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Abstract. The development of the railway infrastructure, as well as the intensi-
fication of exploitation of railways, made it necessary to schedule the motion of
trains to prevent their collision and blocking. Railway transport logistic problems
aimed at providing the organization of work of rolling stock in the framework of a
railway infrastructure are considered. Planning and organization of railway traffic
is a key factor to providing safe and effective functioning of the entire railway
transportation system. The currently used approach, based on target plans, is not
always successful in practice, especially in emergencies resulting from the fluc-
tuation of traffic capacities of a railway infrastructure. A mathematical model of
rolling stock logistics is constructed, accounting for all the key specific features
of the railway infrastructure. In the framework of the constructed mathematical
model, optimization problems for scheduling the traffic of locomotives and trains
for an assigned planning interval are formulated. Solution algorithms, assessing
time complexity, are presented for all the formulated problems.

Keywords: Traffic scheduling · Railway infrastructure · Development graph ·
Frontal algorithm

1 Introduction

The development of the railway infrastructure (RW), as well as the intensification of
exploitation of railways, made it necessary to schedule the motion of trains to prevent
their collision and blocking. A RW system is divided into contact systems, which, in
their turn are subdivided into sections. Each section is supervised by a dispatcher, who
is in charge of operational planning of RW traffic. Sections are subdivided into stages
covering the distance between couples of individual stations. A stage, in its turn, is
subdivided into block sections, which are basic railway elements.

A block section is an undividable section (~1800 m), where not more than one train
canbepresent. The limits of block sections (blocks) are equippedwith traffic lights.Block
sections are characterized by speed limits (terrain relief, profile, crossroads, switches
etc.).
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The available traffic dispatching methods are based on preliminarily constructed
traffic target plans with safety intervals, the so-called ‘threads’. Such plans are made up
in modeling the motion of virtual trains with generalized characteristics. The priority
task of a dispatcher is to assign through trains or made-up trains to threads. The motion
of a train according to a thread is a guarantee against collisions and blockings within the
stations of that thread. The aim is to run through a section the assigned number of trains
at minimal cost.

The drawbacks of this approach are locality of the solution, as well as failure of
the working system in emergencies. The local character of the dispatching technologies
makes it possible to assess the situation within only one section (or maximum two neigh-
boring sections). Choosing optimal solutions for separate sections may lead to system
failures within the framework of the entire RW. In an emergency, target plans become
either outdated or inapplicable (as in the case of security infraction at the block sections).
The dispatcher loses an effective instrument of planning and operational control.

The present paper considers models and methods of traffic planning, overcoming
the above-described drawbacks. The proposed approach can be used in decision-making
support systems [1, 2] in the field of passenger and freight RW traffic scheduling.

2 Modeling the Motion of Trains

2.1 A Graph of a RW Structure and Its Time Development

Let G(V, A, d) be a graph of a RW structure, where V is a set of nodes (junctions of the
railways of a block section), |V| = n; A ⊆ V2 is a set of arcs (the railways of a block
sections, the orientation determines the direction of a railway), |A| = m; d: A → N is
mapping determining the length of the corresponding railways (meters).

Let t ∈ {0, …, T} be planning tacts. Let U = {u0, …, uL} be possible choices of
the motion speed of objects (a transfer from a continuous model to a discrete one). It
is assumed that on set U the order is defined: u0 = 0 (minimal speed), uL is maximal
speed of an object, for the others ui < ui+ 1.

S(ui, uj) → N is distance function (meters) showing the distance covered by a RW
object during one planning tact on condition that the object started moving at speed ui
and finished moving at speed uj. It will be assumed that mapping S is defined on a set
of the following form:

Z = {(u0, u1), (u1, u2), . . . , (ui, ui+1), . . . , (uL−1, uL)}∪

{(u0, u0), (u1, u1), . . . , (ui, ui), . . . , (uL, uL)}∪ (1)

{(u1, u0), (u2, u1), . . . , (ui+1, ui), . . . , (uL, uL−1)}.
In this set, the first subset defines accelerationmodels, the second one definesmodels

of uniform motion, the third one defines deceleration models. Function S: Z → N will
be called a model of the motion of the object.
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Note: the technology of definingmap S imposes certain constraints onU (or versions
ui) of speed modes. Transfer from any admissible version of speed to an ‘adjacent’
version of speed (both lower and higher) ui → ui±1 must take less than one tact.

The position of the object in the space of the RW structure will be denoted by ρ

= (a, r, u), where a ∈ A corresponds to an arc (defines the railway and the direction
of motion); r ∈ [0, 1] is real number defining the relative position of the object on the
railway (0 is the beginning, 1 is the end of the way); u ∈ U is motion speed.

A couple ‘position-time’ (ρ, t) ∈ Π defines the location of the object in time and
space of the RW structure, where Π = A × [0, 1] × U × {0, …, T} is a set of various
admissible locations in the RW structure space and a set of planning tacts.

Binary asymmetric relation (Π , E), E ⊆ Π2 will be defined on set Π. The special
feature of the graph E is that it contains only couples of the form: E ∈ ((ρi, t), (ρj , t +
1)) ⇐⇒ position ρj is achieved from ρi in the period of time [t, t + 1].

Digraph Q(Π , E) will be called time development of the graph of the RW structure.
The special feature of digraph Q is that it is (T + 1)-partite, as one tact does not contain
any connections, there are only arcs from the previous tact to the following.

Obviously, the structure of digraph Q(Π , E) will depend on motion model S(ui, uj).
Different objects of the RW have different motion models, soQ(Π , E) = Q(Π , E(S)). In
what follows, this will be assumed, but, to simplify the notation, Q(Π , E) will be used
and called ‘development’.

2.2 A Model of Cost of Travel of RW Objects

Positive real map CRW-object: Z→ R+ will be introduced, which defines generalized cost
of travel of an object within one-time tact (taking into account that the object is either
accelerating or travelling uniformly, or decelerating). In practice, generalized costs are
rather difficult to describe. Having a dynamic model of a travelling train, it is possible
to use, for instance, approach [3]. Statistic data with subsequent approximation can also
be used [4].

Evidently, themotion dynamics of an object can change as a function of its mass, RW
profile, climatic conditions etc. Formally, all the factors affecting cost and dynamics of
a travelling object can be subdivided into two types. The first type is connected with the
notion of ‘train’: a particular ‘locomotive-stock’ couple determines the superposition of
costs Ctrain(Clocomotive, Cstock). The second one is connected with the notion of ‘railway
block section’– a model of cost of travel of a particular object along a particular section
is defined as a superposition of costs (Ctrain, Cway). Here, Cway is understood as a kind
of ‘fine’ function introducing corrections into the landscape of the model of costs of a
RW object travelling along a particular RW section.

Thus, the model of costs will be:

C
(
Ctrain(Clocomotive,Cstock),Cway(e)

)
, (2)

where e ∈ E.
In what follows, the abbreviated form C(e) of the model of costs will be used to

simplify the formal notation.
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2.3 Optimal Trajectory of the Motion of the Object

Let τ = (τ 0, τ 1, …, τK) be route in development Q(Π , E), where τ i = (ρi, ti) ∈ Π, i =
0..K and (τ j-1, τ j) ∈ E, j = 1..K. The special feature of route τ is that a RW-object needs
K tacts to cover the route: tK – t0 = K. This is connected with the main special feature
of development Q - (T + 1)-partite asymmetric graph.

Any route in development Q(Π , E) will be called the motion trajectory of an object.
The problem of seeking the fastest motion trajectory of a RW-object in terms of

developmentQ(Π , E) is formulated as follows: find the shortest route τ = (τ 0, τ 1,…, τK)
from initial position ρa to final position ρb, taking into accounting that themotion begins
at time tact t0:

K
(
τ ∗) = minK(τ )

τ=((ρa,t0),...,(ρb,tK ))

, (3)

where K(τ ) is number of arcs of route τ .
Here, τ * is optimal route from the viewpoint of the number of intermediate arcs of

development Q(Π , E). Let τ * be minimal length trajectory.
The problem of seeking ‘the cheapest’ motion trajectory of a RW-object in terms of

development Q(Π , E) is formulated as follows: find route τ = (τ 0, τ 1, …, τK) with the
minimal cost from initial position ρa to final position ρb, taking into account that the
motion begins at time tact t0:

F
(
τ ∗) = min

τ=τ0,...,τK

∑K

i=1
C(τi−1, τi), (4)

where τ 0 = (ρa, t0), τK = (ρb, tK ).
Here, τ * is route of the minimal weight on the weighted digraph of development

Q(Π , E, C). Let τ * be minimal cost trajectory.

2.4 Accounting for Arrival/Departure Time Constraints

As a rule, in practical RW-planning problems there are additional constraints connected
with arrival/departure times.

The meaning of a constraint on departures is that an object can be kept at an initial
point for some time, but not longer than an assigned time. Formally, it means that it
is necessary to exclude the motion trajectories which contain vertices R–= {(ρ0, ti) ∈
Π | ti > t−}, where ρ0 is initial position, t− is latest time of departure from the initial
position.

The meaning of a constraint on arrivals is that an object cannot arrive at a final point
earlier than an assigned time. Formally, it means that it is necessary to exclude themotion
trajectories containing vertices R+ = {(ρK , ti) ∈ Π | ti < t+}, where ρK is final position,
t+ is earliest time of arrival in a final position.

Thus, accounting for the above-described constraints involves assuming a new

development of the graph: Q
′(

Π
′
,E

′) = Q(Π,E)\Q(
R−,R+)

.
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2.5 Accounting for Speed Constraints

Some of RW-sections can have additional constraints on the speed of RW-objects
travelling along them. Consider such a case using an individual railway.

Let a railway be modeled by a pair of arcs (va, vb) ∈ A and (vb, va) ∈ A of graph
G(V, A) of the RW-structure. Let this railway have speed constraint u ≤ umax. Consider
development Q(Π , E). Among all vertices (ρi, ti) ∈ Π, those are noted, for which the
speed constraints are violated: O = O(va,vb, umax, Π ) = = {((a, r, u), t) ∈ Π | u >

umaxand a = (va, vb) or a = (vb, va)}.
A new development of the graph will be obtained by excluding the subgraph formed

at the vertices of set O : Q′(
Π

′
,E

′) = Q(Π,E)\Q(O). New development Q´ rules out

the presence of inadmissible trajectories from the viewpoint of the violation of speed
constraints on RW-sections.

In the case of several RW-sections with speed constraints, the technology of arriving
at a new development looks like successive use of the above-described operation for
each route with speed constraints.

2.6 Accounting for Contact System Constraints

Each locomotive in the framework of a general RW structure has its own substructure (a
contact system), in the framework ofwhich it can travel. Contact systems cross each other
on the level of junction stations. A general RW structure is assumed to be a combination
of contact systems:

G(V, A, d) = G1(V1, A1, d1) ∪ … ∪ Gs(Vs, As, ds) – the graph of the RW structure
is represented in the form of a combination of the subgraphs of the contact systems,
where s is number of contact systems. Then the development of a RW structure is also
represented as a combination of the developments:

Q(ΠE) = Q1(Π1,E1) ∪ . . . ∪ Qs(Πs,Es), (5)

where Π i= Ai × [0, 1] × U × {0, …, T}, i = 1..s.
In this case, the problem of seeking the optimal motion trajectory of a RW-object is

formulated not for the entire development Q(Π , E), but only for its part Qi(Π i, Ei) ⊆
Q(Π , E), where i is number of the contact system of the locomotive of a RW-object.

3 The Algorithm of Seeking the Optimal Motion Trajectory
of an Object and Its Computational Complexity

The task of seeking the optimal motion trajectory of a RW-object corresponds to the task
of seeking on a weighted digraph a development Q(Π , E, C), which does not contain
any loops or arcs having negative weights. The shortest route is sought from the initial
vertex to any vertex of the set of finite vertices. Problems of seeking the shortest route
on a graph are solved exactly in effective time/memory under condition of the finiteness
of the graph. The problem is that the number of vertices of the graph of development
Q(Π , E, C) is infinitely large (a continuum), as Π = A × [0, 1] × U × {0, …, T}.
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To solve the problem of seeking the minimal weigh route on a finite graph having
no loops or arcs with negative weighs, classical Dijkstra’s algorithm [5] can be used.
Its computational complexity is defined as: O(N × log N + M), where N is number of
vertices of a graph,M is number of arcs of a graph. The specific feature of the algorithm
is that, at each iteration, it ‘widens’ the front – an ordered set of vertices. The front width
can increase and decrease. The wider the front, the longer it takes to modify it, and the
longer is the iteration of the algorithm. For the case of an infinite graph of development
Q(Π , E, C), there is a non-zero probability of an indefinitely widening front, which is
fraught the danger of exhausting the memory and, consequently, failure of the algorithm.

To overcome this difficulty, a modification of algorithm [6] is proposed, which
involves a mechanism of ‘checking the vertices for identity’. It will be assumed that
vertex (a1, r1, u1, t1) ∈ Π and vertex (a2, r2, u2, t2) ∈ Π are ‘identical’ if conditions
a1= a2, u1= u2, t1= t2 are simultaneously satisfied. The front will be formed only of
the vertices which are not ‘identical’ pairwise. In this way, the front width will always
be limited by value m × L × T, where m is number of arcs of the graph of the RW
structure, L is number of choices of the velocity of the objects, T is number of planning
tacts.

Then the modification of algorithm [6] will have the following form (see description
of algorithm ROUTE on the pseudocode).

Designations:

• (a0, r0, u0, t0) – initial position
• FINISH – set of final positions
• c[a, u, t] – cost of trajectory (returned result of work of the algorithm)
• p[a, u, t] – trajectory positions (returned result of work of the algorithm)
• ORDER – order of vertices of the development ordered according to cost c[a, u, t]
• C(τ i, τ j) – cost of travel from position τ i to τ j

Pseudocode of algorithm ROUTE:

In this case, the computational complexity of themodified algorithmwill be described
as:

O(N × logN + M ), (6)
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where N = m × L × T,M = m × (3L – 2) × T. Here, the value ofM is obtained as the
number of arcs in a (T + 1)-partite digraph of a development consisting exclusively of
the vertices which are not pairwise ‘identical’. The memory requirements are defined
as:

O(m × L × T ). (7)

4 Accounting for Thread Constraints and the Traffic Scheduling
Algorithm Within Threads

Each thread defines a system of constraints on the arrival/departure times of the trains
for the stations (see p. 2.4). Not only one thread (a system of constraints), but several
alternative choices of threads can be defined for a train. In this case, the problemof choice
arises: choose the ‘best’ route for the train from the admissible ones.Anadmissible choice
implies a route of a train, for which the requirements of the thread are satisfied. Various
strategies can be used to make ‘the best’ choice. For instance, it seems ‘reasonable’ to
use the following order on the set of admissible choices (rule 1): choice A is preferable
to choice B if for choice A a larger number of requirements are satisfied, as compared
with choice B. An example of another strategy is the following rule (rule 2): choice A is
preferable to choice B if choice A arrives in the next station earlier than choice B. This
choice is ‘reasonable, as, if a train remains at a station for a long time, it exclusively
uses the RW-infrastructure of the station, preventing other RW-objects from using this
resource.

Lexicography can be introduced on a set of rules of preference. For example, all the
choices are ordered first according to rule 2, then, on the sets of comparable choices,
ordering according to rule 1 is assumed. A scheme which establishes an order among
the sets of admissible routes of a RW-object will be designated by φ, where φ(τ i, τ j) ↔
τ i � τ j, and τ i and τ j are routes.

The scheme of planning the traffic within threads will be as follows: for a given
RW-object, all the choices of the threads are considered; for each thread, the problem of
finding the optimal route is formulated (see p. 3); among all the routes ‘the best’ one is
chosen. Each problem of finding the best route for the object is formulated, based on the
following conditions: the current position of the object is taken to be its initial position;
a thread defines the system of constraints on the arrival/departure times of the trains for
the stations (see p. 2.4). The pseudocode of planning algorithm TRAINROUTE within
threads is given below.

Designations:

• (a0, r0, u0, t0) – initial position
• THREADS – set of systems of constraints on arrival/departure times (of threads)
• (Ri

–, Ri
+) – the earliest and the latest times of arrival in the assigned point

• D – set of admissible routes
• ROUTE – algorithm for determining the optimal route of an object
• τ – admissible route according to a thread
• φ – scheme of choosing the best route
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Pseudocode of algorithm TRAINROUTE:

If D = ∅ then there is no solution, EXIT.
According to rule φ ‘the best’ solution among D is chosen, EXIT.

It can be seen from the pseudocode that algorithm TRAINROUTE consists in mul-
tiply executing algorithm ROUTE. For each thread, an admissible route is formed suc-
cessively: algorithm ROUTE tries to complete a trajectory complying with the next
constraint. If one assumes that the system of constraints in the threads concerns only the
junction stations, then the upper estimate of the execution time of one iteration of the
external cycle of algorithm TRAINROUTE is defined by the following expression:

O
(
h × N ′ × logN ′ + M ′), (8)

where N
′ = m

′ × L × T ,M
′ = m

′ × (3L − 2) × T , m
′ = max{|A1|, . . . , |As|} (number

of arcs of the largest contact system). Then (it is assumed that the number of constraints
in all the threads is equal to h) the following estimate of the computational complexity
of algorithm TRAINROUTE is obtained:

O
(|THREADS| × h × N ′ × logN ′ + M ′). (9)

The memory requirement is described as: O
(
m′ × L × T

)
.

5 The Model of Routing the Rolling Stock, Accounting
for the Distribution of Locomotives Over the Contact Systems

Let I is a set of locomotives; S is a set of rolling stocks to be transported over a RW
structure; W is set of stations of the RW-structure W ⊆ V. For each stock s ∈ S the
‘technology’ of its travel along the RW is known, which is described by a chain of
stations (ws

0, …, ws
d(s)), where ws

0 ∈ U is initial station of stock s; ws
d(s) ∈ U is final

station; ws
a ∈ W, a = 1..(d(s) – 1) are intermediate stations; d(s) is number of parts of

the route the stock has to pass before arriving in the final point.
In what follows, actions enabling stock s to cover a part of the route from station

ws
a-1 to station ws

a will be called operation ws
a. J will denote a set of all operations

for all stocks. Each operation j ∈ J involves processes of maneuvering the locomotive,
making up a train and travelling to the assigned station. The following designations are
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introduced: s(j) is stock; w(j) are stations of arrival; f(j) are stations of departure; p(j) is
operation directly preceding operation j ∈ J, so s(j) = s(p(j)), f(p(j)) = w(j).

Decomposition of a RW-structure into contact systems assumes that not every loco-
motive i ∈ I can execute operations j ∈ J. ϕ(j) will denote a set of locomotives of the
contact system of the RW section between stations f(j) and w(j), i.e. ϕ(j) ⊆ I, j ∈ J.

Let t(i, j) define time required for executing operation j ∈ J by locomotive i ∈ I. It
is evident that t(i, j) not only depends on operation j and locomotive i, but on a large
number of other factors, such as: status, profile and workload of the RW-structure; the
starting tact of the motion of the train; location and routs of other trains etc. Function
t(i, j) involves constraints on threads; constraints on the impossibility for several trains
to be at the same time at the same place. To evaluate function t(i, j), it is possible to use
algorithm TRAINROUTE.

The varied parameters of the mathematical model here are |J|-dimensional integer-
valued vectors x and y, the components of which define starting tacts and locomotive
numbers for executing corresponding operations.

5.1 Constraints of the Mathematical Model

Natural constraint on variables:

xj ∈ {0, . . . ,T }, yj ∈ I , j ∈ J . (10)

Interrelation of operations, determining canonicity of a system model and providing
a constraint on using the locomotives of the contact system:

xj ≥ xp(j) + t
(
yj, p(j)

)
, yj ∈ ϕ(j), j ∈ J . (11)

Conditions defining the impossibility of simultaneously using the same locomotive
with different stocks:

xj ≥ xk + t(yk , k)orxk ≥ xj + t
(
yj, j

)
, k, j ∈ {l|yl = i, l ∈ J }. (12)

5.2 Accounting for Speed Constraints

It is required to minimize the cost of realizing RW traffic according to the routes and
threads of the trains. The notion of ‘costs’ arises only when the routes of the objects
within the RW-structure become certain – only then it will be possible to evaluate what
resources are required for theirmotion. Tomove a rolling stock fromone point to another,
it is, in a general case, necessary to: move a locomotive to the stock (maneuvering); to
make up a train and to provide its travelling to an assigned point (traffic). Couple (xj, yj)
defines locomotive yj for executing operation j, which begins at time tact xj and finishes
at time tact xj+ t(yj, j). Also, period t(yj, j) takes into account the times of maneuvering,
making up the train and its travelling.

The ‘cost’ of realization of operation j will be assumed to mean generalized cost
(j, xj, yj) including ‘cost’ of the realization of the maneuvering trajectory and ‘cost’ of
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the realization of the motion trajectory. The earlier described model C(Ctrain, Cway) can
be used as ‘cost’ function.

As a result, the problem of minimization of the cost function of the realization of the
traffic of trains is obtained:

∑

j∈J
COST

(
j, xj, yj

) →(x,y) min. (13)

6 The Frontal Planning Algorithm and Computing Costs

First, a ‘greedy’ tact-by-tact scheme of working of the planning algorithm will be con-
sidered. It consists in that the algorithm begins planning from tact 0 to tact T, solving
the local problem of allocation of the locomotives to the stocks for each tact. The task
is to allocate a set of free locomotives L ⊆ I to a set of made-up and awaiting stocks
S. Matrix of ‘costs’ R = (rij)|L|×|S| is formed. Each element rij defines the ‘cost of
allocating the i-th locomotive to j-th stock. According to matrix R, the best allocation,
from the viewpoint of minimizing the total ‘cost’, is chosen.

In general, the problem in question can be formulated in terms of thematrix-mapping
model [7]. The problem of planning work of an individual locomotive can be formulated
in terms of the travelling salesman problem [8]. In general, the problem in question can
be formulated in the framework of the resource allocation model [9–13], as well as a
multi-index transport problem [14–18]. In a general case, the above problems pertain to
the class of NP-completeness problems [19, 20].

On the other hand, there exists a problem that allocating one locomotive to one
stock involves travelling within the RW structure and results in changing the traffic
capacity of the RW-infrastructure and, consequently, the coefficients in matrix R for
other allocations. Because of this, the ‘greedy’ algorithm is introduced, which chooses
the minimal element in matrix R and executes the corresponding allocation.

In this case, the ‘greedy’ tact-by-tact planning scheme is as follows: successively,
for each tact, beginning with 0: a matrix of ‘cost’ of allocating the free locomotives to
the awaiting stocks is constructed; the best allocation is chosen (the classical allocation
problem is solved) and is fixed on the development of the RW-structure (excluding
trajectory elements to prevent collision of the trains). However, the computation cost of
such a scheme of solving the planning problem appears to be excessively high. Thus,
assuming that there is only one contact system, all the stocks are made up at 0 time tact
and all the locomotives are available beginning from time tact 0. Then, the estimation
formula of the execution time will be expressed as:

O(T × |L| × |S| × |THREADS| × h × N × logN + M ). (14)

To minimize the cost of computation (large value of T ), planning can be done not by
tacts, but by events in the RW system. An ‘event’ can mean two facts: 1) at a certain tact,
a locomotive has become available in the RW system; 2) at a certain tact, an awaiting
stock has appeared in the RW system. In this case, for each stock in the system (in the
limit) there may be as many events, as many requirements (two-side constraints) are
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assigned in the threads. For the locomotives, the facts of their becoming available are
also connected with the fact of the realization of the requirements for the stocks. Then,
for a ‘greedy’ planning scheme of events, the following estimation of the computation
cost is obtained:

O((h × |S|) × |L| × |S| × |THREADS| × h × N × logN + M )

= O
(
|L| × |S|2 × |THREADS| × h2 × N × logN + M

)
(15)

It is noteworthy that estimate (15) is the upper one, and in practical work is, for the
most part, determined by how large the sets of available locomotives and of awaiting
stocks are at the occurrence time of the events. As a rule, the sets are small enough (for the
most part, one locomotive determines 2–3 allocation choices to the stocks of the contact
system).Moreover, in reality, aRW-infrastructure and a systemof threads are coordinated
so that there is no need to consider all the threads in algorithm TRAINROUTE – it
is enough to check the realizability of the 2–3 nearest threads and choose the best
alternative. As a result, the ’practically expected’ estimate of the execution time of the
algorithm is obtained:

O(|S| × h × N × logN + M ). (16)

7 Conclusion

The article considers the problem of RW stock traffic planning. A model of the motion
of trains is proposed, which is based on the graph-development of the RW structure in
time, accounting for speed and contact system constraints. Based on the proposed model
of cost of moving of RW-objects, an optimization problem is formulated, and algorithms
of optimal routing of an object, with and without accounting for constraints of target
planning of RW traffic are described. Amodel is introduced and a problem is formulated
for planning the entire rolling stock in the framework of an assigned planning interval,
taking into account the allocation of locomotives to contact systems. A frontal algorithm
of solving such a problem is proposed. The computation costs of all the introduced
algorithms are estimated.
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