
A Scalable and Automated Machine Learning
Framework to Support Risk Management

Luı́s Ferreira1,2(B) , André Pilastri2 , Carlos Martins3 , Pedro Santos3 ,
and Paulo Cortez2

1 EPMQ - IT Engineering Maturity and Quality Lab, CCG ZGDV Institute,
Guimarães, Portugal

{luis.ferreira,andre.pilastri}@ccg.pt
2 ALGORITMI Centre, Department of Information Systems, University of Minho,

Guimarães, Portugal
pcortez@dsi.uminho.pt

3 WeDo Technologies, Braga, Portugal
{carlos.mmartins,pedro.santos}@mobileum.com

Abstract. Due to the growth of data and widespread usage of Machine Learning
(ML) by non-experts, automation and scalability are becoming key issues for ML.
This paper presents an automated and scalable framework for ML that requires
minimum human input. We designed the framework for the domain of telecom-
munications risk management. This domain often requires non-ML-experts to
continuously update supervised learning models that are trained on huge amounts
of data. Thus, the framework uses Automated Machine Learning (AutoML), to
select and tune the ML models, and distributed ML, to deal with Big Data. The
modules included in the framework are task detection (to detect classification
or regression), data preprocessing, feature selection, model training, and deploy-
ment. In this paper, we focus the experiments on the model training module. We
first analyze the capabilities of eight AutoML tools: Auto-Gluon, Auto-Keras,
Auto-Sklearn, Auto-Weka, H2O AutoML, Rminer, TPOT, and TransmogrifAI.
Then, to select the tool for model training, we performed a benchmark with the
only two tools that address a distributed ML (H2O AutoML and Transmogri-
fAI). The experiments used three real-world datasets from the telecommunica-
tions domain (churn, event forecasting, and fraud detection), as provided by an
analytics company. The experiments allowed us to measure the computational
effort and predictive capability of the AutoML tools. Both tools obtained high-
quality results and did not present substantial predictive differences. Neverthe-
less, H2O AutoML was selected by the analytics company for the model training
module, since it was considered a more mature technology that presented a more
interesting set of features (e.g., integration with more platforms). After choosing
H2O AutoML for the ML training, we selected the technologies for the remaining
components of the architecture (e.g., data preprocessing and web interface).

Keywords: Automated machine learning · Distributed machine learning ·
Supervised learning · Risk management

c© Springer Nature Switzerland AG 2021
A. P. Rocha et al. (Eds.): ICAART 2020, LNAI 12613, pp. 291–307, 2021.
https://doi.org/10.1007/978-3-030-71158-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71158-0_14&domain=pdf
http://orcid.org/0000-0002-4790-5128
http://orcid.org/0000-0002-4380-3220
http://orcid.org/0000-0002-0678-4868
http://orcid.org/0000-0002-4269-5838
http://orcid.org/0000-0002-7991-2090
https://doi.org/10.1007/978-3-030-71158-0_14


292 L. Ferreira et al.

1 Introduction

Nowadays, Machine Learning applications can make use of a great amount of data,
complex algorithms, and machines with great processing power to produce effective
predictions and forecasts [11]. Currently, two of the most important features of real-
world ML applications are distributed learning and AutoML. Distributed learning is
particularly useful for ML applications in the context of Big Data or when there are
hardware constraints. Distributed learning consists of using multiple machines or pro-
cessors to process parts of the ML algorithm or parts of the data. The fact that it is pos-
sible to add new processing units enables ML applications to surpass time and memory
restrictions [29]. AutoML intends to allow people that are not experts in ML to effi-
ciently choose and apply ML algorithms. AutoML is particularly relevant since there
is a growing number of non-specialists working with ML [31]. It is also important for
real-world applications that require constant updates to ML models.

In this paper, we propose a technological architecture that addresses these two ML
challenges. The architecture was adapted to the area of telecommunications risk man-
agement, which is a domain that mostly uses supervised learning algorithms (e.g., for
churn prediction). Moreover, the ML models are constantly updated by people that are
not experts in ML and may involve Big Data. Thus, the proposed architecture delineates
a set of steps to automate the typical workflow of a ML application that uses supervised
learning. The architecture includes modules for task detection, data preprocessing, fea-
ture selection, model training, and deployment.

The focus of this work is the model training module of the architecture, which
was designed to use a distributed AutoML tool. In order to select the ML tool for this
module, we initially evaluated the characteristics of eight open-source AutoML tools
(Auto-Gluon, Auto-Keras, Auto-Sklearn, Auto-Weka, H2O AutoML, Rminer, TPOT,
and TransmogrifAI). We then performed a benchmark to compare the two tools that
allowed a distributed execution (H2O AutoML and TransmogrifAI). The experiments
used three real-world datasets from the domain of telecommunications. These datasets
were related to churn (regression), event forecasting (time series), and fraud detection
(binary classification).

This paper consists of an extended version of our previous work [14]. The main
novelty of this extended version is the technological architecture that is presented in
Sect. 6. This section describes the particular technologies that were used to implement
the components of the proposed AutoML distributed framework apart frommodel train-
ing. Also, this section describes the REST API that was developed to mediate the com-
munication between the end-users and the proposed framework.

The paper is organized as follows. Section 2 presents the related work. In Sect. 3,
we detail the proposed ML architecture. Next, Sect. 4 describes the analyzed AutoML
technologies and the datasets used during the experimental tests. Then, Sect. 5 discusses
the experimental results. Section 6 details the technological architecture. Finally, Sect. 7
presents the main conclusions and future work directions.



A Scalable and Automated Machine Learning Framework 293

2 Related Work

In a Big Data context, it is critical to create and use scalable ML algorithms to face
the common constraints of memory and time [29]. To face that concern, classical dis-
tributed ML distributes the work among different processors, each performing part of
the algorithm. Another current ML problem concerns the choice of ML algorithms and
hyperparameters for a given task. For ML experts, this selection of algorithms and
hyperparameters may use domain knowledge or heuristics, but it is not an easy task
for non-ML-experts. AutoML was developed to combat this relevant issue [22]. The
definition of AutoML can be described as the search for the best algorithm and hyper-
parameters for a given dataset with minimum human input.

In recent years, a large number of AutoML tools was developed, such as Auto-
Gluon [3], Auto-Keras [23], Auto-Sklearn [15], Auto-Weka [24], H2O AutoML [21],
Rminer [10], TPOT [27], and TransmogrifAI [30]. Within our knowledge, few studies
directly compare AutoML tools. Most studies compare one specific AutoML frame-
work with state-of-the-art ML algorithms [15], do not present experimental tests
[12,35], or are related to ML automation challenges [18–20].

Recently, some studies focused on experimental comparisons of AutoML tools. In
2019, [17,32] compare a set of AutoML tools using different datasets and ML tasks.
In 2020, a benchmark was conducted using publicly available datasets from OpenML
[33], comparing different types of AutoML tools, which were grouped by their capa-
bilities [36]. None of the mentioned comparison studies considered the distributed ML
capability for the AutoML tools. Furthermore, none of the studies used datasets from
the domain of telecommunications risk management, such as churn prediction or fraud
detection.

3 Proposed Architecture

This paper is part of “Intelligent Risk Management for the Digital Age” (IRMDA), a
R&D project developed by a leading Portuguese company in the area of software and
analytics. The purpose of the project is to develop a ML system to assist the company
telecommunications clients. Both scalability and automation are central requirements
to the ML system since the company has many clients with diverse amounts of data
(large or small) and that are typically non-ML-experts.

The ML technological architecture that is proposed by this work identifies and auto-
mates all typical tasks of a common supervised ML application, with minimum human
input (only the dataset and the target column). Also, since the architecture was devel-
oped to work within a cluster with several processing nodes, the users can handle any
size of datasets just by managing the number of cluster nodes. The architecture is illus-
trated in Fig. 1.

3.1 Phases

The proposed architecture assumes two main phases (Fig. 1): a training phase and a
testing phase.



294 L. Ferreira et al.

Fig. 1. The proposed automated and scalable ML architecture (adapted from [14]).

Training Phase: The training phase includes the creation of a pipeline instance and
the definition of its stages. The only human input needed by the user is the selection
of the training dataset and the identification of the target column. Depending on the
dataset columns, each module defines a set of stages for the pipeline. Each stage either
transforms data or also creates a model based on the training data that will be used on
the test phase to transform the data. When all stages are defined, the pipeline is fitted to
the training data, creating a pipeline model. Finally, the pipeline model is exported to a
file.

Testing Phase: The execution of the testing pipeline assumes the same transformations
that were applied to the training data. To execute the testing pipeline the user only needs
to specify the test data and a pipeline model (and a forecasting horizon in the case of
time series forecasting task). The last stage of the testing pipeline is the application
of the best model obtained during training, generating the predictions. Performance
metrics are also computed and presented to the user.

3.2 Components

The proposed architecture includes five main components: task detection, data prepro-
cessing, feature selection, model training (with the usage of AutoML), and pipeline
deployment.

Machine Learning Task Detection: Set to detect the ML task of the pipeline (e.g.,
classification, regression, time series). This detection is made by analyzing the number
of levels of the target column and the existence (or not) of a time column.

Data Preprocessing: Handles missing data, the encoding of categorical features, and
the standardization of numerical features. The applied transformations depend on the
data type of the columns, number of levels, and number of missing values.

Feature Selection: Deletes features from the dataset that may decrease the predictive
performance of the ML models, using filtering methods. Filtering methods are based on



A Scalable and Automated Machine Learning Framework 295

individual correlations between each feature and the target, removing several features
that present the lowest correlations [4].

Model Training: Automatically trains and tunes a set of ML models using a set of
constraints (e.g., time limit, memory usage). The component also identifies the best
model to be used on the test phase.

Pipeline Deployment: Manages the saving and loading of the pipelines to and from
files. This module saves the pipeline that will be used on a test set, ensuring that the new
data will pass through the same transformations as the training data. Also, the compo-
nent stores the best model obtained during the training to make predictions, discarding
all other ML models.

4 Materials and Methods

4.1 Experimental Evaluation

For the experimental evaluation, we first examined the characteristics of the open-
source AutoML tools. Then, we used the tools that could be implemented in our archi-
tecture to perform a benchmark study. In order to be considered for the experimental
evaluation, the tools have to implement distributed ML.

4.2 AutoML Tools

We first analyzed eight recent open-source AutoML tools, to verify their compliance
with the project requirements.

Auto-Gluon: AutoGluon is an open-source AutoML toolkit with a focus on Deep
Learning. It is written in Python and runs on Linux operating system. AutoGluon is
divided into four main modules: tabular data, image classification, object detection, and
text classification [3]. In this article, only the tabular prediction functionalities are being
considered.

Auto-Keras: Auto-Keras is a Python library based on Keras [6] that implements
AutoML methods with Deep Learning algorithms. The focus of Auto-Keras is the auto-
matic search for Deep Learning architectures and hyperparameters, usually named Neu-
ral Architecture Search [13].

Auto-Sklearn: Auto-Sklearn is an AutoML Python library based on Scikit-Learn [28]
that implements methods for automatic algorithm selection and hyperparameter tuning.
Auto-Sklearn aims to free the user from the choice of an algorithm and the tuning of its
hyperparameters using Bayesian optimization, meta-learning, and Ensemble Learning
[16].



296 L. Ferreira et al.

Auto-Weka: Auto-Weka is a module of WEKA, a ML tool that provides data prepro-
cessing functions and ML algorithms that allow users to quickly compare ML models
and create predictions using new data [34]. Auto-Weka aims to solve the Combined
Algorithm Selection and Hyperparameter Optimization (CASH) problem, first estab-
lished in [31].

H2O AutoML: H2O AutoML is one of the open-source modules of H2O, a ML ana-
lytics platform that uses in-memory data and implements a distributed and scalable
architecture [7]. H2O AutoML uses H2O’s infrastructure to provide functions to auto-
mate algorithm selection and hyperparameter optimization [21].

Rminer: Rminer is a package for the R tool, intending to facilitate the use of Machine
Learning algorithms. The focus of Rminer are the CRISP-DM phases of Modeling and
Evaluation [8,9]. In the most recent version, Rminer uses more than 20 classification
and regression algorithms. Also, since version 1.4.4, Rminer implements AutoML func-
tions.

TPOT: Tree-Based Pipeline Optimization Tool (TPOT) is an open-source AutoML
written in Python. TPOT automates the phases of feature selection, feature engineering,
algorithm selection, and hyperparameter tuning. It uses algorithms such as Decision
Trees, Random Forest, and XGBoost, most of them from the Scikit-Learn library [25,
27].

TransmogrifAI: TransmogrifAI is a tool that uses Apache Spark framework to auto-
mate ML applications. It is written in Scala and focused on the automation of several
phases of the ML workflow, such as algorithm selection, feature selection, and feature
engineering [30].

AutoML Tool Comparison: Table 1 presents the characteristics of the analyzed
AutoML related to interface language, associated platforms, current version and if it
contains a Graphical User Interface and distributed ML mode.

For the experimental study, we selected H2O AutoML and TransmogrifAI, as these
were the only tools from Table 1 that meet the distributed ML requirement. Table 2
presents the ML algorithms implemented by both tools. The last two rows are related to
the stacking ensembles implemented by H2O AutoML: all, which combines all trained
algorithms; and best, which only combines the best algorithm per family.

4.3 Data

For the benchmark study, we used three real-world datasets from the domain of telecom-
munications, provided by the IRMDA project analytics company. The datasets are
related to customer churn prediction (regression), event forecasting (univariate time
series), and telecommunications fraud detection (binary classification).



A Scalable and Automated Machine Learning Framework 297

Table 1.Main characteristics of the analyzed AutoML tools (extended from [14]).

Interface
language

Associated
platforms

Current
version

Graphical
user
interface

Distributed
mode

Auto-Gluon Python - 0.0.14 - -

Auto-Keras Python - 1.0.9 - -

Auto-Sklearn Python - 0.10.0 - -

Auto-Weka Python
R

WEKA 2.6.1 � -

H2O AutoML Python
R
Scala

AWS
Azure
Google Cloud
Apache Spark

3.30.1.3 � �

Rminer R - 1.4.6 - -

TPOT Python - 0.11.5 - -

TransmogrifAI Scala Apache Spark 0.7.0 - �

Table 2. Algorithms implemented by H2O AutoML and TransmogrifAI (adapted from [14]).

Algorithm H2O AutoML TransmogrifAI

Decision Trees - �
Deep Learning � -

Extremely Randomized Forest � -

Gradient-Boosted Trees (GBT) - �
Gradient Boosting Machine (GBM) � -

Generalized Linear Model (GLM) � -

Linear Regression - �
Linear Support Vector Machine - �
Logistic Regression - �
Naive Bayes - �
Random Forest (RF) � �
XGBoost �

(only fully supported in Linux)
-

Stacking All (SA) � -

Stacking Best (SB) � -

Churn Prediction: The churn dataset contains 189 rows and 21 attributes. The
attributes of each row characterize a client and the probability for canceling the com-
pany’s analytics service (churn), as defined by the company. Table 3 describes each
attribute of the churn dataset.



298 L. Ferreira et al.

Table 3. Description of the attributes of the churn dataset (adapted from [14]).

Attribute Description

tenure Time passed since the beginning of the contract

streaming quality Contractualized display resolution

ott video If OTT video is contractualized or not

contract Duration of the contract

payment method Contractualized method of payment

product name Identification of the product

platform Type of connectivity present in the contract

financial status If the payment is late or regularized

service latency Latency of the service

dropped frames Number of dropped frames

volume Information about volume

duration Information about duration

account number Account identification number

service latency category Category of the service latency attribute

dropped frames category Category of the dropped frames attribute

volume category Category of the volume attribute

duration category Category of the duration attribute

tenure category Category of the tenure attribute

account segment Age segment of the client

equipment Equipment used by the client

churn probability Probability of canceling the service (∈ [0, 1])

Table 4. Description of the attributes of the event forecasting dataset (adapted from [14]).

Attribute Description

Time Timestamp (format: yyyy-mm-dd hh:mm)

Datapoints Number of events

Event Forecasting: The event forecasting dataset contains 1,418 rows that correspond
to records about telecommunication events of a certain type (e.g., phone calls). The
events occurred from February to April of 2019, aggregated on an hourly basis, ranged
from 3,747 to 56,320. The only attributes are the timestamp and the number of events
in that interval, as described in Table 4.



A Scalable and Automated Machine Learning Framework 299

Fraud Detection: Each row of the fraud detection dataset contains the identification
of A (sender) and B (receiver), and the classification of the phone call (“fraud” or “nor-
mal”). The dataset contains more than 1 million examples, which correspond to one day
of phone calls from one of the company clients. The dataset attributes are described in
Table 5.

Table 5. Description of the attributes of the fraud dataset (adapted from [14]).

Attribute Description

A Identification of the call sender

B Identification of the call receiver

Result Classification of the call (“fraud” or “normal”)

5 Results

5.1 Experimental Setup

The benchmark consisted of several computational experiments that used three real-
world datasets to compare the selected AutoML tools (H2O AutoML and Transmogri-
fAI). The benchmark was executed on a machine with an i7-8700 Intel processor with
6 cores. Every AutoML experiment considered a holdout split that used 3/4 of the data
as training set and 1/4 as test set. The split between train and test sets was random for
two of the datasets (churn and fraud). For the event forecasting dataset, the division
between train and test was ordered in time (since the data is ordered in time). Every
AutoML execution implemented a 10-fold cross-validation during the training of the
algorithms.

Each AutoML tool optimizes a performance metric to select the best algorithms
and tune the hyperparameters. We selected the Mean Absolute Error (MAE) for the
regression tasks and Area Under Curve (AUC) for the classification data. Also, we
computed additional metrics for the test data in order to further compare the tools.

Additionally, we disabled time limits to allow the execution of all selected ML algo-
rithms. From the algorithms presented in Table 2, we only disabled Deep Learning from
the experiments, from H2O AutoML. First, because it required a greater computational
effort, especially for the fraud detection dataset. Second, to achieve a more fair compar-
ison with TransmogrifAI, since this tool does not include Deep Learning algorithms.

For the churn dataset, the performance of the AutoML tools was measured with two
scenarios. The first scenario (1) considered all the attributes of the dataset as input fea-
tures for the ML algorithms. The second scenario (2) only uses a subset of the attributed
as input features, derived from a previous feature selection phase. For Transmogri-
fAI the intention was to test the automatic feature selection characteristic. For H2O
AutoML, the features of scenario 2 were the most relevant features identified by the
best performing algorithm of scenario 1.



300 L. Ferreira et al.

For event forecasting, we transformed the dataset, creating time lags as inputs for
a regression task. The dataset could not be used as a univariate time series, since nei-
ther H2O AutoML nor TransmogrifAI implement native time series algorithms (e.g.,
ARIMA, Holt-Winters). We created three scenarios with different combinations of time
lags: 1 – with time lags t − 1, t − 24, and t − 25, where t is the current time (corre-
sponding to the previous hour, day, and hour before that day); 2 – with all the time lags
from the last 24 h (from t−1 to t−24); and 3 – with the time lags t−12, t−24, t−36,
and t− 48.

For the fraud detection dataset, we designed three training scenarios. Since the fraud
detection dataset only has around 0.01% of illegitimate calls, we used the Synthetic
Minority Oversampling Technique (SMOTE) technique [5] to balance the two classes
in two of the scenarios. Scenario 1 used a simple undersampling that considered all
“fraud” records and a random selection (with replacement) of “normal” cases. Scenarios
2 and 3 used SMOTE to generate extra fraud examples (100% and 200%, respectively).
For each training scenario, we also considered three test scenarios of unseen data with
different class balancing (with “normal”/“fraud” ratio): A – 50%/50%, thus balanced;
B – 75%/25%; and C – 80%/20%.

5.2 Discussion

A summary of the overall results is presented in Table 6. For each AutoML tool, the
execution times and test error metric values were aggregated by considering the average
of the dataset scenario executions.

Table 6. Summary of the experimental results, best values in bold (adapted from [14]).

Dataset Number of
scenarios

AutoML tool Avg.
execution
time (mm:ss)

Used metric Avg. test
metric

Churn prediction 2 H2O AutoML 00:27 MAE 0.119

TransmogrifAI 03:40 MAE 0.160

Event forecasting 3 H2O AutoML 02:25 MAE 2467

TransmogrifAI 04:41 MAE 2765

Fraud detection 9 H2O AutoML 07:11 AUC 0.973

TransmogrifAI 01:46 AUC 0.963

The experimental results show that both AutoML tools require a small execution
time to select the best ML model, with the highest average execution time being slightly
higher than 7min. The low training time can be justified with the usage of distributed
ML, datasets with a small number of rows or columns, and the removal of Deep Learn-
ing algorithms. However, if the benchmark included datasets with more examples or
attributes, an addition of machines or cores to the cluster would maintain the execution
time low.



A Scalable and Automated Machine Learning Framework 301

The metrics obtained during the predictions show that H2O AutoML obtained the
best average results for all three datasets. In particular, H2O AutoML was better on
three of the five regression scenarios and in seven of the nine classification scenarios.
TransmogrifAI obtained the best predictive results in two regression scenarios and two
classification scenarios. Although the AutoML tools present minor predictive differ-
ences, the results of all scenarios can be considered of high quality.

After analyzing the results, the risk management software and analytics company
decided to select H2O AutoML for the model training module of the architecture. This
choice was supported by two main reasons. First, H2O AutoML obtained better predic-
tive results for most of the scenarios. Second, the analytics company considered H2O
AutoML a “more mature” technology. This classification was due to the fact that H2O
AutoML is available in more programming languages than TransmogrifAI (as shown
in Table 1), it can be integrated with more platforms and it provides an easy to use
Graphical User Interface.

6 Technological Architecture

After the comparative ML experiments, the analytics company selected the H2O
AutoML tool for the model training component. The remaining technological modules
were then designed in cooperation with the company. Since one of the prerequisites
of the architecture is that it is distributed, we tried to identify technologies with dis-
tributed capabilities. Given that H2O can be integrated with Apache Spark (using the
Sparkling Water module) and that Spark provides functions for data processing, we
relied on Spark’s Application Programming Interface (API) functions to implement the
remaining components of the architecture. The updated architecture, with references to
the technologies used, is illustrated in Fig. 2.

Fig. 2. The technological automated and scalable ML architecture (adapted from [14]).



302 L. Ferreira et al.

6.1 Components

This subsection describes the current implementation of each module of the archi-
tecture. The updated technological architecture changed some of the modules initally
described in Sect. 3. These changes were related to feedback received from the analytics
company or due to technological restrictions.

Machine Learning Task Detection: Currently set to detect if the ML pipeline should
be considered a binary classification, multi-class classification, pure regression, or a
univariate time series task since these are the typical telecommunications risk manage-
ment ML tasks used by the company.

The detection of the ML task can be overridden by the user. This is due to the
fact that it could be useful to consider an ML task different than the one suggested
by the module. For example, the end-user might want to consider a regression task,
although the target column of the dataset only has a few number of levels, which could
be automatically considered a multi-class classification. If the user specifies an ML task
before running the pipeline, this component is skipped.

The type of supervised tasks handled will be expanded according to feedback pro-
vided by the software company clients and the AutoML tools capabilities. Interesting
future possibilities of tasks to be addressed are multivariate time series, ordinal classi-
fication, or multi-target regression.

Data Preprocessing: Currently, the preprocessing transformations (e.g., dealing with
missing data, the encoding of categorical features, standardization of numerical fea-
tures) are done using Apache Spark’s functions for extracting, transforming and select-
ing features [1].

To deal with missing data in numerical columns we use the Imputer function from
Spark. This function replaces the unknown values of a column with its mean value.
For categorical columns, we replace the unknown fields with a predefined tag (e.g.,
“Unknown”). The encoding of categorical features is done by default using Spark’s one-
hot Encoding function. If the categorical column has a high cardinality (a vast number
of levels), instead of the one-hot encoding we apply the String Indexer function.
This function replaces the values of the column by numerical indices. The standard-
ization of numerical features uses the Standard Scaler function from Spark. This
function normalizes the column to have mean zero and standard deviation one.

Feature Selection: Currently, this module uses the Chi-Squared feature selection func-
tion from Apache Spark. This method decides what features to keep based on Chi-
Squared statistical test. Depending on the dataset and the ML task, we filter a fixed
number of features or a percentage of features with the most correlation.

Additionally, we added the possibility for the user (usually a domain expert) to
influence this step. Thus, the user can specify beforehand the features that will be used
as inputs by the model training module. Such features cannot be removed by the feature
selection step, although other features can be added to the ones that the user selected.
If no features were chosen by the user, this component works without restrictions. Also



A Scalable and Automated Machine Learning Framework 303

Fig. 3. Adopted scheme for handing of requests and responses.

by request of the company, we created an auxiliary pipeline that performs a simple
feature filtering, outputting a list of the most relevant features for a particular supervised
learning dataset but without fitting an ML model (e.g., usage of the simple correlation
statistic).

Model Training: Currently, this module uses one of two AutoML approaches we
implemented, depending on the ML task that is being considered. For classification
(binary or multi-class) and regression tasks, we use H2O AutoML to automatically find
and tune the best model. Since none of the AutoML tools we analyzed support native
univariate time series forecasting algorithms, we implemented our own AutoML for the
time series task.

In order to create the AutoML for time series, we used the algorithms implemented
by the GitHub repository scalaTS1 as a base. The repository includes a set of time series
algorithms, such as autoregressive integrated moving average (ARIMA), autoregressive
moving average (ARMA), autoregression (AR), and moving average (MA). Also, the
package includes hyperparameter optimization capabilities, with the algorithms Auto
ARIMA, Auto ARMA, Auto AR, and Auto MA, which pick the best parameters for
each algorithm. The repository is built on top of Apache Spark using the distributed
DataFrames objects, allowing distributed training and forecasting.

In order to select the best algorithm for a time series task, we run each Auto
algorithm with the training data and select the one that performs best on the valida-
tion data by using a rolling window validation [26].

Pipeline Deployment: Currently, the pipeline management module uses an Apache
Spark API related to ML pipelines [2]. To create a Spark ML pipeline it is necessary
to detail a list of stages and then fit the pipeline to the training data. After fitting the
pipeline to the training data, the Spark API allows the export of the pipeline to the disk.
This process is applied during the training phase of the architecture.

To apply a pipeline to test data it is necessary to load the model from a file. Then,

1 https://github.com/liao-iu/scalaTS/.

https://github.com/liao-iu/scalaTS/


304 L. Ferreira et al.

using the transform function, it is possible to apply the pipeline to previously unseen
data. This process is applied during the test phase of the architecture, generating a set
of predictions.

6.2 API

In order to facilitate the execution of the architecture, we also created a REST API to
mediate the communication between the end-users and the pipelines. The development
of the API resulted in two main endpoints: one to run the train pipeline and the other to
run the test pipeline.

Since the execution of each request consists of one Apache Spark job (using H2O’s
capabilities through the Sparkling Water module), the API works as an intermediary
between the end-user and the execution of the code inside Spark. This way, the API
server receives the client’s requests and uses the parameters of the body of the request
to initiate a Spark job inside the server (using the spark-submit command). After the
execution of the application that was submitted to Spark, the server receives the output
of the job (e.g., metrics of training, predictions). The server formats the response to the
appropriate format (e.g., XML, JSON) and sends the response to the client interface.

Figure 3 depicts this process. We highlight that the current version of the overall
architecture, which received positive feedback from the Portuguese software company
of the IRMDA project, is expected to be incrementally improved in future research. In
particular, we intend to evolve and test the non AutoML components by using more
real-world datasets and feedback from the analytics company clients.

7 Conclusions

This paper proposes a ML framework to automate the typical workflow of super-
vised ML applications without the need for human input. The framework includes the
modules of task detection, data preprocessing, feature selection, model training, and
pipeline deployment. The framework was developed within project IRMDA, a R&D
project developed by a leading Portuguese software and analytics company that pro-
vides services for the domain of telecommunications risk management. The company
clients work with datasets of variable sizes (large or small) and are mostly non-ML-
experts. Thus, the proposed framework uses distributed ML to add computational scal-
ability to the process and AutoML to automate the search for the best algorithm and
hyperparameters.

In order to assess the most appropriate AutoML tools for this model training mod-
ule, we initially conducted a benchmark experiment. First, we analyzed the features of
eight open-source AutoML tools (Auto-Gluon, Auto-Keras, Auto-Sklearn, Auto-Weka,
H2O AutoML, Rminer, TPOT, and TransmogrifAI). Then, we selected the tools that
allowed a distributed execution for the experiments (H2OAutoML and TransmogrifAI).
The benchmark study used three real-world datasets provided by the software company
from the domain of telecommunications risk management. The proposed framework
was positively evaluated by the analytics company, which selected H2O AutoML as the
best tool for the model training module.



A Scalable and Automated Machine Learning Framework 305

After the selection of H2O AutoML for the model training module, we developed
the technological architecture. We selected technologies with distributed capabilities
for the remaining modules of the initially proposed framework. Most of the remaining
modules were implemented using Apache Spark’s API functions. Then, we describe
the current implementation of each module of the architecture. Finally, we describe the
REST API that was created to facilitate the communication between the end-users (the
company clients) and the implemented pipelines.

In future work, we intend to use more telecommunications datasets to provide addi-
tional benchmarks for the model training module. Moreover, new AutoML tools can be
considered, as long as they provide distributed capabilities. Besides, we intend to add
more ML tasks to the framework, such as ordinal classification, multi-target regression,
or multivariate time series. For the remaining modules, we expect to conduct similar
studies to evaluate the most appropriate technologies to use (e.g., for handling missing
data, for choosing the best features). Finally, even though the framework was developed
specifically for the telecommunications risk management domain, we intend to study
the applicability of the framework to other areas.

Acknowledgements. This work was executed under the project IRMDA - Intelligent Risk
Management for the Digital Age, Individual Project, NUP: POCI-01-0247-FEDER-038526, co-
funded by the Incentive System for Research and Technological Development, from the Thematic
Operational Program Competitiveness of the national framework program - Portugal2020.

References

1. Apache Spark: extracting, transforming and selecting features - Spark 2.4.5 documentation
(2020) https://spark.apache.org/docs/latest/ml-features

2. Apache Spark: ML pipelines - Spark 2.4.5 documentation (2020). https://spark.apache.org/
docs/latest/ml-pipeline.html

3. Auto-Gluon: AutoGluon: AutoML toolkit for deep learning — AutoGluon documentation
0.0.1 documentation (2020). https://autogluon.mxnet.io/

4. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning.
Artif. Intell. 97(1–2), 245–271 (1997). https://doi.org/10.1016/s0004-3702(97)00063-5

5. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority
over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002). https://doi.org/10.1613/
jair.953

6. Chollet, F., et al.: Keras (2015). https://keras.io
7. Cook, D.: Practical Machine Learning with H2O: Powerful, Scalable Techniques for Deep

Learning and AI. O’Reilly Media, Inc., Sebastopol (2016)
8. Cortez, P.: Data mining with neural networks and support vector machines using the R/rminer

tool. In: Perner, P. (ed.) ICDM 2010. LNCS (LNAI), vol. 6171, pp. 572–583. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-14400-4 44

9. Cortez, P.: A tutorial on using the rminer r package for data mining tasks, Technical report,
Universidade do Minho, Escola de Engenharia (EEng) (2015)

10. Cortez, P.: Package ‘rminer’ (2020). https://cran.r-project.org/web/packages/rminer/rminer.
pdf

11. Darwiche, A.: Human-level intelligence or animal-like abilities? Commun. ACM 61(10),
56–67 (2018). https://doi.org/10.1145/3271625

https://spark.apache.org/docs/latest/ml-features
https://spark.apache.org/docs/latest/ml-pipeline.html
https://spark.apache.org/docs/latest/ml-pipeline.html
https://autogluon.mxnet.io/
https://doi.org/10.1016/s0004-3702(97)00063-5
https://doi.org/10.1613/jair.953
https://doi.org/10.1613/jair.953
https://keras.io
https://doi.org/10.1007/978-3-642-14400-4_44
https://cran.r-project.org/web/packages/rminer/rminer.pdf
https://cran.r-project.org/web/packages/rminer/rminer.pdf
https://doi.org/10.1145/3271625


306 L. Ferreira et al.

12. Elshawi, R., Maher, M., Sakr, S.: Automated machine learning: state-of-the-art and open
challenges. arXiv preprint arXiv:1906.02287 (2019)

13. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. arXiv preprint
arXiv:1808.05377 (2018)

14. Ferreira, L., Pilastri, A., Martins, C., Santos, P., Cortez, P.: An automated and distributed
machine learning framework for telecommunications risk management. In: Proceedings of
the 12th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
pp. 99–107. INSTICC, SciTePress (2020). https://doi.org/10.5220/0008952800990107

15. Feurer, M., et al.: Efficient and robust automated machine learning. In: Cortes, C., Lawrence,
N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Process-
ing Systems 28: Annual Conference on Neural Information Processing Systems 2015, 7–12
December 2015, Montreal, Quebec, Canada, pp. 2962–2970 (2015). http://papers.nips.cc/
paper/5872-efficient-and-robust-automated-machine-learning

16. Feurer, M., Springenberg, J.T., Hutter, F.: Initializing Bayesian hyperparameter optimiza-
tion via meta-learning. In: Bonet, B., Koenig, S. (eds.) Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, 25–30 January 2015, Austin, Texas, USA, pp.
1128–1135. AAAI Press (2015). http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/
view/10029

17. Gijsbers, P., LeDell, E., Thomas, J., Poirier, S., Bischl, B., Vanschoren, J.: An open source
autoML benchmark. arXiv preprint arXiv:1907.00909 (2019)

18. Guyon, I., et al.: Design of the 2015 chalearn autoML challenge. In: 2015 International Joint
Conference on Neural Networks, IJCNN 2015, Killarney, Ireland, 12–17 July 2015, pp. 1–8.
IEEE (2015). https://doi.org/10.1109/IJCNN.2015.7280767

19. Guyon, I., et al.: A brief review of the chalearn automl challenge: any-time any-dataset learn-
ing without human intervention. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Proceedings
of the 2016Workshop on Automatic Machine Learning, AutoML 2016, co-located with 33rd
International Conference on Machine Learning (ICML 2016), New York City, NY, USA, 24
June 2016. JMLR Workshop and Conference Proceedings, vol. 64, pp. 21–30. JMLR.org
(2016)

20. Guyon, I., et al.: Analysis of the AutoML challenge series 2015–2018. In: Hutter, F., Kot-
thoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 177–219.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5 10

21. H2O.ai: H2O AutoML, June 2017. http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.
html, h2O version 3.30.0.1

22. He, X., Zhao, K., Chu, X.: AutoML: a survey of the state-of-the-art. arXiv preprint
arXiv:1908.00709 (2019)

23. Jin, H., Song, Q., Hu, X.: Auto-keras: an efficient neural architecture search system. In:
Teredesai, A., Kumar, V., Li, Y., Rosales, R., Terzi, E., Karypis, G. (eds.) Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD 2019, Anchorage, AK, USA, 4–8 August 2019, pp. 1946–1956. ACM (2019). https://
doi.org/10.1145/3292500.3330648

24. Kotthoff, L., Thornton, C., Hoos, H.H., Hutter, F., Leyton-Brown, K.: Auto-weka 2.0: auto-
matic model selection and hyperparameter optimization in WEKA. J. Mach. Learn. Res. 18,
25:1–25:5 (2017). http://jmlr.org/papers/v18/16-261.html

25. Le, T.T., Fu, W., Moore, J.H.: Scaling tree-based automated machine learning to biomedical
big data with a feature set selector. Bioinformatics 36(1), 250–256 (2020)

26. Oliveira, N., Cortez, P., Areal, N.: The impact of microblogging data for stock market predic-
tion: Using twitter to predict returns, volatility, trading volume and survey sentiment indices.
Expert Syst. Appl. 73, 125–144 (2017). https://doi.org/10.1016/j.eswa.2016.12.036

http://arxiv.org/abs/1906.02287
http://arxiv.org/abs/1808.05377
https://doi.org/10.5220/0008952800990107
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10029
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10029
http://arxiv.org/abs/1907.00909
https://doi.org/10.1109/IJCNN.2015.7280767
https://doi.org/10.1007/978-3-030-05318-5_10
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html
http://arxiv.org/abs/1908.00709
https://doi.org/10.1145/3292500.3330648
https://doi.org/10.1145/3292500.3330648
http://jmlr.org/papers/v18/16-261.html
https://doi.org/10.1016/j.eswa.2016.12.036


A Scalable and Automated Machine Learning Framework 307

27. Olson, R.S., Urbanowicz, R.J., Andrews, P.C., Lavender, N.A., Kidd, L.C., Moore,J.H.:
Automating biomedical data science through tree-based pipeline optimization. In: Squillero,
G., Burelli, P. (eds.) EvoApplications 2016. LNCS, vol. 9597, pp. 123–137. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-31204-0 9

28. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–
2830 (2011). http://dl.acm.org/citation.cfm?id=2078195

29. Peteiro-Barral, D., Guijarro-Berdiñas, B.: A survey of methods for distributed machine learn-
ing. Prog. Artif. Intell. 2(1), 1–11 (2013). https://doi.org/10.1007/s13748-012-0035-5

30. Salesforce: Transmogrifai (2019). https://docs.transmogrif.ai/en/stable/
31. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-weka: combined selection and

hyperparameter optimization of classification algorithms. In: Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 847–855
(2013). https://doi.org/10.1145/2487575.2487629

32. Truong, A., Walters, A., Goodsitt, J., Hines, K., Bruss, B., Farivar, R.: Towards auto-
mated machine learning: Evaluation and comparison of autoML approaches and tools. arXiv
preprint arXiv:1908.05557 (2019)

33. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine
learning. SIGKDD Explor. 15(2), 49–60 (2013). https://doi.org/10.1145/2641190.2641198

34. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann, Amsterdam (2016)

35. Yao, Q., et al.: Taking human out of learning applications: a survey on automated machine
learning. arXiv preprint arXiv:1810.13306 (2018)

36. Zöller, M.A., Huber, M.F.: Benchmark and survey of automated machine learning frame-
works. Technical report. https://www.researchgate.net/publication/332750780

https://doi.org/10.1007/978-3-319-31204-0_9
http://dl.acm.org/citation.cfm?id=2078195
https://doi.org/10.1007/s13748-012-0035-5
https://docs.transmogrif.ai/en/stable/
https://doi.org/10.1145/2487575.2487629
http://arxiv.org/abs/1908.05557
https://doi.org/10.1145/2641190.2641198
http://arxiv.org/abs/1810.13306
https://www.researchgate.net/publication/332750780

	A Scalable and Automated Machine Learning Framework to Support Risk Management
	1 Introduction
	2 Related Work
	3 Proposed Architecture
	3.1 Phases
	3.2 Components

	4 Materials and Methods
	4.1 Experimental Evaluation
	4.2 AutoML Tools
	4.3 Data

	5 Results
	5.1 Experimental Setup
	5.2 Discussion

	6 Technological Architecture
	6.1 Components
	6.2 API

	7 Conclusions
	References




