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Abstract. Polystore databases allow to store data in different formats
and data models and offer several query languages. While such polystore
systems are highly beneficial for various analytical workloads, they pro-
vide limited support for transactional and for mixed OLTP and OLAP
workloads, the latter in contrast to hybrid transactional and analytical
processing (HTAP) systems. In this paper, we present Polypheny-DB, a
modular polystore that jointly provides support for analytical and trans-
actional workloads including update operations and that thus takes one
step towards bridging the gap between polystore and HTAP systems.
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1 Introduction

In recent years, polystore systems have gained increasing interest in the database
research community. They aim to solve the demand for faster processing of
heterogeneous workloads on massively growing volumes of data.

The idea of a polystore system is to combine polyglot persistence and multi-
store database systems. Polyglot persistence deals with the challenge of choosing
the right tool (i.e., query language) for a concrete use case: When storing data
used by different types of applications, it might also be beneficial to use dif-
ferent query languages for retrieving the data. Multistore systems, in turn, are
systems which manage data across heterogeneous data stores. All data is accessed
through one interface which supports one query language. A system combining
polyglot persistence and multistore data management is called a polystore [13].

Today’s IT landscapes usually consist of several applications (e.g., account-
ing, web shop, warehousing, product recommendation engines, newsletters, etc.).
Often, these applications have not been developed in-house but have been
acquired from different software companies. These applications therefore likely
expect different data models and require support for different query languages.
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Fig. 1. Replacing a setup consisting of applications directly accessing specialized data
storage solutions (left) with a polystore solution deployed between applications and
specialized data storage solutions (right).

Often such applications are already shipped with an optimized data storage
engine included.

While these optimized data storage engines deliver good performance for the
workload of the application they shipped with, this approach only works if the
data can be strictly partitioned and separated for the different applications. If
this is not the case (which is rather the norm than an exception), at least parts of
the data needs to be synchronized using some sort of synchronization approach,
as depicted in Fig. 1 (left). Such a setup is not satisfying for multiple reasons: (i)
It prevents a close integration of all applications. (ii) The applications cannot
run on the latest data. And (iii) there is always the risk of inconsistencies if there
is more than one application modifying data.

A possible solution for this scenario is to deploy a polystore system between
the applications and the specialized data stores (see Fig. 1, right). Like a feder-
ated database system, a polystore allows to access data from different data stores.
This ensures a much tighter integration of the application layer and reduces
overhead and redundancy in data storage and thus the need for additional syn-
chronization.

In the recent years, different polystore systems have been developed. While
they show impressive results in accelerating analytical workloads [4,10], they
cannot be used for the scenario depicted in Fig. 1. The main reason is that
existing polystores lack support for data manipulation (DML) operations. Since
polystore systems are limited to read-only analytical workloads, parallel transac-
tional queries would have to be directly submitted to the underlying data stores,
circumventing the polystore layer. This is infeasible, and executing long-running
analytical workloads would have a huge impact on the transactional performance
of these data storage systems. Hence, a dedicated layer would be needed that is
aware of all queries (transactional and analytical); otherwise, it is not possible
to prioritize and schedule long-running queries. Furthermore, executing queries
on different data stores with parallel workloads can lead to inconsistent data.

Copying transactional data on a regular basis to the polystore solves these
problems but does not necessarily allow querying the latest data. This makes
it useless for most operational analytical queries requiring the latest data. But
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also for long-running queries which do not require access to the latest data, this
approach causes downtimes of the analytical systems while updating the data.
This update process can also massively impact the performance of productive
systems. Furthermore, this approach does not offer federated access for transac-
tional workloads.

In parallel to polystores, recently also HTAP (hybrid transactional/analytical
processing) systems have gained popularity. These systems provide good perfor-
mance for mixed transactional and analytical workloads. While typically also
offering support for data manipulation, these systems lack common features of a
polystore system, especially polyglot persistence and support for a wide variety
of workloads since they are usually earmarked for concrete applications and their
characteristic workloads.

To deal with mixed, heterogeneous, and dynamically changing workloads
(e.g., as they occur in scenarios as the one depicted in Fig. 1) requires a diverse
and flexible polystore system that, at the same time, provides the transaction
capabilities of an HTAP system. Because there is no off-the-shelf solution for
every use case, such an ‘HTAP-aware polystore’ needs to be flexible in order to
allow adding support for a large set of query languages and interfaces as well as
underlying data stores.

In this paper we present Polypheny-DB, an implementation of the concepts
formerly introduced in [15]. Most importantly, Polypheny-DB goes beyond exist-
ing polystores and also adds support for transactional workloads.

The contribution of this paper is twofold: (i) We present the implementation
of Polypheny-DB which is to our best knowledge the first polystore system that
tries to bridge (or at least narrow) the gap between polystore and HTAP systems
and hence jointly offers full support for DML and DDL statements. (ii) We show
that the implementation of Polypheny-DB follows a modular approach which
can be easily adapted at runtime in various ways (in terms of data stores, data
distribution and deployment, and/or query workloads).

The remainder of this paper is structured as follows: Sect. 2 surveys related
work. Section 3 introduces Polypheny-DB, Sect. 4 focuses on the flexibility
and adaptivity of the system, thanks to its modular architecture, and Sect. 5
concludes.

2 Related Work

The last years have seen a vast proliferation of different types of polystore sys-
tems [13]. Every system has a different focus and is developed with a different
use case in mind. But all these systems have in common that they provide access
to data stored in heterogeneous data stores. In what follows, we introduce and
compare selected systems regarding (i) their support for DML and DDL queries,
(ii) their architecture in terms of modularity, and (iii) their potential for runtime
adaptation.
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BigDAWG is one of the pioneer polystore systems. It organizes heterogeneous
data stores into “islands” (e.g., relational or array islands) [4]. Every island has
an associated query language and data model and connects to one or more data
stores. BigDAWG only supports cross-data store queries within the same island.
Inter-island queries are not possible without migrating the data first.

The BigDAWG system delivers great results [11] for heterogeneous read-only
workloads. However, we did not find any information regarding support for DML
or DDL queries. Hence, data needs to be imported into the underlying data stores
prior to the start of the system.

BigDAWG’s architecture is expandable and allows new data stores and
islands to be added, but due to the fact that this requires changes to the Big-
DAWG source files, this is not “plug-and-play”.

CloudMdsQL is a multistore system [9] that uses an SQL-like query language
for querying heterogeneous data stores. It allows subqueries to contain embedded
invocations to each data store’s native query interface. The authors present an
implementation which translates queries into query execution plans and a query
engine based on Apache Derby for executing these plans. The focus of their
work is on the query language which allows exploiting the full capabilities of the
underlying data stores.

The CloudMdsQL system is read-only and has no support for DDL opera-
tions. Because only the compiler which parses a CloudMdsQL query and gen-
erates the optimized query execution plan is available for download, we cannot
discuss the modularity and runtime adaptability of the overall CloudMdsQL
system.

Apache Drill [7] is a distributed query engine for interactive analysis of large-
scale datasets. The query engine accepts ANSI SQL and MongoDB QL, and
supports a variety of NoSQL systems like HBase, Hive, and MongoDB. It also
offers support for using relational databases as underlying data stores.

Drill is developed with a focus on extensibility and offers support for plug-
gable query languages, query planners and query optimizers. It allows new data
sources to be added at runtime. Designed as a system targeted on data analytics,
it does not support DML queries and its DDL support is limited to linking new
data sources.

Hybrid Transactional and Analytical Processing. (HTAP) systems main-
tain the same data in different storage formats. By leveraging multiple query
processing engines, these systems are able to improve performance of read-only
workloads [5]. This allows to efficiently perform real-time analytics and transac-
tional workloads on data stored in the same system. Examples for such systems
are SAP HANA [3], HyPer [8], and Hyrise [6]. While these HTAP systems are
able to provide excellent performance for mixed OLTP and OLAP workloads,
they do not qualify as polystores because they do only support one query lan-
guage.
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SnappyData [12] aims to combine the benefits of HTAP systems with the
ones of a big data analytics engine. SnappyData uses GemFire as an in-memory
transactional data store and combines it with Apache Spark. Having Apache
Spark as foundation makes SnappyData very flexible and adds support for a wide
range of data stores. It also comes with support for DML and DDL statements.
But in contrast to Polypheny-DB, SnappyData treats data stores differently.
Data sources in SnappyData are primarily used as source to load data from.
While queries on these data sources can be executed in general, this support
is limited to the capabilities of the underlying data stores. SnappyData neither
allows to replicate data to different data stores nor to partition data.

3 Polypheny-DB

Most polystores are designed with the concept of federated database systems
in mind. They enable access to heterogeneous data stored on independent data
stores using different data models. The data is usually stored on exactly one of
these underlying data stores. As outlined in Sect. 2, these systems are optimized
for long-running, read-only queries and offer at most very limited support for
DML queries. They furthermore lack support for other typical features of a
database management system like transactional execution guarantees.

The focus of existing polystores on long-running queries is fully justified
because this is the field where a polystore can massively accelerate query per-
formance as shown in [4,10,14]. Due to the nature of a polystore, it is hardly
possible to accelerate simple transactional queries. The challenge is here to keep
the overhead as small as possible while still focusing on read-only accesses.

While HTAP systems provide good performance for mixed OLTP and OLAP
workload, they miss other important aspects of polystore systems required for
the use case depicted in Fig. 1, especially the polyglot persistence. Moreover, in
practice, more types of workloads than transactional and analytical can be found
and have to be dealt with (e.g., multimedia retrieval or expert systems). Handling
these requires the multi-engine and multi-model approach of a polystore system.

We therefore see the demand for a polystore system bridging the gap between
HTAP systems and existing polystore systems. Such a system needs to accept
queries expressed in the query languages and through the query interfaces
demanded by the applications and must be able to efficiently deal with all kinds
of workloads generated by the applications. As outlined before, it is furthermore
crucial to jointly provide support for DML queries and transactions.

While SnappyData [12] presents an interesting approach to integrate poly-
store aspects into an HTAP system by combining GemFire with external data
sources, with Polypheny-DB we like to introduce an alternative approach. In
contrast to SnappyData, Polypheny-DB aims to fully exploit and combine the
optimization provided by the underlying data stores. By replicating data to
multiple data stores, Polypheny-DB is able to optimize for different types of
workloads.

With Polypheny-DB we try to fill the gap between polystore systems and
HTAP systems and present a system with a high degree of modularity and
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Fig. 2. Simplified architecture of Polypheny-DB. The arrows indicate the execution
paths queries can take; the dashed arrows indicate internal communication paths
between the modules.

support for adaptions at runtime. In this section, we provide an overview of
Polypheny-DB’s architecture and design decisions.

3.1 Architecture

Polypheny-DB has been developed with a strong focus on modularity and run-
time adaptiveness. Figure 2 depicts the architecture of Polypheny-DB.

Queries are accepted through multiple query interfaces supporting one or
multiple query languages. A query received through a query interface is for-
warded to the matching query parser. The parser translates the query into a log-
ical query plan. This plan is represented as a tree of relational operators based on
an extended relational algebra. This algebra serves as a unified query language
and allows to express all query features currently supported by Polypheny-DB.

This logical query plan is then processed by the locking module to guarantee
the isolation of transactions. When all locks are acquired, the query is processed
by the query router. This module decides on which of the underlying data stores
a query should be executed. This is required because data can be replicated to
multiple data stores.

The routed query plan is then optimized and translated into a physical query
plan. This physical query plan contains implementations of the relational opera-
tors. Finally, the data store adapters take care of translating the physical query
plan into the native query language of the underlying data stores. There can be
multiple adapters involved in executing a query.

3.2 Schema Management

In Polypheny-DB, we distinguish between two types of schemas: (i) The logical
schema which represents the structure available to the user, and (ii) the physical
schema which is maintained on the underlying data stores. The logical schema
is expressed and maintained in a relational data model.
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Fig. 3. The columns in tables α and ω only have one placement on the underlying data
stores. Table ρ is partially stored on two data stores. All columns of ρ are placed on
data store A whereas the columns d and g are additionally stored on data store B.

A major difference of Polypheny-DB compared to other polystore systems is
that data stores are not treated as static data sources for a specific dataset but
instead as execution engines where data can be placed on. Individual columns
or whole tables can be replicated and stored on multiple data stores at the
same time. This combination of data replication and vertical partitioning allows
to optimize for different types of queries accessing the same data while at the
same time minimizing the overhead for DML queries and economically use the
available memory and disk space. In Polypheny-DB, the physically stored data
is called placement. The placements are maintained at the column level. New
placements can be added and removed at runtime. Every column needs to have
at least one placement. Figure 3 depicts a possible configuration of Polypheny-
DB.

A logical schema therefore needs to be mapped to different physical schemas
at the same time. The user always interacts with the logical schema, independent
of the physical schema(s) the data is represented in. This is especially important
when it comes to schema changes which are supported by Polypheny-DB as well.

Another major difference to most existing polystore approaches is the support
for schema modifications. The logical schema can be modified at runtime through
every query interface supporting schema changes. Currently, the SQL interface
and the browser-based user interface come with support for DDL operations.
The schema is persistently stored and maintained in the internal catalog. This
allows the system to be restarted and all persistent placements to be restored.

3.3 Implementation

Polypheny-DB is implemented in Java. The source is available under the Apache
open source license on Github1. Major parts of Polypheny-DBs query processing
engine are based on Apache Calcite [1]. This allows Polypheny-DB to make use
of a reliable cost-based query optimizer also used in several other projects.

1 https://github.com/polypheny/Polypheny-DB.

https://github.com/polypheny/Polypheny-DB
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Query Execution. In the query planning and optimization process, the query
is translated into a tree of physical operators. These operators are later translated
into the native query language of the underlying data store(s). For every operator
(except for the scan operator) exists an implementation which allows every query
to be executed purely within Polypheny-DB.

The scan operator—which allows to sequentially read all data from a specified
entity—is provided by the data store adapters. In order to make use of the spe-
cific optimizations of the underlying data stores, every adapter can additionally
provide implementations of the other physical operators.

Polypheny-DB tries to “push down” as many operators to the underlying
data stores as possible by using the provided operators. However, if parts of
the query plan cannot be “pushed down” (e.g., joining data from different data
stores), Polypheny-DB relies on its own implementations. Furthermore, this app-
roach allows to provide support for all query features independent of the data
stores on which the data is physically stored.

Transactions. Due to the fact that Polypheny-DB supports DML queries, it
requires locking for ensuring the consistency of the data and the correctness of
concurrent queries. For the isolation of concurrent queries, we use strong strict
two-phase locking [2]. Further, Polypheny-DB provides full transaction support,
but only if the underlying data stores offer support for transactions. The system
can therefore provide durability—and together with the other guarantees full
ACID support—if there is at least one placement for all involved data on a
persistent data store.

Data Types. Polypheny-DB supports different integer, float, date, and char-
acter types. Within Polypheny-DB, the data is represented and processed using
Java types. The mapping to the native data types of the underlying data stores is
defined individually for every store. Additionally, Polypheny-DB supports arrays
of all supported data types with an arbitrary cardinality and dimension.

4 The Modular Polystore

In this section we particularly focus on the modularity of Polypheny-DB’s archi-
tecture and its support for DML and DDL statements.

4.1 Query Interfaces

Polypheny-DB can be queried through multiple query interfaces. With the
JDBC-SQL interface, we provide an industry standard solution for querying the
system using SQL. It offers support for retrieving meta data and for controlling
transactions. SQL is the most mature query language supported by Polypheny-
DB providing all available query features. It can also be used to manage data
stores and other system configurations and the schemas using DDL queries.
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With Polypheny-UI, the system has a user interface for managing the schema,
modifying the system’s configuration, monitoring the status, browsing and mod-
ifying the data, managing the underlying data stores, and querying the system
by using different query methods and languages.

Polypheny-DB applies the idea of polyglot persistence not only to the data
access but also to the management of the system itself. This is achieved by
providing two methods for modifying the schema and the system configuration.

Beside JDBC-SQL and the user interface, Polypheny-DB provides a REST-
based query interface for accessing and modifying data. Polypheny-DB is also
able to directly express queries using its relational algebra representation. This is
either possible by submitting the query plan as JSON or by using the graphical
builder provided in the Polypheny-UI.

With an Explore-by-Example interface and the dynamic query builder,
Polypheny-DB also supports innovative query methods. Explore-by-Example
allows to select rows of a result set which should or should not be part of the
final result. Polypheny-DB then derives a query fulfilling these requirements.
The dynamic query builder assists users in formulating queries containing joins
and filters. This is done by dynamically generating a user interface containing
specific controls based on a statistical analysis of the currently stored data.

To adapt the system according to the specific requirements of a concrete use
case, query interfaces can easily be added, modified, or removed. Furthermore,
the modular architecture simplifies the implementation of new query interfaces.

4.2 Query Routing

Query routing is the process of selecting on which of the underlying data stores a
query or parts of it should be executed. As depicted in Fig. 3, tables and columns
can be partitioned and replicated to multiple underlying data stores.

DML queries always need to be executed eagerly on all underlying data
stores holding a placement of the modified data. This includes the insertion of
new rows. As a consequence, the most suitable placement for executing read-only
queries can be arbitrarily selected.

Polypheny-DB currently supports two query routing implementations. The
first implementation models the behavior of only storing the data on one of the
data stores. The data store is selected when creating the table. This implemen-
tation requires no sophisticated query analysis to select the best store and is
therefore a suitable base line to compare with the second implementation.

This second implementation is based on the approach introduced in [14]. The
basic assumption of this approach is that queries generated by applications are
usually derived from templates. Because queries derived from the same template
are similar regarding execution time on a specific underlying data store, it is
possible to route queries based on structural similarity of queries. While the
approach introduced in [14] determines the structural similarity based on the
SQL query, the implementation in Polypheny-DB determines the similarity based
on the logical query plan.
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The query routing is fully modular. New implementations can be provided
on classpath without modifying Polypheny-DB. It is also possible to change the
router implementation at runtime. It is the responsibility of the query router
to make sure that the transition to a different implementation happens without
conflicts. This feature is useful if there are maintenance tasks or data imports.

4.3 Data Storage

As a polystore system, Polypheny-DB supports different heterogeneous data
stores. These data stores are fully maintained by the system. In order to be able
to guarantee correctness, the stores are only accessed through Polypheny-DB.

The specific optimizations and advantages of a data store are exploited by
pushing down the entire query or parts of it whenever possible. If supported by
the data store, results of a query are only read on demand. Data stores can be
added, modified and removed at runtime via the Polypheny-UI or by using SQL
commands. The connection to the data stores is handled by means of adapters.

An adapter is responsible for everything related to a data store. This includes
maintaining the connection and providing the implementations for the supported
relational operators. The adapter is also responsible for maintaining the physical
schema on the underlying data store and for performing schema migrations. The
physical entity names itself are independent from the logical names. An adapter
can support multiple database systems.

Polypheny-DB is shipped with adapters for various JDBC-SQL stores includ-
ing PostgreSQL, MonetDB, and HSQLDB. Furthermore, there is an adapter for
Apache Cassandra and for plain CSV files and Polypheny-DB can be extended
with new adapters without any modifications due to its strong encapsulation.
Some of the provided adapters support an embedded mode to simplify the
deployment process.

5 Conclusion and Future Work

With Polypheny-DB, we present a modular polystore system which provides full
support for DML and DDL queries. First performance evaluations have shown
very promising results which we, due to the lack of space, have not been able
to report here. It is planned to present them together with further evaluations
we are currently doing and which we plan for our future work. Evaluations of a
previous version of our DML-capable query routing system can be found in [14].

Polypheny-DB’s modular architecture makes it extensible and adaptable.
Several aspects of the system can be modified and exchanged at runtime. In
future work, we plan to use this runtime adaptability to automatically adjust
the system according to user-defined requirements and changes in the workload.
We also plan to expand the set of integrated features. By extending the internal
data model, we want to further exploit the advantages of different data models.
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