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Abstract. Human conversations are notoriously nondeterministic, and
identical conversation histories can nevertheless accept dozens, if not
hundreds, of distinct valid responses. In this paper, we present and
expand upon Conversational Scaffolding, a response scoring method that
capitalizes on this fundamental linguistic property. We envision a con-
versation as a set of trajectories through embedding space. Our method
leverages the analogical structure encoded within language model repre-
sentations to prioritize possible conversational responses with respect to
these trajectories. Specifically, we locate candidate responses based on
their linear offsets relative to the scaffold sentence pair with the greatest
cosine similarity to the current conversation history. In an open-domain
dialog setting, we are able to show that our method outperforms both an
Approximate Nearest-Neighbor approach and a naive nearest neighbor
baseline. We demonstrate our method’s performance on a retrieval-based
dialog task using a retrieval dataset containing 19,665 randomly-selected
sentences. We further introduce a comparative analysis of algorithm per-
formance as a function of contextual alignment strategy, with accompa-
nying discussion.

Keywords: Response prioritization - Utterance retrieval - Word
embeddings + Conversational Al

1 Overview

The one-to-many hypothesis of dialog as explored by Zhao et al. [30] asserts that
the correct next response to for a given dialog history is not dependent on the
dialog history alone, but is instead a function of many variables related to user
state, world state, and dialog state, and that it is nontrivial to extract them
all. This leaves connectionist approaches to dialog modeling with an interesting
predicament. How can one apply a classic training paradigm to dialog modeling
when there is no single right answer to the question of “what should I say next?”
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A commonly-applied solution includes the use of variational autoencoders
[2,21,26,28,30], which model the unknown conversational elements as a stochas-
tic process. While often effective, this method is data-hungry, and high-quality
conversational data is scarce. Consequently, it is often necessary to train the lan-
guage models on larger datasets of lesser quality, such as lightly pre-processed
exchanges from online chat forums, rather than on small but high quality
datasets.

In [27] we presented an alternate approach: a Conversational Scaffolding
method that leveraged the conversational patterns in a small, high-quality scaf-
fold corpus in order to rank candidate responses in a retrieval-based conversation
system. This paper expands and improves upon that work by presenting a more
detailed analysis of the scaffolding approach as well as a comparative study of
algorithm performance as a function of contextual alignment method. We frame
the conversational scaffolding method in terms of dialog trajectories, with linear
offsets between the embedded representations of context sentences used in order
to find the most appropriate match.

A key advantage of this approach is its ability to leverage the power of con-
nectionist systems while still adhering to the conversational norms and patterns
exemplified by a small, highly curated dataset. Specifically, the language model
used to embed context sentences is a classic connectionist system trained on
large scale, broad-topic text corpora, and is able to leverage the inherent lin-
guistic knowledge common to such models during the embedding process. Once
each sentence has been localized within an 512-dimensional linguistic space, how-
ever, the process of analyzing the dialog history and scoring candidate responses
is handled via a low-resource algorithm.

1.1 The Challenge of Large Conversational Datasets

While the internet era has provided unprecedented access to large-scale text
corpora across a variety of styles and topics, high-quality conversational data is
more difficult to come by. Unmoderated online interactions, while plentiful and
easy to harvest, often fail to exhibit the topical continuity, common courtesy, and
social restraint that one might like to replicate in an automated chat system. This
is caused not only by the unfortunate prevalence of trolling [6,9,24], but also by
the varying personalities, ideologies, and social competencies of the conversation
participants themselves. Dialogs extracted from movie scripts [32] or technical
support forums [18] are often more coherent, but fail to exhibit the conversational
patterns of common, everyday speech. (It would seem odd indeed if an automated
personal assistant trained using such data were to provide unsolicited technical
advice, or profess its newly-discovered love toward its conversation partner).

A further complication arises from the crowd-sourced nature of all such online
conversational data. The life histories, demographics, political opinions, and gen-
eral likes and dislikes of the conglomerate chatters are so disparate that any
language model trained using them is almost guaranteed to seem schizophrenic,
producing mutually incompatible statements with distressing frequency.
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We seek to alleviate these challenges by introducing a conversational
response-scoring method that does not require such massive amounts of data,
and can instead be used in conjunction with a relatively small scaffold cor-
pus. Our method also does not require any network updates or fine-tuning of
the Incorporated language models, and is often able to respond appropriately
to conversation histories that are not well represented in the scaffold corpus
because it relies, not on the specific embedding locations of individual sentences,
but rather on their locations relative to one another. It is the general patterns
of language, the dialog trajectories that describe the transition from question to
answer and back again, that we seek to emulate.

1.2 The Analogical Structure of Embedding Spaces

In addition to generating and categorizing text, it has become increasingly pop-
ular to extract the hidden layer activations of large language models for the pur-
pose of semantic evaluations. Favorite models for this purpose include Sentence-
level embedding spaces such as skip-thought vectors [15], quick-thought vectors
[17], InferSent [10], and Google’s Universal Sentence Encoder [8], as well as con-
textualized word embedding models such as BERT [12] and ELMo [23].

A driving force behind this tendency is the phenomenal and fascinating abil-
ity of word-level embedding spaces to encode human-interpretable knowledge
in the relative locations of embedded texts. For example, the word2vec [19],
GLoVE [22], and FastText [4] models can be used to solve linguistic analogies
of the form a:b::c:d. This is generally accomplished using vector offsets such as
[Madrid - Spain + France = Paris] or [walking - walked + swimming =~ swam)]
[14,20]. The sums and differences between the embedded representations of the
first three words are calculated, and then a nearest-neighbor search across the
model’s vocabulary (excluding the three source words) produces the solution to
the analogical query.

Our research extends this notion of analogical relationships into the realm of
multi-word embeddings. We postulate (and show via our results) that sentence-
level embedding spaces can contain similar analogical relationships, and that
these relationships can be utilized to select plausible responses in open-domain
dialogs. Thus, rather than evaluating candidate responses based on their strict
distance to exemplars in the scaffold corpus, we instead rely on the relative
distance between pairs of sentences in order to locate an idealized response vector
which corresponds to point d in the classic a:b::c:d analogical form. Candidate
responses are scored based on their cosine distance from this target point.

2 Embeddings, Scaffolds, and Dialog Trajectories

We begin our response-ranking process by encoding a reference corpus, called our
scaffold, using one of many available pre-trained embedding models. Incoming
utterances are matched against the scaffold corpus, and the top n contextual
matches are used to calculate an analogically coherent response, or target point
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Fig. 1. PCA Reduction: Dialog trajectories from three conversations in the Chit-Chat
Dataset, encoded using Google’s universal sentence encoder lite [8]. Blue lines indicate
chat partner 1, red lines are chat partner 2. Alpha values correspond to the index of
each utterance over time, with faint lines representing earlier messages and dark lines
representing later ones. The objective of our scaffolding algorithm is to find subpaths
within the scaffold corpus which match the general location and trajectory of the
current dialog history, then user the next point on the highest-ranking subpaths to
select the best response candidate. (Color figure online)

within the embedding space. The candidate response with the lowest cosine
distance from the target point is selected as our agent’s dialog output.

Figure 1 shows sample dialog trajectories from three conversations. In each,
it is possible to observe the meandering of the conversation topic and utterance
type over time. Critically, one can observe a certain tendency toward repetition,
both within each plot and between the plots as a whole, and this behavior is
equally visible when dimensionality reductions other than PCA are used. In
short, while language is combinatorial in nature and thus able to represent a
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nearly infinite span of ideas, the patterns of language are far more tractable.
Certain types of statements encourage certain types of responses, regardless of
the specific conversation topic. These patterns can be detected and imitated via
the use of analogical relations within a pre-trained embedding space. Thus, a
relatively small corpus of exemplars can be used to guide the response ranking
system of a conversational agent.

After due consideration, we selected Google’s Universal Sentence Encoder
Lite [8] as the embedding model of choice for this application. This decision was
based primarily on its unusually high performance as a heuristic for semantic dis-
tance. Experiments in our laboratory revealed that USE Lite was able to achieve
a Pearson’s r score of 0.751 on the 2017 Semantic Textual Similarity benchmark,
the highest score of any model we tried, as shown in Table 1. It is possible that
Google’s large model would have performed even better, but exploratory appli-
cations found the large model too slow to implement on a sentence-by-sentence
basis. In a real-time conversational scenario, there is no possibility of batch-
processing utterances, and so we opted to consider only those models which
might reasonably be employed in a real-world setting.

Table 1. Model performance on the SemEval 2017 Semantic Textual Similarity Bench-
mark [7] and the Stanford Natural Language Inference Corpus [5] evaluated using Pear-
son’s r and Spearman’s rho (higher is better). The greatest value in each column is
shown in bold-face text.

STSr |STS rho| SNLIr | SNLI rho
GPT-2 —0.052 |0.092 —0.007 |0.019
InferSent 0.718 |0.702 0.273 |0.279
Google use lite 0.751 | 0.737 0.366 | 0.367
Transformer-XL | 0.341 |0.341 0.112 | 0.112
Skip-thought 0.214 |0.296 0.046 |0.108
BERT BoW 0.495 |0.490 0.166 |0.174
FastText BoW 0.547 |0.543 0.248 |0.257
Glove BoW 0.404 |0.440 0.241 |0.247

2.1 Conversational Scaffolding

Conversational Scaffolding [27] is a response-ranking algorithm that relies on
the structural properties of an analogically coherent embedding space in order
to select high-quality candidates from a repository of possible responses. In this
paper, the embedding space used is that provided by Google’s universal sentence
encoder lite [8].

Figure 2 gives an overview of our conversational scaffolding algorithm. Given
a dialog context of variable length, our algorithm first locates a set of high-quality
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Dialog Context

Have you seen my hat?

No, I haven't.

Scaffold Corpus

Hey, how are you?

I'm doing well, thanks.

Conversation

Localization
Method

Hey, did you see my wallet?
can't find it anywhere.

Naw, I haven't seen it. Hope
you find it though.

Well, thanks anyway.
Candidate
Responses

Thanks, I'll keep looking.

Candidate Response
Oh, it was right here the Scoring Algorithm
whole time!

Haha, that's not true! l

Scored List of
Candidate Responses
0.821 Thanks, I'l keep looking.

0.507 Oh, it was right here the
whole time!

0.217 Haha, that's not true!

Fig.2. Workflow diagram: The dialog context is converted to an array of sentence
embeddings using Google’s Universal Sentence Encoder, then passed to an embedded
concatenation localization function to determine the best contextual match(es). The
matched utterances (orange) along with their direct successors (red) are then passed
to the Response Scoring Algorithm, which assigns a numerical value to each candidate
response. Image originally published in [27]. (Color figure online)

contextual matches within the scaffold corpus. These contextual matches, along
with the dialog sentence directly following each context match, are then passed
to one of several scoring algorithms.

2.2 Contextual Alignment

We use a contextual alignment process to match incoming sentences against
similar sentence patterns within a scaffold corpus. This can be done naively by
using an Approximate Nearest Neighbor algorithm based on a simple Euclidean
distance metric. In this paradigm, for a dialog context of length n, the optimal
contextual match can be identified as follows:

n

min. Y [Jvi — szl (1)

=1

where {v1,...,v,} are the vector embeddings of the n most recent sentences
in the current dialog and {s,41, ..., S.4n } Tepresent the vectors located within a
sliding window of length n beginning at element z of the pre-embedded scaffold
corpus. The notation ||z|| represents the Euclidean norm of vector z.

This Euclidean distance approach is easy to calculate, but it ignores the pow-
erful analogical structure inherent within the embedding space [27]. In order to
capture such subtleties, we compare this approach against two alternate method
of contextual alignment: Embedded Concatenation and Difference Vectors.
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Embedded Concatenation. Embedded Concatenation leverages the structure
of the embedding space by concatenating the input sentences prior to encoding
them via Universal Sentence Encoder Lite [8]. A naive Euclidean distance metric
is then used to match the embedded concatenation against each element in the
pre-embedded scaffold corpus. The optimal contextual match is:

min. |lembed(hy + ...+ hy,) — s.|| (2)

where {hy,...,h.} are the plain text (i.e. unembedded) utterances in the dia-
log history, the 4+ symbol represents string concatenation (with an extra space
inserted between sentences), s, is an arbitrary vector located within the pre-
embedded scaffold corpus, and embed(z) denotes the process of embedding a
plain text utterance z to obtain its corresponding vector representation.

Difference Vectors. The Difference Vectors approach embeds each sentence
in the dialog history separately, then searches for a contextual match with the
smallest average distance across all sentences:

miny. (||lembed(hir1) — embed(h;)|| — ||sit1 — sill )2 (3)

Note that the described localization methods assume that only a single, opti-
mal, contextual match is desired. This was done for simplicity. In reality, it is
often beneficial to take the k£ best matches, and in fact many of the scoring algo-
rithms in Sect. 3.2 require k£ > 1. The scattershot diagram in Sect. 2.3 assumes
a value of k = 3 for clarity. In our empirical experiments, a value of kK = 5 was
used.

2.3 Candidate Response Scoring

In [27] we presented three candidate response scoring algorithms for conversa-
tional scaffolding, each of which assumes a set of candidate responses g; and a
recent dialog sentence c. We briefly review these algorithms here.

1. Naive Analogy. This algorithm is based on the simplifying assumption that the
closest context match within the scaffold dataset must of necessity be paired with
an optimal response. (In reality, a scaffold sentence with a slightly larger distance
from the user utterance might actually be paired with a superior response; this
is addressed in the scattershot and flow vector methods, below). Using a value
of k = 1, the naive analogy locates the sentence in the scaffold corpus whose
embedded representation is closest to the most recent dialog utterance, then
follows the conversational trajectory between that sentence and its (embedded)
successor in order to find a target point.

2. Flow Vectors. The flow vectors approach is based on the idea that conversa-
tions tend to “flow” from certain regions of embedding space into others, and
that all matching utterance pairs will reflect the same general flow direction.
Accordingly, rather than simply taking the most promising dialog, we average
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the dialog trajectories from multiple contextual matches and then look for a
candidate utterance that lies along the resulting flow direction.

3. Scattershot. The scattershot scoring algorithm takes the one-to-many prop-
erty of language into account by assuming that there are many valid responses
for each dialog context, and searches for a candidate response that matches any
of several high-scoring context matches. In this method, the vector differences
between each context match and its respective successor are calculated sepa-
rately, then added to the vector embedding of the most recent utterance in the
dialog history. The result is a set of k target points, each of which represents a
possible response. The candidate nearest to any one of these targets receives the
highest score.

Of these three algorithms, we found in prior work that the scattershot algo-
rithm performed most impressively with respect to the baselines as well as to
the other conversational scaffolding algorithms. We expand upon that result in
this paper by comparing the algorithms across a variety of context lengths and
contextual matching strategies, and show that scattershot continues to be the
strongest method.

3 The Scattershot Algorithm

The scattershot algorithm (Fig. 3, Algorithm 1) is based on three key princi-
ples: (a) the idea that dialog modeling is a nondeterministic task, and there are
many correct responses to a given dialog history, (b) under most dialog con-
trol paradigms, the selection of possible response candidates is finite, and (c) in
many conversational settings, it is not necessary to find the optimal response for
a given context; you merely have to be good enough to satisfy the user.

Accordingly, the scattershot method examines a number of trajectories iden-
tified in the scaffold conversation as being a good contextual match for the
current dialog history, and then extends each trajectory to find the target point,
or ’ideal response’, that would be implied by this trajectory. The repository of
candidate responses is then examined to find the candidate which has the mini-
mum distance of any sentence to any target point, and this response is given the
highest ranking. Intuitively, this process can be described as seeking a candidate
response that is related to the dialog history in the same way that the scaffold
corpus successor is related to the sentences that precede it. It is an extension at
the sentence level of the classic A:B::C:D analogy structure commonly used in
conjunction with word embeddings [14,20].

3.1 Scattershot Performance as a Function of Contextual Matching

No algorithm exists in isolation. The effectiveness of the scattershot algorithm
(and other conversational scaffolding methods) is impacted by the methods used
to select the contextual matches to be used as its starting points. We evaluate
this impact on a response prioritization task across four datasets, which were
cleaned and pre-processed as described in [27].
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b1 g

Fig. 3. Diagrammatic depiction of the scattershot algorithm for conversational scaffold-
ing. ¢ (green) represents the embedded input sentence, a; (blue) represent the nearest
embedded sentences from the scaffold corpus, b; (red) represent the associated embed-
ded successors to a; in the scaffold, di = ¢+ (b; — a;) (yellow) represent the ‘ideal’
responses, and g¢; (grey and black) represent embedded candidate responses with gs
(black) representing the response selected by the scattershot scoring algorithm. Image
originally from [13]. (Color figure online)

Algorithm 1. Scattershot.

Inputs:

h = Embedded conversation history.

r = Embedded candidate responses produced by the enerators.

II%\ L= Embedded Chit-Chat dataset

nx|h|—

Output:

S ={s1...s; | s €[0,1]} where s; is the score for r;

1: ¢ [h1 —hoy. s hp — hp_1]

2: for i in 1..5 do > Find the n closest points in C to c.
3: a; «— min;(dist(u,C)) > Where dist is any valid distance metric.
4: b; «— Find the utterance in C that directly follows a;

5: d; —b; —a; +c > Where d; is the “ideal” response vector to b;.
6: end for

7: for r; in r do

8: gi «— min(dist(r;,d))

9: end for

10:

— 9
return 1.0 Tl

The response prioritization tasks was set up as follows. 13,244 windowed
conversations were selected from four text corpora, with equal representation
from each corpus:

1. Chit-Chat! [27]

2. Daily Dialog? [16]

3. A 33 million word subset of Reddit® [25]

4. Ubuntu Dialogue Corpus® [18]

! https://github.com/BYU-PCCL/chitchat-dataset.

2 https://aclanthology.coli.uni-saarland.de/papers/I17-1099/i17-1099.
i http://files.pushshift.io/reddit/.

https://www.kaggle.com/rtatman/ubuntu-dialogue-corpus.
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The Chit-Chat dataset, collected locally via a university competition, con-
tains 483,112 dialog turns between university students using an informal online
chat framework. The Daily Dialog dataset simulates common, real-life inter-
actions such as shopping or ordering food at a restaurant. Reddit® covers an
array of general topics, with copious instances of web links, internet acronyms,
and active debate. Finally, the Ubuntu Dialogue Corpus contains 966,400 dialog
turns taken from the Ubuntu Chat Logs, with a heavy emphasis on troubleshoot-
ing and technical support.

We then set aside 3,311 conversations (about 5% of the smallest corpus)
from each dataset to create the evaluation corpus, with the unused portions
of each dataset remaining as scaffolding. The scaffold corpus was embedded
using Google’s Universal Sentence Encoder lite [8], an embedding algorithm that
strikes a strong balance between semantic coherence and speed of computation.

We then windowed the evaluation corpus so that rather than 3,311 long con-
versations, we instead had 13,244 windowed conversations with 5 dialog turns
each. Each dialog from this windowed evaluation set was paired with six candi-
date responses: (a) the correct follow-on sentence for the given dialog context,
and (b) five distractors randomly chosen from the same text corpus as the cor-
rect answer. The scaffolding algorithms in Sect. 2.3, along with several baselines
described in Sect. 3.1, were tasked with identifying the true response.

Baselines. We selected three baselines to compare along with our conversational
scaffolding algorithms, the objective being to determine whether performance
improves when conversational trajectories are taken into consideration.

Naive Nearest

This algorithm naively selects the successor of the best context match as the
‘ideal response’ or target point. In other words, rather than calculating the ideal
response as d; = ¢ + b; — a;, the naive-nearest algorithm calculates d; = b;.
This approach ignores the analogical nature of language by assuming that the
successor to the best context match represents an optimal response, even if the
contexts do not match exactly.

Approzimate Nearest Neighbor (ANN)

This algorithm implements an Approximate Nearest Neighbor scoring strategy.
Its ideal target point is calculated in the same way as the flow vectors algo-
rithm, but with d; = 1/n Y b;. The impact of conversational trajectories are
ignored, and the algorithm instead orients itself based on the successor utter-
ances extracted from the scaffold corpus.

Random
This baseline randomly selects one of the candidate responses without reference
to the dialog history. As there are six candidate responses for each evaluation

5 Due to the massive size of Reddit, we only used a subset of the comments and posts
from June 2014 to November 2014.
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dialog, only one of which is correct, we can expect the random algorithm to
perform with an accuracy of approximately % ~ 16.7%.

Neural Network

We also implemented a multilayer regression network using Tensorflow [1]. As
input it accepts two utterances from the dialog history, each embedded as a 512
dimensional vector using the Universal Sentence Encoder Lite. It then predicts
the ideal target point as a 512 dimensional output vector. The hidden layer sizes
were 2048 and 2014 units respectively, with exponential linear unit activation
functions, MSE loss, and 25% dropout.

Table 2. Retrieval accuracy on a dialog control task with 13,244 distinct conversations.
A context size of n = 2 was used for the dialog history. The highest-scoring algorithm
in each column is shown in bold-face text. The neural network baseline was unable to
select a response for embedded concatenation because it requires two distinct vectors
as input, and embedded concatenation provides only one reference vector.

euclidean dist. | diff. vectors | embed. concat. | average
scattershot 59.30% 63.99% 68.07% 63.79%
flow vectors | 60.41% 61.53% 62.47% 61.47%
naive-analogy | 56.16% 61.88% 62.29% 60.11%
naive-nearest |56.15% 36.45% 58.97% 50.52%
ANN classifier | 65.54% 37.711% 64.96% 56.07%
network 50.41% 50.41% n/a 33.61%
random 17.13% 16.60% 16.06% 16.60%

Results. Experimental results are shown in Table 2. We note with interest
that the contextual matching method chosen has a high impact on all scoring
algorithms except for flow vectors and the neural network baseline. With a peak
accuracy of 68.07% when paired with embedded concatenation, the scattershot
algorithm shows a clear advantage over all other methods, outperforming the
nearest baseline by 2.53%. We believe that this is because scattershot takes the
one-to-many nature of language into account, allowing the system to select a
candidate that closely matches one of many possible valid responses.

It is also useful to compare our naive-analogy algorithm with the naive-
nearest baseline. These two algorithms are identical except for their analogi-
cal content. Our results show that leveraging the inherent analogical properties
of the embedding space results in an overall accuracy improvement of 3.32%
when using embedded concatenation and by 25.43% when using difference vec-
tors. Additionally, we observe that the naive-analogy algorithm outperforms the
naive-nearest algorithm in 2/3 scenarios, supporting the theory that response
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accuracy can be improved by leveraging the inherent analogical structure of the
embedding space.

Surprisingly, the same pattern was not observed when comparing the flow
vectors and ANN classifier algorithms. Like naive-analogy and naive-nearest,
these two algorithms differ primarily in their use of analogical structure. The
fact that ANN tends to outperform flow vectors suggests that in this case, the
averaging of multiple dialog trajectories (a.k.a. “flow vectors”) results in a target
point that lies far from the manifold of valid responses, whereas the averaging
of multiple actual sentence embeddings (as per ANN) remains closer to the
valid manifold. Further research is needed to understand this phenomenon and
quantify the complex structures found in semantic embedding spaces, and in this
direction we applaud the work of [31] and [11].

3.2 Generalization Across Datasets

We found ourselves curious as to what extent each dialog corpus was able to
generalize to the other corpora in the evaluation set. We therefore implemented
the following experiment: Using the scattershot algorithm and embedded con-
catenation localization method, we created a confusion matrix showing how well
the algorithm performed when using only one of our four corpora as its scaffold.

Table 3. Confusion matrix showing how well each dataset, when used as a scaffold
corpus, is able to select appropriate responses for dialogs drawn from the other corpora.
Each column contains a scaffold corpus, each row an evaluation corpus. The scatter-
shot algorithm was used in conjunction with the embedded concatenation localization
method, with a context size n = 2 and with 3,311 evaluation dialogs drawn from each
corpus. The highest accuracy level in each column is shown in bold-face text.

Chit-Chat | Daily Dialog | Reddit | Ubuntu
Chit-Chat .5826 .6563 .6068 | .3455
Daily Dialog | .5421 .6540 .b847 | .3582
Reddit .5886 .6261 .7508 | .3860
Ubuntu 4971 .4666 5639 |.7523

Results are shown in Table 3. The unusually high performance seen when
both the scaffold and evaluation corpus were taken from the Ubuntu dataset can
be explained by the high level of overlap within the Ubuntu dialog corpus. An
investigation of the data downloaded from Kaggle reveals that between the three
files (“dialogueText_301.csv”, “dialogueText_196.csv”, and “dialogueText.csv”)
there was an overlap of 53.35% in the original data (14,318,055 non-unique turns
out of a total of 26,839,031 turns). As a result, the evaluation corpus drawn from
the Ubuntu dataset contained exact copies of dialogs in the Ubuntu scaffold
corpus. The other corpora had little or no overlap.
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3.3 Retrieval from Large Data Repositories

The end objective of our research is to facilitate the creation of versatile con-
versational systems that are able to select dialog responses the conform to a
friendly, upbeat and courteous conversational style. Candidate utterances for
such systems may be generated by an ensemble of response generators, retrieved
from a databank of possible utterances, or created algorithmically via a context-
free grammar or template system, but in all cases there must be a means of
deciding which candidate utterance is “best”, i.e., which one should be delivered
to the user. In generative systems, too, it is critical that we develop more and
better methods for conversational scoring. Metrics such as n-gram matching,
METEOR [3], BERTScore [29] and perplexity are helpful, but not yet sufficient
for the aspirations of the research community.

To explore the effectiveness with which our system ranks responses and the
types of conversations it is able to produce, we allowed a human to type the
opening line of dialog with an agent executing the scattershot algorithm. The
objective was to see whether a dialog agent choosing from among ca. 10,000
candidate responses could leverage the analogical structure of language in order
to create a plausible conversation. A randomly-selected sentence from a repos-
itory this size would, of course, be meaningless and generally widely off-topic.
We wanted to see if our system could do better.

Figures 4 and 5 show typical conversations generated using the method
described above. Interestingly, although the 19,665 randomly-selected candidate
utterances were drawn from all four conversational datasets, almost all of the
ones chosen by the scattershot algorithm came from the Chit-Chat dataset. This
suggests that the Chit-Chat dataset was an unusually good stylistic match for
the informal conversation patterns used by the human chatter.

We permitted one augmentation to our algorithms for this experiment: Can-
didate responses that were too similar to the most recent statement in the dialog
history were excluded from consideration®. This constitutes an extension at the
sentence level of the traditional exclusion of source words when solving analog-
ical queries via word embeddings [14,20]. Without it, the scaffolding algorithm
tends to select sentences that parrot or reflect the content of the dialog history
rather than progressing to new topics.

4 Analysis and Future Work

A key insight to be taken from our results is the observation that the average of
several valid responses cannot be assumed to also represent a valid response. This
amounts to taking the centroid of a (possibly oddly-shaped) manifold, resulting
in a vector that might easily represent a nonsense sentence. For example, it
is important to realize that the ‘ideal’ responses d; depicted in Fig.3 do not
necessarily represent an optimal reply; they may in fact be the vector embedding

6 Similarity was defined as Euclidean distance < 7, where 7 is a hand-selected thresh-
old value.
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> Hey. What’s up?

Hey, whats up?

> Not much. How is your day going so far?

Hi, it’s good!

> Good to hear. What are you working on?

I'm figuring out my budget

> Oh that sounds fun. What are you going to do after you finish?

Well I plan to get into the accounting program

> Oh cool! Do you like accounting?

I’ve thought about going into cardiology, that seems interesting, but also I'm
considering anesthesiology.

> Oh wow. Those are both very different from accounting. Are they hard?
semester for you and me. Is your next semester seeming to look like its going to
be a little easier?

> I think this semester will be fun but a little challenging.

That it does! Even though you may not be getting everything out of your classes
now but oh well...;)

> Do you think you will have any time to go to see a movie this semester?

That it does! Even though you may not be getting everything out of your classes
now but oh well...;)

> So, where are you from originally?

Haha well I'm from Arkansas

> Oh cool. I have never been there. Do you like it?

Ya actually I did enjoy the shreveport one when I lived there last year (2012
Mardi gras) but you’re right, it’s almost nothing Compared to most of the NO ones.
Still very enjoyable. My of my friends lives right on the route so it was nice
having somewhere to go for it lol

> haha fun. Do you like it here then?

Cool

> If you could vacation anywhere, where would it be?

well,its like 1 am here,i should get to bed, it was nice talking to you, have a
great day.

> Oh wow. Goodnight. Talk to you later.

Thanks. You too!

Fig. 4. Conversation generated using the scattershot scaffolding algorithm, the embed-
ded concatenation localization method, and distance threshhold 7 = 0.6. Human-
generated text is preceded by the > symbol. In this example, even the 7 threshhold is
not sufficient to keep the agent from getting caught in a sentence repetition, however,
it successfully switches to a new topic on the next utterance. Conversation originally
published in [27].

of a nonsense sentence. Rather, these ‘ideal’ responses, or target points, function
as a heuristic to gauge whether a specific candidate response is conversationally
appropriate.

A future direction for this research should include the use of a sufficiently-
trained decoder to render the target point directly into text, thus enabling
researchers to probe the structure and behavior of the embedding space in more
detail.
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> Hello.

Hey!

> How are you doing today?

How are you?

> I am good. How has your day been so far?

I've been pretty good, I was sick earlier, but better now.

> Oh man, that stinks. What were you sick with? I am glad you are feeling better
though!

I had like ten servings of it.

> Uh oh. That sounds like a lot. Was it good food?

I had such tasty food too.

> Yum. What is your favorite food?

yum sounds so good right now haha! I love every fruit! I like rice and pickles too
haha. but like you I like just about everything

> I love fruit too. So, have you seen any good movies lately?

Black panther is so good!!!

> Yeah I really liked it too. I think that or, Thor Ragnarok might be my favorite
Marvel movie.

No , I haven’t . This is my first time to watch it

> Oh yeah?

«*It flips him off.x*

> What are some of your favorite books?

It’s a little bit of romance and comedy.

> Cool. Well, I have to go. It has been nice talking to you!

Okay ! Bye !

Fig.5. Conversation generated using the scattershot scaffolding algorithm and
Euclidean distance localization method, and distance threshold = = 0.5. Human-
generated text is preceded by the > symbol. In this example, the agent is able to
maintain several fairly coherent dialog turns, then pivots appropriately to the topic
of movies in response to user cues. It also successfully detects and responds to an
indication that the conversation is over. Conversation originally published in [27].

Another useful direction for future research would be the use of a dynamic
context length depending on the content of the dialog history. For example,
generic sentences such as “yes”, “of course not”, or “i’'m not sure” provide little
conversational context, and are generally meaningless in isolation, whereas other
sentences may require little or no context at all in order to enable an optimal
response. The taks of dynamically determining when further context is needed,
and how much of it to include, is a fertile area for future research.

Going forward, we imagine a possible future agent which generates responses
via a neural architecture, but which has been trained to adhere as closely as
possible to a scaffold corpus in its utterance patterns. Future work in this area
should explore neural dialog models that utilize a scaffold corpus during loss
calculations. A comprehensive study of distance metrics should also be under-
taken, as it is not necessarily certain that the de facto standards of Euclidean
and cosine distance are the best possible heuristics for semantic similarity; L1
distance or correlation coefficients might be more effective.
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As new language models and embedding algorithms are constantly being
developed, another important area for future work involves the testing and anal-
ysis of new semantic embedding spaces, with an eye towards identifying the ones
that are most appropriate for conversational scaffolding, analogical reasoning,
and other processes that depend on the semantic properties and innate geome-
try of the embedding space itself.

5 Conclusion

As automated personal assistants become more prevalent, developers will need
to strike a balance between control and spontaneity. We want our conversational
systems to behave in unexpected, even surprising ways, even pushing humans
out of their comfort zone at times. But we also want them to be kind and courte-
ous, and refrain from insulting their users, making broadly offensive statements,
or giving inaccurate information. Striking this balance requires finesse, and we
believe that conversational scaffolding strikes a good balance between leveraging
the power of connectionist systems and maintaining the continuity of a heavily
curated system.

The methods outlined in this paper describe an enticing middle ground,
allowing a scaffold corpus to define an overall personality or conversational
style for the agent without directly restricting its responses. In this paper, we
have presented a scaffolding algorithm that uses pre-trained sentence embed-
dings to (a) leverage the inherent analogical properties of the embedding space
and (b) account for the one-to-many property of language while (¢) encourag-
ing responses that closely align with the scaffold corpus. Our scattershot algo-
rithm is able to predict the correct follow-on sentence for a given dialog history
with nearly 70% accuracy, outperforming both ANN and naive nearest-neighbor
baselines. It is also able to produce engaging and (sometimes) believable con-
versations with topical coherence a relaxed, conversational feel. We believe that
conversational scaffolding and the scattershot algorithm offer a unique and valu-
able new paradigm for response ranking in open-domain dialog settings, and we
look forward to future work in this area.
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