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Abstract. The electric power grid undergoes a transformation, with
many consumers becoming both producers and consumers of electric-
ity. This transformation poses challenges to the existing grid as it was
not designed to have reverse power flows. Local energy communities are
effective in addressing those issues and engaging grid users to play an
active role in the energy transition. Such communities encourage the
consumption of the excess of renewable energy locally, which reduces
the stress on the grid and the costs for the users. In this paper, we
present a multiagent system developed to implement an intelligent local
energy community. The multiagent system models the energy grid as a
network of computational agents that solve energy flow problems in a
coordinated way and use the solutions for controlling flexible loads. The
model effectively distributes the tasks among the agents considering the
flows of electricity and heat. The Alternative Direction Method of Mul-
tipliers determines the agent interaction protocol. The obtained results
demonstrate the ability of the multiagent system to automate an intel-
ligent operation of the community while reducing the energy costs and
ensuring the grid stability.

Keywords: Multiagent system · Local energy community · Flexibility
services · Community energy optimisation · Building energy
optimisation · Demand response

1 Introduction

In the last decades renewable energy has become a topic of primary impor-
tance. Renewables are viewed as an alternative to traditional fossil fuels with
the advantage of being endless natural sources with lower carbon dioxide emis-
sions. However, the benefits of renewable energy come at a price of increasing
complexity regarding safe operation of the energy grid [5,6]. Motivated by finan-
cial and environmental concerns, many grid users have become both producers
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and consumers of electricity – the so-called prosumers. The proliferation of dis-
tributed energy resources poses several challenges, which include two-directional
power flow and overload issues due to intermittent nature of renewables and
irregular consumption [10].

Local Energy Communities (LECs) is a promising way to integrate renewable
energy sources and engage grid users in the energy transition [16,19]. Commu-
nities often include members who know and trust each other as well as share
common goals and interests. LECs enable energy exchange at the community
level allowing grid users to buy and sell energy locally. Local energy exchange
is beneficial as losses due to transmission of electricity over long distances are
avoided and funds are kept withing local economy. Communities can also par-
ticipate in energy markets (e.g. wholesale, balancing, reserve markets ...), since
by acting together, community members have stronger negotiation power when
interacting with other energy market participants.

During recent years, the focus on LECs has been growing steadily leading
to a number of industrial projects and research publications [16]. In this view,
one interesting topic is the design of a peer-to-peer (P2P) market in which par-
ticipants can buy and sell their energy. In [13], this was approached using the
concept of virtual currency for governing the exchange of energy between com-
munity members, being the effectiveness of the local market highly depending
on the definition of functions that determine buying and selling prices [3,11].
While the functions proposed in [13] were designed to encourage balance between
energy production and consumption, they ignored other important aspects such
as the possibility of peers to adopt a strategic behavior. Usually, these strategic
aspects are taken into account by means of game theory. In [14], price-based
schemes and a game-theoretical framework have been investigated to coordi-
nate flexible demand. The study described a promising approach but lacked
consideration of distributed generation and energy storage systems. In [15], an
auction-based market mechanism has been presented in which households sub-
mit their consumption bids and generation offers, which are, in turn, being used
to determine prices and allocate energy. However, under these auction based
schemes, participants need to provide accurate estimates of energy and prices
to get profitable results, their final benefits being dependant on the outcome of
complex forecasting models. Major advantages of P2P schemes are related to
their decentralized nature as no central supervisory entity is needed and privacy
concerns are diminished.

On the other hand, there is the possibility of creating a cost sharing mecha-
nism in which the community has a single electricity bill that is shared among
its members. This approach assumes a common goal to be pursued instead of
individual ones and aims for cooperative behaviour of community members.
In [12], a two stage aggregated control is proposed to realize this idea where an
energy sharing coordinator controls flexible devices. An interior-point method
was used to minimize the energy costs of the community. However, the cen-
tralized nature of this method is a major drawback that is also common to
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many existing approaches based on energy sharing. Centralization limits scal-
ability and rises concerns about privacy as data are stored and processed in a
single location. In contrast with centralised approaches, multiagent systems are
well established paradigm for implementing decentralize computerized systems.
A good survey regarding MAS applications for microgrid control can be found
in [8]. Closer to our work, peer-to-peer trading in a local energy community
using MAS has been previously addressed by [20,21]. As in this paper, both
works uses the Alternating Direction Method of Multipliers (ADMM) as the
underlying protocol for agent negotiation. However, [20] is based on a very sim-
plistic and abstract electricity prosumer model that consists on a set of allowed
power profiles and a measure of dissatisfaction with respect to each profile. Sim-
ilarly, [21] only considers electricity and a limited number of flexible devices. In
conclusion, existing works often miss a careful outline of multiagent modeling
methodology, use simple prosumer models and mostly focus on a single type of
energy such as electricity.

Against this background, this paper presents a multiagent system developed
for managing a local energy community. The multiagent models the energy net-
work accounting for both electricity and heat. It solves an optimal power flow
problem that is formulated as a convex optimization problem. Solutions yield
optimal actions for controlling devices. The optimization is performed by decom-
posing the underlying problem into a number of smaller subproblems that are
distributed among different computing agents. This study builds on our previ-
ous work presented as a conference paper in [4]. Herein it is consolidated and
extended in several important ways: (i) we describe a multiagent system mod-
eling starting from an individual building; (ii) we extend a congestion manage-
ment approach by adding the model for ensuring flexibility delivery; and (iii) we
present new results including fitting model parameters, building optimization,
and congestion management.

The remainder of the paper is structured as follows. Section 2 outlines the
decentralised optimization approach used to solve the underlying decision mak-
ing problem. Section 3 presents multiagent system models. Section 4 details, for
each type of agent, the local optimisation that allows them to participate in the
decentralised negotiation. Section 5 presents and discusses the obtained results.
Finally, Sect. 6 concludes the work.

2 Decentralised Optimisation Approach

We develop a multiagent system (MAS) with the aim to enable an autonomous
and intelligence functioning of a local energy community. MAS models the energy
grid as a network of computational agents that solve individual tasks and interact
by exchanging messages. We use the Alternating Direction Method of Multipliers
(ADMM) as the protocol for agent interactions, which determines the structure
and order of messages. ADMM is a variant of augmented Lagrangian method
for solving constrained optimization problems. It offers a powerful framework
for distributed problem solving, which is suitable for problems whose structure
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Fig. 1. A bipartite graph represents energy network and describes the structure of
MAS. Two types of nodes are devices and nets, respectively depicted by circles and
rectangles.

can be represented by a bipartite graph. With this representation, nodes in the
graph are assigned with tasks whilst edges show the structure of interactions
and coupling between the tasks.

We represent energy networks as bipartite graphs and refer to agents and
nodes interchangeably. In graphs, there are two types of nodes such as devices
and nets that are depicted by circles and rectangles respectively, as shown in
Fig. 1. The MAS manages the community energy network by controlling flexible
loads. Flexible loads are those loads whose consumption can be shifted to better
meet grid users’ needs and goals. The needs are related to satisfying comfort
preferences of residents. The goals involve reducing the energy costs and ensuring
the grid stability. The first goal is sought by making a better use of locally
produced renewable energy through increasing self-consumption. This is because
renewable energy is free for a particular household if is produced from its rooftop
panels, and is cheaper when it comes from the neighborhood relative to that
imported from the grid. The second goal relates to the fact that power flows
should be within grid capacity limits. It is achieved by avoiding both excessive
consumption of energy from the grid and excessive injection of renewable energy
into the grid.

The needs and goals of grid users are addressed by solving power flow prob-
lems with appropriately formulated objective and constraint functions. The
obtained solutions yield optimal control actions for agents. The structure of MAS
described by a bipartite graph allows to formulate an optimization problem in
the form

minimize
xi∈Ωi,zi∈Θi

∑

i∈D

fi(xi) +
∑

i∈N

gi(zi)

subject to xi = zi, ∀i ∈ N

(1)

where fi is a real valued objective function, defined in the feasible region Ωi,
that is associated with the i-th device, gi is a real valued objective function,
defined in the feasible region Θi, that is associated with the i-th net, xi and zi

are the decision variables associated with the i-th device and net respectively.
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The constraints account for the fact that respective device and net agents should
agree upon the values of shared variables.

Finding the minimizer to an equality constrained optimization problem is
equivalent to identifying the saddle point of the associated Lagrangian function.
This gives the following augmented Lagrangian function

L(x, z, λ) =
∑

i∈D

fi(xi) +
∑

i∈N

gi(zi) +
ρ

2

∑

i∈N

‖xi − zi + ui‖22 (2)

where ui = λi/ρ is the scaled dual variable (for Lagrange multipliers λi) , xi and
zi are primal variables.

The augmented Lagrangian function (2) is minimized with respect to primal
and dual variables. Each iteration involves the following steps.
Step 1. Device agents compute in parallel their optimal variables by solving

x
(k+1)
i∈D = arg min

xi∈Ωi

fi(xi) +
ρ

2
‖xi − (zk

i − uk
i )‖22 (3)

The corresponding values are communicated to neighboring nets.
Step 2. Net agents compute in parallel their optimal variables by solving

z
(k+1)
i∈N = arg min

zi∈Θi

gi(zi) +
ρ

2
‖zi − (x(k+1)

i + uk
i )‖22 (4)

Step 3. Net agents in parallel update their dual variables.

u
(k+1)
i∈N = uk

i + (x(k+1)
i − z

(k+1)
i ) (5)

The corresponding primal and dual variables are sent to neighboring devices.
The above steps are repeated until convergence criteria are met. The con-

vergence criteria are checked locally by nets and defined for primal and dual
residuals as

rprimal < εprimal

rdual < εdual
(6)

where εprimal, εdual are small positive numbers representing primal and dual tol-
erances, respectively. The primal and dual residuals are computed as

rprimal = ‖xk
i − zk

i ‖2
rdual = ‖ρ(zk

i − zk−1
i )‖2

(7)

If the device and net functions f(x) and g(z) are convex, the constraint
residual under ADMM is guaranteed to converge to zero and the objective value
to the minimum of the dual problem, see [1].

3 Community and Multiagent Models

In this section we first give a general description of the community under study.
Next we present a multiagent model of the energy network in individual building.
Then we present a multiagent model of the whole community aggregating the
models of different buildings.
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Fig. 2. Architecture of local energy community.

3.1 Local Energy Community

As reported in [4], our study case involves a community of households located in
the central Netherlands. Figure 2 depicts a general architecture. The community
consists of 16 households and a district battery with the capacity of 220 kWh.
Each household has a heat pump of 2 kW combined with a hot water buffer of
200 L. The heat pump is used for heating both domestic hot water and spatial
heating. Each house has solar photovoltaics capable of producing up to 7 kW.
Additionally, there is one in-home battery with the capacity of 7.8 kWh.

There is also the information and communications technology infrastructure
that consists of different communication devices, software applications and pro-
tocols. Each house is equipped with a local energy gateway that is connected
with flexible devices and it is able to communicate with the backend run on a
cloud by means of the Advanced Message Queuing Protocol. Local energy gate-
ways are used to control flexible devices and to communicate sensory data. The
MAS runs on the cloud. The cloud also provides means for interaction with other
energy market participants.

3.2 Building Energy Network

As a first step we develop multiagent models of building energy networks con-
sidering each building individually. Based on the presence of in-home battery we
distinguish buildings with and without battery. Figure 3 displays the computa-
tion graph describing multiagent system for the building with battery.
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Fig. 3. Multiagent model of building energy network.

The agent types and roles were defined in [4] and are as follows:

• Electrical Net (ENet) models the electrical network in the house energy sys-
tem ensuring the balance of electrical energy.

• Heating Net (HNet) models the heating network in the house energy system
ensuring the balance of heat energy.

• Battery Net (BNet) ensures the energy balance in the decomposed model of
battery.

• External Tie (ET) represents a connection to an external source of power.
• Connector (C) connects two nets modelling the transmission of energy. The

transmission can be associated with losses. The transmission loss from ENet
to BNet models a charging efficiency. The transmission loss from BNet to
ENet models a discharging efficiency.

• Battery (B) models an electrical storage that can take in or deliver energy.
• Photovoltaics (PV) represents solar panels that generate electricity from

absorbing sunlight.
• Fixed Load (FL) represents an inflexible energy consumption that must be

satisfied.
• Heat Pump (HP) models the transformation of electricity to heat with some

conversion coefficient.
• Space Heating (SH) models indoor air temperature that must be kept within

comfort limits.
• Hot Water Storage (HWS) models the hot water tank and the domestic hot

water consumption.

The model includes the electrical and heating networks shown in blue and
red respectively. These networks account for the flows of respective types of
energy. A heat pump agent (HP) connects two networks serving as a converter
of electricity to heat. Net agents ensure the balance of corresponding energies
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(i.e. the ENet ensures electricity balance, the HNet heating balance and the
BNet balance inside the battery model). The battery with losses is represented
by connector, net and battery agents. The connector agent (C) that connects to
the battery net models losses associated with charging and discharging. Finally,
the battery agent (i.e. B) models linear constraints associated with its charge
capacity. The models of remaining buildings are obtained by eliminating agents
related to the in-home-battery.

3.3 Community Energy Network

In [4], we developed a multiagent model of the community energy network. The
model is shown in Fig. 4. It was obtained by aggregating individual models of
district assets, such as houses and the battery storage, and connecting them to
LEMNet agent. LEMNet represents a local energy market where district actors
negotiate their energy exchange. LEMNet is also connected to an external source
of power that represents a connection point between the community and the main
grid. In this view, the interaction protocol defined by the ADMM algorithm
models negotiation of the energy exchange between actors in the community.
The actors are the district battery storage, the prosumers and the main grid.
Connector agents (i.e. C) that connect houses to the LEMNet serve as interface
between the prosumers and the local energy market.

Agents connected to LEMNet negotiate energy exchange at the community
level. In each iteration, LEMNet sends messages that can be viewed as requests.
These messages contain the amount of energy requested, zk

i . The sign is used to
distinguish between production and consumption. From a recipient perspective,
a positive value indicates that the energy flows towards the recipient, a nega-
tive value indicates the flow towards the sender. It also includes the price, uk

i ,
which not only indicates the current market price, but also is used to distinguish
between a situation of overconsumption (in which the price are positive) and a
situation of underconsumption (in which the price are negative). Agents coordi-
nate their actions through negotiation until consensus is reached on their energy
use. The resulting actions in terms of energy use represent the optimal decisions
with respect to the common goal of reducing the energy cost for the community.

Along with the cost effectiveness, the MAS aims to ensure safe operation
of the energy grid. The grid has the potential to experience times of intensive
injection of renewable energy and excessive pulling of energy due to high con-
sumption. Such conditions increase stress on the grid and could push it into
failure. The grid condition when its capacity is insufficient to accommodate the
requested power flows is referred to as congestion. Congestion management is
performed to avoid overload and to ensure stability of the grid.

We consider congestion management using the Universal Smart Energy
Framework (USEF) [7], which focuses on the use of market-based flexibility
for congestion management. The aggregator and the Distribution System Oper-
ator (DSO) are two major players involved. The aggregator is an energy market
participant that aggregates the energy consumption and generation of several
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Fig. 4. Multiagent model of the community energy network.

consumers aiming to maximize the value of flexibility. The DSO is responsi-
ble for the operation and maintenance of the distribution grid ensuring that
the energy in the system can flow between suppliers and consumers. The DSO
performs grid safety analysis identifying potential congestion points. In case of
congestion, the DSO procures flexibility through market based procedures send-
ing a flexibility request to the aggregator active at the congestion point. This
request indicates the need to reduce load and the available capacity at each
time interval. In response, the aggregator optimizes its portfolio and provides a
flexibility offer in terms of energy profile and price. The DSO analyses the offer
and responds with an updated request or a flexibility order. The former occurs
if the offer is not sufficient to solve the congestion. The latter indicates the offer
is accepted and the aggregator is to be paid for the delivered flexibility. The
flexibility is negotiated for the next day, starting after midday and continuing
until agreement or timeout.

Our multiagent system is a part of the aggregator’s infrastructure used to
provide flexibility services to the DSO. For congestion management, the structure
of the MAS remains as is in Fig. 4. Appropriate modifications are only introduced
to the ET agent. Congestion management determines two running regimes for the
MAS. The negotiation phase happens for the day ahead, where the MAS provides
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solutions in response to flexibility requests. The DSO requests are transformed
into constraints limiting power flows and the constrained optimization problem is
solved yielding corresponding flexibility offers. During the course of the operating
day, the MAS balances the differences between day-ahead commitments and the
actual real-time operation. This is approached by solving optimization problems
with objective functions aiming to minimize mismatch between target and actual
energy use in the community.

4 Local Agent Optimisation Models

This section presents formulations of agents local subproblems and describes
how those are solved.

4.1 Nets

All the net agents are considered to be instances of the Net agent. This agent
solves the following subproblem1 [4]

minimize:
H∑

τ=1
(z1(τ) − y1(τ))2 + . . . +

H∑
τ=1

(zn(τ) − yn(τ))2

subject to:
n∑

i=1

zi(τ) = 0, τ = 1, . . . , H.
(8)

where n is the number of neighbors. The constraints aim to ensure the energy
balance. The problem (8) is solved by projecting the variables received from
neighboring devices onto the feasible region. For each time interval τ = 1, . . . , H
and each neighbor i = 1, . . . , n, the optimal values are computed as

z∗
i (τ) = xi − x̄(τ) (9)

where x̄(τ) is the average of neighbors’ variables at time interval τ .

4.2 External Tie

External Tie (ET) represents a connection to an external source of power. There
are three different operational modes defined as follows.

Minimizing Energy Cost. It is associated with the objective function aim-
ing at minimizing the energy cost. The ET agent solves the following local
subproblem

minimize:
H∑

τ=1
−c(τ) x(τ) + ρ

2

H∑
τ=1

(x(τ) − y(τ))2 (10)

1 For better readability, we use y(τ) = x(τ) + u(τ) for the net agents and
y(τ) = z(τ) − u(τ) for the device agents, τ = 1, . . . , H.
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where

c(τ) =
{

csell(τ) if x(τ) ≥ 0
cbuy(τ) otherwise (11)

csell(τ) and cbuy(τ) are the prices of exported and imported energy, respectively.
A positive value of x(τ) indicates the energy is exported to the grid while a
negative value of x(τ) indicates the energy is imported. The function is separable
and thus we can consider each of its components separately. The subproblem is
solved by finding a critical point for x(τ) ≥ 0 as

x+(τ) = max{0, csell(τ)/ρ + y(τ)} (12)

and a critical point for x(τ) ≤ 0 as

x−(τ) = min{0, cbuy(τ)/ρ + y(τ)} (13)

Both x∗
+(τ) and x∗

−(τ) are evaluated using (10). The one having the lower value
is selected to be the optimal value of x∗(τ) at time interval τ .

Addressing Flexibility Request. The flexibility request from the DSO is
transformed into the set of constraints restricting the flow of energy coming into
and out from the community. This is addressed by extending the subproblem of
the ET agent as follows

minimize:
H∑

τ=1
−c(τ) x(τ) + ρ

2

H∑
τ=1

(x(τ) − y(τ))2

subject to: xmin(τ) ≤ x(τ) ≤ xmax(τ) τ = 1, . . . , H
(14)

Notice that in (14) the objective function is the same as in (10) but constraints
are added to address the flexibility request. The problem is separable and is
solved by finding solutions for individual components. The critical point for
x(τ) ≥ 0 is

x+(τ) = max{0, min{xmax(τ), csell(τ)/ρ + y(τ)}} (15)

and for x(τ) ≤ 0 it is

x−(τ) = min{0, max{xmin(τ), cbuy(τ)/ρ + y(τ)}} (16)

Both x+(τ) and x−(τ) are evaluated using (14). The one having the lower value
is selected to be the optimal value of x∗(τ) at time interval τ . The projec-
tion ensures that the solution lies within the feasible region and satisfies the
constraints.

Ensuring Flexibility Delivery. The community should fulfill its obligations
by delivering the energy profile agreed with the DSO during negotiation. Fore-
casts are imperfect and yield differences between predicted and observed values.
Control actions based on inaccurate forecasts have the potential to mismatching
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the agreed energy use, which in turn leads to economical penalties. The MAS
mitigates potential deviations from the target profile by running in a rolling
horizon regime with the ET agent solving the following subproblem

minimize:
H∑

τ=1
−c(τ) x(τ) +

H∑
τ=1

w(τ)
2 (x(τ) − t(τ))2 + ρ

2

H∑
τ=1

(x(τ) − y(τ))2 (17)

where t(τ) is the target energy consumption/production and w(τ) is the penalty
coefficient. The subproblem (17) extends the original subproblem of ET agent
in (10) by adding an extra term that penalizes the deviation from the target
values. The problem is separable and is solved by finding solutions for individual
components. The critical point for x(τ) ≥ 0 is

x+(τ) = max
{

0,
csell + ρ y(τ) + w(τ) t(τ)

ρ + w(τ)

}
(18)

and for x(τ) ≤ 0 it is

x−(τ) = min
{

0,
cbuy + ρ y(τ) + w(τ) t(τ)

ρ + w(τ)

}
(19)

Both x+(τ) and x−(τ) are evaluated using (17). The one having the lower value
is selected to be the optimal value of x∗(τ) at time interval τ .

4.3 Connector and Heat Pump

Connector (C) and heat pump (HP) agents connect two nets modelling the
transmission of energy between different parts of the energy network. The trans-
mission can be associated with losses. Both C and HP are instances of an agent
that solves the following subproblem [4]

minimize: ρ
2

H∑
τ=1

(x1(τ) − y1(τ))2 + ρ
2

H∑
τ=1

(x2(τ) − y2(τ))2

subject to: η1 x1(τ) = −x2(τ) if 0 ≤ x1(τ) ≤ xmax
1 (τ)

−x1(τ) = η2 x2(τ) if 0 ≤ x2(τ) ≤ xmax
2 (τ)

(20)

where η1, η2 ∈ (0, 1] are transmission efficiencies and xmax
1 , xmax

2 ≥ 0 are the
maximum values restricting the energy flow from the corresponding net. The two
constraints correspond to the two possible scenarios: (i) when the energy flows
from net 1 to net 2 and (ii) when the energy flows in the opposite direction, from
net 2 to net 1. The problem (20) is separable and is solved for each time step τ
individually by finding critical points for two cases and selecting the one with a
lower value of objective in (20).

4.4 Photovoltaics and Fixed Loads

On one hand, photovoltaics (PV) represent solar panels that generate electric-
ity from absorbing sunlight. On the other hand, a Fixed Load (FL) represents
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an inflexible energy consumption that must be satisfied. Both PV and FL are
instances of an agent that solves the following subproblem [4]

minimize: ρ
2

H∑
τ=1

(x(τ) − y(τ))2

subject to: x(τ) = x̂(τ), τ = 1, . . . , H
(21)

where x̂ are forecast values. The solution to (21) is trivial (xk = x̂).

4.5 Battery

Battery (B) represents an electrical storage that can take in or deliver energy.
The B agent has a set of constraints aiming to keep its state of charge as well
as charging and discharging rates within the allowed range. The B agent solves2

the following subproblem [4]

minimize: ρ
2

H∑
τ=1

(x(τ) − y(τ))2

subject to: Qmin ≤ Q(τ) ≤ Qmax, τ = 1, . . . , H
xmin ≤ x(τ) ≤ xmax, τ = 1, . . . , H

(22)

where Qmin and Qmax are the minimum and maximum allowed charge of the
battery, xmin and xmax are the limits of discharging and charging rates. The
battery’s charge evolves as in [9]

Q(τ) = Qinit +
H∑

τ=1

x(τ) (23)

where Qinit is the initial charge of the battery.

4.6 Space Heating

Space Heating (SH) represents indoor air temperature that must be kept
within limits for comfort. The SH agent solves(see footnote 2) the following
subproblem [4]

minimize: ρ
2

H∑
τ=1

(x(τ) − y(τ))2

subject to: Tmin ≤ T (τ) ≤ Tmax, τ = 1, . . . , H
(24)

where Tmin and Tmax are the temperature limits. For τ = 1, . . . , H, the room
temperature evolves as in [9]

T (τ) = T (τ − 1) +
μ

c
·
(
T amb(τ) − T (τ − 1)

)
+

η

c
· x(τ) (25)

where T (0) is the initial temperature, T amb is the outdoor temperature, μ is the
conduction coefficient, η is the heating efficiency and c is the heat capacity of
indoor air.
2 The B, SH and HWS agents solve their subproblems using Dykstra’s projection

method [2,17] with a starting point x(τ) = y(τ) for τ = 1, . . . , H.
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4.7 Hot Water Storage

Hot Water Storage (HWS) represents the tank with hot water and the consump-
tion of domestic hot water. The HWS agent solves(see footnote 2) the following
subproblem [4]

minimize: ρ
2

H∑
τ=1

(x(τ) − y(τ))2

subject to: Tmin ≤ T (τ) ≤ Tmax, τ = 1, . . . , H
(26)

with Tmin and Tmax are the temperature limits. For τ = 1, . . . , H, the water
temperature evolves as [18]

T (τ) = T (τ − 1) +
Vcold(τ)
Vtotal

·
(
Tcold − T (τ − 1)

)
+

1
Vtotal · c

· x(τ) (27)

where T (0) is the initial temperature, Vcold is the volume of water with temper-
ature Tcold entering the tank to replace the consumed hot water, Vtotal is the
tank volume, and c is the specific heat of water. The consumption of hot water
is given by forecast.

5 Results and Discussion

This section presents and discusses the results of validation tests. The tests were
performed using the data for the winter season. Winter days are characterized by
the need to use heat pump for both heating domestic hot water and maintaining
room temperature within comfort limits. This represents the most challenging
optimization scenario as during other seasons heat pump is only used for reheat-
ing domestic hot water. The optimization considers a 24-h time horizon divided
into 96 program time units (PTUs), with each one corresponding to 15-min
interval.

5.1 Estimating Parameters and Validation of Local Models

The local optimization models of agents formulated in Sect. 4 need parameters
for their initialization. Some of these parameters represent physical properties
whose values can be readily encountered in the literature, e.g. the heat capacity
of air or the specific heat of water. Instead, others are more specific for the
application context and should be estimated from the data. This is the case of the
conduction and thermal efficiency coefficient parameters of the heat pump, space
heating and domestic hot water storage agents. For these parameters, in this
section we carried out a study to estimate them from the database of historical
records and validate in this way the effectiveness of our agent models. In more
detail, the values of these parameters were determined through optimization by
minimizing a sum of squares representing differences between temperature values
from historical data and those computed by agent models.
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Fig. 5. Temperature profiles given by model and historical data for the (a) space heat-
ing and (b) hot water storage agent models.

Figure 5 shows temperature profiles coming from historical data and corre-
sponding models with estimated parameters for the space heating and hot water
storage models. The plots refer to the data collected for one house during the
first two months of 2019. As expected, there is no perfect fit between the real
and estimated values. This can be explained by imperfections in sensors, mea-
surements, noise, as well as the linear nature of models. However, it can be seen
that the models can adequately approximate important temperature dynamics
regarding both the room air and domestic hot water. Notice that the line rep-
resenting the values estimated by the model follows the general trend. As to
space heating, the model approximates the decrease in room temperature due
to weather conditions and its increase as a result of heating as a consequence of
the action of the heat pump. Regarding hot water, the model provides adequate
temperature estimates for periods of water consumption and reheating. The lat-
ter is particularly challenging due to irregular consumption profile and complex
thermal dynamics inside the tank.

It is important to note that these plots depict temperature estimates for
two months on a daily basis. For each day, the temperature was calculated
for each of 96 time slots, corresponding to 15-min intervals during 24 h. The
difference between the real and estimated values is smaller in the beginning of
each time horizon. This is because the models use real sensor measurements
for the previous time slot. When estimating the values for the following time
slots, the models rely on estimates from previous slots instead of the real values.
This way, errors are accumulated making the discrepancy between the real and
estimated values higher in the later time slots. In practice, the above issue can be
effectively addressed by a receding (rolling) horizon optimization. This technique
involves the MAS updating all the parameters and running the optimization in
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Fig. 6. Energy consumption with shares of different loads.

the beginning of each time slot, i.e. every 15 min. As a result, uncertainties are
expected to be cancelled out or minimized.

5.2 Building Optimization

We validated the MAS models of buildings in the community by optimizing each
building individually. This represents a valid approach for minimizing the energy
costs for community members. Though, in this study, we focus on the collective
energy management and use the results of the two approaches for comparison
purposes. In the community, the buildings have similar characteristics in terms of
devices and consumption patterns. The main source of flexibility in most build-
ings comes from both the admissible ranges of temperatures for domestic hot
water and indoor air. The building with in-home battery has the largest poten-
tial in terms of flexibility. The presence of battery allows for storing the energy
in time intervals when there is the surplus of PV production. It also enables
storing the energy imported from the grid for a later usage (i.e. future domestic
needs and/or injecting it back to the grid). Here we limit the presentation of
building optimization results to the case of the building with in-home battery.

Figure 6 shows a daily consumption for the building with battery. The effects
of optimized battery usage can be observed. The optimization suggests using
the battery for storing the energy in off-peak periods and then releasing it to
satisfy uncontrollable consumption, which is represented in our models by the
flexible load device. The results clearly indicate the benefits of having the battery
installed inside the house. The battery provides a significant flexibility in terms
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of energy usage, which also indicate incentives for investing in electrical storage
installation.

From the experiments, we observed that the consumption of heat pumps can
be shifted to keep indoor and water temperatures inside the admissible range.
Though, the flexibility is relatively limited. This fact can be explained by the
power of heat pumps and some characteristics of thermal loads. As for room
temperature, heating a building is a very slow process. The use of heat pumps
for space heating is regular and without high amounts of consumed energy. This
contrast with heating domestic hot water whose consumption is short time and
irregular in consumed volume. Heating domestic hot water is a relatively fast
process but requires large amounts of energy in short periods of time. Once a
large volume of hot water is drawn from the tank, it is replaced by the same
volume of cold water that must be heated to ensure the temperature limits
with low flexibility. The promise comes from aggregating several heat pumps to
increase the amount of flexibility, which is discussed next.

5.3 Community Optimization

Community members participate in community energy management with the
common goal of increasing social welfare through collective use of local
resources [4]. They coordinate the energy use to reduce the shared cost at the
connection point between the community and the main grid. The multiagent
system automates the process of coordination by optimizing energy flows and
using the solutions for control actions. When running a day ahead optimiza-
tion, the system attempts to schedule energy consumption for flexible loads to
time intervals with available renewable energy. Starting optimization at differ-
ent time slots during the day changes the perspective as the time horizon moves
forward embracing time slots from the next day. The optimization is executed at
the beginning of each time interval with updated sensor data. This operational
mode is known as rolling horizon optimization. Rolling horizon can mitigate
uncertainties in the models, such as forecast errors, and account for the fact
that the real time horizon is not limited to a single day.

Figure 7 shows the resulting dairy energy profile of the community as a result
of the rolling horizon optimization. For comparison, the graph also shows the
results of the day ahead optimization. The day ahead approach yields the results
from single optimization run at the beginning of the day. The rolling horizon
approach involves the results of 96 optimizations during the day. The data for
the first PTU is used for control and is shown in the graphs. The difference
can be readily understood. The rolling horizon optimization results in smaller
energy exports during times of intense PV generation. This is because the system
suggests storing the excess of energy to meet local demand in time slots receding
into the future with each optimization run.

The results presented in Fig. 7 refer to the day characterized by a massive
energy production from solar panels. The optimized energy profiles yield peaks
of energy injection around midday when PV generation is high. This is because
no constraints were imposed on possible energy flows. The system solely focuses
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Fig. 7. Energy profile of the community with simple day ahead optimisation and with
rolling horizon optimisation, adapted from [4].

on minimizing the energy bill. Although the results indicate that rolling horizon
optimization can reduce peaks to some extent, it is not the goal of the community
at this step. The issue of dealing with possible grid overload is addressed later
as part of congestion management.

The optimal behavior of the community is characterized by shifting con-
sumption of flexible devices to time intervals with electricity available from solar
panels. This is because this electricity is cheaper relative to those taken from
the main grid. Figure 8 shows the energy use of the heat pumps and the district
battery after optimization.

Heat pumps are flexible devices at home level. They are used to provide heat
for both domestic hot water and space heating. As expected, the MAS suggests
using heat pumps in times with available renewable energy. This is shown in
Fig. 8a that depicts a three-dimensional bar chart with the consumption profiles
of each heat pump in the community. It can be seen that most of consumption
occurs in times of high PV generation. Consumption in other time intervals is
dictated by the need to satisfy temperature limits, especially for domestic hot
water. The consumption of domestic hot water is irregular with respect to time
and amount, especially in the evening.

At the district level, there is a battery storage. When multiagent optimization
runs in a rolling horizon mode, at the end of the day, the battery SOC is not
at its lower state because it holds some energy to account for the following time
horizon. This is shown in Fig. 8b. Figure 8c graphically illustrates the control
actions for the battery during the day in terms of the amount of energy charged
and discharged in each PTU.

5.4 Comparing Building and Community Optimizations

Community management should ensure its members benefit from collective
energy usage. To provide insights about the advantages of community-based
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Fig. 8. Energy profiles of (a) heat pumps, (b) and (c) the district battery as result of
the rolling horizon optimization, adapted from [4].

approach we compared the results of in-home and community optimizations [4].
The former optimized community households individually and combined their
energy profiles. The latter performed the community optimization. The results
indicate the performance of two approaches varies depending on the amount of
renewable energy that is locally produced. Community-based approach is better
when there is excess of renewable energy. On the other hand, both approaches
perform similarly when it is low.
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Optimization
In-home Community

Energy import (kWh) 16072.94 14384.53
Energy export (kWh) 3694.83 1814.42
Self-consumption (%) 59 80

Fig. 9. Comparing individual in-home and community optimizations, adapted from [4].

Figure 9 illustrates the amount of imported energy for the two optimization
approaches. It can be seen that for all days community optimization yields less
or equal energy import relative to in-home optimization. The two approaches
perform similarly only when PV generation is low. The increase in renewable
energy generation leads to the decrease in the amount of energy imported from
the grid. During the period under consideration, the total renewable energy
production was 9047.91 kWh. Similarly to the above daily data, the total energy
import and export of the community was reduced.

We also use self-consumption as an indicator for performance comparison.
Self-consumption is defined as the ratio between the amount of renewable
energy consumed and produced in the community. The results indicate that the
community-based optimization approach increases self-consumption. Instead of
exporting the produced renewable energy outside the community it is used to
meet local demand. These results provide important insights about advantages
of collective energy management and the estimates of potential savings. It is also
worth noting that economic benefits are accompanied by reduced stress on the
main grid.

5.5 Addressing Flexibility Request

When it comes to congestion management, there are two possible scenarios. The
first refers to the situation with the excess of injected renewable energy and low
local demand. This can readily occur in sunny weather and lead to the increase
in voltage that can damage the grid components if proper actions are not taken.
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Fig. 10. Community energy profiles under congestion management scenarios due to
overproduction, adapted from [4].

Figure 10 shows a day ahead scenario for the community addressing the over-
supply of renewable energy. The energy profiles resulting from unconstrained
community optimization are shown in blue. The results obtained when address-
ing the flexibility requests are shown in yellow. Two different requests limiting
the energy injection are considered, which correspond to the maximum energy
injection of 5 kWh and 3 kWh per PTU. It can be seen that both the grid capacity
limits are respected by the MAS. The amount of renewable energy injected into
the main grid does not exceed the limits requested. This is achieved by shifting
the export from peak sunny periods during the day to evening and night hours.
This reduces the stress on the distribution grid and provides energy in times of
high demand, such as evening hours.

The availability of the storage capacity in the community is critical to exhibit
this behavior. The battery enables storing the excess of renewable energy in peak
times and later releasing it to meet local demand and for export. Figure 11 shows
the behavior of the district battery storage in terms of charging and discharging
of energy. The figure illustrates the more grid capacity is limited, the more
energy is taken in peak times. It can also be observed that the battery does not
take more energy than needed for meeting the flexibility request, which in turn
minimizes the losses associated with charging and discharging.

The second scenario aims at avoiding the overload of grid components due
to excessive pulling of energy. This situation is common in times when the local
production is limited and the consumption is high. Figure 12 shows the results
of addressing the flexibility requests to limit consumption to 4 kWh and 3 kWh
per PTU. The given day is characterized by the low production from PV panels
and the peak in demand around 16:00. The request is addressed by exploiting
flexibility from the district battery and heat pumps, as shown in Figure 13. The
battery stores the energy imported in off-peak hours and discharges to meet the
peak demand. The consumption of heat pumps is shifted closer to midday.
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Fig. 11. District battery profiles when handling overproduction.

5.6 Ensuring Flexibility Delivery

In the following, we investigate the effectiveness of the mechanism introduced
in (17) to deal with the differences between day-ahead commitments and the
real-time operation. The differences are expected due to unforeseen changes in
behavior of grid users and forecast inaccuracies. We consider the start of the
day and the obligation to deliver the profile show in Fig. 10a. This profile results
from the negotiation between the DSO and the aggregator and represents the
commitment to deliver and consume certain amount of energy at each time
interval during the day.

First we examine the effects of both the increase and decrease in energy pro-
duction from rooftop panels up to 20% relative to the forecast values. Figures 14a
and 14b show the updated and the target energy profile of the community. When

Fig. 12. Community energy profiles under congestion management scenarios due to
overconsumption, adapted from [4].
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Fig. 13. Energy profiles of the district battery and heat pumps when handling over-
consumption.

Fig. 14. Effects of change in PV production during congestion management.

the production is lower than it was expected, the community cannot inject the
amount of energy agreed. In terms of injected energy, the actual profile deviates
from the target starting from around 8:00 to 24:00. The target and actual pro-
files also differ before 8:00 when there is no production at all. This is because
the quadratic term in (17) penalizes deviations from the target profile in a way
so that these are distributed along different time intervals starting from the beg-
ging of the time horizon until the actual mismatch happens. On the other hand,
when the production is higher than what was expected, the community is able
to deliver the target profile. In this case, the excess of energy is injected into
batteries. Figure 15 show graphs depicting the state of charge of the district
buttery for these two scenarios. The differences between the planned and actual
SOC demonstrate a way in which the multiagent system makes use of available
flexibility to meet obligations of the energy community.
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Fig. 15. SOC of district battery with deviations of PV production in congestion man-
agement with a target profile.

Fig. 16. Effects of increased consumption on congestion management with a target
profile.

We also study how the increase in consumption affects the ability to deliver
the agreed energy profile. Figure 16 depicts the results for the cases of increased
energy consumption in both morning and evening. In the former case, the com-
munity fails to meet the target only in morning hours while meeting the target
during the rest of the day, as shown in Fig. 16a. A different behavior is observed
when the consumption is larger than forecast in evening (after 17:00), as shown
in Fig. 16. In this case, small deviations from the target profile are experienced
throughout the day. This results from optimizing the objective with the quadratic
penalty term define in (17). The mismatch is distributed among all time inter-
vals starting from the begging until the last interval with the difference between
forecast and actual values. The behaviour is similar to the above discussed case
of increased production.
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6 Conclusions

This paper presented the multiagent system developed for intelligent and
autonomous functioning of the local energy community. The energy grid con-
sidering electricity and heat is modelled as the network of computational agents.
These agents collaboratively solve energy flow problems and use the solutions to
control consumption of flexible loads.

The obtained results showed the ability of the system to reduce the energy
costs and to ensure the grid stability while satisfying the needs of the grid users.
The optimized energy consumption profiles are meaningful, that is: (i) the energy
consumption of flexible loads is scheduled in times when renewable energy is
available; and (ii) the export of energy is scheduled so that local demand is met
first and only the remaining excess is fed into the main grid. The optimization
finds solutions satisfying all the constraints whenever feasible solutions exist.
The constraints refer to each time unit and involve allowed levels of batteries’
charge, temperature limits, energy flow and energy balance in each node of the
network.

The presented study considered the real-world community of households
located in a close neighborhood. As observed in [4], these households have similar
characteristics in terms of available flexible loads as well as energy consumption
and production patterns. All households experience energy surplus and high local
demand in same times during the day. Under such circumstances, the energy
exchange at the community level is limited and the energy sharing mechanism
is not fully appreciated. Although the presence of district battery alleviates this
issue, it’s operation is costly as it is leased. The community would benefit from
joining households without solar panels that are pure consumers. On the one
hand, such consumer households would enjoy low prices for locally produced
renewable energy. On the other hand, producer households would benefit from
selling the energy to neighbors as the corresponding price is higher compared to
the one for exporting to the main grid.

As future work, we intend to incorporate uncertainties into optimization as
a way to account for forecast inaccuracies and to consider how costs and profits
can be fairly distribute between community members.
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