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Abstract. Currently, the problems of improving the methods of geometric mod-
eling of three-dimensional objects using the standard mathematical apparatus for
CAD/CAE/CAMsystems, aswell as adapting thesemethods for specific industrial
applications, are urgent. In this paper, we consider issues related to obtaining algo-
rithms for finding the values of a locally approximating spline of two variables and
its partial derivatives using a discrete wavelet transform and a convolution opera-
tion. The considered inverse discrete wavelet transform and convolution transform
are applied to finding computational algorithms for local approximation splines,
and then applying them to the development of a CAD system for manufacturing
structures from compositematerials by themethod of automated calculation. Also,
the results obtained can be used to solve problems associated with local modifi-
cation of the surface of a fan blade made of composite materials by the method
of automated calculation. In this case, the surface of the fan blade is defined by
some sets of points in several sections. First, we model this surface using a local
approximation spline of two variables. Then we find the values of this spline at the
nodes of the finer mesh and shift the surface points corresponding to these nodes
along the normal to the surface by a height equal to the thickness of the tape. Next,
we carry out the wavelet decomposition with zeroing the wavelet coefficients. As
a result, the surface is smoothed.

Keywords: Local approximation spline · Surface modification · Automated
layout · CAD/CAM/CAE/PDM systems · Pinch rollers

1 Introduction

Currently, enterprises engaged in the design and manufacture of complex equipment
are actively using CAD/CAM/CAE/PDM systems to control the quality of products. In
these systems, increased attention is paid to improving the technology of geometric three-
dimensionalmodeling. Themain problem is not themodeling process itself, but themeth-
ods of modifying and optimizing the created geometric models, which is very critical
during the iterative mode of the designer. Therefore, today, the problems of improving
the methods of geometric modeling of three-dimensional objects using the mathematical
apparatus standard for CAD/CAE/CAMsystems, aswell as the adaptation of thesemeth-
ods for specific industrial applications, are relevant. Recently, wavelets have been used in
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many problems of geometric modeling, mainly in computer graphics [1, 2]. In this arti-
cle, the inverse discrete wavelet transform and convolution transform are applied to find-
ing computational algorithms for locally approximating splines [3], and then applying
them to the development of a CAD system for manufacturing structures from composite
materials by automated calculation.

2 Veivlets on the Segment and Rectangle

For geometric applications we will consider actual spaces L2(R) and L2[a; b]. Let’s take
a look at the actual features defined on the segment [a; b]. Let the function ϕ ∈ L2(R)

satisfy the large-scale ratio [4].

ϕ(x) = √
2

∑

k∈Z
ukϕ(2x − k), uk ∈ R

and has a compact medium. Let’s denote ϕjk(x) = ϕ(2jx− k), x ∈ [a; b], j, k ∈ Z . It
is clear that for everyone j different from zero on the segment [a; b]will be only the final
number of such functions. Let these be functions for certainty ϕj,0, ϕj,1, . . . , ϕj,nj−1.

Let’s take a look [4] at the sequence V0 ⊂ V1 ⊂ . . . of space subspaces L2[a; b].

Vj = lin
{
ϕj,0, ϕj,1, . . . , ϕj,nj−1

}
=

⎧
⎨

⎩

nj−1∑

s=0

asϕj,s : as ∈ R, s = 0, 1, . . . , nj − 1

⎫
⎬

⎭, dim Vj = nj

Because Vj−1 ⊂ Vj, then ϕj−1,k =
nj−1∑
s=0

pjs,kϕj,s. Let’s introduce the designations [4].

Φj(x) =
(

ϕj,0(x) ϕj,1(x) . . . ϕj,nj−1(x)
)
,Pj = (pjs,k)

nj−1, nj−1−1
s=0,k=0

Then Φj−1 = ΦjPj. Let’s designate the symbol Wj−1 as an orthogonal addition to
spaceVj−1 in spaceVj becauseVj = Vj−1⊕Wj−1 andWj−1 ⊂ Vj, thenWj−1 the ultimate

space. If Wj = lin
{
ψj,0, ψj,1, . . . , ψj,mj−1

}
, dimWj = mj, then ψj−1,k =

nj−1∑
s=0

qjs,kϕj,s.

Functions ψj,k are called veilets, and spaces Wj are called veilet spaces [4].

Ψj(x) =
(

ψj,0(x) ψj,1(x) . . . ψj,mj−1(x)
)
,

Qj = (qjs,k)
nj−1,mj−1−1
s=0,k=0 .

Then Ψj−1 = ΦjQj. It should be noted that. nj + mj = nj+1.
Let it be f ∈ L2[a; b] and Πj : L2[a; b] → Vj projector. Then the approximation

Πjf can be decomposed into a rougher approximation Πj−1f and clarifying the stoic
ΠW

j−1f .

Πjf =
nj−1∑

k=0

cj,kϕj,k = Πj−1f + ΠW
j−1f =

nj−1−1∑

k=0

cj−1,kϕj−1,k +
mj−1−1∑

k=0

dj−1,kψj−1,k .
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Let’s introduce two vectors of coefficients into the review.

Cj =
(
cj,0 . . . cj,nj−1

)T
,Dj =

(
dj,0 . . . dj,nj−1

)T
.

The first vector describes the approximation of a function f , and the second vector
is a veilet-coefficient that characterizes deviation Πj−1f from Πjf [4].

Cj = PjCj−1 + QjDj−1.

On this equality it is possible to restore Πjf the approach on a rougher approach
Πj−1f and veilet-coefficents. Because line operators (projectors) Vj → Vj−1 are Vj →
Wj−1 defined by somematrixAj,Bj, thenCj−1 = AjCj,Dj−1 = BjCj. By the function’s f
vevlet transformation, we will understand the location of vectors C0,D0,D1, . . . ,Dj−1.
The relationship [4] between the matrix Aj,Bj and the Pj,Qj.

(
Aj

Bj

)
= (

Pj Qj
)−1

.

The matrix in Qj the article [4] is defined from a homogeneous system of linear

equations TjQj = 0, where Tj = PTj [(Φj, Φj)], as well [(Φj, Φj)] = ((ϕj,i, ϕj,s))
nj−1
i,s=0 -

the matrix of scalar works. Matrices Qj and Pj are known as synthesis filters. Matrices
Aj and Bj are known as analysis filters. The set {Pj,Qj,Aj,Bj} is called a filter bank.

About the above-written approach to building a veilet system on a segment in the
article [5] is applied to the case when the function ϕ(x) is chosen B-spline of arbitrary
order n. Define the B-splines of the order as n a convolution [6]

Nn = Nn−1 ∗ N0,N0(x) =
{
1, x ∈ [0; 1),
0, x /∈ [0; 1).

Note some of the well-known properties of B-splines [6]. Second, Nn(x) ≥ 0 as
shown x in the feature supp Nn(x) = [0; n + 1], As shown in [6], the function Nn(x),
satisfies the scale ratio

Nn(x) =
n+1∑

k=0

pk
2n

Nn(2x − k), pk = Ck
n+1 = (n + 1)!

k!(n + 1 − k)! . (1)

In addition, the function Nn(x) satisfies the ratio of [6]

Nn(x) = x

n
Nn−1(x) + n + 1 − x

n
Nn−1(x − 1) (2)

and justly equality [6].

N ′
n+1(x) = Nn(x) − Nn(x − 1). (3)

In article [5], the filter bank is built for the case ϕ(x) = Nn(x).
Consider now the use of veilet systems on the segment to build two-dimensional

veiwelets on a rectangular area. Let the sequences V0,i ⊂ V1,i ⊂ . . .Vj,i ⊂ of the
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final subspaces of space L2[ai; bi] scale functions ϕi and banks of filters Pj,i, Qj,i,
Aj,i, Bj,i, i = 1, 2. The standard approach [7] to the construction of multidimensional
wavelet systems is to take tensor products of basis functions from Vj,i. Define subspaces
V 2
j = Vj,1⊗Vj,2 = lin

{
f1 ⊗ f2 : f1 ∈ Vj,1, f2 ∈ Vj,2

}
, where the function f1⊗f2 is defined

by the rule f1 ⊗ f2(x, y) = f1(x)f2(y). In addition, we define spacesW 2
j as follows V 2

j =
V 2
j−1⊕W 2

j−1. Then, if f ∈ L2([a1; b1]×[a2; b2]) andΠj : L2([a1; b1]×[a2; b2]) → V 2
j

is a projector, then

Πj f =
nj,1−1∑

m=0

nj,2−1∑

l=0

c
j
m,lϕ

(1)
j,m ⊗ ϕ

(2)
j,l =

nj,1−1∑

m=0

nj,2−1∑

l=0

⎛

⎜⎝
nj−1,1−1∑

k=0

nj−1,2−1∑

s=0

c
j−1
k,s p

j,1
m,k p

j,2
l,s

+
mj−1,1−1∑

k=0

nj−1,2−1∑

s=0

r
j−1
k,s q

j,1
m,k p

j,2
l,s +

nj−1,1−1∑

k=0

mj−1,2−1∑

s=0

h
j−1
k,s p

j,1
m,k q

j,2
l,s +

mj−1,1−1∑

k=0

mj−1,2−1∑

s=0

d
j−1
k,s q

j,1
m,k q

j,2
l,s

)
ϕ

(1)
j,m ⊗ ϕ

(2)
j,l .

(4)

If you introduce the matrix Cj = (cjm,l)
nj,1−1,nj,2−1
m,l=0 , Rj = (rjk,s)

mj,1−1, nj,2−1
k,s=0 ,

Hj = (hjk,s)
nj,1−1, mj,2−1
k,s=0 , Dj = (dj

k,s)
mj,1−1, mj,2−1
k,s=0 , into consideration (1), we get it

from equality [5]

Cj = Pj,1Cj−1P
T
j,2 + Qj,1Rj−1P

T
j,2 + Pj,1Hj−1Q

T
j,2 + Qj,1Dj−1Q

T
j,2 (5)

It is also obvious [5] that

Cj−1 = Aj,1CjA
T
j,2;Rj−1 = Bj,1CjA

T
j,2;Hj−1 = Aj,1CjB

T
j,2;Dj−1 = Bj,1CjB

T
j,2 (6)

Formulas (6) give the veilet decomposition of the approximate Πjf function of two
arguments, and formula (5) gives a veilet-resolution.

3 Computational Algorithms for Locally Approximates

In this section, we obtained some computational formulas for local approximation spline
in narrow grids based on wavelet recovery. The obtained formulas will be used in the
approximate calculation of integral data obtained in various grids [8].

Consider the following B-splines

Nl,m,i(x) = Nm−1(2
lx + m − i), l, i ∈ Z, m = 1, 2, . . .

Note some of the obvious properties of these features.

Lemma 1. There is equality

Nl,m,i(x) = Nl,m,m(x + 2−l(m − i)) (7)

Proof. We have

Nl,m,m(x + 2−l(m − i)) = Nm−1(2
l(x + 2−l(m − i))) = Nm−1(2

lx + m − i) = Nl,m,i(x).
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Lemma 2. There is equality

N0,m,m(2lx + k) = Nl,m,m−k(x) (8)

Proof. We have

Nl,m,m−k(x) = Nm−1(2
lx + k) = N0,m,m(2lx + k).

Lemma 3. Functions Nl,m,i(x) satisfy the following Cox – de Boer relation [8].

Nl,m,i(x) = i − 2lx

m − 1
Nl,m−1,i(x) + 2lx − i + m

m − 1
Nl,m−1,i−1(x); (9)

Nl,1,i(x) =
⎧
⎨

⎩
1, x ∈

[
i−1
2l

, i
2l

)
;

0, x /∈
[
i−1
2l

, i
2l

)
.

Fair equality

N ′
l,m,i(x) = 2l · Nl,m−1,i−1(x) − 2l · Nl,m−1,i(x). (10)

Proof. From equality (2) we get

Nl,m,i(x) = Nm−1(2
lx + m − i) = 2lx + m − i

m − 1
Nm−2(2

lx + m − i)

+m − (2lx + m − i)

m − 1
Nm−2(2

lx + m − i − 1).

Given thatNm−2(2lx+m− i) = Nl,m−1,i−1(x),Nm−2(2lx+m− i−1) = Nl,m−1,i(x)
we get the approval of the lemma. Equality (10) follows from equality (3).

Lemma 4. The function N0,m,m satisfies a large-scale ratio.

N0,m,m(x) =
m∑

k=0

pk
2m−1N0,m,m(2x − k), pk = m!

k!(m − k)! (11)

Proof. From (1) follows

N0,m,m(x) = Nm−1(x) =
m∑

k=0

pk
2m−1Nm−1(2x − k) =

m∑

k=0

pk
2m−1N1,m,m+k(x)

From equality (8) we get N1,m,m+k(x) = N0,m,m(2lx − k).

Lemma 5. The function Nl,m,i(x) satisfies the ratio

Nl,m,i(x) =
m∑

k=0

pk
2m−1Nl+1,m,2i+k−m(x). (12)
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Proof. From (8) follows. Nl,m,i(x) = N0,m,m(2lx +m− i) from here, on the basis (11),
conclude

Nl,m,i(x) =
m∑

k=0

pk
2m−1 N0,m,m(2(2l x + m − i) − k) =

m∑

k=0

pk
2m−1 N0,m,m(2l+1x + (2m − 2i − k))

=
m∑

k=0

pk
2m−1 Nl+1,m,2i+k−m(x).

LetM : Z2 → R. We will alsoM (k1, k2) use the designation for valuesMk1,k2 . Let’s
define the function with M− : Z2 → R equality M−

k1,k2
= M−k1,−k2 .

Definition 1. Let andM : Z2 → R, F : Z2 → R – two functions with compact carriers.
The convolution M ∗ F of these functions is defined by the equality.

(M ∗ F)λ,ρ =
+∞∑

k1,k2=−∞
Mk1,k2Fλ−k1, ρ−k2

We will call M the function the core of the bundle.
Consider the case m = 4. Then the ratio (12) will take the form

Nl,4,i(x) = 1

8
Nl+1,4,2i−4(x) + 1

2
Nl+1,4,2i−3(x) + 3

4
Nl+1,4,2i−2(x) + 1

2
Nl+1,4,2i−1(x) + 1

8
Nl+1,4,2i(x)

Suppose the values fk1,k2 = f
(
uj,k1,k2

)
, k1, k2 ∈ Z functions f (u1, u2) are known in

nodes from the site.

uj,k1,k2 =
(
2−jk1, 2

−jk2
)
,

k1 = kj,1,0 − 2, kj,1,0 − 1, . . . , kj,1,1 + 2;
k2 = kj,2,0 − 2, kj,2,0 − 1, . . . , kj,2,1 + 2.

The local approximation spline f̃ is determined by the equality [9].

f̃ (u1, u2) =
kj,1,1+3∑

λ=kj,1,0+1

kj,2,1+3∑

ρ=kj,2,0+1

rλ,ρNj,4,ρ (u2)Nj,4,λ(u1), ui ∈ [2−jkj,i,0; 2−jkj,i,1], i = 1, 2

where is

rλ,ρ = 1

36
fλ−3,ρ−3 − 2

9
fλ−3,ρ−2 + 1

36
fλ−3,ρ−1 − 2

9
fλ−2,ρ−3 + 16

9
fλ−2,ρ−2 − 2

9
fλ−2,ρ−1+

+ 1

36
fλ−1,ρ−3 − 2

9
fλ−1,ρ−2 + 1

36
fλ−1,ρ−1.

(13)

denote

Rj = (rλ,ρ)
kj,1,1+3,kj,2,1+1
λ=kj,1,0+1, ρ=kj,2,0

; (14)



188 G. Y. Deniskina et al.

Φj,1(u1) =
(
Nj,4,kj,1,0+1(u1) . . . Nj,4,kj,1,1+3(u1)

)
,

Φj,2(u2) =
(
Nj,4,kj,2,0+1(u1) . . . Nj,4,kj,2,1+3(u2)

)

Then the function f̃ can be rewritten in the form of [10].

f̃ (u1, u2) = Φj,1(u1) · Rj · (Φj,2(u2))
T ,

ui ∈ [2−jkj,i,0; 2−jkj,i,1], i = 1, 2.

Let’s introduce the kernel of the bundle (the values on the media are specified
[−1; 1] × [−1; 1] ∩ Z2)

F̃ = 1

36

⎛

⎝
1 −8 1

−8 64 −8
1 −8 1

⎞

⎠ (15)

Then, by definition, there is equality rλ,ρ = (F̃− ∗ f )λ−2,ρ−2. Let it be

Pj+1,i = 1

8

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 4 0 ... 0

1 6 1 ... 0

0 4 4 ... 0

0 1 6 ... 0

0 0 4 ... 0

0 0 1 ... 0

................

0 0 0 ... 4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The size matrix, (2(kj,i,1 − kj,i,0) + 3) × (kj,i,1 − kj,i,0 + 3), i = 1, 2. Then Φj,i =
Φj+1,i · Pj+1,i.

Consequently,

f̃ (u1, u2) = Φj+1,1(u1) · (Pj+1,1Rj · PTj+1,2) · (Φj+1,2(u2))
T , ui ∈ [2−jkj,i,0; 2−jkj,i,1], i = 1, 2,

Where in kj+1,i,0 = 2kj,i,0, kj+1,i,1 = 2kj,i,1, i = 1, 2. With this transformation,
we obtain approximation functions f on a finer mesh [11]. As follows from formulas
(5), in this transformation there is a special case of wavelet recovery. In fig. The 1st

example of such a recovery using the example of a test function f (u1, u2) = e− u21+u22
8 ,

u1, u2 ∈ [−10; 10].
Denote

Rj+l = (r(j+l)
λ,ρ )

kj+l,1,1, kj+l,2,1

λ=kj+l,1,0, ρ=kj+l,2,0
= Pj+l,1 · . . . · Pj+1,1 · Rj · PT

j+1,2 . . .PT
j+l,2. (16)

Then the locally approximate splint on the grid
{
(2−j−lk1, 2−j−lk2)

}
(k1,k2)∈Z2 has

the appearance.

f̃ (u1, u2) = Φj+l,1(u1) · Rj+l · (Φj+l,2(u2))
T , ui ∈ [2−j−lkj,i,0; 2−j−lkj,i,1], i = 1, 2
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We now obtain formulas for calculating the values of the locally approximating
spline and its partial derivatives at grid nodes [12, 13]. From the Cox - de Boer relation
(9) we find

Nl,4,i

(
i − 3

2l

)
= 1

6
;Nl,4,i

(
i − 2

2l

)
= 2

3
;Nl,4,i

(
i − 1

2l

)
= 1

6
;

Nl,3,i

(
i − 2

2l

)
= Nl,3,i

(
i − 1

2l

)
= 1

2
,Nl,2,i

(
i − 1

2l

)
= 1.

Fig. 1. Vailet-recovery of local-approximation splint.

Therefore, based on the formula (10) we get [14, 15].

N ′
l,4,i

(
i − 3

2l

)
= 2l−1,N ′

l,4,i

(
i − 2

2l

)
= 0,N ′

l,4,i

(
i − 1

2l

)
= −2l−1;

N ′′
l,4,i

(
i − 3

2l

)
= 22l,N ′′

l,4,i

(
i − 2

2l

)
= −22l+1,N ′′

l,4,i

(
i − 1

2l

)
= 22l .

Let’s introduce the following bundle kernels (values on the [−1; 1] × [−1; 1] ∩ Z2

media) [16]:

D0,0 = 1

36

⎛

⎝
1 4 1
4 16 4
1 4 1

⎞

⎠,D1,0 = 2l−1

6

⎛

⎝
−1 −4 −1
0 0 0
1 4 1

⎞

⎠,D0,1 = 2l−1

6

⎛

⎝
−1 0 1
−4 0 4
−1 0 1

⎞

⎠,

D1,1 = 22l−2

⎛

⎝
1 0 −1
0 0 0

−1 0 1

⎞

⎠,D2,0 = 22l

6

⎛

⎝
1 4 1

−2 −8 −2
1 4 1

⎞

⎠,D0,2 = 22l

6

⎛

⎝
1 −2 1
4 −8 4
1 −2 1

⎞

⎠.

Then the f̃ following equalities are fair for the values of the locally approximately

splined and its private derivatives in the nodes
(

λ

2j+l ,
ρ

2j+l

)
grids [12, 13]. From the Cox

- de Boer relation (9) we find

D(d1,d2) f̃
(
2−j−lλ, 2−j−lρ

)
= D−

d1,d2
∗ Rj+l(λ + 2, ρ + 2),

d1, d2 = 0, 1, 2, d1 + d2 ≤ 2; λ = kj+l,1,0, . . . , kj+l,1,1, ρ = kj+l,2,0, . . . , kj+l,2,1.

(17)
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4 Algorithms App

One of the methods for producing structures from composite materials is the automated
calculationmethod, inwhich tapes are placed on the surface of the technologicalmandrel
using pressure rollers [17, 18].

The surface of the fan blade is defined by some sets of points in several sections. First,
we model this surface using a locally approximating spline of two variables [19]. Then
we find the values of this spline at the nodes of the finer mesh and shift the surface points
corresponding to these nodes normal to the surface by a height equal to the thickness
of the tape. Next, we carry out the wavelet decomposition with zeroing the wavelet
coefficients. As a result, surface smoothing occurs [20].

5 Conclusion

The article presents computational algorithms for locally approximating splines based
on the use of the inverse discrete wavelet transform and convolution transform. The algo-
rithms are applied to the development of a part of the CAD system for the manufacture
of structures from composite materials by automated calculation.
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