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1 Introduction

Current advances in robotics and autonomous systems have expanded the use of
robots in a wide range of robotic tasks including assembly, advanced manufacturing,
human-robot or robot-robot collaboration. In order for robots to efficiently perform
these tasks, they need to have the ability to adapt to the changing environment
while interacting with their surroundings, and a key component of this interaction
is the reliable grasping of arbitrary objects. Consequently, a recent trend in robotics
research has focused on object detection and pose estimation for the purpose of
dynamic robotic grasping.

However, identifying objects and recovering their poses are particularly chal-
lenging tasks as objects in the real world are extremely varied in shape and
appearance. Moreover, cluttered scenes, occlusion between objects, and variance
in lighting conditions make it even more difficult. Additionally, the system needs to
be sufficiently fast to facilitate real-time robotic tasks. As a result, a generic solution
that can address all these problems remains an open challenge.

While classification [1-6], detection [7—12], and segmentation [13—15] of objects
from images have taken a significant step forward—thanks to deep learning, the
same has not yet happened to 3D localization and pose estimation. One primary
reason was the lack of labeled data in the past as it is not practical to manually infer,
thus as a result, the recent research trend in the deep learning community for such
applications has shifted towards synthetic datasets [16-20]. Several pose estimation
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methods leveraging deep learning techniques [21-25] use these synthetic datasets
for training and have shown satisfactory accuracy.

Although synthetic data is a promising alternative, capable of generating large
amounts of labeled data, it requires photorealistic 3D models of the objects to
mirror the real-world scenario. Hence, generating synthetic data for each newly
introduced object needs photorealistic 3D models and thus significant effort from
skilled 3D artists. Furthermore, training and running deep learning models are not
feasible without high computing resources as well. As a result, object detection
and pose estimation in real-time with computationally moderate machines remain a
challenging problem. To address these issues, we have devised a simpler pipeline
that does not rely on high computing resources and focuses on planar objects,
requiring only an RGB image and the depth information in order to infer real-time
object detection and pose estimation.

In this work, we present a feature-detector-descriptor based method for detection
and a homography based pose estimation technique where, by utilizing the depth
information, we estimate the pose of an object in terms of a 2D planar representation
in 3D space. The robot is pre-trained to perform a set of canonical grasps; a
canonical grasp describes how a robotic end-effector should be placed relative to
an object in a fixed pose so that it can securely grasp it. Afterward, the robot is
able to detect objects and estimates their pose in real-time, and then adapt the pre-
trained canonical grasp to the new pose of the object of interest. We demonstrate
that the proposed method can detect a well-textured planar object and estimate
its accurate pose within a tolerable amount of out-of-plane rotation. We also
conducted experiments with the humanoid PR2 robot to show the applicability of
the framework where the robot grasped objects by adapting to a range of different
poses.

2 Related Work

Our work constitutes of three modules: object detection, planar pose estimation, and
adaptive grasping. In the following sub-sections, several fields of research that are
closely related to our work are reviewed.

2.1 Object Detection

Object detection has been one of the fundamental challenges in the field of computer
vision and in that aspect, the introduction of feature detectors and descriptors
represents a great achievement. Over the past decades, many detectors, descriptors,
and their numerous variants have been presented in the literature. The applications
of these methods have widely extended to numerous other vision applications such
as panorama stitching, tracking, visual navigation, etc.
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One of the first feature detectors was proposed by Harris et al. [26] (widely
known as the Harris corner detector). Later Tomasi et al. [27] developed the
KLT (Kanade-Lucas-Tomasi) tracker based on the Harris corner detector. Shi and
Tomasi introduced a new detection metric GFTT [28] (Good Features To Track)
and argued that it offered superior performance. Hall et al. introduced the concept
of saliency [29] in terms of the change in scale and evaluated the Harris method
proposed in [30] and the Harris Laplacian corner detector [31] where a Harris
detector and a Laplacian function are combined.

Motivated by the need for a scale-invariant feature detector, in 2004 Lowe [32]
published one of the most influential papers in computer vision, SIFT (Scale-
Invariant Feature Transform). SIFT is both a feature point detector and descriptor.
H. Bay et al. [33] proposed SURF (Speeded Up Robust Features) in 2008. But
both of these methods are computationally expensive as SIFT detector leverages
the difference of Gaussians (DoG) in different scales while SURF detector uses
a Haar wavelet approximation of the determinant of the Hessian matrix to speed
up the detection process. Many variants of SIFT [34-37] and SURF [38—40]
were proposed, either targeting a different problem or reporting improvements in
matching, however, the execution time remained a persisting problem for several
vision applications.

To improve execution time, several other detectors such as FAST [41] and
AGAST [42] have been introduced. Calonder et al. developed the BRIEF [43]
(Binary Robust Independent Elementary Features) descriptor of binary strings that
has a fast execution time and is very useful for matching images. E. Rublee et al.
presented ORB [44] (Oriented FAST and Rotated Brief) which is a combination
of modified FAST (Features from Accelerated Segment Test) for feature detection
and BRIEF for description. S. Leutnegger et al. designed BRISK [45] (Binary
Robust Invariant Scale Keypoint) that detects corners using AGAST and filters them
using FAST. On the other hand, FREAK (Fast Retina Keypoint), introduced by
Alahi et al. [46], generates retinal sampling patterns using a circular sampling grid
and uses a binary descriptor, formed by a one bit difference of Gaussians (DoG).
Alcantarilla et al. introduced KAZE [47] features that exploit non-linear scale-space
using non-linear diffusion filtering and later extended it to AKAZE [48] where they
replaced it with a more computationally efficient method called FED (Fast Explicit
Diffusion) [49, 50].

In our work, we have selected four methods to investigate: SIFT, SUREF,
FAST+BRISK, AKAZE.

2.2 Planar Pose Estimation

Among the many techniques in literature on pose estimation, we focus our review on
those related to planar pose estimation. In recent years, planar pose estimation has
been increasingly becoming popular in many fields, such as robotics and augmented
reality.
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Simon et al. [51] proposed a pose estimation technique for planar structures
using homography projection and by computing camera pose from consecutive
images. Changhai et al. [52] presented a method to robustly estimate 3D poses
of planes by applying a weighted incremental normal estimation method that uses
Bayesian inference. Donoser et al. [53] utilized the properties of Maximally Stable
Extremal Regions (MSERs [54]) to construct a perspectively invariant frame on the
closed contour to estimate the planar pose. In our approach, we applied perspective
transformation to approximate a set of corresponding points on the test image for
estimating the basis vectors of the object surface and used the depth information to
estimate the 3D pose by computing the normal to the planar object.

2.3 Adaptive Grasping

Designing an adaptive grasping system is challenging due to the complex nature of
the shapes of objects. In early times, analytical methods were used where the system
would analyze the geometric structure of the object and would try to predict suitable
grasping points. Sahbani et al. [55] did an in-depth review on the existing analytical
approaches for 3D object grasping. However, with the analytical approach it is
difficult to compute force and not suitable for autonomous manipulation. Later, as
the number of 3D models increased, numerous data driven methods were introduced
that would analyze grasps in the 3D model database and then transfer to the target
object. Bohg et al. [56] reviewed data driven grasping method methods where they
divided the approach into three groups based on the familiarity of the object.

Kehoe et al. [57] used a candidate grasp from the candidate grasp set based on
the feasibility score determined by the grasp planner. The grasps were not very
accurate in situations where the objects had stable horizontal poses and were close
to the width of the robot’s gripper. Huebner et al. [58] also take a similar approach
as they perform grasp candidate simulation. They created a sequence of grasps
by approximating the shape of the objects and then computed a random grasp
evaluation for each model of objects. In both works, a grasp has been chosen from
a list of candidate grasps (Fig. 1).

The recent advances in deep learning also made it possible to regress grasp
configuration through deep convolutional networks. A number of deep learning-
based methods were reviewed in [59] where the authors also discussed how each
element in deep learning-based methods enhances the robotic grasping detection.
[60] presented a system where deep neural networks were used to learn hierarchical
features to detect and estimate the pose of an object, and then use the centers of the
defined pose classes to grasps the objects. Kroemer et al. [61] introduced an active
learning approach where the robot observes a few good grasps by demonstration
and learns a value function for these grasps using Gaussian process regression.
Aleotti et al. [62] proposed a grasping model that is capable of grasping objects
by their parts which learns new tasks from human demonstration with automatic 3D
shape segmentation for object recognition and semantic modeling. Saxena et al. [63]
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Fig. 1 Object in different orientation from the camera

and Montesano and Lopes [64] used supervised learning to predict grasp locations
from RGB images. In [65], as an alternative to a trial-and-error exploration strategy,
the authors proposed a Bayesian optimization technique to address the robot grasp
optimization problem of unknown objects. These methods emphasized developing
and using learning models for obtaining accurate grasps.

In our work, we focus on pre-defining a suitable grasp relative to an object that
can adapt to a new grasp based on the change of position and orientation of the
object.

3 Method

The proposed method is divided into two parts. The first part outlines the process
of simultaneous object detection and pose estimation of multiple objects and the
second part describes the process of generating an adaptive grasp using the pre-
trained canonical grasp and the object pose. The following sections describe the
architecture of the proposed framework (Fig. 2) in detail.



126 S. K. Paul et al.

Object Recognition

Feature detection

/ RGB images of

planar objects and description ‘
RGE-D '‘RGEB image of, Feature detection Deseriptor Identified |
[ Lol : rm— - - C
camera the scene and description matching object
) / 4 \ J
Matched features
1 : | —
Depth data / | Homography f’\'-'*'f”_““"“’ and| | Directional vectors Pose | Estimated
/ perspective transformation estimation astimuation | pose
J | - R
Pose Estimation I__‘.’."_*_’.L‘.’."._ki'_’.‘;.,'
[ Pre trained / | Relative pose | Adaprive
Jeanonical 33"“"’?"}' calenlation | grasp

Adaptive Grasping

Fig. 2 System architecture

3.1 Object Detection and Pose Estimation

We present a planar pose estimation algorithm (Algorithm 1) for adaptive grasping
that consists of four phases: (1) feature extraction and matching, (2) homography
estimation and perspective transformation, (3) directional vectors estimation on the
object surface, (4) planar pose estimation using the depth data. In the following
sections, we will focus on the detailed description of the aforementioned steps.

Feature Extraction and Matching

Our object detection starts with extracting features from the images of the planar
objects and then matching them with the features found in the images acquired from
the camera. Image features are patterns in images based on which we can describe
the image. A feature detecting algorithm takes an image and returns the locations
of these patterns—they can be edges, corners or interest points, blobs or regions of
interest points, ridges, etc. This feature information then needs to be transformed
into a vector space using a feature descriptor, so that it gives us the possibility
to execute numerical operations on them. A feature descriptor encodes these
patterns into a series of numerical values that can be used to match, compare, and
differentiate one feature to another; for example, we can use these feature vectors
to find the similarities in different images which can lead us to detect objects in
the image. In theory, this information would be invariant to image transformations.
In our work, we have investigated SIFT [32], SURF [33], AKAZE [48], and
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Algorithm 1: Planar pose estimation
Input: Training images of planar objects, Z
1 Detector < Define feature detector
2 Descriptor < Define feature descriptor
/x retrieve feature descriptor */
/* for each image in 7 */
3 foriinZdo
/+* K is set of detected keypoints for image i %/
4 K < DetectKeypoints (i, Detector)
/% Dli] is the corresponding descriptor set for image i */
5 Dli] < GetDescriptors ( K, Descriptor)
6 end for
7 while camera is on do
8 f < RGB image frame
9 PC <« Point cloud data
/* Kp is set of detected keypoints for image frame f */
10 K < DetectKeypoints(f, Detector)
/% Dp is the corresponding descriptor set for rgb image f */
11 Dp <« GetDescriptors ( Kg, Descriptor)
12 for iinZ do
13 matches < FindMatches ( D[i], D)
/% If there is at least 10 matches then we have the object
(described in image i) in the scene */
14 if Total number of matches > 10 then
/% extract matched keypoints pair (kpj,kpy) from the
corresponding descriptors matches. */
15 kp;, kp s < ExtractKeypoints (matches)
16 H < EstimateHomography (kp;, kpy)
17 Pc» Px» Py < points on the planar object
obtained using Eq. (3)
18 plc, p;, p;, < corresponding projected points
of p¢, px, py on image frame f
estimated using equations
(1) and (2)
/% ¢ denotes the origin of the object frame with respect to the
base/world frame */
19 ¢, X, y < corresponding 3d locations
of plc, p;, p;, from point cloud PC
/% shift x,y to the origin of the base or the world frame */
20 X<X—¢
21 y<y—c
/% estimate the object frame in terms of three orthonormal
vectors f,f, and k. */
22 ; f k < from Eq.(4)
/* compute the rotation ¢;,6;,¥; of the object frame f,f, k with
respect to the base or the world frame X,Y,Z. */
23 @i, 0;, Y; < from Eq. (8)
/% finally, publish the position and orientation of the object.
*/
24 publish(c, ¢;, 6;, Vi)
25
26 end for

27 end while
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BRISK [45] descriptors. SIFT, SURF, AKAZE are both feature detectors and
descriptors, but BRISK uses FAST [41] algorithm for feature detection. These
descriptors were selected after carefully reviewing the comparisons done in the
recent literature [66, 67].

Once the features are extracted and transformed into vectors, we compare the
features to determine the presence of an object in the scene. For non-binary feature
descriptors (SIFT, SURF) we find matches using the Nearest Neighbor algorithm.
However, finding the nearest neighbor matches within high dimensional data is
computationally expensive, and with more objects introduced it can affect the
process of updating the pose in real-time. To counter this issue to some extent, we
used the FLANN [68] implementation of K-d Nearest Neighbor Search, which is
an approximation of the K-Nearest Neighbor algorithm that is optimized for high
dimensional features. For binary features (AKAZE, BRISK), we used the Hamming
distance ratio method to find the matches. Finally, if we have more than ten matches,
we presume the object is present in the scene.

Homography Estimation and Perspective Transformation

A homography is an invertible mapping of points and lines on the projective plane
that describes a 2D planar projective transformation (Fig. 1) that can be estimated
from a given pair of images. In simple terms, a homography is a matrix that maps
a set of points in one image to the corresponding set of points in another image.
We can use a homography matrix H to find the corresponding points using Eqs. (1)
and (2), which defines the relation of projected point (x,, yl) (Fig. 1) on the rotated
plane to the reference point (x, y).

A 2D point (x, y) in an image can be represented as a 3D vector (x, y, 1) which
is called the homogeneous representation of a point that lies on the reference plane
or image of the planar object. In Eq. (1), H represents the homography matrix and
[x y 117 is the homogeneous representation of the reference point (x, y) and we can
use the values of a, b, ¢ to estimate the projected point ', y,) in Eq. (2).

a X hithip hiz | | x
b|=H|y|=|hyhxnhs|]|y (1)
c 1 h31 h3p his 1
’ a
X = —
° @)
, b
y ==
C

We estimate the homography using the matches found from the nearest neighbor
search as input; often these matches can have completely false correspondences,
meaning they do not correspond to the same real-world feature at all which can be
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a problem in estimating the homography. So, we chose RANSAC [69] to robustly
estimate the homography by considering only inlier matches as it tries to estimate
the underlying model parameters and detect outliers by generating candidate
solutions through random sampling using a minimum number of observations.

While the other techniques use as much data as possible to find the model
parameters and then pruning the outliers, RANSAC uses the smallest set of data
point possible to estimate the model, thus making it faster and more efficient than
the conventional solutions.

Finding Directional Vectors on the Object

In order to find the pose of a planar object, we need to find the three orthonormal
vectors on the planar object that describe the object coordinate frame and conse-
quently, the orientation of the object relative to the world coordinate system. We
start by estimating the vectors on the planar object that form the basis of the plane,
illustrated in Fig. 3. Then, we take the cross product of these two vectors to find
the third directional vector which is the normal to the object surface. Let us denote
the world coordinate system as XY Z, and the object coordinate system as xyz. We
define the axes of the orientation in relation to a body as:

x — right

y — up
z — towards the camera

First, we retrieve the locations of the three points p., px, py on the planar object
from the reference image using Eq. (3) and then locate the corresponding points
p/c, p;, p; on the image acquired from the Microsoft Kinect sensor. We estimate the
locations of these points using the homography matrix H as shown in Egs. (1) and
(2). Then we find the corresponding 3D locations of p/c, p;, p/y from the point cloud
data also obtained from the Microsoft Kinect sensor. We denote them as vectors ¢,X,
and y. Here, ¢ represents the translation vector from the object frame to the world
frame and also the position of the object in the world frame. Next, we subtract ¢
from x, y which essentially gives us two vectors x and y centered at the origin of
the world frame. We take the cross product of these two vectors X, y to find the third
axis z. But, depending on the homography matrix the estimated axes x and y might
not be exactly orthogonal, so we take the cross product of y and z to recalculate
the vector x. Now that we have three orthogonal vectors, we compute the three unit
vectors ; f , and k along the x, y, and z vectors, respectively, using Eq. (4). These
three orthonormal vectors describe the object frame. These vectors were projected
onto the image plane to give a visual confirmation of the methods applied; Fig. 4
shows the orthogonal axes projected onto the object plane.



130 S. K. Paul et al.

Fig. 3 Axis on the reference Py
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Fig. 4 Computed third directional axis projected onto image plane
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Planar Pose Computation

We compute the pose of the object in terms of the Euler angles. Euler angles are
three angles that describe the orientation of a rigid body with respect to a fixed
coordinate system. The rotation matrix R in Eq. (5) rotates X axis to i,Y axis to f,
and Z axis to k.
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(d)

Fig. 5 (a), (b), (c) are recovered poses from robot’s camera and (d), (e), (f) are corresponding
poses visualized in RViz

ix jx kx
R=|iy jy ky )

iz jz kz
Euler angles are combinations of the three axis rotations (Eq. (6)), where ¢, 0,
and i specify the intrinsic rotations around the X, Y, and Z axis, respectively. The

combined rotation matrix is a product of three matrices: R = R; Ry R, (Eq. (7));
the first intrinsic rotation rightmost, last leftmost (Fig. 5).

1 0 0
R, =] 0cos¢ —sing
| 0 sing cos¢
[ cos® 0 sind
R, = 0 1 0 (6)
L —sinf 0 cos O
[(cosy —siny O
R,=| siny cosy O
0 0 1

cOcyr spsOcyr — cpsyr copsOcyr + spsiy
R = cOsy s¢psOsyr + copcy cpsOsyr — spcypr @)
—s0 s¢ch coch

In Eq. (7), c and s represents cos and sin, respectively.
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Solving for ¢, 6, and ¥ from (5) and (7), we get,

—an-! (42
$=tn (kz>

! 6 =tan"

3.2 Training Grasps for Humanoid Robots

S. K. Paul et al.

®)

To ensure that the robot can grasp objects in an adaptive manner, we pre-train the
robot to perform a set of canonical grasps. We place the object and the robot’s
gripper close to each other and record the relative pose. This essentially gives us
the pose of the gripper with respect to the object. Figure 6 illustrates the training
process in which the robot’s gripper and a cracker box have been placed in close
proximity and the relative poses have been recorded for grasping the objects from

the side.

Fig. 6 Pre-training canonical grasp
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Equation (9) outlines the structure of a transformation matrix T¢ that describes
the rotation and translation of frame d with respect to frame s; Rf represents the
rotation matrix similar to Eq. (7) and Psd = [X,, Y:, Z,]T is the translation matrix
which is the 3D location of the origin of frame d in frame s.

During the training phase, we first formulate the transformation matrix T}, using
the rotation matrix and the object location. We take the inverse of T, which gives us
the transformation matrix Tf,’. We then use the Eq. (10) to record the transformation
T% of the robot’s wrist relative to the object.

7§ = TP x T where T? = (1) (10)

In the Eq. (10), b refers to the robot’s base, o refers to the object, and g refers to
the wrist of the robot to which the gripper is attached. Once we record the matrix,
we get a new pose of the object from the vision in the testing phase and generate
the final matrix using the Eq. (11) that has the new position and orientation of the
robot’s wrist in matrix form .

TS =T) x T (11)

We then extract the rotational angles y, B, « (roll, pitch, yaw) of the grasp pose
from matrix Ti using Eq. (12)

—1
y =tan” (r32/r33)
1 —r31

T (12)
Vr? +r33?

—1
a =tan" (r21/ri1)

B =tan~

4 Evaluation

The proposed object recognition and pose estimation algorithm was implemented
on an Ubuntu 14.04 platform equipped with 3.0 GHz Intel R Core(TM) 15-7400
CPU and 8GB system memory. The RGB-D camera used in the experiments was a
Microsoft Kinect sensor v1. We evaluated the proposed algorithm by comparing the
accuracy of object recognition, pose estimation, and execution time of four different
feature descriptors. We also validated the effectiveness of our approach for adaptive
grasping by conducting experiments with the PR2 robot.
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4.1 Object Detection and Pose Estimation

Without enough observable features, the system would fail to find good matches
that are required for accurate homography estimation. Consequently, our object
detection and pose estimation approach has a constraint on the out-of-plane rotation
0, illustrated in Fig. 7. In other words, if the out-of-plane rotation of the object is
more than 6, the system would not be able to recognize the object. Fast execution
is also a crucial aspect to facilitate multiple object detection and pose estimation for
real-time applications. We experimented with four different descriptors on several
planar objects and the comparative result is shown in Table 1. The execution time
was measured for the object detection and pose estimation step. AKAZE and BRISK
had much lower processing time for detection and pose estimation, thus would have
a better frame rate, but SIFT and SURF had larger out-of-plane rotational freedom.

We also compared the RMS difference € (Eq. (13)) of re-calculated x to original
X (x in the equation) for increasing out-of-plane rotation of the planar objects to
assess the homography estimation. Ideally, the two estimated vectors x and y, which

Fig. 7 Out-of-plane rotation

Table 1 Comparison of feature descriptors

Descriptor Maximum out-of-plane rotation (degree) Execution time (second)
SIFT 48 +2° 0.21s
SURF 37 +£2° 0.27s
AKAZE 18+ 1° 0.05s
BRISK 22 +2° 0.06s
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Table 2 Execution time of

SIFT and SURF for multiple
object detection

Detection time (second)
Number of Objects | SIFT | SURF

1 0.06s | 0.09s
2 0.11s [0.17s
3 0.17s [0.26s
4 0.22s | 0.35s
5 0.28s [0.45s
6 0.34s | 0.54s

describe the basis of the plane of the planar object, should be orthogonal to each
other, but often they are not. So, the values of € in Fig. 8 give us an indication of
the average error in homography estimation for different out-of-plane rotations. In
Fig. 8, we can see AKAZE has much higher € values while the rest remained within
a close range. This tells us AKAZE results in a much larger error in estimating the
homography than the other methods.

We chose SIFT and SURF to evaluate how the execution time for detection scales
up while increasing the number of objects. From Table 2, which shows the mean
processing time for object detection, we can see that SURF had a detection time
around 50% more than SIFT in all the cases. This outcome coupled with the previous
results prompted us to select SIFT for the subsequent experiments.

The system was capable of detecting multiple objects in real-time and at the same
time could estimate their corresponding poses. Figure 9 shows detected objects with
estimated directional planar vectors. We can also observe that the system was robust
to in-plane rotation and partial occlusion.
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Fig. 10 (a) Pose estimation of multiple objects (b) Estimated pose of an object held by a human

We used RViz, a 3D visualizer for the Robot Operating System (ROS), to
validate the pose estimation. The calculated directional axes were projected onto
the image and the estimated poses were visualized in RViz. As shown in Fig.5,
we qualitatively verified the accuracy of the detection and the estimated pose by
comparing the two outputs. We can see that both the outputs render similar results.
We conducted experiments with multiple objects and human held objects as well.
Figure 10 illustrates the simultaneous detection and pose estimation of two different
boxes and an object held by a human, respectively.

N
_ T .
€= N Z | |Xi X; ||, where N is the number of frames (13)

i=1
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4.2 Adaptive Grasping

We assessed our approach for adaptive grasping keeping two different aspects of the
robotic application in mind; robotic tasks that require (1) interacting with a static
environment, and (2) interacting with humans.

We first tested our system for static objects where the object was attached to a
tripod. Next, we set up experiments where the object was held by a human. We used
a sticker book and a cartoon book and evaluated our system on a comprehensive set
of poses. In almost all the experiments, the robot successfully grasped the object in a
manner consistent with its training. There were some poses that were not reachable
by the robot—for instance, when the object was pointing inward along the X axis
in the robot reference frame, it was not possible for the end-effector to make a top
grasp. Figures 11 and 12 show the successful grasping of the robot for both types of
experiments.

Fig. 11 Robot grasping an object from a tripod. Left: initial position of the robot’s gripper, middle:
gripper adapting to the object’s pose, right: grasping of the object
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Fig. 12 Robot grasping an object held by a human. Left: initial position of the robot’s gripper,
middle: gripper adapting to the object’s pose, right: grasping of the object

5 Conclusion and Future Work

This work presents an approach that enables humanoid robots to grasp objects
using planar pose estimation based on RGB image and depth data. We exam-
ined the performance of four feature-detector-descriptors for object recognition
and found SIFT to be the best solution. We used FLANN’s K-d Tree Nearest
Neighbor implementation, and Bruteforce Hamming to find the keypoint matches
and employed RANSAC to estimate the homography. The homography matrix was
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used to approximate the three orthonormal directional vectors on the planar object
using perspective transformation. The pose of the planar object was estimated from
the three directional vectors. The system was able to detect multiple objects and
estimate the pose of the objects in real-time. We also conducted experiments with
the humanoid PR2 robot to show the practical applicability of the framework where
the robot grasped objects by adapting to a range of different poses.

In the future, we plan to add GPU acceleration for the proposed algorithm that
would further improve the overall computational efficiency of the system. We would
like to extend the algorithm to automatically prioritize certain objects and limit the
number of objects needed for detection based on different scheduled tasks. Finally,
we would like to incorporate transferring grasp configuration for familiar objects
and explore other feature matching technique, e.g., multi probe LSH, hierarchical
k-means tree, etc.
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