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Abstract. Detecting suspicious lesions in MRI imaging is a critical task
in preventing deaths from cancer. Deep learning systems have produced
remarkable accuracy for the task of detecting lesions in MRI images.
Although these systems show remarkable performance, they often ignore
an indispensable component which is interpretability. Interpretability is
essential for many deep learning applications in medicine because of eth-
ical, monetary, and legal factors. Interpretation also builds a necessary
degree of trust and transparency between the doctor, patient, and sys-
tem. This work proposes a framework for the interpretation of medi-
cal deep learning systems. The proposed approach is based on the idea
that it is advantageous to use different interpretation techniques to show
multiple views of reasoning behind the classification. This work demon-
strates deep learning interpretations for various patient data modalities
using the proposed Multiple Views of Interpretation for Deep Learning
framework.

Keywords: XAI · Deep learning · Prostate cancer · Interpretation ·
Visualization

1 Introduction

There have been recent advances using deep learning techniques, such as con-
volutional neural networks [1], to detect prostate cancer from MRI images with
impressive performance. [2] showed deep learning can detect prostate cancer
with accuracy suitable to be integrated into a clinical environment. These results
demonstrate the great potential for using deep learning to aid medical practi-
tioners. However, these advances often ignore an indispensable component of
such systems which is interpretability.

Although deep learning models can produce accurate cancer classification,
they are often treated as black-box models that lack interpretability and trans-
parency of their inner working [3]. The models provide an accurate classification
but do not demonstrate how they arrived at the decision. If such systems are to
be implemented into medical settings, integrating interpretability is an essential,
often overlooked component. Interpretability is needed for various reasons. First,
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there are legal and ethical requirements along with laws and regulations that are
required for deep learning cancer detection systems to be implemented in a clin-
ical setting. An example of a regulation is the European Union’s General Data
Protection Regulation (GDPR) requiring organizations that use patient data
for classifications and recommendations to provide on-demand explanations [4].
The inability to provide such explanations on demand may result in large penal-
ties for the organizations involved. Thus, there are monetary incentives associ-
ated with interpretable deep learning models. Beyond ethical and legal issues,
clinicians and patients need to be able to trust the classifications provided by
these systems. Interpretation attempts to show the reasoning behind the model’s
classification thus building a degree of trust between the system, clinician, and
patient. Theoretically, this will reduce the number of misdiagnosed cases that
would be a possible consequence of non-interpretable systems. Finally, inter-
pretable deep learning systems will provide the clinician with practical features
as a second-order effect. Examples of these practical features are the ability to
provide segmentation of a medical region of interest (ROI) [5] and the localiza-
tion of lesions [6].

Interpretation methods can be categorized as post-hoc and ad-hoc. Post-hoc
refers to interpretation after the classification is made whereas ad-hoc refers to
engineering interpretation into the deep learning system. This work will largely
focus on post-hoc approaches. There are various types of interpretation tech-
niques that highlight different aspects of classification for the same sample. Some
of them highlight the localization of a lesion and others highlight the size or area
of a tumor or cyst. This paper will shed light on the importance of interpretation
for medical deep learning systems, the current state of interpretation for deep
learning within a medical context, and will propose a viable approach for medi-
cal deep learning interpretation moving forward. The main contributions of this
paper are (1) showing that the integration of multiple interpretation techniques
produce a new quality and delivers greater insight into the model’s classification
opposed to using a single method (2) establish an evaluation methodology for
measuring visual interpretation performance (3) demonstrate that Grad-CAM
can precisely localize prostate lesions in T2W and ADC MRI images.

2 Related Work

2.1 Classification of Prostate Cancer and Lesions

Deep learning has been widely applied to the classification of medical condi-
tions ranging from diabetes to cancer. There are attempts to use deep learning
techniques to detect cancer, some of which produce remarkable performance.
[7] demonstrate a transfer learning approach to detect prostate lesions using
MRI images. The study implements the InceptionV3 and VGG16 models which
were both initialized with imagenet weights for the task of detecting prostate
lesions using the PROSTATEx dataset [8] Transfer learning is used in many
cancer detection systems because of the advantage from initializing a network
with pre-trained parameters. Ensemble learning techniques were implemented
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Fig. 1. Global overview of work

to improve the area under the curve. Their results range from 0.82 to 0.91 for
AUROC. [9] implement a three-dimensional convolutional neural network for the
task of classifying clinically significant lesions. The study reports an AUROC
of 0.80 and argues that with the 3D network, spatial information is captured
thus producing a model with greater insight into 3D medical volumes. [10] pro-
posed a method called XmasNet. Their work performs novel data augmentation
using three-dimensional rotation and slicing, in order to incorporate the three-
dimensional information of the lesion volume. The study reports an AUC of 0.92.
[11] propose a fully automated approach to prostate lesion detection using MRI
images reporting an AUROC of 0.84 (Fig. 1).

2.2 Post-Hoc Interpretation for Deep Learning in Medicine

Post-hoc interpretation attempts to provide reasoning after the classification
is made as opposed to engineering interpretation into the deep learning system.
These post-hoc visual interpretation techniques generally either use perturbation
forward propagation, backward propagation, or gradient-based visual explana-
tion methods. Perturbation forward propagation make perturbations to individ-
ual inputs or neurons and observe the impact on later neurons in the network.
Backward propagation is the opposite. Instead of propagating forward through
the network, a signal is propagated from the output neuron(s) back to the input
neurons. Gradient-based methods propose taking the gradient of an output vari-
able with respect to input variables to calculate which input variables change
the outcome the most. [12] examine post-hoc interpretation for the classifica-
tion of melanoma in histology slides. Their work trains a ResNet50 and VGG19
using transfer learning to for the classification of melanoma. Class activation
map (CAM) [13] is used to provide a post-hoc visual explanation. [14] design
a neural network to perform analysis on frames collected from an endoscopic
examination taken from a video stream. This uses Grad-CAM and guided Grad-
CAM as gradient-based post-hoc interpretation techniques to explain findings
in these frames. [15] show post-hoc interpretability using LIME for clinical data.
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[16] show post-hoc interpretability using LIME for acute kidney injury in car-
diac surgery patients. Their work uses LIME to attempt to explain the onset of
the condition. [17] created a deep learning system to classification hypertension
and then used LIME to explain these classifications. [18] developed a model to
classifications diabetic retinopathy progression in individual patients. They then
use SHAP to give insight into the model’s decisions.

Emerging literature has highlighted the ability to use these interpretation
techniques to localize lesions or other medical regions of interest. [19] use a
modified version of Grad-CAM, coined pyramid gradient-based class activa-
tion mapping (PG-CAM), to localize meningioma. They report a 23% increase
from vanilla Grad-CAM for the localization of brain tumors. [20] propose high-
resolution CAM (HR-CAM) which aggregates feature maps together. They local-
ize ependymomas using this technique. [21] use saliency maps to segment lesions
in dermoscopy images with a DICE coefficient of 0.858. To the best of our knowl-
edge, there are not any studies that localize prostate lesions from MRI images
using interpretation techniques.

3 Multiple Views of Interpretations for Deep Learning

Interpretation methods (i.e. Grad-Cam, LIME, SHAP, saliency maps) show a
certain aspect of the reasoning behind a deep learning model’s classification.
Each interpretation method by itself provides some method-specific information.
For example, grad-CAM highlights an area of interest whereas LIME highlights
which clinical features contribute the most to the classification. Saliency maps
show the important structure and clusters of important individual pixels. These
individual interpretation techniques can be considered individual parts of a larger
system. By combining these methods together, a higher quality interpretation is
produced.

Using a multiple interpretation approach is advantageous for multiple rea-
sons. First, the clinician and patient will receive more insight into the model’s
classification using a combination of methods as opposed to a sole method. Sec-
ond, you gain a higher degree of confidence using an approach which includes
multiple interpretations. If the different methods are in unison, then the con-
sistency delivers a degree of confidence in the interpretation and classification.
Third, it is possible for interpretations can be fooled and produce misleading
interpretations. Using multiple interpretations approach, theoretically, you can
uncover issues with the classification because of a lack of consistency between
interpretations. Lastly, you can provide an interpretation for many different data
modalities (i.e. images, genetic information, clinical information, patient history)
which is essential for healthcare applications.

This work presents a framework for interpretation, Multiple Views of Inter-
pretation for Deep Learning, for prostate lesion detection and interpretation
(Fig. 2). Combining multiple interpretation methods will increase transparency
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and give a multifaceted view into how the model arrives at the classification thus
providing a holistic interpretation.

Fig. 2. MVIDL architecture for prostate lesion detection.

3.1 Deep Learning Model

In this paper, convolution neural network (CNN) based on the VGG16 [22]
was implemented with some improvements. InceptionV3, VGG16, VGG19,
ResNet50, MobileNet, and WideResNet were all implemented and compared
to select the optimal model. Each network’s hyper-parameters were tuned using
grid search. After tuning, the VGG16 produced the highest performance. Two
extra convolutional layers followed by max-pooling were concatenated to the
end for increased classification performance. The network is designed to clas-
sify individual slices with a lesion from slices without a lesion. Clinical features
are concatenated to the fully connected layers to incorporate patient records.
The hyper-parameters after tuning were: 18 layers, a weight decay of 0.00001, a
learning rate of 0.001, the ADAM optimizer, the binary cross-entropy loss func-
tion, a softmax activation as the final layer, and the network was initialized with
imagenet weights (Fig. 3).
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Fig. 3. VGG16 architecture

3.2 Interpretation Techniques for Prostate Lesion Detection

Combining interpretation techniques produces a more transparent system by giv-
ing a holistic view of the model’s decision. Each technique gives unique insight,
therefore, to get a comprehensive interpretation, each technique is needed as
individual parts of a larger system. For this work, these techniques are split
into two categories: image data interpretation and clinical data interpretation.
Image data refers to MRI imaging in this work and clinical data refers to patient
characteristics including weight, age, height, and body mass index (BMI). The
techniques for image interpretation are focused solely on providing explanations
for image data thus do not take into account clinical information. The second
category is clinical data interpretation which takes into account clinical infor-
mation but does not provide an explanation for image data. This work shows
Grad-CAM [23] and saliency maps [24,25] as the techniques for image data.
SHAP [26] and LIME [27] as the techniques for clinical data. Each technique
will be explained in detail below.

Gradient-weighted Class Activation Mapping (Grad-CAM) uses the gradients
flowing into a convolutional layer to produce a map that highlights important
regions in the image for the classification of a class.

∂yc

∂Ak
(1)

Grad-CAM calculates the gradients of an individual class score, c, with
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Neuron importance is calculated by globally average pooling the gradients.
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A weighted combination of forward activation maps is followed by a ReLU
to obtain the final activation map. The advantage of Grad-CAM is it takes into
account feature maps thus showing how well your model learns quality features.
This is important when training a model for clinical diagnosis because you can
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examine if your model is learning interpretable features using Grad-CAM. A
disadvantage is the heatmaps can be unclear.

Saliency maps show the individual pixels that contribute the most to the
class score. This is useful for showing the structures and clusters of pixels that
contribute the most to the class score. Mathematically, saliency maps calculate
the partial derivative of the class score with respect to an individual pixel at a
specific pixel.

w =
∂Sc

∂I
(4)

It repeats this process for each pixel in the image and assigns each pixel a numeric
value. This value represents the contribution to the class score for each pixel.
You will notice in the results, the highlighting of the structure as well as pixel
clustering around ‘important’ areas in the image. The advantage of saliency maps
is they highlight individual pixels that are important thus providing a precise
interpretation. The disadvantage is individual pixels may not matter as much as
clusters of pixels (i.e. feature maps).

Local Interpretable Model-agnostic Explanations (LIME) creates an inter-
pretable model locally around a classification. It produces a bar graph showing
the contribution of each feature from the patient records. Each bar shows the
direction and magnitude of contribution.

The explanation produced by LIME is obtained by the following:

ξ(x) = argminL(f, g, π∞) + Ω(g) (5)

Where f is a machine learning model, g is the explanation defined as a model,
pix(z) is used as a proximity measure between an instance z to x, so as to define
locality around x, and omega(g) is a measure of complexity. The advantages of
LIME are it produces a clear and concise graph that is easily interpretable. The
disadvantage is the method does not support multi-modal input.

SHAP (SHapley Additive exPlanations is a unified, model-agnostic approach
to interpretation based on game theoretically optimal Shapley Values. The way
SHAP calculates feature importance is as follows.

g(z) = φ0 +
M∑

j=1

φjzj (6)

Where g is the explanation model, z is the coalition vector, M is the maxi-
mum coalition size, and phi is the feature attribution for feature j. For global
importance, we average the absolute Shapley values per feature across the data
as shown below. The advantage of SHAP is that it provides a model-agnostic,
personalized global and local interpretation.

Ij =
n∑

i=1

∣∣∣φ(i)
j

∣∣∣ (7)
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4 Dataset

The dataset used for this work was the PROSTATEx dataset [28] from the
SPIE-AAPM-NCI PROSTATEx challenge. The PROSTATEx dataset consists
of 330 lesions from 204 patients. The dataset provides DICOM coordinates for
the centroid of the prostate lesions. The lesions in the dataset were labeled as
clinically significant or not clinically significant depending on their pi-rads score.
The dataset provides T2W transaxial, T2W sagittal, T2W coronal, ADC, and
BVAL image modalities. This study includes T2W and ADC images. Six patients
were excluded from this work due to poor image quality. This results in 199
patients and 322 lesions. The test set for both classification and interpretation
includes 103 images of lesions and 103 images without lesions.

The data preprocessing steps are as follows: The T2W images are downsized
from 350×350 to 224×224 pixels. The ADC images are downsized from 120×80
to 50×50 pixels. All images are then converted to RGB images. The pixel values
are normalized using z-scoring. Then data augmentation is carried out using
shearing, rotation, and translating data augmentation techniques. The lesion
centroid coordinates are then converted to the resized coordinate frame using
the following formulas:

xnew = xold × xcurrent

widthcurrent
ynew = yold × ycurrent

heightcurrent
(8)

5 Experimental Results

This section is split into four sub-sections: classification results, image interpre-
tation results, clinical data interpretation results, and Multiple Views for Inter-
pretation for Deep Learning results. In Sect. 5.1, lesion classification results are
introduced after tuning the parameters of methodology with ProstateX data set.
The image interpretation shows the different visualizations used to gain insight
into the classifications. This part also demonstrates the precision of the local-
ization of prostate lesions using image interpretation technique (Grad-Cam) in
Sect. 5.2. In Sect. 5.3, clinical data interpretation results demonstrate local and
global clinical data interpretation with LIME and SHAP interpretation tech-
niques. Lastly, the advantages of using multiple interpretation techniques are
demonstrated in Sect. 5.4.

5.1 Classification Result

The classification results are shown in Table 1. These results demonstrate that
engineering interpretation into deep learning can still produce models with classi-
fication performance. As can we see on Table 1, our work (VGG Net) has almost
similar result when we compare with previous works for accuracy. Although
XmasNet has better values, our results are close enough to go second step which
are interpretation techniques. These results also show that true positives and
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false positives are captured using this approach. False negatives and false pos-
itives are likely to be correctly filtered out and classified correctly. It provides
a credible model with results comparable to models in relevant literature to
demonstrate the interpretation techniques.

Table 1. Lesion classification results

Method AUC Sensitivity Specificity

XmasNet [10] 0.92 0.89 0.89

DCNN [11] 0.84 0.69 0.83

3DCNN [9] 0.85 – –

VGG Net 0.84 0.81 0.86

5.2 Evaluation of Grad-Cam Precision Results

Grad-CAM highlights the area of the image that contributes most to the clas-
sification. An additional finding is this highlights the lesion centroid in MRI
images with high precision. To measure interpretation quality for Grad-CAM,
the assumption is made that a credible interpretation would highlight the lesion
centroid as the most important area. That is, if the slice contained a lesion in
the ground truth. We propose the following performance measures for interpreta-
tion for image data: the distance between centroids, false positives, false positive,
correctly localized, and incorrectly localized.

Incorrectly localized interpretations are measured as the number of samples
that produce a heatmap that does not accurately highlight lesion, see Fig. 6.
The heatmap is considered correctly localized if the centroid of the lesions falls
within the radius of the heatmap. False Positives are measured as the number
of cases that produce a heatmap given a slice without a lesion, see Fig. 5. False
Negatives are measured as the number of cases that do not show a heatmap
given an input slice that contains a lesion, see Fig. 4.

The interpretation is considered correctly localized if the coordinates of the
lesion centroid are located within the radius of the heat map. If this does not
hold true then it is considered incorrectly localized. The threshold is the radius
of the heat map which varies from 5 pixels to 16 pixels. Table 2 shows the errors
for Grad-CAM visualizations in terms of false positives, false negatives, and
incorrect localization. Examples of false negatives, false positives, and incorrect
localization are shown in Figs. 4, 5, and 6 respectively.

Distance is calculated between the centroid of the lesion and the geometric
center of the heatmap using the distance formula shown below:

d =
√

(x2 − x1)2 + (y2 − y1)2 (9)

103 images were analyzed and the precision of lesion localization was calcu-
lated using Grad-CAM. T2W images were 224×224 pixels and ADC images were
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Fig. 4. False Negative example. Fig. 5. False Positive example.

Fig. 6. Incorrectly localized example.

50×50 pixels. Figure 7 and Fig. 8 show the precision of Grad-Cam for T2W and
ADC images respectively. The interpretation results for Grad-CAM, measured
as a localization task, for image data interpretation are a mean distance of 6.93
for T2W images and a mean distance of 16.3 for ADC images. These results do
not only show that the interpretation is clear for clinicians, but also that this
method can precisely localize lesion location.

Grad-CAM is useful when you want the interpretation to highlight high-
level (i.e. human interpretable) features. Examples of this would be tumor

Table 2. Grad Cam results

Error T2 ADC

False negatives 3 5

False positives 17 21

Incorrect localization 12 17

Correct localization 174 163
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classification and neuroimaging studies. This method is also useful because of
its ability to localize a region of interest such as a prostate lesion. This method
does not work as well if you want to highlight the boundaries precisely.

Fig. 7. Histogram for T2W lesions localization using Grad-Cam.(pixel-wise and per-
centage)

Fig. 8. Histogram for ADC lesions localization using Grad-Cam.(pixel-wise and per-
centage)

Figure 7 and Fig. 8 show how T2W and ADC images distribute precision
of Grad-Cam in percentage and pixel-wise. Based on these figures, the average
sample is more likely to be localized accurately in T2W images opposed to ADC
images. The inaccuracy in ADC images can be contributed to significantly lower
image resolution (Table 3).

Table 3. Precision of Grad-Cam

Statistic T2 ADC

Mean distance 6.93 16.3

Standard deviation 7.4 9.5
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Saliency maps show the importance of the structure within the image. They
also show which pixels are important for the classification. Thus with saliency
maps, you can examine where the clusters of pixels are. These clusters are the
areas the model considers most important. This is how saliency maps differ from
Grad-CAM. Grad-CAM focuses on feature maps whereas saliency maps focus on
individual pixels. If the cluster of pixels is in the same region as the Grad-CAM
heatmap that shows consistency between methods and instills confidence in the
classification. This provides a sense of trust for the interpretation that the area
of the image contributes most to the classification.

Saliency maps show the structure of the image well. Also, they are useful
if you want to outline an object within the image. For example, if you want
to extract tumor shape or orientation. Saliency maps work well if you want to
visualize which pixels contribute the most to the classification. You can gain
insight into the important regions by examining where the clusters of pixels are.
This does not work well if you want to produce a clear, concise interpretation
because this method is often unclear.

5.3 Interpretation Results for Clinical Data

In previous sections, we mentioned visual results with interpretation techniques.
In this part, non-visual interpretation techniques which are LIME and SHAP
were tested for patient record. For LIME, the model shows BMI and age are most
important for the personalized interpretation. The SHAP values representing
global feature importance are consistent with this showing that BMI and age the
most important features globally. This shows consistency between the local and
global methods thus providing a sense of trust that the interpretation is accurate.
These results show which clinical features contribute most to the classification.

LIME is useful if you want individualized interpretation. An advantage of
LIME is the graphs it provides. They show not only magnitude, but also direction
of feature importance. They also are color coded and organized in a clear and
concise manner. If you want to examine global feature importance it is better to
not use LIME (Figs. 9 and 10).

Fig. 9. LIME results for a patient with a benign lesion.
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Fig. 10. LIME results for a patient with a malignant lesion.

SHAP is useful if you want to examine global feature importance along with
local feature importance. SHAP is also useful because of it’s model-agnostic fea-
ture. It can show reasoning behind the classification regardless of what type of
model you are using. SHAP also provides straightforward interpretation using
SHAP value. Future work can include more variables for these interpretation
methods such as patient history, genetic information, additional patient charac-
teristics, and anything else the clinician deems appropriate (Fig. 11).

Fig. 11. Global feature importance depicted as absolute SHAP value.

5.4 Multiple Views for Interpretation for Deep Learning Results

In this section, two cases are shown for end-to-end personalized interpretations
using the Multiple Views for Interpretation for Deep Learning Results frame-
work. This shows what regions of the images contribute to the classification,
how the structure influences classification, what cluster of pixels are important,
what global features matter the most across the entire cohort, and what clinical
information contributes to the system’s decision. This shows that using multiple
interpretation techniques provides more complete reasoning behind the predic-
tion as opposed to using a single technique. Using Multiple Views for Interpreta-
tion for Deep Learning, we show: (1) what areas of the image contribute most the
prediction (2) the importance of the structure of the prostate and surrounding
area (3) what individual pixels, and clusters of pixels, contribute the most (4)
what features from the patient’s medical records contribute the most (5) local-
ization of the lesion and (6) what medical record features contribute the most
globally across the cohort. This provides a more complete explanation than an
individual technique. This combines the strength of each individual method to
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create a greater whole. There is consistency between the different image interpre-
tation methods. This shows that the area where the heatmap is, and the pixels
are clustered, is the most important region of the image for the classification.
Since both interpretation techniques are consistent, there is a degree of trust in
the reasoning the model gives for the classification. For clinical data interpre-
tation, the local interpretations are consistent with global interpretations. This
provides confidence the neural network is using sound reasoning to make life-
critical classifications. In Figs. 12, 13, 14 and 15, each example is tested using
image and patient records from the PROSTATEx dataset. Three patient were
selected and tested with our framework. The first patient has a age, weight, BMI,
and height of 58 years, 70 kg, 23 kg/m2 and 176 cm. The second patient has a
age, weight, BMI, and height of 75 years, 80 kg, 28 kg/m2, and 200 cm.

Fig. 12. Patient I Inputs. The white dot in image shows the lesion centroid location.

Based on Fig. 12 and 13, the heatmap shows the area of the image that con-
tributes the most to the class score. This heatmap highlights the lesion centroid.
Saliency map shows the individual pixels that contribute the most to the class
score. You can see a cluster of pixels at the lesion centroid. You can also see how
it highlights the edges, shapes, and structure of the prostate area. SHAP shows
global feature importance.

LIME shows the clinical information features that contribute the most to the
class score. For this patient, his bmi and age contribute the most. The bmi is
low so even though the network says the age contributes towards malignant, the
bmi is low enough to give confidence he is healthy.

Based on Fig. 14 and 15, the heatmap shows the area of the image that con-
tributes the most to the class score. This heatmap highlights the lesion centroid.
Saliency map shows the individual pixels that contribute the most to the class
score. You can see a cluster of pixels at the lesion centroid. You can also see
how it highlights the edges, shapes, and structure of the prostate area. SHAP
shows global feature importance. LIME shows the clinical information features
that contribute the most to the class score. For this patient, his bmi and age
contribute the most. The bmi and age are both high so the network considers
this patient malignant overall.
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Fig. 13. Multiple views for Interpretation for Deep Learning Results for Patient I.

Fig. 14. Patient II Inputs. The white dot in image shows the lesion centroid location.

6 Discussion and Future Work

This work proposes Multiple Views for Interpretation for Deep Learning which
is an interpretation framework for deep learning medical systems. We utilize a
deep convolution neural network for the task of image classification. This is used
to demonstrates classification performance greater than, or on par with, simi-
lar prostate cancer classification models in the literature. Clinical information is
concatenated to the fully connected layers of the CNN. Thus, we use image data
(i.e. MRI images) and clinical data (i.e. patient information). This model is then
used to show that multiple interpretation techniques gives greater insight com-
pared to a single interpretation method. The network and interpretation meth-
ods are trained and tested on the PROSTATEx dataset because of the number
of images and availability of patient information and lesion centroid location.
The framework is extendable to other data modalities such as clinical notes or
genetic data. The four methods included are Grad-CAM, saliency maps, SHAP,
and LIME. Using Grad-CAM we show, not only that one can gain insight into
the model’s classifications, but also precisely localize lesion location using this
technique. Saliency maps show the importance of the structure and individual
pixels that contribute most to the class score. The results from Grad-CAM are
consistent with clusters of pixels from saliency maps showing agreement between
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Fig. 15. Multiple Views for Interpretation for Deep Learning Results for Patient II.

image interpretation methods. For clinical data interpretation, LIME is used to
show personalized classification using patient information such as weight, age,
height, and BMI. SHAP is used to show global feature importance which can
be used when examining LIME’s personalized interpretation to determine if the
classification is reasonable. These techniques are then integrated to provide a
multifaceted approach to deep learning interpretation within a medical context.
An interesting additional finding is using Grad-CAM we were able to accurately
localize lesions in slices that contained a lesion. This work shows and analyzes
different approaches to handle interpretability, one of the problems that come
along with computer-aided diagnosis systems. Using multiple interpretations,
the number of incorrect diagnoses influenced by deep learning systems can be
reduced. The legal issues that come along with these systems will be mitigated.
The systems will be more successful and ethical in practice. This makes using
these systems more ethical because the reasoning will enable these systems to
work alongside clinicians as opposed to carrying out their tasks. Lastly, they
will ensure a degree of trust and credibility by showing the reasoning behind
the model’s decision. Most importantly, more work needs to be done to validate
interpretation approaches in clinical settings and testing the generalizability of
interpretation methods. Future work should also include working with clinicians
to tailor interpretation methods to suit their specific needs. This future work
also should study the integrity of such systems. If deep learning cancer detec-
tion systems are going to be implemented into clinical settings, it is of utmost
importance that we trust the classifications. An approach to this is to imple-
ment multiple integrated post-hoc interpretability into these systems to provide
a holistic interpretation of the model’s decision. The clinical validation of this
hypothesis is an important future direction.
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