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Abstract. In the last years, polystore databases have been proposed to
cope with the challenges stemming from increasingly dynamic and het-
erogeneous workloads. A polystore database provides a logical schema to
the application, but materializes data in different data stores, different
data models, and different physical schemas. When the access pattern to
data changes, the polystore can decide to migrate data from one store to
the other or from one data model to another. This necessitates a schema
evolution in one or several data stores and the subsequent migration
of data. Similarly, when applications change, the global schema might
have to be changed as well, with similar consequences on local data
stores in terms of schema evolution and data migration. However, the
aspect of schema evolution in a polystore database has so far largely been
neglected. In this paper, we present the challenges imposed by schema
evolution and data migration in Polypheny-DB, a distributed polystore
database. With our work-in-progress approach called PolyMigrate, we
show how schema evolution and data migration affect the different layers
of a distributed polystore and we identify different approaches to effec-
tively and efficiently propagate these changes to the underlying stores.
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1 Introduction

For several decades, relational databases had a monopoly in the data manage-
ment layer of information systems. This has changed in the course of the 2000s
with the proliferation of novel types of applications, data, and access patterns
such as analytical processing on structured data or social graphs [17]. As a conse-
quence, a large variety of different data stores has been introduced, from column
stores over key-value stores to document and graph databases. As long as appli-
cations are based on rather homogeneous data sets and workloads, these systems
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are well suited. However, in cases of highly heterogeneous data and/or large fluc-
tuations in the access patterns of applications, not even these specialized systems
would be able to provide optimal support.

For this reason, the last years have seen the advent of polystore databases [18],
which combine several different, heterogeneous data stores underneath a joint
interface. Depending on the type of data to be managed or the access patterns,
they may decide to deploy several different data stores and distribute (possibly
also partly replicate) data among these stores.

In [20], we have introduced Polypheny-DB, a novel distributed polystore
database. Polypheny-DB considers distribution at two levels: At global level,
data is fragmented and replicated (the latter to increase availability) in order
to allocate it to different sites in a global network. Hence, fragmentation, repli-
cation, and allocation aims at bringing such data items together that are fre-
quently accessed jointly. The allocation then has to guarantee that the fragments
are placed close to their corresponding applications in order to minimize access
latency. At local level, each site runs an independent polystore that can decide
unilaterally, based on a local cost model, which data stores to provide, how to
distribute data across these data stores, and how to process queries.

Assume, as an example for an organization running such a distributed poly-
store, an international auction house with databases and compute centers dis-
tributed around the globe (see [20] for more details). The auction house has
to jointly deal with several workloads such as Online Transaction Process-
ing (OLTP) (for the actual auctions), Online Analytical Processing (OLAP)
(for analyzes of past auctions), graph queries (for recommendations to their cus-
tomers), and finally also multimedia similarity search queries (to find items and
thus auctions based on the visual appearance of the former).

While polystores usually assume the database schema to be static, this is not
always the case in practice. Schema evolution—one of the “top ten fears” about
the future of databases, according to Stonebraker [16]—needs to be taken into
account also in polystores. In the auction house example, changes in the product
recommendation engine or additional/revised legal requirements may lead to
changes of the logical database schema (“external” reasons, from the polystore’s
perspective). Because shutting down the entire business of the auction house is
not an option, these schema changes and the subsequent data migrations have to
be performed efficiently online, without any downtime. In addition, there are also
schema changes caused by internal data reorganisation in the local polystores,
for instance based on workload changes (“internal” reasons).

In this paper, we introduce PolyMigrate, a work-in-progress extension to
Polypheny-DB that considers schema evolution and data migration derived from
schema changes in a distributed polystore. In particular, we analyze the different
layers on which schema changes can originate and how they need to be propa-
gated downwards through the different layers of the polystore (or why and when
they do not need to be propagated). To the best of our knowledge, this is the first
attempt to address schema evolution and data migration in a polystore context.
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The contribution of this paper is threefold: (i) We identify why and where in
the Polypheny-DB stack schema changes might occur and what changes need to
be considered. (ii) We discuss several options as to when these changes have to
be propagated downwards in the Polypheny-DB stack to the local data stores,
thereby taking into account that potentially large volumes of data might have
to be migrated. (iii) We analyze how the propagation of schema changes and the
migration of data have to be implemented.

The remainder is structured as follows: In Sect. 2 we review related work.
Schema evolution and data migration in Polypheny-DB are discussed in Sect. 3.
Section 4 presents examples and Sect. 5 concludes.

2 Background and Related Work

In what follows, we introduce basic notions and concepts from database schema
evolution, data migration, and multi- and polystores, and survey related work.

2.1 Schema Evolution and Data Migration

Schema evolution in databases is a long investigated and still current topic.
In schema-flexible database systems (e.g., NoSQL database systems), schema
changes do not have to be executed immediately, but can be divided into two
separate steps: schema evolution and data migration.

Schema evolution describes the changes to the schema without immediately
executing them on the data. In this paper, we will discuss why and where
(Sect. 3.1) schema evolution in a distributed polystore is triggered. We also
describe what types of schema evolution operations occur in Polypheny-DB. We
use the operations introduced in [14] and extended for multi-model data in [7].
There are operations on single schema objects (e.g., add, rename, and delete)
and operations on multiple schema objects (e.g., copy, move, split, and merge).

Data migration follows the schema evolution and is traditionally carried out
eagerly, upgrading all legacy data. Yet, in the context of Cloud-hosted data back-
ends, eager migration can be rather costly. Thus, lazy migration may be more
cost-efficient, as legacy data objects are only migrated on-the-fly in case they are
actually accessed by the application. The downside is that lazy migration intro-
duces a runtime overhead on reads and writes [12]. A compromise between the
two competing goals of minimizing latency and migration costs can be reached by
migrating hot data predictively [6]. The possible applications of these techniques
in Polypheny-DB are discussed in Sect. 3.2.

Related Work. The co-evolution of schemas and the associated XML documents
is addressed in [4] and [9], for example. Also in relational databases the handling
of different versions in single database systems becomes more and more impor-
tant [1,5,15]. The schema flexibility of NoSQL database systems brings new
challenges for the schema evolution, which are analyzed in [2,12,14] for different
types of NoSQL database systems. However, all these approaches only discuss
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schema evolution in the context of single store databases. Polystore databases
lead to new challenges for schema evolution and data migration. In [7], the chal-
lenges for multi-model data [8] are outlined in a vision paper. In this paper, we
will discuss these challenges and solutions in a more concrete and detailed way
using Polypheny-DB.

2.2 Polystore Databases

To efficiently deal with heterogeneous workloads produced by today’s zoo of
applications, a new generation of database systems has been developed. In the
following, we use the taxonomy introduced in [18] to discuss multi- and polystore
databases.

When data (or parts thereof) needs to be accessed by different applications,
some query languages might be better suited than others—depending on the
concrete requirements of the respective applications. Polyglot persistence [11,13]
addresses this problem and aims at choosing the best suited query language for
a concrete use case. This goes back to the concept of polyglot programming.

A polyglot database system uses a set of homogeneous data stores and exposes
multiple query interfaces and languages [18]. A multistore database system, in
contrast, manages data in heterogeneous data stores, but offers a common query
interface to the outside, as well as only one query language. Polystore databases
combine the advantages of both polyglot and multistore systems.

Related Work. An example for a multistore system is Icarus [19]. Compared to
other multistore systems, Icarus always stores all data on all underlying stores
and executes incoming queries on the store with the best characteristics for this
type of query. Since all data is stored on all stores and Icarus only supports data
stores with an SQL interface, there is no need for complex schema and data
migrations. BigDAWG [3] is a polystore system which organizes heterogeneous
data stores into “islands”. Each island has an associated query language and
data model, (e.g., a relational island is based on the relational data model and
exposes an SQL interface). If a query accesses data distributed over different
islands, inter-island queries are resolved by migrating data between the islands.
Hybrid.poly [10] is an in-memory polystore, which is queried using a extended
SQL interface. It allows the execution of complex analytical queries on non-
relational data being combined with relational data. With Polypheny-DB [20]
we have introduced a polystore system that does not only provide access to
data stored in different kinds of data stores and data models independent of
a query language, it can also be deployed in a distributed fashion. Polypheny-
DB supports different types of underlying data stores including key-value stores,
document stores, plain CSV-files, and relational databases.



46 A. Stiemer et al.

3 Schema Evolution and Data Migration
in Polypheny-DB

The distributed polystore Polypheny-DB distinguishes two layers (see Fig. 1):
At the global level (G), data is distributed across several sites in a network,
i.e., the global layer consists of interconnected instances. For this, the schema is
fragmented and replicated. The resulting schema fragments are then assigned to
sites in the system (allocation). At the local level (L), each Polypheny-DB site
then manages data locally in a polystore (P), i.e., in different data models and
data stores. The main objective of the local level is to improve the performance
for heterogeneous workloads. There is no communication between the individual
data stores which are all considered as black boxes.

Further, applications and clients are not supposed to access the individ-
ual data stores directly. Consequently, we follow a top-down approach for data
access, which also holds for schema evolution and data migration. Moreover,
Polypheny-DB is agnostic to optimizations at the physical level inside the data
stores.

To summarize, the global level spans over all instances of the polystore,
while the local level only spans over the heterogeneous data stores of a specific
polystore instance. Therefore, we distinguish three different types of schemas
depicted in Fig. 1: (i) The global schema G (as seen by the applications), (ii) the
local schemas L (the schema of an individual polystore instance as a result of
fragmentation, replication, and allocation on global level), and (iii) the physical
schemas P (the actual schema of an underlying data store).

Polypheny-DB 

Local Schema 

Polypheny-DB 

Local Schema 

PS 

PS 

PS 

PS PS 

PS PS 

Global Schema

Polypheny-DB 

Local Schema 

PS 

PS PS 

G 

L 

P 

Fig. 1. Different types of schemas in Polypheny-DB. The global schema is visible to
the application, the local schema of an individual polystore instance is the result of the
fragmentation and replication process, and the physical schemas (PS) are the actual
schemas of the data stores. G denotes the global, L the local, and P the physical level.
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3.1 Schema Evolution

In the following, we introduce PolyMigrate and analyze the why, where, what,
when, and how regarding schema evolution and data migration in Polypheny-DB.

The “Why”: Schema evolution in Polypheny-DB might take place due to one or
several of the following three reasons: (i) As a result of an “external” activity like
a new version of the application software (e.g., by introducing new features which
require additional attributes). (ii) As consequence of an “internal” optimization
which leads to a revision of the fragmentation or replication decision at global
level. This immediately affects the local schema of at least one of the sites.
Internal optimizations might take place due to the attempt to minimize data
access latency or request response time. They could also be the result of the re-
location of data that is frequently queried together (e.g., by bringing data to the
same local site) in order to optimize queries. Other reasons are the minimization
of costs (e.g., in the Cloud) or the reduction of the replication degree. And
(iii) as a result of the optimization within one polystore instance and the local
distribution and allocation of data to one of the underlying data stores.

The “Where”: Schema evolution and subsequent migration takes place at
each of the three levels in Polypheny-DB. At global level G, schema evolution
is triggered by the applications. The fragmentation and replication applied at
global level leads to an evolution of one or several of the schemas at local level
L. Such inter-model evolution occurs because of global data movements. And
finally, the optimizations within a polystore instance (intra-model evolution)
lead to the evolution of the individual physical schemas P of its underlying data
stores.

The “What”: Schema changes at global level G are based on the operations
introduced in Sect. 2.1 and might thus address only individual schema objects
or multiple schema objects jointly. This includes the addition or removal of
attributes and alterations of the attribute names or their types. At entity level,
the addition of new entities, their deletion, and the split or merge of existing
entities need to be considered. Furthermore, changes in the integrity constraints
being part of the schema are relevant as well. All these changes at global level
need to be properly propagated downwards to the local level.

At local level L, in addition to the changes initialized at global level, schema
changes might occur due to a revision of the fragmentation and replication deci-
sion and the allocation to sites. At schema level, this means that individual
attributes or entire entities will be removed or added from a local site. The allo-
cation is usually determined by the global cost model of Polypheny-DB and is
triggered, for instance, by changes in the applications’ workloads. Similarly, at
the data store level P, aside of schema changes imposed by one of the two layers
on top, also internal cost-based optimizations of the local polystore may lead to
a re-distribution of entities and a re-allocation of data across its data stores.
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3.2 Data Migration

This section discusses aspects related to data migration in PolyMigrate as a
result of schema evolution.

The “When”: After schema changes have been externally triggered or inter-
nally decided, the question is how they are propagated to the next lower level,
and how data is handled. For this, five different options can be identified.

First, schema changes and data can be migrated eagerly. This means that all
the underlying schemas are immediately updated (within the same transaction),
and all affected data is migrated to the new schema and/or re-located to the
new sites and stores. This guarantees that the entire polystore with all its local
sites is up to date at any point in time. However, this comes with significant
disadvantages on the performance of the overall system, as all conflicting requests
need to be blocked until the migration has successfully completed.

Second, the migration can take place lazily. In this case, data is only migrated
when accessed. Data which is not requested can still stay in the old schema and
at the old site. A request to non-migrated data is temporarily paused and the
migration activities for the requested data are triggered. As soon as the migra-
tion has succeeded, the request is resumed and the requested data is returned.
Therefore, such a lazy migration increases the access latency for the first access to
a data item after a schema change, but it does not require a costly eager migra-
tion [6,12]. However, in lazy migration, data in the old and the new schema
might temporarily co-exist. Even several versions of the revised schema could
stay in the system when schema changes appear frequently. It has to be noted
that lazy migration is only well suited for OLTP workloads. OLAP queries would
trigger a complete migration of the data, resulting in an enormous impact on
query latency (and a query would have to be paused for a significant duration).

Third, a compromise between the two competing goals of minimizing latency
and migration costs can be reached by a proactive strategy. Data is migrated in
a background process with the objective that the migration is completed as soon
as data is requested. This can be done, for example, by predicting future data
accesses based on access statistics and a suitable prediction function [6]. In case
data is requested that has not been migrated yet, the lazy approach is applied.
Proactive migration is also more suitable for OLTP than for OLAP workloads.

A fourth option is to refrain from physically implementing the schema
changes at all. This can be done by using query rewrites instead. Any access
to a data item (specified in terms of the new schema) will be addressed by a re-
written query that exploits the old (and still physically present) schema. While
this option has the least effects on the run-time behavior of the system as all
changes are not propagated, it is limited to a subset of schema manipulations
only (e.g., a rename of an attribute, or the split or merge of an entity). Fur-
thermore, the query rewrite quickly becomes complex if several such changes
occur consecutively. In this case, also query re-write would have to be cascaded
accordingly.
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Fifth, the incremental approach combines lazy schema migration and query
re-write. The incremental approach propagates schema changes and migrates
data when the system’s load is below a certain threshold. This ensures that
regular operations are not unnecessarily affected by migration activities. For
this, data is sequentially migrated, starting from the most recently migrated
data item. If the system’s load exceeds the threshold, the incremental migration
is paused. Access to data that are not yet migrated is subject to a query re-write.

While all these approaches are complementary, they can be seamlessly com-
bined in one system. First, all local polystores are autonomous and can indepen-
dently implement the schema changes imposed by the global level. One polystore,
for example, might decide to perform schema changes eagerly, a second one fol-
lows a lazy approach, and a third one relies on query re-writing. Similarly, even
within one polystore, several approaches may co-exist (e.g., using a proactive
approach for a subset of the data and the incremental approach for the rest).

The “How”: Addresses the propagation of schema changes downwards to the
local data stores and in particular the handling of data migration.

If schema changes originate at global level G, they are propagated down to
the local level L. There, they can be subsequently implemented; in this case, data
needs to be migrated accordingly. Alternatively, depending on the nature of the
changes, the schema changes are not implemented (and data is not migrated).
But this requires the re-write of every query at the local level. Similarly, if the
changes are implemented at level L, they will be propagated to the data store
level P. There, they can again be enacted, with subsequent data migration, or
be avoided using query re-writes.

If schema changes originate at the L level (i.e., due to a revised fragmenta-
tion, replication, or allocation), they will be propagated down to the underlying
data stores P. These changes then require data to be migrated once they are
implemented in the physical schema, or they are again handled by query re-
writes.

Finally, schema changes and data migration activities might start at and only
affect one of the data stores at P level at a site where they will then be enacted.

4 Sample Scenarios and Recommendations

In this section we illustrate the techniques introduced in Sect. 3 with concrete
examples from the online auction house scenario mentioned in Sect. 1.

4.1 Global Schema Changes

Archiving: Consider the fictitious international auction house and assume that
each completed auction will be archived, for legal and auditing reasons. However,
the information that needs to be archived is only a subset of all the information
collected on the good which was sold, the buyer and the seller. Therefore, in an
attempt to condense the information and to reduce the number of relations per
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auction while still meeting all legal auditing requirements, a denormalization of
the schema at global level G is applied for archival purposes:

COPY U.last_name, U.first_name, U.zip_code, U.country,

S.last_name, S.first_name, S.zip_code, S.country,

B.amount, B.timestamp

TO A

WHERE A.id = B.auction AND U.id = B.user AND S.id = A.user

where A is the relation holding the auction, B holds the final bid, U is the buyer
relation and S the seller. Since the archive is only highly infrequently accessed
(if at all), schema evaluation is propagated in an incremental approach and the
local schema at L is only updated when data is accessed.

Data Protection: Assume that new data protection laws in one country where
the auction house does business require a change in the data distribution plan.
Currently, sensitive user data is stored at the cheapest Polypheny-DB instance
Lcheap which happens to be located in another country. Since data protection
regulations require sensitive data not to leave the country, the database admin-
istrators of the auction house implement new constraints. At the global level G,
Polypheny-DB uses split and merge operations to create new entities which sep-
arate sensitive from insensitive data. In general, the propagation of the schema
changes follow an incremental approach; however, this approach needs to be
switched to eager propagation shortly before the laws come into force.

4.2 Local Schema Changes

Data Protection (continued): Consider again the data protection scenario from
Sect. 4.1. After new entities have been created at level G to separate sensitive
from insensitive data (only for the country affected by new legal constraints;
for all other countries, the schema is unaltered), the insensitive part can still
stay at the Lcheap instance while the sensitive part needs to be migrated to a
local instance Llocal. In analogy to level G propagation, migration takes place
incrementally, with a transition to eager shortly before the laws come into force.

MOVE U.address, U.birthdate, U.credit_rating

TO SD -- Sensitive data

WHERE SD.uid = U.id AND U.country = ‘CH’

Replication: In an attempt to minimize access latency, auctions are stored on
local servers, close to the location of the seller and the (majority) of the buyers.
According to a new legal policy of the Swiss branch of the auction house, auctions
exceeding a certain threshold need to be stored redundantly on an instance in
Switzerland. Therefore, a materialized view will be created and deployed at LCH .
This materialized view replicates auction data subject to the new regulations and
leads to an update of the entire data distribution scheme. In order to implement
the policy, all auction-related data contained in this materialized view has to be
migrated eagerly to LCH , due to legal requirements.
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4.3 Physical Level Schema Changes

Specialized Data Store: The local German Polypheny-DB instance LDE measures
an increase in visual similarity searches. So far, the similarity features were stored
in the relation IMG in a row store PRS . To speedup the similarity searches,
the Polypheny-DB instance decides to deploy a new store Psim optimized for
queries addressing visual similarity. The migration procedure, first, separates
the similarity features from the PRS entity using the split operation. After the
creation of the schema in Psim, the schema dealing with the similarity features
is moved to Psim. Finally, the data is moved on a proactive approach. The
feature relation F is created by using the split operation (note that F will be
moved to Psim while IMG remains on PRS ; further, the logical schema on LDE

is unchanged):

SPLIT IMG

INTO IMG.filename, IMG.type, IMG.size, IMG.auction -- Image data

AND F.filename, F.features -- Feature data

Self-optimization: The local polystore instance at site L detects a change in the
local workload. As a consequence of the changed interest of users, attributes are
jointly accessed for which the physical schemas are not (yet) prepared since these
attributes are assigned to different stores (different physical schemas). Hence, in
order to optimize the physical schemas at L, attributes are moved from one store
P1 to another store P2. This schema change, together with the corresponding
data migration, is done in a lazy approach. In case the entire workload further
increases significantly, then even a new physical store Pnew can be deployed at
L and data be copied incrementally.

5 Conclusions and Outlook

Polystores allow to address heterogeneous and dynamic application workloads by
jointly considering several different data stores. Data can then be provided in dif-
ferent models and systems, and when changes to the workload are detected, data
can be migrated across stores. In this paper, we have introduced PolyMigrate, a
work-in-progress approach that considers various options to apply and propagate
schema changes and data migration in the distributed polystore Polypheny-DB.
We plan to thoroughly evaluate and compare these alternatives based on the
auction house benchmark [20] tailored to polystore databases.
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