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Abstract. We previously developed an evacuation decision model to represent
the herd behaviors of evacuees during a disaster evacuation and employed it to
analyze symmetry breaking in evacuation exit choice, a phenomenon in which
people tend to gather at one specific exit during an evacuation. This model had
yet to be tested against real disaster data owing to a difficulty in acquiring such
data. An analysis of video clips captured during the Great East Japan Earthquake
revealed unusual evacuation behaviors of people in a meeting room, namely, the
evacuation decision between fleeing and drop, cover, and hold-on actions depend-
ing on the distance from the exit. Such behaviors have yet to be reported in the
literature. We conducted simulations and reproduced these evacuation behaviors
using an evacuation decision model and determined that simple herd behaviors
among evacuees are sufficient to reproduce these unusual evacuation behaviors.
We also conducted logistic-regression, graph-centrality, and sensitivity analyses
to examine the nature of these simulation results.

Keywords: Evacuation behavior · Herd behavior · Decision-making · Video
analysis · Response threshold model

1 Introduction

Cognitive biases, i.e., mental inclinations used to derive irrational decisions or erro-
neous behaviors, during disaster evacuation situations have received the attention of
numerous researchers and experts owing to their serious effect on the evacuation results,
including a loss of life. Herd behavior is one of the most typical cognitive biases of this
type [7,10]. During herd behavior, people make decisions not by themselves but based
on the decisions of other people, and this behavior sometimes incurs unusual phenom-
ena, particularly during crowd evacuations. The symmetry breaking in exit choice has
become a well-studied example of unusual phenomena caused by herd behavior during
crowd evacuations [1,27].

When a group of people attempt to evacuate an environment with multiple exits,
the exits are often used unevenly, and people tend to gather at one specific exit. This
phenomenon of symmetry breaking in exit choice is considered irrational because
the expected evacuation time will be the shortest, meaning a safe evacuation will be
achieved if these exits are used evenly. We developed and proposed an evacuation deci-
sion model [25] to represent human herd behaviors during the evacuation processes,
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and we employed it to analyze the symmetry breaking in evacuation exit choices. The
evacuation decision model revealed that simple herd behaviors are sufficient to repro-
duce a symmetry breaking in exit choice, and that no intentional or rational decisions
are required for this phenomenon to emerge [27].

Research on human behaviors during a disaster evacuation has been primarily
conducted through interviews [9,19], laboratory experiments using human subjects
[11,22], and laboratory experiments using nonhuman animals [1,21]. However, these
techniques are limited for the following reasons:

1. interviews can only be conducted with survivors,
2. it is difficult to reproduce the mental pressure of real evacuations in laboratory exper-

iments, and
3. animal behaviors are not necessarily identical to human behaviors.

None of the above aspects provide assurance that the data obtained through these meth-
ods refer to real human behaviors during a disaster situation.

Like many other phenomena regarding disaster evacuations, the symmetry breaking
in exit choice has been studied through these methods because no numerical data are
available owing to the difficulty of gathering such data during a real situation. Addition-
ally, data for disaster evacuations are only available for certain global cases such as the
evacuation time and the number of evacuees of specific groups. Thus, we reproduced
the symmetry breaking phenomenon in a qualitative sense, although these results have
yet to be validated against objective data owing to the absence of real data.

In constructive approaches for human behaviors during disaster evacuations, includ-
ing our studies, model validation is crucial but difficult owing to the limited amount
of objective data. Hence, data for human evacuations, which are both objective and
numeric, are extremely valuable in this sense. With an increase in the numbers of
surveillance cameras and smartphones, video images of human behavior during disas-
ters have been recorded. These videos have recently been analyzed, and human evacua-
tion behaviors have been investigated [8,12,15,30]. However, problems such as acces-
sibility and poor video quality have limited the success of these approaches [23].

A video clip captured in a meeting room in Sendai during the Great East Japan
Earthquake of March 11, 2011 (Fig. 1), is exceptionally valuable for the following rea-
sons:

– the earthquake was captured in one continuous scene from beginning to end,
– the initial positions of the people in the room when the shaking began were clearly
recorded, and

– the professionalism of the camera crew rendered it relatively easy to examine the
behavior of every individual during the earthquake.

By studying this video, real human behaviors during an earthquake can be analyzed.
In a previous study, we analyzed the behavior of individuals in this video and found

unusual human evacuation behaviors that had yet to be reported in the literature. We
also attempted to reproduce this real human evacuation behavior using the evacuation
decision model for validation purposes and revealed that a simple herd behavior is suf-
ficient to reproduce such behavior [28].
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This paper extends our previous research in two ways. First, we conducted 500
simulations rather than 150 simulations to obtain more accurate results, and the results
in Sect. 5.3 are replaced by new data that had been acquired through these simula-
tions. Second, we conducted two more analyses to examine the nature of the simulation
model and its results. A graph centrality analysis is conducted to investigate the influ-
ence dynamics among agents during the evacuation processes. The influence between
two decisions of the agents produces a complex network, and the relations of the agents
within the network are analyzed through graph centralities. Moreover, the sensitivities
of the parameters of the evacuation decision model are analyzed. Because the popula-
tion density and defined vicinity of an agent are two influential factors affecting herd
behaviors, we conducted a sensitivity analysis for agent population densities and a vari-
ety of agent vicinities. These analyses are given in Sects. 6.2 and 6.3, respectively.

2 Related Studies

Since it was difficult to obtain objective data, research on human behaviors during earth-
quake evacuations have been conducted primarily through interviews, case studies using
surveys, or experiments using animals or humans. The subjects of case studies include
the 2004 Mid-Niigata prefecture earthquake [17], 2010 Chile earthquake [9], and Great
East Japan Earthquake [20]. Herein, we investigated the behavioral and psychological
reconstruction processes for the victims [17], distributions of departure times of tsunami
evacuations [19], solidarity behaviors, and pre-/post- earthquake evacuation behaviors
[9,20]. Several studies have been conducted on human and animal evacuation experi-
ments such as [3,13,14,18]. However, most of the experimental studies on such evacu-
ations did not specify the types of disasters owing to the complexity of the environment
setting for each disaster, but instead focused on general evacuation behaviors.

In recent years, with the spread of security cameras and smart devices, several video
images of evacuations have been accumulated. By analyzing this footage, a new app-
roach has emerged to investigate real-life human evacuation behaviors. This approach
led to the discovery of particular evacuation behaviors such as when people prefer a
safer place than a place near the door during high intensity tremors, to maintain social
attachment during evacuation, to follow the actions of the majority, and to stay in safer
and familiar places after an earthquake [8]. The findings of the evacuation behaviors
varied among countries [2,8]. The differences in behaviors between evacuation drills
and real-life evacuations [12,30], and estimations of walking speed during earthquake
evacuations [15], were also examined.

In particular, a study of student evacuation behavior analysis in a video by Gu et al.
(2016) found that reaction times were linear during evacuation drills but nonlinear in
actual evacuation situations. Furthermore, they found that the cumulative curve of the
number of evacuees was linear in evacuation drills and nonlinear in actual situations
[12].

Although video databases that accumulate such evacuation videos have been created
and are being used by researchers [2], many videos only partially record the situation,
and few of them can be used for quantitative analysis.
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(a) Earthquake accelerations.

(b) Cumulative person behavioral changes.

(c) Behavorial change histogram.

(d) Per person behavioral history.

Fig. 1. Temporal behavioral changes in 99 s, of 48 people in the video [28].

Most studies have focused on fleeing behaviors during evacuations, and only a few
studies have mentioned drop, cover, and hold-on actions [2,8]. In this study, by ana-
lyzing videos captured during the Great East Japan Earthquake, we investigated the
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decisions of the evacuees between performing a drop, cover, and hold-on action or flee-
ing the room.

3 Video Analysis

At 14:46 on March 11, 2011, the Great East Japan Earthquake with a magnitude of 9.0
occurred off the coast of Japan. The video footage in Fig. 1 was taken during an earth-
quake in a hotel conference room in Miyagino-ku, Sendai City, Miyagi Prefecture. This
video records the evacuation behaviors of 48 people during the earthquake. We cre-
ated quantitative data on the evacuation behaviors of the 48 people by closely tracking
each of these behaviors visually. However, the last 40 s were excluded from the analysis
owing to a power outage in the video. The following three types of evacuation behavior
are recorded in the video:

1. standing and remaining at the current position (Stand),
2. exiting and fleeing from the room (Flee), and
3. hiding under the table, also known as “drop, cover, and hold-on” (Drop)

This data consists of the times when Stand, Flee, and Drop actions were taken for each
of the 48 people, and their indoor positions at the time of the earthquake. These data are
organized in Fig. 1b–d.

Figure 2 depicts the initial positions of all 48 people when the earthquake started.
The room is square-shaped, with only one exit shown in the lower right corner. Initially,
all 48 people were sitting at tables in a square, with everyone facing inward.

Figure 1d shows the temporal behavioral changes for each of the 48 people for
99 s after the shaking started. In the chart, the gray, white, and black circles indicate
standing, fleeing, and dropping behaviors, respectively, whereas × indicates a behavior
that is unidentifiable from the video. For example, the first person to take action (Flee)
is No. 46, which shows that it was 4 s after the start of the earthquake. The last person
to take action (Stand) was No. 29, indicating that he had been sitting in a chair for
75 s after the start of the earthquake. Figure 1c depicts the number of times that people
changed their behaviors. For example, a person changing his/her behavior from sitting
to fleeing is indicated by a white circle at the time the behavior changed. Figure 1b
shows a cumulative curve of the number of behavioral changes in people. Figure 1c.
The dotted, dashed, and solid lines indicate dropping, fleeing, and the sum of both
behaviors, respectively. Figure 1a depicts the acceleration generated by the earthquake
in the North-South, East-West, and up-down directions1. Two vertical dashed lines at
28 and 68 s indicate the two peaks of shaking intensity. As shown in Fig. 1b, in the
actual earthquake evacuation, the cumulative curve of the number of people taking part
in evacuation behaviors is a convex curve. This is consistent with the results of Gu et al.
(2016), in which the cumulative curve in evacuation drills is linear and the cumulative
curve in actual evacuations is a convex curve [12].

1 https://www.data.jma.go.jp/svd/eqev/data/kyoshin/jishin/110311 tohokuchiho-taiheiyouoki/
index.html
(Observation Point: Sendai-shi, Miyagino-ku, Gorin).

https://www.data.jma.go.jp/svd/eqev/data/kyoshin/jishin/110311_tohokuchiho-taiheiyouoki/index.html
https://www.data.jma.go.jp/svd/eqev/data/kyoshin/jishin/110311_tohokuchiho-taiheiyouoki/index.html
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Fig. 2. Initial location of people in video [28]. Fig. 3. Selection of drop and flee at end of
video [28].

Figure 3 shows the final actions taken by 48 people 99 s after the start of the earth-
quake at their respective initial positions. A white circle with a black number denotes
an evacuee who selected a fleeing behavior, and a black circle with a white number
denotes an evacuee who selected a dropping behavior. A gray number is an evacuee
whose behavior is unknown. In summary, 26 evacuees fled, and 12 evacuees dropped.

Figure 3 illustrates that most people close to the exit decided to flee, whereas those
farther from the exit decided to drop, which is an intriguing behavior that had not been
previously reported. The boundary between fleeing and dropping crosses the room diag-
onally, as if people within a certain distance from the exit decided to flee and the others
decided to drop, leading to the following hypothesis.

Hypothesis 1. The evacuation decision between fleeing or dropping is based on the
distance from the exit.

However, a different hypothesis can be considered for this phenomenon.

Hypothesis 2. The herd behavior among people causes a diagonal spatial pattern even
if all individuals randomly choose to flee or drop.

This means that people are consciously making only random choices, but herd
behaviors that work between people automatically produce diagonal spatial patterns.
Herd behavior is a behavior possessed by many animals including humans and is fre-
quently observed in evacuation situations. Therefore, it is worthwhile to examine this
hypothesis.

It is clear that Hypothesis 1 can generate a diagonal spatial pattern. However, this
hypothesis requires higher-level cognitive processes such as rules, scenarios, or proce-
dures to estimate the distance to the exit and to judge whether this distance is above
a certain threshold. By contrast, Hypothesis 2 requires only lower-level cognitive pro-
cesses, i.e., herd behaviors, which are typical in many organisms.
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The purpose of this study is to show that Hypothesis 2 holds by multiagent sim-
ulation using agents that incorporate only random selection and herd behavior. Since
actions other than the herd behaviors implemented in the agents are merely random
choices, this simulation model implies that simple herd behavior is a sufficient condi-
tion for generating the diagonal spatial patterns from which Flee and Drop decisions
emerge.

4 Evacuation Decision Model

The evacuation decision model is inspired by the response threshold model in biol-
ogy [4,5], which represents the division of labor in eusocial organisms, and represents
human herd behavior during evacuation [24,26]. The evacuation decision model has
been used to analyze cognitive aggregation during evacuation [24] and symmetry break-
ing in exit choice [26].

In the evacuation decision model, the environment has an objective risk value r,
which refers to the severity of the disaster threat. Agent i in the environment has two
mental states: Xi = 0 and Xi = 1. When Xi = 1, the agent decides its own action
according to its own intention, but when Xi = 0, the agent decides its own action
depending on the actions of surrounding agents. The former state is called the leader,
and the latter state is called the follower. During evacuation, the value of Xi always
changes with a certain probability. As a result, agents sometimes act as leaders and
sometimes as followers.

The agent has a parameter θi, called a response threshold, that determines the degree
to which the agent participates in the evacuation. The values of θi vary by agent. The
probability that an agent will become a leader per unit time is [28]

P (Xi = 0 → Xi = 1) =
ŝi

2

ŝi
2 + θ2i

, (1)

where ŝi is the local estimation in the stimulus of the environment associated with agent
i. This probability depends only on the response threshold θi and the environmental
stimulus ŝi; however, no individual agent can sense the true value of the environmental
stimulus si. The value used in the calculation is ŝi, a local estimate of the true environ-
mental stimulus.

The probability that an agent will become a follower per unit time is [28]

P (Xi = 1 → Xi = 0) = ε, (2)

where ε is a fixed probability common to all agents. This value is given in the simulation
parameters. The estimation of the stimulus of agent i per unit time is given by the
following difference equation: [28]

si(t + 1) = max{si(t) + δ̂ − α(1 − R)F, 0 }, (3)

where δ̂ is an increase in the stimulus per unit time [28]

δ̂ =
{

δ if r > 0
0 otherwise,

(4)
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and α is a scale factor of the stimulus. Additionally, R is the risk perception function,
which is a function of the objective risk r [28]:

R(r) =
1

1 + exp(−g(r − μi))
, (5)

where g is the activation gain determining the shape of the sigmoid function. Addition-
ally, μi is the risk perception of agent i, which represents an individual’s sensitivity
to risk. The evacuation progress function, i.e., the local estimation of the evacuation
progress of agent i, is [28]

F (n) =
{
1 − n/Nmax n < Nmax

0 otherwise,
(6)

where N is the number of agents in the vicinity that have not yet taken an evacuation
action, and Nmax is the maximum number of agents in the vicinity. In other words, the
agents judge that the overall evacuation has not yet progressed if the ratio of agents in
the vicinity who have not taken evacuation action is large, or that progress has been
made if the ratio is small.

5 Earthquake Evacuation Simulation

The purpose of this study is to show that Hypothesis 2 in Sect. 3 can reproduce the
convex curve of the cumulative number of evacuees in Fig. 1b and the diagonal spatial
pattern in Fig. 3 using multiagent simulations. This section describes the details of this
simulation. This simulation setting represents a situation similar to the video in Fig. 1,
but it is not exactly the same. The simulation model was implemented using NetLogo
6.0.2 [29].

5.1 Configuration

A square room of 40 × 40 units with the lower right as the origin is the environment
for this simulation. This room has one exit at the bottom right. Initially, 500 agents
A = {a1, a2, . . . , a500} are randomly distributed in the region from 3 to 38 units for
the X and Y coordinates. Assuming a simulation time of t = 1, . . . , T , an agent ai ∈ A
has coordinates xi(t), yi(t) ∈ R, a local estimation of stimulus si(t) ∈ R, mental
state Xi(t) ∈ {1, 0}, and an action πi(t) ∈ {undecided, flee, drop}, where undecided
indicates that the agent has not yet determined an action, flee indicates that the agent has
decided to flee, and drop indicates that the agent has decided to drop. In this simulation,
both Flee and Drop are evacuation behaviors; therefore, the value of n in Eq. 6 is n =
|{aj inVi | πj(t) = undecided}|. Furthermore, an agent has two parameters: response
threshold θi and risk sensitivity μi. Let xi(1), yi(1) ∼ U(3, 38), si(1) = 0,Xi(1) =
0, πi(1) = undecided, θi ∼ U(0, 100), and μi ∼ U(0, 100) be the initial values of the
simulation, with the simulation terminated at T = 270.

The vicinity of ai is defined as Vi = {aj ∈ A | ν(aj , ai)}, where ν : A2 →
{true, false}, and ν refers to a range of five units 120◦ toward the direction of motion
of ai.
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Algorithm 1. Leader’s action (Random Selection) [28].

if πi(t) = undecided then
τ ∼ U(0, 1)
if τ ≤ 0.5 then

πi(t) ⇐ drop
else

πi(t) ⇐ flee
end if

end if
if πi(t) = flee then

Solve Problem 1 and determine Δx, Δy
xi(t) ⇐ xi(t) + Δx; yi(t) ⇐ yi(t) + Δy

end if

Algorithm 2. Follower’s action (Herd Behavior) [28].

nd ⇐ |{aj ∈ Vi | πj(t) = drop}|
ne ⇐ |{aj ∈ Vi | πj(t) = flee}|
nu ⇐ |{aj ∈ Vi | πj(t) = undecided}|
if nd > ne and nd > nu then

πi(t) ⇐ drop
else if ne > nd and ne > nu then

πi(t) ⇐ flee
end if
if πi(t) = flee then

Solve Problem 1 and determine Δx, Δy
xi(t) ⇐ xi(t) + Δx; yi(t) ⇐ yi(t) + Δy

end if

At each time step, an agent with πi(t) = flee moves toward the exit (Gx, Gy) by
Δx, Δy, as determined by solving Problem 1 [28].

Problem 1

min (xi(t) + Δx − Gx)2 + (yi(t) + Δy − Gy)2 (7)

s.t. Δx2 + Δy2 = 1 (8)

An agent with πi(t) �= flee remains at the same position, i.e., Δx = 0 and Δy = 0.
The procedure for the entire simulation is shown in Algorithm 3. Agent ai executes

Algorithm 1 when Xi = 1 and Algorithm 2 when Xi = 0. Agents decide their behav-
iors based on their own intentions only when Algorithm 1 is executed; this is a random
selection.

The room has an objective risk that starts at r(1) = 0 and increases by 1 for each
time step up to the maximum value of r(t) = 100. The local estimation of the stimulus
of ai starts at si(1) = 0 and is incremented by δ at each time step as F ≈ 0 during
the initial stages of the simulation. Thus, P (Xi = 0 → Xi = 1) gradually increases
depending on θi, resulting in the emergence of leader agents. Subsequently, followers
appear, and herding spreads among the agents.
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Finally, the overall simulation procedure is shown in Algorithm 3. The following
parameters were used: α = 1.2, δ = 0.5, ε = 0.2, g = 1.0, and Nmax = 10.

Algorithm 3. Simulation.
Initialization
for t = 1 to T do

r ⇐ min{r + 1, 100}
for all ai ∈ A do

Calculate R {Equation 5}
Calculate F {Equation 6}
Calculate si {Equation 3}
τ ∼ U(0, 1)
if Xi = 1 ∧ τ < P (Xi = 1 → Xi = 0) then

Xi ⇐ 0
Execute Algorithm 2 {Follower’s action (Herd Behavior)}

else if Xi = 0 ∧ τ < P (Xi = 0 → Xi = 1) then
Xi ⇐ 1
Execute Algorithm 1 {Leader’s action (Random Selection)}

end if
if (xi(t) − Gx)

2 + (yi(t) − Gy)
2 < 1 then

A ⇐ A \ ai {Remove ai from the environment if the exit has been reached.}
end if

end for
end for

5.2 Result 1

In this section, the results of the simulation described in Sect. 5.1 are presented.

Fig. 4. Cumulative number of evacuees over simulation time [28].

Figure 4 shows the cumulative curves of the evacuees who conducted evacuation
actions per simulation time. The solid line in the chart is obtained through the function
ϕ(t) [28]:

ϕ(t) = ϕ(t − 1) +
∑
ai∈A

γi(t), (9)

where [28]

γi(t) =

⎧⎨
⎩

1 t = min{z | πi(z) �= undecided}

0 otherwise,
(10)
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Fig. 5. Distribution of the remaining agents in
the room at the end of the simulation. Straight
lines towards the exit show the trajectories of
fleeing agents.

Fig. 6. Initial locations and decisions between
fleeing and dropping. Black circles refer to
πi(T ) = drop, and white circles refer to
πi(T ) = flee.

and ϕ(0) = 0. The function ϕ(t) is the time change of the cumulative curve of the
evacuees who chose Flee or Drop, and is convex upward as in Fig. 1b. This is consistent
with the results of Gu et al. (2016) [12].

Figure 5 shows the coordinates xi(T ), yi(T ) of remaining agents in the room at
t = T . Straight lines to the exit are the trajectories of the agent who chose Flee. There
are 249 agents left in the room, all of whom have chosen Drop. All of these agents
remain far from the exit, forming a diagonal spatial pattern similar to Fig. 3.

If we divide the room into two spaces with a diagonal line y = x and let the number
of agents in the upper-left space be Nu = |{ai | yi(T ) ≥ xi(T )}| and the lower-right
space be Nl = |{ai | yi(T ) < xi(T )}|, we have Nu = 221 and Nl = 28, with a
difference of Nd = Nu − Nl = 193.

Here, we adopted entropy to evaluate the simulation results quantitatively [6].
Figure 6 shows the action of each agent at the end of the simulation at their initial loca-
tion at t = 1. The black and white circles represent πi(T ) = drop and πi(T ) = flee,
respectively. As shown in Fig. 6, with a few exceptions, most agents initially located
in the upper-left space decided to drop, and those in the lower-right space decided to
flee. To evaluate whether the decision between fleeing and dropping is divided by the
diagonal line y = x, entropy H is introduced as follows [28]:

H = −rg log2(rg) − rb log2(rb), (11)

where [28]

rg = Lg/(Lg + Lb) (12)

rb = Lb/(Lg + Lb), (13)
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Fig. 7. Calculations of Lg and Lb. In this case, Lg = l1 + l4 and Lb = l2 + l3 [28].

and [28]

Lg =
∑

{ai|yi(1)≥xi(1)∧πi(T )=drop}
li +

∑
{aj |yj(1)<xj(1)∧πj(T )=flee}

lj (14)

Lb =
∑

{ai|yi(1)≤xi(1)∧πi(T )=drop}
li +

∑
{aj |yj(1)>xj(1)∧πj(T )=flee}

lj , (15)

where [28]

li =

√
2
(

xi(1) − yi(1)
2

)2

(16)

and lj is the minimum distance between the initial position of ai and the diagonal y = x.
Additionally, Lg is the sum li of the shortest distances to the diagonal from the initial
position of ai in the upper-left space with πi(T ) = drop and an agent in the lower-right
space with πi(T ) = flee. Conversely, Lb is the sum of li of the shortest distance to the
diagonal from the initial position of agent ai in the upper-left space with πi(T ) = flee
and an agent in the lower-right space with πi(T ) = drop. For example, in the case of
Fig. 7, Lg = l1 + l4 and Lb = l2 + l3.

With a smaller H , fleeing and dropping behaviors are delineated by the y = x
diagonal, whereas the behavior becomes intermingled if H is close to 1.0. The entropy
shown in Fig. 6 is H = 0.18.

We used the distance from y = x instead of the number of agents in the calcula-
tion of entropy because the positions of the remaining agents are also important when
evaluating the diagonal spatial pattern.

5.3 Result 2

In order to generalize the results in Sect. 5.2, 500 simulations were conducted, and
the results of these simulations are presented in this section. The time evolution of the
cumulative number of evacuees in the 500 simulations of Φ(t) = ϕ(t) is shown in
Fig. 8. This curve is convex upward and smoother than that of Fig. 4.
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Fig. 8.Mean values of ϕ(t) and Φ(t), for 500 simulations.

Fig. 9. Histogram of Nd. Fig. 10. Histogram of H .

A histogram of the differenceNd in the number of agents in the space divided by the
diagonal line y = x, as shown in Fig. 9, and a histogram of the entropy H of decision-
making at the time of evacuation are shown in Fig. 10. The mean, standard deviation
(σ), and minimum and maximum values of Nd and H are summarized in Table 1.

Table 1. Statistics of Nd and H for 500 simulations.

min mean σ max

Nd −89.0 96.83 48.04 192

H 0.15 0.68 0.18 1.00

Figure 11 is the kernel density distribution of the coordinates xi(T ), yi(T ) of the
agents remaining in the room at t = T . The figure shows a higher kernel density at a
farther position and a lower kernel density at a closer position, illustrating a high cor-
relation between the distance from the exit and the agents remaining in the room at
the end of the simulation. This shows that simple herd behavior is sufficient to repro-
duce a diagonal spatial pattern recorded in the video clip during the Great East Japan
Earthquake.
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Fig. 11. Kernel density of xi(T ) and yi(T )
throughout room. Dark areas represent high
density, and light areas represent low density.

Fig. 12. Logit model discriminating between
dropping and fleeing [28].

6 Analysis

We conducted three analyses to examine the results of the simulations. First, we con-
ducted a logistic regression analysis to explore the primal factor that gives rise to the
diagonal spatial pattern. Second, a graph centrality analysis was applied to uncover the
influence dynamics among agents during the evacuation. Finally, a sensitivity analysis
was conducted to investigate the robustness and parameter sensitivities of the results.

6.1 Logistic Analysis

In a previous study [28], we conducted a logistic regression analysis to investigate the
effect of each parameter of the agent on the final decision πi(T ) by assuming drop = 1
and flee = 0. The parameters are response threshold θi, risk sensitivity μi, and distance
from the exit [28]

Li =
√

(xi(1) − Gx)2 + (yi(1) − Gy)2. (17)

A total of 200 and 500 training and test samples, respectively, were randomly
selected from 75,000 samples (500 agents × 150 simulations in [28]). Large amounts
of training data reduce both the p-value and the reliability of the analysis; therefore, we

Table 2. Results of logistic analysis. Coefficients and P-values [28].

Intercept Li θi μi

coeff −3.4486 0.0033 0.0115 0.0055

P-values 0.0 0.0 0.0796 0.3532



Herd Behavior Is Sufficient to Reproduce Human Evacuation Decisions 17

Fig. 13. Influence graphs with centralities. From left, size of nodes shows degree of fleeing, degree
of dropping, PageRank of fleeing, and PageRank of dropping agents.

set the number of training data to 200 samples. The results of the logistic regression
analysis in terms of the coefficients and p-values are shown in Table 2. From Table 2,
the primary factor in the drop or flee decision is the distance between the agent and the
exit (p < 0.01). This implies that the response threshold θi may have certain effects on
the decision (p < 0.1), whereas the risk sensitivity μi may not have any effect (p > 1).

We attempted to discriminate 500 test data by using a logit model created by the
logistic regression analysis. The results are shown in Fig. 12. The figure shows that the
logit model is capable of discriminating between Drop and Flee for unknown data.

6.2 Graph Centrality Analysis

In this section, we focus on the results presented in Sect. 5.2 and investigate how agents
influence each other during the evacuation processes using social network analysis tech-
niques. Influences among agents are dynamic and complex because an agent imitates
the behaviors of nearby agents that vary from time to time owing to a herd behavior.
The decision of one agent affects the behaviors of the other agents that happen to be
within the vicinity of the agent, and these behaviors may influence the first agent later.
This interconnected system of influence among the evacuees forms a complex network.

Figure 13 shows directed graphs of the influences among agents. A node represents
an agent, and an arrow connecting two agents represents the influence of herd behaviors
between them; the root node affects the arrowhead node. The size of the node represents
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Fig. 14. Graph Centrality Histograms: (A) out-degrees of fleeing agents, (B) out-degrees of drop-
ping agents, (C) total degrees of fleeing agents, and (D) total degrees of dropping agents. Addi-
tionally, ×s show value of histograms on logarithmic scale.

the centrality of that node in the graph. In Fig. 13, graph (A)—the degree of centrality
of a fleeing agent, graph (B)—a dropping agent, graph (C)—the PageRank centrality of
a fleeing agent, and graph (D)—a dropping agent. In the first and second graphs (i.e.,
graphs A and B in Fig. 13), as we were interested in studying attributes of affecting
agents, we limited the edges towards the leaving directions to calculate the degree of
centralities of the nodes (out-degrees).

Figure 14 shows the frequencies of the node degrees of the graphs given in Fig. 13.
Histograms of the node degrees of the graphs in Fig. 13 are presented in Fig. 14 (the left
axes), and the values of these histograms (×s in the charts in Fig. 14) are also plotted
on the logarithmic scale (the right axes) over these histograms. The first and second
charts in Fig. 14 show histograms of out-degrees, and the third and fourth charts show
histograms of the total degrees. In the first and second charts (A and B in Fig. 14),
a few nodes have high out-degrees, whereas most of the nodes have low out-degrees;
in addition, ×s are on the straight dashed line yielding a scale-freeness of the graphs.
However, this does not hold for the third and fourth charts (C and D in Fig. 14), and the
scale-freeness is not observed for the total-degree graphs.

In the graphs of the fleeing agents (A and C in Fig. 13), we can see a small number
of clusters connected by a few agents, meaning that many agents egress in the form of
groups. By contrast, in the graphs of the dropping agents (B and D in Fig. 13), almost
all agents are connected and form one large cluster, meaning that the influences of the
dropping behaviors propagate over all dropping agents and interconnect them.

In comparison, the degree of centrality graphs (A and B in Fig. 13) have more nodes
with high centralities than PageRank centrality graphs (C and D in Fig. 13). Despite
scale-freeness, in the degree of centrality graphs, many agents still affect each other.
In other words, there is no evidence indicating that more agents are affected by a few
specific agents.

PageRank centrality, which is an eigenvector with the highest eigenvalues of the
transition matrix representing the influence graph, illustrates important nodes that are
affected by many agents and may affect many others. The PageRank centrality graphs
in Fig. 13 show that a few nodes are more important than the other nodes, although the
sizes of these nodes are relatively small. This implies that the effects of these important
nodes might be insignificant. To verify this, we eliminated the top five agents that had
the highest PageRank from the original setting presented in Sect. 5.2 and conducted a
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Fig. 15. Influence graphs with centralities when removing top five agents with highest PageRank.

new simulation. Figure 15 shows centrality graphs of the simulation results. Comparing
Figs. 13 and 15, the main features of these graphs show only slight changes even though
some nodes with a high PageRank were eliminated, indicating that these features pre-
sented in the analysis cannot be altered by changing the behaviors of a small number of
agents.

6.3 Sensitivity Analysis

Thus far, we have conducted simulations with a vicinity setting of five units for the
distance and 120◦ toward the heading direction of an agent. During a herd behavior,
an agent selects the behavior adopted by the highest number of agents within his/her
vicinity (Algorithm 2). Thus, the definition of the vicinity of an agent is crucial; sub-
sequently, the final results of the simulations depend on this definition, and the agent
considers the decisions of the other agents within this range to make his/her own deci-
sion. Therefore, we conducted simulations by varying the definition of the vicinity of
the agents to examine the sensitivity of the defined vicinity on the results.

Figure 16 shows the results of the sensitivity analysis. The distance was varied from
0 to 20 units (rows), and the angle was varied from 20 to 360◦ (columns). Each cell in
the figure refers to the result of 100 simulations for the given settings; in addition, dark
areas represent the high densities of the dropping agents remaining at the end of the
simulation, and light areas represent low densities.
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Fig. 16. Final positions of remaining agents with varying distances and angles of agent vicinities.

Fig. 17. Total number of remaining agents with varying distances and angles of agent vicinities.

In Fig. 16, the results similar to Fig. 11 can be observed within a broad range in
the figure, showing that these results are insensitive to the vicinity definitions. How-
ever, a closer look raises a few more interesting insights. Notice that most cells in the
upper-right areas of the figure have light colors, which means that a small number of
agents remained at the end of the simulations. This area represents vicinities with long
distances and wide angles, referring to extensive vicinities. Figure 17 shows a heat map
of the mean number of remaining agents (dropping agents) at the end of the simula-
tions; light colors show low populations, and dark colors show high populations. This
figure also indicates low populations in the upper-right areas. These two figures also
depict high populations in the lower-left areas; however, the highest population area is
not located at the lowest and leftmost corner in Fig. 17. The white square frames in
Fig. 17 indicate that the mean number of remaining agents is higher than 300. The low-
est row refers to settings with a distance of zero, i.e., agents with no vicinity, yielding
simulations without herd behaviors. Therefore, the only behavior the agents can take
is a random choice between fleeing and dropping. The lowest rows in Fig. 16 show
that the remaining agents are distributed throughout the area evenly. In these cells, the
mean number of remaining agents is 250 because each agent merely makes an inde-
pendent random choice. The observation in this section reveals that broad vicinities
propagate fleeing behaviors toward a widespread range of the environment, and limited
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Fig. 18. Histograms of the number of remaining agents with varying populations of agents.

Fig. 19. Final positions of remaining agents with varying populations of agents.

vicinities propagate dropping behaviors. However, if the vicinities are too small, then
agent behaviors approach a simple random choice because the effect of the herd behav-
iors becomes negligible.

Population density is another important factor affecting the simulation results
because the number of agents within the vicinity depends on the density of the agents.
We conducted experiments by varying the number of agents in the environment from
100 to 1000; each experiment consisted of 300 simulations. Figure 18 shows a his-
togram of H for each experiment. The values of H are distributed over a broad range
of domains; however, the figure shows that population densities affect the peaks of the
distributions. The peak is close to 1 when the population is low, whereas it becomes
close to 0.5 if the population is high.

Figure 19 depicts heat maps of the final positions of the remaining agents for each
experiment; the ranges with dark colors represent the areas with high frequencies of
remaining agents, whereas light colors represent the areas with low frequencies. In all
diagrams in Fig. 19, the lower-right areas in each heat map have light colors, leading
to low densities of the remaining agents, which are in good agreement with Fig. 11.
The results of the sensitivity analysis revealed that the unusual evacuation behaviors
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captured in the video clip are unaffected by the population density of the agents
(Fig. 19), and a higher population density will bring about higher frequencies of this
phenomenon (Fig. 18).

7 Discussion

Our simulation results in Figs. 5 and 6 show that the decision between dropping and
fleeing is determined by the distance from the exit. However, Figs. 9 and 10 indicate
that the results from the simulation vary, i.e., the results described in Sect. 5.2 are not
always obtained. Contrary to our expectations, some simulations showed Nd = −89,
signifying that more agents remained in the area closer to the exit, whereas other simula-
tions resulted in H ≈ 1.00, implying a combination of dropping and fleeing behaviors.

Although we concede that exceptional cases like these do occur, the evacuation
decision model is clearly able to produce results similar to our findings from the video
analysis of the Great East Japan Earthquake, albeit at a slightly lower frequency. The
kernel density of the results in Fig. 11 agrees well with the statement above. Further-
more, the results of the logistic regression analysis revealed that the primary factor in
deciding between dropping and fleeing for individual agents was the distance between
their initial location and the exit. Nonetheless, Hypothesis 2 suggests that each indi-
vidual does not have to consider this distance to determine his/her behavior; rather, a
simple herd behavior is sufficient to produce a diagonal spatial pattern.

The analysis described in Sect. 6.2 illustrates that the influences among the agents
form a complex scale-free network. The experiment removing the top-five highest
PageRank agents resulted in another complex network, implying that the nature of the
network is unaltered by modifying a small number of agents. Guiding the crowd toward
safer evacuations behaviors is useful and desirable. The centrality analysis conducted in
our studies suggests that controlling a small number of evacuees is insufficient to control
the behaviors of the entire crowd. The sensitivity analysis described in Sect. 6.3 indicates
that the diagonal spatial pattern captured in the video clip of the Great East Japan Earth-
quake can be reproduced within a broad range of population and vicinity parameters.
The diagonal spatial pattern is robust and insensitive to the model parameters.

As the most remarkable aspect of this analysis, the results were produced by agents
who have no higher-level cognitive processes. The agents in our model performed only
either imitations or random selections, both of which are unintelligent behaviors. Nei-
ther distance estimations nor thresholds are necessary to reproduce the behaviors in the
video. From the discussion thus far, we conclude that Hypothesis 2 holds.

The fact that Figs. 4 and 8 are consistent with Fig. 1b, and that the cumulative curve
of the evacuees shows convex and real evacuation situations [12], provides additional
support that our simulations using the evacuation decision model can yield realistic
results.

Hypothesis 2 and the results of the analyses above indicate that

1. the primal factor of the phenomenon is the distance from the exit,
2. the scale-freeness of the network is robust, and
3. the phenomenon is insensitive to the model parameters.
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This may suggest that the diagonal spatial pattern captured in the video clip is induced
more by physical factors than by intentional cognitive factors of the agents.

We do not deny Hypothesis 1; rather, we consider it natural for people close to the
exit to select a fleeing action intentionally. In reality, we believe that both Hypothe-
sis 1 and Hypothesis 2 hold simultaneously. A real evacuation process is a complex
combination of higher-level cognitive processes such as decision-making and lower-
level cognitive processes such as herd behavior. Some researchers also pointed out the
importance of an individual’s emotional responses during crowd evacuation processes
[16].

This study demonstrated that an evacuation decision model can reproduce the real
human evacuation behaviors that were recorded in a video of the Great East Japan
Earthquake and can be used to analyze human herd behaviors during an earthquake.
Tsurushima [26,27] demonstrated that a simple herd behavior can reproduce symmetry
breaking in exit selection when using the evacuation decision model. Furthermore, the
analysis presented herein revealed the significance of herd behavior in collective evacu-
ations. Hence, the evacuation decision model is advantageous for a quantitative analysis
of the effects of herd behavior in human evacuations.

Finally, some potential methodological weaknesses should be considered. The video
clip analyzed in this study is the only instance in which we can find the specific evacua-
tion behavior discussed in this paper. We do not know the universality of these behaviors
under other evacuation scenarios. There is also a possibility of errors occurring in the
video analysis phase because this process was controlled manually. The simulation was
not configured identically with the actual events captured in the video, for example,
the number or initial layout of the agents. It would be interesting to experiment with
a more realistic design, and a comparison of these two studies may bring about some
new findings of crowd evacuations. However, such experiments are reserved for a future
study.

8 Conclusion

By analyzing a video captured during the Great East Japan Earthquake, we discovered
that the decision between dropping and fleeing was influenced by the distance to the
exit, a finding that was not previously reported. We reproduced this finding, which is the
diagonal spatial pattern of the remaining evacuees, using an evacuation decision model,
and revealed that simple herd behaviors are sufficient to reproduce this phenomenon.
Analyses of the simulation results show that these results are robust and insensitive to
the model parameters.
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