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Abstract. In many machine learning applications, data are often described by a
large number of features or attributes. However, too many features can result in
overfitting. This is often the case when the number of examples is smaller than
the number of features. The problem can be mitigated by learning latent variable
models where the data can be described by a fewer number of latent dimensions.
There are many techniques for learning latent variable models in the literature.
Most of these techniques can be grouped into two classes: techniques that are
informative, represented by principal component analysis (PCA), and techniques
that are discriminant, represented by linear discriminant analysis (LDA). Each
class of the techniques has its advantages. In this work, we introduce a technique
for learning latent variable models with discriminant regularization that combines
the characteristics of both classes. Empirical evaluation using a variety of data
sets is presented to verify the performance of the proposed technique.
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1 Introduction

In many machine learning applications, a large number of features or attributes is often
used to describe examples. However, too many features can cause overfitting, resulting
in poor generalization performance. This is the case when there are more features than
examples. Poor generalization performance can be attributed to the curse of dimension-
ality [6], which implies that to avoid overfitting, the number of examples must increase
exponentially with the number of features. For example, it is shown that there are O(2q)
unknowns that must be estimated to learn a binary distribution in a space with q corre-
lated features [8].

The above problem can be mitigated by learning latent variable models where the
data can be described by a fewer number of latent dimensions. In fact, learning latent
variable models has been one of the key building blocks in machine learning, which in
turn will benefit many practical applications [4,20,24,27,40].

One of the goals of learning latent variable models is to compute the intrinsic dimen-
sionality of the input space represented by high dimensional input examples. There are
both linear and non-linear techniques for learning latent variable models in the litera-
ture. In this work, we are concerned with linear techniques for their simplicity. Many
linear techniques can be extended to non-linear cases.
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Many techniques for learning latent variable models have been developed over the
years [3,5,15,21,22,28,29,43]. There are two major categories of techniques for learn-
ing latent variable models. The first category of techniques is represented by principal
component analysis (PCA), where the objective is to minimize information loss. The
second category of techniques is represented by linear discriminant analysis (LDA),
where the objective is to maximize class separation. Each has its advantages. For exam-
ple, latent positions computed by PCA do not rely on class label information, while
latent positions computed by LDA do. And as such, one expects LDA to be able to
perform better than PCA in classification applications. However, when there are insuf-
ficient training examples per class in face recognition problems, empirical evidence
shows that PCA can perform better [26].

In this paper, we propose a technique for learning latent variable models that com-
bine some of the characteristics of both PCA and LDA. The proposed technique draws
upon ideas from probabilistic latent variable models [25,33,38], where the negative log
prior can be viewed as regularization (or penalty) in a non-Bayesian context. The tech-
nique minimizes a minimum information loss objective with discriminant regulariza-
tion. As a result, the technique represents a trade-off between PCA and LDA, resulting
in better generalization performance in many applications. Empirical evaluation using
a number of data sets is presented to verify the proposed technique for learning latent
variable models.

Note that an earlier version of the current work appeared in [30]. While the technical
idea presented here is along the lines of the one described in [30], the technical discus-
sion is carried out in a general probabilistic context, rather than Gaussian processes.
Thus the technical presentation is more refined in the present paper. Furthermore, we
have included more examples in the empirical evaluation section in the present paper.
These diverse examples, ranging from biometric (such as iris and fingerprint) and image
classification problems to hyperspectral image analysis, have provided strong empirical
evidence to support the technique proposed in the present paper.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 introduces a probabilistic framework for learning latent variable models to
motivate the introduction of out proposal. Section 4 introduces a linear technique for
learning latent variable models with discriminant regularization. The technique can
be interpreted as regularized PCA, where discriminant analysis is the regularizer. It
can also be viewed as regularized discriminant analysis, where the regularizer is PCA.
Section 5 provides the empirical evaluation of the proposed technique against several
competing techniques. Finally, Sect. 6 summarizes our contributions and points out
future research directions.

2 Related Work

There are many techniques in the literature that aim to exploit the inherent low dimen-
sional nature of the data [12,17,34,41]. Linear techniques for learning latent variable
models can be broadly categorized into two classes, represented by PCA and LDA,
respectively. These techniques can learn the intrinsic geometry of the input space, along
with its global Euclidean structure.
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Note that PCA is closely related to auto-encoders in neural networks. In its very
basic form (one hidden layer with linear outputs), the q hidden units span the same
latent space as the first q components found by PCA [7,18]. The components of PCA
are orthogonal, while the weight vectors of the basic auto-encoder may not. A deep
auto-encoder can learn a non-linear subspace, which can be desirable in many appli-
cations. The challenge is that it can be very difficult to optimize deep auto-encoders
using backpropagation. Techniques have been proposed to address this challenge in the
literature [18]. In addition, studies have been done comparing deep auto-encoders with
kernel PCA, which can also produce a non-linear subspace.

Locality preserving projection (LPP) is a linear technique for learning the local-
ity structure of input space [19]. The technique constructs an adjacency matrix from
input examples that describes the local neighborhood information of the input space.
The optimal projection can then be computed that preserves the neighborhood informa-
tion in the latent space. It has been noted that the basis functions, resulting from LPP,
may not be orthogonal [9]. Thus, the data reconstruction can be a challenge in many
applications.

Orthogonal locality preserving projection (OLPP) is a linear technique for learning
latent variable models [9]. It is proposed to address some of the problems associated
with LPP [19]. As in LPP, OLPP first constructs an adjacency matrix that contains
locality information. OLPP then computes a latent subspace, where its basis functions
are orthogonal. These orthogonal basis functions preserve the metric structure of latent
space. OLPP has been shown to perform better than LPP in several applications [9].

Gaussian Process (GP) latent variable models are probabilistic techniques for learn-
ing latent variable models from high dimensional input examples [16,23,25,38]. GP
latent variable models have been shown to be successful in a number of problems such
as image reconstruction and facial expression recognition [1,10,14,35].

GP latent variable models are generative techniques [25,33,38]. Similar to PCA,
these techniques are unsupervised [25]. GP latent variable models are useful in many
applications, such as data visualization and regression analysis. However, GP latent
variable models may not be suitable for classification applications. One possible solu-
tion is to introduce priors over latent variables to bias their positions in latent space
[38]. One potential problem associated with GP latent variable models require an infer-
ence process for a test example in order to estimate its position in latent space. This
separate inference process can complicate GP latent variable model computation, due
to increased computational complexity.

Techniques for combining PCA and LDA for dimensionality reduction have been
introduced in the literature [42,44]. The objective function is formulated as a linear
combination of the objectives of PCA and LDA in these techniques. In this work, we
aim to learn latent variable models with discriminant regularization. This formulation is
closely related to the maximum a posteriori estimation in a Gaussian framework, where
the negative log prior can be viewed as regularization (or penalty) [33,38].
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3 Latent Variable Models

In this work, we use x to represent the input, and use y to represent the output or target.
We let

D = {(xi, y)|i = 1, · · · , n}t (1)

be a set of n centered examples, where xi ∈ �q . The vector inputs are aggregated in
the n × q matrix X

X = [x1,x2, · · · ,xn]t, (2)

where t represents transpose. We denote the corresponding latent variables as h ∈ �d.
The vector latent variables are aggregated in the n × d matrix H

H = [h1,h2, · · · ,hn]t.

We note that d � q.
The input x and its latent variable h can be described in the following way

x = Fh + ε, (3)

where F is a q × d matrix of weights or parameters of the model, and ε represents the
error term. We assume that this error term follows a Gaussian distribution with zero
mean and uniform variance

p(ε) = N(0, β−1I),

where β is a constant. We further assume that the error term is independent and identi-
cally distributed (i.i.d.). The model (3) along with the Gaussian error term gives us the
following likelihood, conditional probability density of the input examples

p(x|h, F, β) = N(Fh, β−1I).

The above shows that X (2) follows a matrix variate normal distribution

p(X|H,F, β) =
n∏

i=1

p(xi|hi, F, β)

=
β

qn
2

(2π)
qn
2

exp(−1
2
tr(β(Xt − FHt)(Xt − FHt)t)). (4)

Here the underlying assumption is that input examples xi are independent and identi-
cally distributed. If we integrate out the latent variables H , we obtain the probabilistic
PCA solution for F [36].

An alternative approach is to integrate out F and optimize with respect to H to
obtain a solution for the latent variables. This dual approach has been studied in [25,38].
In this approach, fi, the ith row of F , is assumed to follow a Gaussian distribution with
zero mean and uniform variance

p(fi) = N(0, α−1I)
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where α is a constant. It follows that p(F ) is also Gaussian and given by

p(F ) =
q∏

i=1

p(fi) =
1
Cq

exp(−1
2
tr(αF tF ))

=
α

dq
2

(2π)
dq
2

exp(−1
2
tr(αF tF )). (5)

where Cq is a normalization factor. Combining (4) and (5) and integrating out F , we
obtain the marginalized likelihood of X

p(X|H, β) =
∫

p(X|H,F, β)p(F )dF

∝ 1
|K|q/2 exp(−1

2
tr(Σ−1XXt)), (6)

where
Σ = (α−1HHt + β−1I),

and |Σ| denotes the determinant of matrix Σ.
The above (6) shows that the likelihood of the input examples X is Gaussian, given

the latent variables H . The log likelihood of X is

L = −qn

2
ln(2π) − q

2
|Σ| − 1

2
tr(Σ−1XXt).

It is shown that optimization of the log likelihood respect to latent variables H results
in a solution that is equivalent to the PCA solution [25,36].

We note that it is possible to further constrain the latent variables H by introducing
priors over H . For example, if we introduce an uninformed prior on H , we obtain the
following log prior

ln p(H) = −1
2

n∑

i=1

ht
ihi.

This simple prior constrains the latent variables to be closer to the origin [38]. For clas-
sification problems, class labels can be incorporated into priors [14,35]. For example,
priors can be based on linear discriminant analysis [15]. If Σw and Σb represent the
sample between- and within-class matrices in the latent space, respectively, the LDA
based criterion J(H) = tr(Σ−1

w Σb) can be implemented. We use tr to represent the
matrix trace operator. This leads us to the following prior [38]

p(H) = C exp(−J−1).

One of the problems with the latent variable models discussed above is that to esti-
mate the latent position for an unseen test example, a separate inference process is
required. And as such, additional uncertainties can be introduced in the estimate with
increased computational complexity.
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4 Latent Variable Models with Discriminant Regularizers

In the previous section, we discussed a general technique for learning latent variable
models. In this section, we introduce an algorithm for learning latent variable mod-
els for classification problems without a separate process and increased computational
complexity.

As discussed in the previous section, the optimization of the likelihood (6) with
respect to latent variables H gives rise to the probabilistic PCA solution to the latent
variables H . Additional constraints can be placed on the latent variables H by intro-
ducing priors. The introduction of priors over latent variables p(H) results in the log
posterior (terms that the posterior depends on)

L =
q

2
ln |Σ| +

1
2
tr(Σ−1XXt) − ln p(H). (7)

In a non-Bayesian setting, the negative log prior − ln p(H) can often be regarded as
a penalty term [33,38]. This is also related to ridge regression [28] and weight decay
[39]. If the prior p(H) is discriminant, optimization of (7) produces a solution to the
latent variables Z that is both informative, as in PCA, and discriminant, as in LDA.
While the idea is appealing for many applications, an inference must be made for each
test example, which potentially introduces uncertainty and additional computational
complexity [25,38].

We address this problem by describing a simple algorithm for learning latent vari-
able models with discriminant regularization. The algorithm achieves the desired rep-
resentation balance shown in (7), without separate inference for test examples.

We begin with PCA. Recall that PCA computes linear projection P by optimizing

JPCA(P ) = tr(P tXXtP ), (8)

where XXt represents the sample covariance matrix, assuming that the examples are
centered (2). The resulting linear projection P has the following property that

n∑

i

‖xi − PP txi‖2

is minimum. That is, the latent representations of the examples X estimated from PCA
are optimal in terms of information loss.

We note that PCA is entirely unsupervised. For classification problems, we want to
leverage class label information to compute latent variable models. To do so, we explore
the idea behind the joint distribution of the latent variables (7), where the prior distribu-
tion over the latent variables imposes conditions on their positions in the resulting latent
space. As discussed in the previous section, the negative log prior can be simply inter-
preted as a penalty term, or regularization. Therefore, we can introduce a discriminant
regularization or penalty term in (8)

JPCAr
(P ) = tr(P tXXtP ) + λr(P ), (9)

where r(·) denotes a regularization term, and λ is a regularization parameter. In this
work, we examine two discriminant regularization schemes: Locality Preserving regu-
larizer and Linear Discriminant regularizer.
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4.1 Locality Preserving Regularizer

The locality preserving projection (LPP) is a technique introduced in [19]. The tech-
nique first constructs a graph of the input examples (2). LPP then computes a linear
projection from the graph that preserves the locality information.

Suppose that A is a n × n matrix, where the entry Aij (ith row and jth column) is
computed according to

Aij =
{

exp(−η‖xi − xj‖2) i �= j and l(xi) = l(xj)
0 otherwise.

(10)

In the above, xi denotes the ith training example, l(x) is the label of x, and η is a
parameter. That is,A represents the adjacency matrix of the input examples. Let p ∈ �q

such that hi = ptxi. Also, let

JLPP =
∑

i,j

(hi − hj)2Aij . (11)

As can be seen, when examples xi and xj that are in the same class are projected
far apart by p, they contribute to JLPP. On the other hand, JLPP completely ignores
examples that are in different classes. The locality preserving technique computes a
linear projection p by minimizing (11).

We rewrite the above objective (11) by simple algebraic manipulation

JLPP =
1
2

∑

i,j

(hi − hj)2Aij

=
1
2

∑

i,j

(ptxi − ptxj)2Aij

= ptXtLXp, (12)

where L = Λ − A is the graph Laplacian, and Λ is a diagonal matrix with diagonal
entries λii =

∑
j Aij . Often Λii can be regarded as the volume of hi. Thus, LPP aims

to solve the following constraint optimization problem

min
p

ptXtLXp (13)

s.t. ptXtΛXp = 1

Therefore, the optimal p can be obtained by solving the following generalized eigen-
value problem

XtLXp = λXtΛXp, (14)

where λ denotes the eigenvalue corresponding to p. In many applications, LPP has been
demonstrated to be effective [9,19].

The above discussion naturally suggests that locality preserving can be exploited
as a regularizer to the PCA objective (8). Therefore, the proposed PCA with locality
preserving regularization becomes

J(p) = tr(ptXXtp) + λtr(pt(XtLX)−1(XtΛX)p). (15)



Learning Latent Variable Models with Discriminant Regularization 385

It follows that the optimal projection p can be computed by maximizing

JPCA−LPP = tr(XXt + λ((XtLX)−1(XtΛX)). (16)

The resulting linear projection algorithm is denoted as P-Lpp. It is interesting to note
that we can interpret (16) as regularized PCA, where locality preserving is the regu-
larizer. We can also interpret (16) as regularized locality preserving projection, where
PCA is the regularizer.

4.2 Linear Discriminant Regularizer

In this section, we consider an alternate regularizer-linear discriminant analysis (LDA)
[15]. Recall that LDA finds a linear projection p by optimizing

J(p) = tr((ptΣwp)−1(ptΣbp)), (17)

where

Σw =
C∑

c=1

nc∑

i=1,xi∈c

(xi − mc)(xi − mc)t (18)

and

Σb =
C∑

c=1

(mc − m)(mc − m)t (19)

are the within and between class matrices,m is the overall mean of the input examples,
and mc denotes the mean of class c. It turns out that maximizing (17) is equivalent to
maximizing

JLDA = tr(Σ−1
w Σb).

This allows us to propose PCA (8) with linear discriminant regularization

JIP−LDA = tr(XXt + λΣ−1
w Σb). (20)

We call the resulting linear projection algorithm P-Lda. Note that similar to P-Lpp (16),
we can interpret (20) as regularized PCA, where the regularizer is LDA. We can also
view (20) as regularized LDA. In this case, PCA is the regularizer.

5 Empirical Evaluation

In this section, we provide empirical evaluation using a number of problems that vali-
dates performance of the proposed technique. We also include several competing tech-
niques for comparison.
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5.1 Competing Methods

The following competing methods are evaluated in our empirical evaluation.

1. P-Lpp–Regularized PCA, where locality preserving is the regularizer (Eq. 16).
2. P-Lda–Regularized PCA, where LDA is the regularizer (Eq. 20).
3. PCA–Laten variable model that maximizes (Eq. 8)

J(p) = tr(ptXXtp).

4. LDA–Latent variable model that maximizes

JLDA = tr(Σ−1
w Σb),

where Σw and Σb are given by (18) and (19), respectively.
5. OLPP–Orthogonal Locality Preserving Projection (OLPP) proposed in [9].

We state that OLPP is developed to address some of the problems associated with LPP
(13). It has been shown that the eigenvectors resulting from optimizing (14) may not
be orthogonal. OLPP addresses this problem by projecting the input examples onto the
PCA subspace, from which it computes the solution to (14) so that orthogonality can be
preserved. OLPP has been shown to perform better than LPP in a number of problems
[9]. Therefore, we compare the proposed techniques P-Lpp and P-Lda against OLPP in
the experiments.

5.2 Data Sets

Several data sets are used to demonstrate the generalization performance by each of the
competing techniques. They are described below.

Fig. 1. Sample AR-face images, adapted from [30].

1. AR-Face Image Data (ARFace). This data set comes from the AR-face database
[26]. A detailed description of the AR-face image data set is provided in [26].
For this data set, we randomly selected 50 different subjects (25 males and 25
females) from this AR-face database. All the face images used here were normal-
ized to 85×60 pixel arrays of intensity values. Figure 1 shows some sample images
from the AR-face data set. In the AR-face experiment we follow the setup of the
Small Training Data set experiment detailed in [26]. When there are insufficient
training examples per class, PCA has been shown to provide better performance
than LDA [26]. Our goal here is to examine how well the proposed techniques
P-Lpp and P-Lda perform against PCA in such a setting.
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For this example, we selected the first seven images from each subject. This gives
us a total of 350 face images. To emphasize the problems often associated with
insufficient training examples, two instances from each subject were chosen as
training examples, and the remaining five images were used as test examples. This
gives rise to 21 different ways to split face images into training and testing. The
results averaged over 21 runs are reported. Note that, as in [26], we apply PCA to
transform the original face images of 85×60 pixels into vectors of 350 dimensions.
These vectors are input to all the competing techniques examined here.

2. MNIST Data (MNIST). This dataset consists of handwritten digit images from
the US National Institute of Standards and Technology (NIST)1. Each digit image
is a array of 28 by 28 pixels of intensity values. Therefore, each example is a vector
of 784 intensity values. 100 examples were randomly selected from each digit class
in this experiment. Thus, The MNIST dataset has a total of 1000 examples. Sample
MNIST digit images are shown in Fig. 2.
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Fig. 2. Sample MNIST digit images.

3. Cat and Dog data (CatDog). The CatDog dataset consists of two hundred cat and
dog face images. Each face image is an array of 64× 64 pixels. These images have
been normalized by aligning the eyes. Figure 3 shows some sample cat and dog
face images.

4. Multilingual Text (MText). The MText dataset is a text data set consisting of
multiple languages [2]. The data set is a collection of Reuters’ RCV1 and RCV2.
The text documents have six categories: (1) Economics, (2) Equity Markets,

1 yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/
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Fig. 3. Sample images of the cat and dog face data, adapted from [30].

(3) Government Social, (4) Corporate/Industrial, (5) Performance, and (6) Gov-
ernment Finance. Each English document in the dataset has been translated into
French, German, Italian and Spanish, using PORTAGE [37]. For this experiment,
only English texts are used. Also, each text is described by a bag of words model,
resulting in 21531 dimensions. 100 examples from each category were randomly
selected for this experiment. Thus, the resulting dataset has a total of 600 examples
described by 21531 features.

5. Iris Data (Iris). The Iris dataset is part of a large multimodal biometric data collec-
tion created by researchers at West Virginia University (WVU) [11]. The collection
is available upon request. The Iris dataset consists of iris images from people of dif-
ferent age, gender, and ethnicity. A detailed description can be found in [11]. The
Iris dataset is challenging because the quality of these images are low due to blur,
occlusion, and noise. Figure 4 shows some sample iris images in the data set.
Each iris image is segmented into a 25 × 240 template [32]. It has been shown that
Gabor features are suitable for representing iris images [13]. Therefore, each image
template is convolved with a log-Gabor filter at a single scale to obtain a vector of
6000 features. For this experiment, a pair of subjects was randomly selected. One
subject has 27 examples, and the other subject has 36 examples, resulting in a total
of 63 examples described by 6000 features.

Fig. 4. Sample Iris images, adapted from [30].

6. Fingerprint Data (Finger). The Fingerprint dataset consists of fingerprint images
of people of different age, gender, and ethnicity. Similar to the Iris dataset, it is part
of a large multimodal biometric data collection created by researchers atWVU [11].
The fingerprint dataset is difficult because many examples are of low quality, as a
result of blur, occlusion, and noise. Figure 5 shows sample fingerprint images used
in this experiment.
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Fig. 5. Sample fingerprint images, adapted from [30].

This dataset has a total of 124 fingerimages from randomly chosen pair of subjects.
One of the subjects has 61 instances, and the other has 63. Ridge and bifurcation
features are computed to represent the fingerprint images, using code that is publi-
cally available (sites.google.com/site/athisnarayanan/). As a result, each fingerprint
image is represented by a feature vector of 7241 dimensions.

7. Feret Face Data (FeretFace). The FERET face image dataset has 400 facial
images. There are 50 subjects of both males and females, selected randomly from
the Feret face database [31]. There are 8 examples per subject. The images vary
in terms of facial expressions and illumination. Each image has 150 × 130 pixels,
resulting in an image vector of 19500 intensity values. Figure 6 shows the sample
images used in this experiment.

Fig. 6. Normalized Feret sample images, adapted from [30].

8. Cooke City Hyperspectral Data (CookeCity). The Cooke City data set con-
sists of a hyperspectral image of Cooke City, Montana, a library of target spec-
tral reflectances, and target (class) location information in the image (or regions
of interest). Figure 7 shows a false color representation of the Cooke city scene.
The self-test set of the Cooke City data set contains the ground truth information.
Therefore, we only used the self-test set in this experiment. The Cooke city hyper-
spectral image contains 7 target classes, and the number of instances in each class
varies from 9 to 34. Each instance is represented by 126 bands, resulting in a vec-
tor of 126 dimensions. The detailed information about the Cooke city hyperspectral
image is provided in dirsapps.cis.rit.edu/blindtest/.

9. Pavia University Hyperspectral Data(Pavia). The Pavia University hyperspectral
image data was captured by the ROSIS sensor during a flight over the Pavia Univer-
sity in northern Italy. There are 103 spectral bands, and the number of pixels is 610
by 610. The image has a resolution of 1.3m. There are 9 target classes: Asphalt,
Meadows, Gravel, Trees, Painted metal sheets, Bare soil, Bitumen, Self-Blocking

http://dirsapps.cis.rit.edu/blindtest/
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Fig. 7. False color representation of Cooke City.

bricks, and Shadows. Also, the data set has 42,776 examples, and the number of
examples per target class varies from 947 to 18,649. Figure 8 shows a sample band
image of the scene and the corresponding ground truth map.

10. Indian Pines Hyperspectral Data (Pines). This data set contains a hyperspec-
tral image, covering the Indian Pines test site in north-western Indiana. The image
is acquired by the AVIRIS sensor, and consists of 145 × 145 pixels. There are
224 spectral reflectance bands. In this experiment, there are only 200 bands
after removing bands that cover the water absorption region: [104–108], [150–
163], and 220. The data set has 10,249 examples and 16 target classes, which
are not all mutually exclusive: Alfalfa, Corn-notill, Corn-mintill, Corn, Grass-
pasture, Grass-trees, Grass-pasture-mowed, Hay-windrowed, Oats, Soybean-notill,
Soybean-mintill, Soybean-clean, Wheat, Woods, Buildings-Grass-Trees-Drives,
and Stone-Steel-Towers. And the number of examples per target class varies from
20 to 2,455. Figure 9 shows the image and the corresponding ground truth map.

Fig. 8. Sample band representation of Pavia University scene in Northern Italy and the corre-
sponding ground truth map.
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Fig. 9. Sample band representation of the Indian Pines test site and the ground truth map.

Table 1. Average error rates obtained by the competing methods on the 10 diverse data sets.

PCA P-Lpp P-Lda LDA OLPP

ARFace 0.307 0.245 0.245 0.394 0.314

MNIST 0.143 0.152 0.143 0.402 0.148

CatDog 0.492 0.216 0.210 0.457 0.286

MText 0.405 0.217 0.232 0.365 0.305

Iris 0.480 0.133 0.133 0.141 0.136

Finger 0.466 0.378 0.387 0.444 0.467

FeretFace 0.088 0.042 0.042 0.092 0.098

CookeCity 0.155 0.045 0.045 0.121 0.164

Pavia 0.224 0.248 0.180 0.220 0.214

Pines 0.408 0.395 0.436 0.405 0.400

Ave 0.317 0.207 0.205 0.304 0.253

5.3 Empirical Results

In this section, we report the empirical performance by each method. We have normal-
ized all the training data to have zero mean and unit variance along each feature. We
have also normalized all the test data using the corresponding training mean and vari-
ance. Since we want to highlight the techniques for learning latent variable models, we
prefer simple methods for classification in latent space. Thus, we used the one nearest
neighbor rule for classification in the resulting latent space. Note that all the procedu-
ral parameters such as the regularization constant λ and the kernel parameter η in the
graph Laplacian (13) were selected through cross validation. Table 1 shows the 10-fold
crossed validated error rates achieved by the five competing methods on the 10 data sets
described above.
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Fig. 10. Average error rates obtained by P-Lpp, P-Lda, LDA, OLPP, and PCA as a function of
subspace dimensionality on the AR face data set (adapted from [30]).
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Fig. 11. Average error rates obtained by P-Lpp, P-Lda, LDA, OLPP, and PCA as a function of
subspace dimensionality on the Feret face data.

The table shows that on average both P-Lpp and P-Lda performed well, compared to
the competing methods for learning latent variable models. The table also shows that P-
Lpp and P-Lda performed similarly on these datasets. The results show that performing
classification in a latent space that is both information preserving and discriminant gives
rise to better generalization than in either latent space alone.
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Figure 10 shows the average error rates achieved by the competing techniques over
21 runs on the AR face dataset as a function of increasing dimensions. The plots show
clearly that on average both P-Lpp and P-Lda performed better than PCA across the 49
subspaces, and consistently performed better than the remaining techniques. Also, the
average error rates over the 21 runs in a subspace with 49 dimensions are shown in the
first row in Table 1.

Figures 11, 12, 13, and 14 plot the 10-fold error rates computed by the competing
methods on the Feret face, the Cooke City, Pavia University, and Indian Pines datasets
with increasing subspace dimensionality, respectively. For the Feret face data, both P-
Lpp and P-Lda consistently outperformed the competing methods across the 49 sub-
spaces. P-Lda achieved consistently better performance in the hyperspectral datasets.

We can observe that overall the performance of P-Lpp correlates well with that of
OLPP on the Indian Pines (Fig. 14). Likewise, the performance of P-Lda in general cor-
relates well with that of LDA on the Cooke City and Pavia University data (Figs. 12
and 13). It is interesting to note that PCA performed competitively in these experi-
ments. By placing constraints on latent variable positions, the proposed technique for
learning latent variable models with discriminant regularization seems to provide better
generalization.

Fig. 12. Average error rates obtained by P-Lpp, P-Lda, LDA, OLPP, and PCA as a function of
subspace dimensionality on the Cooke City hyperspectral data.

5.4 Performance Robustness

The empirical results show that P-Lpp and P-Lda achieved overall the best performance
across the 10 diverse data sets, followed by OLPP. We ask the question of performance
robustness. It is the question of how well a particular method m performs in problems
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Fig. 13. Average error rates obtained by P-Lpp, P-Lda, LDA, OLPP, and PCA as a function of
subspace dimensionality on the Pavia University hyperspectral data.

Fig. 14. Average error rates obtained by P-Lpp, P-Lda, LDA, OLPP, and PCA as a function of
subspace dimensionality on the Indian Pines hyperspectral data.

that are most favorable to other methods. One possible measure of performance robust-
ness can be described by computing the ratio rm of the error rate errm by method m
to the smallest error rate over all methods in a particular problem. That is, we compute
the following

rm = errm/ min
1≤k≤5

errk. (21)
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According to this measure, the best method m∗ for the problem has rm∗ = 1. And
for all other methods other than the best, their rm values should be greater than one.
Clearly, the larger the value of rm, the worse the performance of method m is in relation
to the best method for the problem. Therefore, the distribution of the rm values for each
method m over all the problems provides a good measurement for its performance
robustness.

The distributions of the rm values for each method over the 10 data sets are shown
in Fig. 15. The boxed areas show the lower and upper quartiles of the distribution. They
are separated by the median (red horizontal line). The entire range of values for each
distribution is represented by the outer vertical lines.

Figure 15 shows that the performance of P-Lda was most robust over the 10 data
sets. Tts error rates were the best (median = 1.0) in 7/10 of the data sets. It was no
worse than 10.0% higher than the best error rate in the worst case. The next is P-Lpp.
Its error rates were the best (median = 1.0) in 7/10 of the data sets. In 2/10 of the data
sets, its error rates were no worse than 6% higher than the best error rate. Also, P-Lpp
was no worse than 38.0% in the worst case.

Figure 15 also shows that PCA’s worst error rate was 260.9% higher than the best
error rate, which was worse than LDA’s worst error rate (181.1% higher than the best
error rate).

On the other hand, the median rPCA value for PCA was 1.56. In contrast, the median
rLDA value for LDA was 1.645, which was worse than that of PCA. PCA achieved the
best error rate on one of the data sets. LDA did not. Overall, PCA and LDA performed
similarly, in terms of the distributions of the values of rPCA and rLDA.

PCA P-Lpp P-Lda LDA OLPP

1

1.5

2

2.5

3

3.5

Fig. 15. Distributions of rm (robustness) values for PCA, P-Lpp, P-Lda, LDA, and OLPP over
the 10 data sets. (Color figure online)
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6 Conclusion

A technique for learning latent variable models with discriminant regularization has
been presented. By incorporating discriminant regularization into PCA, the proposed
technique is capable of learning latent variable models that achieve better generaliza-
tion. An empirical evaluation of the proposed technique against competing techniques
using a variety of examples has been provided. The empirical results show that the
proposed technique is competitive in the examples that have been experimented with.
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