) and as a function f : ∏ f∈S R( f ) → R( f ). This
is natural, however, because the support of a multiset D is a subset of Ω.

Moreover, we identify a finite set of features { f1, . . . , fn} ⊆ F with the product
of random variables f1 ×·· ·× fn : Ω → R( f1)×·· ·×R( fn). Under this definition, the
probability distribution for a feature set is identical to the joint probability distribution
of the random variables (features) involved.

By viewing feature sets, say S and T , as random variables, we can apply many
useful information theoretical indices to S and T . Such indices include information
entropy H(S), mutual information I(S;T ), normalized mutual information NMI(S;T ),
Bayesian risk Br(S;T ) and complementary Bayesian risk Br(S;T ). In general, these
indices are defined as follows for arbitrary random variables X and Y :

H(X) = − ∑
x∈R(X)

Pr(X = x) log2 Pr(X = x);

I(X ;Y ) = ∑
(x,y)∈R(X)×R(Y )

[
Pr(X = x,Y = y) · log2

Pr(X = x,Y = y)
Pr(X = x)Pr(Y = y)

]
;

NMI(X ;Y ) =
2 · I(X ;Y )

H(X)+H(Y )
;

Br(X ;Y ) = 1− ∑
x∈R(X)

max
y∈R(Y )

Pr(X = x,Y = y);

Br(X ;Y ) = 1−Br(X ;Y ).

In the equations above, we assume that the range R(X) and R(Y ) of random vari-
ables X and Y are finite, but however, these indices can be defined for more gen-
eral settings: A random variable X : Ω → R(X) is a measurable function from a
probability space (Ω,Σ, p) to a measure space (R(X),A ,µ), and a Radon-Nikodym
derivative of p ◦X−1 (probability density function) f : R(X) → R, if present, satisfies

Pr[X ∈ A]
�
= p(X−1(A)) =

∫
A
f dµ for any A ∈ A . Therefore, the information entropy

H(X) of X , for example, is defined by H(X) =
∫
R(X)

− f log2 f dµ.

The Shannon information (or information content) of an event observing a value x
for a random variable X is defined by − log2 Pr[X = x]. It is interpreted as the quantity
of information that the event carries, and the information entropy H(X) is the mean
across all the possible observables of X . Moreover, when we simultaneously observe
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X = x and Y = y, − log2 Pr[X = x]− log2 Pr[Y = y]− (− log2Pr[X = x,Y = y]) quanti-
fies the overlap of Shannon information between the events of X = x and Y = y. The
mutual information I(X ;Y ) is the mean of the overlap, and therefore, quantifies overall
correlational relation between observables of X and Y . In fact, we have:

– I(X ;Y ) = 0, if, and only if, X is independent of Y ;
– I(X ;Y ) =H(Y ), if, and only if, Y is totally dependent on X , that is, Pr[Y = y | X = x]

is either 0 or 1 for any x and y.

The normalized mutual information NMI(X ;Y ), on the other hand, is defined by the
harmonic mean of I(X ;Y )

H(X) and I(X ;Y )
H(Y ) , and hence, takes values in [0,1]. We have:

– NMI(X ;Y ) = 0, if, and only if, X is independent of Y ;
– NMI(X ;Y ) = 1, if, and only if, X and Y are isomorphic as random variables.

Bayesian risk Br(X ;Y ) also quantifies correlation of X to Y , which takes values in[
0, |R(Y )|−1

|R(Y )|
]
. In contrast to mutual information, a smaller value of Br(X ;Y ) indicates

a tighter correlation. This is why we use Br(X ;Y ) = 1−Br(X ;Y ) in some cases. In
particular, we have:

– Br(X ;Y ) = 0, if, and only if, Y is totally dependent on X ;
– Br(X ;Y ) = 1, if, and only if, Y is totally dependent on X .

The inequality below describes the relationship between I(X ;Y ) and Br(X ;Y ) [17]:

− log2 Br(X ;Y ) ≤ H(Y )− I(X ;Y )

≤ −Br(X ;Y ) log2 Br(X ;Y )+Br(X ;Y ) log2
Br(X ;Y )
|R(Y )|−1

. (1)

In the remainder of this paper, we suppose that D is a dataset described by a feature
set F , which consists of only categorical features. Furthermore, unless otherwise noted,
a feature f is supposed to be a member of F , and a feature set S is a subset of F .

3 Supervised Feature Selection Vs. Unsupervised Feature
Selection

The most significant difference between feature selection in supervised learning and
feature selection in unsupervised learning lies in whether class labels can be used as
effective guides when selecting features. We will first review the literature on supervised
feature selection.

The literature shows that the following four principles are commonly considered in
designing supervised feature selection algorithms:

– Maintaining high class relevance;
– Reducing the number of selected features;
– Reducing the internal redundancy of selected features;
– Reducing the information entropy of selected features.
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In the following illustration, we assume that S is a feature set selected by any feature
selection algorithm from the entire feature set F that describes a dataset D. We also let
C denote the random variable that yields class labels.

The class relevance of S represents the extent to which the features of S correlate to
class labels and can typically be measured by the mutual information I(S;C). In fact,
I(S;C) quantifies the part of the information content H(C) of C that is also born by S.
And hence, the class relevance I(S;C) of S cannot exceed the entire information content
H(C) or the class relevance I(F ;C) of F .

On the other hand, the purpose of feature selection is indeed to reduce the number
of features to be used for explaining class labels. By its nature, the class relevance of
selected features is a monotonically-increasing function with respect to the inclusion
relation. In fact, for mutual information, we have I(T ;C)≤ I(S;C), if T ⊆ S. Therefore,
the most fundamental problem of supervised feature detection can be stated as follows:

The fundamental problem of supervised feature selection.

Eliminate the maximum number of features while minimizing the resulting reduc-
tion of class relevance.

We have two important categories of features to eliminate or not to select.

Irrelevant features bear only a small amount of information content useful for explain-
ing class labels. A feature f with small mutual information I( f ;C) is irrelevant.

Redundant features, on the other hand, bear content information that is mostly covered
by the remaining features. For example, we suppose that S is a set of features selected
tentatively. A redundant feature f ∈ S makes H(S)−H(S \ { f}) sufficiently small.
This implies that I(S;C)− I(S\{ f};C) is also sufficiently small.

In the literature, the well-known feature selection algorithm MRMR (Minimum
Redundancy and Maximum Relevance) [11] tries to eliminate irrelevant features and
redundant features. To determine a feature f to add to the tentative solution S, it intends
to evaluate the index of

b( f ,S) = (I(S, f ;C)− I(S;C))− I(S; f )
|S| ,

which quantifies a balance between contribution to class relevance and increase of
redundancy by adding f to S. Computing b( f ,S) is, however, costly, and MRMR uses
the following approximation.

b( f ,S) ≈ b′( f ,S) = I( f ;C)− ∑ f ′∈S I( f ; f ′)
|S| . (2)

Algorithm 1 describes MRMR. The asymptotic time complexity of MRMR is estimated
by O(k2|F ||D|).

MRMR is one of the most well-known feature selection algorithms and in fact has
been not only intensively studied but also used widely in practice [2,5,10,13,14,20,23,
23,26]. CFS [6] is another feature selection algorithm that is widely used in practice.
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Algorithm 1. MRMR [11].
Require: A dataset D described by F ∪{C}; and k < |F |.
Ensure: A feature subset S ⊆ F with |S| = k.
1: Let S= /0.
2: while |S| < k do
3: Let f ∈ argmax{b′( f ,S) | f ∈ F \S}.
4: Let S= S∪{ f}.
5: end while
6: Return S.

It is also based on the same principle as MRMR but uses a different formula than Eq. (2)
to evaluate a balance of class relevance and interior redundancy.

These algorithms, however, encounter the problem of ignoring feature interaction
[24]. We say that two or more features mutually interact when each individual feature
has only low class relevance, but the group of these features has high class relevance.
The aforementioned algorithms, which only evaluate the information entropy of indi-
vidual features, cannot detect mutual feature interaction, and are likely to discard inter-
acting features, which can result in a loss of class relevance.

Zhao et al. [24] pointed out the importance of this issue and proposed INTER-
ACT, the first algorithm that evaluates feature interaction and realizes practical time-
efficiency at the same time. INTERACT has led to the development of many algorithms
including LCC [15,16], which improve INTERACT in both accuracy (when used with
classifiers) and time-efficiency. INTERACT and LCC use the complementary Bayesian
risk Br(S;C) to measure class relevance of S. Equation (1) describes the correlational
relation between Br(S;C) and I(S;C). LCC takes a single hyper-parameter t, which
specifies a lower limit of class relevance of the output feature set. Algorithm 2 describes
the algorithm of LCC. Also, CWC [15,18] is equivalent to LCC with t = 1.

Algorithm 2. LCC [15,16].
Require: A dataset D described by a feature set F ∪{C}; and a threshold t ∈ [0,1].
Ensure: A minimal feature subset S ⊆ F with Br(S;C) ≥ tBr(F ;C).
1: Number the features of F so that f1, . . . , f|F | are in a decreasing order of NMI( fi;C).
2: Let S= F and i= n|F |.
3: while i ≥ 1 do
4: Let j = argmin{ j | j ∈ [1, i+1],Br(S\F [ j, i];C) ≥ tBr(F ;C)}.
5: Let S= S\F [ j, i] and i= j−2.
6: end while
7: Return S.

Unlike MRMR, INTERACT and LCC evaluate class relevance of S by Br(S;C) with-
out using approximation based on evaluation of individual features. By this, they not
only can eliminate irrelevant and redundant features but also can incorporate feature
interaction into feature selection. Although computing Br(S;C) is more costly than
using the approximation, LCC drastically improves time efficiency by taking advantage
of binary search when searching a feature f j to select in Step 4 of Algorithm 2. Due to
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this, the asymptotic time complexity of LCC is O(|F ||D| log |F |), and its practical time
efficiency is significantly high.

The principle of reducing information entropy is loosely related to the principle of
reducing number of features, although they are not equivalent to each other. Explanation
of phenomena using fewer features is more understandable for humans, while explana-
tion using features with smaller entropy is more efficient from a information-theoretical
point of view.

Fig. 1. Before and after of supervised feature selection.

Fig. 2. Eleven datasets used in our experiment.

Figure 1 shows the results of feature selection by CWC when applied to the 11
datasets described in Fig. 2 and below. These datasets are relatively large and encom-
pass a wide range in terms of the numbers of features and instances. They are taken
from the literature: five from NIPS 2003 Feature Selection Challenge, five from WCCI
2006 Performance Prediction Challenge, and one from KDD-Cup Challenge. Since our
interest in this paper lies in the selection of categorical features, the continuous features
included in the datasets are categorized into five equally-long intervals before feature
selection. The instances of all of the datasets are annotated with binary labels.
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From the left chart of Fig. 1, we first notice that CWC has selected a reasonably
small number of features for all the datasets. For example, while the dataset DOROTHEA

originally includes 100,000 features, CWC has selected only 28 features.
The middle chart of Fig. 1 shows that the dataset except DOROTHEA and NOVA

include many redundant features and only a few irrelevant features. In fact, we see only
small losses of the information entropy between the entire features F (blue) and the
selected features S (orange). In contrast, CWC eliminates many irrelevant features from
DOROTHEA and NOVA: The gaps between the information entropy of F and S are large
for these datasets. By the nature of CWC, there is no loss in mutual information. It is
interesting to note that the normalized mutual information scores of S are better than F
for some of the datasets (the right chart of Fig. 1). In particular, the extents of improve-
ment for DOROTHEA and NOVA are significant. Since the normalized mutual informa-
tion quantifies the extent of the identity between two random variables, the selected
features S can explain class labels more confidently than the entire features F . This
emphasizes the importance of feature selection in addition to the advantages in model
construction and the improved efficiency of post-feature-selection learning.

So far, we have shown the four most important guiding principles in designing
supervised feature selection algorithms. Among them, the principle of maintaining high
class relevance cannot be used in unsupervised feature selection, because we do not
have class labels in unsupervised learning. The issue here lies in the fact that there is
a trade-off between maintaining high class relevance and each of the last three princi-
ples, and supervised feature selection selects features that realize an appropriate balance
between class relevance and the other indices. Without class relevance, the other three
indices do not mutually constrain, and it turns out that selecting no features is always
the optimal answer. Thus, the most important question for realizing successful unsu-
pervised feature selection is how to find one or more principles that constrain the other
three principles without leveraging class labels. We propose an answer for this question
in Sect. 5.

4 Feature Value Selection Vs. Feature Selection

The advantages of feature value selection over feature selection are two-fold:

1. Feature value selection is likely to explain the same phenomena using factors with
less information content. This means that the explanation is more efficient and more
accurate.

2. We sometimes use the term modeling to indicate selecting of a small number of
effective explanatory variables from a larger pool of possible variables to explain
objective variables. Using feature values as explanatory variables improves the con-
creteness of the explanation.
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4.1 More Efficient Explanation of Phenomena

For formalization, we first introduce a binarized feature and a binarized feature set. The
purpose is to reduce feature value selection to feature selection by converting a feature
value into a binary vector using one-hot encoding.

Definition 1. For a value v ∈ R( f ), v@ f denotes a binary feature such that for an
instance x ∈ D, v@ f (x) = 1 if f (x) = v; otherwise, v@ f (x) = 0.

Definition 2. For a set S of features, we determine Sb = {v@ f | f ∈ S,v ∈ R( f )}.
As explained in Sect. 2, a binarized feature v@ f ∈ Sb is canonically viewed as a

random variable defined over the sample space ∏v@ f ∈Sb Z2, where D determines an
empirical probability measure. Z2 denotes {0,1}. In particular, we can convert a dataset
D into a new dataset Db, which consists of the same instances but is described by F b.
Thus, we can equate feature value selection on a dataset D to feature selection on Db.

The entire features F of the dataset of the next example can explain class labels
necessarily and sufficiently. We see that we can also select feature values S ⊂ F b that
completely explain the class labels as well. Although the cardinality of S is the same as
that of F , H(S) is significantly smaller than H(F ).

Example 1. We consider n features f1, . . . , fn, whose values are arbitrary b-dimensional
binary vectors (b-bit-long natural numbers), that is, R( fi) = Z2

b. For an instance x ∈D,
we determine its class label C(x) by

C(x) =

(
n

∑
i=1

2i−1 ·0@ fi(x)

)
mod L,

where L is an odd number that determines the number of classes. To illustrate, we
further assume that fi is independent of any other f j, and the associated probability
distribution is uniform. Because the class labels of x rely on all of f1(x), . . . , fn(x), the
answer of feature selection for this dataset is unique and must be { f1, . . . , fn}. For the
same reason, the answer of feature value selection must be {0@ f1 , . . . ,0@ fn}. While it
is evident that

I( f1, . . . , fn;C) = I(0@ f1 , . . . ,0@ fn ;C) = H(C)

holds, the information entropy H( f1, . . . , fn) = nb is significantly greater than

H(0@ f1 , . . . ,0@ fn) = n
(
b2−b − (1−2−b) log2(1−2−b)

)
≈ n(b+1)2−b,

when b is not small. This means that, 0@ f1 , . . . ,0@ fn can explain the class C with the
same accuracy but significantly more efficiently than f1, . . . , fn.

The following general mathematical results justify the result of Example 1.

Theorem 1. For disjoint feature sets S and T in F , H(S,T ) = H(Sb,T ) holds.
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Proof. For vvv ∈ R(S) = ∏ f∈S R( f ), we determine vvvb ∈ R(Sb) = ∏v@ f ∈Sb Z2 by

v@ f (vvvb) = 1 ⇔ f (vvv) = v. When we let D = {vvvb | vvv ∈ R(S)} ⊂ R(Sb), we have the
following for arbitrary www ∈ R(Sb) and uuu ∈ R(T ):

Pr[Sb=www,T = uuu] =

{
Pr[S= vvv,T = uuu], if www ∈D, that is,∃(

vvv ∈ ∏ f∈S R( f )
)
[www= vvvb];

0, if www �∈D.

Hence, the assertion follows:

H(S,T ) = ∑
vvv∈R(S)

∑
uuu∈R(T )

−Pr[S= vvv,T = uuu] log2 Pr[S= vvv,T = uuu]

= ∑
www∈D

∑
uuu∈R(T )

−Pr[Sb = www,T = uuu] log2 Pr[S
b = www,T = uuu]

+ ∑
www∈R(Sb)\D

∑
uuu∈R(T )

−Pr[Sb = www,T = uuu] log2 Pr[S
b = www,T = uuu]

= H(Sb,T ). ��
The following corollaries to Theorem 1 explain Example 1.

Corollary 1. For S ⊆ F , H(S) = H(Sb) holds.

Corollary 2. For feature subsets S and T in F , I(S;T ) = I(Sb;T ) holds.

Proof. Theorem 1 implies

I(S;T ) = H(S)+H(T )−H(S,T ) = H(Sb)+H(T )−H(Sb,T ) = I(Sb;T ).��
By the monotonicity properties of information entropy and mutual information,

if S′ ⊂ Sb, we have H(S′) ≤ H(S) and I(S′;T ) ≤ I(S;T ). Example 1 is the case
where H(S′) � H(S) holds, while I(S′;T ) = I(S;T ) holds, for S = { f1, . . . , fn},S′ =
{0@ f1 , . . . ,0@ fn} and T = {C}.

4.2 More Concrete Modeling

Feature value selection explains how features contribute to the determination of class
labels more clearly. Even if a feature f is selected through feature selection, not all of the
possible values of f necessarily contribute to the determination equally. In particular,
only a small portion of values may be useful for explaining class labels.

For example, an Intrusion Protection System (IPS) tries to detect a small portion of
packets generated for malicious purposes out of the large volume of packets that are
transmitted in networks. Based on the information of the detected malicious packets,
IPS tries to take effective measures to protect a system. To a packet, multiple headers
of protocols such as TCP, IP and IEEE 802.x are attached. The information born by
these headers is the main source of information for IPS. For example, a TCP header
includes a Destination Port field, and a value of this field usually specifies what appli-
cation will receive this packet and will execute particular functions as a result of the
reception. Since malicious attackers target particular vulnerable applications, knowing
what potion numbers are correlated to malicious attacks will allow an IPS to take more
accurate countermeasures than only knowing that values of the destination port field.
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5 Fast Unsupervised Feature Selection

The basis of our proposed algorithm was presented in [19]. We now explain our
improvements to this algorithm using explainability.

To review, [19] provides a useful basis for developing an efficient unsupervised
feature value selection algorithm:

– It leverages the principle that every instance must be explained by at least
one selected feature value. This principle constrains the minimization of the
three remaining factors (feature value count, internal redundancy, and information
entropy, as discussed in Sect. 3) and guarantees that at least one meaningful solution
exists.

– It incorporates the algorithmic framework of LCC [16,18] by leveraging binary
search, which gives it significantly high time efficiency;

– It contains one hyperparameter for excluding feature values below a threshold of
information entropy;

We build on this algorithm by adding two features:

1. We introduce the concept of explainability as a substitute for the concept of class
relevance that plays a central role in supervised feature selection.

2. We add two hyperparameters: the minimum of collective explainability across all
selected feature values, and a minimum explainability for each individual feature
value.

5.1 Explainability-Based Unsupervised Feature Selection

Supervised learning provides an effective guide for feature selection in the form of class
relevance scores. There are several measures of class relevance: MRMR [26] and CFS

[6] use mutual information I(S;C) following [3], while INTERACT [24] and LCC [16]
deploy the complementary Bayesian risk Br(S;C).

On the other hand, unsupervised feature selection has no class labels to measure the
relevance of features to class labels. As a substitute, then, we introduce explainability.
In [19], the support of a set of feature values is defined as follows:

Definition 3. ([19]). For S ⊆ F b, the support of S is defined by

suppD(S) = {x ∈ D | ∃(v@ f ∈ S)[ f (x) = v]}.
The support suppD(S) consists of the instances that possess at least one feature value

included in S, or, in other words, are explained by the feature values in S.

Definition 4. The explainability of S is determined by

XD(S) =
|suppD(S)|

|D| .

Having defined explainability, we can formally define ξ-explainability-based unsu-
pervised feature value selection as follows.
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ξ-Explainability-Based Unsupervised Feature Value Selection (ξ-EUFVS).

Given an unlabeled dataset D described by a feature set F and the lower limit
ξ of explainability, find S ⊆ F b that minimizes H(S) or |S|, or both if possible,
subject to the condition of XD(S) ≥ ξ.

As explained in Sect. 3, although the information entropy H(S) and the size |S| are
loosely correlated, minimizing one does not necessarily mean minimizing the other.
Also, H(S) is important from an explanation efficiency point of view, while |S| affects
the understandability of the obtained model by humans. Thus, the aforementioned for-
malization leaves some ambiguity in terms of objective functions, but however, this
does not significantly matter in practice, because finding exact solutions to the problem
of ξ-EUFVS is likely to be computationally impossible. When solving it approximately,
the aforementioned loose correlation between H(S) and |S| helps us reach a reasonable
balance between them.

We see how explainability performs as a substitute for class relevance using Fig. 3.
To illustrate, we assume that F b consists of only four values v1,v2,v3,v4.

Fig. 3. Search space of EUFVS.

The chart (a) depicts the Hasse diagram of F b, which is a directed graph (VH ,EH)
such that VH is the power set of F b, and (S,T ) ∈ VH ×VH is in EH , if, and only if,
S ⊃ T and |S|− |T | = 1 hold. The height of a plot of S ⊆ F b represents the magnitude
of H(S). We will start at the top node of F b and will search the node that minimizes
H(S) and/or |S| by following directed edges downward. If the search space is the entire
Hasse diagram, it is evident that we can stop when we reach the bottom node that repre-
sents the empty set /0. This solution is indeed trivial and meaningless. Thus, we need an
appropriate restriction on the search space. For supervised feature selection, the princi-
ple of maintaining high class relevance narrows down the search space, because small
feature sets can have only low class relevance (for example, I( /0;C) = 0 holds), and
such nodes are eliminated from the search space. As a result, we can reach a non-trivial
meaningful node in the search space. The condition that the explainability XD(S) is no
smaller than the predetermined threshold ξ has the same effect. Like mutual informa-
tion, the explainability index is monotonous with respect to the inclusion relation of
feature value sets: if T ⊆ S ⊆ F b, XD(T ) ≤ XD(S) holds. This means that, if S is out
of the search space, that is, XD(S) < ξ holds, any T ⊆ S is out of the search space as
well. In particular, suppD( /0) = /0 and XD( /0) = 0 hold. Chart (b) of Fig. 3 depicts this.
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The sets T ⊆ F b with XD(T ) < ξ are displayed in red, and we see that there is more
than one minimal selection S in the sense that XD(S)≥ ξ holds but XD(T )< ξ holds for
arbitrary T � S. All of these minimal nodes S comprise the set of candidate solutions to
the ξ-EUFVS problem.

As the threshold ξ for the entire explainability XD(S) increases, the resulting search
space becomes narrower, and the border has a higher altitude. In other words, the thresh-
old ξ moves the border of the search space in the vertical direction.

In addition to the threshold ξ, we introduce a different threshold t for individual
explainability XD(v) for individual feature value v ∈ F b. This threshold t constrains
the search space so that a node in the space includes only feature values v whose
individual explainability XD(v) is not smaller than t. In contrast to the threshold ξ
to collective explainability, this threshold has the effect of moving the border of the
search space in the horizontal direction. For example, in Fig. 3(c), we assume that
XD(v1) > XD(v2) > XD(v3) ≥ t > XD(v4). Then, the subgraph displayed in blue is
the search space determined in combination with ξ.

The introduction of this threshold t can be justified as follows.

– For example, if F includes a feature f , which yields a unique identifier for each
instance of D, the support of any feature value v@ f is a singleton, and hence, its
individual explainability is positive but minimum. Evidently, selecting a unique
identifier v@ f is of no help for understanding the dataset. Although this example
is extreme, in general, a feature value whose support is a very small set of instances
lacks generality, and it is not desirable to include it in selection.

– As already explained, the threshold t for individual explainability moves the bor-
der of the search space in the horizontal direction, while the threshold ξ for entire
explainability does in the vertical direction. By combining these two thresholds, we
can move the border of the search space in both the vertical and horizontal directions,
and hence, we will have multiplicative flexibility to define the range of solutions to
the EUFVS problem.

At last of this subsection, we note the relation between XD(v) and H(v). Since v is
a feature value, and therefore, is binary as a random variable, we have

H(v) = −XD(v) log2XD(v)− (1−XD(v)) log2(1−XD(v)).

Since the function F(x)=−x log2 x−(1−x) log2(1−x) is an increasing function for x∈
[0, 12 ], ifXD(v)≤ 1

2 , the threshold t onXD(v) is equivalent to the threshold F(t) onH(v).
The algorithm presented in [19] takes a threshold to H(v) as a hyperparameter. When
we assume that XD(v) ≤ 1

2 , these two definitions of hyperparameters are equivalent to
each other.

5.2 The Algorithm

Algorithm 3 describes the algorithm that we propose in this paper. Due to the mono-
tonicity property of XD(S) ≤ XD(T ) for S ⊆ T , we can take advantage of a binary
search to find the next feature value to leave in S (Step 5). As a result, the algorithm is
significantly fast as shown in Sect. 6.1.
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Algorithm 3. Explainability-based Unsupervised Feature Value Selection (EUFVS).

Require: An unlabeled dataset D described by F ; a threshold ξ ∈ [ 1
2 ,1

]
; a threshold t ∈ [

0, 12
]
.

Ensure: A minimal feature value set S ⊆ F b.
1: Let S= F b \{v@ f ∈ F b | XD(v@ f ) ≤ t}.
2: Number the feature values of S so that S= {v1, . . . ,v|S|} and XD(vi) ≥ XD(v j) for i< j.

3: Let l = 0 and S= S.
4: while l < |S| do
5: Let k =max{ j | XD(S\S[l+1, j]) ≥ ξ, j = l, . . . , |S|} by binary search.
6: Let S= S\S[l+1,k] and l = k+1.
7: end while
8: return S.

The time complexity of Algorithm 3 can be estimated as follows: the complex-
ity of computing XD(vi) and XD(F b[i, |F b|]) for all i is O(|F b| · |D|); By updating
XD(S∩F b[1, l]) whenever we update l, XD(S \F b[l+ 1, j]) ≥ ξ can be investigated
in O(|D|)-time, and the average complexity to execute the while loop is estimated by
O((log2 |F b|)2 · |D|).
6 Empirical Performance Evaluation

We conducted three experiments with EUFVS. The first assessed the basic performance
of EUFVS, while the second and third applied EUFVS to real-world data, specifically
tweets and electricity consumption.

6.1 Basic Performance Evaluation

To measure EUFVS’s performance compared to other algorithms, we tried it on the
11 datasets from well-known machine learning challenges shown in Fig. 2. We used
well-known datasets to ensure our results were comparable to other algorithms tested
on these datasets. Our goal was to discover how accurately and quickly EUFVS could
build feature value sets that explained these datasets’ labels, with the labels removed.

In the experiment, we set the threshold on collective explainability to ξ = 1 and
changed the threshold on individual explainability t on each iteration so that the maxi-
mum value would not exceed 5% of the total number of instances in each datsets.

Runtime Performance. Figure 4 describes the runtime of Algorithm 3 in milliseconds
for three typical datasets: KDD-20% with significantly many instances, DOROTHEA

with significantly many features, and GISETTE with both many instances and many fea-
tures (Fig. 2). The scores include only the search time. The runtime was under 100 mil-
liseconds for all datasets, except for when we used very small thresholds. The longest
run was GISETTE with a threshold of t = 0, which took only 2,500 ms.
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KDD-20% DOROTHEA GISETTE

Fig. 4. Runtime in milliseconds for different t values (x-axis).

Selection Performance. Several affinities appear in the results of nine of these eleven
datasets. We will describe these using the examples of GISETTE and SYLVA (The left
and middle columns of Fig. 5).

1. All 11 datasets consisted of labelled data, which provided a ground truth to test
against. Our goal was to see how well EUFVS could produce feature sets that
explained the labels without the labels for guidance, so we removed the labels from
the datasets.
Even so, it found feature value sets that explain the labels well. In fact, I(S;C)
remains close to I(F ;C), until t exceeds a certain limit. This property is significant
evidence that our algorithm has an excellent ability to select appropriate feature
values, because the dataset labels are a perfect summary of the datasets.

2. When t exceeds the said limit, I(S;C) rapidly decreases. In other words, the different
selected feature value sets represent different views of the datasets.

3. As t increases, I(S;C) and H(S) synchronously decrease. This implies that our algo-
rithm eliminates non-redundant and relevant feature values after it has eliminated all
the redundant feature values.

4. H(S) remains very close to its upper bound of H(F ) (the orange line) until t reaches
the said limit. By contrast, the number of feature values selected decreases rapidly
immediately when t increases. This may imply that an overwhelming majority of
feature values v with small H(v) are redundant.

5. The number of the selected feature values approaches the number of the features
selected by CWC (the green line). This implies that approximately one value for
each feature selected by CWC is truly relevant to class labels.

The evaluation result of KDD-20% are also interesting. KDD-20% is a dataset
of network packet headers gathered by intrusion detection software. Each instance is
labelled as either “normal” or “anomalous”. Unlike in the other datasets, the score
of H(S) moves around half of H(F ), while I(S;C) remains close to I(F ;C). In fact,
KDD-20% and ADA are the only datasets that could exhibit higher NMI(S;C) than
NMI(F ;C). With high I(S;C) and low H(S), the feature values selected could have
good classification capability when used with a classifier. Also, it is surprising that the
number of feature values selected is smaller than 30, when they show the highest score
of NMI(S;C). The figure is significantly lower than the 225 feature values that CWC

selects for this dataset, and hence, could provide a much more interpretable model.
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GISETTE SYLVA KDD-20%

H(S)

I(S;C)

NMI(S;C)

|S|

Fig. 5. Comparison in H(S), I(S;C), NMI(C;S) and |S| for typical three datasets.

Classification Performance. The experimental results on the (normalized) mutual
information scores for the selection results of EUFVS imply that the selection results
can accurately predict the dataset’s class labels even though the inputs into EUFVS do
not include them.

To investigate their potential classification performance, we ran experiments with
the three typical classifiers: CART, Naı̈ve Bayes (NB) and Supprt Vector Machine (C-
SVM) classifiers. When we use the SVM classifier, we project instances to points in
higher-dimensional spaces using the RBF kernel.

We evaluate classification performance using averaged accuracy scores obtained
through five-fold cross-validation. Optimal hyperparameter values are determined using
grid search based on five-fold cross-validation scores on training data, executed at each
fold execution to compute a single accuracy score. For comparison, we also run the
same experiments on feature value sets selected by MRMR [11].

Figure 6 describes the results for the three typical datasets of GISETTE, SYLVA and
KDD-20%. From the charts, we can observe the following.

– For four deatasets including GISETTE, the accuracy scores for EUFVS encompass a
relatively wide range, and some of them are compatible with the results of MRMR.

– For six datasets including SYLVA, the accuracy scores for the selection results of
EUFVS varies within a relatively narrow range, and are sometimes better and some-
times worse than those for MRMR. Overall, their classification performance appear
to be compatible with the selection results of MRMR.

– The results for KDD-20% is surprising, since the accuracy scores significantly bet-
ter than MRMR. To be precise, for all classifiers and all feature value sets selected
by MRMR, the accuracy scores fall within the range between 0.5 and 0.6. This will
make us conclude that the selection results of MRMR are not useful for the purpose
of classification. In contrast, the accuracy scores for EUFVS distributes in a narrow
range around the value of 0.9.
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GISETTE SYLVA KDD-20%

CART

NB

SVM

MRMR EUFVS

Fig. 6. Comparison in accuracy by CART, NB and SVM classifiers for typical three datasets.

Phase Transition by Change of Threshold. For the experiments using the 11 labeled
datasets, we investigate the differences between the feature value sets selected by
EUFVS for different threshold values t. For this purpose, we leverage the distance
derived from the Jaccard coefficient and the k-means algorithm, a distance-based clus-
tering algorithm.

The Jaccard index between two sets S and T is defined by J(S,T ) = |S∩T |
|S∪T | . It is

known that J(S,T ) is positive definite, and hence, dJ(S,T ) =
√
2−2J(S,T ) is identi-

cal to the Euclid distance in some Euclidean space (reproducing kernel Hilbert space)
between the projections of S and T in the space. This is derived from the well-known
cosine formula. In particular, when a finite number of sets S1, . . . ,Sn are given, they can
be projected into a common n-dimensional Euclidean space, and their coordinates in
the space is computed as follows. We let J = [J(Si,S j)]i, j be the Gram matrix. Since
the Jaccard index is positive definite, the Schur decomposition of J is as follows with
λi ≥ 0:

J =UTdiag(λ1, . . . ,λn)U.

When we let [vvv1, . . . ,vvvn] = diag(
√

λ1, . . . ,
√

λn)U , vvvi gives a coordinate of Si in an
n-dimensional space.

Here, we let S1, . . . ,Sn be the feature value sets selected by EUFVS for n differ-
ent thresholds. Because we can concretely project them into an n-dimensional space,
we can apply the k-means clustering algorithms to the projections in plural times for
different cluster count k.
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The upper row of Fig. 7 shows the transition of the silhouette coefficient and the
Davies Bouldin index as k increases, and based on it, we determine the optimal k for
each dataset. Note that a greater silhouette coefficient and a smaller Davies Bouldin
index indicate better clustering. At the same time, We also prefer to use the smallest
possible k. With these constraints, we determine k = 15 for GISETTE, k = 7 for SYLVA

and k = 11 for KDD-20% as optimal cluster counts.
With these values of k determined individually for the three datasets, the charts in

the lower row of Fig. 7 depict the distributions of plots of the feature value sets in a
three-dimensional space after reducing the dimensionality by MDS. For SYLVA and
KDD-20%, we see that clustering has performed well, and clusters correspond exactly
to consecutive intervals of thresholds. This implies that changing threshold parameter
values results in a continuous change of viewpoint over these datasets. For GISETTE,
no clear correspondence between clusters and thresholds was found.

6.2 Experiments on Analysis of Twitter Data

This experiment shows an example of applying EUFVS to the analysis of real Twitter
data.

GISETTE SYLVA KDD-20%

No clear correspondence found.

Color Thresholds Color Thresholds

Purple 0 – 900 Red 1000 – 1700
Black 1800 – 2300 Goldenrod 2400 – 2900
Green 3000 – 3600 Blue 3700 – 4300
Magenda 4400 – 5000

Color Thresholds Color Thresholds

Blue 0 – 12 Green 13 – 22
Magenda 23 – 150 Red 200 – 800
Black 1000 – 1350 Goldenrod 1400 – 2000

Fig. 7. Clustering of selected feature sets based on the jaccard index.

The data used in this experiment include 24,142 tweets posted on March 1, 2020
from 9:00 PM to 9:30 PM. This dataset is a set of tweets sent by users during the time
who were tweeting about the COVID-19 pandemic. All of the users tweeted at least
once about COVID-19, but not all of the tweets in the data set were about COVID-
19. We extracted keywords from each tweets using the MeCab morphological analyzer,
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resulting in a matrix of 24,142 tweets (instances) × 49,342 unique words (features) as
a feature table.

We performed feature selection using EUFVS multiple times with different param-
eter settings. Then, the UFVS results were compressed into two dimensions by TSNE
(Manhattan distance) and were clustered by DBSCAN. Figure 8 shows the clustering
results with different parameter settings: (a) ξ = 1.0, t = 0; (b) ξ = 0.95, t = 20; (c)
ξ = 0.9, t = 40; and (d) ξ = 0.95, t = 80.

Figure 8(a) shows the clustering result with ξ = 1.0 and t = 0. After EUFVS, 3154
features remained. Several relatively large clusters can be seen. We have observed some
clusters that represent COVID-19-related topics.

Figure 8(b) shows the clustering result with ξ = 0.95 and t = 20. After EUFVS,
2519 features remained. The set of Tweets was clearly divided into right and left sides.
They may represent the characteristics of some Tweets groups. In fact, coronavirus-
related clusters can be observed on the right side.

Figure 8(c) (1173 features, ξ = 0.90, t = 40) is also divided into two major groups,
showing a trend similar to that of Fig. 8(b). On the other hand, Fig. 8(d) (486 features,
ξ = 0.95, t = 80) shows a pattern similar to Fig. 8(a). In addition, the ring-shaped Tweet
set can be seen in Figs. 8(a) and (d). The significance of these clusters will be a subject
of future research.

Changing the parameter settings of EUFVS allows us to view the set of tweets from
different perspectives. Our future work will explore these applications.

(c) (d)

Fig. 8. Clustering of tweets.



Unsupervised Feature Value Selection Based on Explainability 441

6.3 Experiments on Analysis of Electricity Consumption Data

In this experiment, we apply EUFVS to analyzing power consumption in university
classrooms. The on/off binary data of electricity consumption in each classroom is
recorded in 30-min. time slots over one semester of 15weeks. By concatenating daily
slices (9 am to 6 pm) of this data, we obtain a table where one instance is one classroom
on one day, and each feature is a one-hour time slot from 9 am to 6 pm. The data size is
3782 instances and 19 features.

We performed a number of feature selection trials using EUFVS with varying
parameter settings of ξ and t. Here, we show two examples. Figures 9 includes 3D visu-
alizations of the data after feature selection by EUFVS. For a dimensionality reduction
algorithm, we used UMAP with the Euclidean distance. Figure 9(a) shows the results of
EUFVS with the parameter settings of ξ= 1.0 and t = 1660. Thirteen features remained
in this parameter setting. There are two dense clusters on the right and center of the
figure, and a spreading, string-like cluster on the left side of the figure. The present data
include classrooms in two buildings. Classrooms in the same building tend to cluster
together, which reflects different power consumption patterns in different buildings.

Figure 9(b) shows the results of EUFVS with ξ = 0.95 and t = 2000. Five features
remain in this parameter setting. Two dense clusters similar to those in Fig. 9(a) can be
found, but the spreading, string-like cluster disappears. On the other hand, the structures
of the two dense clusters of Fig. 9(b) are easily visible.

Figure 10 shows an enlarged view of the two dense clusters. These clusters also have
a string-like structure. Furthermore, the structure is found to be sequentially linked from
the first week to the 15th week. The instances are plotted in different colors for each
day of the week, and the same color appears periodically, which is a manifestation of
that.

As described above, by changing the parameter settings, we can obtain the visual-
izations suitable for the spreading, string-like cluster and suitable for the dense clusters.
This is due to the design of EUFVS, which allows us to check a large number of various
solutions through lightweight calculations.

Fig. 9. UMAP 3D view.
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Fig. 10. Enlarged views of two dense clusters in Fig.9.

7 Conclusion

The intractability of unsupervised feature selection is caused by the indefiniteness prob-
lem: any dataset can contain multiple theoretically-correct solutions, but there is no
metric for picking the best one. Instead of attempting to find a metric, EUFVS accepts
the indefiniteness problem and works around it by speeding up the feature selection
process. Because EUFVS is a fast, tunable algorithm, it empowers a human being to
select the best result from many options.
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Research (JSPS KAKENHI Grant Numbers 16K12491 and 17H00762) from the Japan Society
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