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Abstract. A distributed system is a paradigm indispensable to the current world
due to countless requests with every passing second. In distributed systems, relia-
bility is of extreme importance. In this regard, data replication plays a vital role in
making systems more reliable by increasing the availability of the access opera-
tions at a lower cost. However, availability and cost both cannot be achieved at the
same time. Certainly, there are compromises between these objectives, thereby
making different application-scenarios that may not be easily satisfied by con-
temporary strategies. This requires designing new strategies and the question still
stands which strategy is the best for a given scenario or application class assum-
ing a certain workload, its distribution across a network, availability of the indi-
vidual replicas, and cost of the access operations. For this, the research exploits
the heterogeneity between the strategies to generate new data replication strate-
gies automatically through genetic programming. It uses and extends this genetic
programming-based automatic mechanism to subsequently demonstrate its use-
fulness by reducing the cost significantly while not comprising too much on the
availabilities of the access operations. It generates replication strategies there are
innovative and such combinations have not been explored yet.

Keywords: Distributed systems · Fault tolerance · Data replication · Quorum
protocols · Operation availability · Operation cost · Voting structures ·
Optimization · Machine learning · Evolutionary strategies · Genetic
programming

1 Introduction

To provide highly available data access operations is a widely discussed prevalent prob-
lem in computer science. Relying on a single replica significantly confines the avail-
ability of the data. Therefore, the increase in the number of replicas to store the data
objects is inevitable, which, when smartly applied, increases the availability of the data
object and makes it more fault-tolerant. Because now, it can be accessed by approach-
ing other replicas, too. But then the challenge comes up of managing those replicas
and maintain consistency so that replicas always yield correct values [7]. The goal of
the operations is also to behave in a replicated system the same as they would do in a
non-replicated system. This is known as one-copy serializability (1SR) [1]. As for this,
these replicas are managed by protocols known as data replication strategies (DRSs).
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These strategies impose a threshold of a minimal number of replicas known as read
quorum (rq) and write quorum (wq) to be accessed to perform the preferred access
operations. These access operations are either a read or a write operation. The decisions
to choose suitable DRSs are trade-offs between choosing various quality metrics such
as load, capacity, availability [2], scalability, and cost [3]. The availabilities of read and
write operations are optimally point symmetrical to each other [4]. For instance, an
increased availability for a write operation would compromise the availability of a read
operation to a certain extent and vice versa. It is more like the same case with the cost of
the read and write operations, too. The questions arise that what are those compromises,
to what extent particular values can be compromised, and at the expense of what? These
compromises could be highly application-specific and comprised of many scenarios,
which will be discussed further in Sect. 2. This research intends to provide application-
optimized DRSs to fulfill such specified scenarios. In this regard, this research is an
extension of our research [5,7] particularly to demonstrate new instances by tweaking
the algorithm slightly. It generates replication strategies there are innovative and such
combinations have not been explored yet, which could significantly reduce the cost.
This automatic mechanism evolves strategies as computer programs over many gener-
ations of evolution and also provides desirable trade-offs between the availability and
cost of the access operations while restricting total nodes to the desirable limit. This
can be visualized by a 3D representation, i.e., given in Fig. 17, where trade-offs are
overt and relevant strategies can be easily picked at run-time. In this regard, details on a
multi-objective optimization approach to data replication in distributed systems can be
found here [6].

The paper is written as follows. Section 2 specifies and discusses the problem state-
ment. Section 3 discusses the state-of-the-art DRSs and other contemporary approaches
to address the problem and their limitations. Section 4 defines the fault model, describes
the adopted methodology to approach the problem, and argues about the reason
for picking this approach over others. Section 5 states the implementation aspects
of the research. Section 6 presents the results and their comparisons, followed by a
conclusion.

2 Problem Statement

The problem is illustrated by a triangle given in Fig. 1 where the consistency part is
static because 1SR is maintained all the time. This leaves us room to fully operate
around the availability and cost of the access operations (provided a threshold of the
total number of replicas and the probability of individual replicas). It can be seen that
there are many scenarios between the availability and cost of the access operations in
a distributed paradigm. There exist many contemporary strategies to manage those dis-
tributed replicas, but the question still stands which strategy is best for a given scenario
or application class. Considering the fact that not every strategy fulfills each scenario,
leaves many scenarios unaddressed, for which no optimal strategy exists. Hence, there
is no best solution (in terms of a global optima), but solutions that serve a particular
purpose (i.e., local optima). Our research focuses on the automatic identification and
design of such an optimized data replication strategy.
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Fig. 1. Data replication scenarios [7].

3 Related Work

DRSs in general are categorized into two major classes: unstructured and structured
DRSs. Unstructured DRSs, for instance, the Majority Consensus Strategy [9] use com-
binatorics and minimum quorum cardinalities to specify a quorum system. TheMajority
Consensus Strategy requires �n/2� replicas for the read and �(n+1)/2� for the write quo-
rum to execute any operation in a system comprising n replicas. This threshold-based
quorum system allows all the replicas an equal opportunity to be in a read or write quo-
rum. However, it succumbs to high operational cost and scalability issues because of
linearly increasing quorum cardinalities. This is not the case in structured replication
strategies where structural properties and patterns are used to specify the quorum sys-
tem. For instance, the Grid Protocol [13] imposes a logical rectangular i * j grid struc-
ture where i indicates column and j rows for a system comprised of i * j = n replicas. A
read quorum consists of replicas from each column while a write quorum constitutes all
the replicas from a column along with one replica from each column to satisfy the quo-
rum system intersection property. There exist many other contemporary strategies such
as Read-One-Write-All [8], the Tree Quorum Protocol (TQP) [10], the Weighted Voting
Strategy [11], the Hierarchical Quorum Consensus [12], the Triangular Lattice Protocol
(TLP) [14], etc., but the state-of-the-art has not much focused on a hybrid approach to
explore new strategies.

There have been only a few limited efforts made towards hybrid strategies because
of its cumbersome nature. So, there are some attempts, i.e., [5,17–19] on hybrid
approaches, which manually design DRSs but lack automation. Moreover, there exist
only a few papers, i.e., [15,16], etc., on hybrid approaches that primarily attempt to
combine Tree Quorum Protocols with Grid Protocols, but they do not impose any uni-
fied structure on the nodes, which greatly limits the operability of the approach. Because
of the diverse nature of topologies, there is less room for a hybrid approach to work
effectively as it cannot incorporate the varied strategies freely [5]. As a consequence,
many scenarios could be left unaddressed. Whereas, to address this issue, if a hybrid
approach is applied to such a diverse nature of topologies, the problem easily goes out
of hand. For this, this paper is an extension of our current [7] overall line of research. As
it is ongoing research, it uses, extends, and optimizes the same foundational mechanism
and follows the same research methodology to derive new results.
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4 Methodology

Figure 2 shows the adopted methodology in a simplified manner. It starts with replica-
tion strategies being injected into a database repository and a scenario. Both, the nature
of the repository and the scenario will be explained in detail in this section. The anal-
ysis and simulations (shown later in this paper) are performed on the repository until
the desired solution is met, which then is inserted back to the repository for future use.
Here, the question also arises of selecting the appropriate machine learning and simula-
tion techniques for the identification and design of optimized data replication strategies.
Let us dissect all these components one by one in the following.

Fig. 2.Methodology [7].

4.1 Fault Model

Prior to discussing the components, we state the fault model and other assumptions first.
The access operations are either read or write and are performed only when the proper
quorum is acquired. The replicas are supposed to manifest a fail-silent behavior. All
failures are assumed to be independent of each other. The network is supposed to be
fully connected without communication failures. Only nodes (machines) with replicas
can fail and the probability that a node has failed at any particular point in time is
(1− p). p gives the probability that a node is available at an arbitrary point in time. The
strategies are supposed to be version-based to avoid additional time synchronization
issues, i.e., a replica does not only consist of some “payload” data but also a version
number. A replica with the highest version number has the up-to-date payload.

4.2 Voting Structures

To address the mentioned topological and diversity issues between DRSs, a unified
representation of these strategies by a concept like General Structured Voting [20] is
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required for the simulation and machine learning approaches to be applied over it.
Expert-based manual designs of optimized DRSs using the concept of voting struc-
tures have been presented in [18,19]. Figure 3 represents a quorum system by a directed
acyclic graph (DAG) named a voting structure.

Fig. 3. Example of a voting structure [21].

A voting structure is traversed recursively by an algorithm to derive the quorums
for respective access operations at run time independent of the varied topologies of the
strategies. The nodes of a voting structure are either physical nodes representing actual
replicas or virtual nodes that constitute the groupings of physical and virtual nodes. The
virtual nodes are labeled Vi where i = 1, 2, . . . while the physical nodes are labeled pj
where 1 ≤ j ≤ n and n represents the total number of replicas of a system. Irrespective
of being a physical or virtual node, every node is endowed with votes comprised of
a natural number (top right corner), which could also be comprehended as the weigh-
tage of that node. Furthermore, each node is equipped with a pair of minimal quorums
(called “minimal votes” in the figure) to collect from its child nodes to build the read
and write quorums. The minimal quorums for each node to gather per operation has to
be less than or equal to the sum of the votes of its children. Some replication strategies,
i.e., the Tree Quorum Protocol imposes a partial order on the quorums by which to use
quorums for operation execution. The specification of such an ordering allows certain
quorums to be used prior to others. In such cases, the directed edges of voting structures
can be marked with operation-specific priorities imposing such orderings. An edge pri-
ority of 1 annotates the highest while the symbol ∞ represents the lowest priority. This
voting structure is traversed by the recursive algorithm to derive respective quorums. It
starts from the root node and queries as many of its child nodes as specified in the min-
imal quorums to orchestrate the quorums of physical replicas for the respective access
operations. On each level, if the voting structure has a total number of votes V, then the
quorums for intersection abide by the following rules in general:

rq + wq > V (to avoid read − write conflict) (1)

wq > V/2 (to avoid write − write conflict) (2)
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Here, rq (wq) is a number representing the minimal read (write) quorum. For
instance, the voting structure shown in Fig. 3 produces the following read (RQ) and
write quorum sets (WQ):

RQ = {{p1}, {p2, p3}, {p2, p4}, {p3, p4)}
WQ = {{p1, p2, p3}, {p1, p2, p4}, {p1, p3, p4}}

4.3 Scenario Parameters

A scenario for DRSs consists of constraints that determine the fitness of a strategy holis-
tically to judge the goodness of a solution. These constraints may vary among different
applications depending upon their nature, requirements, and resources. It comprises the
following parameters [7].

Consistency of Operations. There exists a variety of data consistency models for
DRSs ranging from strict data consistency to relatively weaker notions. As already
stated, the consistency model opted for our approach is static and strictly meets the
1SR property. The 1SR property is maintained in a DRS when 1) every read quorum
intersects every write quorum, 2) all write quorums intersect with each other, 3) replicas
can be locked exclusively for write operations and locked shared for read operations.

Number of Replicas. There is a threshold imposed on the total number of replicas n
that for any strategy, n cannot exceed the specified threshold value ε. This is because it
certainly costs to create new nodes to host replicas.

n, ε ∈ N
+

∧n ≤ ε
(3)

Availability of Access Operations. The probability that the data access operations are
available for a DRS depends on the characteristics of the strategy, the probability of
individual replicas p, and the number of replicas n. It is defined by Ar(p, n) and Aw(p,
n) respectively, where Ar(p, n), Aw(p, n) ∈ [0,1]. For some DRSs, there exist closed
formulas to calculate the availability as well as the costs. However, generally, the equa-
tions given below are used to analyze the data access operations’ availability of a DRS.
All the RQs and WQs are derived from a DRS to calculate Ar(p, n) and Aw(p, n) for
given p and n values. Equations 4 and 5 calculate the read and write operation avail-
abilities respectively. For this, they rely on a so-called set of all possible read (write)
quorums RQS (WQS). In the scope of the example given in Fig. 3, RQS equals (RQ
∪ {{p1, p2, p3, p4}}) and WQS equals (WQ ∪ {{p1, p2, p3, p4}}). The equations take
the sum of the probability of all elements of RQS or WQS being available for a given
probability p of individual replicas.

Ar (p, n) =
∑

∀q∈RQS

p|q| (1 − p)n−|q| (4)
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Aw (p, n) =
∑

∀q∈WQS

p|q| (1 − p)n−|q| (5)

These availabilities are probabilities and constraints restrict them to be within the
specified thresholds α, β.

Ar, Aw, α, β ∈ [0, 1]
∧Ar ≥ α

∧Aw ≥ β

(6)

Cost of Access Operations. The average minimal costs for the data access operations
are represented by Cr(p, n) and Cw(p, n) respectively. The read Cr(p, n) and write
Cw(p, n) costs reckon the average minimal number of replicas out of the total number
of replicas n, which are mandatory to perform an operation for a given probability of
individual replicas p. This cost is calculated by taking the sum of the minimum number
of replicas minRQ (minWQ) obligatory to form a read (write) quorum for each replica
set in RQS (WQS) with the probability of the replica set appearing. Furthermore, the
resulted sum has to be divided by Ar(p, n) or Aw(p, n) depending upon the particular
access operation.

Cr (p, n) =

∑
∀q∈RQS p|q| (1 − p)n−|q| ∗ minRQ(q)

Ar (p, n)
(7)

Cw (p, n) =

∑
∀q∈WQS p|q| (1 − p)n−|q| ∗ minWQ(q)

Aw (p, n)
(8)

These costs are real positive numbers and constraints restrict them to be within the
specified thresholds γ, δ.

Cr, Cw, γ, δ ∈ R
+

∧Cr ≤ γ

∧Cw ≤ δ

(9)

Fitness Weightage. We use a so-called fitness weightage (fw) that suggests a scenario
to be biased towards either cost or availability (or even being neutral), to be able to
convert a multi-objective into a single objective problem. This makes the optimization
problem somewhat easier to solve.

fw ∈ [0, 1] (10)

Probability of Individual Replicas. There is a subtle difference between the avail-
ability of access operations and the availability of individual replicas p. p refers to
the probability by which the replicas are available, which means the probability that
a replica has failed at any particular point in time is (1− p) while the user performs the
operations with access operations’ probability. In a scenario, we restrict p to be in the
interval between pmin ≤ p ≤ pmax.

pmin, p, pmax ∈ [0, 1]
∧ pmin ≤ p ≤ pmax

(11)
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4.4 Database Repository

Figure 4 shows the data replication strategies Grid Protocol (left) and Triangular Lattice
Protocol (right) being represented in a unified representation of a voting structure each.
These voting strategies are stored in a scalable database repository in the form of JSON
documents and can be queried upon any desirable criteria.

Fig. 4. Voting structures as DAGs representing DRSs [7].

4.5 Genetic Programming

The research proposes genetic programming (GP) [22,23] as a subset of machine learn-
ing to automatically identify or design application-optimized DRSs. The major dif-
ference between GP and other genetic variants of machine learning is the represen-
tation. GP is used to evolve computer programs. It consists of an encoding scheme,
random crossover, mutation, a fitness function, and multiple generations of evolution to
solve the specified task on its termination condition. The encoding scheme consists of a
genotype (coding space) carrying an underlying set of traits and a phenotype (solution
space), which is the behavioral expression of this genotype in a specific environment.
Hence, the question arises which encoding scheme should be used since poor repre-
sentations may lead to poor results. The crossover [24] operator mixes up the genetic
material of parents in anticipation of forming a better offspring. It splits up the genome
of two existing solutions at an arbitrary point and swaps them to create the offspring
solutions inheriting properties from both of the parent solutions. The mutation opera-
tor changes the solution randomly but slightly, i.e., by flipping one or more bits from
the previous offspring to generate a new altered child solution. In the pursuit of a solu-
tion, the questions of crossover and mutation types as well as points are also thought-
provoking to address. Moreover, the population size also matters because a very small
size implies a few possibilities of executing the crossovers. Therefore, only a fraction
of the search space can be explored. Alternatively, a very large size may slow down the
genetic approach. Although, it is highly problem-specific but very large populations do
not solve the problem faster than moderate-sized populations. Figure 5 illustrates the
problem in the context of genetic programming where we start from a scenario and an
accordingly initial population. The initial population is analyzed based on its fitness to
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the scenario in order to choose better strategies to perform crossover and sometimes
also mutation in anticipation of a constant evolutionary trajectory until a solution is
found.

Fig. 5. Genetic programming [7].

5 Implementation

Having discussed the methodology, terminologies, and semantics, next we examine the
implementation aspect comprising the parameters, functions, and the algorithm itself
in detail. Once the scenario is specified to find a suitable DRS to fulfill it, the system
parameters are set for the algorithm to run.

5.1 Mu, μ, and Lambda, λ

Having provided the repository to select the respective DRSs, the μ and λ values are
also set as system parameters for the algorithm to start. μ is the restriction on the number
of parents that are used to form the next generation and λ is the restraint on the number
of offspring strategies generated using μ number of parent DRSs.
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5.2 Crossover

There are various ways in which the DRSs can be combined and the resulting hybrid
strategy will certainly exhibit different properties than the parents. The virtual nodes of
two parent strategies are swapped to form new offspring strategies. Additionally, there
are crossover points in every DRS represented by a Boolean variable which allows the
crossover to be performed only on those points and in such a way that it maintains the
DRSs’ 1SR property throughout the process. While performing crossovers, the algo-
rithm also restricts the number of replicas not to grow beyond a certain threshold ε
specified in the scenario.

5.3 Mutation

The algorithm also performs mutation on the DRSs with the probability specified in the
system parameters. This mutation modifies the votes of the strategies allowing some
replicas to be more important in the weightage than other replicas. Once the votes are
changed, the quorum also needs to be updated accordingly under the conditions (1)
and (2) to uphold the 1SR property. In addition, the algorithm identifies the mutation
points by a Boolean variable to avoid the DRS to be inconsistent and thereby, again,
maintaining 1SR all the time.

5.4 Algorithm

Having specified a scenario and given it to the program, scenarioFitness is calculated.
μ and λ are defined along with mutation probability. The list μList contains parent
DRSs, the list λList comprises offspring DRSs, whereas the list initPopList consists of
an initial population of DRSs. The Boolean variable isFit determines whether a strategy
has achieved the expected level of fitness. The genetic program loops through all the
passed on DRSs, calculates the fitness of every individual strategy, and selects the μ
best strategies to the μList, in case, there is no satisfactory solution found in the initial
population. This λList is then sent to the while loop to select the DRSs randomly from
it (or from the initial population) and perform the crossovers and mutations to create λ
offspring strategies. The use of the initial population here is for not letting the existing
solutions vanish away in the next generations as the algorithm proceeds. The λList
constitutes newly created strategies that are evaluated again to check if they satisfy
the standard criteria. If the criteria are met, then the relevant newly generated optimized
strategy is stored in the repository, the while loop terminates and so does the program. If
not, it selects the μ best DRSs to the μList from (μList + λList) for the next generation.
This process continues until a suitable strategy is found.

6 Experiments and Results

Figure 6 gives a relatively simple example of a hybrid DRS generated by the algorithm,
which consists of 11 replicas. It can be seen that although the DRS is not very complex
and maintains a tree-like structure rather than an acyclic one, yet it is so powerful and
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Algorithm 1.
1 Specify a scenario;
2 Specify μ and λ;
3 Specify mutationProb;
4 Specify initPopListProb;
5 Define rand;
6 Initialize initPopList;
7 Initialize μList;
8 Initialize λList;
9 Double scenarioFitness = 0.0;

10 Boolean isFit = false;
11 Generate initial population of DRSs to the repository;
12 Retrieve, parse & store the generated DRSs to initPopList;
13 geneticProgrammingFunc () {
14 scenarioFitness = calculateF itness(scenario);
15 Loop through initPopList
16 Calculate fitness;
17 if (fitness ≥ scenarioFitness) {
18 isFit = true;
19 return;
20 }
21 END
22 Choose μ best DRSs to the μList;
23 Do{
24 Empty λList;
25 Loop to λ
26 Select randomly DRS1 from μList;
27 Select randomly DRS2 from (μList || initPopList);
28 Perform crossover1 of DRS1, DRS2;
29 Generate offspring DRSs;
30 if (rand(0,1) ≤ mutationProb) {
31 Perform mutation on the offspring;
32 }
33 Calculate fitness;
34 if (fitness ≥ scenarioFitness){
35 isFit = true;
36 Store offspring DRS into the repository;
37 }
38 Add offspring DRSs to the λList;
39 END
40 Select μ best DRSs to the μList from (μList + λList) for next generation;
41 }
42 While (! isFit);
43 }
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optimized in terms of its availability and cost that it is competing with the Majority
Consensus Strategy (MCS), which is believed to be the best in terms of its availability
of write access operations. When compared, the hybrid DRS in terms of its availability
is so close to MCS. It is almost the same for higher values of p, however, it is far better
when it comes to the cost comparison.

Fig. 6. Hybrid strategy 1 [7].

The availability and cost graphs on the discretized values of p are shown in Fig. 7
and Fig. 8, respectively, where Strategy 1 indicates the MCS while the Strategy 2 rep-
resents a hybrid DRSs. Both strategies consist of 11 replicas each. It can be seen that in
terms of operational availability the hybrid strategy is converging on to the same values
as MCS for higher values of p. This is a quite good availability but more importantly, it
outclasses the MCS in terms of its cost in all the cases. Hence, it covers a scenario that
could have been left unaddressed otherwise.

Fig. 7. Hybrid DRS 1, availability of the access operations [7]. (Color figure online)

In the best case, out of 11, it only takes four replicas each to perform a read and
a write operation while the total cost for MCS is 12 for all the cases. This is a good
example of a relatively less complicated DRS where we have not compromised the
availability and yet reduced the cost significantly by using the hybrid approach via
genetic programming.
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Fig. 8. Hybrid DRS 1, cost of the access operations [7].

Figure 9 shows a relatively complex but more economical example of an up-to-now
unknown hybrid replication strategy designed via GP, exploiting the voting structures. It
is comprised of both the Grid Protocol and the Triangular Lattice Protocol (TLP) where
it unprecedentedly combines Grid Protocol comprising four replicas with TLP of six
replicas, resulting in a total of ten replicas. It demonstrates an instance of a horizontal
crossover, which has lowered the cost by a great value while maintaining a very good
availability of the access operations.

Fig. 9. Hybrid strategy 2.

Figure 10 presents and compares the availability of MCS with our hybrid approach
of the same number of replicas. Red and pink lines represent the availabilities of the
read and write operations, respectively, for the MCS. Whereas blue and green lines
show availabilities of read and write operations, respectively, for the hybrid strategy.
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The latter (hybrid) is competing fairly with the former (MCS), considering the fact
that MCS is known to be the best for its availability, particularly for the critical write
availability. In comparison, it can be noticed that availabilities are almost the same for
the later values of p.

Fig. 10. Hybrid DRS 2, availability of the access operations. (Color figure online)

Figure 11 enables us a closer view where it can be observed that for hybrid strategy,
the respective availabilities of the access operations converge onto almost the same
values for later values of p, which is a very good operation availability considering the
strong hardware nowadays.

Fig. 11. Hybrid DRS 2, zoom-in availability graph.

As for the cost, as shown in Fig. 12, hybrid DRS is much cheaper as compared
to the MCS. It costs almost half of the MCS, where in best cases, it only takes three
replicas to perform an access operation, whereas the cost of the access operations for
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MCS remains a constant of 11 replicas in total. Here, again, it is evident that we have
significantly reduced the cost while not sacrificing on availability too much, covering
another prospective scenario where a further reduced cost could be required.

Fig. 12. Hybrid DRS 2, cost of the access operations.

We have demonstrated powerful examples of newly generated unknown voting
structures via genetic programming, now wemove on to specifying scenarios, explained
earlier.

6.1 Scenario 1

Let us specify a sample scenario and apply our approach to find out whether a suitable
replication strategy can be found. The scenario consists of the desired read and write
availabilities and their respective costs, which must be achieved within the threshold of
maximum 16 replicas and some availability p of individual replicas. However, cost is
not important in this case, therefore, full weightage is given to availability.

6.2 Scenario Parameters 1

The desired read availability and write availability thresholds are 0.80 and 0.72, respec-
tively, using a node availability of 0.6 inside a 16 replicas limit. Cost is specified being
less than seven for each operation, but the fitness weightage determines the availability
to be fully important.

p = 0.6, ε = 16, α = 0.80, β = 0.72,
γ = 7.0, δ = 7.0, fw = 1.0
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6.3 System Parameters 1

Having defined the scenario, now the system parameters are set to run the algorithm
accordingly. Here, the number of parent and offspring strategies are set to six and 15,
respectively. The initial population is only used once, namely in the crossover process in
the very first generation. The crossovers are performed all the time while the mutation
is performed with a probability of 0.2.

μ = 6, λ = 15,
mutationProb = 0.2

6.4 Results 1

This section shows the graphical visualization of the results generated by the algorithm
on the provided parameters. It analyzes the fitness of every individual, every generation,
and designs new strategies in the course of fulfilling the specified criteria when it is not
found in the repository.

Fitness Analysis. Figure 13 depicts the fitness of every individual DRS and the way
it evolves. The x-axis represents the number of DRSs and the y-axis denotes the fit-
ness value of every individual strategy. The red line indicates the fitness of the DRSs
while the pink and blue lines represent the availabilities of read and write operations,
respectively. It can be noticed that it starts with only a few strategies of low fitness,
which implies that the repository does not have a satisfactory solution to the problem.
Then, the fitness improves and begins to evolve gradually through crossover and muta-
tion operators of genetic programming until the loop stops over the desired termination
condition.

Fig. 13. Scenario 1, fitness of the DRSs [7]. (Color figure online)
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Population Analysis. Figure 14 illustrates how the fitness of DRSs grows by every
generation. The graph shows the fitness of the best DRSs among every generation. The
x-axis represents the number of generations while the y-axis indicates the fitness value
of the best replication strategy of a respective generation. It took 10 generations for the
system to find a suitable DRS that satisfies the given scenario. It starts from a fitness of
1.365 and gradually but consistently continues to climb up until the desired fitness of
1.525 is achieved.

Fig. 14. Scenario 1, populations’ evolution [7].

Hybrid Data Replication Strategy. Figure 15 shows the identified suitable strategy
optimized for the mentioned scenario of Sect. 6.2. This strategy is comprised of 16
replicas that meet our threshold criterion ε. Moreover, the variable votes, quorums, and
the structure itself reflect its hybrid nature that works together to serve the purpose and
provide an up-to-now unknown replication strategy.

Fig. 15. Optimized hybrid DRS for scenario 1 [7].
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Availability Analysis. Figure 16 shows the availability graph for the access operations
of the identified DRS on discretized values of p. The newly designed DRS fulfills the
specified scenario of thresholds. The x-axis represents the node availability while the
y-axis indicates the availability of the access operations. The point symmetry of the
graph overtly displays an extremely high availability for the access operations.

Fig. 16. Availability graph of read and write operations [7].

This availability is, again, very close to MCS (particularly for higher p values),
which is considered the best in terms of the critical write operations’ availability, and at
the same time, our hybrid approach is reasonably economical in terms of cost. In best
cases, it takes only five replicas each for the access operations out of 16 unlike MCS
with a cost of 17 replicas in total for read and write, which is very expensive. A detailed
comparison of this strategy is performed here [6].

6.5 Scenario 2

Having found a suitable optimized strategy for the specified scenario, now we specify
a different, but relatively challenging scenario, as compared to the former one to show
the effectiveness of our approach. Here, cost is also being taken into consideration,
previously (Scenario 1) full weightage was given to availability, and cost was ignored
in the evolutionary process.

6.6 Scenario Parameters 2

In this scenario, the probability of individual replicas is set to 0.7 and the total number
of replicas is confined to 12, to achieve a read and a write availability of at least 0.85,
whereas the expected cost for each operation is set to be no more than three replicas.
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For this, 70% is being given to the availability of the access operations and rest to the
cost.

p = 0.7, ε = 12, α = 0.85, β = 0.85,
γ = 3.0, δ = 3.0, fw = 0.7

6.7 System Parameters 2

As for system parameters, the number of parents and the number of children DRSs
are set to 13 and 30, respectively, to explore the search space more. The use of the
initial population in every generation is set to 30%. The mutation is performed with a
probability of 0.2.

μ = 13, λ = 30,
probInitialParentList = 0.3,
mutationProb = 0.2

6.8 Results 2

Figure 17 presents a 3D representation of the replication strategies generated through
the process of genetic programming. The view represents the trade-offs between differ-
ent objectives of the DRSs, making several possible trade-off scenarios. Here, the x-axis
represents the availability while the y-axis cost of the access operations. Each strategy
in this representation is given a unique color and clicking on it gives the relevant infor-
mation about the DRS. The view can be divided into four equal quadrants. Quadrant 1
(top right) presents strategies with higher availabilities at higher costs. Quadrant 2 (top
left) represents the strategies with lower availabilities at higher costs. Quadrant 3 (bot-
tom left) presents strategies with lower availabilities at lower costs. Quadrant 4 (bottom
right) presents strategies with higher availabilities and lower costs. The strategies are

Fig. 17. Trade-off replications strategies.
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getting closer to the total availability of 1.82 while the cheapest of the strategy takes
three replicas in total for both the access operations to be executed. For the specified
case, considering the desirable trade-offs, a DRS circled in red satisfying the criteria is
chosen.

The graphs shown in Fig. 18, represent the fitness, read availabilities, and write
availabilities of every individual strategy involved in the whole GP process. It is overt
that it starts from a lower fitness and slowly with every passing generation it evolves.
The parent strategies for the next generation are becoming better and better in terms of
getting closer to the desired criteria until it hits the success.

Fig. 18. Scenario 2, fitness of the DRSs.

Figure 19 shows selected strategies of best fitness among each generation. It shows
an explicitly evolving trend among every generation starting from a lower fitness of
1.57 to the desired level 1.79. In this case, it takes six generations to find the respective
solution.

Figure 20 displays the total number of replicas (y-axis, pink line) and the average
minimal costs of read and write operations (y-axis, red line) for every DRS involved
in the genetic process. The x-axis represents the strategy numbers to uniquely identify
them. The graph starts with the strategies where there is not much difference between
the total cost and the total number of replicas, which gradually fades away for the later
strategies proving that the system is optimizing the DRSs in terms of their cost. Because
now it takes less replicas to execute the access operations out of total replicas. The
algorithm stops over a desired optimized strategy comprised of 11 replicas (better than
the specified threshold of 12) with a total cost (sum of read and write costs) of almost
five on given p.
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Fig. 19. Scenario 2, evolutionary trajectory.

Fig. 20. Scenario 2, cost of the DRSs.

This specified scenario boils down to a fitness of 1.79 to be achieved. The algorithm
finds a solution DRS achieving a total availability closer to 1.7 and total cost not more
than six replicas (at best four replicas). The system takes six generations to evolve the
strategies from a lower fitness 1.57 to the desired fitness of 1.793. Figure 21 shows the
generated hybrid replication strategy, comprising MCS, TLP, and TQP (top to bottom,
respectively). The system mixes up those strategies automatically in an intelligent way
through vertical crossovers in order to satisfy the termination condition.

This instance demonstrates a very economical combination of these different strate-
gies, which merely takes two replicas each to perform an operation in the best case,
which is even cheaper than the famous TLP for both the access operations. This auto-
matic mechanism to glue strategies together, in a certain fashion, on certain locations,
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Fig. 21. Optimized hybrid DRS for scenario 2.

to make them optimized, opens up new possibilities of designing new replication strate-
gies, until now unknown. In this manner, the proposed machine learning framework pro-
vides a strong opportunity to explore and design new unknown DRSs for any specified
scenario and optimize them over several generations of evolution to meet the specified
scenario-specific criteria.

7 Conclusion

The research demonstrates the use of machine learning, particularly, genetic program-
ming for the data replication and fault tolerance. It uses this genetic programming-
based automated mechanism for designing new hybrid optimized DRSs for specified
application-specific scenarios for which no optimal strategy may exist. It designs new
DRSs efficiently (without brute-forcing all the possible combinations) and evolve their
population as computer programs to make them optimized. The novel approach does not
only consider the availability aspect, but also the cost aspect and successfully models
a scenario into a replication strategy. This paper demonstrates its usefulness by speci-
fying different scenarios and accordingly designing innovative DRSs to date unknown,
satisfying the criteria. This unification of the concepts of fault tolerance with the genetic
programming has the potential to open whole new doors of exploring unknown replica-
tion strategies. As for future work, this research shall act as a building block to introduce
new multi-type crossover as well as mutation operators to gain some more fine-grained
control over the algorithm in anticipation of designing appropriate solutions, accord-
ingly. More complex scenarios may also be taken into consideration, thereby indicating
the sheer effectiveness of our approach as well as comparing with the state-of-the-art.
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