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Abstract. There is a need to transfer knowledge among institutions
and organizations to save effort in annotation and labeling or in enhanc-
ing task performance. However, knowledge transfer is difficult because of
restrictions that are in place to ensure data security and privacy. Institu-
tions are not allowed to exchange data or perform any activity that may
expose personal information. With the leverage of a differential privacy
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algorithm in a high-performance computing environment, we propose
a new training protocol, Bootstrap Aggregation of Teacher Ensembles
(BATE), which is applicable to various types of machine learning mod-
els. The BATE algorithm is based on and provides enhancements to the
PATE algorithm, maintaining competitive task performance scores on
complex datasets with underrepresented class labels.

We conducted a proof-of-the-concept study of the information extrac-
tion from cancer pathology report data from four cancer registries and
performed comparisons between four scenarios: no collaboration, no
privacy-preserving collaboration, the PATE algorithm, and the proposed
BATE algorithm. The results showed that the BATE algorithm main-
tained competitive macro-averaged F1 scores, demonstrating that the
suggested algorithm is an effective yet privacy-preserving method for
machine learning and deep learning solutions.

Keywords: Data privacy · Privacy-preserving machine learning ·
Differential privacy · Bootstrap aggregation · Information extraction ·
Natural language processing

1 Introduction

Data security and privacy are prime topics in the design of artificial intelligence
(AI) systems [14,15,17,18]. Domains such as biomedical and health informatics,
finance, tax revenue services, and homeland security characteristically use sen-
sitive data that contains personal information about human subjects. For the
safety of the data and personal information, exchanging such data among orga-
nizations and institutions is strictly controlled to prevent any possible leakage
of sensitive human subject information. However, to develop faithful deep learn-
ing (DL)-based machine learning (ML) information extraction and classification
models, a large amount of data from various data sources is highly desirable.
Moreover, some institutions may be limited by having too few training examples
to achieve ML/DL models to meet their expectations [10]. Thus, there is a need
for ways to transfer knowledge securely among organizations and institutions.

However, current AI and ML-based data processing approaches present secu-
rity vulnerabilities that can be exploited to leak sensitive details. Exposure of
private information can occur as a result of the features captured by DL mod-
els. A key feature of DL models is that they equip multiple layers of trainable
parameters. They learn by example and extract optimal feature representations
to enable higher accuracy. However, the ML/DL training algorithm is domain-
agnostic and does not recognize if a feature contains sensitive information.

Privacy-preserving models aim to prevent the (identification and) storage of
sensitive information in training data used in ML algorithms. Privacy herein is
understood as establishing a differential privacy approach that identifies privacy
with a measurable and rigorous mathematical definition [5]. Differential privacy
allows companies to collect the data of users without compromising the privacy
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of the individuals [7]. Differential privacy [6] ensures that the probability distri-
bution of the released statistics is roughly similar without paying attention to
the inclusion or non-inclusion of any single member in the study; thus, it pro-
vides credible statistics. Applying differential privacy to ML algorithms provides
a very strong guarantee that the datasets can be shared across registries without
concerns about privacy and confidentiality.

The study described in this document focuses on the application and eval-
uation of an approach based on the Private Aggregation of Teacher Ensembles
(PATE) algorithm [16]. PATE is a modified teacher/student model that includes
differential privacy [16]. PATE initiates by working on a set of sensitive data,
which is partitioned into different sections that do not overlap. On each partition,
any ML model, which in PATE’s framework is called a “teacher,” is trained. The
set of ML models or teachers is called an “assemble.” Different and independent
learning models can be used in each partition separately. At the inference phase
of the algorithm, PATE aggregates the predictions of the teacher assemble. To
do so, PATE counts votes, adds Laplace noise to the teachers’ answers, and then
takes the maximum value. The Laplace noise introduces randomness to protect
the privacy of users when the teachers do not have a strong quorum. The final
step is to transfer the knowledge from the teacher assemble model to a student
model using some public data (unlabeled). The teacher assemble will label some
of the unlabeled public data, and the student model will contain a training set
that will be used to learn a model and perform predictions. The student model
is added to decrease the probability of total privacy loss. In recent years, there
have been several refinements to the PATE model; specifically, there have been
improvements to the student model part of the algorithm [19].

One limitation that we observed with PATE is that it is too conservative
regarding underrepresented and minor classes during the classification process.
To address this issue, we propose an enhancement to the PATE framework.
We named our approach BATE (Bootstrap Aggregation of Teacher Ensemble).
BATE uses bagging (bootstrap aggregating) in high-performance computing
(HPC), instead of the data partitioning implemented in the PATE framework.
Thus, it yields performance scores for the minor classes at the same time that it
ensures differential privacy. We hypothesize that including the bootstrap classi-
fication will help improve BATE HPC performance.

In this paper, we performed a feasibility study of the proposed BATE model
with the data from four cancer registries. We developed models to extract infor-
mation on morphological and topographical characteristics of tumors from can-
cer pathology reports. The cancer pathology dataset was labeled by the can-
cer/tumor/case codes that met the Surveillance, Epidemiology, and End Results
(SEER) case reporting guidelines. We developed multitask convolutional neu-
ral network (MT-CNN) models and confirmed that the model was feasible for
the cancer pathology report corpus [4]. In this study, we simulated a scenario
in which one cancer registry had no gold standard labels and so learned from
the other three registries. But there was a restriction that no cancer registry
should expose patients’ identities and information to others. The results pre-



90 H.-J. Yoon et al.

sented in this study support our hypothesis on performance improvement. We
show that the performance of the BATE model is superior to that of the PATE
model, especially for subsite and histology, those classes suffering from severe
class imbalance, and many underrepresented classes.

This paper is organized as follows: Sect. 2 presents related work, and Sect. 3
presents the data and methods used in the study. Section 4 presents the results.
Section 5 provides a discussion, limitations, conclusions, and future work.

2 Related Work

Part of the groundwork that established the foundation of PATE was the work
on differential privacy on neural networks by Abadi et al. [2]. That study intro-
duced a differential privacy stochastic gradient descent (SGD) algorithm aimed
at controlling the influence of the training data stage, specifically in SGD com-
putation. In a subsequent study, PATE was presented by Papernot et al. [16] as
an independent approach to a learning algorithm for either teacher or student
models, i.e. a black-box approach, and consequently, capable of being applied
to other learning methods. PATE improved the accuracy of a private MNIST
model from 97% to 98% and the privacy bound from 8 to 1.9 [16]. Note that
MNIST is a simple classification task. The following are other variations of the
PATE approach:

– A PATE variation called PATE-G was introduced by Abadi et al. [3]. PATE-
G implements generative methods based on generative adversarial networks
(GANs) and semi-supervised models for knowledge transfer, thus improving
accuracy and privacy.

– PATE-GAN [11] uses GAN’s capabilities to generate synthetic data based on
real data using a modified PATE, allowing it to tightly bound the influence of
any individual sample on the model. This approach results in tight differential
privacy guarantees and thus improved performance over models with the same
guarantees.

– In Papernot et al. [19], PATE is applied to larger-scale learning tasks and real-
world datasets. Aggregators were improved to allow the application of PATE
to uncurated data; in addition, Laplace noise was replaced with Gaussian
noise.

– G-PATE [13] also leverages GANs to produce synthetic datasets with strong
privacy guarantee. G-PATE ensures differential privacy in the student gener-
ator.

– TrPATE [21] modified the original PATE framework and adopted transfer
learning to alleviate PATE’s performance degradation problem.

However, none of those approaches were applied to bioclinical data, and we
found only a limited number of studies applying PATE to bioclinical data. An
example is the work of Fay et al. [8,9]. Their studies applied PATE variations to
brain tumor segmentation magnetic resonance imaging, as shown in the following
references:
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– To reduce the required noise level during the aggregation stage, Fay et al. [8]
assessed principal component analysis for dimensionality reduction to map
the prediction target onto a low-dimensional latent space theoretically and
auto-encoders experimentally on a brain tumor dataset. Their study used
Gaussian noise in the aggregation stage.

– Autoencoder-based PATE [9] is a PATE variant that builds low-dimensional
representations of segmentation masks that the student can obtain through
low-sensitivity queries to the private aggregator. This approach achieves a
higher Dice coefficient (segmentation quality) for the same privacy guarantee
on a brain tumor segmentation dataset.

To our knowledge, at the time of this study, there are no published studies
of PATE or any of the PATE variants that address performance scores for the
minor classes that have also been applied to bioclinical data on high-performance
computers. To help solve these issues, we present the BATE approach, which
uses bagging in HPC instead of the data partitioning implemented in the PATE
framework. Thus, it generates performance scores for the minor classes at the
same time that it includes differential privacy.

The main contributions of our work to the problem we are exploring are the
following: 1. We proposed the use of BATE to enhance the PATE differential
privacy approach with the use of bagging. 2. We applied BATE to bioclinical
data. The results of our study show improvements in those classes suffering
from severe class imbalance. 3. The study was performed on a high-performance
computer.

In the following section we present the datasets employed in this study and
the implementation approach.

3 Methods

3.1 Datasets

The dataset for this study consists of unstructured text in pathology reports
from four cancer registries: the Louisiana Tumor Registry, Kentucky Cancer
Registry, Utah Cancer Registry, and New Jersey State Cancer Registry. These
registries contribute to the National Cancer Institute’s SEER program. The
study was executed in accordance with the institutional review board protocol
DOE000152.

Certified tumor registrars manually coded the ground truth labels associ-
ated with each unique case based on free text from the corresponding pathology
reports, according to the SEER program coding and staging manual. We con-
sulted the International Classification of Diseases for Oncology, Third Edition,
coding convention for labeling the cases. We extracted the following six data
fields from the cancer reports: cancer site (70 classes), subsite (320 classes), lat-
erality (7 classes), histology (571 classes), behavior (4 classes), and tumor grade
(9 classes). Note that the dataset has a severe class imbalance among class labels
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(e.g., C50: 242,427 cases, C39: 6 cases), and some labels have few training sam-
ples available (e.g., C630: 2 cases, C764: 3 cases), mainly because of the low
prevalence of rare cancers.

We chose reports with specimens collected in or after 2017 as testing data
and specimens collected in or before 2016 as training data. We randomly selected
and reserved 10% of the training data for validation of the model training. Also,
we considered only cases for there was less than a 10-day difference between the
date of diagnosis and either the specimen collection date or the date of surgery.
The 10-day time difference was determined based on an analysis of the pathology
report submissions. The vast majority of reports and addenda fell within that
time frame. Table 1 lists the number of pathology reports from the four registries.
Note that we renamed the registries in the table for security purposes. Note also
that, in each registry, there are around 50,000 words in the vocabulary that
appeared across the registries.

In this paper, we designed a study in which we selected one registry as a
student institution and developed an information extraction DL model with the
training data from the other three registries regarding teacher institutions. We
repeated this training procedure four times, once per each registry as a student.

Table 1. Number of training and testing cases from the four cancer registries, number
of vocabularies in the corpus, and the number of unique words only appearing in the
registry. We renamed the registries for security purposes.

Cancer registry 1 2 3 4

Train 147,191 91,820 243,475 259,699

Test 1,554 21,411 58,049 49,433

# Words 479,570 79,959 189,037 247,555

# Unique Words 428,957 35,332 125,787 187,079

3.2 Multi-task Convolutional Neural Networks

We chose the MT-CNN [4] as our DL model for information extraction from
cancer pathology reports. It is an extension of the CNN for sentence classification
[12,20]. The model consists of three parts: word embedding, one-dimensional
convolution, and a task-specific, fully connected layer.

Word embedding is a learned representation of terms to map a set of words
onto vectors of numerical values that have the same semantic meaning and have
similar observations. A security vulnerability in the word embedding layer is that
we can hypothesize that the disease types and the patients’ personal information
may be clustered together in the vector space.

The convolution layer has a series of one-dimensional convolution filters that
have latent representations to capture the features from the word vectors of doc-
uments. The algorithm determines the optimal features by itself. However, in
the overfitting instances, feature learners may attempt to extract personal iden-
tities and sensitive information and become vulnerable to purposeful adversarial
attacks.
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3.3 Bootstrap Aggregation of Teacher Ensembles Algorithm

In AI and ML, there are two types of information the ML models can observe
from the data corpus. One is “common information” that contains concepts and
ideas that can articulate data characteristics and their class association. The
other is “private information” that is specific to the individual cases and typically
should not be contributed to the classification and ML process. However, in
certain circumstances, some pieces of private information can be included in the
decision process; we refer to the inclusion of such data as “overfitting.” The main
idea of the PATE algorithm is to divide one training corpus into several subsets
that are disjointed from one another and to develop multiple teacher models.
The choice of disjoint sets prevents private information from influencing the
decision, thus preventing exposure of the identities of individual data subjects
in the sensitive data. However, the disjoint data splitting in PATE may cause a
considerable performance decrease for decisions in underrepresented classes.

Bootstrap Aggregation. We propose to apply bagging, which is the tech-
nique that we do training with multiple models with many sampled data with
replacement, thus improving stability and accuracy while helping to avoid over-
fitting of the data. Both (disjoint) sampling and bagging prevent the extraction
of private information from the data; the latter approach maintains or improves
performance in classifying minor classes. One drawback is that bagging increases
the computational demands for training many models with multiples of the data
[22].

Additive Laplace Noise. We added Laplace noise to the teachers’ aggregation
of predictions, perturbing the counts, and formed a single prediction, which is
also known as the “noisymax mechanism” [6]. The purpose of this procedure is
to prevent a single outlier from driving decisions when two output classes receive
an equal number of votes from the teachers, which could result in the exposure
of private information. Additive random noise will not change the decision if it
is obvious, thus receives majority votes. Adding a larger scale of noise to the
decisions might increase the privacy budget, but it would considerably degrade
the overall task performance.

Student Model. Even if the teacher models were trained in a privacy-
preserving manner, releasing the models directly to other parties and institu-
tions would present a potential risk of leaking private information because there
is a finite privacy budget in the model. Moreover, in cases of natural language
processing models, exposure of vocabularies may give a hint to an adversary.
Instead, a student institution provides a pilot dataset, and the teacher models
derive decisions from the dataset. The student institutions develop their own
models based on the pilot dataset with the teacher’s annotations.
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3.4 Study Design

We designed a study with four participating cancer registries, simulating a sit-
uation in which each registry learns from the other three registries. We set up
four scenarios as follows:

Scenario 1: No Collaboration. There was no interaction or communication
among the cancer registries. Each registry developed its own DL model based on
its data and manual annotation. This was the most secure and privacy-preserving
method of development, but each institution had to spend effort on it.

Scenario 2: No Privacy-Preserving Collaboration. One institution
received a model developed by the data collected from the other three insti-
tutions. There was no preparation for an adversary attack on privacy or leaking
of personal identity. An institution did not have to spend effort to develop its
models, and there was the possibility of a performance boost to some extent
because of the abundance of training samples from other institutes.

Scenario 3: PATE. We followed the PATE algorithm: we made 20 disjoint sub-
samples from the training dataset collected from the three institutes, developed
20 DL models (teacher), and developed one student model trained by the pilot
dataset and annotations from 20 teachers. A considerable performance decrease
was expected, especially on subsite and histology classification tasks, because
those tasks contained several underrepresented class labels.

Scenario 4: BATE. We trained 200 bootstrap sampled datasets and devel-
oped 200 teachers. The student model was trained by the pilot dataset with
annotations from the 200 teachers. This was the most computationally expen-
sive method of all the scenarios. For the PATE and BATE algorithms in this
study, we chose one cancer registry as a student institution and regarded the
training set of the registry as the pilot dataset. The student model was trained
not by the gold standard of the training set, but by the teachers.

4 Results

We ran experiments in extracting information from cancer pathology reports pro-
vided by the four SEER cancer registries, based on the four scenarios described
in the previous sections. We extracted the following six properties: primary can-
cer site, subsite, laterality, histology, behavior, and grade. We performed parallel
training and validation of the DL models on the Summit supercomputer oper-
ated by the Oak Ridge Leadership Computing Facility (OLCF). The codes were
implemented with the Keras and TensorFlow [1] backend available in the IBM
Watson ML packages. Since the datasets had many class labels and some had
severe class imbalances, we adopted micro and macro-averaged F1 scores as per-
formance metrics. The results are listed in Table 2.
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Table 2. Information extraction task performance in micro and macro-averaged F1
metrics for each registry as a student institution and the average from all four registries.
S1 (Scenario 1): no collaboration, S2 (Scenario 2): no privacy preservation, S3 (Scenario
3): PATE algorithm, and S4 (Scenario 4): BATE algorithm. λ is the scale of the additive
Laplace noise to the aggregated decisions from the teachers.

Reg. S1 S2 S3 S4

λ 0 0.05 0.1 0 0.05 0.1

Site

Micro F1 1 0.9344 0.9286 0.9279 0.9292 0.9241 0.9324 0.9356 0.9228

2 0.9287 0.9278 0.9232 0.9218 0.9203 0.9254 0.9264 0.9225

3 0.9247 0.9202 0.9187 0.9171 0.9130 0.9225 0.9229 0.9215

4 0.9248 0.9222 0.9145 0.9144 0.9093 0.9238 0.9215 0.9186

Average 0.9281 0.9247 0.9211 0.9206 0.9167 0.9260 0.9266 0.9213

Macro F1 1 0.6173 0.6491 0.6186 0.6201 0.5892 0.5959 0.6020 0.5934

2 0.6244 0.6473 0.5653 0.5641 0.5508 0.6209 0.6257 0.6024

3 0.6424 0.6704 0.5645 0.5544 0.5190 0.6338 0.6373 0.6163

4 0.6545 0.6355 0.5473 0.5456 0.5080 0.6374 0.6417 0.6102

Average 0.6346 0.6506 0.5739 0.5710 0.5418 0.6220 0.6267 0.6056

Subsite

Micro F1 1 0.5978 0.5927 0.5882 0.5759 0.5592 0.6004 0.6010 0.5766

2 0.6578 0.6513 0.6439 0.6431 0.6355 0.6634 0.6637 0.6492

3 0.6435 0.6347 0.6153 0.6135 0.6003 0.6530 0.6543 0.6444

4 0.6467 0.6490 0.6310 0.6302 0.6231 0.6548 0.6531 0.6429

Average 0.6365 0.6319 0.6196 0.6157 0.6045 0.6429 0.6430 0.6283

Macro F1 1 0.3794 0.3573 0.3094 0.2963 0.2907 0.3170 0.3207 0.3068

2 0.3087 0.3143 0.2391 0.2357 0.2107 0.2953 0.2975 0.2596

3 0.2771 0.2956 0.2148 0.2037 0.1849 0.2870 0.2818 0.2515

4 0.3060 0.3029 0.2203 0.2127 0.1874 0.2940 0.2891 0.2574

Average 0.3178 0.3175 0.2459 0.2371 0.2184 0.2983 0.2973 0.2688

Laterality

Micro F1 1 0.9157 0.9028 0.9125 0.9138 0.9151 0.9208 0.9176 0.9118

2 0.9130 0.9021 0.9029 0.9029 0.8977 0.9030 0.9038 0.9006

3 0.9036 0.9003 0.9048 0.9054 0.9030 0.9048 0.9041 0.9007

4 0.9023 0.8982 0.9012 0.9005 0.8990 0.9045 0.9042 0.8983

Average 0.9086 0.9009 0.9053 0.9056 0.9037 0.9083 0.9074 0.9029

Macro F1 1 0.5920 0.4693 0.5536 0.5544 0.5592 0.4777 0.4726 0.5092

2 0.5221 0.5179 0.5097 0.5155 0.5057 0.5201 0.5295 0.5116

3 0.5296 0.5124 0.5004 0.5066 0.4915 0.5210 0.5231 0.5047

4 0.5265 0.5141 0.5086 0.5095 0.5039 0.5167 0.5173 0.5039

Average 0.5426 0.5034 0.5180 0.5215 0.5151 0.5089 0.5106 0.5074

Histology

Micro F1 1 0.7252 0.7207 0.7130 0.7072 0.6963 0.7291 0.7246 0.7079

2 0.7469 0.7414 0.7310 0.7304 0.7217 0.7411 0.7394 0.7300

(continued)
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Table 2. (continued)

Reg. S1 S2 S3 S4

λ 0 0.05 0.1 0 0.05 0.1

3 0.7546 0.7453 0.7469 0.7462 0.7425 0.7607 0.7613 0.7536

4 0.7803 0.7756 0.7674 0.7639 0.7580 0.7755 0.7783 0.7674

Average 0.7518 0.7457 0.7396 0.7369 0.7296 0.7516 0.7509 0.7397

Macro F1 1 0.4004 0.3906 0.3047 0.3224 0.2544 0.3609 0.3732 0.3472

2 0.3540 0.3444 0.2245 0.2193 0.1873 0.3096 0.3120 0.2605

3 0.3239 0.3164 0.1998 0.1859 0.1532 0.3009 0.2981 0.2517

4 0.3275 0.3276 0.2041 0.1993 0.1452 0.3142 0.3036 0.2551

Average 0.3515 0.3448 0.2333 0.2317 0.1850 0.3214 0.3217 0.2786

Behavior

Micro F1 1 0.9704 0.9743 0.9698 0.9665 0.9659 0.9736 0.9710 0.9646

2 0.9654 0.9585 0.9595 0.9575 0.9560 0.9598 0.9617 0.9570

3 0.9671 0.9665 0.9684 0.9678 0.9644 0.9696 0.9688 0.9672

4 0.9731 0.9670 0.9693 0.9680 0.9655 0.9709 0.9703 0.9680

Average 0.9690 0.9666 0.9667 0.9650 0.9630 0.9685 0.9680 0.9642

Macro F1 1 0.8159 0.8595 0.7201 0.7533 0.6460 0.8730 0.8076 0.8373

2 0.9038 0.8664 0.8094 0.8511 0.8073 0.8554 0.8654 0.8507

3 0.8133 0.8316 0.7378 0.7393 0.7057 0.8363 0.8151 0.7581

4 0.8207 0.8389 0.7674 0.7542 0.7265 0.8417 0.8267 0.7893

Average 0.8384 0.8491 0.7587 0.7745 0.7214 0.8516 0.8287 0.8089

Grade

Micro F1 1 0.7259 0.6731 0.6763 0.6692 0.6744 0.6737 0.6660 0.6577

2 0.7807 0.7732 0.7728 0.7651 0.7673 0.7817 0.7801 0.7752

3 0.7255 0.7115 0.7196 0.7210 0.7112 0.7279 0.7293 0.7204

4 0.7587 0.7461 0.7564 0.7552 0.7498 0.7571 0.7586 0.7503

Average 0.7477 0.7260 0.7313 0.7276 0.7257 0.7351 0.7335 0.7259

Macro F1 1 0.7364 0.7090 0.7055 0.7046 0.6989 0.7200 0.6910 0.6871

2 0.6011 0.6297 0.5885 0.5812 0.5803 0.6067 0.6327 0.5968

3 0.6503 0.6083 0.5631 0.5697 0.5558 0.6220 0.6269 0.5771

4 0.7716 0.6961 0.6720 0.6728 0.6664 0.6772 0.7453 0.6703

Average 0.6898 0.6608 0.6323 0.6321 0.6253 0.6565 0.6740 0.6328

We observed that the F1 scores between S1 (no collaboration) and S2 (trans-
fer knowledge without privacy preservation) were very close. That finding was
the confirmation that we could achieve a similar level of task performance by
developing a model with the other registries’ data and testing it with the student
registry. It implies that our study design is legitimate.

Based on the comparisons of F1 scores between S2 and S3 or S4, we observed
a certain level of performance decrease if we applied privacy-preserving algo-
rithms; that finding is confirmed by other studies [2] showing that there is a
trade-off between accuracy and privacy. However, we observed more degrada-
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tion of performance from applying the PATE algorithm (S3) than from applying
the BATE (S4). That was especially true for the macro-averaged F1 scores of
subsite (S3 averaged macro-F1: 0.2459, S4: 0.2983) and histology (S3: 0.2333, S4:
0.3214), two tasks that have many underrepresented class labels. It was a clear
demonstration that BATE performance was superior to PATE performance.

The results also supported the findings of other studies that adding more
noise to the decision may increase the privacy budget but decrease the classifi-
cation accuracy [16]. Both the S3 and S4 scenarios showed that increasing the
scale parameter of the additive Laplace noise lowered the classification accuracy
scores. Those findings were more clear for the macro-F1 scores of the subsite
and histology tasks. Also, we observed that BATE performance was superior to
PATE performance for the subsite (S3: 0.2184, S4: 0.2688) and histology (S3:
0.1850, S4: 0.2786) tasks.

5 Discussion

Threats to data privacy in AI and ML/DL are incurred as a result of the nature
of the design: ML/DL models are trained without having domain knowledge but
find the best feature representations that can maximize the task performance.
During the training, the algorithm may learn too precisely from the examples
and may attempt to extract personal and sensitive information. The state-of-
art differential privacy algorithms are designed primarily to avoid such incidents
so that the few marginal training samples dominate decisions. We suggested
the BATE algorithm, in which we adopted the advantages of PATE so that we
could isolate the vocabulary sets of the student institutions from the teacher
institutions and limit the access of teacher models to secure privacy. Also, with
the BATE model, we maintained the accuracy scores of the underrepresented
classes of the training samples.

Information extraction from cancer pathology reports was our model exam-
ple. There were many class labels in the dataset, including those of rare can-
cer types, which resulted in severe class imbalances and underrepresentation of
training examples. We demonstrated that BATE performance was superior to
PATE performance, especially for those difficult problems. We also showed that,
with BATE, the privacy-preserving training and transfer of knowledge from the
teacher institutions to the student institutions maintained the clinical task per-
formance.

The study’s limitation is that we examined the effects of the BATE algorithm
qualitatively but did not quantify the threat of privacy and security attacks from
the adversary. The results suggested that we need to design a follow-up study to
confirm the validity and security of the privacy-preserving knowledge transfer.
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