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Abstract. Nowadays, deep learning has become the most modern and
practical approach to solve a wide range of problems. With the ability
to automatically extract the hierarchy of semantic level from the data,
neural networks often outperform other techniques in complex issues.
However, to perform well, the models need a vast amount of data, which
is not always available. To overcome that problem, we propose an app-
roach of injecting knowledge into the neural network instead of letting it
struggles by itself. Our proposed policy for the training process is guiding
the model to learn the label from a similarity distribution. Finally, we
conduct experiments in the chord modeling problem to show the effec-
tiveness of our method.
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1 Introduction

Our knowledge about the world is a model itself. We percept nature and sociality
by our senses, process the information by our brain, and remember the conclusion
as experience. When a new situation comes, we compare it with our experience
and conduct an appropriate judgment for the case. The artificial neural network
is much more straightforward but has the same mechanism. Given input/output
pairs in the training data, the model tries to predict the answer, correct the
prediction from feedbacks, and remember the hidden rules in the data.

Different architectures of neural networks share the same mechanism. Specif-
ically, given input/output pairs, the model during the training process needs to
learn to minimize the designed loss function to achieve better and better pre-
dictions. Theoretically, after being trained, the parameters of the model make
it able to output the correct label similar to what it has learned from the data.
However, in practice, there are often situations that the data is not enough for
the model to formulate an excellent interpretation to make the right prediction
for unseen samples.
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Many authors came up with different methods to overcome this challenge.
Most of them are about adding more information to the input. Pretrained embed-
dings (¢f. [12,14,16]) are the methods that enhance the information about rela-
tionship between the tokens via learned vectors. Transfer learning methods use
pre-trained models like BERT [4] and fine-tune them later according to down-
stream tasks.

Those approaches are suitable for the problems in a domain containing a large
amount of material like problems in Natural language processing or Computer
vision. Nevertheless, in a field in which the training data is limited even for
training pre-trained models, the transfer learning technique is useless. In such
situations, to improve the learning performance of the model, there must be a
way to inject the domain knowledge into its learning progress. Song et al. [1§]
uses an ontology to train parameters of the model selectively. In the work of
[2], instead of using a single target vector, the authors let the model guided by
multiple vectors.

The deep learning models often update their parameters directly from the
label of training data. This optimization has a potential drawback. The feedback
for the model is only whether right or wrong and the model need to look up a
different value set of parameter randomly. This try-and-error progress takes a
lot of resource for training and possibly lead to overfitting when the model only
tries to remember the training data. Based on such observation, we propose
a progressive training method that injects the domain knowledge to the neural
network by similarity metric. For that purpose, we implement a training method
that gradually turns the similarity target, which is obtained from the domain
knowledge, into the original distribution, which is annotated in the training data.

In this lecture note, besides the contributions presented at ICAART 2020
[22], we study and convey the theoretical basis of using similarity as an element
of knowledge. We also introduce an approach to extract the knowledge when the
corpus is given automatically. Our experiment shows that our method is effective
and general.

2 Backgrounds

2.1 Similarity in Cognitive Science

The similarity is a field of research in cognitive science. There are lots of research
approaches to the concept of similarity. They are strongly related to knowledge
representation; each of them focuses on a set of assumptions.

Shepard et al. [17] bases on the assumption that points within the space
can represent the concepts and the distances between the points represent the
similarity between concepts. This approach is a vital basis for machine learning
techniques like clustering or latent semantic analysis.

The distance approach is straightforward to understand, but it has the lim-
itation as the distance is symmetric. In the featural approach, Tversky et al.
[20] define a function s(a,b) as a metric of similarity from a to b. We need to
notice that this function is asymmetry and comparable. s(a, b) > s(b,a) is valid
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following this theory. In detail, the authors propose this approach based on two
assumptions: Matching and Monotonicity. Let A and B be the set of features
of a and b. The matching assumption is that similarity of a to b is a function
accepting three arguments: AN B, A — B, and B — A. Figurel illustrates how
these subsets affect the similarity function. Monotonicity assumption states that
s(a,b) > s(a,c) whenever: ANC C ANB,A—BCA-C,and B—ACC-A.

( )

Fig. 1. lllustration of arguments of similarity function.

Another theory of similarity, Gentner et al. [5] develops structural mapping.
In this theory, there are two kinds of differences which are the non-alignable
difference and the alignable difference. The alignable difference comes from the
commonality, for example, both dogs and chickens have legs, but dogs have four
legs while chickens have two legs. Non-alignable differences are the features that
do not belong to both entities. Another approach, Hahn et al. [7] evaluate the
similarity based on the minimum number of transformation steps to make one
representation into another.

2.2 Neural Network Models

The most classical deep learning model is multiple layer perceptron (MLP) or
feedforward neural network. An MLP consists of at least three layers known
as the input layer, hidden layer(s), and output layer. This simple model can
approximate a wide range of functions and classify nonlinear separable data.
Each node in this neural network is assigned with a weight value. Learning is
about adjusting these weights to fit the data. When the model makes a wrong
prediction, a signal in the form of the loss function is calculated. Based on that,
the model updates the weights to improve the predictions.

The limitation of MLP is that it cannot capture the relation of entities in
an input sequence because each input is feed through the network separately.
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The relation information is essential to obtain a good prediction. As a result, the
vanilla version of the neural network as MLLP does not perform well on sequential
data.

A different well-known neural network class is recurrent neural networks. The
precursor of this class is the Hopfield Networks [11]. This architecture makes use
of the information from the previous step in the prediction of the current phase.
Consequently, this neural network is able to handle consecutive inputs. LSTM
[9] and GRU [3] are the better versions of RNN.

Although the recurrent neural network can handle the sequential input, it
faces a challenge, namely “vanishing gradients”. This architecture maintains
the relationship between entities in a long sequence. As a result, the feedback
signals have to pass through a dense bundle of layers, which leads to the loss
value becomes zero at the first layers. Overcome such challenge, LSTM is the
neural network that can skip some unnecessary input in the sequence and focus
only on the critical parts. This architecture contains an input gate, an output
gate, and a forget gate, as shown in Fig. 2. This model can choose which input to
remember and ignore others. GRU is another architecture, which has a similar
principle of design but contains less number of parameter than LSTM.

Xt

Fig. 2. LSTM architecture can capture longer input sequence [22].

LSTM models are widely used and bring good performance in many tasks
like sequence tagging [10], speech recognition [6], or language modeling [19].

The lastest well-known architecture of deep learning is the transformer mod-
els [21]. They were invented with the idea of attention mechanism. This mech-
anism helps the model to choose the most relevant part in the sequence to pay
attention to. The advantage of this approach is that the distance between the
word does not limit the relationship probability.

2.3 Related Works

This work is not the first research to try to enhance learning efficiency by exploit-
ing knowledge at training progress. We can mention some of the well-known
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approaches, such as multi-task learning, transfer learning, curriculum learning,
and knowledge compilation.

The aim of multi-task learning is leveraging the relationship between classes
at the training time. For example, Vural et al. [23] proposed a classification
model to extract interclass relationships. Wu et al. [24] built a classifier that
can learn the relationship features using deep learning architecture in the video
classification task.

The idea behind transfer learning is to make use of learned parameters from
one domain to another domain. Compared to the target domain, the source
domain often contains more resources and is more feasible for deep learning
models to exploit knowledge. This approach is natural as the way humans learn.
For example, if a person has experience in learning a foreign language, such
experience can help to learn other foreign languages faster. Pre-trained models
like BERT [4] or GPT-2 [15] are good examples of transfer learning.

Curriculum learning approaches try to use a metric for measuring the diffi-
culty of each sample. The model then can choose to learn the sorted example
based on that metric. Gradually increasing the complexity of the learning prob-
lem makes the model learn and build the hierarchy of concepts instead of trying
to remember precisely the samples. [2] makes use of curriculum learning to make
their model achieve better performance without increasing training time.

Along with transfer learning, we can distill the knowledge from a model to
another model. For instance, [8] proposes a training procedure in which there are
two models. This procedure allows the student model to learn from the output
distribution of the teacher model. This technique is useful for model compression
for creating lightweight but robust models. Besides, knowledge distillation can
help to avoid overfitting (cf. [1]).

3 Knowledge Injection via Simlarity Metric

In a multi-class classification problem, there are K classes of the instances, and
the model needs to predict which class each instance belongs to. At first, the
features of each sentence are fed into the model as a vectorized representation.
The model then needs to predict the output by producing a K-dimension vec-
tor ¥ = [{1,-..,Jx]. This vector represents the probability distribution of the
confidence over K classes. If the prediction is far from the gold distribution, the
neural network needs to update its weights 6 to reduces the loss calculated by
KL divergence between the predicted distribution ¥ and the gold distribution y

(¢f. Eq.1 [22]).

K
~ Yi

Diw(y,9) =D vilog 0 (1)
i=1 ¢

In general, one-hot representation is the format for the target distribution
y = [y1,-..,Yk] i.e., the true distribution. However, this distribution is not
always straightforward for the model to learn. The feedback signal is simply
whether right and wrong, which does not reflect the fact that among wrong
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predictions, some of them are better than the others. As mentioned in Sect. 1,
the feedback signal for each class should be unequal. The loss value between
two similar classes should be smaller than the very different ones. At that point,
the knowledge of similarity between classes is essential for improving training
performance. We propose the training process containing two steps as following:

1. Calculate the similarity between classes and form a distribution based on that
information.

2. Apply a progressive learning start from the similarity distribution and grad-
ually turn to the true distribution.

The similarity score between two classes is calculated following the Eq. 2 [22].
In which, s(a,b) is the similarity score between two classes a and b, w(p) is the
weighted common properties of the classes.

s(a,0) = > w(p) (2)
PEPLNPy

Continuing the previous work on chord data [22], in this paper, we propose a
knowledge extraction method named Chord2Vec. Chord2Vec is built on statistics
of the occurrence of chords with contexts. Initially, each chord is represented by
a random vector. After the training process, the updated vector can reflect the
relationship and distance between chords. Given the context, which are previous
chords in a sequence, the model needs to predict the next one. Let v, and vy
are the chord vectors of chord a and chord b, the similarity function s(a,b) is
calculated by the Eq. 3.

s(a,b) = 1+ cos(vq,vp) (3)

In the formula, we add 1 into the cosine similarity to make sure the outputs of
the function is greater or equal to 0.

After calculating the pairwise similarity score, we construct the similarity
vector representation, in which each unit calculated following the Eq. 4 [22].

s(t, k
Sak = ;7) (4)
Zj:l s(1, 7)

Finally, the mass distribution is calculated from the similarity vectors fol-
lowing the Eq.5 [22]. To make use of the knowledge of similarity in the training
period, we apply a progressive learning process.

exp(Sar/T)
S0 exp(sa; /T)

We use a variable T' to control the learning temperature. At the beginning of
the process, we use a high value of T" and gradually decrease it following Eq. 6
[22]. As a result, the model is forced to learn from the similarity distribution
and slowly turns to the actual distribution.

Ty

T, == 6
ETI N (6)

tok = softmax(sqx) ==

()
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4 Experiments

This section has two main purposes. First, we verify the effectiveness of knowl-
edge injection in a training process when similarity knowledge is given by the
user. Second, we aim at showing that similarity knowledge can be automatically
learnt from a dataset. For that, we introduce an approach called Chord2Vec.
Note that this idea of automatic knowledge extraction is new and has not well
investigated in [22].

4.1 Experimental Settings

To verify the effectiveness of our method, we choose the chord modeling problem.
We use the ABC dataset [13] which are from 17 Beethoven string quartets. For
the experimental setup purpose, we split all pieces into phrases. And because
we do not model the duration of each chord, repetitions of phrases are removed.
Table 1 represents some important properties of the final dataset.

Table 1. Properties of the final dataset.

Property Value
Number of phrases 968
Average length of phrases| 21
Number of keys 21
Number of chord types 13

We used 5-fold cross-validation and two metrics as perplexity and accuracy
to assess the model. We use 200 phrases as the evaluation data in each fold, and
the rest to train the model. We use the data augmentation technique for the
data in the training set. Each phrase is transposed into 12 keys. At last, we got
8000 samples in the training set.

The deep learning model in our experiments is LSTM. The embedding size,
hidden size is set to 128. We optimized the model with Adam Optimizer. Learn-
ing rate is 1073. The early stopping patience is 10 and maximum number of
epochs is 200.

As described in Sect. 3, we conduct experiments to confirm whether it is fea-
sible to extract knowledge directly from the corpus to improve model efficiency
in specific tasks. This has two meanings. Firstly, we can cross-evaluate the effec-
tiveness of knowledge injection in our method. Secondly, it gives a hint about
how to guide the model using knowledge injection in domains where people do
not have much experience.

The idea is borrowed from Word2Vec [12]. The musician places the chords in
a music sheet intentionally. If the placement is random, the creation is not called
music, it is just a sequence of noise. By such observation, we have a hypothesis
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that there must be a kind of grammar in the music, and the machine learning
model can learn such knowledge.

We sort the chord by descending frequency and the chord appearing less than
5 times in the corpus is eliminated. We train the Chord2Vec with the starting
learning rate is 0.025 and is linearly reduced to zero. We stop the training process
as soon as the loss stop decreasing.

4.2 Experimental Results

As reported in our previous paper [22], training model with our proposed knowl-
edge injection overperformed using the one-hot vector as the target. The chord
properties which we use to calculate the similarity score includes: token name, key
name, key number, triad form, figured bass, and note pair. Besides, the weights for
properties make the performance of the model better than using uniform weights.
The optimal weight setting for this approach is (16,32, 16,4, 4, 32). Interestingly,
our novel approach using Chord2Vec achieved state-of-the-art results with hyper-
parameter value Ty = 0.025 and A = 0.01. Although this value does not create a
big gap with the performance of knowledge injection with chord properties, this
result still can confirm that injecting knowledge with chord property is reason-
able and the knowledge can be learned automatically from the corpus.

Table 2. Performance of different approaches.

Approach Perplexity
One-hot vector 3.48
Uniform weight set | 2.49
Optimal weight set | 2.39
Chord2Vec 2.37

Figure 3 shows similarity matrices calculated by chord properties with weight
sets (1, 1, 1, 1, 1, 1) and (16, 32, 16, 4, 4, 32) as well as calculated by cosine
similarity of Chord2Vec vectors according to Eq. 3. Axis X and Y of the matrices
are the ids of the chords. In all three matrices, high similarity points often gather
in the diagonal (Table 2).

The figure of the similar pattern calculated by cosine has more diverse simi-
larity points. However, there are rows and columns with all null values because
of some chords which do not exist in the corpus used to train Chord2Vec embed-
ding. It is one of the limitations of this approach compared to human knowledge.
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Similarity from weight set Similarity from weight set Similarity between
1,1,1,1,1,1) (16, 32, 16, 4, 4, 32) chord vectors
[ 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250

0 0

50 50
100 100
150 150
200 200

250 250

Fig. 3. Similarity matrices are calculated base on weighted properties and chord vec-
tors.

5 Conclusion

This work leverages the proposal in our previous paper [22]. Human knowledge
is a model about the world, and such information can guide the neural network
to learn better. In this paper, we have introduced the theory basis for knowl-
edge encoding as a similarity metric and propose an approach to make use of
knowledge during the training time of the model.

To experiment with our idea, we defined a similarity encoding based on the
common weighted properties of chords to deal with the problem of chord pre-
diction. There is an interesting finding in our experiment that turning similarity
target to one-hot target using appropriate temperature and decay can signifi-
cantly improve the performance of the model.

In this paper, we also make an additional experiment to extract the knowl-
edge from the corpus, then compare its performance with expert knowledge. The
result confirms the effectiveness of our method and gives us a hint to use this
method as a transfer learning approach in a suitable domain. The model can
learn to construct the similarity encoding if there is a large enough corpus. The
proposed method in this paper can be applied to a wide range of works using
neural networks.
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