
Chapter 14
Growth and Cycles as a Struggle:
Lotka–Volterra, Goodwin and Phillips

Giuseppe Orlando and Mario Sportelli

14.1 Introduction

In the early 1960s, the Phillips work generated many empirical studies of the
relationship between the inflation rate and unemployment. In that work, other
explanatory variables, not only unemployment, were used to model either wages or
price dynamics. However, many papers published in those years did not pay much
attention to the evidence suggesting that the Phillips curve was not stable over time.

The breakdown of the empirical Phillips relationship began in the late 1960s
with the theoretical works by Phelps [25] and Friedman [14]. According to these
authors, workers are rational and take into account the expected price increases. For
this reason, Friedman argued that the expectation-augmented Phillips curve would
shift in such a way that, in the long run, a higher rate of inflation would not result
in any change in unemployment. The price stability is consistent only with a rate
of unemployment named by Friedman “natural rate of unemployment.” This rate is
determined by the real factors, which affect the amount of frictional and structural
unemployment in the economy. On the Keynesian side, inflationary expectations
either adjust to past wages and prices or, according to the “new-Keynesian” models
of price stickiness, motivate forward-looking inflation expectations [6, 12, 40]. In a
series of tests, Rudd and Whelan challenged the validity of those models: e. g. the
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ability of the labor share in a neo-Keynesian version of the Phillips curve to model
inflation [31]; the specification of delayed and future inflation (“hybrid” inflation)
[29]; the explanatory power of rational sticky price expectations models [30].

The link between the growth, cycles and the Phillips curve was introduced by
Goodwin [15] who transformed the conventional labour share model (for a review,
see Foley et al. [13]) into a dynamic struggle between capitalists and workers. In
fact, while the share between labour and capital could be assumed constant in
the long run, it fluctuates in actual economics. The Goodwin model has become
a powerful framework able to accommodate extensions in many directions, from
the inclusion among the endogenous variables of technical changes [34, 39] to the
coupling of Goodwin’s model with the financial instability hypothesis (FIH) by
Minsky [16, 23, 36] and from an open economy where the long-term output growth
rate is constrained by the balance of payments [9] to the incorporation of elements
by Kalecki (investment function independent of savings and mark-up pricing in
oligopolistic goods markets) and Marx (the reserve army) [33].

14.2 The Phillips Curve

The Phillips curve is a statistical relationship between unemployment and the rate
of change of the money wage rate studied by Alban W. Phillips, a New Zealand
economist, at the London School of Economics. Published in Economica in 1958
[26], the study showed that there was a nonlinear inverse relationship between the
annual average percentage rate of unemployment and the annual rate of change of
money wage rate:

ẇ

w
= f (U) s.t. f ′ < 0, (14.1)

where ẇ/w is the rate of change of the money wage rate and U the unemployment.
The curve is similar to a hyperbola with horizontal asymptote in the fourth quadrant.

The data used by Phillips were those of UK in 1861–1957. He displayed this
relationship by fitting a curve to this data. Since the observations for 1948–1957 lay
quite close to the curve fitted for the years 1861–1913, the relationship was thought
to be stable and persistent over a long period of time. This was the reason why, in the
following years, the Phillips curve played a central role in economic policy decisions
to support employment. The use of the curve as an instrument of policy was made
possible because, as suggested by Lipsey [19], the curve could be moved from a
relationship between ẇ/w and unemployment to one between the rate of change
of the price level and unemployment. This is possible both when the markets are
assumed perfectly competitive or monopolistic. In the Keynesian framework, the
Phillips curve meant that inflation would erode real wages and, thus, boost labour
demand.

Figure 14.1 shows the relation between unemployment rate [2] and inflation [1]
in the United Kingdom for the whole period studied by Phillips while Fig. 14.2
displays the said relation for the years 1861–1913 and 1948–1947 separately.
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Fig. 14.1 Relation between unemployment rate [2] and inflation [1] in the United Kingdom, 1861-
1957.
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Fig. 14.2 Relation between unemployment rate [2] and inflation [1] in the United Kingdom,
1861–1913 (orange dots) and 1948–1947 (blue diamonds).

However, while there might be a relationship between employment and inflation
in the short run, Phelps [25] and Friedman [14] argued that such relationship is hard
to find in the long run. In particular, Friedman, by giving credit to Samuelson and
Solow [32], explained that in the long run, workers and employers negotiate wages
by taking into account inflation, so that pay rises increase at rates near anticipated
inflation. Given a natural level of employment determined by the characteristics
of the economy, an increase of inflation determines a temporary increase of
employment. Agents’ expectations play a role in restoring unemployment back to
its previous level (how quickly it depends on the context). This process could lead
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to stagflation characterized by high inflation and unemployment as experienced
in developed economies in 1970s. To prevent stagflation, Friedman suggested that
central banks should not set unemployment targets below the natural rate.

A more radical critique to the foundations of Keynesian was made by the rational
expectations school led by Robert Lucas and Thomas Sargent which challenged
the idea that monetary policy could systematically affect output even in the short
run. To those critics, new Keynesian models incorporate rational expectations and
assume some price rigidity, i.e., sticky prices. In that context, markets do not clear
instantaneously: aggregate output may be below the potential level, and an increase
in liquidly can produce a short-run increase in consumption thus boosting output
without inflationary consequences. Among others, we mention the paper by Chen
et al. [8] in which it is possible to find a baseline disequilibrium AS-AD model
empirically calibrated on quarterly time series data of the US economy 1965.1-
2001.1. Themodel exhibits a Phillips curve, a dynamic IS curve and a Taylor interest
rate rule. The outcome is “that monetary policy should allow for sufficient steady
state inflation in order to avoid stability problems in areas of the phase space where
wages are not flexible in a downward direction” [8].

14.2.1 Perfectly Competitive Markets

We assume that, in the economy as a whole, labour is the only variable productive
factor in the short run. Given the production function y = F(L) with L as input, the
profit maximization problem of the firm is

max
L

� = max
L

(pF(L) − wL), (14.2)

where � is the profit, p the market price of output y and wL the labour cost. The
first-order condition pF ′ = w requires that the value of the marginal productivity
of labour F ′ must be equal to his price w/p. As the marginal productivity is
decreasing F

′′
< 0, the second-order conditions are satisfied. By setting F ′ = lm,

the logarithmic differentiation of the first-order condition with respect to time yields

ṗ

p
= ẇ

w
− ˙lm

lm
. (14.3)

Therefore, by substitution of the Phillips curve, Eq. (14.1), we get

ṗ

p
= f (U) − ˙lm

lm
. (14.4)

This means that, in competitive markets, if wages change according to the long-
run changes of the marginal productivity of labour, then the average labour cost
of produced goods remains unchanged and there will be no price increase in the
system.
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14.2.2 Monopolistic Markets

In this case, the assumption is that firms define the price by means of markup over
the average cost of labour

p = m
wL

y
= m

w

la
, (14.5)

where m is the unit markup and la = y/L the average productivity of labour. After
the logarithmic differentiation of Eq. (14.5) with respect to time, we still get

ṗ

p
= ẇ

w
− l̇a

la
= f (U) − l̇a

la
, (14.6)

if the markup is assumed constant. Like the case of competitive markets, the
productivity of labour (either marginal or average) plays a role in the price
dynamics. Nevertheless, when the markets are not competitive, the market power
of the firms cannot be neglected.

14.2.3 Calvo Model and New Keynesian Economics

As mentioned in the introduction, new Keynesian economics relies on the reinter-
pretation of the Phillips curve in terms of forward looking expectations and is based
on sticky prices. Among the most influential contributors, we recall Fischer [12],
Taylor [40] and Calvo [6].

Because of its simplicity, we use Calvo framework that deals with natural
expectations and sticky prices of the new Keynesian economics.

We adopt following notation:

• zt is the log price at time t ,
• μ is the markup over the marginal cost mct ,
• p∗

t+k is the log of the optimal price that the firm would set in period t + k in
absence of price rigidity,

• (1 − θ)t+k is the probability for a firm to set its price p∗
t+k in period t + k,

• Et

(
zt − p∗

t+k

)
is the expected loss at time t for a firm that is not able to set the

price at p∗
t+k,

• 0 ≤ β ≤ 1 is a discount rate,
• πt = pt − pt−1 is the inflation rate.

The loss function for a firm is

L(zt ) =
∞∑

k=0

(θβ)k[Et (zt − pt+k)]2 , (14.7)
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which implies that all future losses are considered, each one weighted by the
discount rate β and the probability θ .

Equation (14.7) is minimized by differentiating with respect to the price zt :

L
′
(zt ) = 2

∞∑

k=0

(θβ)kEt

(
zt − p∗

t+k

) = 0 , (14.8)

so that

∞∑

k=0

(θβ)kzt =
∞∑

k=0

(θβ)kEt (p
∗
t+k) . (14.9)

The left-hand side of Eq. (14.9) is

∞∑

k=0

(θβ)kzt = zt

1 − θβ
, (14.10)

and thus

zt

1 − θβ
=

∞∑

k=0

(θβ)kEt (p
∗
t+k) , (14.11)

so that

zt = (1 − θβ)

∞∑

k=0

(θβ)kEt (p
∗
t+k) . (14.12)

Note that the second order condition for the minimum is

L
′′
(zt ) = 2

∞∑

k=0

(θβ)k = 2

(1 − θβ)
> 0 (14.13)

which is satisfied because θ and β ∈ (0, 1). Thus, Eq. (14.12) states that the optimal
solution for the firm, in presence of sticky prices, is a weighted average of expected
future prices.

Given that firms should set the price as a markup over marginal cost, we may
assume that

p∗
t+k = μ + mct+k , (14.14)
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so the reset price in Eq. (14.12) can be rewritten as

zt = (1 − θβ)

∞∑

k=0

(θβ)kEt (μ + mct+k). (14.15)

In general, a first-order stochastic difference equation of type

yt = aEt(yt+1) + bxt (14.16)

has the following solution:

yt = b

∞∑

k=0

akEt(xt+k) . (14.17)

Eq. 14.15 says that zt is the solution of

zt = θβEt(zt+1) + (1 − θβ)(μ + mct), (14.18)

where yt = zt , xt = μ + mct , a = θβ and b = 1 − θβ.
At the aggregate level, prices are a weighted average of previous prices and

current reset prices

pt = θpt−1 + (1 − θ)zt , (14.19)

which rearranged is

zt = 1

1 − θ
(pt − θpt−1) , (14.20)

or equivalently

zt = 1

1 − θ

(
(1 − θ)pt + θpt − θpt−1

)

= pt + θ

1 − θ
(pt − pt−1) = pt + θ

1 − θ
πt (14.21)

zt = 1

1 − θ

(
pt − pt−1 + (1 − θ)pt−1

)

= 1

1 − θ
(pt − pt−1) + pt−1 = 1

1 − θ
πt + pt−1 .
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pt + θ

1 − θ
πt = θβEt

( 1

1 − θ
πt+1 + pt

)
+ (1 − θβ) (μ + mct)

pt + θ

1 − θ
πt = θβ

1 − θ
Et(πt+1) + θβpt + (1 − θβ) (μ + mct)

θ

1 − θ
πt = θβ

1 − θ
Et(πt+1) + (1 − θβ) (μ + mct − pt) .

So that, by rearranging, we arrive at the New-Keynesian Phillips curve

πt = βEt(πt+1) + (1 − θ)(1 − βθ)

θ
(μ + mct − pt ) . (14.22)

Equation (14.22) states that current prices depend on next period expected
inflation rateEt (πt+1) and real marginal costs mct −pt . As the latter is not observed
nor recorded in national accounts, this relationship is hard to test empirically.

14.3 Lotka–Volterra Model

The Lotka–Volterra ‘predator–prey’ model describes the interaction between two
species: the predator and the prey. This model was initially proposed by Alfred J.
Lotka [20], who borrowed from Verhulst the logistic map [43]. Independently, Vito
Volterra developed the same equations to explain the dynamics of the fish catches
in the Adriatic Sea [44] (cf. for further details Kinoshita [17]).

The assumptions of the model are as follows:

(a) Preys have access to unlimited food.
(b) Preys are the unique source of food for predators which, in turn, have limitless

appetite.
(c) The rate of change of both populations is proportional to the size.
(d) Genetic adaptation and environment changes are not considered.

And the model equations read

dx

dt
= αx − βxy,

dy

dt
= δxy − γy,

(14.23)

where

• x is the number of preys,
• y is the number of predators,
• α is the natural growth rate of preys in the absence of predation,
• β is the death rate of preys due to predation,
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• δxy is the natural growth rate of predators or efficiency rate of turning preys into
predators,

• γ is the natural death rate of predators in the absence of preys.

By dividing the second equation by the first in (14.24), we get

dy

dx
= −y

x

δx − γ

βy − α
(14.24)

from which integration yields

βy − α

y
dy + δx − γ

x
dx = 0,

i.e.,

δx − γ ln x + βy − α ln y = A,

where A is constant.

14.4 The Goodwin Model

Richard M. Goodwin, was one of the first economists to develop a nonlinear
model of the business cycle and one of the first pioneers of chaotic dynamics in
economics. In his model on the growth cycle [15], Goodwin founds his assumptions
on the Harrod intuition that a capitalist economy grows until it arrives near
full employment, after which it collapses. To formalize this intuition, that is,
the coexistence of growth and cycle in the same model, Goodwin suggests an
economic adaptation of the Lotka–Volterra predator–prey system. In contrast to the
mainstream approach [7, 11, 35] in which cycles were caused by exogenous shocks,
this model had the advantage to explain endogenously output fluctuations together
with the ones of employment and wages.

In the framework, we are discussing that the economy produces a single good,
workers consume all their wage and capitalists save and invest all their profits.
Economic growth rate is positively related to both saving rate and capital share.
In fact, as workers do not save, a decrease in the profit share reduces investments
and, as a consequence, future output. Thus, during a recession, the lower labour
demand brings salaries down and restores the profit share of capitalists (who will
again start investing more).

In the Goodwin model and its extensions, when the economy expands, higher
labour demand generates wage inflation, so that real wages increase more than
labour productivity. This in turn implies that the wage share increases as production
increases. So when the economy is expanding, the rigidity of the labor market can
increase wages more than productivity, thus reducing investment and growth.
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14.4.1 Assumptions of Goodwin’s Model

The key assumptions of Goodwin, as described in his original work, are

(a) steady technical progress (disembodied),
(b) steady growth in the labour force,
(c) only two factors of production, labour and “capital” (plant and equipment), both

homogeneous and non-specific,
(d) all quantities real and net,
(e) all wages consumed, all profits saved and invested,
(f) a constant capital-output ratio,
(g) a real wage rate that rises in the neighbourhood of full employment.

Caveats in this list are in assumption (e), which could be changed into constant
proportional savings without altering the logic of the model, and in assumption (f),
which could be softened at the cost of overcomplicating the system. Assumptions (f)
and (g) are empirical and disputable.
In the following, we list the symbols that are used in Sect. 14.4.2 and are consistent
with Goodwin’s original paper:

(i) q output,
(ii) k capital,
(iii) w wage,
(iv) a = a0 eαt labour productivity, where α is the growth parameter,
(v) s = q/k = 1/σ capital productivity,
(vi) k/q = σ capital-output ratio,
(vii) u = w/a workers’ share of product,
(viii) (1 − w/a) capitalists’ share of product,
(ix) (1 − w/a)q = k̇ surplus = profit = savings = investments,
(x) k̇/k = q̇/q = (1 − w/a)/σ profit rate,
(xi) n = n0 eβt labour supply, where β is the growth parameter,
(xii) l = q/a employment,
(xiii) v = l/n employment rate.

14.4.2 Dynamics of Goodwin’s Model

The logarithmic differentiation of the employment rate and of the workers’ share of
product yields, respectively:

v̇

v
= l̇

l
− ṅ

n
= q̇

q
− α − β

u̇

u
= ẇ

w
− α,

(14.25)
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where ẇ
w

= ρv − γ is the linearized Phillips curve.
By virtue of notation (x) the system in Eq. (14.25) becomes

v̇ =
[
1 − u

σ
− (α + β)

]
v

u̇ = [−(γ + α) + ρv] u.

(14.26)

At the equilibrium, it must be v̇ = u̇ = 0, so the solutions are: v = u = 0 and
(v∗, u∗), such that

v∗ = γ + α

ρ
,

u∗ = [1 − (β + α)σ ] .

To have economic meaning, Goodwin imposes that u∗ > 0, i.e.
1

σ
> (α + β).

By means of the linear approximation method near the two equilibria, we get the
following Jacobian matrices, respectively:

J (0, 0) =
⎡

⎣
1

σ
− (α + β) 0

0 −(γ + α)

⎤

⎦ and J (v∗, u∗) =
⎡

⎣ 0 − 1

σ
v∗

ρu∗ 0

⎤

⎦ .

As J0 = J (0, 0) is a diagonal matrix, the eigenvalues are real and of opposite
sign, the origin is a saddle point. At the equilibrium point (v∗, u∗), the eigenvalues
are purely imaginary. Therefore, the fixed point is neutrally stable (or equivalently
structurally unstable), and the trajectories are closed orbits. The specific closed orbit
where the system will be located depends on the initial condition. We are bound to
remind the reader that the system (14.26) is a rare example of integrable system of
nonlinear differential equations. The procedure is as follows.

Similarly to the Lotka-Volterra model, let us rewrite the system (14.26) as

dv

dt
= [s − (α + β) − u s] v ,

du

dt
= [−(γ + α) + ρv] u ,

(14.27)

and divide the second equation by the first, so that

du

dv
= ρv − γ − α

s − (α + β) − u s

u

v

or equivalently

[s − (α + β) − u s] v du + [(γ + α) − ρv] u dv = 0.
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As the variables are separable, through the division by uv, we get

[
s − (α + β)

u
− s

]
du +

[
(γ + α)

v
− ρ

]
dv = 0

and integrating

∫ [
s − (α + β)

u
− s

]
du +

∫ [
(γ + α)

v
− ρ

]
dv = 0

i.e. [s − (α + β)] logu − s u + (γ + α) log v − ρ v = A.

It follows that

us−(α+β) e−s u vγ+α e−ρv = eA. (14.28)

By setting

U = us−(α+β) e−s u, V = v−(γ+α) eρ v and B = eA, (14.29)

(14.28) can be rewritten as

U(u) = BV (v). (14.30)

This equality allows us to obtain the integral curves in the plane (v, u). In fact, to
each value of the arbitrary constant B, there is a corresponding integral curve. To
draw the integral curves, we have to investigate the shape of the curves U and V .

Hence, the curve

• U has a maximum in u∗ because

dU

du

∣
∣
∣
∣
u=u∗

= u∗,s−(α+β) e−su∗
[
s − (α + β)

u∗ − s

]
= 0

and

d2U

du2

∣
∣∣
∣
u=u∗

= −U

[
s − (α + β)

u∗,2

]
< 0.

• V has a minimum in v∗ because

dV

dv
= v−(γ+α) eρ v

[−(α + γ )

v
+ ρ

]
= 0
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Fig. 14.3 Graphical proof
that system (14.27) displays
infinite closed orbits

U

U=BV

P0

u

v

V(v)

V(v*)

V

U(u)

U(u*)
v1

u1

u*

v*
v2

u2

and

d2V

dv2

∣
∣
∣
∣
v=v∗

= V

[
α + γ

v∗,2

]
> 0.

Now, we are in position to display the integral curves in Fig. 14.3. In the second
and fourth quadrants, we qualitatively report the curves U(u) (blue) and V (v) (red)
as well as their optima u∗ and v∗.

Let us now consider a point P0 satisfying (14.30). This corresponds to choosing
a point on the straight line U = BV in the third quadrant. P0 can be projected in the
second quadrant through the inverse of U(u) so that points u1 and u2 correspond
to U−1(P0). Similarly, the inverse mapping V −1(P0) identifies points v1 and v2 in
the fourth quadrant. The projections of the four points in the first quadrant (i.e.,
the (u, v) plane) identify the coordinates (u1, v1), (u1, v2), (u2, v1) and (u2, v2)

that satisfy (14.30). Thus, by iterating the process, we can state that the system
has a periodic closed orbit corresponding, graphically, to the curve drawn in the
(u, v) plane (first quadrant). Note that, as the choice of the parameter B is arbitrary,
the system has infinitely many periodic closed orbits, around the equilibrium point
(u∗, v∗).
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14.5 Kolmogorov Prey–Predator Model

Although the Goodwin model is able to describe persistent oscillations of an
economic system, it cannot display structural stability.1 Many attempts to add this
feature were made in the 1970s and the 1980s (e.g., Desai [10] and van der Ploeg
[27, 28]). However, despite the use of additional hypotheses, the Goodwin non-
trivial equilibrium point remained a centre; if not, it became a stable node or a
focus. This type of result is a direct consequence of the structural instability: any
small perturbation (as an effect of additional hypotheses) leads to the loss of the
cycle. Kolmogorov [18] was the first to raise the problem of structural instability,
suggesting a more general version of the predator–prey system as follows:

Ṅ1

N1
= K1(N1, N2)

Ṅ2

N2
= K2(N1, N2),

(14.31)

where K1(0, 0) = 0,K2(0, 0) = 0, K1 and K2 are continuous functions with
continuous first derivatives for all N1 (the preys) and N2 (the predators). By
imposing some appropriate conditions on K1 and K2 the integral curves of system
14.31 are the coordinates displayed in Fig. 14.4.

The isoclines K1 = 0 and K2 = 0 divide the first quadrant into four parts (see
Fig. 14.4) and the singular points are the origin (0, 0), Z = (N∗

1 , N∗
2 ) obtained by

the intersection of the isoclines K1 = K2 = 0 and B corresponding to N2 = 0
and K1 = 0. Kolmogorov provided the functions K1 and K2 with well-founded
assumptions in biological theory, and showed that system (14.31) may generate
limit cycles when the equilibrium point (N∗

1 , N∗
2 ) is unstable. As Kolmogorov [18]

affirmed, “no integral curve starting in the domain N1 > 0, N2 > 0 can move
asymptotically toward the coordinate axes. In other words, if initially both N1 > 0
and N2 > 0, neither species can completely disappear”. In the classical model,
either there is a globally stable equilibrium or there is a globally stable cycle. Other
modifications, such as intraspecific competition among prey and predators (e.g.,
see [24]), confirm the results obtained by Kolmogorov and show that the transition
from the globally stable equilibrium to the stable cycle is obtained through non-
catastrophic Hopf bifurcations. Contrarily, Tyutyunov et al. [41], by adopting the
Patlak–Keller–Segel taxis model for the predator and “assuming that movement
velocities of predators are proportional to the gradients of specific cues emitted by
prey,” showed that the stationary regime of the model becomes unstable with respect
to small perturbations.

1For a detailed treatment of the subject, see Veneziani et al. [42].
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Fig. 14.4 First quadrant describing the dynamics of prey-predators: in part I (above K1 = 0 and
to the right of K2 = 0) preys decrease and predators increase, in part II (above K1 = 0 and to
the left of K2 = 0) both preys and predators decrease, in part III (below K1 = 0 and to the left
of K2 = 0) preys increase and predators decrease, in part IV (below K1 = 0 and to the right of
K2 = 0) both preys and predators increase. Source[18].

In summary, from a practical standpoint, Kolmogorov’s approach has the merit
of emphasizing the analytical properties that a predator–prey system must satisfy,
in order to ensure structural stability. Since then, this approach has become a
basic landmark for specific predator–prey models in biology and economics. In
such models, the existence of stable limit cycles is proved either by the Poincare–
Bendixon theorem or by the Hopf bifurcation theorem.

Among others, see the models by May [21] and Tanner [38] in mathematical
biology and Medio [22] and Sportelli [37] for applications to economics. Last but
not least, according to the Goodwin model, the wage share should lag behind the
employment rate. Moreover, this is not always true in reality, see Fig. 14.5, where
wage share ratio (blue line) [3, 5] is not close at all to employment (red line) [4].
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Fig. 14.5 Blue: compensation of employees: wages and salary accruals/USA GDP *100), quar-
terly, seasonally adjusted annual rate. Red: employment-population ratio (percentage), monthly,
seasonally adjusted
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