
Chapter 2
Dynamical Systems

Giuseppe Orlando and Giovanni Taglialatela

2.1 Dynamical Systems and Their Classification

The concept of dynamical system that we will use here is taken from R.E. Kalman
[1] who introduced it in the 1960s while studying the problem of linear filtering and
prediction.

Roughly speaking, a system consists of a set of the so-called states (generally
vectors of real numbers), where the adjective dynamics emphasizes the fact that
these states vary in time according to a suitable dynamical law. This concept
of dynamical system is cast in the following definition.

Definition 2.1 (Dynamical System) A dynamical system is an entity defined by
the following axioms:

1. There exist an ordered set T of times, a set X of states and a function φ from T ×
T × X to X. φ is called a state transition function.

2. For all t, τ ∈ T and for all x ∈ X one has that φ(t, τ, x) represents the state at
time t of a system whose initial state at time τ is x.

3. The function φ satisfies the following properties:

Consistency: φ(τ, τ, x) = x for all τ ∈ T , and for all x ∈ X.
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Composition: φ(t3, t1, x) = φ
(
t3, t2, φ(t2, t1, x)

)
, for all x ∈ X and for all

t1, t2, t3 ∈ T with t1 < t2 < t3.

In the following we always consider X = R
n.

Definition 2.2 (Reversibility) If the state transition function φ defined for any
(t, τ ) in T × T , once assigned the initial time τ and the initial state x, the state
of the system is uniquely determined for the future (i.e. for all t > τ ), as well as for
the past (i.e. for t < τ ), the system is said to be reversible.

If the state transition function φ is defined only for t ≥ τ , then the system is said
to be irreversible.

Definition 2.3 (Event, Orbit and Flow) For all t ∈ T , x ∈ X, the pair (t, x) is
called an event. Moreover, for τ and x fixed, the function t ∈ T �→ φ(t, τ, x) ∈ X

is called a movement of the system. The set of all movements is called a flow. The
image of the movement, i.e. the set

{
φ(t, τ, x)

∣
∣ t ∈ T

}
,

is called an orbit (or a trajectory) of the system, i.e. the orbit passing through the
state x at time τ .

It is not always possible to find a closed formula for the orbits of dynamical
systems, but it is possible to study the behaviour of the orbits for long time
nonetheless.

Definition 2.4 (Fixed or Equilibrium Point) A state x∗ ∈ X is called a fixed point
(or an equilibrium point) of the dynamics, if there exist t1, t2 ∈ T , with t2 > t1, such
that

φ(t, t1, x
∗) = x∗ , for all t ∈ T ∩ [t1, t2] .

x∗ is said to be a fixed point in an infinite time if there exists t1 > T such that

φ(t, t1, x
∗) = x∗ for all t ∈ T ∩ [t1,+∞[ .

Definition 2.5 (Eventually Fixed Orbit) An orbit is said to be eventually fixed if
it contains a fixed point.

Definition 2.6 (Eventually Fixed Point) A point is called eventually fixed if its
orbit is eventually fixed.

Definition 2.7 (Stability) The fixed point x∗ is stable if for every ε > 0 there
exist δ > 0 and t0 ∈ T such that for all x ∈ X with |x − x∗| ≤ δ,

∣
∣φ(t, τ, x) − x∗∣∣ ≤ ε holds for any t > t0.
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The fixed point x∗ is asymptotically stable if it is stable and there exists a δ > 0
such that for all x ∈ X with |x − x∗| ≤ δ it holds that

lim
t→∞
∣∣φ(t, τ, x) − x∗∣∣ = 0 holds.

The fixed point x∗ is globally asymptotically stable if it is stable and

lim
t→∞
∣
∣φ(t, τ, x) − x∗∣∣ = 0 , for any τ ∈ T and x ∈ X .

Definition 2.8 (Autonomous System) The system is called autonomous if

φ(t, τ, x) = φ̃(t − τ, x) (2.1)

for some suitable function φ̃.

That is, an autonomous system does not explicitly depend on the independent
variable. If the variable is time (t), the system is called time-invariant. For example,
the classical harmonic oscillator yields to an autonomous system. A nonautonomous
system of n ordinary first order differential equations can be changed into an
autonomous system, by enlarging its dimension using a trivial component, often
of the form xn+1 = t .

Definition 2.9 (Discrete and Continuous System) The system is called
discrete, if the time set T is a subset of the set of the integers Z =
{. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.

The system is called continuous if T is an interval of real numbers.

In Sect. 2.2.1 we consider continuous-time dynamical systems, and in Sect. 2.5
we consider discrete-time dynamical systems.

2.2 Continuous-Time Dynamical

2.2.1 Continuous-Time Dynamical Systems from Ordinary
Differential Equations

Let I = [a, b] ⊂ R and let f : I × R → R.
We recall the following version of the Cauchy–Lipschitz Theorem (see Bonsante

and Da Prato[3]).

Theorem 2.1 (Cauchy–Lipschitz) Assume that there exists L > 0 such that

∣∣f (t, x1) − f (t, x2)
∣∣ ≤ L|x1 − x2| , (2.2)
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for any t ∈ I and x1, x2 ∈ R. Then for any τ ∈ I , ξ ∈ R the Cauchy problem

{
ẋ(t) = f

(
t, x(t)
)

, t ∈ I ,

x(τ ) = ξ
(2.3)

has a unique solution in [a, b].
From Theorem 2.1 it follows that the ordinary differential equation

ẋ = f (t, x) (2.4)

defines a continuous reversible dynamic system. In fact the time set is T = I , the
state set is X = R and the state transition function φ is the function from I × I ×R

to R such that for all t, τ ∈ I , ξ ∈ R one has that

φ(t, τ, ξ) = x(t) ,

where x(t) is the unique solution of the Cauchy problem (2.3). In this case the
movements are the solutions to Eq. (2.4) and, for any solution x, the corresponding
orbit is on the interval

{
x(t)
∣
∣ t ∈ I

}
.

The system is autonomous if, and only if, the function f does not depend
explicitly on t , that is we have

ẋ(t) = f
(
x(t)
)

(i.e. in the case of a differential equation of the form ẋ = f (x), with f : R → R

derivable function with continuous and bounded derivative), since in this case one
has

φ(t, τ, x) = φ(t − τ, 0, x) for all t, τ, x ∈ R. (2.5)

An equilibrium point is a solution of the differential equation ẋ = f (x), which
is constant on the interval J = [t1, t2] ⊂ I . Hence, the equilibrium points of the
system are the solutions x∗ ∈ R of the equation f (x) = 0.

2.2.2 Continuous-Time Dynamical Systems from Systems of
Ordinary Differential Equations

The discussion contained in the previous Sect. 2.2.1 for a single equation can be
extended to systems of ordinary differential equations.

In fact, if x = (x1, x2, . . . , xn) ∈ R
n, let f = f (t, x) be a vector function

from I × R
n to Rn, and let f1, f2, . . . , fn be the components of f .
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Assume that f1, f2, . . . , fn are continuous functions in I × R
n, that the partial

derivatives of f1, f2, . . . , fn with respect to all variables x1, x2, . . . , xn exist and are
continuous in I × R

n, and that these partial derivatives are bounded in [a, b] × R
n

for all [a, b] ⊂ I .
Then, for all t0 ∈ I and x0 ∈ R

n the Cauchy problem

{
ẋ(t) = f

(
t, x(t)

)
, t ∈ I ,

x(t0) = x0
(2.6)

has one and only one solution on the interval I .
Therefore, the system of ordinary differential equations

ẋ(t) = f
(
t, x(t)

)

defines a reversible continuous dynamical system.
The time set is T = I , the state set is X = R

n and the state transition function
is the mapping φ from I × I × R

n to R
n such that for all t, τ ∈ I , x ∈ R

n one has
that φ(t, τ, x) is the value in t of the unique solution of the Cauchy problem (2.6).

In this case, the movements are solutions of the system (2.6) and, for any solution
x(t) of such a system of differential equations, the corresponding orbit is a curve in
R

n of the parametric equation x = x(t), t ∈ I .
As before, the system is autonomous if f is independent of t , i.e. in the case of a

system of differential equations of the form ẋ = f (x). In this case, an equilibrium
point is a solution of the system of differential equations ẋ = f (x) that is constant
on an interval J ⊂ I . Thus, the equilibrium points of the system are the solutions
x∗ ∈ R

n of the system of equations f (x∗) = 0.

Remark 2.1 A nonautonomous system of n ordinary first order differential equa-
tions can be changed into an autonomous system, by enlarging its dimension using
a trivial component, often of the form xn+1 = t .

Remark 2.2 The notion of dynamical system, as outlined in Definition 2.1,
describes the case in which the evolution of the system depends only on internal
causes.

However, there are situations where the evolution of the system can be modified
through the action of external forces, i.e. by means of a time-dependent input vector
function u. In this case Definition 2.1 can be generalized in the sense that a dynamic
system is characterized by a time set T , a state set X, an input set U with a set Ω

of admissible input functions from T to U and a state transition function φ from T ×
T × X × Ω to X such that for all t, τ ∈ T , x ∈ X,u ∈ Ω , φ(t, τ, x,u) represents
the state of the system at time t , if the state is x at time τ with an input function u

acting on the system.
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Obviously, the state of the system at time t will only depend on the initial time τ ,
the initial state x and the restriction of the input functionu to the interval of extremes
t and τ . Hence, we have to assume that the state transition function φ satisfies the
following properties.

Consistency: φ(τ, τ, x,u) = x(t) ∀ (τ, x,u(·)) ∈ T × X × Ω .
Composition: φ(t3, t1, x,u) = φ (t3, t2, φ (t2, t1, x,u) ,u) for each (x,u) ∈ X×

Ω , and for each t1 < t2 < t3.
Causality: If u, v ∈ Ω and u|[τ,t ] = v|[τ,t ], then φ(t, τ, x,u) = φ(t, τ, x, v).

This framework can be used for theoretical approaches in continuous-time
systems.

2.3 Stability of Continuous-Time Systems

We recall some known facts about the exponential of square matrix.

Definition 2.10 (Exponential of Square Matrix) Given a square matrix A,
the exponential of A is defined by

exp(A) =
+∞∑

j=0

1

j !A
j = I + A + 1

2
A2 + 1

6
A3 + · · · + 1

j !A
j + · · · .

The basic properties of the exponential are listed below:

• If 0 is the null matrix, then exp(0) = I .
• If A and B commute, that is AB = BA, then exp(A) exp(B) = exp(A + B).

In particular exp(αA) exp(βA) = exp
(
(α + β)A

)
, for any α, β ∈ R.

• For any square matrix A, exp(A) is invertible; moreover

[
exp(A)

]−1 = exp(−A) .

• exp(AT ) = exp(A)T .
• det
(
exp(A)

) = etr(A), where tr(A) denotes the trace of A.
• If B = PAP−1, where P is an invertible matrix, then

exp(B) = P exp(A) P−1 .

• If A is diagonal

A =

⎛

⎜⎜
⎜
⎝

λ1 0 . . . 0
0 λ2 0
...

. . .
...

0 . . . 0 λn

⎞

⎟⎟
⎟
⎠

,
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then

exp(A) =

⎛

⎜
⎜⎜
⎝

eλ1 0 . . . 0
0 eλ2 0
...

. . .
...

0 . . . 0 eλn

⎞

⎟
⎟⎟
⎠

.

When we deal with a linear system of differential equations expressed in matrix
form as

ẋ = Ax ,

A being a fixed matrix, the solution for the initial point x0 at t = 0 is given by

x(t) = exp(tA) x0 .

Indeed, as

x(t) =
+∞∑

j=0

tj

j !A
j x0

we have

ẋ(t) =
+∞∑

j=1

tj−1

(j − 1)!A
j x0 =

+∞∑

j=0

tj

j !A
j+1 x0

= A

+∞∑

j=0

tj

j !A
j x0 = A x(t) .

We can obtain the behaviour of the solution x(t) by studying the eigenvalues
of the matrix A. Indeed, assume for example that A is diagonalizable and all the
eigenvalues λj , j = 1, . . . , n, have negative real part. We then have

x(t) = exp(tA) x0 = P

⎛

⎜
⎜
⎜
⎝

eλ1 t 0 . . . 0
0 eλ2 t 0
...

. . .
...

0 . . . 0 eλn t

⎞

⎟
⎟
⎟
⎠

P−1x0 ,

for some invertible matrix P . As eλn t → 0 for t → +∞, we see that the solution
x(t) = 0 is stable.

The Hartman–Grobman Theorem 2.2 given below will elucidate the behaviour
around the fixed points of nonlinear systems by a linearization in a neighbourhood



20 G. Orlando and G. Taglialatela

of the equilibrium. To this end, we need to introduce the following definitions
(Zimmerman [11]).

Definition 2.11 (Homeomorphism) A function h : X → Y is a homeomorphism
between X and Y if it is continuous and bijective (one-to-one and onto function)
with a continuous inverse denoted by h−1.

Remark 2.3 A homeomorphismmeans that X and Y have similar structure and that
h (resp., h−1) may stretch and bend the space but does not tear it.

Definition 2.12 (Diffeomorphism) A function f : U ⊆ R
n → V ⊆ R

n is called
diffeomorphism of class Ck if it is surjective (onto) and injective (one-to-one), and
if the components of f and its inverse have continuous partial derivatives up to the
k-th order with respect to all variables.

Definition 2.13 (Embedding) An embedding is a homeomorphism onto its image.

Definition 2.14 (Topological Conjugacy) Given two maps, f : X → X and
g : Y → Y , the map h : X → Y is a topological semi-conjugacy if it is continuous,
surjective and h ◦ f = g ◦ h, with ◦ function composition.

In addition, if h is a homeomorphism between X and Y , then we say that h is
a topological conjugacy and that X and Y are homomorphic.

Definition 2.15 (Hyperbolic Fixed Point) In the case of continuous-time dynam-
ical system,

ẋ = f (x),

a hyperbolic fixed point is a fixed point x∗ for which all the eigenvalues of the
Jacobian matrix

Df =

⎛

⎜
⎜
⎜
⎝

∂x1f1 ∂x1f2 . . . ∂x1fn

∂x2f1 ∂x2f2 . . . ∂x2fn

...

∂xnf1 ∂xnf2 . . . ∂xnfn

⎞

⎟
⎟
⎟
⎠

calculated in x∗ have a non-zero real part.

Theorem 2.2 (Hartman–Grobman) Let f be C1 on some E ⊂ R
n and let x∗ be

a hyperbolic fixed point that without loss of generality we can assume x∗ = 0.
Consider the nonlinear system ẋ = f (x) with flow φ(t, 0, x) and the linear system
ẋ = Ax, where A is the Jacobian Df (0). Let I0 ⊂ R,X ⊂ R

n and Y ⊂ R
n

such that X,Y and I0 each contain the origin. Then, there exists a homeomorphism
H : X → Y such that for all initial points x0 ∈ X and all t ∈ I0

H
(
φ(t, 0, x0)

) = etAH(x0)
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holds. Thus, the flow of the nonlinear system is homeomorphic to etA (i.e. to the flow
of the linearized system).

A sufficient condition for an equilibrium xa to be stable is given by the following
theorem.

Theorem 2.3 (Lyapunov [8]) Let Ω be an open subset ofRn, and f : Ω → R
n be

a C1 function. Let xa ∈ Ω be a zero of f .
Consider the dynamical system

ẋ(t) = f
(
x(t)
)
, x ∈ R

n .

The equilibrium x(t) = xa is stable if all the eigenvalues of the Jacobian matrix
of f at xa have a negative real part.

We end this section recalling a useful tool to prove the stability of equilibria.

Definition 2.16 (Lyapunov Function) Let f : Rn → R
n, with f (x0) = 0, and

consider the autonomous dynamical system

ẋ(t) = f
(
x(t)
)
,

so that x(t) ≡ x0 is an equilibrium point.
A weak Lyapunov function (resp., a strong Lyapunov function) with respect to x0

is a scalar C1 function L defined in a neighbourhood U of x0 such that:

• L(x0) = 0 and L(x0) > 0 for all x ∈ U \ {x0};
• ∇V (x) · f (x) > 0 (resp., ∇V (x) · f (x) ≥ 0) for all x ∈ U \ {x0}.
Theorem 2.4 If there exists a weak Lyapunov function (resp., a strong Lyapunov
function) with respect to the point x0, then x0 is Lyapunov stable. (resp., asymptot-
ically stable).

2.4 Limit Cycles and Periodicity of Continuous-Time
Systems

In this section we consider a continuous-time dynamical system described by the
state transition function φ(t, τ, x). If differently specified, the following definitions
and results are taken from R. Devaney [5], H. W. Lorenz [7] and S. Sternberg [10]

Definition 2.17 (Limit Cycle) A limit cycle (see Fig. 2.1) is a closed orbit Γ for
which there exists a tubular neighbourhood U(Γ ) [9] such that for all x ∈ U(Γ )

one has

lim
t→+∞ d(φ(t, τ, x), Γ ) = 0, (2.7)
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Fig. 2.1 A limit cycle in the
three-dimensional phase
space

4

2

0

–2

–4
3210–1–2–3

–1

0

1

where we have

d(y, Γ ) = inf
z∈Γ

|y − z|. (2.8)

In order to establish the existence of limit cycles, in the two-dimensional case,
we can refer to the following theorem by Poincaré and Bendixson.

Theorem 2.5 (Poincaré–Bendixson [7]) Let D be a non-empty, compact
(i.e. closed and bounded) set of the plane not containing fixed points of a C1
vector field f from D to R

2 and let γ ⊂ D be an orbit of the system ẋ = f (x).
Then, either γ is a closed orbit or γ asymptotically approaches a closed orbit
(i.e. there exists a limit cycle in D).

The limitations of Theorem 2.5 are related to finding a suitable set D and to the
fact that it is valid only in two dimensions. For example, we suppose that there exists
a compact set D ⊂ R

3 with the vector field pointing inwards to D (see Fig. 2.2b)
and that there is a unique unstable equilibrium. Nevertheless, it is possible that no
closed orbit exists because a trajectory can arbitrarily wander in R3 without neither
intersecting itself nor approaching a limit set (see Fig. 2.3).

It is a simple consequence of the theorem of Poincaré and Bendixson together
with the uniqueness of the solutions of such systems that while two-dimensional
systems can produce limit cycles, for obtaining chaos, dimension three is required.
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x

y

(a) (b)

Fig. 2.2 Convergence to the limit cycle. On the boundary of D, the vector field points inwards the
set. Therefore, once a trajectory enters in D, it will stay on it forever. (a) A system with a stable
limit cycle in a vector field. (b) Limit cycle in a compact set D [7]

− 2
0 − 2

0
2

− 1

0

1

Fig. 2.3 In R
3 Poincaré–Bendixson is invalid

The following result, in contrast to Theorem 2.5, provides a criterion to establish
the non-existence of closed orbits of a dynamical system in R2:

Theorem 2.6 (Bendixson Negative Criterion [2]) Let

BR = {(x, y) ∈ R
2
∣
∣ x2 + y2 < R

}
,

with R > 0, and let f, g ∈ C1(BR) be such that

∂xf (x, y) + ∂yg(x, y)

has constant sign and vanishes only at a finite number of points.
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Then there exists no closed orbits in BR of the autonomous system

{
x ′ = f (x, y)

y ′ = g(x, y) .

Theorem 2.6 holds true in a more general setting: we can replace BR by a
generic simply connected subset of R2, and assume that ∂xf (x, y) + ∂yg(x, y) has
constant sign except a set with zero measure.

In the one-dimensional systems, there are no periodic solutions. To put it another
way, trajectories increase or decrease monotonically, or remain constant. What is
more, the Poincaré–Bendixson theorem provides an important result in the two-
dimensional systems. It states that if a trajectory is confined to a closed and bounded
region that contains no equilibrium points, then the trajectory must eventually
approach a closed orbit. This result implies that chaotic attractors cannot happen
in nonlinear planar dynamical systems.

2.5 Discrete-Time Dynamical Systems

Definition 2.18 (Map) Let X be a subset of Rd , d ≥ 1, and let f : X → X be any
function. The recursive formula

xn+1 = f (xn) (2.9)

defines a discrete dynamical system referred to as a d-dimensional map.

If we denote by the symbol f ◦n the n-th iterate of f , i.e. for n = 0 f ◦0 is the
identity on X and for n ≥ 1 the composition of f with itself n times, that is

f ◦n(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x if n = 0 ,

f (x) if n = 1 ,

(f ◦ f ◦(n−1))(x) = f
(
f ◦(n−1)(x)

)
if n > 1 ,

(2.10)

then the state transition function φ is defined by

φ(t, τ, x) = f ◦(t−τ )(x) for all t, τ ∈ N, and t ≥ τ, (2.11)

since it is evident that φ satisfies the consistency and composition properties.
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In this case, a movement is a sequence {xn}n∈N such that xn+1 = f (xn) for all
n, whereas an orbit is a set of the form {x0, x1, x2, . . . , xn, . . . } with xn+1 = f (xn)

for all n ∈ N.
In the following we focus on 1-dimensional dynamical systems.

Example 2.1 If d = 1, and f (x) = x2, the orbit of f with initial point x0 = 2 is
the set {2, 4, 16, 256, . . . } = {22n}n∈N.

Remark 2.4 Note that the dynamical system defined by Eq. (2.9) is autonomous
(cfr. Eq. (2.1)). Moreover it is reversible if and only if the function f is bijective.

Indeed, if f −1 is the inverse of f , we can extend the definition of f ◦n also
to negative n by

f ◦(−n) = (f −1)◦n , for n ∈ N ;

hence, (2.11) holds true also for t < τ .

Example 2.2 If f (x) = x2, as f is not injective, the associated dynamical system
is not reversible: by knowing x1 = 1, one cannot deduce if the initial point is x0 = 1
or x0 = −1.

Definition 2.19 (Fixed or Equilibrium Point for a Discrete-Time System) A
fixed point (or a equilibrium point) x∗ is a point of X such that f (x∗) = x∗. In
this discrete-time case, the orbit departing from x∗ is the singleton {x∗}.
Example 2.3 Let f (x) = x2.

The points 0 and 1 are the only fixed points for f . The point x = −1 is not fixed,
but it is an eventually fixed point for f because f (−1) = 1 �= −1.

Definition 2.20 (Periodic orbit, cycle) The orbit of initial point x0 is said
to be periodic, or a cycle, if there exists p ∈ N such that f ◦p(x0) = x0. In
this case, x0 is a periodic (or a cyclic) point.

The smallest number p such that f ◦p(x0) = x0 is called the period of x0 (or of
its orbit). To emphasize the period p, we say that x0 (or its orbit) is a p-periodic
point (or a p-periodic orbit).

Remark 2.5 A periodic orbit means that after a finite number of iterations we return
to the initial point and therefore the orbit has a finite number of elements.

Remark 2.6 (Period of an Orbit) A point x0 is periodic of period p if and only if
x0 is a fixed point of f ◦p. In particular, a fixed point x0 for f is fixed for all iterates
of f .

Often, fixed points are also called period-1 fixed points.

Example 2.4 If f (x) = −x, then x0 = 0 is the only fixed point of f and all other
points have period 2, the orbits being the sets of the form {x,−x}.
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Definition 2.21 (Eventually Periodic Orbit) An orbit is said to be eventually
periodic if it contains a periodic point. Analogously, a point is called eventually
periodic if its orbit is eventually periodic.

Example 2.5 Consider the function f (x) = 1 − x4. The point x0 = −1 is an
eventually periodic point because f (−1) = 0 and 0 is contained in the cycle (0, 1).

Remark 2.7 (Recursive Methods for Finding Fixed Points) Recursive expressions
of the form of Eq. (2.9) are often used in numerical computations for solving equa-
tions. An example is given by the so-called Babylonian algorithm to approximate
the square root of a number a > 0

xn+1 = 1

2

(
xn + a

xn

)
. (2.12)

A more general algorithm is the Newton method of approximating zero of a dif-
ferentiable function g as

xn+1 = xn − g(xn)

g′(xn)
. (2.13)

For example, if g(x) = x2 − a, g′(x) = 2x, then the Newton algorithm in
Eq. (2.13) reduces to Eq. (2.12).

2.5.1 Cobweb Diagram

For a one-dimensional map f , the cobweb diagram (or Verhulst diagram) is
a method to graphically describe the orbit of an initial point x0.

After drawing the graph of f (x) and the bisector r of first and third quadrants,
draw the point P0 ≡ (x0, f (x0)

)
.

Let x1 = f (x0), draw the horizontal line from P0 to the point on r with
coordinates (x1, x1) and draw the vertical line from this point to the graph of f

with coordinates P1 ≡ (x1, f (x1)
)
.

For higher iterates we repeat the procedure. From x2 = f (x1), we draw the
horizontal line from P1 to the point on r with coordinates (x2, x2) and the vertical
line from this point to the graph f with coordinates P2 ≡ (x2, f (x2)

)
(Fig. 2.4).
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Fig. 2.4 The cobweb
diagram
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2.6 Attractors and Repellers

In this section, we provide some definitions concerning the behaviour of dynamical
systems that, unless differently specified, follow the conventions in R. Devaney [5],
H. W. Lorenz [7] and S. Sternberg [10].

Throughout the section f : R → R is a twice continuously differentiable
function, and f ◦n denotes its n-th iterate (cf. (2.10)).

Definition 2.22 (Critical Point) We say that xc ∈ R is a critical point of f if
f ′(xc) = 0.

The critical point xc is degenerate if f ′′(xc) = 0 and non-degenerate if f ′′(xc) �=
0.

Remark 2.8 Degenerate critical points may be maxima,minima or inflection points;
non-degenerate critical points, instead, must be either maxima or minima.

Example 2.6 Consider the functions fn(x) = xn, n ∈ N.
If n ≥ 2, then fn has a critical point in c = 0. In particular, if n = 2 the critical

point is non-degenerate, whereas if n > 2 the critical point is degenerate.
If n is even, the critical point is a minimum, whereas if n is odd the critical point

is an inflection point.

Remark 2.9 (Classification of Critical Points [4]) A critical point can be stable if
the orbit of the system is inside a bounded neighbourhood to the point for all times n
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Fig. 2.5 Different examples of critical points. From top left clockwise: a centre denoting a stable
but not asymptotically stable point, an asymptotically stable node and an asymptotically stable
spiral both denoted as a sink. Then an unstable spiral and an unstable node, i.e. source. Last figure
shows a saddle node where some orbits converge and some others diverge

after some n∗. A point is asymptotically stable if it is stable and the orbit approaches
the critical point as n → ∞. If a critical point is not stable, then it is unstable (see
Fig. 2.5). In some instances these critical points could have mixed characteristics
(see Fig. 2.6).

Definition 2.23 (Limit Set) Given x ∈ X, the limit set of x is the set A of points
ω ∈ X for which there is an increasing sequence of natural numbers {nj }j∈N such
that

lim
j→+∞ f ◦nj (x) = ω .

Definition 2.24 (Attractor) A compact (i.e. a closed and bounded) set A ⊂ X is
an attractor if there is an open set U containing A such that A is a limit set of all
points in U .

Definition 2.25 (Basin of Attraction) The set of all x having A as limit set is
called the basin of attraction of A.
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Fig. 2.6 A critical point
combining a sink (I and II
quadrants) and saddle (III and
IV quadrants)

Remark 2.10 In particular, a singleton {xa} is an attractor if there exists δ > 0
such that for all x ∈]xa − δ, xa + δ[ the sequence (f ◦n(x)

)
n∈N has a subsequence

converging to xa .

Theorem 2.7 Let xa be a fixed point of f with
∣
∣f ′(xa)

∣
∣ < 1. Then a is

asymptotically stable and the set {xa} is an attractor.
More precisely there exists δ > 0 such that for all x ∈]xa−δ, xa+δ[ the sequence

(f ◦n(x))n tends to xa .

Proof Let K ∈ R be such that
∣
∣f ′(xa)| < K < 1, as

lim
x→xa

∣
∣f (x) − xa

∣
∣

|x − xa| = lim
x→xa

∣
∣
∣
f (x) − f (a)

x − xa

∣
∣
∣ = ∣∣f ′(xa)

∣
∣ < K

and since there exists δ > 0 such that for all x ∈]xa − δ, xa + δ[, one has
∣
∣
∣
f (x) − f (a)

x − xa

∣
∣
∣ < K .

Hence

∣
∣f (x) − xa

∣
∣ < K|x − xa| < Kδ . (2.14)

As K < 1 we deduce that if x0 ∈ ]xa − δ, xa + δ[, then x1 = f (x0) ∈
]xa − δ, xa + δ[.



30 G. Orlando and G. Taglialatela

Applying (2.14) to x = xn, we have

|xn+1 − xa

∣
∣ < K|xn − xa| ,

as xn+1 = f (xn). Thus it follows by induction that for all x0 ∈ ]xa − δ, xa + δ[ and
for all n ∈ N one has that

|xn − xa

∣
∣ < Kn|x0 − xa| < Knδ .

Hence, for all x0 ∈ ]xa − δ, xa + δ[ the distance of f ◦n(x0) from a decreases at
a geometric rate K < 1 and therefore tends to 0, as desired.

Remark 2.11 If one has f ′(0) = 0, then the preceding argument shows that the
distance of f ◦n(x) from a decreases at a geometric rate K for all K ∈ ]0, 1[.

The above remark justifies the following definition.

Definition 2.26 (Superattractor) A fixed point x∗ such that f ′(x∗) = 0 is called
a superattractor or superstable.

Remark 2.12 If
∣
∣f ′(xa)

∣
∣ > 1, then, for a fixed K ∈ R such that 1 < K < |f ′(xa)|,

there exists δ > 0 such that for all x ∈]xa − δ, xa + δ[ one has |f (x) − xa| >

K|x−xa|; hence the distance of f ◦n(x) from a increases at a geometric rate K > 1,
and therefore there exists n ∈ N such that |f ◦n(x) − xa| > δ.

This motivates the following definition.

Definition 2.27 (Repeller) A fixed point x∗ with
∣
∣f ′(x∗)

∣
∣ > 1 is called unstable

or a repeller.

Example 2.7 Let us consider a function g twice continuously differentiable and the
Newton method of Eq. (2.13). In this case

f (x) = x − g(x)

g′(x)
, (2.15)

and hence

f ′(x) = 1 − g′(x)

g′(x)
+ g(x)g

′′
(x)

g′(x)2
= g(x)g

′′
(x)

g′(x)2
. (2.16)

If the point xa is a non-degenerate zero of g, then xa is a superattractive fixed point.

Remark 2.13 As already mentioned above, a periodic point xp of a period n is a
fixed point of f ◦n (n-fold composition of f ).

Moreover, if xp is periodic, the points

xp, f (xp), f ◦2(xp), . . . , f ◦n−1(xp) (2.17)
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are also periodic, and by the chain rule, the derivative of f ◦n in those points is the
same and equal to

(f ◦n)′(xp) = f ′(xp) f ′(f (xp)) · · · f ′(f ◦n−1(xp)). (2.18)

Definition 2.28 (Hyperbolic Bifurcation Point) Let xp be a periodic point
of prime period n (see Remark 2.6), and the point xp is called hyperbolic if

|(f ◦n)′(xp)| �= 1. (2.19)

The number (f ◦n)′(xp) is called a hyperbolic point multiplier.

Definition 2.29 (Bifurcation Point) A non-hyperbolic fixed point is called a bifur-
cation point.

Definition 2.30 (Attractive Periodic Orbit) If xp is an attractive (resp., a repeller)
fixed point for f ◦n, then so are all others, and it is called an attractive periodic orbit.

Definition 2.31 (Superattractive Periodic Orbit) A periodic point is super-
attractive for f ◦n if and only if f ′(s) = 0 at least for one of the points
xp, f (xp), f ◦2(xp), . . . , f ◦n−1(xp).

Example 2.8 As was mentioned above, an attractor as well as a repeller can be a
fixed or a periodic point. For example, the function f (x) = −x3 has two cyclic
points −1 and +1 of period 2 and a fixed one x0 = 0 (see Fig. 2.7a).

It can easily be verified that x0 is an attractor for the basin (−1,+1) and that the
cyclic orbit −1,+1 is a repeller. To show that it is sufficient to study the function

(a)

P1

P1 P2

P0

P3
x3 x1

x0 x1 x2x4x2x0

P4

P2

P0

y y

x x

(b)

Fig. 2.7 Convergence to the attractor. Panel (a) represents f (x) = −x3 that is a mirror image
of f (x) = x3 and panel (b) corresponds to the graph of f ◦2(x) = x9
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f ◦2(x) for which −1 and +1 are fixed repeller points, and since neither is fixed for
f , then they will be cyclic repellers (see Fig. 2.7b).

We end this section with the n-dimensional version of Theorem 2.7.

Theorem 2.8 Consider the discrete-time dynamical system

xn+1 = f (xn) ,

where f : Rn → R
n is a smooth map. Let xa be a fixed point of f , that is

f (xa) = xa ,

and assume that the eigenvalues of the Jacobian matrix of f

Df =

⎛

⎜⎜
⎜
⎝

∂x1f1 ∂x1f2 . . . ∂x1fn

∂x2f1 ∂x2f2 . . . ∂x2fn

...

∂xnf1 ∂xnf2 . . . ∂xnfn

⎞

⎟⎟
⎟
⎠

calculated at xa lie inside the unit circle
{
z ∈ C

∣
∣ ‖z‖ < 1

}
.

Then xa is an attractor.

2.7 Existence of Periodic Behaviour

In this section we present some definitions that will be used in Sect. 3.1.

2.7.1 Schwarz Derivative

Definition 2.32 (Schwarz Derivative) Let f be a one-dimensional map defined in
the real field, three times derivable. The Schwarz derivative of f is defined by

f S(x) = d

dx

(
f ′′(x)

f ′(x)

)
− 1

2

(
f ′′(x)

f ′(x)

)2
, (2.20)

or, equivalently, by

f S(x) = f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2
. (2.21)
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The relevant property of the Schwarz derivative is to preserve the sign with the
composition, in the sense that if f S(x) > 0, then it is also (f ◦n)S(x) > 0 ∀n ∈
N. To prove this statement we first prove a “chain rule” formula for the Schwarz
derivative.

Lemma 2.1 Let f, g be three times derivable, and then

(f ◦ g)S(x) = f S
(
g(x)
)(

g′(x)
)2 + gS(x) . (2.22)

Proof According to the (ordinary) chain rule, we have

(f ◦ g)′(x) = f ′(g(x)
)
g′(x)

(f ◦ g)′′(x) = f ′′(g(x)
)(

g′(x)
)2 + f ′(g(x)

)
g′′(x)

(f ◦ g)′′′(x) = f ′′′(g(x)
)(

g′(x)
)3 + 3f ′′(g(x)

)
g′(x)g′′(x) + f ′(g(x)

)
g′′′(x) .

Hence,

(f ◦ g)S(x) = f ′′′(g(x)
)(

g′(x)
)3 + 3f ′′(g(x)

)
g′(x)g′′(x) + f ′(g(x)

)
g′′′(x)

f ′(g(x)
)
g′(x)

− 3

2

(
f ′′(g(x)

)(
g′(x)
)2 + f ′(g(x)

)
g′′(x)

f ′(x)

)2

=
⎡

⎣f ′′′(g(x)
)

f ′(g(x)
) − 3

2

(
f ′′(g(x)

)

f ′(g(x)
)

)2⎤

⎦
(
g′(x)
)2

+ g′′′(x)

g′(x)
− 3

2

(
g′′(x)

g′(x)

)2

= f S
(
g(x)
)(

g′(x)
)2 + gS(x) .

By (2.22), if f S < 0 and gS < 0, then (f ◦ g)S < 0. In particular, if f S

is negative, then (f ◦n)S is also negative for all n > 1. This yields the following
theorem (for illustration see Ref. [5]).

Theorem 2.9 (Schwarz Theorem) If f S < 0 and if f has n critical points, then
f has at most n + 2 attracting periodic orbits.

From (2.21) we see that if Q is a polynomial of degree at most 2, then QS < 0.
For higher degree polynomials, we have the following proposition.

Proposition 2.1 Let Q(x) be a polynomial whose first derivative Q′(x) has real
roots. Then QS(x) < 0.
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Proof Suppose that

Q′(x) =
n∏

i=1

(x − ai) with ai real . (2.23)

Then

Q′′(x) =
n∑

j=1

∏n
i=1(x − ai)

x − aj

=
n∑

j=1

Q′(x)

x − aj

. (2.24)

Therefore, by (2.20),

QS(x) = d

dx

⎛

⎝
n∑

j=1

1

x − aj

⎞

⎠− 1

2

⎛

⎝
n∑

j=1

1

x − aj

⎞

⎠

2

= −
n∑

j=1

1

(x − aj )2
− 1

2

⎛

⎝
n∑

j=1

1

x − aj

⎞

⎠

2

< 0 .

2.7.2 Singer’s Theorem

As mentioned before , the Schwarz derivative preserves the sign under composition
that is useful in the following theorem.

Theorem 2.10 (Singer [7]) Let f be a map from a closed interval I ⊆ [0, b] onto
itself; then the dynamical system xn+1 = f (xn) has at most one periodic orbit in
the interval I if the following conditions are met:

1. f is a function C3;
2. There exists a critical point xc ∈ I such that

⎧
⎪⎪⎨

⎪⎪⎩

f ′(x) > 0 , for x < xc,

f ′(x) = 0 , for x = xc,

f ′(x) < 0 , for x > xc.

3. The origin is a repeller for f , that is

f (0) = 0, and
∣
∣f ′(0)

∣
∣ > 1;

4. The Schwarz derivative is

f S(x) ≤ 0 for all x ∈ I \ {xc}.
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2.7.3 Sharkovsky’s Theorem

Let us introduce the following ordering on natural numbers.

Definition 2.33 (Sharkovsky Ordering [10])

3 � 5 � 7 � · · · 2 · 3 � 2 · 5 � 2 · 7 � · · · 22 · 3 � 22 · 5 � 22 · 7 � · · ·
· · · 2n · 3 � 2n · 5 � 2n · 7 � · · · � 2n � 2n−1 � · · · � 23 � 22 � 2 � 1

(2.25)

That is, first all odd integers except one are listed, and then they are followed by
2 times that odd number, 22 times the odd, 23 times the odd, etc. This exhausts all
the natural numbers with the exception of the powers of two that are listed last, in a
decreasing order.

Theorem 2.11 (Sharkovsky) Let I be an interval of R and let f : I → I be a
continuous function with a periodic point of prime period k. If k�l in the Sharkovsky
ordering of Def. 2.33, then f also has a periodic point of period l.

For a proof see Devaney [5, p. 63] or [6].
We limit ourselves to showing the last part of the theorem, which is as follows.

Proposition 2.2 Let f be a continuous function with a periodic point of prime
period 2n, for some n ≥ 1. Then f also has a periodic point of period 2n−1.

Proof We consider at first the case n = 1; thus, we have to prove that if f has a
2-periodic point, then f has a fixed point.

Let a be a 2-periodic point of f , and consider b = f (a). If a = b, then a is a
fixed point of f and we have finished. If a �= b, define

g(x) = f (x) − x .

We have

g(a) = f (a) − a = b − a ,

g(b) = f (b) − b = f
(
f (a)
)− b = a − b .

As g(a) and g(b) have opposite signs, then there exists at least one value c between
a and b for which g(c) = 0, that is c is a fixed point of f .

Now we consider the case of a generic n. Let ϕ(x) = f ◦2n−1
(x), and as ϕ◦2(x) =

f ◦2n
(x), the 2n periodic point of f is a 2-periodic point of ϕ. Hence ϕ has a fixed

point, that is f has a 2n−1 periodic point.

As in the Sharkovsky ordering, the largest number is 3, and we obtain the
following result.
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Corollary 2.1 (Period Three Implies All Periods) If f has a periodic orbit
of period three, then it has periodic orbits of all periods.

As the set of the smallest numbers in the Sharkovsky ordering is the set of the
powers of 2, the following corollary holds:

Corollary 2.2 If f has a periodic point of prime period k, with k not a power
of two, then f has infinitely many periodic points. Conversely, if f has only finitely
many periodic points, then they all necessarily have periods that are powers of two.

For multidimensional maps or for discontinuous maps, Sharkovsky’s Theorem is
no longer valid, as shown by the following two examples.

Example 2.9 Consider the 2-dimensional map

⎧
⎪⎪⎨

⎪⎪⎩

xn+1 = −1

2
xn −

√
3

2
yn ,

yn+1 =
√
3

2
xn − 1

2
yn ,

which corresponds to a rotation of 120◦ about the origin.
Clearly the origin is a fixed point, whereas any other point has period 3: there are

no orbits with period different from 3.

Example 2.10 Consider the function f : [0, 1[ → [0, 1[

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

x + 1

3
if x ∈

[
0,

2

3

[
,

x − 2

3
if x ∈

[
2

3
, 1

[
.

It is easy to check that f ◦3(x) = x; hence, any point has period 3 and there are no
orbits with period different from 3.
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