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Preface

Dear Reader,

Rather unanticipated, this book became a demonstration of how fruitful scientific
meetings can be if held among open-minded participants. During a recent Non-
linear Dynamics of Electronic Systems (NDES) conference, an inquisitive-minded
economist from Bari (Giuseppe Orlando, G.O.) sparked the idea that economics
should be treated along the guidelines that we use for the analysis of systems
composed of strongly nonlinear subsystems, such as magnets, neurons, and more.
Pretty much all of the people agreed that it was a pity that a book leading students of
economics or similarly interested readers into such a direction seemed to be missing.
Usually, things end after having arrived at such an agreement, in particular if you are
not an economist. However, never-tired, incredibly patient, and gentle insistence by
G.O. pushed a bunch of us into preparing for such a journey with him. This book is
the result of the journey, where we have been strongly supported by former teachers
and academic friends of G.O. Together, we hope that the collected volume will prove
helpful in leading a young generation of scholars to new pathways of understanding
economics. Specifically, the text aims at providing a bridge between nonlinear
dynamics (with chaotic behaviour lurking in the background) towards opening new
horizons of insight into economics, by the tools and concepts provided. Therefore,
the book starts with a mathematical introduction into nonlinear dynamics, followed
by a layout of signal analysis tools and their application to some well-known
abstract models of economics generating chaotic response, before we present new
insights into how we see economic dynamics. Finally, we present economics models
that emerge in this perspective and demonstrate that real-world data supports their
validity and usefulness. Since students are the strongest motivation and a main
privilege of our profession, I take this opportunity to dedicate my part in this book
to my late student and friend Clemens Wagner. Had not his heart suddenly stopped
beating before we started writing this book, my contribution would have been
with him. I would also like to strongly thank Celso Grebogi for his never-fading
generous and unselfish support for everything that advances Nonlinear Science.
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viii Preface

Without him, many exciting developments and events (not least the mentioned
NDES conferences) would not have been achieved.

We hope that you will find the text inspiring and useful. Let even the parts that
you might like less sharpen your view and become beneficial to you in this way as
well.

Bari, Italy Giuseppe Orlando
Pozuelo de Alarcón, Madrid, Spain Alexander N. Pisarchik
Zürich, Switzerland Ruedi Stoop
May 2021
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Chapter 1
Introduction

Giuseppe Orlando, Alexander N. Pisarchik, and Ruedi Stoop

Philosophy is written in this grand book, the universe, which
stands continually open to our gaze. But the book cannot be
understood unless one first learns to comprehend the language
and read the letters in which it is composed. It is written in the
language of mathematics, and its characters are triangles,
circles, and other geometric figures without which it is humanly
impossible to understand a single word of it; without these, one
wanders about in a dark labyrinth.
Galileo Galilei
The Assayer

1.1 Nonlinearity and Unpredictability in Economics

Until the twentieth century, many mathematical economists, such as Francis
Edgeworth, William Jevons, Alfred Marshall, Leon Walras, and Vilfredo Pareto,
developed economic models based on principles of Newtonian mechanics by focus-
ing exclusively on static states or equilibrium points. Later, their ideas culminated
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2 G. Orlando et al.

in a general equilibrium theory (see, for example, Debreu [6], Arrow and Hann [1],
etc.). Only at the beginning of the twentieth century, to describe market dynamics
in economic models of business cycles, economists did start using difference and
differential equations. Ragnar Frisch [10], for example, suggested to study the
evolution of economics in time from a dynamical systems viewpoint. The future
state of such a system depends only on its past and present. Such a slush in economic
theory is largely due to outstanding discoveries of mathematicians in the field of
nonlinear dynamics made at the end of the nineteenth century. The most prominent
achievements were the development of stability theory by Aleksandr Lyapunov and
the solution of three-body problem by Henri Poincaré [32].

Three centuries later, Birkhoff showed that Poincaré’s geometric intuition can
be cast within a mathematically precise description. This could have been the early
official birthday of chaos theory, if aspects of irregular, unpredictable dynamics were
recognised as relevant for real-world experimental systems as well. If appropriately
perceived, Van der Pol, who presented almost simultaneously with Birkhoff his
electronic heart pacemaker circuit (showing, in addition to period “heartbeats” also
chaotic behaviour), would have provided this experimental connection.

Originally, the term “chaos” was generally used for dynamical processes that
lacked aspects of order that would render their dynamics easily seizable in the
sense of predictability. As a consequence, the main understanding was, for a long
time, that we would never be able to arrive at a thorough understanding of such
phenomena. A chaotic system has specific properties that differ from a stochastic or
noisy system. First of all, a chaotic motion is deterministic (in the sense that every
event is physically determined by an unbroken chain of earlier events) and crucially
depends on initial conditions.

The reason why this more precise notion of chaos took so long to penetrate
into the standard science was twofold. First, apart from the mentioned more global
approaches, the preferred mathematical analysis methods were linearisation around
fixed points of the motion, from which the asymptotic dynamics were extracted.
This local approach, however, is sufficient only for linear systems. Nonlinearity
provides fixed-objects that are not present in linear systems, such as limit cycles,
that are not captured by linearization methods.

Edward Norton Lorenz was among the first to discover in the 1960s a so-called
strange attractor in a three-dimensional continuous-time dynamical system, when
carrying out numerical experiments on convection flows [15]. Indeed, the advent of
direct numerical simulations of differential equations on computers made it finally
possible to access and to explore the chaos phenomenology, to anyone for whom
computational power was available. Initially, Lorenz was able to publish his work
in marginal journals only. Until well into the late 1970s, several physics scholars
in the western world, in particular, Mitchell Feigenbaum [2, 7] established the
breakthrough of the new view on dynamics. He drew the attention of the scientific
society to the ubiquitousness of this phenomenon, and offered new pathways of
how to characterise and to predict such phenomena. It would, however, be unfair to
withhold the great contributions to this area by scientists of the former Soviet Union,
such as Andrey Kolmogorov, Vladimir Arnold, Aleksandr Andronov, Oleksandr
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Sharkovsky, and others. In fact, Feigenbaum’s findings aroused interest and finally
got accepted only after a presentation of Feigenbaum given to Soviet scientists.
Through the research conducted by many scholars not following the scientific
mainstream, and their collaborative efforts, it was finally shown that, seen on a
higher level, chaotic dynamics is not only ordered [9] and therefore intelligible but
also that it is deterministic and controllable [30, 33, 34].

It took some time to work out the fundamentals of chaotic dynamics and
then, the analysis proceeded towards the description and the exploitation of chaos
for applications. A field that seems particularly attractive and suitable for this is
economics that, from its statistical description, can be expected to be organised
along the fundamental principles of symmetry breaking and self-organisation as
well, and manifests a behaviour that could, with an appropriate permitting analysis,
be associated with chaotic processes. Economic dynamics is obviously nonlinear. In
particular, it is characterised by cyclical fluctuations called “business cycles”. Burns
and Mitchell [4] define business cycles as a type of fluctuation which “consists of
expansions occurring at about the same time in many economic activities, followed
by similarly general recessions, contractions, and revivals which merge into the
expansion phase of the next cycle” (where a recession is a negative variation of
the economy for two consecutive quarters cf. Fig. 1.1).

Fig. 1.1 Changes in US real disposable personal income (i.e., the personal income net of income
taxes) (blue—DSPIC96) and Real personal consumption expenditures (red—PCECC96) 1959
(Q1)—2014 (Q2). Source: Federal Reserve Economic Data (FRED), St. Louis Fed. Greyed vertical
areas correspond to periods of economic recessions (i.e., economic contraction) as reckoned by
FRED (Table A.1)



4 G. Orlando et al.

The emergence of these very robust cycles is one strong motivation for our pro-
posed change of paradigm. In contrast to the stochastic models focusing exclusively
on external and random shocks (like the so-called real business cycle (RBC)), we
propose to—alternatively or synergetically—consider structural system character-
istics that are endogenous (in contrast to the exogenous influences considered in
the traditional approaches). In that regard, by comparing an Ornstein–Uhlenbeck
stochastic process [22, 23] with a Kaldor–Kalecki [17, 18] deterministic chaotic
model, Orlando et al. [28] exhibited that nonlinearity in the latter model permits to
represent reality at least as well as the stochastic model. Furthermore, the Kaldor–
Kalecki model was able to reproduce an extreme event (black swan [28, 35]). A
further confirmation can be found in Orlando et al. [29], where it was shown that real
and simulated business cycle dynamics have similar characteristics, thus validating
the chaotic model as a suitable tool to simulate reality. Notwithstanding economic
dynamics is not purely deterministic, a strong stochastic component always exists
and should be included in economic models. Therefore, statistical analysis of
economic data is important to reveal the presence of determinism in the behaviour
and to forecast future evolution. However, the effect of random fluctuations is
unpredictable although probabilistic analysis in financial modelling can provide
us with some information about possible scenarios. For example, increasing noise
could indicate an impending financial crisis, because the dynamical systems are
known [8, 14] to amplify random fluctuations when approaching a critical point.
Another promising application of nonlinear analysis methods to economy would
be the possibility to predict sudden jumps or drops in stock prices that occur
for no apparent reason. By considering these jumps as extreme events, the same
approach as for forecasting sudden weather changes [3], giant laser pulses [31], or
forthcoming epileptic seizures [11] could be used. Such a research (not included in
this book) is still under development.

1.2 Scheme of This Book

The whole endeavour taken by this work embraces (i) finding suitable models of
business cycles, (ii) searching for indicators for structural changes in economic
signals, and (iii) comparing time series generated by the studied models versus
real-world time series [27–29]. Our book consists of four parts. Focusing on
a particularly attractive class of economic nonlinear models related to growth
and business cycles, we explore chaotic behaviour of these models by means
of numerical analysis, recurrence quantification, and statistical techniques, and
demonstrate that the results are consistent with those obtained by applying the
same techniques to time series of real-world macroeconomic data. This implies
that with the help of these methods we are able to (i) identify common features
between data and model whenever they exist, (ii) to discover features that guide
economic dynamics, and (iii) to extract indicators of structural changes in the
signal (e.g., precursors of crashes and more general catastrophes). We emphasise the



1 Introduction 5

importance of nonlinear analysis and outline methodological prospects of dynamical
approaches which can help to solve fundamental economic problems such as “Is
the economy growing?”, “How efficiently are the resources being utilised?”, “Is
economy stochastic or deterministic?”, and “Is it possible to predict changes in
economy?” These problems cannot be solved by traditional methods of stochastic
and linear analyses.

Part I is formal-methodological, providing the mathematical background for the
remainder. In the aforementioned part we introduce the reader to the complex
system theory and provide the theoretical basis for the rest of the book. This part
is divided into Chaps. 2–7. Chapter 2 starts with basic definitions widely accepted
in Nonlinear Dynamics, such as types of dynamical systems and attractors, and we
derive Schwarz and Sarkovsky theorems that are fundamental theorems in chaos
theory.

Then, using the generic example of the Logistic map, in Chap. 3 we demonstrate
how the route to chaos proceeds if nonlinearity is increased via a cascade of period-
doubling bifurcations when a control parameter is increased. Finally, we describe
the main properties of chaos, using measures like information on the corresponding
attractors. In Chap. 4 we provide the definition of homoclinic and heteroclinic orbits
and we provide a summary on local bifurcations for both the continuous case and the
discrete-time case. In Chap. 5, we pay a special tribute to the Hopf bifurcation from
the applicative point of view. In fact, the Hopf theorem was one of the most powerful
tools to prove the existence of closed orbits for systems of ordinary differential
equations. Using two popular dynamical system models, i.e., the Lorenz and Rössler
ones, we describe different types of bifurcations and chaotic attractors. Then, we
discuss Shilnikov’s chaos through homoclinic orbits and emphasise the importance
of the concept of delay-differential equations in economics. Special attention is
given to delay-differential equations due to the fact that changes in economy are
not immediate. Finally, brief comments on some applications of economic models
are added at the end of each section. Chapter 6 first explains the concept of an
embedding dimension. Then we discuss the deeper meaning of the term “chaos”
and highlight its relation to the sensitive dependence on initial condition, stretching
and folding of the phase-space. Statistical measurement characterising these features
such as the Lyapunov exponents and measures of attractors are introduced. Finally,
the last Chap. 7 is dedicated to the embedding dimension and the mutual information
which are relevant for dealing with measured time series and experimental data.

Part II is divided into Chaps. 8–10. Chapter 8 presents a specific view of signal
processing. After providing some basic definitions of signal processing, we explain
the topic in more detail by a selection of relevant algorithms and approaches.
In a nutshell, the idea is that signal processing is a process of computation, that
computation describes the process of information destruction, and that the efficacy
of this process can be measured. Chapter 9 explains what a signal in economy looks
like and what physical properties it has, such as frequency, spectral energy, phase,
power, etc. Furthermore, some examples are provided on how to analyse a signal.
Chapter 10 is devoted to the so-called recurrence quantification analysis (RQA). We
describe mathematical basis and requirements for the recurrent plot analysis. We
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explain how this method can be applied to detect spatio-temporal recurrent patterns
underlying different dynamical regimes in economic time series. Such analysis
allows us to reveal the nature of business cycles and corresponding macroeconomic
variables, i.e., whether their character is deterministic or stochastic. Furthermore we
show how RQA provides an indicator of structural changes in chaotic time series
[25, 26].

As a book on economic dynamics, Part III focuses more on economics itself,
providing more specifically economics-related background and literature. While
in economics the phenomenon of chaos may be expected to contribute many
fascinating aspects, to go beyond purely intellectual constructions with limited
real-world explanatory strength, we provide the reader the background information
regarding theories on growth and business cycles. In particular, Chap. 11 focuses on
the ties between real-world economics and nonlinear dynamics. Chapter 12 provides
a sketch of the Keynesian multiplier and of the multiplier-accelerator model by
Hansen and Samuelson, and of the Kaldor model. Chapter 13 explains Domar’s
and the Harrod’s model separately. In contrast to standard economic literature that
glues those models together, in our view Harrod instability (tested in Chap. 18)
has nothing to do with the mathematical notion of the instability characterising the
Domar model. Chapter 14 is about the interpretation of cycles as a struggle between
capitalists and workers. This is introduced by the Phillips curve (which statistically
relates unemployment with the rate of change of nominal wages), followed by the
Lotka–Volterra model which is the basic framework of the Goodwin model. The
latter reinterprets, in economic terms, the dynamics of prey-predator of biological
systems. Chapter 15 explains how control over a system that becomes unstable
or highly noisy can be achieved. The objective is to calm down and optimise the
system’s behaviour. We show that such measures lead to stable cycles in any generic
nonlinear system and that hard-limiter control follows a nongeneric dynamical
system behaviour with a bifurcation cascade to chaos that is fundamentally distinct
from the Feigenbaum case.

Part IV consists of Chaps. 16–20 that are devoted to new perspectives in under-
standing economics. A reality check on the theories discussed in earlier parts by the
means described in Parts I–III is provided. Chapter 16 introduces the experimental
Part of the book, following Goodwin’s opinion that nonlinearities are the origin of
oscillations in economics [12]. We use this approach to study cycles with Kaldor’s
framework, as is detailed in Chap. 12. The model presented is an alternative to the
usual models available in literature [17, 18]. Additional features, such as a full set
of parameters and the ability to embed randomness, open the way to a mixture of
stochastic and deterministic chaos. Chapter 17 describes an indicator that exhibits
structural changes in a signal/time series related to chaos [25]. To achieve that, RQA
and statistical techniques are applied, to both real time series and model-generated
time series [26]. Our aim is to (i) find common properties if and where they do exist,
(ii) discover some hidden features of economic dynamics and (iii) highlight some
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indicators of structural changes in the signal (i.e., in our case to look for precursors
of a crash). In Chap. 18 we focus on the Harrod’s model detailed in Chap. 13.
We present a specification of Harrod’s model where chaos is a consequence of
the gaps between actual, warranted and natural rates of growth. For this model,
we prove that real-world economic dynamics can be replicated by a suitable
calibration of the parameters of the model. Moreover, we prove that opening the
economy to foreign trade can lead to reducing cyclical instability, thus confirming
Harrod’s conjecture [19]. Chapter 19 presents an extension of the Goodwin growth-
cycle model that considers the rate of capacity utilisation as a new variable in an
adapted Lotka–Volterra system of differential equations, where capacity utilisation
is proportional to the difference between the output expansion function and capital
accumulation. With this approach, connections between demand, labour market, and
capital accumulation are established in a model that generates a cyclical pattern
amongst the employment rate, the profit share, and capacity utilisation. The model
is then tested against the US economy, using quarterly data from 1970 to 2019
and the Vector Auto-Regression (VAR). The latter is a stochastic process model
widely used in econometrics to capture the linear interdependencies between time
series. The conclusion is that positive profit share innovation affects positively both
the employment rate and the rate of capacity utilisation, suggesting a profit-led
pattern supporting the theoretical model presented (especially to the profit-squeeze
mechanism).

Lastly, Chap. 20 summarises advances in nonlinear model predictive control
(NMPC) through multi-regime cointegrated VAR (MRCIVAR). The study exhibits
the impact of financial stress shocks and monetary policy at macroeconomic level
in different countries. The chapter illustrates the vector error correction model
(VECM), that is commonly used to model macroeconomic time series, because
VECM is able to connect the economic theory around equilibrium and the dynamic
process towards the equilibrium into a set of empirically testable relations. The said
feature has been exploited to study business cycles during different phases by many
(e.g., see Mittnik and Semmler [16], Chen et al. [5] and Hamilton [13]). MRCIVAR
is used to examine the impact of real activities on the financial stress. The outcome
is that financial shocks have asymmetric effects on the short term interest rate,
depending on the regime the economy is in. More precisely, in the rate-cut regime
a financial stress shock will decrease the short term rate while, in the non-rate-cut
regime, the shock will increase the short term rate (even though in some cases the
effects are not statistically significant).

We hope that, with this book we provide some food for thought to a wide
audience and stimulate curiosity in approaching economics unconventionally by
hybridisation with physics, engineering, and economics. We have left out our
research on financial mathematics [20, 21, 23, 24] intentionally, as this matter runs
parallel to the presented material as long as market stability, solvency, and resilience
of financial institutions are concerned.
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Mathematical Background



Chapter 2
Dynamical Systems

Giuseppe Orlando and Giovanni Taglialatela

2.1 Dynamical Systems and Their Classification

The concept of dynamical system that we will use here is taken from R.E. Kalman
[1] who introduced it in the 1960s while studying the problem of linear filtering and
prediction.

Roughly speaking, a system consists of a set of the so-called states (generally
vectors of real numbers), where the adjective dynamics emphasizes the fact that
these states vary in time according to a suitable dynamical law. This concept
of dynamical system is cast in the following definition.

Definition 2.1 (Dynamical System) A dynamical system is an entity defined by
the following axioms:

1. There exist an ordered set T of times, a set X of states and a function φ from T ×
T ×X to X. φ is called a state transition function.

2. For all t, τ ∈ T and for all x ∈ X one has that φ(t, τ, x) represents the state at
time t of a system whose initial state at time τ is x.

3. The function φ satisfies the following properties:

Consistency: φ(τ, τ, x) = x for all τ ∈ T , and for all x ∈ X.
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Composition: φ(t3, t1, x) = φ
(
t3, t2, φ(t2, t1, x)

)
, for all x ∈ X and for all

t1, t2, t3 ∈ T with t1 < t2 < t3.

In the following we always consider X = R
n.

Definition 2.2 (Reversibility) If the state transition function φ defined for any
(t, τ ) in T × T , once assigned the initial time τ and the initial state x, the state
of the system is uniquely determined for the future (i.e. for all t > τ ), as well as for
the past (i.e. for t < τ ), the system is said to be reversible.

If the state transition function φ is defined only for t ≥ τ , then the system is said
to be irreversible.

Definition 2.3 (Event, Orbit and Flow) For all t ∈ T , x ∈ X, the pair (t, x) is
called an event. Moreover, for τ and x fixed, the function t ∈ T �→ φ(t, τ, x) ∈ X
is called a movement of the system. The set of all movements is called a flow. The
image of the movement, i.e. the set

{
φ(t, τ, x)

∣
∣ t ∈ T

}
,

is called an orbit (or a trajectory) of the system, i.e. the orbit passing through the
state x at time τ .

It is not always possible to find a closed formula for the orbits of dynamical
systems, but it is possible to study the behaviour of the orbits for long time
nonetheless.

Definition 2.4 (Fixed or Equilibrium Point) A state x∗ ∈ X is called a fixed point
(or an equilibrium point) of the dynamics, if there exist t1, t2 ∈ T , with t2 > t1, such
that

φ(t, t1, x
∗) = x∗ , for all t ∈ T ∩ [t1, t2] .

x∗ is said to be a fixed point in an infinite time if there exists t1 > T such that

φ(t, t1, x
∗) = x∗ for all t ∈ T ∩ [t1,+∞[ .

Definition 2.5 (Eventually Fixed Orbit) An orbit is said to be eventually fixed if
it contains a fixed point.

Definition 2.6 (Eventually Fixed Point) A point is called eventually fixed if its
orbit is eventually fixed.

Definition 2.7 (Stability) The fixed point x∗ is stable if for every ε > 0 there
exist δ > 0 and t0 ∈ T such that for all x ∈ X with |x − x∗| ≤ δ,

∣
∣φ(t, τ, x)− x∗∣∣ ≤ ε holds for any t > t0.
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The fixed point x∗ is asymptotically stable if it is stable and there exists a δ > 0
such that for all x ∈ X with |x − x∗| ≤ δ it holds that

lim
t→∞
∣∣φ(t, τ, x)− x∗∣∣ = 0 holds.

The fixed point x∗ is globally asymptotically stable if it is stable and

lim
t→∞
∣
∣φ(t, τ, x)− x∗∣∣ = 0 , for any τ ∈ T and x ∈ X .

Definition 2.8 (Autonomous System) The system is called autonomous if

φ(t, τ, x) = φ̃(t − τ, x) (2.1)

for some suitable function φ̃.

That is, an autonomous system does not explicitly depend on the independent
variable. If the variable is time (t), the system is called time-invariant. For example,
the classical harmonic oscillator yields to an autonomous system. A nonautonomous
system of n ordinary first order differential equations can be changed into an
autonomous system, by enlarging its dimension using a trivial component, often
of the form xn+1 = t .
Definition 2.9 (Discrete and Continuous System) The system is called
discrete, if the time set T is a subset of the set of the integers Z =
{. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.

The system is called continuous if T is an interval of real numbers.

In Sect. 2.2.1 we consider continuous-time dynamical systems, and in Sect. 2.5
we consider discrete-time dynamical systems.

2.2 Continuous-Time Dynamical

2.2.1 Continuous-Time Dynamical Systems from Ordinary
Differential Equations

Let I = [a, b] ⊂ R and let f : I × R → R.
We recall the following version of the Cauchy–Lipschitz Theorem (see Bonsante

and Da Prato[3]).

Theorem 2.1 (Cauchy–Lipschitz) Assume that there exists L > 0 such that

∣∣f (t, x1)− f (t, x2)
∣∣ ≤ L|x1 − x2| , (2.2)
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for any t ∈ I and x1, x2 ∈ R. Then for any τ ∈ I , ξ ∈ R the Cauchy problem

{
ẋ(t) = f (t, x(t)) , t ∈ I ,
x(τ ) = ξ (2.3)

has a unique solution in [a, b].
From Theorem 2.1 it follows that the ordinary differential equation

ẋ = f (t, x) (2.4)

defines a continuous reversible dynamic system. In fact the time set is T = I , the
state set is X = R and the state transition function φ is the function from I × I ×R

to R such that for all t, τ ∈ I , ξ ∈ R one has that

φ(t, τ, ξ) = x(t) ,

where x(t) is the unique solution of the Cauchy problem (2.3). In this case the
movements are the solutions to Eq. (2.4) and, for any solution x, the corresponding
orbit is on the interval

{
x(t)
∣
∣ t ∈ I}.

The system is autonomous if, and only if, the function f does not depend
explicitly on t , that is we have

ẋ(t) = f (x(t))

(i.e. in the case of a differential equation of the form ẋ = f (x), with f : R → R

derivable function with continuous and bounded derivative), since in this case one
has

φ(t, τ, x) = φ(t − τ, 0, x) for all t, τ, x ∈ R. (2.5)

An equilibrium point is a solution of the differential equation ẋ = f (x), which
is constant on the interval J = [t1, t2] ⊂ I . Hence, the equilibrium points of the
system are the solutions x∗ ∈ R of the equation f (x) = 0.

2.2.2 Continuous-Time Dynamical Systems from Systems of
Ordinary Differential Equations

The discussion contained in the previous Sect. 2.2.1 for a single equation can be
extended to systems of ordinary differential equations.

In fact, if x = (x1, x2, . . . , xn) ∈ R
n, let f = f (t, x) be a vector function

from I × R
n to R

n, and let f1, f2, . . . , fn be the components of f .
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Assume that f1, f2, . . . , fn are continuous functions in I × R
n, that the partial

derivatives of f1, f2, . . . , fn with respect to all variables x1, x2, . . . , xn exist and are
continuous in I × R

n, and that these partial derivatives are bounded in [a, b] × R
n

for all [a, b] ⊂ I .
Then, for all t0 ∈ I and x0 ∈ R

n the Cauchy problem

{
ẋ(t) = f

(
t, x(t)

)
, t ∈ I ,

x(t0) = x0
(2.6)

has one and only one solution on the interval I .
Therefore, the system of ordinary differential equations

ẋ(t) = f
(
t, x(t)

)

defines a reversible continuous dynamical system.
The time set is T = I , the state set is X = R

n and the state transition function
is the mapping φ from I × I × R

n to R
n such that for all t, τ ∈ I , x ∈ R

n one has
that φ(t, τ, x) is the value in t of the unique solution of the Cauchy problem (2.6).

In this case, the movements are solutions of the system (2.6) and, for any solution
x(t) of such a system of differential equations, the corresponding orbit is a curve in
R
n of the parametric equation x = x(t), t ∈ I .
As before, the system is autonomous if f is independent of t , i.e. in the case of a

system of differential equations of the form ẋ = f (x). In this case, an equilibrium
point is a solution of the system of differential equations ẋ = f (x) that is constant
on an interval J ⊂ I . Thus, the equilibrium points of the system are the solutions
x∗ ∈ R

n of the system of equations f (x∗) = 0.

Remark 2.1 A nonautonomous system of n ordinary first order differential equa-
tions can be changed into an autonomous system, by enlarging its dimension using
a trivial component, often of the form xn+1 = t .
Remark 2.2 The notion of dynamical system, as outlined in Definition 2.1,
describes the case in which the evolution of the system depends only on internal
causes.

However, there are situations where the evolution of the system can be modified
through the action of external forces, i.e. by means of a time-dependent input vector
function u. In this case Definition 2.1 can be generalized in the sense that a dynamic
system is characterized by a time set T , a state set X, an input set U with a set Ω
of admissible input functions from T toU and a state transition function φ from T ×
T ×X ×Ω to X such that for all t, τ ∈ T , x ∈ X,u ∈ Ω , φ(t, τ, x,u) represents
the state of the system at time t , if the state is x at time τ with an input function u

acting on the system.
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Obviously, the state of the system at time t will only depend on the initial time τ ,
the initial state x and the restriction of the input function u to the interval of extremes
t and τ . Hence, we have to assume that the state transition function φ satisfies the
following properties.

Consistency: φ(τ, τ, x,u) = x(t) ∀ (τ, x,u(·)) ∈ T ×X ×Ω .
Composition: φ(t3, t1, x,u) = φ (t3, t2, φ (t2, t1, x,u) ,u) for each (x,u) ∈ X×
Ω , and for each t1 < t2 < t3.

Causality: If u, v ∈ Ω and u|[τ,t ] = v|[τ,t ], then φ(t, τ, x,u) = φ(t, τ, x, v).
This framework can be used for theoretical approaches in continuous-time

systems.

2.3 Stability of Continuous-Time Systems

We recall some known facts about the exponential of square matrix.

Definition 2.10 (Exponential of Square Matrix) Given a square matrix A,
the exponential of A is defined by

exp(A) =
+∞∑

j=0

1

j !A
j = I + A+ 1

2
A2 + 1

6
A3 + · · · + 1

j !A
j + · · · .

The basic properties of the exponential are listed below:

• If 0 is the null matrix, then exp(0) = I .
• If A and B commute, that is AB = BA, then exp(A) exp(B) = exp(A+ B).

In particular exp(αA) exp(βA) = exp
(
(α + β)A), for any α, β ∈ R.

• For any square matrix A, exp(A) is invertible; moreover

[
exp(A)

]−1 = exp(−A) .

• exp(AT ) = exp(A)T .
• det
(
exp(A)

) = etr(A), where tr(A) denotes the trace of A.
• If B = PAP−1, where P is an invertible matrix, then

exp(B) = P exp(A) P−1 .

• If A is diagonal

A =

⎛

⎜⎜
⎜
⎝

λ1 0 . . . 0
0 λ2 0
...

. . .
...

0 . . . 0 λn

⎞

⎟⎟
⎟
⎠
,
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then

exp(A) =

⎛

⎜
⎜⎜
⎝

eλ1 0 . . . 0
0 eλ2 0
...

. . .
...

0 . . . 0 eλn

⎞

⎟
⎟⎟
⎠
.

When we deal with a linear system of differential equations expressed in matrix
form as

ẋ = Ax ,

A being a fixed matrix, the solution for the initial point x0 at t = 0 is given by

x(t) = exp(tA) x0 .

Indeed, as

x(t) =
+∞∑

j=0

tj

j !A
j x0

we have

ẋ(t) =
+∞∑

j=1

tj−1

(j − 1)!A
j x0 =

+∞∑

j=0

tj

j !A
j+1 x0

= A
+∞∑

j=0

tj

j !A
j x0 = A x(t) .

We can obtain the behaviour of the solution x(t) by studying the eigenvalues
of the matrix A. Indeed, assume for example that A is diagonalizable and all the
eigenvalues λj , j = 1, . . . , n, have negative real part. We then have

x(t) = exp(tA) x0 = P

⎛

⎜
⎜
⎜
⎝

eλ1 t 0 . . . 0
0 eλ2 t 0
...

. . .
...

0 . . . 0 eλn t

⎞

⎟
⎟
⎟
⎠
P−1x0 ,

for some invertible matrix P . As eλn t → 0 for t → +∞, we see that the solution
x(t) = 0 is stable.

The Hartman–Grobman Theorem 2.2 given below will elucidate the behaviour
around the fixed points of nonlinear systems by a linearization in a neighbourhood
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of the equilibrium. To this end, we need to introduce the following definitions
(Zimmerman [11]).

Definition 2.11 (Homeomorphism) A function h : X → Y is a homeomorphism
between X and Y if it is continuous and bijective (one-to-one and onto function)
with a continuous inverse denoted by h−1.

Remark 2.3 A homeomorphism means thatX and Y have similar structure and that
h (resp., h−1) may stretch and bend the space but does not tear it.

Definition 2.12 (Diffeomorphism) A function f : U ⊆ R
n → V ⊆ R

n is called
diffeomorphism of class Ck if it is surjective (onto) and injective (one-to-one), and
if the components of f and its inverse have continuous partial derivatives up to the
k-th order with respect to all variables.

Definition 2.13 (Embedding) An embedding is a homeomorphism onto its image.

Definition 2.14 (Topological Conjugacy) Given two maps, f : X → X and
g : Y → Y , the map h : X → Y is a topological semi-conjugacy if it is continuous,
surjective and h ◦ f = g ◦ h, with ◦ function composition.

In addition, if h is a homeomorphism between X and Y , then we say that h is
a topological conjugacy and that X and Y are homomorphic.

Definition 2.15 (Hyperbolic Fixed Point) In the case of continuous-time dynam-
ical system,

ẋ = f (x),

a hyperbolic fixed point is a fixed point x∗ for which all the eigenvalues of the
Jacobian matrix

Df =

⎛

⎜
⎜
⎜
⎝

∂x1f1 ∂x1f2 . . . ∂x1fn

∂x2f1 ∂x2f2 . . . ∂x2fn
...

∂xnf1 ∂xnf2 . . . ∂xnfn

⎞

⎟
⎟
⎟
⎠

calculated in x∗ have a non-zero real part.

Theorem 2.2 (Hartman–Grobman) Let f be C1 on some E ⊂ R
n and let x∗ be

a hyperbolic fixed point that without loss of generality we can assume x∗ = 0.
Consider the nonlinear system ẋ = f (x) with flow φ(t, 0, x) and the linear system
ẋ = Ax, where A is the Jacobian Df (0). Let I0 ⊂ R,X ⊂ R

n and Y ⊂ R
n

such that X,Y and I0 each contain the origin. Then, there exists a homeomorphism
H : X → Y such that for all initial points x0 ∈ X and all t ∈ I0

H
(
φ(t, 0, x0)

) = etAH(x0)
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holds. Thus, the flow of the nonlinear system is homeomorphic to etA (i.e. to the flow
of the linearized system).

A sufficient condition for an equilibrium xa to be stable is given by the following
theorem.

Theorem 2.3 (Lyapunov [8]) LetΩ be an open subset ofRn, and f : Ω → R
n be

a C1 function. Let xa ∈ Ω be a zero of f .
Consider the dynamical system

ẋ(t) = f
(
x(t)
)
, x ∈ R

n .

The equilibrium x(t) = xa is stable if all the eigenvalues of the Jacobian matrix
of f at xa have a negative real part.

We end this section recalling a useful tool to prove the stability of equilibria.

Definition 2.16 (Lyapunov Function) Let f : Rn → R
n, with f (x0) = 0, and

consider the autonomous dynamical system

ẋ(t) = f
(
x(t)
)
,

so that x(t) ≡ x0 is an equilibrium point.
A weak Lyapunov function (resp., a strong Lyapunov function) with respect to x0

is a scalar C1 function L defined in a neighbourhood U of x0 such that:

• L(x0) = 0 and L(x0) > 0 for all x ∈ U \ {x0};
• ∇V (x) · f (x) > 0 (resp., ∇V (x) · f (x) ≥ 0) for all x ∈ U \ {x0}.
Theorem 2.4 If there exists a weak Lyapunov function (resp., a strong Lyapunov
function) with respect to the point x0, then x0 is Lyapunov stable. (resp., asymptot-
ically stable).

2.4 Limit Cycles and Periodicity of Continuous-Time
Systems

In this section we consider a continuous-time dynamical system described by the
state transition function φ(t, τ, x). If differently specified, the following definitions
and results are taken from R. Devaney [5], H. W. Lorenz [7] and S. Sternberg [10]

Definition 2.17 (Limit Cycle) A limit cycle (see Fig. 2.1) is a closed orbit Γ for
which there exists a tubular neighbourhood U(Γ ) [9] such that for all x ∈ U(Γ )
one has

lim
t→+∞ d(φ(t, τ, x), Γ ) = 0, (2.7)
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Fig. 2.1 A limit cycle in the
three-dimensional phase
space

4

2

0

–2

–4
3210–1–2–3

–1

0

1

where we have

d(y, Γ ) = inf
z∈Γ |y − z|. (2.8)

In order to establish the existence of limit cycles, in the two-dimensional case,
we can refer to the following theorem by Poincaré and Bendixson.

Theorem 2.5 (Poincaré–Bendixson [7]) Let D be a non-empty, compact
(i.e. closed and bounded) set of the plane not containing fixed points of a C1

vector field f from D to R
2 and let γ ⊂ D be an orbit of the system ẋ = f (x).

Then, either γ is a closed orbit or γ asymptotically approaches a closed orbit
(i.e. there exists a limit cycle in D).

The limitations of Theorem 2.5 are related to finding a suitable set D and to the
fact that it is valid only in two dimensions. For example, we suppose that there exists
a compact set D ⊂ R

3 with the vector field pointing inwards to D (see Fig. 2.2b)
and that there is a unique unstable equilibrium. Nevertheless, it is possible that no
closed orbit exists because a trajectory can arbitrarily wander in R

3 without neither
intersecting itself nor approaching a limit set (see Fig. 2.3).

It is a simple consequence of the theorem of Poincaré and Bendixson together
with the uniqueness of the solutions of such systems that while two-dimensional
systems can produce limit cycles, for obtaining chaos, dimension three is required.



2 Dynamical Systems 23

x

y

(a) (b)

Fig. 2.2 Convergence to the limit cycle. On the boundary ofD, the vector field points inwards the
set. Therefore, once a trajectory enters in D, it will stay on it forever. (a) A system with a stable
limit cycle in a vector field. (b) Limit cycle in a compact set D [7]

− 2
0 − 2

0
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− 1

0

1

Fig. 2.3 In R
3 Poincaré–Bendixson is invalid

The following result, in contrast to Theorem 2.5, provides a criterion to establish
the non-existence of closed orbits of a dynamical system in R

2:

Theorem 2.6 (Bendixson Negative Criterion [2]) Let

BR = {(x, y) ∈ R
2
∣
∣ x2 + y2 < R

}
,

with R > 0, and let f, g ∈ C1(BR) be such that

∂xf (x, y)+ ∂yg(x, y)
has constant sign and vanishes only at a finite number of points.
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Then there exists no closed orbits in BR of the autonomous system

{
x ′ = f (x, y)
y ′ = g(x, y) .

Theorem 2.6 holds true in a more general setting: we can replace BR by a
generic simply connected subset of R2, and assume that ∂xf (x, y)+ ∂yg(x, y) has
constant sign except a set with zero measure.

In the one-dimensional systems, there are no periodic solutions. To put it another
way, trajectories increase or decrease monotonically, or remain constant. What is
more, the Poincaré–Bendixson theorem provides an important result in the two-
dimensional systems. It states that if a trajectory is confined to a closed and bounded
region that contains no equilibrium points, then the trajectory must eventually
approach a closed orbit. This result implies that chaotic attractors cannot happen
in nonlinear planar dynamical systems.

2.5 Discrete-Time Dynamical Systems

Definition 2.18 (Map) Let X be a subset of Rd , d ≥ 1, and let f : X → X be any
function. The recursive formula

xn+1 = f (xn) (2.9)

defines a discrete dynamical system referred to as a d-dimensional map.

If we denote by the symbol f ◦n the n-th iterate of f , i.e. for n = 0 f ◦0 is the
identity on X and for n ≥ 1 the composition of f with itself n times, that is

f ◦n(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x if n = 0 ,

f (x) if n = 1 ,

(f ◦ f ◦(n−1))(x) = f (f ◦(n−1)(x)
)

if n > 1 ,

(2.10)

then the state transition function φ is defined by

φ(t, τ, x) = f ◦(t−τ )(x) for all t, τ ∈ N, and t ≥ τ, (2.11)

since it is evident that φ satisfies the consistency and composition properties.
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In this case, a movement is a sequence {xn}n∈N such that xn+1 = f (xn) for all
n, whereas an orbit is a set of the form {x0, x1, x2, . . . , xn, . . . } with xn+1 = f (xn)
for all n ∈ N.

In the following we focus on 1-dimensional dynamical systems.

Example 2.1 If d = 1, and f (x) = x2, the orbit of f with initial point x0 = 2 is
the set {2, 4, 16, 256, . . . } = {22n}n∈N.

Remark 2.4 Note that the dynamical system defined by Eq. (2.9) is autonomous
(cfr. Eq. (2.1)). Moreover it is reversible if and only if the function f is bijective.

Indeed, if f−1 is the inverse of f , we can extend the definition of f ◦n also
to negative n by

f ◦(−n) = (f−1)◦n , for n ∈ N ;

hence, (2.11) holds true also for t < τ .

Example 2.2 If f (x) = x2, as f is not injective, the associated dynamical system
is not reversible: by knowing x1 = 1, one cannot deduce if the initial point is x0 = 1
or x0 = −1.

Definition 2.19 (Fixed or Equilibrium Point for a Discrete-Time System) A
fixed point (or a equilibrium point) x∗ is a point of X such that f (x∗) = x∗. In
this discrete-time case, the orbit departing from x∗ is the singleton {x∗}.
Example 2.3 Let f (x) = x2.

The points 0 and 1 are the only fixed points for f . The point x = −1 is not fixed,
but it is an eventually fixed point for f because f (−1) = 1 �= −1.

Definition 2.20 (Periodic orbit, cycle) The orbit of initial point x0 is said
to be periodic, or a cycle, if there exists p ∈ N such that f ◦p(x0) = x0. In
this case, x0 is a periodic (or a cyclic) point.

The smallest number p such that f ◦p(x0) = x0 is called the period of x0 (or of
its orbit). To emphasize the period p, we say that x0 (or its orbit) is a p-periodic
point (or a p-periodic orbit).

Remark 2.5 A periodic orbit means that after a finite number of iterations we return
to the initial point and therefore the orbit has a finite number of elements.

Remark 2.6 (Period of an Orbit) A point x0 is periodic of period p if and only if
x0 is a fixed point of f ◦p. In particular, a fixed point x0 for f is fixed for all iterates
of f .

Often, fixed points are also called period-1 fixed points.

Example 2.4 If f (x) = −x, then x0 = 0 is the only fixed point of f and all other
points have period 2, the orbits being the sets of the form {x,−x}.
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Definition 2.21 (Eventually Periodic Orbit) An orbit is said to be eventually
periodic if it contains a periodic point. Analogously, a point is called eventually
periodic if its orbit is eventually periodic.

Example 2.5 Consider the function f (x) = 1 − x4. The point x0 = −1 is an
eventually periodic point because f (−1) = 0 and 0 is contained in the cycle (0, 1).

Remark 2.7 (Recursive Methods for Finding Fixed Points) Recursive expressions
of the form of Eq. (2.9) are often used in numerical computations for solving equa-
tions. An example is given by the so-called Babylonian algorithm to approximate
the square root of a number a > 0

xn+1 = 1

2

(
xn + a

xn

)
. (2.12)

A more general algorithm is the Newton method of approximating zero of a dif-
ferentiable function g as

xn+1 = xn − g(xn)

g′(xn)
. (2.13)

For example, if g(x) = x2 − a, g′(x) = 2x, then the Newton algorithm in
Eq. (2.13) reduces to Eq. (2.12).

2.5.1 Cobweb Diagram

For a one-dimensional map f , the cobweb diagram (or Verhulst diagram) is
a method to graphically describe the orbit of an initial point x0.

After drawing the graph of f (x) and the bisector r of first and third quadrants,
draw the point P0 ≡ (x0, f (x0)

)
.

Let x1 = f (x0), draw the horizontal line from P0 to the point on r with
coordinates (x1, x1) and draw the vertical line from this point to the graph of f
with coordinates P1 ≡ (x1, f (x1)

)
.

For higher iterates we repeat the procedure. From x2 = f (x1), we draw the
horizontal line from P1 to the point on r with coordinates (x2, x2) and the vertical
line from this point to the graph f with coordinates P2 ≡ (x2, f (x2)

)
(Fig. 2.4).
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Fig. 2.4 The cobweb
diagram
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2.6 Attractors and Repellers

In this section, we provide some definitions concerning the behaviour of dynamical
systems that, unless differently specified, follow the conventions in R. Devaney [5],
H. W. Lorenz [7] and S. Sternberg [10].

Throughout the section f : R → R is a twice continuously differentiable
function, and f ◦n denotes its n-th iterate (cf. (2.10)).

Definition 2.22 (Critical Point) We say that xc ∈ R is a critical point of f if
f ′(xc) = 0.

The critical point xc is degenerate if f ′′(xc) = 0 and non-degenerate if f ′′(xc) �=
0.

Remark 2.8 Degenerate critical points may be maxima, minima or inflection points;
non-degenerate critical points, instead, must be either maxima or minima.

Example 2.6 Consider the functions fn(x) = xn, n ∈ N.
If n ≥ 2, then fn has a critical point in c = 0. In particular, if n = 2 the critical

point is non-degenerate, whereas if n > 2 the critical point is degenerate.
If n is even, the critical point is a minimum, whereas if n is odd the critical point

is an inflection point.

Remark 2.9 (Classification of Critical Points [4]) A critical point can be stable if
the orbit of the system is inside a bounded neighbourhood to the point for all times n
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Fig. 2.5 Different examples of critical points. From top left clockwise: a centre denoting a stable
but not asymptotically stable point, an asymptotically stable node and an asymptotically stable
spiral both denoted as a sink. Then an unstable spiral and an unstable node, i.e. source. Last figure
shows a saddle node where some orbits converge and some others diverge

after some n∗. A point is asymptotically stable if it is stable and the orbit approaches
the critical point as n → ∞. If a critical point is not stable, then it is unstable (see
Fig. 2.5). In some instances these critical points could have mixed characteristics
(see Fig. 2.6).

Definition 2.23 (Limit Set) Given x ∈ X, the limit set of x is the set A of points
ω ∈ X for which there is an increasing sequence of natural numbers {nj }j∈N such
that

lim
j→+∞ f

◦nj (x) = ω .

Definition 2.24 (Attractor) A compact (i.e. a closed and bounded) set A ⊂ X is
an attractor if there is an open set U containing A such that A is a limit set of all
points in U .

Definition 2.25 (Basin of Attraction) The set of all x having A as limit set is
called the basin of attraction of A.
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Fig. 2.6 A critical point
combining a sink (I and II
quadrants) and saddle (III and
IV quadrants)

Remark 2.10 In particular, a singleton {xa} is an attractor if there exists δ > 0
such that for all x ∈]xa − δ, xa + δ[ the sequence

(
f ◦n(x)

)
n∈N has a subsequence

converging to xa .

Theorem 2.7 Let xa be a fixed point of f with
∣
∣f ′(xa)

∣
∣ < 1. Then a is

asymptotically stable and the set {xa} is an attractor.
More precisely there exists δ > 0 such that for all x ∈]xa−δ, xa+δ[ the sequence

(f ◦n(x))n tends to xa .

Proof Let K ∈ R be such that
∣
∣f ′(xa)| < K < 1, as

lim
x→xa

∣
∣f (x)− xa

∣
∣

|x − xa| = lim
x→xa

∣
∣
∣
f (x)− f (a)
x − xa

∣
∣
∣ = ∣∣f ′(xa)

∣
∣ < K

and since there exists δ > 0 such that for all x ∈]xa − δ, xa + δ[, one has

∣
∣
∣
f (x)− f (a)
x − xa

∣
∣
∣ < K .

Hence

∣
∣f (x)− xa

∣
∣ < K|x − xa| < Kδ . (2.14)

As K < 1 we deduce that if x0 ∈ ]xa − δ, xa + δ[, then x1 = f (x0) ∈
]xa − δ, xa + δ[.
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Applying (2.14) to x = xn, we have

|xn+1 − xa
∣
∣ < K|xn − xa| ,

as xn+1 = f (xn). Thus it follows by induction that for all x0 ∈ ]xa − δ, xa + δ[ and
for all n ∈ N one has that

|xn − xa
∣
∣ < Kn|x0 − xa| < Knδ .

Hence, for all x0 ∈ ]xa − δ, xa + δ[ the distance of f ◦n(x0) from a decreases at
a geometric rate K < 1 and therefore tends to 0, as desired.

Remark 2.11 If one has f ′(0) = 0, then the preceding argument shows that the
distance of f ◦n(x) from a decreases at a geometric rate K for all K ∈ ]0, 1[.

The above remark justifies the following definition.

Definition 2.26 (Superattractor) A fixed point x∗ such that f ′(x∗) = 0 is called
a superattractor or superstable.

Remark 2.12 If
∣
∣f ′(xa)

∣
∣ > 1, then, for a fixed K ∈ R such that 1 < K < |f ′(xa)|,

there exists δ > 0 such that for all x ∈]xa − δ, xa + δ[ one has |f (x) − xa| >
K|x−xa|; hence the distance of f ◦n(x) from a increases at a geometric rateK > 1,
and therefore there exists n ∈ N such that |f ◦n(x)− xa| > δ.

This motivates the following definition.

Definition 2.27 (Repeller) A fixed point x∗ with
∣
∣f ′(x∗)

∣
∣ > 1 is called unstable

or a repeller.

Example 2.7 Let us consider a function g twice continuously differentiable and the
Newton method of Eq. (2.13). In this case

f (x) = x − g(x)

g′(x)
, (2.15)

and hence

f ′(x) = 1 − g′(x)
g′(x)

+ g(x)g
′′
(x)

g′(x)2
= g(x)g

′′
(x)

g′(x)2
. (2.16)

If the point xa is a non-degenerate zero of g, then xa is a superattractive fixed point.

Remark 2.13 As already mentioned above, a periodic point xp of a period n is a
fixed point of f ◦n (n-fold composition of f ).

Moreover, if xp is periodic, the points

xp, f (xp), f
◦2(xp), . . . , f

◦n−1(xp) (2.17)
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are also periodic, and by the chain rule, the derivative of f ◦n in those points is the
same and equal to

(f ◦n)′(xp) = f ′(xp) f ′(f (xp)) · · · f ′(f ◦n−1(xp)). (2.18)

Definition 2.28 (Hyperbolic Bifurcation Point) Let xp be a periodic point
of prime period n (see Remark 2.6), and the point xp is called hyperbolic if

|(f ◦n)′(xp)| �= 1. (2.19)

The number (f ◦n)′(xp) is called a hyperbolic point multiplier.

Definition 2.29 (Bifurcation Point) A non-hyperbolic fixed point is called a bifur-
cation point.

Definition 2.30 (Attractive Periodic Orbit) If xp is an attractive (resp., a repeller)
fixed point for f ◦n, then so are all others, and it is called an attractive periodic orbit.

Definition 2.31 (Superattractive Periodic Orbit) A periodic point is super-
attractive for f ◦n if and only if f ′(s) = 0 at least for one of the points
xp, f (xp), f

◦2(xp), . . . , f
◦n−1(xp).

Example 2.8 As was mentioned above, an attractor as well as a repeller can be a
fixed or a periodic point. For example, the function f (x) = −x3 has two cyclic
points −1 and +1 of period 2 and a fixed one x0 = 0 (see Fig. 2.7a).

It can easily be verified that x0 is an attractor for the basin (−1,+1) and that the
cyclic orbit −1,+1 is a repeller. To show that it is sufficient to study the function

(a)

P1

P1 P2

P0

P3
x3 x1

x0 x1 x2x4x2x0

P4

P2

P0

y y

x x

(b)

Fig. 2.7 Convergence to the attractor. Panel (a) represents f (x) = −x3 that is a mirror image
of f (x) = x3 and panel (b) corresponds to the graph of f ◦2(x) = x9
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f ◦2(x) for which −1 and +1 are fixed repeller points, and since neither is fixed for
f , then they will be cyclic repellers (see Fig. 2.7b).

We end this section with the n-dimensional version of Theorem 2.7.

Theorem 2.8 Consider the discrete-time dynamical system

xn+1 = f (xn) ,

where f : Rn → R
n is a smooth map. Let xa be a fixed point of f , that is

f (xa) = xa ,

and assume that the eigenvalues of the Jacobian matrix of f

Df =

⎛

⎜⎜
⎜
⎝

∂x1f1 ∂x1f2 . . . ∂x1fn

∂x2f1 ∂x2f2 . . . ∂x2fn
...

∂xnf1 ∂xnf2 . . . ∂xnfn

⎞

⎟⎟
⎟
⎠

calculated at xa lie inside the unit circle
{
z ∈ C

∣
∣ ‖z‖ < 1

}
.

Then xa is an attractor.

2.7 Existence of Periodic Behaviour

In this section we present some definitions that will be used in Sect. 3.1.

2.7.1 Schwarz Derivative

Definition 2.32 (Schwarz Derivative) Let f be a one-dimensional map defined in
the real field, three times derivable. The Schwarz derivative of f is defined by

f S(x) = d

dx

(
f ′′(x)
f ′(x)

)
− 1

2

(
f ′′(x)
f ′(x)

)2

, (2.20)

or, equivalently, by

f S(x) = f ′′′(x)
f ′(x) − 3

2

(
f ′′(x)
f ′(x)

)2

. (2.21)
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The relevant property of the Schwarz derivative is to preserve the sign with the
composition, in the sense that if f S(x) > 0, then it is also (f ◦n)S(x) > 0 ∀n ∈
N. To prove this statement we first prove a “chain rule” formula for the Schwarz
derivative.

Lemma 2.1 Let f, g be three times derivable, and then

(f ◦ g)S(x) = f S(g(x))(g′(x)
)2 + gS(x) . (2.22)

Proof According to the (ordinary) chain rule, we have

(f ◦ g)′(x) = f ′(g(x)
)
g′(x)

(f ◦ g)′′(x) = f ′′(g(x)
)(
g′(x)
)2 + f ′(g(x)

)
g′′(x)

(f ◦ g)′′′(x) = f ′′′(g(x)
)(
g′(x)
)3 + 3f ′′(g(x)

)
g′(x)g′′(x)+ f ′(g(x)

)
g′′′(x) .

Hence,

(f ◦ g)S(x) = f ′′′(g(x)
)(
g′(x)
)3 + 3f ′′(g(x)

)
g′(x)g′′(x)+ f ′(g(x)

)
g′′′(x)

f ′(g(x)
)
g′(x)

− 3

2

(
f ′′(g(x)

)(
g′(x)
)2 + f ′(g(x)

)
g′′(x)

f ′(x)

)2

=
⎡

⎣f
′′′(g(x)

)

f ′(g(x)
) − 3

2

(
f ′′(g(x)

)

f ′(g(x)
)

)2
⎤

⎦
(
g′(x)
)2

+ g′′′(x)
g′(x)

− 3

2

(
g′′(x)
g′(x)

)2

= f S(g(x))(g′(x)
)2 + gS(x) .

By (2.22), if f S < 0 and gS < 0, then (f ◦ g)S < 0. In particular, if f S

is negative, then (f ◦n)S is also negative for all n > 1. This yields the following
theorem (for illustration see Ref. [5]).

Theorem 2.9 (Schwarz Theorem) If f S < 0 and if f has n critical points, then
f has at most n+ 2 attracting periodic orbits.

From (2.21) we see that if Q is a polynomial of degree at most 2, then QS < 0.
For higher degree polynomials, we have the following proposition.

Proposition 2.1 Let Q(x) be a polynomial whose first derivative Q′(x) has real
roots. ThenQS(x) < 0.
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Proof Suppose that

Q′(x) =
n∏

i=1

(x − ai) with ai real . (2.23)

Then

Q′′(x) =
n∑

j=1

∏n
i=1(x − ai)
x − aj =

n∑

j=1

Q′(x)
x − aj . (2.24)

Therefore, by (2.20),

QS(x) = d

dx

⎛

⎝
n∑

j=1

1

x − aj

⎞

⎠− 1

2

⎛

⎝
n∑

j=1

1

x − aj

⎞

⎠

2

= −
n∑

j=1

1

(x − aj )2 − 1

2

⎛

⎝
n∑

j=1

1

x − aj

⎞

⎠

2

< 0 .

2.7.2 Singer’s Theorem

As mentioned before , the Schwarz derivative preserves the sign under composition
that is useful in the following theorem.

Theorem 2.10 (Singer [7]) Let f be a map from a closed interval I ⊆ [0, b] onto
itself; then the dynamical system xn+1 = f (xn) has at most one periodic orbit in
the interval I if the following conditions are met:

1. f is a function C3;
2. There exists a critical point xc ∈ I such that

⎧
⎪⎪⎨

⎪⎪⎩

f ′(x) > 0 , for x < xc,

f ′(x) = 0 , for x = xc,
f ′(x) < 0 , for x > xc.

3. The origin is a repeller for f , that is

f (0) = 0, and
∣
∣f ′(0)

∣
∣ > 1;

4. The Schwarz derivative is

f S(x) ≤ 0 for all x ∈ I \ {xc}.
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2.7.3 Sharkovsky’s Theorem

Let us introduce the following ordering on natural numbers.

Definition 2.33 (Sharkovsky Ordering [10])

3 � 5 � 7 � · · · 2 · 3 � 2 · 5 � 2 · 7 � · · · 22 · 3 � 22 · 5 � 22 · 7 � · · ·
· · · 2n · 3 � 2n · 5 � 2n · 7 � · · · � 2n � 2n−1 � · · · � 23 � 22 � 2 � 1

(2.25)

That is, first all odd integers except one are listed, and then they are followed by
2 times that odd number, 22 times the odd, 23 times the odd, etc. This exhausts all
the natural numbers with the exception of the powers of two that are listed last, in a
decreasing order.

Theorem 2.11 (Sharkovsky) Let I be an interval of R and let f : I → I be a
continuous function with a periodic point of prime period k. If k�l in the Sharkovsky
ordering of Def. 2.33, then f also has a periodic point of period l.

For a proof see Devaney [5, p. 63] or [6].
We limit ourselves to showing the last part of the theorem, which is as follows.

Proposition 2.2 Let f be a continuous function with a periodic point of prime
period 2n, for some n ≥ 1. Then f also has a periodic point of period 2n−1.

Proof We consider at first the case n = 1; thus, we have to prove that if f has a
2-periodic point, then f has a fixed point.

Let a be a 2-periodic point of f , and consider b = f (a). If a = b, then a is a
fixed point of f and we have finished. If a �= b, define

g(x) = f (x)− x .

We have

g(a) = f (a)− a = b − a ,
g(b) = f (b)− b = f (f (a))− b = a − b .

As g(a) and g(b) have opposite signs, then there exists at least one value c between
a and b for which g(c) = 0, that is c is a fixed point of f .

Now we consider the case of a generic n. Let ϕ(x) = f ◦2n−1
(x), and as ϕ◦2(x) =

f ◦2n(x), the 2n periodic point of f is a 2-periodic point of ϕ. Hence ϕ has a fixed
point, that is f has a 2n−1 periodic point.

As in the Sharkovsky ordering, the largest number is 3, and we obtain the
following result.
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Corollary 2.1 (Period Three Implies All Periods) If f has a periodic orbit
of period three, then it has periodic orbits of all periods.

As the set of the smallest numbers in the Sharkovsky ordering is the set of the
powers of 2, the following corollary holds:

Corollary 2.2 If f has a periodic point of prime period k, with k not a power
of two, then f has infinitely many periodic points. Conversely, if f has only finitely
many periodic points, then they all necessarily have periods that are powers of two.

For multidimensional maps or for discontinuous maps, Sharkovsky’s Theorem is
no longer valid, as shown by the following two examples.

Example 2.9 Consider the 2-dimensional map

⎧
⎪⎪⎨

⎪⎪⎩

xn+1 = −1

2
xn −

√
3

2
yn ,

yn+1 =
√

3

2
xn − 1

2
yn ,

which corresponds to a rotation of 120◦ about the origin.
Clearly the origin is a fixed point, whereas any other point has period 3: there are

no orbits with period different from 3.

Example 2.10 Consider the function f : [0, 1[ → [0, 1[

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

x + 1

3
if x ∈

[
0,

2

3

[
,

x − 2

3
if x ∈

[
2

3
, 1

[
.

It is easy to check that f ◦3(x) = x; hence, any point has period 3 and there are no
orbits with period different from 3.
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Chapter 3
An Example of Nonlinear Dynamical
System: The Logistic Map

Giuseppe Orlando and Giovanni Taglialatela

3.1 The Logistic Map

The behaviour of linear systems is fully described by the eigenvalues of the system
at the origin (or any transited point) of the phase space coordinate system. In this
way, only escape to infinity (unstable systems), collapse towards the origin (stable
systems) or centre motions (marginally stable systems) can be described. While
such descriptions can serve as a first approximation, real systems to reveal their true
nature generally request a nonlinear description. Fortunately, a simple system offers
a basic, but rather complete understanding of how nonlinearity affects the dynamical
behaviour of a system.

The Logistic Map (also referred to as the Verhulst dynamics or the quadratic
parabola map):

fμ(x) = μx(1 − x) , x ∈ [0, 1] , μ ∈ [0, 4] ,

is a simple example of a nonlinear system with a single parameter (μ) expressing the
strength of the nonlinearity (see Fig. 3.1) permitting to follow its dynamics which is
critically dependent on μ.
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Fig. 3.1 Logistic map for different values of the parameter μ

On a heuristic level, it is apparent that the one-dimensionality of this system
is enough to represent the bending and stretching of the expanding manifolds (see
Chap. 6), which is a characteristic of the behaviour of higher dimensional dissipative
nonlinear systems. However, a deeper analysis offers more insight. Nonlinear
behaviour is in leading order expressed by the quadratic term of the Taylor
expansion of the map describing the system dynamics. Normally, the coefficient of
this term will not be zero (the ‘generic’ case). This is why we focus on the second-
order map dynamics. For the more ‘rare’ cases where the behaviour is dominated by
a higher—e.g., third—order term, parallel effects to what is exhibited by the Logistic
Map are observed (e.g., changed ‘Feigenbaum’ constants); a similar statement can
be made for area-preserving maps. Even non-polynomial maps show related features
but follow laws that deviate more strongly from the generic case (see control of
systems in Chap. 15). The one-dimensional nature of this system also allows us to
use some of the strong results obtained in the last chapter for such cases. Moreover,
we will apply the same approach for the analysis of the economic models in Part III
of this book.
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There are equations that defy any analytical solution is the content of a famous
theorem the first incomplete proof of which was provided by P. Ruffini. The full
proof was then completed independently by N.H. Abel and E. Galois (a more recent
variant of the proof was given by Y.A. Sinai).

Theorem 3.1 (Abel–Ruffini Impossibility Theorem [3]) There is no solution in
radicals for a general polynomial equation of degree five or higher with arbitrary
coefficients.

Theorem 3.1 exhibits why computers and graphical methods are essential tools
for the analysis of the dynamics generated by the Logistic Map. In fact, we have
to use graphical and numerical methods to overcome the problem.

3.1.1 Fixed Points

The fixed points of the Logistic Map fμ for μ ∈ [1, 4] are

x∗
1 = 0 and x∗

2 = 1 − 1

μ
.

The first derivatives f ′
μ(x) = μ(1 − 2x) calculated in these points are

f ′
μ(x

∗
1 ) = μ and f ′

μ(x
∗
2 ) = 2 − μ .

The number and nature of the fixed points in the interval [0, 1] change with the
parameter μ as follows:

1. If 0 < μ < 1, there is only one fixed point x = 0, since the other fixed point
x∗

2 = 1 − 1/μ is negative.
Note that point x∗

1 = 0 is attractive (but not super-attractive) since f ′
μ(0) =

μ ∈ (0, 1). Moreover, for all x ∈ (0, 1], one has 0 < fμ(x) < x ≤ 1, and
therefore the sequence

(
f ◦n
μ (x)
)
n

is decreasing and converges to 0. Thus, the
basin of attraction of 0 is [0, 1].

2. If μ = 1, f1(x) = x(1 − x), then 0 is the unique fixed point of fμ(x) and, with
the same arguments as before, one proves that 0 is an attractor and that the basin
of attraction of 0 is [0, 1].
If μ > 1, then the fixed point x∗

1 = 0 is repelling, and the second fixed point
x∗

2 = 1 − 1/μ lies in ]0, 1[. Moreover, 1 < μ < 3 implies
∣
∣f ′
μ(x

∗
2 )
∣
∣ = |2 −μ| < 1;

therefore, the point x∗
2 is an attractor, and its basin depends on the parameter μ as

detailed below.

3. If 1 < μ < 2, then the fixed point x∗
2 is in (0, 1/2), and the first derivative

f ′
μ(x

∗
2 ) = 2 − μ is in (0, 1).

Now, we prove that the basin of attraction is (0, 1].
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Note that fμ is strictly increasing and strictly concave in the interval [0, 1/2];
hence, one has that

− x ∈ [0, x∗
2 [ �⇒ 0 ≤ fμ(x) < fμ(x∗

2 ) = x∗
2 and fμ(x) > x,

− x ∈]x∗
2 , 1/2] �⇒

x∗
2 = fμ(x∗

2 ) < fμ(x) ≤ fμ(1/2) = μ/4 ≤ 1/2 and 0 < fμ(x) < x.

From this, it follows by induction that for all n ∈ N, one has that

0 ≤ f ◦n
μ (x) < x

∗
2 and f ◦(n+1)

μ (x) > f ◦n
μ (x), for all x ∈ [0, x∗

2 [,
x∗

2 < f
◦n
μ (x) ≤ 1/2 and f ◦(n+1)

μ (x) < f ◦n
μ (x), for all x ∈]x∗

2 , 1/2].

Hence, the sequence (f ◦n
μ (x))n is increasing and converging to x∗

2 for all x ∈
]0, x∗

2 [ and decreasing and converging to x∗
2 for all x ∈]x∗

2 , 1/2].
Finally, for all x ∈]1/2, 1], one has that 0 ≤ fμ(x) < fμ(1/2) = μ/4 < 1/2,

and therefore the sequence (f ◦n
μ (x))n≥1 is increasing or decreasing according to

whether fμ(x) < x∗
2 or fμ(x) > x∗

2 ; in both cases, such a sequence converges
to x∗

2 .
4. If μ = 2, then we can apply the same reasoning of the case μ < 2 to prove that

the basin of attraction of x∗
2 is (0, 1].

Moreover, since

x∗
2 = 1 − 1

μ
= 1

2
and f ′

2

(1

2

)
= 0, (3.1)

the fixed point x∗
2 is super-attractive, and the sequence (f ◦n

2 (x))n converges to x∗
2

very fast (faster than geometrically).
5. If 2 < μ < 3, then x∗

2 = 1 − (1/μ) > 1/2 and

f ′
μ(x

∗
2 ) = 2 − μ ∈ (−1, 0). (3.2)

Therefore, the fixed point x∗
2 is an attractor, but the iterates oscillate around it.

6. If μ = 3, then x∗
2 = 1 − 1

μ
= 2

3 and f ′
μ(x

∗
2 ) = 2 − μ = −1. It can be proved

that the fixed point x∗
2 is still an attractor.

If μ ∈]3, 4[, then f ′
μ(x

∗
2 ) < −1, hence the fixed point x∗

2 is a repeller (see
Definition 2.27).

We consider then the second iterate f ◦2
μ (x) (see Fig. 3.2) and its fixed points,

i.e., the periodic points of period 2.
Since

f ◦2
μ (x)− x = μfμ(x)(1 − fμ(x))− x (3.3)

= μ[μx(1 − x)][1 − μx(1 − x)] − x
= x(μ− μx − 1)(μ2x2 − μ2x − μx + μ+ 1)

= [fμ(x)− x
]
(μ2x2 − μ2x − μx + μ+ 1),
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Fig. 3.2 Second iteration for the logistic map

a fixed point of f ◦2
μ (x) is either a fixed point of fμ(x) or a zero of the quadratic

polynomial

μ2x2 − μ(μ+ 1)x + μ+ 1 . (3.4)

The discriminant of the polynomial (3.4)

μ2(μ+ 1)2 − 4μ2(μ+ 1) = μ2(μ+ 1)(μ− 3) (3.5)

is positive since μ > 3. Hence, the above polynomial (3.4) has two real roots:

p2± = 1

2
+ 1

2μ
± 1

2μ

√
(μ+ 1)(μ− 3) ∈ (0, 1). (3.6)

To check whether p2± are attractors or repellers, we need to compute the
derivative of f ◦2

μ (x) in these points. This can be done in two different but equivalent
ways.
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First method. Computing the derivative of f ◦2
μ (x), one has

(f ◦2
μ )

′(x) = μ2(1 − 2x)(2μ2x − 2μx + 1). (3.7)

Then, replacing x = p2±, after some calculation, one gets

(f ◦2
μ )

′(p2±) = −μ2 + 2μ+ 4. (3.8)

Second method. Using the chain rule, one obtains

(f ◦2
μ )

′(x) = [fμ
(
fμ(x)
)]′ = f ′

μ

(
fμ(x)
)
f ′
μ(x). (3.9)

Since fμ(p2+) = p2− and fμ(p2−) = p2+, from the above identity, one gets

(f ◦2
μ )

′(p2±) = f ′
μ(p2+) f ′

μ(p2−) (3.10)

= μ2(1 − 2p2+)(1 − 2p2−)

= μ2(1 − 2(p2+ + p2−)+ 4p2+p2−
)
.

From Eq. (3.4), we obtain

p2+ + p2− = (μ+ 1)/μ and p2+ · p2− = (μ+ 1)/μ2. (3.11)

Thus, we get

(f ◦2
μ )

′(p2±) = −μ2 + 2μ+ 4. (3.12)

Therefore, (f ◦2
μ )

′(p2±), as a function of μ, decreases in the interval [3, 4] and

equals 1 for μ = 3 and −1 for μ = μ1 := 1 + √
6 = 3.449499 . . ..

7. If 3 < μ < μ1, as we have already shown, the two fixed points are repelling for
fμ, while the two periodic points of period 2 are attracting for f ◦2

μ .

For μ > μ1, the periodic points of period 2 become unstable (repelling), and
four periodic points of period 4 appear. These points are stable (attracting) for μ <
μ2 = 3.54409 . . . and unstable for μ > μ2.

Iterating this procedure, one can construct a sequence (μn)n such that forμ > μn
a cycle of order 2n appears.

8. For μ = 1 + 2
√

2 , chaos begins: an orbit of period 3 appears. We have
(see Fig. 3.3)

f ◦3
μ (x) = μ3 (1 − x) x (μ x2 − μx + 1)×

× (μ3 x4 − 2μ3 x3 + μ3 x2 + μ2 x2 − μ2 x + 1)
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Fig. 3.3 Third iteration for the logistic map

and

f ◦3
1+2

√
2
(x)− x = [f1+2

√
2 (x)− x

][
p(x)
]2
,

where

p(x) =
(

25 + 22
√

2
)
x3 −
(

42 + 35
√

2
)
x2 +
(

21 + 14
√

2
)
x − 3 − √

2

has three real roots different from the fixed points 0 and 2
7

(
4 − √

2
)

of f1+2
√

2 :

x1 = 0.15993 . . . , x2 = 0.51436 . . . , x3 = 0.95632 . . . . (3.13)

These three numbers form a cycle of period 3 for fμ, see Fig. 3.4.
By Sarkovsky’s Theorem 2.7.3, there exist orbits of any period.
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Fig. 3.4 Graph of f1+2
√

2
and the 3-cycle in (3.13) P

2

P
1

P
3

y

x
x
3

x
2

x
1

9. Regarding the limit case μ = 4, by direct calculation, one has

f ◦3
μ (x)−x = (fμ(x)−x

)
(64 x3−112 x2+56 x−7)(64 x3−96 x2+36 x−3).

(3.14)

The two polynomials of degree 3 have three real roots in (0, 1), namely, the
numerical values

x1 = 0.18825 . . . , x2 = 0.61126 . . . , x3 = 0.95048 . . . (3.15)

for the first polynomial and

x4 = 0.11697 . . . , x5 = 0.41317 . . . , x6 = 0.96984 . . . (3.16)

for the second polynomial. These are two cycles of period 3.
The two triplets form a 2-cycle of period 3 for f4, see Fig. 3.5.

3.1.2 Feigenbaum’s Universal Constants

M.J. Feigenbaum showed [1] that the sequence (μn)n of period-doubling bifurcation
values follows the rule

lim
n→∞

μn − μn−1

μn+1 − μn = δF ≈ 4.6692 . . . , (3.17)
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Fig. 3.5 Graph of f4 and the
two 3-cycles in (3.15)
and (3.16)

P3

P6

P4

P1

P5 P2

y

x
x6x3x2x5x1x4

where δF is a constant that is universal (i.e., universally valid) for any one-
dimensional maps with a quadratic maximum or for any differential equation
for which the second-order term of its Taylor expansion does not vanish. This
condition is satisfied by any generic nonlinear differentiable system, e.g., by f (x) =
ax exp(−x) or f (x) = a sin(πx), neuron equations [4], each equations with a
feedback loop [2] and more. Differential equation systems such as those obtained
from the latter can be converted to maps via Poincaré sections; it can therefore not
come as a surprise that they also follow Feigenbaum’s paradigm. Systems that may
look very similar to the quadratic parabola may also produce periodic doubling but
fail to follow Feigenbaum’s paradigm to different extent. For the much smaller class
of systems of quartic maxima, e.g., a statement very similar to Feigenbaum’s holds,
only with different (larger) constants. Notice that these systems are extreme in the
class of ‘natural systems from a measure-theoretical point of view’. In addition,
their bifurcation scenario, due to the larger size of the constants, is far more difficult
to observe.

The tent maps, or the flat-topped maps that will be used later to explain one
potential cause for the emergence of stable economic cycles, differ more strongly
from Feigenbaum’s paradigm.

As a consequence of Eq. (3.17), if two successive bifurcation values are known,
the next bifurcation can be predicted, and the end point of the geometric series
of bifurcations (after which we naturally expect chaotic behaviour) can be estimated.
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0.2

µ0 µ1µ2

0.4

0.6

0.8

1

Fig. 3.6 Period doubling for the logistic map

For the quadratic parabola, the limit point of the period-doubling sequence is
μc ≈ 3.5699 . . . (see Fig. 3.6).

3.1.3 Schwarz Derivative

Since

f ′
μ(x) = μ− 2μx , f ′′

μ(x) = −2μ , f ′′′
μ (x) = 0 , (3.18)

for the Schwarz derivative 2.32 of the Logistic Map, one has

f S(x) = − 6

(1 − 2x)2
< 0 for any x �= 1

2
. (3.19)

Thus, according to Schwarz’s theorem (see Theorem 2.9 in Chapter 2), there exist
at most three attracting periodic orbits.

3.1.4 Singer’s Theorem Applied to the Logistic Map

In this paragraph, we show that for the function fμ(x) = μx(1 − x) with μ > 1, it
is easy to check that the four conditions of Singer’s Theorem 2.10 are all satisfied.
Indeed,
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1. fμ is infinitely differentiable.
2. The derivative is f ′

μ(x) = μ(1 − 2x), and therefore for xc = 1/2, one has

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f ′(x) > 0, for x < 1
2 ,

f ′
(1

2

)
= 0,

f ′(x) < 0, for x > 1
2 .

3. The origin is a repeller for fμ since fμ(0) = 0 and f ′
μ(0) = μ > 1.

4. f S(x)μ = − 6

(1 − 2x)2
< 0 ∀ x ∈ I \ {c} (see Sect. 3.1.3).

3.1.5 Closed Formulas

In general, it is not possible to find a closed formula

xn = F(n, x0) .

However, if μ = 2, we have

xn = 1

2

[
1 − exp

[
2n log(1 − 2x0)

]]
, (3.20)

whereas if μ = 4,

xn = 1

2

[
1 − cos

[
2n arccos(1 − 2x0)

]]
. (3.21)

Both (3.20) and (3.21) are proved by induction. We begin with (3.20).
For n = 0, (3.20) is clearly true. Assuming it for some n, we have

2 xn(1 − xn) =
[
1 − exp

[
2n log(1 − 2x0)

]]×

×
[

1 − 1

2

[
1 − exp

[
2n log(1 − 2x0)

]]]

= 1

2

[
1 − exp

[
2n log(1 − 2x0)

]][
1 + exp

[
2n log(1 − 2x0)

]]

= 1

2

[
1 − exp

[
2n+1 log(1 − 2x0)

]] = xn+1 .
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Now, we prove (3.21). For n = 0, (3.21) is clearly true. Assuming it for some n,
we have

4 xn(1 − xn) = 2
[
1 − cos

[
2n arccos(1 − 2x0)

]]×

×
[

1 − 1

2

[
1 − cos

[
2n arccos(1 − 2x0)

]]]

=
[
1 − cos

[
2n arccos(1 − 2x0)

]][
1 + cos

[
2n arccos(1 − 2x0)

]]

=
[
1 − cos2[2n arccos(1 − 2x0)

]]
.

Recalling the formula cos(2α) = 2 cos2(α)− 1, we get

4 xn(1 − xn) =
[

1 − 1

2

[
1 + cos

[
2n+1 arccos(1 − 2x0)

]]
]

= 1

2

[
1 − cos

[
2n+1 arccos(1 − 2x0)

]]

= xn+1 .
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Chapter 4
Bifurcations

Giuseppe Orlando, Ruedi Stoop, and Giovanni Taglialatela

4.1 Bifurcations in the Parameter Space

An impression of how bifurcations are usually distributed in parameter space is
provided in Fig. 4.1 using several examples, where at every border of a periodicity
change we have a bifurcation. Figure 4.1a (cf. [7]) shows the periodicities obtained
for the two-dimensional generalization of the parabola, f (x, y) = (−ax2 +
y + 1, bx) over the (a, b)-parameter space. In particular, we can see not fully
resolved Feigenbaum bifurcations, escape to infinity, and an extended sea of chaotic
behaviour (white). Figure 4.1b (cf. [7]) shows the periodicities (coded in a colour
bar, where deep blue contains the chaotic sea) of the nonlinear so-called Nishio–
Inaba electronic circuit. The hardware can be described by an ODE; each pixel
corresponds to a particular circuit realization (cf. [7]). Figure 4.1c shows the
properties of the Goldbeter two-step chemical reaction process describable via an
ODE. In the background, we indicate the stability properties (Lyapunov exponents,
where black colour indicates stable behaviour) and corresponding periodicities in
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Fig. 4.1 Abundance of bifurcations demonstrated by periodicity and stability over ranges of
the nonlinearity parameters. Bifurcations emerge where periodicity changes or where stability
becomes marginal. (a) Periodicities generated by a two-dimensional map generalizing the
quadratic parabola. Across the shrimp-like structures, Feigenbaum cascades are obtained (only
partially resolved). (b) Results from simulations of the Nishio–Inaba nonlinear circuit. (c)
Goldbeter’s two-step chemical reaction, showing stability of generated solutions overlaid with
periodicity as the inset. (d) Stability of solutions generated by Rulkov’s neuron model. For more
details, see text

the foreground inset, where the white colour again embraces the sea of chaotic
behaviour (cf. [1]). Figure 4.1d shows the dynamical properties of a Rulkov neuron.
Colours embrace the sea of chaotic behaviour; black indicates stable behaviour and
the white lines the loci of superstable behaviour.
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4.2 Homoclinic and Heteroclinic Orbits

Definition 4.1 (Heteroclinic) Let us consider a continuous dynamical system
described by the ordinary differential equation (ODE)

ẋ = f (x),

with equilibria in x = x0 and x = x1. A solution x(t) is a heteroclinic orbit from x0
to x1 if

x(t)→ x0 as t → −∞

and

x(t)→ x1 as t → +∞.

Definition 4.2 (Homoclinic—Continuous Case) Let us consider a continuous
dynamical system described by the ordinary differential equation (ODE)

ẋ = f (x)

with an equilibrium in x = x0. A solution x(t) is a homoclinic orbit if

x(t)→ x0 as t → ±∞.

Definition 4.3 (Homoclinic—Discrete Case) In the discrete case, for the map
f : R → R, if there exists a fixed point or a periodic point x∗ for which

lim
n→±∞ f

(n)(x) = x∗,

then x∗ is a homoclinic point.

4.3 Local and Global Bifurcations

Consider the family of dynamical systems

ẋ(t) = f
(
x(t);μ), x ∈ R

n, (4.1)

depending on a real parameter μ ∈ R.

Definition 4.4 (Structural Stability) The dynamical system (4.1) is structurally
stable for μ = μ0 if there exists ε > 0 such that for all μ1 with |μ1 −μ0| < ε, there



54 G. Orlando et al.

exists a topological conjugacy (as defined in Definition 2.14) between the dynamical
system (4.1) with μ = μ0 and μ = μ1.

Recalling that a topological conjugacy is a continuous bijective map, Defini-
tion 4.4 requires to map each orbit of the vector field generated with μ = μ0 to
an orbit of the vector field generated by the system with μ = μ1 close to μ0. In
other words, it is possible to continuously morph the trajectories of the system by
small variations of the parameterμ. When the system is structurally stable, the orbit
of the system does not change dramatically with the parameter.

Definition 4.5 (Bifurcation) If the dynamical system (4.1) is not structurally stable
for μ = μ0, we say that it has a bifurcation at μ = μ0, and we call μ0 a bifurcation
point.

A bifurcation occurs whenever a change in one of the parameters induces a
qualitative change of the orbits of the system. Thus, the set of bifurcation points
divides the parameter space into different regions that are characterized by the same
qualitative behaviour.

Assume that for some μ0 ∈ R, x0 is an equilibrium point of (4.5), so that

f (x0;μ0) = 0 . (4.2)

Lemma 4.1 A critical value μ0 of the parameters is a bifurcation point if the
number of fixed points changes in any neighbourhood of μ0.

Proof If the number of fixed points changes, then the trajectories associated with
the appearing or disappearing fixed points can no longer be mapped. Therefore, a
topological conjugacy between the vector field obtained for the system at μ = μ0
and that at the neighboring parameter μ can no longer exist. ��

We now recall the Dini classical implicit function theorem.

Theorem 4.1 Let U be a neighbourhood of (x0;μ0) ∈ R
n×R, and let f : U → R

n

be a C1 function. Assume (4.2), and assume that the Jacobian of f with respect to
the x variables, that is,

J (x;μ) =

⎛

⎜
⎜
⎜⎜
⎜
⎝

∂x1f1(x;μ) ∂x2f1(x;μ) · · · ∂xnf1(x;μ)
∂x1f2(x;μ) ∂x2f2(x;μ) · · · ∂xnf2(x;μ)

...
...

. . .
...

∂x1fn(x;μ) ∂x2fn(x;μ) · · · ∂xnfn(x;μ)

⎞

⎟
⎟
⎟⎟
⎟
⎠

(4.3)

is invertible in (x0;μ0).
Then, there exist δ, ε > 0 and a C1 function γ : (μ0 − ε, μ0 + ε)→ R

n such that
xμ = γ (μ) is the unique solution of

f (xμ;μ) = 0,

with ‖x − x0‖ < δ and |μ− μ0| < ε.
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Fig. 4.2 Three state portraits of a two-dimensional dynamical system (4.1) that has a homoclinic
bifurcation at μ = μ0. At the bifurcation, the stable manifold X− of the saddle S collides with its
unstable manifold X+ generating the homoclinic loop. Note that, in this bifurcation, a limit cycle
γ disappears

From the above theorem, we deduce that if detJf (x0;μ0) �= 0, then xμ =
γ (μ) is the unique equilibrium solution for μ sufficiently close to μ0. Thus, in the
bifurcations that can be identified with Lemma 4.1, we can conclude that at the
critical value μ0, there exists ε > 0 such that in the interval [μ0, μ0 + ε[ (resp., in
the interval ]μ0 − ε, μ0]), there exist (at least) two functions γ1 and γ2 of class C1

such that γ1(μ) and γ2(μ) are fixed points for each μ ∈ [μ0, μ0 + ε[ (resp., for
each μ ∈ ]μ0 − ε, μ0]), and γ1(μ0) = γ2(μ0) = x0. γ1(μ) and γ2(μ) are called
the branches of the fixed point.

Notice that, in this case, by the implicit function theorem, it is necessary that

f (x0;μ0) = 0 and det Jf (x0;μ0) = 0 . (4.4)

This is why in Definition 2.29 of Chap. 2, for a non-hyperbolic fixed point the term
“bifurcation point” was justified.

Bifurcations that involve the degeneracies of some eigenvalue of the Jacobian
evaluated at an equilibrium point (or of some of the multipliers of the system
limit cycles—see Definition 2.28) are called local bifurcations. By contrast, global
bifurcations cannot be revealed by eigenvalue degeneracies and usually involve the
collision of stable and unstable manifolds of one or more saddles. For example,
if the system (4.1) has a homoclinic orbit only for μ ≤ μ0, then μ0 is a global
bifurcation point (see Fig. 4.2).

In this chapter, we will concentrate on local bifurcations and their implications on
the state space changes. The most famous global bifurcation (Shilnikov bifurcation)
will be presented in the next chapter.

4.4 Local Bifurcations in the Continuous Case

From the above discussion it follows that a local bifurcation can be seen as the
collision of different limit sets (see Definition 2.23).
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The graphical representation of fixed points (and of limit cycles) for the systems
in terms of changes in the parameters is called bifurcation diagram. This diagram
is useful to describe and detect local bifurcation points. For example, Fig. 3.6
in Chap. 3 represents a bifurcation diagram for the logistic map depicting the
bifurcations for that system.

Note that if f (x;μ) has a bifurcation point in (x0;μ0), the function

f̃ (x;μ) = f (x + x0;μ+ μ0)

has a bifurcation point in (0; 0), and thus we can assume, with no loss of generality,
that (x0;μ0) = (0; 0).

In the following, we discuss the most common types of bifurcation: saddle-node,
transcritical, pitchfork and Hopf. The first three can occur in any space dimension,
whereas the Hopf bifurcation can appear only if n ≥ 2.

4.4.1 Bifurcations with Colliding Equilibria

For the sake of simplicity, we treat the first three types of bifurcation in dimension
one, i.e.,

ẋ(t) = f (x(t);μ) x ∈ R . (4.5)

According to the above considerations, we assume that f is a regular function
defined in a neighbourhood of the origin in R and

f (0; 0) = 0 and ∂xf (0; 0) = 0 . (4.6)

4.4.1.1 Saddle-Node Bifurcations

Definition 4.6 We say that μ0 is a saddle-node bifurcation (or a fold bifurcation) if
there exists no equilibrium for μ < μ0 and there exist two branches of equilibria for
μ > μ0, or if there exist two branches of equilibria for μ < μ0 and no equilibrium
for μ > μ0.

A sufficient condition for having a saddle-node bifurcation at μ0 = 0 is the
following.

Theorem 4.2 (Saddle-Node Bifurcation) Assume that f is a C2 function verify-
ing (4.6) and

∂2
xxf (0; 0) �= 0 and ∂μf (0; 0) �= 0 . (4.7)

Then, (0; 0) is a saddle-node bifurcation.
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More precisely, there exists ε > 0 such that

if ∂2
xxf (0; 0) ∂μf (0; 0) > 0, there are two fixed points for μ ∈ ]−ε, 0[ and no
fixed points for μ ∈ ]0, ε[;

if ∂2
xxf (0; 0) ∂μf (0; 0) < 0, there are no fixed point for μ ∈ ]−ε, 0[ and two
fixed points for μ ∈ ]0, ε[.

Condition (4.7) is called the transversality condition for the saddle-node bifur-
cation.

Example 4.1 Consider the dynamic system (4.5) with

f (x;μ) = μ− x2 .

x0 = 0 is a fixed point for μ0 = 0, and, since ∂xf (x;μ) = −2x, condition (4.6)
holds true. We have

∂2
xxf (x;μ) = −2 , ∂μf (x;μ) = 1 ,

and hence

∂2
xxf (0; 0) ∂μf (0; 0) = −2 < 0 .

According to Theorem 4.2, μ0 = 0 is a bifurcation point such that for μ < 0 there
are no fixed points, while for μ > 0 there are two fixed points. Indeed, the fixed
points are given by the equation μ− x2 = 0, which has no solution for μ < 0, and
two solutions x = ±√

μ for μ > 0.
We can solve explicitly the equation

ẋ(t) = μ− x2(t) . (4.8)

If μ < 0, we have no stationary solution and

x(t) = −√−μ tan
(√−μ(t + C)) , with C ∈ R .

If μ = 0, we have x(t) = 0 or

x(t) = 1

t + C , with C ∈ R .

If μ > 0, we have x(t) = ±√
μ or

x(t) = √
μ tanh

(√
μ (t + C)) , with C ∈ R .

As x(t) → √
μ for t → +∞, we see that x(t) = √

μ is a stable solution. As
x(t)→ −√

μ for t → −∞, we see that x(t) = −√
μ is an unstable solution.
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Fig. 4.3 Bifurcation diagram
for ẋ = f (x;μ) = μ− x2.
The state space of the system
is represented on the vertical
straight lines, with the arrows
indicating the system
dynamics. Lines of stable
equilibria are solid, lines of
unstable equilibria are dotted

x

μ

0

0=μ0

In Fig. 4.3, we can see the bifurcation graph of Eq. (4.8). Notice that we adopt
the convention to mark the stable equilibria by a solid line and unstable equilibria
with a dotted line.

4.4.1.2 Transcritical Bifurcations

Roughly speaking, a bifurcation point μ0 is a fold bifurcation if there is an
equilibrium for μ = μ0 (i.e., Eq. (4.6) holds) and there are no equilibria for μ < μ0
or for μ > μ0. At this point, we consider the case in which the two branches of
equilibria exist in a neighbourhood of μ0, but they change their nature after passing
through μ0.

Definition 4.7 (Transcritical Bifurcation) A bifurcation point μ0 is called trans-
critical if there exist ε > 0 and two C1 branches of equilibria γ1 and γ2, defined in
]μ0 − ε, μ0 + ε[, such that

1. γ1(μ0) = γ2(μ0),
2. γ ′

1(μ0) �= γ ′
2(μ0) and

3. γ1 is stable for μ ∈ ]μ0 − ε, 0[ and unstable for μ ∈ ]0, μ0 + ε[, whereas γ2 is
unstable for μ ∈ ]μ0 − ε, 0[ and stable for μ ∈ ]0, μ0 + ε[.
A sufficient condition in order to have a transcritical bifurcation for μ0 = 0 is

the following.

Theorem 4.3 (Transcritical Bifurcation) Assume that f is a C2 function verify-
ing (4.6),

f (0;μ) = 0 for all μ in a neighbourhood of 0 , (4.9)
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and

∂2
xxf (0; 0) �= 0 and ∂2

xμf (0; 0) �= 0 . (4.10)

Then, (0; 0) is a transcritical bifurcation.

Condition (4.10) is called the transversality condition for transcritical bifurca-
tions.

Example 4.2 Consider the dynamical system (4.5) with f (x;μ) = μx − x2.
x0 = 0 is a fixed point forμ0 = 0, and, since ∂xf (x;μ) = μ−2x, condition (4.6)

holds true.
Condition (4.9) is satisfied. Moreover, as

∂2
xxf (x;μ) = −2 , ∂2

xμf (x;μ) = 1 ,

we have

∂2
xxf (0; 0) ∂μf (0; 0) = −2 < 0 ,

and thus condition (4.10) holds true. By Theorem 4.3, μ0 = 0 is a transcritical
bifurcation.

Indeed, the fixed points are given by the equation μx − x2 = 0, which has two
solutions for any μ ∈ R: x1(μ) = 0 and x2(μ) = μ.

As ∂xf (0;μ) = μ, x1 is stable for μ < 0 and unstable for μ > 0, while as
∂xf (μ;μ) = −μ, x2 is unstable for μ < 0 and stable for μ > 0 (see Fig. 4.4).

In contrast, the generic solution of the equation

ẋ(t) = μx − x2(t) (4.11)

is

x(t) = μ

1 + c e−μt

with c ∈ R, and, therefore,

if μ < 0, then

x(t)→ μ for t → +∞ and x(t)→ 0 for t → −∞;

if μ > 0, then

x(t)→ 0 for t → +∞. and x(t)→ μ for t → −∞;

for a graphical depiction see Fig. 4.4.
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Fig. 4.4 Phase diagram for
ẋ = μx − x2. The state space
of the system is represented
on the vertical straight lines,
with the arrows indicating the
system dynamics. Lines of
stable equilibria are solid,
lines of unstable equilibria
are dotted
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μ

0

0=μ0

4.4.1.3 Pitchfork Bifurcations

Definition 4.8 (Pitchfork Bifurcations) A bifurcation point μ0 is called a pitch-
fork bifurcation point if

1. There exists a branch of equilibria γ0(μ) the stability of which changes for μ =
μ0 (i.e., γ0(μ) is stable for μ < μ0 and unstable for μ > μ0, or vice versa);

2. For μ < μ0 (resp., for μ > μ0), γ0(μ) is the unique equilibrium, whereas
for μ > μ0 (resp., for μ < μ0), there exist two branches of equilibria γ1(μ)

and γ2(μ), such that

(a) γ1(μ0) = γ2(μ0) = γ0(μ0),
(b) γ1(μ0) < γ0(μ0) < γ2(μ0), for μ > μ0 (resp., for μ < μ0) and
(c) the stability of γ1(μ) and γ2(μ) is the opposite of that of γ0(μ).

The pitchfork bifurcation is supercritical if γ1(μ) and γ2(μ) are stable and
subcritical if γ1(μ) and γ2(μ) are unstable. Instead of pitchfork bifurcation also
the term trident bifurcation is sometimes used.

We restrict our study to the case in which f is odd with respect to x, that is,

f (−x;μ) = −f (x;μ) , for any x,μ ∈ R
2 . (4.12)

Note that if f is odd with respect to x, then f (0;μ) = 0 for all μ, and
differentiating twice (4.12) with respect to x, we see that also ∂2

xxf is odd with
respect to x, and hence ∂2

xxf (0;μ) = 0 for all μ. Thus, the first condition in (4.10)
cannot be satisfied.

A sufficient condition in order to have a pitchfork bifurcation for μ0 = 0 is the
following.
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Theorem 4.4 (Pitchfork Bifurcation) Assume that f is a C3 function, odd with
respect to x, verifying (4.6) and

∂3
xxxf (0; 0) �= 0 and ∂2

xμf (0; 0) �= 0 . (4.13)

Then, (0; 0) is a pitchfork bifurcation.
More precisely,

if ∂3
xxxf (0; 0) ∂2

xμf (0; 0) < 0, the bifurcation is supercritical;

if ∂3
xxxf (0; 0) ∂2

xμf (0; 0) > 0, the bifurcation is subcritical.

Condition (4.13) is called the transversality condition for pitchfork bifurcations.

Example 4.3 Consider the dynamic system (4.5) with

f (x;μ) = μx − x3 . (4.14)

x0 = 0 is a fixed point for μ0 = 0, and, since ∂xf (x;μ) = μ− 3x2, condition (4.6)
holds true.
f is odd with respect to x, moreover, as

∂3
xxxf (x;μ) = −6 , ∂2

xμf (x;μ) = 1 ,

we have

∂3
xxxf (0; 0) ∂2

xμf (0; 0) = −6 < 0 ,

and thus condition (4.13) holds true, and by Theorem 4.4, μ0 = 0 is a pitchfork
supercritical bifurcation point. Indeed, the fixed points are given by the equation
μx − x3 = 0, which has a unique solution x0(μ) = 0 for μ ≤ 0, and three
solutions, x0(μ) = 0, x1 = √

μ and x2 = −√
μ for μ > 0. As ∂xf (0;μ) = μ, x0

is stable for μ < 0 and unstable for μ > 0, while as ∂xf
(± √

μ ;μ) = −2μ, both
x1 and x2 are stable for μ > 0.

We can solve explicitly the equation ẋ = μx − x3:

If μ < 0, we have x(t) = 0 or

x±(t) = ±
√ −μ
e−2μ (t+C) − 1

, with C ∈ R .

As x±(t) → 0 for t → +∞, we see that x(t) = 0 is a stable solution.
If μ = 0, we have x(t) = 0 or

x±(t) = ± 1√
2 (t + C) , with C ∈ R .

As x±(t) → 0 for t → +∞, we see that x(t) = 0 is a stable solution.
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Fig. 4.5 Phase diagram for
ẋ = μx − x3. The state space
of the system is represented
on the vertical straight lines,
with the arrows indicating the
system dynamics. Lines of
stable equilibria are solid,
lines of unstable equilibria
are dotted
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0=μ0

x1

If μ > 0, we have

x±(t) = ±
√

μ

e−2μ (t+C) + 1
, with C ∈ R .

As x±(t) → 0 for t → −∞, we see that x(t) = 0 in an unstable solution; as
x±(t) → ±√

μ for t → +∞, we see that x(t) = ±√
μ are stable solutions.

Figure 4.5 shows the bifurcation in the state space and the parameter space.

4.4.2 Hopf Bifurcation

Hopf bifurcations can only occur in dimensions n > 1. The peculiarity of this
bifurcation is that at the bifurcation point, a fixed point changes into a closed orbit
behavior. The bifurcation is named after E. Hopf, who, parallel with A.A. Andronov
in the Soviet Union, discussed this bifurcation in 1942 [3]. For a historical account,
see Sect. 11.4.1.

Definition 4.9 (Hopf Bifurcation) We say that the Hopf bifurcation is supercrit-
ical (Fig. 4.7) if the cycles are attractive, and subcritical (Fig. 4.6) if they are
repulsive (Fig. 4.7).

Let us assume that the continuous dynamical system (4.1) has a single fixed
point x0 for μ = μ0, and assume that the Jacobian of f (cf. Eq. (4.3)) is invertible
at (x;μ0).

Thus, by the implicit function theorem (Dini’s implicit functions theorem), there
exist ε > 0 and a regular function x∗ : ]μ0 − ε, μ0 + ε[ such that for each μ ∈
]μ0 − ε, μ0 + ε[, there is a corresponding single fixed point x∗(μ).

The following theorem ensures the existence of closed orbit in a neighbourhood
of (x0;μ0) (for more details, see [2]).
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Fig. 4.6 Subcritical Hopf
bifurcation
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µ

x2

µ0

Fig. 4.7 Supercritical Hopf
bifurcation

x1

µ

x2

µ0

Theorem 4.5 (Hopf Bifurcation) Consider the continuous dynamic system (4.1),
with f and x0 as above.

Let λ1(μ), . . . , λn(μ) be the eigenvalues of J (x0;μ), and assume that
1. J (x0;μ0) has a pair of complex-conjugated eigenvalues with zero real part,

while the other eigenvalues have negative real part:

Reλ1(μ0) = Reλ2(μ0) = 0 , Imλ1(μ0) = −Imλ2(μ0) = ω0 > 0 ,

Reλj (μ0) < 0 , for j = 3, . . . , n ;

2. the eigenvalue λ1(μ) is differentiable and results

d

dμ

(
Reλ1(μ)

) ∣∣∣
μ=μ0

> 0 .

Then, a periodic solution will bifurcate from x0, with an amplitude growing as√|μ− μ0| and a period approaching 2π
ω0
, for μ→ μ0.

Remark 4.1 The case
d

dμ

(
Reλ1(μ)

) ∣∣
∣
μ=μ0

< 0 can be treated replacingμwith −μ.

The Hopf bifurcation is subcritical or supercritical according to the sign of l1(0),
the first Lyapunov coefficient of the dynamical system near the equilibrium.
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To compute l1(0), consider the Taylor expansion of x �→ f (x, 0) at x = 0:

f (x, 0) = Jx + 1

2
B(x, x)+ 1

6
C(x, x, x)+O(‖x‖4) ,

where J is the Jacobian of f , whereas B(x, y) and C(x, y, z) are the multilinear
functions with components

Bj (x, y) =
n∑

k,l=1

∂2
ξkξl
fj (ξ, 0)

∣
∣
ξ=0 xkyl ,

Cj (x, y, z) =
n∑

k,l,m=1

∂3
ξkξlξm

fj (ξ, 0)
∣
∣
ξ=0 xkylzm,

for j = 1, 2, . . . , n. Let v ∈ C
n be an eigenvector of J , corresponding to the purely

imaginary eigenvalue iω0:

Jv = iω0v ,

and let w ∈ C
n be the adjoint unitary eigenvector:

J Tw = −iω0w , and 〈v,w〉 = 1 .

Here, 〈v,w〉 = vT w is the inner product in C
n. Then (cf. [4]),

l1(0) = 1

2ω0
Re
[〈

w, C(v, v, v)
〉− 2
〈
w, B
(
v, J−1B(v, v)

)〉

+ 〈w, B(v, (2iω0In − J )−1B(v, v)
)〉]
, (4.15)

where In is the unit n× n matrix.
Recalling that a fixed point is stable if Re(λ) < 0, we can deduce that with a

passage from μ < μ0 to μ > μ0, the asymptotic stable fixed point degenerates into
a closed orbit, leaving this process as an unstable fixed point.

Now, we consider the case of the two-dimensional system:

{
ẋ(t) = f (x(t), y(t);μ) ,
ẏ(t) = g(x(t), y(t);μ) . (4.16)

Assume that (x0, y0) is an equilibrium for μ0, and the Jacobian of the system is
of the form

J (x0, y0;μ0) =
(

0 −ω0

ω0 0

)
, ω0 > 0 .
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Let

δ := d

dμ
Imλ(μ0) ,

and it is clear that if δ > 0 (resp., if δ < 0), the equilibrium point
(
x(μ), y(μ)

)
is

stable (resp., unstable) for μ < μ0 and unstable (resp., stable) for μ > μ0.

Setting v = w = 1√
2

(
1
−i
)

, Eq. (4.15) leads to

l1(0) := 1

16

(
∂3
xxxf + ∂3

xyyf + ∂3
xxyg + ∂3

yyyg
)

+ 1

16ω0

(
∂2
xyf
(
∂2
xxf + ∂2

yyf
)− ∂2

xyg
(
∂2
xxg + ∂2

yyg
)

− ∂2
xxf ∂

2
xxg + ∂2

yyf ∂
2
yyg
)
. (4.17)

Theorem 4.6 (Hopf Bifurcation for n = 2) If δ l1(0) > 0 (resp., if δ l1(0) < 0),
there exists a unique curve of periodic solution for μ < μ0 (resp., for μ > μ0).

The amplitude of such curves grows as
√|μ− μ0| , whereas the period

approaches 2π
ω0
.

Example 4.4 Consider the system (4.16) with

f (x, y;μ) = μx − y − x (x2 + y2) ,

g(x, y;μ) = x + μy − y (x2 + y2) .
(4.18)

We first note that (0, 0) is the unique equilibrium for any μ ∈ R. Next, the
Jacobian of (4.18) for x = 0 and y = 0 is

f (0, 0;μ) =
(
μ −1
1 μ

)
,

which has a pair of complex eigenvalues μ ± i. If μ < 0, the origin is an attractor,
while if μ > 0, it is a repeller. We have δ = 1, whereas, as

∂2
xxf (x, y;μ) = −6 x , ∂2

xyf (x, y;μ) = −2 y , ∂2
yyf (x, y;μ) = −2 x ,

∂2
xxg(x, y;μ) = −2 y , ∂2

xyg(x, y;μ) = −2 x , ∂2
yyg(x, y;μ) = −6 y ,

∂3
xxxf (x, y;μ) = −6 , ∂3

xyyf (x, y;μ) = −2 ,

∂3
xxyg(x, y;μ) = −2 , ∂3

yyyg(x, y;μ) = −6 ,
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from (4.17), we have b = −1. According to Theorem 4.6, we have a supercritical
Hopf bifurcation: the cycles that appear for μ > 0 are attractors.

On the other side, we can directly solve the system

{
ẋ(t) = μx(t)− y(t)− x(t) (x2(t)+ y2(t)

)
,

ẏ(t) = x(t)+ μy(t)− y(t) (x2(t)+ y2(t)
)
.

(4.19)

Introducing polar coordinates

{
x(t) = ρ(t) cos

(
θ(t)
)
,

y(t) = ρ(t) sin
(
θ(t)
)
,

system (4.19) gives

{
ρ̇ cos(θ)− ρ sin(θ) θ̇ = μρ cos(θ)− ρ sin(θ)− ρ3 cos(θ) ,

ρ̇ sin(θ)+ ρ cos(θ) θ̇ = ρ cos(θ)+ μρ sin(θ)− ρ3 sin(θ) ,

and hence

{
ρ̇ = μρ − ρ3 ,

θ̇ = 1 .
(4.20)

We can solve explicitly the system (4.20):

If μ < 0, we have

⎧
⎪⎨

⎪⎩

ρ(t) =
√

μ

1 − exp
(− 2μ(t + C1)

) ,

θ(t) = t + C2 ,

, with C1, C2 ∈ R .

We see that ρ(t)→ 0 for t → +∞, and hence (0, 0) is the unique attractor.
If μ = 0, we have

⎧
⎨

⎩
ρ(t) = 1√

2(t + C1)
,

θ(t) = t + C2 ,

, with C1, C2 ∈ R .

We see that ρ(t)→ 0 for t → +∞, and hence (0, 0) is the unique attractor.
If μ > 0, we have
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⎧
⎪⎨

⎪⎩

ρ(t) =
√

μ

1 − exp
(− 2μ(t + C1)

) ,

θ(t) = t + C2 ,

, with C1, C2 ∈ R ,

if ρ(0) >
√
μ , and
⎧
⎪⎨

⎪⎩

ρ(t) =
√

μ

1 + exp
(− 2μ(t + C1)

) ,

θ(t) = t + C2 ,

, with C1, C2 ∈ R ,

if ρ(0) <
√
μ .

We see that in both cases ρ(t) → √
μ for t → +∞, and hence the cycle

x2 + y2 = √
μ is an attractor.

We also note that if ρ(0) <
√
μ (the orbit starts inside the limit cycle), then

ρ(t) → 0 for t → −∞, and hence (0, 0) is a repeller.

4.4.3 Degenerate Hopf Bifurcation in the van der Pol Equation

Definition 4.10 (van der Pol Equation) The second-order ordinary differential
equation

ẍ(t)− μ(1 − x2(t)
)
ẋ(t)+ x(t) = 0 (4.21)

is called the van der Pol equation. Here, μ is a scalar parameter indicating the
nonlinearity and the strength of the damping.

Let y(t) := ẋ(t), and Eq. (4.21) is then equivalent to the system

{
ẋ(t) = y(t),
ẏ(t) = −x(t)+ μ(1 − x2(t)

)
y(t).

(4.22)

First of all, if μ = 0, Eq. (4.22) reduces to the linear system

{
ẋ(t) = y(t),
ẏ(t) = −x(t),



68 G. Orlando et al.

which can be solved directly:

{
x(t) = C1 sin(t)+ C2 cos(t) ,

y(t) = C1 cos(t)− C2 sin(t) ,
C1, C2 ∈ R .

Thus, in this case, the system has infinitely many periodic orbits.
If μ �= 0, the system is nonlinear; however,

(
x(t), y(t)

) = (0, 0) is a solution of
Eq. (4.22). The Jacobian in (0, 0) of the function

(
x

y

)
�→
(

y

−x + μ(1 − x) y
)

is

(
0 1

−1 μ

)
,

the eigenvalues of which are λ± = 1

2

(
μ±√μ2 − 1

)
. It is easy to see that the real

part of the eigenvalues has the same sign as μ; thus, (0, 0) is stable for μ > 0 and
unstable for μ < 0. The imaginary part of the eigenvalues is non-zero if |μ| < 1.
The existence of a limit cycle can be proved in a more general setting.

Definition 4.11 (Liénard Equation) Let f and g be C1 functions defined in a
neighbourhood of 0, and assume that f is even and g is odd. The second-order
ordinary differential equation

ẍ + f (x)ẋ + g(x) = 0 (4.23)

is called Liénard equation [5].

Remark 4.2 As g is odd, g(0) = 0, and therefore x(t) ≡ 0 is a solution of (4.23).

Let y(t) := ẋ(t), and Eq. (4.23) is then equivalent to the system

{
ẋ(t) = y(t) ,
ẏ(t) = −g(x(t))− f (x(t)) y(t) . (4.24)

Theorem 4.7 (Liénard Stability Cycle [6]) A Liénard system (4.24) has a unique
and stable limit cycle around the origin if it satisfies the following properties:

1. g(x) > 0 for all x > 0;
2. limx→∞ F(x) := limx→∞

∫ x
0 f (ξ)dξ = ∞;
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3. F(x) has one positive root in x∗, with
{
F(x) < 0 for 0 < x < x∗ ,
F (x) > 0 non-decreasing for x > x∗.

(4.25)

The van der Pol equation satisfies the hypothesis of Theorem 4.7 if μ > 0.
Indeed,

F(x) :=
∫ x

0
−μ(1 − s2)ds = μ

(x3

3
− x
)
.

If μ > 0, then F is negative for x ∈
]
0,

√
3
[

and positive for x >
√

3 ; moreover,

F is increasing and goes to +∞ as x → +∞.
By Theorem 4.7, we deduce the existence of a unique stable limit cycle for μ >

0. To prove the existence of a unique unstable limit cycle for μ < 0, we change t to
−t and apply again Theorem 4.7.

Although the equilibrium (0, 0) changes its nature and a limit cycle exists, we
do not have a proper Hopf bifurcation, as the limit cycles do not approach the
equilibrium as μ→ 0.

Indeed, by Bendixon’s negative criterion (see Theorem 2.6, Chap. 2), with
f (x, y) = y and g(x, y) = −x + μ(1 − x2)y, we have

∂xf (x, y)+ ∂yg(x, y) = μ(1 − x2),

hence, there exist no closed orbits in BR , with R < 1.

4.5 Local Bifurcations for Discrete-Time Systems

Consider the discrete dynamical system

xn+1 = f (xn;μ) , (4.26)

and assume that x0 is a fixed point for μ = μ0, that is,

x0 = f (x0;μ0) . (4.27)

Also in the discrete case, bifurcations divide into equilibria-colliding, and
equilibrium-degenerating bifurcations.
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If ∂xf (x0;μ0) �= 1, thanks to the implicit function theorem applied to the
function

F(x;μ) = f (x;μ)− x ,

we see that for μ sufficiently near to μ0 there exists a unique fixed point xμ. Thus,
in the discrete case, we can therefore see the same bifurcations in which equilibria
collide we have seen for continuous systems, which are saddle-node, transcritical
and pitchfork. In this case, however, the degeneracy condition (4.6) (taking without
loss of generality (x0;μ0) = (0; 0)) becomes

f (0; 0) = 0 and ∂xf (0; 0) = 1 . (4.28)

The Hopf bifurcation Theorem 4.5 changes in the discrete-time case into:

Theorem 4.8 (Neimark–Sacker Bifurcation) Consider the discrete dynamic sys-
tem (4.26), with f and x0 as above.

Let λ1(μ), . . . , λn(μ) be the eigenvalues of J (x0;μ), and assume that
1. J (x0;μ0) has a pair of complex-conjugated eigenvalues with absolute value

equal to 1, while the other eigenvalues have absolute values smaller than 1:

|λ1(μ0)| = |λ2(μ0)| = 1 ,

0 < ω0 = arg
(
λ1(μ0)

) = −arg
(
λ2(μ0)

)
< π ,

∣∣λj (μ0)
∣∣ < 1 , for j = 3, . . . , n ;

2. eikω0 �= 1, for k = 1, 2, 3, 4;
3. the eigenvalue λ1(μ) is differentiable and we have

d

dμ

(∣∣λ1(μ)
∣∣
) ∣∣∣
μ=μ0

> 0 .

Then, the fixed point x0 is surrounded by a bifurcating unique closed invariant
curve. The amplitude of such invariant curve grows as

√|μ− μ0| .
Also the Hopf (or Neimark–Sacker) bifurcation can be supercritical or subcritical

(or better, soft or sharp), according to the negative or positive sign of the first
Lyapunov coefficient l1(0) that assumes the expression

l1(0) = 1

2
Re
[〈

w, C(v, v, v)
〉− 2
〈
w, B
(
v, (In − J )−1B(v, v)

)〉

+ 〈w, B(v, (e2iω0In − J )−1B(v, v)
)〉]
. (4.29)
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Another bifurcation that can occur in a discrete-time system is the so-called flip,
period-doubling, that we have already met in the previous chapter. A flip bifurcation
occurs if, after passing through a critical value μ0, the fixed point changes its
stability and a period-2 orbit appears. A flip bifurcation is, essentially, a pitchfork
bifurcation of f ◦2, the second iterate of f .

A sufficient condition in order to have a flip bifurcation is the following.

Theorem 4.9 (Flip Bifurcation) Let f : R × R → R, and let x0 be a fixed point
of f for μ = μ0. Assume that

∂xf (x0;μ0) = −1 ,

∂2
xxf (x0;μ0)− 2∂2

xμf (x0;μ0) �= 0,

l1(0) = −2∂3
xxxf (x0;μ0)− 3

(
∂2
xxf (x0, μ0)

)2 �= 0;

then, (x0;μ0) is a flip bifurcation point, and the last two conditions 1 and 2 are
called transversal conditions of the flip.

Also, the flip bifurcation can be supercritical or subcritical. In the first case, the gen-
erated period-doubled periodic orbit involved in the bifurcation is stable, otherwise
it is unstable. The stability of the period-doubled periodic orbit depends on the sign
of the Lyapunov coefficient l1(0) (negative/positive sign and supercritical/subcritical
bifurcation).

Example 4.5 Consider the logistic map (cf. Chap. 3),

xn+1 = μxn(1 − xn),

i.e., (4.26) with f (x;μ) = μx(1 − x).
If μ0 = 3, the unique fixed point in ]0, 1[ is x0 = 2

3
, and since ∂μf (x;μ) =

μ(1 − 2x), we have ∂μf
(2

3
, 3
)

= −1.

As

∂2
xxf (x;μ) = −2μ , ∂2

xμf (x;μ) = 1 , ∂3
xxxf (x;μ) = 0 ,

we have

l1(0) = −12μ2 .

The hypotheses of Theorem 4.9 are satisfied, and hence we have a supercritical flip
bifurcation at μ0 = 3.
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Chapter 5
From Local Bifurcations to Global
Dynamics: Hopf Systems
from the Applied Perspective

Hiroyuki Yoshida

5.1 Hopf Bifurcation Theorem

The Hopf bifurcation theorem is one of the most famous tools to prove the
existence of closed orbits for systems of ordinary differential equations. Consider
the following continuous-time system:

ẋ = f (x,μ), x ∈ Rn, μ ∈ R. (5.1)

Assume that the system (5.1) has a fixed point x∗ at a parameter value μ = μH ;

f (x∗, μH ) = 0. (5.2)

Furthermore, we assume that the Jacobian matrix evaluated at the fixed point x∗,

J =

⎡

⎢
⎢⎢
⎢
⎣

∂f1(x
∗;μ)

∂x1

∂f1(x
∗;μ)

∂x2
· · · ∂f1(x

∗;μ)
∂xn

∂f2(x
∗;μ)

∂x1

∂f2(x
∗;μ)

∂x2
· · · ∂f2(x

∗;μ)
∂xn

...
...

. . .
...

∂fn(x
∗;μ)

∂x1

∂fn(x
∗;μ)

∂x2
· · · ∂fn(x∗;μ)

∂xn

⎤

⎥
⎥⎥
⎥
⎦
, (5.3)

has a simple pair of pure imaginary eigenvalues and no other eigenvalues with
zero real part when μ = μH . By the implicit function theorem, this assumption
implies that there is a fixed point x∗(μ) near x∗(μH ) which varies smoothly with μ.
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Since the Jacobian matrix depends on μ, each eigenvalue of the Jacobian matrix is
a function of μ as well. In particular, let us express a simple pair of pure imaginary
eigenvalues as a function of μ:

λ(μ), λ̄(μ) = ρ(μ)± ω(μ)i, ρ(μH ) = 0, ω(μH ) �= 0, (5.4)

where Re λ = ρ and Imλ = ω. In the following, the existence part of the Hopf
bifurcation is provided.

Theorem 5.1 (Hopf Bifurcation1) Consider the system of ordinary differential
equations on an open set U ⊆ Rn,

ẋ = f (x,μ), (5.5)

where x ∈ U and μ is a real parameter varying in some open interval I ⊆ R.
Suppose that for each μ in I there exists an equilibrium point x∗ = x∗(μ) of (5.5).
Assume that the Jacobian matrix of f with respect to x, evaluated at x∗(μ), has a
pair of complex conjugate eigenvalues, λ(μ) and λ̄(μ), which satisfy the following
(transversality conditions of the Hopf bifurcation):

(H1) Re λ(μH ) = 0, Imλ(μH ) �= 0,

(H2)
d Re λ(μ)

dμ

∣
∣∣
∣
μ=μH

�= 0,

while Re γ (μH ) �= 0 for any other eigenvalues γ . Then, (5.5) has a family of non-
constant, periodic solutions.

The important point to note is that there are two types of Hopf bifurcations: a
supercritical Hopf bifurcation and a subcritical Hopf bifurcation. In the supercritical
case, we observe a stable limit cycle around the unstable equilibrium point as μ
passes through the bifurcation value μ = μH . From the economic point of view,
this case is desirable in the sense that the stable limit cycle can be considered as the
representation of the actual economic fluctuations in the theory of the business cycle.
This situation is shown in Fig. 5.1a, where we can detect an unstable equilibrium
pointE and a stable limit cycle. On the other hand, in the subcritical case, we notice
an unstable limit cycle around a stable equilibrium point as μ passes through the
bifurcation value μ = μH . In this case, we cannot observe the same persistent and
bounded cycles as in the supercritical Hopf bifurcation. However, this case is also
important and interesting from an economic point of view. It is well known that
Leijonhufvud [11] suggested the concept of “corridor stability,” which states that
sufficiently large shocks advance the working of centrifugal forces in the economy,
while small shocks have no persistent effects on the economy. His concept of

1This version is adopted from Hassard et al. [9] and Invernizzi and Medio [10].
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Fig. 5.1 Two types of Hopf bifurcations. Panel (a) on the left displays a supercritical bifurcation;
panel (b) on the right displays a subcritical bifurcation

corridor stability corresponds to the subcritical Hopf bifurcation. This circumstance
is depicted in Fig. 5.1b, where we can find a stable equilibrium point E and an
unstable limit cycle.

Let us now turn to another important point regarding the Hopf bifurcations. As
stated above, the Hopf bifurcation theorem is explained in terms of the properties
of eigenvalues. For theoretical investigations, it is useful to rewrite the conditions of
eigenvalues by using the coefficients of characteristic equations. From now on, we
shall deal with two-, three-, and four-dimensional systems in order.

Two-dimensional System In the case of a two-dimensional system, the Jacobian
matrix is a 2 × 2 matrix.

Theorem 5.2 The second-order polynomial equation

P(λ) = λ2 + b1λ+ b2 = 0 (5.6)

has a pair of pure imaginary roots if and only if

b1 = 0, b2 > 0. (5.7)

Remark In this case, we can easily verify that λ1,2 = ±√
b2i.

Three-dimensional System When we consider the case of a three-dimensional
system, the Jacobian matrix is a 3 × 3 matrix.
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Theorem 5.3 The third-order polynomial equation

P(λ) = λ3 + b1λ
2 + b2λ+ b3 = 0 (5.8)

has a pair of pure imaginary roots and one non-zero real root if and only if

b2 > 0, b1b2 − b3 = 0. (5.9)

Remark See Asada and Semmler [2] for a complete discussion.

Four-dimensional System In the case of a four-dimensional system, we have the
Jacobian matrix with a dimension of 4×4.

Theorem 5.4 The fourth-order polynomial equation

P(λ) = λ4 + b1λ
3 + b2λ

2 + b3λ+ b4 = 0 (5.10)

has a pair of pure imaginary roots and two roots with non-zero real parts if and only
if either of the following set of conditions (A) or (B) is satisfied:

(A) b1b3 > 0, b4 �= 0, Δ3 = b1b2b3 − b3
2 − b1

2b4 = 0. (5.11)

(B) b1 = 0, b3 = 0, b4 < 0. (5.12)

Remark See Asada and Yoshida [3] for a complete discussion.

Furthermore, we shall draw our attention to the result of Liu [12]. He developed
an elegant criterion for a class of Hopf bifurcations by restricting his analysis
to “simple” Hopf bifurcations, where all the eigenvalues except a pair of purely
imaginary ones have negative real parts. For this reason, he could obtain a
useful criterion from the Routh–Hurwitz condition, which gives the necessary and
sufficient condition for all the eigenvalues of an nth-order characteristic equation to
have negative real parts. In this case, we consider the following theorem:

Theorem 5.5 The characteristic equation

P(λ) = λn + b1λ
n−1 + b2λ

n−2 + · · · + bn−1λ+ bn = 0 (5.13)

has a pair of pure imaginary roots and (n− 2) roots with negative real parts if and
only if

Δ1 = b1 > 0,Δ2 =
∣
∣
∣∣
b1 b3

1 b2

∣
∣
∣∣ > 0, Δ3 =

∣
∣
∣
∣∣
∣

b1 b3 b5

1 b2 b4

0 b1 b3

∣
∣
∣
∣∣
∣
> 0, . . . ,
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Δn−1 =

∣
∣
∣
∣∣
∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣

b1 b3 b5 b7 · · · 0 0
1 b2 b4 b6 · · · 0 0
0 b1 b3 b5 · · · 0 0
0 1 b2 b4 · · · 0 0
...
...
...
...
. . .

...
...

0 0 0 0 · · · bn 0
0 0 0 0 · · · bn−1 0
0 0 0 0 · · · bn−2 bn

0 0 0 0 · · · bn−3 bn−1

∣
∣
∣
∣∣
∣
∣
∣
∣
∣∣
∣
∣
∣
∣∣
∣
∣
∣
∣

= 0, bn > 0. (5.14)

Let us note, finally, that the condition (H2) of the Hopf bifurcation theorem is also
an important factor when we apply this theorem to nonlinear systems of differential
equations. This condition states that the real part of a pair of complex eigenvalues
is not stationary with respect to the parameter value μ at μ = μH . Fortunately, this
condition is equivalent to

Δn−1(μ)

dμ

∣
∣∣
∣
μ=μH

�= 0. (5.15)

Notice thatΔn−1 is a function of μ since every bi is a function of μ. For a complete
proof of this statement, see Liu [12].

5.2 Two Specific Examples: Lorenz and Rössler Systems

Lorenz was a pioneer in deterministic chaos. In his paper, Lorenz [13] discovered
that nonperiodic solutions could emerge in a nonlinear system of ordinary differen-
tial equations. In particular, he realized that small changes in initial conditions cause
large changes in long-term outcome in his model, showing the SDIC we introduced
in Definition 6.4 necessary to have a strange attractor.

The Lorenz system is a system of three differential equations as follows:

ẋ = −σx + σy, (5.16a)

ẏ = rx − y − xz, (5.16b)

ż = xy − βz, (5.16c)

where σ , r , and β are parameters. This system is algebraically simple: the right-
hand side of these equations has two nonlinear terms (xz and xy). However,
contrary to common sense at that time, the system produces a complex and strange
behaviour as shown in Fig. 5.2. In this case, we set the parameter values as
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Fig. 5.2 Lorenz attractor. (a) Three-dimensional phase space. (b) Projection on the x–y plane

(σ, r, β) = (10, 28, 3/8). In addition, it should be noted that we can observe various
types of dynamic behaviours, depending on the parameter values. For other values,
the system yields stable equilibrium points, stable limit cycles, period-doubling
bifurcations, and so on.2

The Rösller system is also a well-known system that produces chaotic motions
in continuous time. Rössler [17] investigated the following system:

ẋ = −y − z, (5.17a)

ẏ = x + ay, (5.17b)

ż = b + z(x − c), (5.17c)

where a, b, and c are parameters. Note that, in comparison with the Lorenz system,
the Rössler system has a simplified structure in that it takes a single quadratic
nonlinearity (xz) on the right-hand side of (5.17). When (a, b, c) = (0.1, 0.3, 12),
we can obtain the typical Rössler attractor, which is shown in Fig. 5.3. Depending
on the parameter values, the system yields a stable equilibrium point or a stable limit
cycle. Moreover, we can see period-doubling bifurcations when a specific parameter
is varied.

2For a thorough analysis of the Lorenz system, see Sparrow [21].
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Fig. 5.3 Rössler attractor. (a) Three-dimensional phase space. (b) Projection on the x–y plane

Immediate applications of the Lorenz and Rössler systems are rare in economic
dynamics. An interesting and valuable exception is Goodwin [8]. He developed his
own insight into modern capitalist economies by combining the ideas of Keynes,
Marx, and Schumpeter and proposed several models in his book. For example, he
examined the following system:

v̇ = −0.5u+ 0.15v − 0.3z, (5.18a)

u̇ = 0.5v, (5.18b)

ż = 0.01 + 85z(v − 0.05). (5.18c)

Figure 5.4 shows the emergence of a chaotic attractor in the Goodwin model. We
can say with fairly certainty that this system is a modified Rössler model. This is
because the Goodwin model has the same quadratic term (zv) in the right-hand side
of (5.18c) as in the Rössler system. Owing to this similarity, the chaotic attractor in
the Goodwin system is very similar to the Rössler attractor.

5.3 Shilnikov’s Theorem

Numerous efforts have been made to investigate the chaotic behaviour of nonlinear
dynamical systems of ordinary differential equations from the analytical point of
view. The most famous transition from order to chaos is the Feigenbaum cascade,
or period doubling cascade, that we have analysed in Chap. 2. Among them, it is
worthwhile to take a brief look at the Shilnikov theorem.
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Fig. 5.4 Chaos in the Goodwin model. (a) Three-dimensional phase space. (b) Projection on the
v–u plane

Theorem 5.6 (The Shilnikov Theorem3) Consider the system

ẋ = ρx − ωy + P(x, y, z), (5.19a)

ẏ = ωx + ρy +Q(x, y, z), (5.19b)

ż = λz + R(x, y, z), (5.19c)

where P , Q, and R vanish together with their first derivatives at the equilibrium
point E = (x∗, y∗, z∗). Let us assume that one of the orbits, denoted by Γ0, is
asymptotic to E as t → ±∞, being bounded away from any other singularity (Γ0
is then a homoclinic connection). Then, if

|λ| > |ρ| > 0, λρ < 0, (5.20)

every neighbourhood of the orbit Γ0 contains a countable set of unstable periodic
solutions of saddle type.

From (5.20), there are two essential conditions for the application of the
Shilnikov theorem. For the time being, we consider the case of λ > 0. First,

3The original theorem was given by Shilnikov [19]. This version is adopted from Arneodo et al.
[1] and Silva [20].
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Fig. 5.5 Homoclinic orbit in
the Shilnikov scenario

the system has a saddle-node equilibrium point, which means the existence of
a one-dimensional unstable manifold and a two-dimensional stable manifold.
This condition is easily examined from the local point of view. Second, the
system has a homoclinic orbit, which connects an equilibrium point E to itself;
limt→±∞ Γ (t) = E and Γ (0) �= E. This condition prescribes a global nature of
the system. The combination of these two conditions implies topological conjugacy
in a neighbourhood of the homoclinic orbit with the horseshoe dynamics that we
introduced in Sect. 6.2.1.

A graphical presentation of the Shilnikov conditions is shown in Fig. 5.5. After
moving away from the equilibrium point E along the one-dimensional unstable
manifold, the trajectory Γ0 returns to the identical equilibrium point on the two-
dimensional stable manifold.4

As a numerical example of the occurrence of chaos in the Shilnikov scenario,
consider the following system of three differential equations:

ẋ = y, (5.21a)

ẏ = −x + yz, (5.21b)

ż = −z+ xy + 0.39, (5.21c)

which was reported in Sprott [23]. This system has a saddle-node equilibrium at
point (0, 0, 0.39), with eigenvalues λ1 = −1 and λ2,3 = 0.195 ± 0.980803i.
This implies that the system satisfies the local conditions of the Shilnikov theorem:
|λ| > |ρ| > 0 and λρ < 0. As it is difficult to detect the existence of a homoclinic
orbit from an analytical point of view, we show the numerical simulations of the
initial value problem given by system (5.21). By setting the initial conditions as

4If λ < 0, we have to consider the equilibrium point with a one-dimensional stable manifold and
a two-dimensional unstable manifold. In this case, the direction of arrows on the homoclinic orbit
Γ0 is opposite to that in Fig. 5.5.
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Fig. 5.6 The chaotic attractor of system (5.21). (a) Three-dimensional phase space. (b) Projection
on the x–y plane

(x(0), y(0), z(0)) = (0.1, 0.1, 0.3), we can verify that the system displays a chaotic
motion as shown in Fig. 5.6.

Macroeconomic applications of the Shilnikov theorem can be found in several
works. Lorenz [14] investigated two macroeconomic models. One is a business
cycle model with inventories; another is a linear multiplier-accelerator model
with nonlinear government activity. Sportelli [22] developed a Harrodian-type
macrodynamic model by considering the interactions among the actual rate of
growth, the warranted rate of growth, and the fraction of income saved. Tsuzuki
et al. [24] proposed an investment model and, finally, Bella et al. [4] examined the
dynamics of an endogenous growth model with human capital accumulation in the
dynamic optimization framework.

5.4 Delay-Differential Equations

This section considers two nonlinear systems of delay-differential equations investi-
gated using numerical simulations: the Mackey–Glass system [16] and the Shibata–
Saito system [18]. While the former investigated a physiological problem, the latter
examined the population dynamics of two competing species with a time-delayed
saturation.

It is well known that deterministic chaos occurs in the continuous-time frame-
work only when the dimension of the dynamical system is equal to or more than
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Fig. 5.7 Chaotic motion of the Mackey–Glass system. (a) Time series. (b) Phase plot

three. That is, we cannot observe chaotic motions in one- and two-dimensional
systems of autonomous ordinary differential equations (cf. Sect. 2.4).

If once we turn our attention towards delay-differential equations, the situation
is completely different. We can observe chaotic fluctuations in the delay-differential
equation with one variable. In fact, Mackey and Glass [16] provided an interesting
model by using the following system:

ẋ(t) = ax(t − τ )
1 + xn(t − τ ) − γ x(t), (5.22)

where a > 0, τ > 0, and γ > 0. Figure 5.7 shows chaotic motion of (5.22) with
a = 3.6, τ = 1, n = 10, and γ = 2.

The main reason for the emergence of chaotic fluctuations is that the Mackey–
Glass system has an infinite dimension. Its solution space has an infinite dimension,
with a continuous function on the closed interval [−τ, 0] as the initial condition.
Roughly speaking, we need an infinite number of initial conditions to solve the
initial value problem of (5.22).

We shall now consider the following system of integro-differential equations:

ẋ(t) = aym(t)

1 + [ym(t)]n − γ x(t), (5.23)

where

ym(t) =
∫ t

−∞
ω(s)x(s)ds, (5.24)

ω(s) =
(m
τ

)m (t − s)m−1

(m− 1)! e
−(m/τ)(t−s), τ > 0. (5.25)
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Note thatm is a positive integer. Since
∫ t
−∞ ω(s)ds = 1, we can see that the function

ω(s) is a weighting function, which is identical with a density function with the
mean,τ , and the variance, τ 2/m.

If m = 1, it is the exponential distribution. For m ≥ 2, the functional shape of
ω(s) has a one-humped curve with a maximum value at s = t − (m− 1)τ/m when
t is fixed. Moreover, we can obtain ym(t) = x(t − τ ) if m → ∞. This is because
the function ω(s) becomes the Dirac delta function that appears as a sharp peak at
t = τ whenm→ ∞. Thus, we reasonably conclude that system (5.23) is equivalent
to the Mackey–Glass system (5.22) when m→ ∞.

We shall now look at another subject related to the Mackey–Glass system. Here,
we seek to transform the Mackey–Glass system into the tractable system by using
MacDonald’s linear chain trick.5 Let us define new variables:

yj (t) =
∫ t

−∞

(m
τ

)j (t − s)j−1

(j − 1)! e
−(m/τ)(t−s)x(s)ds, j = 1, 2, . . . ,m. (5.26)

By differentiating (5.26) with respect to t and using (5.23), we obtain the following
system of ordinary differential equations:

ẋ(t) = aym(t)

1 + [ym(t)]n − γ x(t), (5.27a)

ẏ1(t) = (m/τ)[x(t)− y1(t)], (5.27b)

ẏj (t) = (m/τ)[yj−1(t)− yj (t)], j = 2, 3, . . . ,m. (5.27c)

Consequently, this result means that we can transform the Mackey–Glass system
into the system of (m+1)-dimensional ordinary differential equations. In the course
of the above argument, we arrive at the conclusion that the Mackey–Glass system
corresponds to the system of infinite-dimensional ordinary differential equations by
means of MacDonald’s chain trick. This property is fundamental for the generation
of complex dynamics.

By using computational approaches, Farmer [7] extensively examined the prop-
erties of the chaotic attractors observed in the Mackey–Glass system. Specifically,
he studied the time series, power spectra, the dimension of chaotic attractors, the
spectrum of Lyapunov exponents, and so forth. In his paper, he kept the parameters
a, n, and γ fixed at a = 0.2, n = 10, and γ = 0.1. On the other hand, the delay
time τ is a variable parameter. For example, when τ = 17, he found that the largest
Lyapunov exponent of the chaotic attractor is 0.007 and the fractal dimension is
2.13.6

5On this point, see MacDonald [15].
6For a mathematical explanation of the Lyapunov exponents and fractal dimension, see Sects. 6.2
and 6.3, respectively.
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Fig. 5.8 Chaotic attractor of the Shibata–Saitô system

Finally, we turn to the Shibata and Saitô system, and we consider the dynamics
of the system of delay-differential equations with two variables. Shibata and Saitô
[18] investigated the following system:

ẋ(t) = [ε1 − a11x(t − α1)− a12y(t)]x(t), (5.28a)

ẏ(t) = [ε2 − a21x(t)− a22y(t − α2)]y(t). (5.28b)

By setting a11 = a22 = 2, a12 = a21 = 1, ε1 = ε2 = 2, τ1 = 1.5, and τ2 = 0.9
for the parameters, we obtain Fig. 5.8, which shows the emergence of a chaotic
attractor.

The analysis of time lags is fundamental for economics. In particular, the
existence of time lags involved in the policy process has a large effect on
macroeconomic stability, from both the practical and theoretical points of view.
Many economists found the occurrence of complex business cycles by means of
numerical simulations. For more information, see Fanti and Manfredi [6], Yoshida
and Asada [25], and De Cesare and Sportelli [5].
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own.
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Chapter 6
Chaos

Giuseppe Orlando, Ruedi Stoop, and Giovanni Taglialatela

6.1 Chaos

As mentioned, the Logistic map exhibits an irregular behaviour that, according to the
following definitions, we call chaotic.

Definition 6.1 (Closure) Let S be a subset of R�. The closure of S, denoted by S,
is the set of points x such that every open ball centred at x contains a point of S.

Definition 6.2 (Dense Set) LetD ⊂ S be;D is dense in S if D = S.

Example 6.1 The set of rational numbers Q is dense in R.

Definition 6.3 (Topological Transitivity) The map f : S → S is said to be
topologically transitive if for any pair of open sets U,V ⊂ S, there exists n ∈ N

such that f ◦n(U) ∩ V �= ∅.

Remark 6.1 The idea is that a topologically transitive map has points that move
under iteration from one arbitrarily small neighbourhood to any other. This means
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that the dynamical system cannot be decomposed into two disjoint open sets that
are invariant under the map.

Definition 6.4 (Sensitive Dependence on Initial Conditions (SDIC)) f : S → S

has sensitive dependence on initial conditions if there exists δ > 0 such that, for any
x ∈ S and any neighbourhoodN of x, there exists y ∈ N and n ≥ 0 such that

∣
∣f ◦n(x)− f ◦n(y)

∣
∣ > δ.

Remark 6.2 Sensitive dependence on initial conditions for a map means that if there
exist points arbitrarily close to x, at least one of those will eventually move away
from x by at least δ under iteration of f . Such a behaviour may magnify small errors
caused by round-off errors in computations.

Example 6.2 The Logistic map possesses sensitive dependence on initial conditions

for μ > 2 + 1+√
5

2 .

A popular definition of chaos is as follows.

Definition 6.5 (Chaos) The map f : S → S is said to be chaotic on S if

1. f is topologically transitive,
2. the set of the periodic points is dense in S, and
3. f has sensitive dependence on initial conditions.

Remark 6.3 Banks et al. [3] have shown that the first two conditions are sufficient
for defining chaos when S is not a finite set.

Theorem 6.1 (Banks et al. [3]) If the map f : S → S is topologically transitive
and is dense in S, then f has sensitive dependence on initial conditions.

Li–Yorke showed that if a system has a period 3 orbit, it has chaotic behavior.

6.2 Measuring Sensitive Dependence on Initial Conditions

Now, let us consider the mapping f : R� → R
�, the recursive expression

xn+1 = f (xn), (6.1)

and two initial points x0 − y0 close to each other such that

x0 − y0 = Δ0. (6.2)
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We denote iterations from the first one to the nth one as

x1 − y1 = f ◦1(x0)− f ◦1(y0), (6.3)

...

xn − yn = f ◦n(x0)− f ◦n(y0),

their linear approximations as

x1 − y1 ≈ df ◦1(x0)

dx
Δ0, (6.4)

...

xn − yn ≈ df ◦n(x0)

dx
Δ0,

and by J 1, . . . J n the corresponding n Jacobian matrices evaluated in x0, i.e.,

J k = df ◦k(x0)
dx

, k = 1, . . . , n.
Assume that J n has n real eigenvalues Λn1,Λ

n
2, . . . ,Λ

n
� , ordered in such a way

that Λn1 ≥ Λn2 ≥ . . . ≥ Λn� .
Definition 6.6 (Lyapunov Exponents) The real numbers λ1, λ2, . . . , λ� defined
by

λi = lim
n→∞

1

n
log2(Λ

n
i ) (6.5)

are called Lyapunov exponents. Alternatively, often natural logarithms are used in
this definition.

Remark 6.4 Notice that if we consider the trajectories departing from x0 and y0,
then we have

yn − xn = f ◦n(y0)− f ◦n(x0) � An(y0 − x0). (6.6)

Therefore, the leading Lyapunov exponent is the rate at which nearby trajectories
diverge (see, for example, [21] and [5]). This indicates how fast predictability of the
system is lost. For this reason, the Lyapunov exponents are often used as a measure
of chaos.

Definition 6.7 (Lyapunov Spectrum) The set of all Lyapunov exponents is called
the Lyapunov spectrum, and the sign of each exponent determines whether stretch-
ing or folding dominates, in the direction associated with the exponent.

Example 6.3 Let us consider the Logistic map with parameter μ = 2.5. For a one
dimensional map f , the eigenvalue of the jacobian J 1 in x0 is given by f ′(x0),
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Table 6.1 Finite time
Lyapunov exponent
approximation λ(n) of the
Logistic map evaluated over n
iterations. For n→ ∞, the
Lyapunov exponent is
positive and close to 1.
Source H. W. Lorenz [14]

t xt f ′(xt )
∏n
t=1 f

′(xt ) λ(n)

1 0.600 0.799 0.799 −0.321

2 0.960 3.680 2.944 0.778

3 0.153 2.771 8.158 1.009

4 0.520 0.160 1.307 0.096
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

21 0.262 1.899 0.178 × 107 0.989

22 0.774 2.195 0.392 × 107 0.995
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

99 0.221 2.225 0.598 × 107 0.999
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Fig. 6.1 (Upper panel) Bifurcation diagram and (lower panel) corresponding Lyapunov exponent
of the Logistic map versus μ

and the eigenvalue of J n is the product of the derivatives along the orbit: Λn =
f ′(x0) · · ·f ′(xn−1). If we choose x0 = 3

5 , we have f ′(x0) = 1
2 . As x0 is a fixed

point, we have Λn = 0.5n. The Lyapunov exponent is λ = log2(0.5
n)/n =

n
n

log2
1
2 = − log2(2) = −1, which means that the orbit rapidly converges to the

fixed point.
In Table 6.1 are listed some Lyapunov exponents of the Logistic map, while

in Fig. 6.1 we plot the bifurcation diagram of the Logistic map and the Lyapunov
exponent versus parameter μ.

Other, earlier, measures of the complexity of behaviour related to the Lyapunov
exponents are different notions of topological entropy.
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6.2.1 Stretching and Folding

Let us start with an example of a function called the Horseshoe map that works
by stretching and folding the space. For brevity, we will rely only on the graphic
illustration, without going into details. Figure 6.2 provides a visual example on
how the Horseshoe map transforms the square of vertices, A, B, C, and D into a
rectangle and then folds it. On this horseshoe shape, the Horseshoe map carries out
a stretching and folding again. The grey area represents how much of the starting
set is preserved under the iterations

As just seen, there are (functional) transformations that stretch, bend, and
contract space. The strange attractors are precisely the result of such continuous
spatial deformations, and Lyapunov exponents are useful in measuring them.
Obviously, when we talk about attractors we are referring to dynamic dissipative
systems, therefore if, for example, our starting point is in a circle of radius r0, the
immediately following phase will be projected into an object of different shape and
orientation (see Fig. 6.3).

A

A

AB

B

B

C

C

C

D

D

D

Fig. 6.2 The horseshoe map transforming the space

x
r0

r2

r1

(x)

Fig. 6.3 Stretching and contracting the space along two dimensions
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Assuming that this object is an ellipse with axis r1 and r2, we denote r1 = μ1r0
and r2 = μ2r0, that is,

μi = ri

r0
, i = 1, 2.

If the transormation is linear, after n steps, we will have an ellipse with axis r1,n and
r2,n, so that ri,n = μni r0 or equivalently, or

log2 μi = 1

n
log2

ri,n

r0
;

In general, if the limit

log2 μi = lim
n→∞

1

n
log2

ri,n

r0

exists and is finite, log2 μi equals the Lyapunov exponent and μi is called the
Lyapunov number.

Remark 6.5 Exponents with a negative sign indicate a contraction of the starting
space, while those with a positive sign indicate a stretch. As the direction of
stretching and contraction changes from time to time, this implies a continuous
bending.

Remark 6.6 The stretch reflects the divergence of two orbits originally close to
each other and therefore the sensitive dependence on initial conditions (SDIC).
Therefore, Lyapunov’s exponents indicate how quickly the points move away from
each other.

At this point, we can give a simplified definition of a chaotic system as follows:

Definition 6.8 (Chaotic System - Lyapunov Exponents) A dissipative dynamic
system is chaotic if its largest Lyapunov exponent is positive.

6.3 Measures on Attractors

For one-dimensional maps, chaos can occur on a set of an entirely trivial support.
Examples are the fully developed (i.e., their peak is at height 1) tent maps: they
are chaotic on the whole unit interval, but the distribution of the support of the
motion is flat (and thus differentiable). In higher dimensions, it makes, however,
generally sense to characterize chaotic attractors (i) according to their geometric
properties, (ii) regarding their information properties (i.e., the frequencies with
which trajectories visit various parts of the attractor), and (iii) with respect to the
dynamics occurring on the attractors.
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6.3.1 Geometry of Attractors

Let us denote by Br(u) the open ball centred in u with radius r:

Br(u) =
{
x ∈ R

�
∣
∣
∣ |x − u| < r

}
. (6.7)

Definition 6.9 (Box-Counting Dimension) GivenA ⊂ R
�, consider the minimum

number N(ε) of balls of radius ε > 0 needed to cover A, and denote it by N(ε).
Then, the box-counting dimension is defined by

DBC(A) = lim sup
ε→0

logN(ε)

log(1/ε)
. (6.8)

Example 6.4 Let I be an interval of R, then DBC(I) = 1.
Let S be a square in R

2, then DBC(S) = 2.

Example 6.5 (Sierpinski Triangle) Given an equilateral triangle of side length l,
divide it into four equilateral triangles of side length l/2, and erase the central part.
Divide each of the three remaining triangles into four equilateral triangles of side
length l/4 and erase the central parts. Repeating indefinitely this process, the limit
set is a fractal called Sierpinski triangle (see Fig. 6.4). It is easily seen that the box-
counting dimension of the Sierpinski triangle is log 3

log 2 .

As an alternative, non-uniform open balls of radius less than < ε can be used
to cover the attractor instead of using balls of the same radius.

Definition 6.10 (Lyapunov Dimension) Given an ordered set of Lyapunov expo-
nents such that λ1 ≥ λ2 ≥ . . . ≥ λd the Lyapunov dimension is

DL = k + λ1 + λ2 + . . .+ λd
|λk+1| , (6.9)

where k is the maximum value of i such that ξi = λ1 + λ2 + . . .+ λi > 0.

. . . . . .

Fig. 6.4 The Sierpinski triangle
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Remark 6.7 (Kaplan–Yorke Conjecture) The Kaplan–Yorke conjecture states that
D1 = DL for “typical systems,” where D1 is the ‘information dimension’ [16].

Definition 6.11 (Hausdorff Measure) Let us consider a compact set X ⊂ R
�; for

each real number d ≥ 0, we define the d-dimensional Hausdorff measure of X as

Hd(X) = lim
ε→0

inf
(ui), (ri)

∞∑

i=1

rdi , (6.10)

where the infimum is taken on the set of the sequences (ui) of points of X and
positive numbers (ri ) such that

X ⊂
∞⋃

i=1

Bri (ui) and ri < ε for all i. (6.11)

Definition 6.12 (Hausdorff Dimension) The Hausdorff dimension of a compact
set X is defined by

DH(X) = inf
{
d ≥ 0

∣
∣∣ Hd (X) = 0

}

= sup
{
d ≥ 0

∣
∣
∣ Hd (X) = +∞

}
,

where we use the convention inf∅ = +∞.

Remark 6.8 The Hausdorff dimension of many sets is listed in [1]. For example,
the set of periodic points of the Logistic map with μ = μc (see Sect. 3.1.2) has a
Hausdorff dimension of 0.538.

There exist a number of distinct and only vaguely related concepts of dimension
in mathematics and physics. Whereas for mathematics, the linear algebra notion
of dimension as the maximal number of linear independent vectors (a positive
integer value) is prevalent, in physics it is the number of degrees of freedom of a
motion. It was the discovery of the mathematicians Hausdorff and Cantor that in
this case a probabilistic notion of dimension is preferable and that such a dimension
can be fractal, i.e., can be non-integer.

Definition 6.13 (Fractal Dimension) An object is said to have a fractal dimension
if it’s (generally: Hausdorff) dimension is non-integer.
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Definition 6.14 (Strange Attractor) In loose terms, Strange attractors are attrac-
tors specific to chaotic systems that possess the following properties:

• They attract trajectories (at least those which start from points close to them).
• They are of a SDIC type, i.e., if one takes a pair of initial points close to each

other, and if the trajectories they originate are attracted by the strange attractor,
they will diverge more and more with time.

• They have a fractal dimension.

6.3.2 Measures of Information

The box-counting dimension of Definition 6.9 can be difficult to compute. An easier
way of computing fractal dimensions is the correlation dimension approach outlined
in the following.

6.3.2.1 Correlation

Definition 6.15 (Heaviside Function) The Heaviside or step function is defined as
follows:

H(y) =
{

1 if y > 0,

0 otherwise.

Definition 6.16 (Correlation Integral [14]) The correlation integral is a spatial
correlation measure aiming to measure the degree of “kinship” between two
different points on the (strange) attractor. This integral is defined for m sub-series
of the orbit γ as

C(r) = lim
N→∞

1

N2

N∑

i,j=m
H (r − ∥∥[m]xi − [m]xj

∥
∥) , i �= j, r � 0 (6.12)

with [m]xi = (xi, xi−1, . . . , xi−m+1).

An estimator of the correlation integral is the correlation sum.

Definition 6.17 (Correlation Function [2]) Let γ = {x1, x2, . . . } be an orbit
of the map f on R

n. Given r > 0, we define the correlation function Cγ (r) as

Cγ (r) = lim
N→+∞

1

N2

N∑

i,j=1

H(r − |xi − xj |
)
.
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Hence, Cγ (r) is approximately the proportion of pairs of orbit points having
distance less than r .

Remark 6.9 Clearly, Cγ (r) increases from 0 to 1, as r increases from 0 to +∞.

Definition 6.18 (Correlation Dimension [7, 9]) The correlation dimension is
defined as

DC(γ ) = lim
r→0

log(Cγ (r))

log(r)
, (6.13)

if such a limit exists. For this reason, if DC(γ ) = d , for r > 0 “small”, one has that
Cγ (r) ≈ rd .

Remark 6.10 As shown in [19], the correlation dimension defined in Eq. (6.13) is a
lower bound of the Hausdorff dimension.

6.3.2.2 Entropy

Another indicator of the amount of information produced on an attractor is the
Kolmogorov–Sinai (KS) entropy (or just Kolmogorov entropy), the useful indicator
of chaos. In fact, it was shown in, for example, [21] that the entropy value KS
converges to a positive value for chaotic time series.

Definition 6.19 (Kolmogorov–Sinai Entropy [14]) Let us consider a time series
{xt}T1 , partition the phase space into hypercubes with side lengths ε, and denote the
resulting n cubes by ci for i = 1, . . . , n (see Fig. 6.5). Let us start with an initial
value x(t1) and repeat the measurements at fixed points in time t1+δ, t1+2δ, . . . , T .
The joint probability that the trajectory starting at x(t1) is in cube c1 at time t1 + δ,
in cube c2 at time t1 + 2δ, . . . , and in cube cn at the final point T is denoted by
ρc1,c2,...,cn .

Fig. 6.5 A partition of the
phase space in the plane with
hypercubes

x

y
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The Kolmogorov–Sinai entropy is then defined as

KS = − lim
ε→0

lim
T→∞ lim

δ→0

1

T δ

∑

c

ρc1,c2,...cn logρc1,c2,...,cn . (6.14)

Definition 6.20 (An Approximation of the Kolmogorov–Sinai Entropy) Since
Eq. (6.14) is difficult to compute, Grassberger and Procaccia [8] suggested to
approximate it through the correlation integral. In particular, they denoted with
Cm(ε) the correlation integral of a time series with embedding dimension m (i.e. a
measure indicating the smallest dimension required to embed an object, see Chapter
7). Thus, the approximation of the Kolmogorov–Sinai entropy is

KS2 = lim
m→∞ lim

ε→0

1

δ
log

Cm(ε)

Cm+1(ε)
. (6.15)

Remark 6.11 It was shown by Grassberger and Procaccia [8] that KS2 provides a
good estimate of the Kolmogorov–Sinai entropy, where KS2 ≤ KS.

Remark 6.12 According to Pesin’s theorem [18], the sum of all positive Lyapunov
exponents gives an estimate of the Kolmogorov–Sinai entropy. So, if KS > 0, then
the highest Lyapunov exponent is positive and the system is chaotic [14].

6.3.3 Thermodynamic Formalism: The Ring That Ties
(Almost) All

The reader might now wonder in what sense the different concepts of entropy
would—if correctly evaluated—yield the same results. This is not the case. The
analysis [4, 17, 27] shows that all of them can be embraced by a two-parameter
family of sampling procedures described by a generalized partition function. For the
one-dimensional case (the generalization to higher dimension is straightforward),
the generalized partition function has the form

GZ(q, β, n) =
∑

j∈(1,...,M)n
p
q

j l
β

j ,

where pj is the probability of falling into the j th region of the partition, given the
partition level n, and lj describes the size of this region (for an illustration focusing
on the size or length scales, see Fig. 6.6).

In the symbolic dynamics sense, symbol j indicates the history of each contri-
bution to the sum. The sum has the form of a Boltzmann sum, if we introduce local
scalings as lj = e−nεj and pj = lαj . To this Boltzmann sum, we associate the
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Fig. 6.6 First two levels
of the dynamic length scale
partition used for the
dynamical spectrum S(ε)

f(x)

x0
0

1

1

l (1)
l (2)

generalized free energy

GF(q, β) = lim
n→∞

1

n
logGZ(q, β, n) .

To the generalized free energy, we associate a generalized entropy GS
(〈α〉, 〈ε〉)

via the usual Legendre transformation, leading to 〈ε〉 = − ∂
∂β
GF(q, β) and 〈α〉 =

− ∂
∂q
GF(q,β)

〈ε〉 .

The generalized entropy function GS, presented in Fig. 6.7 for a ternary Cantor
set which measure, is, however, often degenerate. For fully unfolding this function,
we need three scales; if only two scales are present, the function collapses into
a sheet (over a generally non-straight line support in the (α, ε)-plane). In the
“ideal” case, the entropy function is a convex hypersheet (of dimension 2 in the
described (α, β)-case). The ideal case allows us to explain how various better known
entropy functions— like the dimension spectrum f (α) [10] or the dynamical scaling
functions φ(λ)[17] or g(Λ) [15] and related characterizations [6, 11, 20, 29]—
emerge from the generalized entropy function by conditioning, e.g., by setting
q = 0, which yields the “dynamical spectrum” of “local” Lyapunov exponents
S(ε), by looking for the zero of the free energy F(q, β), which yields the spectrum
of local dimensions f (α), or by setting β = 0, which leads to the less prominent
spectrum S(α). Similarly, we arrive at the simpler case with only one variable if
probabilities scale as the lengths do.

To simplify the discussion, we concentrate on the characterizations by S(ε) and
f (α) that exemplify the forms that specialized entropy functions generally assume.
In Fig. 6.8, we show the dynamical spectrum S(ε) of two realizations of the tent
map (full lines). These spectra are easy to understand as follows. The leftmost
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α

ε
1.4 2.0

0.6

0.7

Fig. 6.7 Generalized entropy function for a generalized partition function of a non-uniform three-
scale Cantor set with measure (contour lines of distance 0.1, numerical approximation). By
conditioning, partial entropy functions emerge from it, e.g., S(α) from setting β = 0 (not shown),
the dynamical spectrum of “local” Lyapunov exponents S(ε) (short dash-dotted), or g(Λ) (dashes),
and the dimension spectrum f (α) (long dash-dotted). The maximum at log(3) of the function is
the topological entropy (location indicated by a circle); the maxima on the borders are at log(2).
Corners (ideally, points) at zero entropy indicate the pure states corresponding to strings of only
one symbol

value (equal to zero) of a convex entropy function is obtained from sampling only
the most probable single event and the rightmost from the least probable single
event. Natural sampling of the process corresponds to the (normally single) point
of the entropy graph that touches the diagonal, cf. Fig. 6.8. In the case of the
characterization by local dimensions, this corresponds to the natural sampling
of the probability, yielding as the average the information dimension. In the case
of the dynamical description, the Lyapunov exponent of the process is obtained.
A finite-time prediction of this value will persist when the sampling time (or the
partition depth) goes to infinity. The maximal entropy in the dynamical description
is obtained from β = 0 and corresponds to the topological entropy (in the case
of dimensions, to the Hausdorff dimension). It can be seen that in this case, all
partition elements are treated with weight equal to one, irrespective of their natural
probability.

For fully developed asymmetric tent maps, we always obtain convex “dynamical”
entropy functions S(ε) (cf. Fig. 6.8). The associated invariant density is always
flat; therefore, the dimension spectrum f (α) is trivial (f (α) = 1 for α = 1
and zero otherwise). The fully developed (a = 4) parabola shows a “true”
violation of convexity, which is interpreted as a phase transition as follows. S(ε)
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Fig. 6.8 Entropy functions (ε) of different systems. In the case of the tent map, the entropy
depends on the map’s skewness, which is shown by two examples (full lines). As a comparison,
S(ε) of the quadratic parabola at a = 4, computed for a finite level of the partition depth n (shorter
dashes) and asymptotically (longer dashes), is shown. In all functions, open circles mark the
topological entropy, and full circles mark the Lyapunov exponent (for the parabola, the topological
entropy and the Lyapunov exponent coincide)

converges asymptotically in n to a graph of triangular form with corner points,(
log(2), 0

)
,
(
log(2), log(2)

)
, and
(
log(2), log(2)

)
, cf. Fig. 6.8. The dimension spec-

trum f (α) assumes again the triangular shape (of expression f (α) = 2α − 1).
Technically, this violation of convexity is generated from the non-hyperbolicity
of the map (in contrast, tent maps are hyperbolic). Non-hyperbolicity is generally a
substantial nuisance due to their bad convergence properties, but in natural systems
such a complication is generically unavoidable. The developed framework also
explains under what conditions phase transitions can be observed in some more
specialized entropy functions and when they are not observable [22, 23, 28]. These
examples illustrate the wide range of observed results that emerge from different
statistical descriptions of complex behaviour. Last but not least, if we have a system
with global escape (e.g., from a repeller), the entropy function moves away from the
diagonal, where the distance to the diagonal provides a measure for the escape rate.

The aforementioned multivariate account can also be applied for the description
of a whole range of seemingly unrelated additional effects, where, e.g., a jump
measure captures in an elegant way the diffusive behaviour on a grid or lattice
of cells (cf. [24–26]).

For stochastic systems, Jayawardena et al. [12] introduced a measure that is more
robust to noise than the KS correlation entropy.
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Definition 6.21 (Modified Correlation Entropy (MCE)—Jayawardena et
al. [12]) Given the correlation sum computed for two values of the embedding
dimension, e.g., m and m+ 2, the modified correlation entropy is

KS3 = lim
m→∞ lim

ε→0

1

2δ
log

Cm(ε)

Cm+2(ε)
+ 1

2δ
log
m− d logCm(ε)

d log ε
m−DC . (6.16)

In the following algorithm, the information dimension of the Hénon attractor is
approximated.

After relaxation on the attractor, NT = 10,000 attractor points are sampled.
Around NP = 20 points on the attractor, the number of data points that fall into
neighbourhoods of logarithmically chosen radii is counted and averaged. Then, the
slope of a log–log plot of the “mass” as a function of the shell radius yields an
approximation of the fractal information dimension.

In contrast, covering the attractor with equally sized boxes that contain at least
one point approximates the topological (Hausdorff) dimension via the slope of
a log–log plot of the numbers of boxes versus size. In this way, the two most
significant fractal dimensions of the fractal dimension spectrum f (α) can be
obtained.

(*Generation of 10000 data points of the Henon attractor,
after 40000 attractor relaxation steps*)

hen[{x_,y_}]:={-1.4 x^2+y+1,0.3 x};
Nest[hen,{0.1,0.1},20000];
BB=NestList[hen,Nest[hen,{0.1,0.1},40000],60000];

(*Computational speed-up by converting real into integer data*)

aa=Table[Round[1000*BB[[j]][[1]]+1000],{j,1,60000}];

(*Set-up: Data structure, distance function,
NP local neighbourhoods to consider*)

b[i_,n_]:=Table[aa[[i+j]],{j,0,n-1}];
Dis[i_,j_]:=Max[Abs[b[i,3]-b[j,3]]];
Pu=Table[Random[Integer,{1,1000}],{i,1,20}];
NT=10000;NP=20;

(*Counting neighbours within logarithmically placed
neighbourhood shells*)

Anzneig[jj_,r_]
:= Module[{},i=0;

Do[{If[Dis[jj,k]<r,i+=1 ,]},{k,1,NT}];
v=(i-1)/NT;Return[v];

aaa=Table[{nn*Log[2],{p=0;
Do[{Anzneig[Evaluate[Pu[[ii]]],2^(nn)],p+=v},{ii,1,NP}];
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Log(P(ε))

Log(ε)
−10 0

Fig. 6.9 Log–log curves for Hénon’s dissipative attractor using an embedding dimension of 3.
The slope approximates the fractal information dimension of the attractor quite well (df ≈ 1.26)

(*Interpolation of relevant data, where the slope
is the fractal dimension.
The non-saturating interval is chosen to be 1-15*)

Log[N[p/NP]]}},{nn,1,15}];

bbb=Partition[Flatten[aaa],2];
ListPlot[bbb,Frame->True];
Fit[bbc, {1, x}, x];

Using an embedding dimension of 3, the slope of the fit to the log–log curve
yields an approximation of the fractal information dimension of the attractor of dI ≈
1.26 (see Fig. 6.9).

References

1. List of fractals by Hausdorff dimension—Wikipedia (2019). https://en.wikipedia.org/wiki/
List_of_fractals_by_Hausdorff_dimension. Accessed 31 Jul 2019

2. Alligood, K., Sauer, T., Yorke, J.: Chaos: An Introduction to Dynamical Systems. Textbooks
in Mathematical Sciences. Springer, New York (2000)

3. Banks, J., Brooks, J., Cairns, G., Davis, G., Stacey, P.: On Devaney’s Definition of Chaos.
Amer. Math. Monthly 99, 332–334 (1992). https://doi.org/10.2307/2324899

4. Beck, C., Schögl, F.: Thermodynamics of Chaotic Systems: An Introduction. Cambridge
Nonlinear Science Series. Cambridge University Press, Cambridge (1993). https://doi.org/10.
1017/CBO9780511524585

5. Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G., Vattay, G.: Lyapunov exponents. In: Chaos:
Classical and Quantum, chap. 6. Niels Bohr Institute, Copenhagen (2012). http://ChaosBook.
org/version14ChaosBook.org/version14

6. Eckmann, J.P., Procaccia, I.: Fluctuations of dynamical scaling indices in nonlinear systems.
Phys. Rev. A 34, 659–661 (1986). https://doi.org/10.1103/PhysRevA.34.659

https://en.wikipedia.org/wiki/List_of_fractals_by_Hausdorff_dimension
https://en.wikipedia.org/wiki/List_of_fractals_by_Hausdorff_dimension
https://doi.org/10.2307/2324899
https://doi.org/10.1017/CBO9780511524585
https://doi.org/10.1017/CBO9780511524585
http://ChaosBook.org/version14ChaosBook.org/version14
http://ChaosBook.org/version14ChaosBook.org/version14
https://doi.org/10.1103/PhysRevA.34.659


6 Chaos 103

7. Grassberger, P., Procaccia, I.: Characterization of strange attractors. Phys. Rev. Lett. 50, 346–
349 (1983)

8. Grassberger, P., Procaccia, I.: Estimation of the Kolmogorov entropy from a chaotic signal.
Phys. Rev. A 28, 2591–2593 (1983). https://doi.org/10.1103/PhysRevA.28.2591

9. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Phys. D 9, 189–
208 (1983)

10. Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I., Shraiman, B.I.: Fractal measures and
their singularities: the characterization of strange sets. Phys. Rev. A 33, 1141–1151 (1986).
https://doi.org/10.1103/PhysRevA.33.1141

11. Horita, T., Hata, H., Mori, H., Morita, T., Tomita, K.: Singular local structures of chaotic
attractors due to collisions with unstable periodic orbits in two-dimensional maps. Progr. Theor.
Phys. 80(6), 923–928 (1988). https://doi.org/10.1143/PTP.80.923

12. Jayawardena, A., Xu, P., Li, W.K.: Modified correlation entropy estimation for a noisy chaotic
time series. Chaos 20(2), 023104 (2010)

13. Li, T.Y., Yorke, J.A.: Period three implies chaos. Am. Math. Mon. 82(10), 985–992 (1975)
14. Lorenz, H.W.: Nonlinear Dynamical Economics and Chaotic Motion, 2nd edn. edn. Springer,

Berlin (1993)
15. Oono, Y., Takahashi, Y.: Chaos, external noise and fredholm theory. Progr. Theor. Phys. 63(5),

1804–1807 (1980). https://doi.org/10.1143/PTP.63.1804
16. Ott, E.: Attractor dimensions. Scholarpedia 3(3), 2110 (2008). https://doi.org/10.4249/

scholarpedia.2110. Revision #91015
17. Peinke, J., Parisi, J., Rössler, O.E., Stoop, R.: Encounter with Chaos: Self-Organized Hierar-

chical Complexity in Semiconductor Experiments. Springer, Berlin (2012)
18. Pesin, Y.B.: Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surv.

32, 55–114 (1977). https://doi.org/10.1070/RM1977v032n04ABEH001639
19. Robinson, J.C.: Infinite-Dimensional Dynamical Systems: An Introduction to Dissipative

Parabolic PDEs and the Theory of Global Attractors. Cambridge University Press, Cambridge
(2001)

20. Sano, M., Sato, S., Sawada, Y.: Global spectral characterization of chaotic dynamics. Progr.
Theor. Phys. 76(4), 945–948 (1986). https://doi.org/10.1143/PTP.76.945

21. Sivakumar, B., Berndtsson, R.: Advances in Data-Based Approaches for Hydrologic Modeling
and Forecasting, chap. 9, pp. 411–461. World Scientific, Singapore (2010)

22. Stoop, R.: Dependence of phase transitions on small changes. Phys. Rev. E 47, 3927–3931
(1993). https://doi.org/10.1103/PhysRevE.47.3927

23. Stoop, R.: On hyberbolic elements hiding phase transitions. Phys. Lett. A 173(4), 369–372
(1993). https://doi.org/10.1016/0375-9601(93)90252-U

24. Stoop, R.: Bivariate thermodynamic formalism and anomalous diffusion. Phys. Rev. E Stat.
Phys. Plasmas Fluids Relat. Interdiscip. Topics 49(6), 4913–4918 (1994). https://doi.org/10.
1103/physreve.49.4913

25. Stoop, R.: The diffusion-related entropy function: the enhanced case. Europhys. Lett. 29(6),
433–438 (1995). https://doi.org/10.1209/0295-5075/29/6/001

26. Stoop, R.: Thermodynamic approach to deterministic diffusion of mixed enhanced-dispersive
type. Phys. Rev. E 52, 2216–2219 (1995). https://doi.org/10.1103/PhysRevE.52.2216

27. Stoop, R., Gomez, F.: Auditory power-law activation avalanches exhibit a fundamental
computational ground state. Phys. Rev. Lett. 117, 038102 (2016). https://doi.org/10.1103/
PhysRevLett.117.038102

28. Stoop, R., Peinke, J., Parisi, J., Röhricht, B., Huebener, R.: A p-Ge semiconductor experiment
showing chaos and hyperchaos. Phys. D: Nonlinear Phenom. 35(3), 425–435 (1989)

29. Szépfalusy, P., Tél, T.: New approach to the problem of chaotic repellers. Phys. Rev. A 34,
2520–2523 (1986). https://doi.org/10.1103/PhysRevA.34.2520

https://doi.org/10.1103/PhysRevA.28.2591
https://doi.org/10.1103/PhysRevA.33.1141
https://doi.org/10.1143/PTP.80.923
https://doi.org/10.1143/PTP.63.1804
https://doi.org/10.4249/scholarpedia.2110
https://doi.org/10.4249/scholarpedia.2110
https://doi.org/10.1070/RM1977v032n04ABEH001639
https://doi.org/10.1143/PTP.76.945
https://doi.org/10.1103/PhysRevE.47.3927
https://doi.org/10.1016/0375-9601(93)90252-U
https://doi.org/10.1103/physreve.49.4913
https://doi.org/10.1103/physreve.49.4913
https://doi.org/10.1209/0295-5075/29/6/001
https://doi.org/10.1103/PhysRevE.52.2216
https://doi.org/10.1103/PhysRevLett.117.038102
https://doi.org/10.1103/PhysRevLett.117.038102
https://doi.org/10.1103/PhysRevA.34.2520


Chapter 7
Embedding Dimension and Mutual
Information

Giuseppe Orlando, Ruedi Stoop, and Giovanni Taglialatela

The concept of dynamical system that we will use here is taken from R.E. Kalman
[1], who introduced it in the 1960s while studying the problem of linear filtering
and predictions.

7.1 Embedding Dimension

Let us consider the map

xik+1 = fi(xk), x ∈ R
n, i = 1, . . . , n, (7.1)

but suppose that the variable xi is not directly observable.
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Definition 7.1 (Time Series) For the observable variable

xik = h(xk), (7.2)

we denote with {xik}Tk=1 the time series of observations.

The embedding dimension is a statistical measure that indicates the smallest
dimension required to embed an object, for instance a chaotic attractor [4], and
it is defined as follows.

Definition 7.2 (Embedding Dimension) Let us consider the last m element
of observations as arranged in the vector [m]xiT = {xiT , xiT−1, . . . , x

i
T−m+1} in the

observed time series, and let us repeat the grouping for each xik in the descending
order of time t = T , . . . , 1 by dropping the remainingm− 1 elements.

If m denotes the embedding dimension, this results in them-dimensional vectors

[m]xiT = {xiT , xiT−1, . . . , x
i
T−m+1} ,

[m]xiT−1 = {xiT−1, x
i
T−2, . . . , x

i
T−m} ,

...

[m]xim = {xim, xim−1, . . . , x
i
1} .

Remark 7.1 The vector [m]xiT is also called m-history and describes a point in
an m-dimensional space, where the coordinates are the delayed observed values
{xiT , xiT−1, . . . , x

i
T−m+1}. The sequence {[m]xik}Tk=m of points forms a geometric

object in this space.

Remark 7.2 F. Takens [6] showed that if

1. The variables xi of the true dynamical system are located on an attractor
(i.e. there are no transients),

2. The original dynamical system and the observation function h(x) are smooth,
and

3. m > 2n− 1,

then the sequence {xit }Tt=m is topologically equivalent to the object generated by the
true dynamical system described by Eq. (7.1).

7.1.1 Time Lag

Instead of considering the mth element of observations as arranged in the vector

[m]xiT = {xiT , xiT−1, . . . , x
i
T−m+1} ,
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one may take the vector

[m]xiT−τ = {xiT , xiT−(1+τ ), . . . , x
i
T−(m−1+τ )}

by sampling the time as follows: t = T , T − (1 − τ ), . . . , τ . This vector is called
delayed or time lagged, and the delay τ corresponds to the spacing between the
observations.

While the embedding procedure is a very elegant tool for obtaining information
about a system from a single scalar time series, the procedure of choosing the
optimal embedding dimension is a nontrivial one. In rough terms, the embed-
ding dimension must be chosen from a self-consistent region of the embedding
dimensions, meaning that for every embedding the characteristics of the embedding
are consistent with those of the whole time series. This requirement poses severe
constraints on the length of the time series that may often not be long enough for a
solid application of the procedure, see Eckmann and Ruelle [3].

7.2 Mutual Information

The delay τ is to be determined in a way that the values [m]xiT and [m]xiT−τ
are “sufficiently independent to be useful as coordinates in a time-delay vector but
not so independent as to have no connection with each other at all” [5]. To this end,
it might be useful recurring to the mutual information defined as follows.

Definition 7.3 (Mutual Information [2]) Let us consider two jointly discrete
random variables X and Y , and the mutual information as the double sum

I(X; Y ) =
∑

y∈Y

∑

x∈X
p(X,Y )(x, y) log

(
p(X,Y )(x, y)

pX(x) pY (y)

)
,

wherep(X,Y ) and pX, pY denote, respectively, the joint distribution and the marginal
probability mass functions of X and Y , respectively.

The first minimum of average mutual information marks the delay time that adds
maximal information to the knowledge we have. Accordingly, this value is often
used as the delay time for phase space reconstruction by embedding. Alternatively,
the method of false nearest neighbors is often used.
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Part II
Signal Analysis and Modelling Tools

for Economic Systems



Chapter 8
Signal Processing

Ruedi Stoop

8.1 Signal Processing as a Process of Computation

Put into a nutshell, I promote below the view that signal processing is a process of
computation, that computation describes the process of information destruction, and
that the efficacy of this process can be measured.

8.1.1 Signal Observation and Perception

Signal processing means, in the most general form of the term, the observation of
real-world or artificial (e.g., computer-generated) signals. Innate in this process is
the choice of an observable, generally by the human senses. This process already
singles out a particular aspect of the observed process. As an example, let us look at
the stars at night. What we see from the stars is a very limited light spectrum (from
380 to 740 nanometres) accessible to our eyes [25]. For assessing other frequencies
of the radiation, we need dedicated and often sophisticated additional tools that
each of them singles out again a particular frequency range of its own, some of
them reaching even beyond of what we could ever hope to sense within our limited
lifespan in a more direct approach. Having said that, it is immediately clear that
the process of observation is accompanied by a strong destruction of the original
information sent out by the stars: in the observational process, we dismiss—or
destroy—all the information that we do not consider worthwhile in a given context.
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As it is intrinsically impossible for us to observe all aspects of an object and
process its full generality, we bundle what our senses think as the ‘relevant’ aspects
to a feature vector, a vector containing as its entries the properties of interest to us of
the object. Time changes these vectors where, primarily, the components that change
most are important to us: they define the dynamics of the objects. This procedure
of observation is clearly not objective, as it leads to the creation of larger classes
of objects by a process that is generally termed ‘clustering’. This process, which
is closely related to human perception, subdivides the space of objects into sets
composed of more ‘similar’ objects. To each of such sets, a tag, or symbol, can be
associated. That this is not a trivial task can be inferred from human perception that
in a large number of experiments misleads a human spectator into an illusion.

There are a large number of clustering algorithms, but all work with a notion of a
‘distance’. The distance between objects then allows us to classify. Here, we already
encounter the first undesired bias in the clustering process. While this can be solved
in an optimized manner depending on the field (often by rescaling the different
information to same weight [16]), there are a number of elements of bias [4, 14, 15]
that, unfortunately, got historically into various approaches without noticing their
danger. For example, the very prominent K-MEANS clustering fails if the clusters
have non-Gaussian spatial distributions [4, 14]. Clusters are, however, generally not
just noisy clouds, and clusters generated by nonlinear processes have, generically, a
nontrivial ‘shrimp’-like structure [4].

More surprisingly, even the agglomerative Wards-type clustering approaches fail
in this case for a similar reason [4]. See Ref.[15] for an approach that takes a full
account of the bias introduced by a clustering approach.

8.1.2 Computation Performed on a Signal

Let us now point out in a first example how in a similar way classical computation
eliminates information. Consider, e.g., the OR gate (or any universal gate, if you
prefer, from which you will get a similar insight). The input to this gate plays the
role of information arriving that can be characterized as a (./.) two pair, or vector
of dimension 2, of bits. The computation performed by the gate produces as the
result a vector of only dimension 1. If this result is ‘1’, it is not known any more
whether channel A was ‘1’ or channel B, or both. The fundament of such a process
of computation is irreversibility.

The classical universal gates, the computational elements from which all clas-
sical computational devices can be composed, reiterate how computation destroys
information. A classical nary universal gate is NOR or NAND. Take the latter gate
that has an output that is normally at logic level ‘1’ and only goes to ‘0’ iff ALL of its
inputs are at logic level ‘1’. For output ‘1’, it is, therefore, no longer clear, what the
input configuration was. This is exactly where the input information is destroyed;
the destruction is unavoidable because the input was n > 1 bits and the output
consists of one bit only. Since the heat generated by erasing (‘grounding’) one bit of
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information, is in the Landauer–von Neumann limit is around 10−21 J, for a modern
computer with a lot of computer power this sums up to a considerable amount of
heat that is difficult to get rid of, which is a main limitation against achieving higher
computational power.

The elimination of this problem was one major idea behind the quantum
computer, as in quantum computation, up to the final read-out, and all operations
are reversible. While this approach solves one problem, it, unfortunately, creates
another one. Quantum gates (such as the Toffoli or the Fredkin universal quantum
gates [5]) have, to preserve reversibility, as many lines-out as there are lines-in. For
exactly that reason, many steps of computation lead to an explosion of the associated
memory requirement.

Biological computation works along similar lines. Neural networks, a particu-
larly important instance of natural computation, are capable of forming universal
gates by means of a suitable combination of excitatory and inhibitory neurons. The
heat production of the brain is huge (about 2% of the body weight, 15% of the
cardiac output, 20% of the total oxygen consumption, and 25% of the total body
glucose utilization), as is the energy consumption of the brain (about 0.4 J per
minute vs. even 6 J per minute during crossword puzzle solving), cf. [6, 19]).

The additional aspect that comes into play in biological computation is dynamics
that works along similar lines of information elimination. The Bernoulli-shift map
y = 2x mod 1 on the [0,1] unit interval, can serve as a simple example of
how dynamics kills, with each iteration, the presently highest digit of the initial
condition. In the computer, after a number of iterations equal to the length of the
binary representation of numbers, the process thus arrives at 0, independent of the
initial condition, despite the fact that this map is a famous prototype of a hyperbolic
chaotic dynamical system.

8.1.3 Dynamics Between Symbols

Dynamics leads from one set (with tags often called ‘states’) into another, by which
we obtain from the dynamics as a mapping among a set of symbols or states. One
major aspect of interest is the probability with which we jump from one symbol to
another. If this process does not depend on more than the immediate present, this is
called a Markov process. Should the process depend on a longer history of symbols,
we have memory and the process is called of higher Markov order

Pr(Ct |Ct−1, Ct−2, . . .) = Pr(Ct |Ct−1, . . . , Ct−l ). (8.1)

Fortunately, higher order Markov processes can always be converted into Markov
processes of first order (i.e. of a one-step memory). For a general modern survey,
see, e.g., [26].
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In dynamics, a generating partition is an example of a mapping among such
symbols. A first-order Markov process can always be written as a quadratic non-
negative matrix of dimension equal to the number of symbols. For such a situation,
the celebrated Frobenius–Perron theory [1, 17] provides the mathematical basis for
solution existence if the matrices are irreducible.

Sometimes, we deal with situations where we want to know in what state a
system is by indirect observation. For such cases, the concept of hidden Markov
processes has been developed. Nowadays, tailored implemented algorithms are
available that answer the main questions that are natural to be asked in such a context
[26].

8.1.4 Complexity of the Prediction of Dynamics

In many cases, models made for understanding and predicting dynamics. In
dynamics, the complexity of a process embraces the difficulty of predicting its future
values. How much complexity resides in a dynamical model is therefore embodied
in the entropy function of the process. In this sense, the more and the more abundant
states are offered by the dynamics, the more complex a process is. Note that such
a characterization does not just apply to dynamics in its purest form. Even if we
look at a figure or a picture, we are engaged in a dynamical process, by trying to
infer to totality of the object from partial, initial perceptions that we consequently
refine and verify or dismiss. Expressed in terms of entropy, the observability of an
invariant measure ε during n steps of the evolution decays as O(ε) ∼ e−n(S(ε)−ε).
For each measure of ε, the relative distance S(ε − ε) to the diagonal S(ε) = ε

is therefore a measure for its difficulty of prediction. Averaging over the different
invariant measures provides therefore a good indicator of the complexity of correctly
predicting a process. A deeper analysis demonstrates that for the multiplicative
measure ε, the suitably scaled entropy integral

∫
S(ε)/εdε

is a consistent measure for the difficulty of prediction.
The most general form of the latter measure is

Cs(β, α) = ε2β
0 ε1/(ε1 − κ)

∫
(S(ε)/ε)αdε,

where κ is the escape rate, ε1 is the natural measure entropy, and ε0 is the topological
length scale.

By this formula, all invariant measures, respectively, the strength of the escape
from them, are taken into account, where the contribution of observable invariant
measure is maximal, and S(ε)/ε is the dimension of the set with index ε. For all
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systems, this definition of complexity yields positive and finite values. Moreover,
and of equal importance, for purely random systems the value is 0 and maximal for
intermittent systems. This conforms to Langton’s notion of ‘life at the edge of chaos’
[12], and it corresponds extremely well with human perception of complexity. For
more details and examples, see the original publication [24].

8.1.5 Measuring Computation

Computation described as information destruction simplifies the object under
investigation, which leads, after each computation, to a reduced complexity of the
object. The idea now is that each dynamical process can be seen as a mapping,
each mapping can be characterized by a complexity, and the effect contributed
by a process (natural or artificial) can be cast in how much the complexity of the
object is reduced. Taking as an input a signal of arbitrary complexity and defining
computation as the reduction of complexity performed, the inverse 1/(Cs(1, 0)+ 1)
(where addition of 1 prohibits the occurrence of a pole for zero complexities)
is a convenient measure to express the computation performed by a process of
signal processing. The value of the measure is between 0 (very little computation
performed by, e.g., fully intermittent systems) and 1 (full computation, e.g., if
the result is a fixed number). Interestingly, under this view hyperbolic and non-
hyperbolic systems do not differ in any fundamental manner. For more details and
examples, see the original publication [23].

8.2 Signal Processing by Neural Networks

Neural networks can be seen as a variant of clustering based on a weighted graph,
where weights are determined via an optimization process set up to deliver for
a set of input patterns desired, often labelled, responses (similar to the action
performed by a teacher). In this process, a much too large network of potential
relations is optimized to give a desired result, often an association between input
and class to which an example belongs to. Also in this case a massive destruction of
information occurs. In a high-dimensional space of potential relations between input
and output, the weights delivering the desired results are implemented in a subspace
of normally considerably lower dimension (of a truncation of small weights to zero
is applied). After optimizing the weights, the weighted graph classifies by means of
generalization, similar to what would be obtained if after clustering, for new data
the nearest data set is determined and its label is selected as the result. However,
the emerging graph is, by no means, unique. In fact, from the graph itself, the
logical structure implemented by the network cannot be inferred. As a solution,
neural network learning can be combined with evolutionary optimization, where the
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sparseness of the solution is taken into the goal function (i.e., is part of the decision
to what extent the implementation matches the human-sensed results).

The main distinction to clustering is—as a downside—that, generally, the number
of classes needs to be given (in supervised learning). In more modern variants of
self-organised clustering this emerges from the process itself. On the plus side,
generally, several layers are given in the network which permit to implement
theoretical, abstract, concepts like ‘lines’ and similar, if convolutions between the
layers are used.

The strong relationship between clustering and neural networks is emphasized
by self-organized clustering based on firing models of neurons, where the synaptic
connection between them starts from an all-to-all structure and random interaction,
where the strengths of neural connection reflect the distance in object space. During
the temporal evolution, the connection strengths are updated according to Hebb’s
principle [7]: ‘..who fires together, wires together’. At the end of the process, near-
to-zero weight connections distinguish between different clusters.

In the recurrent neural networks paradigm, a complex input (often of temporal
characteristics) is transferred into a simplified firing pattern in the chaotic sea of
neurons to which a simple read-out layer process is the applied to read out the
desired result.

Self-organized learning can be implemented to, e.g., learn an optimized
behavioural task. These approaches have in common that they generally provide
one out of many possible solutions. If an optimized short algorithm has to be found,
this goal has to be implemented into the goal function (i.e., be added to the goal of
performing in a correct manner). An elegant implementation proceeds via genetic
programming.

The construction element of an artificial neuronal network is a mathematical
abstraction of the behaviour of a biological computational unit. Historically, to
implement basic logical operations, first, an element with two real-valued input
values was considered (for complex variants, see, e.g., [20]), supported by a base
input (often called ‘bias’) that acts as a means to shift the operation point of
activation. Multiplicative weights along the inputs permit to adjust and optimize
the unit for a desired operation (this process of this adjustment is called ‘learning’),
and the activation function determines how much output is generated in response
to the weighted input. The smoothness of the sigmoidal function also simplifies
the implementation of the learning process by a gradient descent optimization but
imports a kind of ‘fuzzyness’ (residing in the steepness of the sigmoidal function)
requiring to rectificate the output to digit values such as 0 and 1.

As an illustration, we present a Mathematica programme, in which a defines the
steepness of the sigmoidal function and eta defines the speed of adjustment during
the gradient descent optimization of the weights w (to be chosen to harmonize with
the size of a (cf. weight update rule). The task to implement the AND gate that
after a large number of learning steps is approximated quite well, as is shown by the
output.

a = 1; f[x_] := 1/(1 + Exp[-a x]);
w = Table[Random[], {i, 1, 4}];
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eta = 0.5;
ioPaar = {{{0, 0, 1}, 0}, {{0, 1, 1}, 0}, {{1, 0, 1}, 0},

{{1, 1, 1}, 1}};
Errorliste = Table[{in, t} = ioPaar[[Random[Integer, {1, 4}]]];

y = w.in;
e = t - f[y];
w += eta in f’[y] e;
{e, w}, {i, 1, 1500000}];

Do[Print[f[w.ioPaar[[i, 1]]]], {i, 1, 4}]
1.55237*10^-9
0.00109336
0.00108848
0.9987

The behaviour can be optimized by gradually increasing the steepness a of the
output function towards implementing the desired step function. This has, however,
to be done with care, otherwise the learning adjustment w+ = will not work well.
Alternatively, this can be achieved by a rectification of the output. These difficulties
demonstrate that artificial neurons are, basically analogue and not digital.

Applications of neural networks to pattern recognition applications use as many
inputs as there are pixels in the pattern. In this case, noninteger neuronal outputs are
fed into the next layer’s neurons, adding to the ‘dummy’ unitary input from the bias
of the neuron itself.

8.3 Noise-Cleaning of Signals

Noise is generally unavoidable in real-world applications, but what is noise, and
what is ‘natural’ variation between objects satisfying the same class labelling is
generally hard to fathom. For dynamical processes, things are simpler, due to the
intrinsic manifold structure of dynamics (expanding manifolds along which the
experimental data are organized). In the vector space, states are characterized by
a distance. The choice of a distance measure is not objective, which can result in a
bias. The dynamics of chaotic systems is organized along expanding manifolds [3].
One way of performing noise-cleaning is therefore to project noise-prone data onto
these manifolds [9]. This is usually done using a local main axis decomposition
of the data. After keeping only the main directions after setting the coefficients
pertaining to less significant direction, the data points are projected onto the
manifold.

If more than this is known about the data structure, for example, in the case
of noise-prone speech data, the input signal can be noise-cleaned by using a more
tailored basis for the data decomposition, e.g., wavelet decomposition or even better,
matching pursuit decomposition [10]. Interestingly, the human senses use strongly
nonlinear effects for noise-cleaning and signal separation [2].
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Finally, if almost no assumption can be made regarding the structure of the
underlying system (e.g., if the system is too high-dimensional for allowing a detailed
representation via expanding manifolds), clustering methods can provide the guide-
lines for the underlying dynamical (attractor) structure. This is of importance in
particular if a Markov modelling approach of the data is desired. The technical
means of the reduction to states is clustering, that is deeply based on the notion
of a distance between objects. By clustering, a potential infinity of real-world letters
is reduced to an alphabet. In this example, a real-world letter is commonly a vector
with entries that correspond to the grey level of a dot in the picture of the handwritten
letter the result is the place in the alphabet (a third information destruction). How
clustering is done and which input-conversion procedures are applied is again a
matter of choice and yet another source of bias.

To provide an explicit example, K-means divisive and agglomerative (Wards-
type) clustering start from the idea that the points of a cluster should follow a
Gaussian distribution. The pure presence of nonlinearities in the system, how-
ever, introduces structures and features of the clusters that—as has been already
exposed—are universal but not Gaussian [21]. Typically, they are of swallow-tail or
shrimp-like form, geometric forms that the mentioned clustering approaches cannot
favourably deal with. To fight the emerging problems with standard clustering
approaches, for different clustering approaches (from two main classes: agglomera-
tive and divisive approaches), a whole set of distance measures has been introduced,
which, since missing the origin of the problem (universal non-Gaussian geometric
cluster forms) are of rather limited help. The fact that and why they fail why they
fail has remained hidden for a surprisingly long time.

8.4 Symbolic, Probabilistic, and Metric Characterizations

Using clustering, we may reduce real-world or model-based dynamics to a mapping
between symbols tagging the clusters (so-called symbolic dynamics). Alternatively,
symbols are often introduced by using a generating partition, i.e., a partition into
sub-domains that is refined by the dynamics in the most simple manner, by mapping
boundaries of the partition on boundaries. For the parabola, this is possible only
for selected values of the parameter a; an example is the fully developed parabola
of a = 4, where a generating partition is introduced by dividing the unit internal
into two parts using the highest point on the parabola as the dividing boundary
point. There is a huge bibliography on symbolic dynamics and the characteristics
one can extract from symbols alone (thus omitting metric aspects). Classics are
Refs. [11, 13].

Along with a symbolic dynamics, particular features of the process can be
associated. The most prominent features are probability, stability, or diffusion
properties, leading to different variants of the characterization by invariants of the
system. If the focus is on probability, we deal with several ways of sampling fractal
dimensions and associated entropies. If the focus is on dynamical stability, we deal
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with Lyapunov exponents and the Kolmogorov–Sinai entropy. If the focus is on
diffusion measures, we are able to distinguish among distinct diffusional behaviour,
such as normal, subdiffusive or accelerated diffusion. While all characterizations
are extractable without difficulties for given dynamical equations, in particular, the
extraction of the set of relevant Lyapunov exponents from time series is involved and
requires special care, cf. [22]. For additional details and references, see the chapter
‘Thermodynamic formalism’.

8.5 Fourier and Power Spectrum Analysis

The number of extent orbits can, in particular, be used as an indicator for whether we
deal with a regular or a chaotic system. Fourier and power spectra exhibit isolated
frequency peaks for periodic motion but continuum-like frequency distributions for
chaotic motion. Note that, similar to a characterization of a system by means of
closed orbits, also combinations of frequencies are reported. For example, if we
have two frequencies f1, f2 in the system, also their combination f3 = f1 +f2 will
be found, etc.

As described in Chap. 9, the basic functions for Fourier-based signal analysis
are the FFT (Fast Fourier Transform), the Power Spectrum, and the Cross Power
Spectrum CPS. Using these function blocks, additional functions such as frequency
response, impulse response, coherence, amplitude spectrum, and phase spectrum
can be derived. FFT and the Power Spectrum can be used for measuring the
frequency content of stationary or transient signals. FFT measures the average
frequency content of a signal over the entire time that the signal was acquired.
Therefore, FFT should preferably be applied to stationary signals or if only the
average energy at each frequency line is requested. For time-variable frequency
information, joint time-frequency functions (e.g., Gabor Spectrogram, see Chap. 9)
should be used.

Whereas the FFT returns the frequency component amplitudes of the signal,
the two-sided power spectrum returns an array of values that are proportional to
the amplitude squared of each frequency component of the time-domain signal,
containing in this way symmetrically negative and positive frequencies. If Ak is
the peak amplitude of the sinusoidal component at frequency k, the height of the

spectrum at index k is Ak
2

A0
, where A0 is the amplitude of the DC component in the

signal. In real-world frequency analysis, we are mostly interested in the positive
part of the frequency spectrum. The transformation from a two-sided into a one-

sided spectrum yields non-DC values at a height of Ak
2

2 , which is equivalent to
the root mean square (rms) amplitude of the sinusoidal component at frequency
k. According to the Nyquist criterion, the sampling frequency Fs applied to the
signal must be at least twice the maximum frequency component in the signal. If
this criterion is violated, a phenomenon known as ‘aliasing’ occurs, and the analysis
reports an additional ‘fake’ frequency FS − f0, where f0 denotes a component at
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frequency f0
2 < f0 < Fs (similarly, fake frequencies can generate further fake

frequencies).
To characterize the relationship between two time-domain signals A and B, we

can calculate a CPS(AB) = S(AB) = FFT (B)FFT ∗(A)
N2 , where the star denotes

complex conjugation, and N is the length of the two-sided power spectrum, mostly
equal to the acquired number of points of the time-domain signal (for computational
reasons, mostly chosen as a power of 2). The CPS, frequency response, impulse
response, coherence, amplitude spectrum, and phase spectrum of a system can be
computed (for details, see the classical Refs. [8, 18]).
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Chapter 9
Applied Spectral Analysis

Fabio Della Rossa, Julio Guerrero, Giuseppe Orlando,
and Giovanni Taglialatela

9.1 Frequency, Spectral Analysis, Phase and Phasor

A signal is a representation of a physical phenomenon that evolves in time. There
are two methods to describe the signal: time analysis and frequency analysis. The
Fourier transform (FT) is the basic tool to pass from time to frequency analysis.

Definition 9.1 (Frequency) The frequency ν is the number of occurrences of a
repeating event or oscillation per unit of time. Therefore if an event is periodic of
period T , then

ν = 1

T
.
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Frequency is measured in Hertz (Hz) (i.e. in cycles per second, cps). Alternatively
ω = 2πν denotes the angular frequency, which measures the number of radians
swept per unit of time in a circular motion.

A signal can contain many frequencies, i.e. it can be the sum of various
components with different periods.

Definition 9.2 (Spectrum) The frequency content of a signal, i.e. the frequencies
of the different components of the signal, is denoted as the spectrum of the signal.

The term spectrum (and its plural spectra), which etymologically refers to
“images” or “apparitions” of persons not present physically (like ghosts), was
introduced by Sir Isaac Newton to refer to the range of colours observed when
light is dispersed through a prism. This term was rapidly adopted by the scientific
community to refer to the fundamental components of any wave (like sound waves,
seismic waves, electric signals, etc.).

Definition 9.3 (Spectral Analysis) The analysis of a signal in terms of a spectrum
of frequencies or related quantities such as energies, eigenvalues, etc. is called
spectral analysis.

Definition 9.4 (Phase) Let x(t) be a time series or a periodic signal and T be its
period,

x(t + T ) = x(t) ∀ t .

Then the phase of x(t) with respect to the initial time t0 is

ϕ(t) = 2π

[[
t − t0
T

]]
,

where [[ · ]] denotes the fractional part of a real number. Clearly, if t0 is shifted by T ,
ϕ(t) does not change. Therefore, the phase depends on t0 mod T .

A sinusoid can be represented mathematically by the Euler’s formula, i.e. as the
sum of two complex-valued functions:

A · cos(ωt + θ) = A · e
i(ωt+θ) + e−i(ωt+θ)

2
,

where i is the imaginary unit, A the amplitude (i.e. the maximum absolute height
of the curve), ω the angular frequency (i.e. how rapidly the function oscillates) and
θ the phase (i.e. the starting point for the cosine wave). The frequency of the wave
measured in Hertz is ω/2π .

A sinusoid can also be written as

A · cos(ωt + θ) = Re{A · ei(ωt+θ)},
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where Re{·} is the real part. In fact

Re{A · ei(ωt+θ)} = Re{A · cos(ωt + θ)+ iA · sin(ωt + θ)}
= A · cos(ωt + θ) .

Definition 9.5 (Phasor) Given a sinusoidal signal represented in the time-domain
form as

v(t) = A · cos(ωt + θ),

the phasor is the corresponding representation in the frequency-domain form

V (iω) = A · eiθ = A � θ.

Therefore a phasor is a “complex number, expressed in polar form, consisting of
a magnitude equal to the peak amplitude of the sinusoidal signal and a phase angle
equal to the phase shift of the sinusoidal signal referenced to a cosine signal” [20].

9.1.1 Fourier Series and Transform

Definition 9.6 (Fourier Series) Let us consider a complex-valued function S(x)
periodic with period T , which is integrable on any interval of length T . A Fourier
series for S(x) is

SN(x) =
N∑

n=−N
cn · ei 2πnx

T ,

where the coefficients cn are given by

cn = 1

T

∫

T

S(x)e−i
2πnx
T dx .

If S(x) is real, then c̄n = c−n.
Under suitable condition, is

S(x) = lim
N→∞ SN(x).

Fourier series allows to represent periodic signals in terms of sums of simple
sinusoidal functions (complex exponentials or sine and cosine functions), usually

denoted as harmonics. The weight of each harmonic ei
2πnx
T is given by the Fourier
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Fig. 9.1 Gibbs phenomenon
for a square wave (in black)
for N = 1, 3, 5, 7 and 9

x

SN (x)

coefficient cn, providing a representation of the periodic signal S(x) in terms of the
coefficients {cn}n∈Z.

Care should be taken when approximating a periodic signal S(x) by its truncated
Fourier series SN(x), specially in the case where S(x) is not continuous at some
point x0, since in this case limN→∞ SN (x) = S̃(x) with

S̃(x0) = 1

2

(

lim
x→x+

0

S(x)+ lim
x→x−

0

S(x)

)

.

In addition, SN(x) presents oscillations around x0 that do not decrease in
magnitude when N grows, known as Gibbs phenomenon (see Fig. 9.1).

Definition 9.7 (Fourier transform (FT)) The Fourier transform of a Lebesgue
integrable function f : R → C is

f̂ (ξ) =
∫ ∞

−∞
f (x) e−2πixξ dx ,

for any real number ξ .

Remark 9.1 (Fourier Transform) The Fourier transform is a representation of the
function in terms of frequency instead of time; thus, it is a frequency-domain
representation. It is invertible in the sense that f̂ (ξ) can be taken back to f (x).
Therefore, linear operations that could be performed in the time domain have
counterparts that can often be performed more easily in the frequency domain.
Frequency analysis also simplifies the understanding and interpretation of the effects
of various time-domain operations, both linear and non-linear. For instance, only
non-linear or time-variant operations can create new frequencies in the frequency
spectrum.

Remark 9.2 (Fourier Transform) The Fourier transform derives from the study of
Fourier series in which complicated but periodic functions are reduced to the sum
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of simple waves represented by sines and cosines. The Fourier transform extends
the Fourier series such that the period of the represented function goes to infinity.
Thus, “the Fourier transform converts an infinitely long time-domain signal into a
continuous spectrum of an infinite number of sinusoidal curves” [10].

Remark 9.3 (Fourier Transform) The Fourier transform, applied to a given complex
function defined over the real line, returns a frequency spectrum containing all
information of the original signal. For this reason the original function can be
completely reconstructed through the inverse Fourier transform. However, in order
to do so, the preservation of both the amplitude and phase of each frequency
component is required.

Definition 9.8 (Discrete Fourier Transform (DFT)) Let us consider the complex
numbers x0, . . . , xN−1. The discrete Fourier transform (DFT) is defined as

Xk =
N−1∑

n=0

xne
−i2πkn/N k = 0, . . . , N − 1, (9.1)

with ei2π/N a primitive Nth root of 1.

Remark 9.4 (Fast Fourier Transform (FFT)) Given the Fourier series defined in
Definition 9.6 and the discretization in Definition 9.8, the problem of calculating
(9.1) requires O(N2) operations (where operation means complex multiplication
followed by complex addition). The reason is that there are N calculations Xk , and
each calculation requires a sum of N terms. Cooley and Tukey [3] proposed an
efficient method called fast Fourier transform (FFT) to compute the discrete Fourier
transform, requiring only O(2N log2N) operations.

9.1.2 Spectral Density, Power Spectrum and Periodogram

Definition 9.9 (Energy Spectral Density) The energy spectral density of a
continuous-time signal x(t) describes how the energy of a signal or a time series is
distributed with frequency, and it is denoted as Ex (unit2 · second2)

Ex(f ) = |x̂(f )|2

where

x̂(f ) =
∫ ∞

−∞
e−2πif tx(t) dt
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is the Fourier transform of the signal and f is the frequency. The total energy of the
signal is

E =
∫ ∞

−∞
∣
∣x(t)
∣
∣2 dt =

∫ ∞

−∞
∣
∣x̂(f )
∣
∣2 df.

If the signal is discrete, the total energy is defined as

E =
∞∑

n=−∞

∣∣x(n)
∣∣2.

Definition 9.10 (Average Power) Given a signal x(t), the average power P over
all time is

P = lim
T→∞

1

T

∫ T

0

∣
∣x(t)
∣
∣2 dt .

Remark 9.5 A stationary process may have a finite power but an infinite energy.
This happens because energy is the integral of power, and the stationary signal
continues over an infinite time. For this reason in such cases we cannot use the
energy spectral density in Definition 9.9, but we need to introduce the concept of
power spectral density.

Definition 9.11 (Amplitude Spectral Density) In analyzing the frequency content
of the signal x(t), one might like to compute the Fourier transform. However, for
many signals of interest the Fourier transform does not formally exist. In such a case
one can use a truncated Fourier transform where the signal is integrated only over a
finite interval [0, T ] called as amplitude spectral density

x̂T (ω) = 1√
T

∫ T

0
x(t) e−iωt dt .

Definition 9.12 (Power Spectral Density [19]) The power spectral density is

Sxx(ω) = lim
T→∞
∣
∣x̂T (ω)

∣
∣2 .

Remark 9.6 (Spectral Density) The spectral density describes how the energy of
a continuous-time signal is distributed with frequency. The union of the various
spectral densities is called power spectrum of the signal.

The spectral density is usually estimated using Fourier transform methods (such
as the Welch method). Let us consider a sampling xn, n = 1, . . . , "T/Δ# of the
signal x(t) in the time window [0, T ], with sampling period Δ. Obviously, from
this sampling we can evaluate only the spectral densities that are in [2π/T , 2π/Δ],
since smaller frequencies generate waveforms with period longer than the time
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window we are considering, while higher frequencies cannot be captured by the
used sampling time.

Definition 9.13 (DFT Periodogram) For the regularly sampled signal xn, n =
1, . . . , N with sampling time Δ of the signal x(t) (x(nΔ) = xn), the periodogram
P is the function

P

(
k

NΔ

)
= |Xk| =

∣∣
∣
∣
∣
∣

N−1∑

j=0

e−ik
2πj
N xj+1

∣∣
∣
∣
∣
∣
.

The periodogram can be used to estimate the spectral density of the signal1 and is
a first approximation of the signal power spectrum. For longer signals, it is possible
to refine the power spectrum by averaging (even online) the different periodograms
one obtains in each time window of length T . In other words, to estimate the power
spectrum of a signal we need first to understand which windows of frequencies
we are interested in. This define our sampling time and the length T of the time
window. Then, in each time window [kT , (k+1)T ], compute the periodogram from
the sampled signal and obtain the power spectrum of the signal by averaging the
obtained periodograms.

Remark 9.7 The power spectrum of a signal is a fundamental instrument to identify
the regularity of the signal. In fact, it answers the question “How much of the signal
is at a certain frequency?” Signals generated by a system that exhibits a limit cycle
will peak at the frequency related to the period of the limit cycle. Signals generated
by a system that behave quasi-periodically give peaks at each of the different
frequencies. Signals generated by a chaotic system give broad band components
to the spectrum. Indeed this later can be used as a criterion for identifying that the
system dynamics is chaotic.

The “most” chaotic signal is the one that exhibits a flat power spectrum, i.e. that
has the same power at any frequency. This signal is called white noise and is defined
as follows.

Definition 9.14 (White Noise) We say that the time series εt is a white noise
process if

E(εt ) = 0 ∀t
Var(εt ) = σ 2 ∀t

Covar(εt , εs) = 0 ∀s �= t . (9.2)

1Other more sophisticated and more efficient methods can be used to estimate the power spectrum
in case of non-equally sampled signals [4, 23].
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If the random variable εt is normally distributed for all t , the white noise process is
called Gaussian white noise process.

Remark 9.8 The covariances in the third line of Eq. (9.2) are called autocovariances
of the time series εt .

9.1.3 Time–Frequency Representations of Signals:
Gabor and Wavelet Transform

The Fourier transform of a non-periodic signal provides an accurate representation
of the different frequencies (harmonics) of the signal, but with no information about
the time at which each frequency is present. To avoid this problem other more
sophisticated transforms are necessary.

Definition 9.15 (Gabor Transform) The Gabor transform of a signal x(t) is given
by Gabor [7] and Feichtinger and Strohmer [6]

G(x)(τ, ω) =
∫ ∞

−∞
x(t)e−π(t−τ )2e−iωt dt.

Note that the Gabor transform of x(t) is the Fourier transform of x(t) ·e−π(t−τ )2,
and therefore Gabor transform inherits all nice properties from Fourier transform.
In fact it behaves even better since, due to the Gaussian, ill behaved signals x(t) that
do not have a Fourier transform can have a Gabor transform. The Gaussian factor
e−π(t−τ )2 can be seen as a window e−πt2 that it is shifted in the time domain to
perform a local Fourier transform of the signal x(t) at different times.

Depending on the application, better results can be obtained by substituting the
Gaussian by a different window function (suitably normalized) w(t) with compact
support or with fast decay at infinity, in formula

G(x)(τ, ω) =
∫ ∞

−∞
x(t)w(t − τ )e−iωtdt.

This more general type of transform is also denoted as Gabor transform, short time
Fourier transform or windowed Fourier transform.

Definition 9.16 (Inverse Gabor Transform) The inverse Gabor transform is given
by

x(t) =
∫ ∞

−∞

∫ ∞

−∞
G(x)(τ, ω)w(t − τ )eiωt dωdτ.
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Gabor analysis is similar to Fourier analysis, but each harmonic is multiplied by
a window function displaced in time. Thus Gabor analysis is a time–frequency rep-
resentation of a signal. A 3D plot representation (or a contour plot) of |G(x)(τ, ω)|
is known as spectrogram. The redundancy introduced in this two-dimensional
representation of a one-dimensional signal x(t) traduces into a more accurate time
representation of the different frequency components of the signal.

However, it is not possible to achieve an infinite precision for the localization in
the time–frequency plane. In fact, the localization properties of the Gabor transform
are restricted by the uncertainty principle (yes!, the same Heisenberg uncertainty
principle of quantum mechanics, since the mathematics underlying these two fields
are the same). This principle states that if the length of the time window grows, we
obtain an accurate localization of frequencies but a poor description in time. On the
contrary, if the length of the time window is decreased, we obtain better resolution
in time, but poorer resolution in frequency.

Depending on the signal, one should select one of the two possibilities, or search
for a compromise between both, and this is obtained for the original Gabor transform
with a Gaussian window function, providing in addition the maximum theoretical
localization in the time–frequency plane (for window functions of the same
length). In practice other window functions w(t) can be used, like the rectangular
Hann/Hanning or Ham/Hamming windows [5, 15], to reduce computational cost or
to enhance other properties of the Gabor transform. See Fig. 9.2 for a representation
of the uncertainty principle.

We can increase the degree of localization (although at different rates for
different frequencies) using a so-called time-scale representation instead of the
time–frequency representation. This can be achieved with the following transform.

Definition 9.17 (Wavelet Transform) The wavelet transform of a signal x(t) is
given by Holschneider [8] and Mallat [11]

W(x)(a, τ ) = 1√
a

∫ ∞

−∞
x(t)γ̄

(
t − τ
a

)
dt , τ ∈ R, a > 0 ,

where γ̄ (t) denotes the complex conjugate of γ (t), which is a (generally complex)
window function satisfying the admissibility condition:

0 <
∫ ∞

−∞
|γ̂ (ω)|2

|ω| dω <∞.

Time

Freq

Time

Freq

Time

Freq

Fig. 9.2 Uncertainty principle in the time–frequency plane for a short time window (left), a wide
time window (centre) and Gabor’s Gaussian window
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The admissibility condition implies, in particular, that γ̂ (0) = 0, i.e. γ (t) has
zero mean and must have oscillations, that is the reason for the name wavelet (or
ondelette in French, since it is a wave with a short duration). The function γ (t) is
usually denoted as the mother wavelet, and the functions

γa,τ (t) = 1√
a
γ

(
t − τ
a

)

are called daughter wavelets, representing scaled and displaced versions of the
mother wavelet. The factor 1/

√
a is to preserve the total energy.

Definition 9.18 (Inverse Wavelet Transform) The inverse wavelet transform is
given by

x(t) =
∫ ∞

0

da

a2

∫ ∞

−∞
dτW(x)(a, τ )γa,τ (t) .

In Fig. 9.3 we plot the Haar wavelet [18], a real wavelet that is one period of a
square wave, and its daughter wavelets for a = 2 and a = 1/2.

For large values of a, W(x)(a, τ ) will provide information on the long range
behaviour of the signal x(t) (where lower frequencies are important, and the
effect of higher frequencies cancels out due to the oscillatory character of the
wavelets). On the contrary, for small a, W(x)(a, τ ) scrutinizes the short range

Fig. 9.3 Haar wavelet (centre) and its daughter wavelets for a = 2 (right) and a = 1/2 (left)
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behaviour of x(t) (where higher frequencies contribute and the lower frequencies
cancel out). This indicates that although scales and frequencies are not the same,
there is a reciprocal relation between them. In practise, the scales are represented
logarithmically (in base 2), in the form a = 21/λ, in such a way that frequency
∝ λ. Thus, although scale and frequency are not the same, it is possible to associate
an approximate frequency, known as pseudo-frequency, to each scale (although this
depends on the particular mother wavelet and the sampling time used).

Also, it is clear that for large values of a (lower frequencies) there is a poor
resolution in time (since the daughter wavelet has a long duration), whereas for
small values of a (higher frequencies) there is a good temporal resolution (since
the daughter wavelet has a short duration). Therefore, the resolution of the wavelet
transform is not uniform in the time-scale plane. Wavelets are commonly used in
the analysis of signals with frequency varying in time (chirps [13, 21]), signals
with discontinuities (like edges in images), fractals, etc., where the multiresolution
properties of the wavelets provide more information than just the Fourier and Gabor
analysis.

A 3D plot (or contour plot) of |W(x)(a, τ )| is denoted as scalogram, since the
wavelet transform provides a scale-time representation of the signal.

In summary, Gabor and wavelet transforms, in contrast to the Fourier transform,
provide information about a signal simultaneously in both time and frequency
domains. They are widely applied tools in several fields where signal processing
is required.

9.2 Applications

9.2.1 Power Spectrum of the Logistic Map

As in H.W. Lorenz [9] let us assume that a time series xj , j = 1, . . . , n of a single
variable has been observed at equidistant points in time. The Fourier transform of
the series xi is defined as

xk = 1√
n

n∑

j=1

xj exp(−2πijk/n) , k = 1, . . . , n .

It can be shown that the autocorrelation function, defined by

ψm = 1

n

n∑

j=1

xjxj+m,
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can be written in terms of the Fourier transform:

ψm = 1

n

n∑

k=1

|xk|2 cos
(2πmk

n

)
. (9.3)

Inverting Eq. (9.3), we get

|xk|2 = 1

n

n∑

m=1

ψm cos
(2πmk

n

)
.

The graph obtained by plotting |xk|2 as a function of the frequency 2πk/n is the
power spectrum.

Remark 9.9 (Power Spectrum Interpretation) A power spectrum displaying several
distinguishable peaks is a sign of quasiperiodic behaviour. Dominating “peaks
represent the basic frequencies of the motion, while minor peaks can be explained as
linear combinations of the basic frequencies. If the underlying system is discrete, a
single peak corresponds to a period-2 cycle, the emergence of two additional peaks
to the left and to the right sides of the first peak, respectively, correspond to a period-
4 cycle, 7 peaks correspond to a period-8 cycle, etc.” [9].

If peaks emerge in a continuum the time series is either random or chaotic. In
Fig. 9.4 it is shown the power spectrum of the logistic map for two different values
of the bifurcation parameter μ.
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Fig. 9.4 Power spectrum of the logistic map obtained from a simulation starting at x0 = 0.5
of 2000 samples. Figure on the left is obtained for μ = 3.57, when the unique stable orbit having
period 557120 (26 ·5·1741) is present. The power spectrum (obtained for a time series that is shorter
than the attractor period) displays regular peaks. Figure on the right shows the power spectrum in
the chaotic region where it is not possible to isolate dominating frequencies
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9.2.2 State Space and Power Spectrum of a Periodic,
Quasiperiodic and Chaotic Signals

In order to show how the power spectrum changes with the signal, let us consider
the well-studied prototype of a generic two-dimensional map: the Hénon’s two-
dimensional dissipative map [1] defined by

{
xn+1 = 1 + βxn − αy2

n

yn+1 = xn .
(9.4)

The system in Eq. (9.4) is periodic, quasiperiodic or chaotic depending on the
parameters α and β. For example, Fig. 9.5 shows for a periodic signal a discrete
peak at the harmonic; Fig. 9.6 shows for a quasiperiodic signal discrete peaks at
the harmonics and subharmonics; Fig. 9.7 shows for a chaotic signal a broadband
component in its power spectrum. The latter decomposes the signal such that ones
can detect whether the source is random/chaotic and its dominating frequencies.

9.2.3 Fourier Methods for Finding Frequency Components
of a Given Signal

Matlab provides convenient libraries for spectral analysis. In this section we use
Fourier transforms to find the frequency components of a signal buried in noise as
retrieved in [12].
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Fig. 9.5 (a) State space and (b) power spectrum for Eq. (9.4) with parameters α = 1 and β = 0.05
(periodic signal)
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Fig. 9.6 (a) State space and (b) power spectrum for Eq. (9.4) with parameters α = 1 and β = 0.12
(quasiperiodic signal)
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Fig. 9.7 (a) State space and (b) power spectrum for Eq. (9.4) with parameters α = 1 and β = 0.3
(chaotic signal)

Let us consider a signal containing a 50 Hz sinusoid of amplitude 0.7 and 120 Hz
sinusoid of amplitude 1:

S = 0.7 sin(2π 50t)+ sin(2π 120t) , (9.5)

and let us corrupt the signal with zero-mean white noise as defined in Definition
9.14 with a variance of 4:

X = S + 2εt . (9.6)
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Fig. 9.8 Power spectrum for Eq. (9.4). Data sampled at 1 Hz. (periodic signal). (a) Signal in
Eq. (9.5) in the time domain. (b) Phase spectrum for Eq. (9.5)
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Fig. 9.9 Power spectrum for Eq. (9.6). Data sampled at 1 Hz. (periodic signal mixed with noise).
(a) Signal in Eq. (9.6) in the time domain. (b) Power spectrum for Eq. (9.6)

Figure 9.8 shows the signal in the time domain as well as its power spectrum
with just two spikes at 50 and 120 Hz, i.e. the dominating frequencies. Figure 9.9
shows the signal in the time domain as well as its power spectrum with a broadband
component in its power spectrum. However, the two spikes at 50 and 120 Hz are
clearly distinguishable along with other frequencies due to noise. For applications
to economics see Chap. 16 and [16, 17].
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9.2.4 Gabor and Wavelet Analysis of Hénon’s Map

Let us consider Hénon’s map (9.4) with α = 0.2 and β = 0.9991, with state space
shown in Fig. 9.10b. Applying the Gabor transform to the time series xn, we obtain
the spectrogram shown in Fig. 9.10c, where a few main frequencies can be observed,
but with values that change with time. In particular, it is possible to see that at the
beginning of the simulation more frequencies are present, which disappear while the
system achieves convergence onto the map attractor, that is a period-2 cycle. The
same can also be observed in the scalogram, when the wavelet transform is applied,
in Fig. 9.10d, where the fact that different scales are used for different frequencies
allowed us to better highlight this phenomenon at smaller frequencies.

See [22] for applications of Gabor analysis in economics, and see [2, 14] for
applications of wavelets in economics.
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(a) time series of xn for eq. (9.4).
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(b) state space for eq. (9.4).
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(c) Spectrogram of xn in eq. (9.4).
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(d) scalogram of xn in eq. (9.4).

Fig. 9.10 (a) Time series, (b) state space, (c) spectrogram and (d) scalogram for Eq. (9.4) with
parameters α = 0.2 and β = 0.9991
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Chapter 10
Recurrence Quantification Analysis:
Theory and Applications

Giuseppe Orlando, Giovanna Zimatore, and Alessandro Giuliani

10.1 Motivation

The need to quantify relevant features of time series is present in any discipline.
Economics is not an exception as in other fields of investigation dealing with
complex systems, has a twofold consideration of the ontological nature of time-
dependent signals. On one side they are considered as the expression of a ‘hidden’
dynamical system obeying some (largely unknown) constitutive laws which the
investigator tries to observe from time series features (this is the approach tech-
nologists call ‘reverse engineering’); on the other side, a time series is nothing else
than a trajectory of a system observed within a temporal frame in which the system
itself reacts to contingent events happening in time. The difference between the two
aspects is as different as a physical essay on thermal conduction (the problem at the
basis of Fourier spectral analysis) and the Robinson Crusoe novel where the plot
evolves based on the interaction between the character and the external events. In
complex systems we have both physical laws (often ‘hidden’) that drive the system
to change and random noise (exogenous or endogenous) that interacts with the
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system. The tricky point is that when dealing with complex systems we need to
adopt both aspects: the heartbeat of a person (the series of the time intervals between
subsequent beats) is dependent on both physical features of the spreading of electric
signals across the myocardium and the environmental contingencies occurring in
time (e.g. wake/sleep, emotions, metabolic changes, etc.). Strictly speaking, to
consider a series as a proper ‘time-dependent’ signal needs both constitutive (e.g.
physical laws) and contingent (environmental perturbations) drivers. As a matter of
fact, in an ideal pendulum trajectory there is no real time course: the oscillatory
behaviour is invariant in time and the system repeats at regular intervals exactly the
same path; this is why it can be described by a circle in a phase space, i.e. by a figure
with no beginning and no end that can be traversed an infinite number of times.
On the other hand, the relative motions of an ensemble of particles at equilibrium
have no time-dependent properties and can be described by a static probability
distribution of space occupation. In economics this fact is immediate to grasp: an
economic system governed by some constitutive ‘rules’ is continuously challenged
by environmental solicitations coming from largely unpredictable contingencies
happening in time that influence its trajectory. This state of affairs heavily impinges
on the data analysis tools more apt to describe such a blend of constitutive and
context dependent features.

The ‘perfect’ tool must have the three following basic features:

1. It must be free from any stationarity assumption (the sensitivity to detect tipping-
points is of utmost importance).

2. It must be able to deal with both quantitative and symbolic variables.
3. It must be able to deal with very short series.

The above requirements contribute to a fourth ‘corollary’: the mathematics must
be as simple as possible.

The recurrence plot approach fulfils the above three requirements, and the
mathematics at the basis of the method is the simplest one: nothing more than
Pythagoras’ theorem in many dimensions. Basically, we deal with a distance matrix
between subsequent epochs in a time series and mark as a ‘recurrence’ any pair
of epochs whose distance is below a given threshold (radius). The number of such
recurrences and their disposition in time generate a set of quantitative descriptors
able to fully characterize the studied system. These properties made recurrence plots
(RP) and their quantitative extension (recurrence quantification analysis [RQA]) the
method of choice in fields as diverse as biomolecular sequence analysis (where time
is substituted by the linear order of monomers along polymer chains), engineering,
physiology, psychology, text analysis and clearly economics.

In Sect. 10.4 it can be observed how this approach is useful in detecting spatio-
temporal recurrent patterns of dynamical regimes of economic time series. Some
indications on the nature of business cycles (i.e. deterministic or stochastic) as well
as on the nature of macroeconomic variables and the economy are reported.
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10.2 Recurrence Plot: Introduction

To introduce RQA it is mandatory to understand what exactly a recurrence plot is
and how it was built. The phase space is the space that permits geometrical descrip-
tion of the dynamical evolution of complex nonlinear systems. The dimension of the
phase space is the number of variables necessary to describe the state of the system
in an instant. An equivalent phase space can be built by time delay embedding
procedure from a time series data.

Let xi be the orbit of a dynamical system, and let us consider the so-called
delayed vectors denoted as

xi = (xi, xi+1, . . . , xi+(m−1)), (10.1)

wherem is the embedding dimension (see 7.2).
Fixed a ε > 0, for all coordinates (i, j), we can define the function

Ri,j (ε) = H (ε− ‖ xi − xj ‖) i, j = 1, . . . , N. (10.2)

Definition 10.1 (Recurrence Plot [1]) A recurrence plot (RP) is a matrix of dots
in a N ×N square, where the coordinates (i, j) are displayed if Ri,j (ε) = 1, i.e. the
distance between xi and xj is less than ε.

Therefore, the RP of xi ≈ xj shows, for a given t , the indices of times at which a
phase-space trajectory visits the same area in the phase space. The diagonal is called
line of identity (LOI), while vertical segments represent phase-space trajectories
that remain in the same phase-space region for some time, whereas diagonal lines
represent trajectories that run parallel for some time. Thus, the RP enables us to
investigate the m-dimensional phase-space trajectory through a two-dimensional
representation of its recurrences. Large scale structures in RP can be classified as
homogeneous, periodic, drift and disrupted (see Fig. 10.1). Small scale structures
(isolated dots, diagonal lines and vertical/horizontal lines and rectangular regions)
are the basis of a quantitative analysis of the RPs.

10.3 Recurrence Quantification Analysis

Recurrence quantification analysis (RQA) describes quantitatively the recurrence
plot. ‘Recurrence’ is defined as the ability of a dynamic system to return to the
proximity of the initial point in phase space, and, consequently, RQA was developed
by C. Webber and J. Zbilut [12] to understand the behaviour of the phase-space
trajectory of dynamical systems. RQA can be defined as a graphical, statistical and
analytical tool for the study of nonlinear dynamical systems, and it is successfully
used in a multitude of different disciplines from physiology [15, 16] to earth science
[17] and economics [9, 10].
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Fig. 10.1 Recurrence plots coupled with their time series for different systems. Top panels:
Signals. Bottom panels: RP. From left to right we consider a white noise, the logistic map with
periodic (μ = 3.5) and chaotic (μ = 4) behaviour, and an auto-regressive process

10.3.1 RQA Measures

In the RQA, the following measures can be defined.

S.1 Recurrence (REC), i.e. the density of recurrence points in a recurrence plot
(RP). This measure counts those pairs of points whose spacing is below a
predefined cut-off distance. Its value is a function of the periodicity of the
systems: the more periodic the signal dynamics, the higher the REC.

S.2 Determinism (DET) measures the number of diagonals and indicates the
duration of stable interactions that is graphically represented by the recurrence
points in the RP, whose forming lines are parallel to the line of identity (LOI).
However, it must be noted that high values of DET ‘might be an indication of
determinism in the studied system, but it is just a necessary condition, not a
sufficient one’ (Marwan [2]).

S.3 Maximal deterministic line (MAXLINE) measures the length of the said
line found in the computation of DET. According to Eckmann et al. [1],
line lengths on RP are directly related to the inverse of the largest positive
Lyapunov exponent, and therefore small MAXLINE values are ‘indicative of
randomlike behaviour’. ‘In a purely periodic signal, lines tend to be very long,
so MAXLINE is large’ [4]. Last but not least, there is a positive probability that
white noise processes can have a high MAXLINE, although this is unlikely.

S.4 Entropy (ENT) is the Shannon entropy measured in bits because of the base-
2 logarithm, which are the bins over the diagonals. ‘ENT quantifies the
distribution of the diagonal line lengths. The larger the variation in the lengths
of the diagonals, the more complex the deterministic structure of the RP’ [4].

S.5 Trend (TREND) is the regression between the density of recurrence points
parallel to the LOI and its distance to the LOI. As TREND measures how
quickly a recurrence point departs from the main diagonal, it aims to detect
nonstationarity.
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S.6 Laminarity (LAM), analogous to DET, measures the number of recurrence
points that form vertical lines and indicates the amount of laminar phases
(intermittency) in the system.

S.7 Trapping time (TT) measures the average length of the vertical lines, therefore
showing how long the system remains in a specific state.

Remark 10.1 With regard to the RP, points on the LOI are excluded from the
measures S.1, S.2 and S.3 because they are trivially recurrent. REC, DET, ENT,
MAXLINE and TREND are sensitive to parallel trajectories along different seg-
ments of the time series. LAM and TT are able to find chaos–chaos transitions. The
ratio of determinism is represented by the lengths of diagonal lines.

10.3.2 RQA Epoch by Epoch Correlation Index

We start from the definition of a rolling window because, as mentioned in Webber
[3], ‘one of the most useful applications of recurrence quantifications is to examine
long time series of data using a small moving window traversing the data. For
example, in retrospective studies it is possible to study subtle shifts in dynamical
properties just before a large event occurs’.

Slight changes and transition in the dynamics of complex systems can be
studied when RQA measures are calculated separately on rolling and overlapping
segments. Dynamical transitions like periodic-chaos or chaos–chaos transitions can
be observed with this approach.

Definition 10.2 (Rolling Window) Let us set I = {1, . . . , n} ⊆ N and, for each
(k, i) ∈ N

∗ × N
∗ with k < n and i ≤ n− k + 1.

A discrete time rolling or sliding window is

Ik,i = {i, . . . , i + k − 1} (⊂ N) , (10.3)

where k and i are, respectively, the size and the window’s index.

Remark 10.2 It can be noted that the number of windows of size k, as defined in
Eq. (10.3), is q = n− k + 1(≥ 2).

Definition 10.3 (Recurrence Quantification Epoch [13]) When a time series is
divided into a series of windows or epochs of smaller length, the resulting RQA on
those multiple sub-series is called recurrence quantification epoch (RQE).

Remark 10.3 When performing the RQE, it can happen that some windows may
overlap. For example, Webber [11] partitioned a time series of 227,957 points in
shorter windows (or epochs), each 1.024 seconds long, and ‘adjacent windows were
offset by 256 points (75% overlap), fixing the time resolution to 256 ms’.
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Definition 10.4 (Sampling) For each (k, i, l) ∈ N
∗ × N

∗ × N
∗ we denote Slk,i the

l-th RQA measure of the epoch as

Sk,i = {St | t ∈ Ik,i}. (10.4)

Definition 10.5 (RQE Correlation Index) For each l �= m, we denote ρl,m the
Spearman’s correlation coefficient between Slk,i and Smk,i .

Therefore, there are p = (L2
)

pairs of correlations ρl,m and q × p pair of epoch

correlations ρl,mk,i so that the product

P(RQE)k,i =
L∏

l,m=1
l �=m

(
1 + ρl,mk,i

)
(10.5)

can be defined as the RQE correlation index for the rolling window Ik,i , and it varies
between 0 and 2p.

Definition 10.6 (RQE Absolute Correlation Index) The product

Pabs(RQE)k,i =
L∏

l,m=1
l �=m

(
1 + |ρl,mk,i |) (10.6)

can be defined as the RQE absolute correlation index for the rolling window Ik,i ,
and it varies between 1 and 2p.

10.4 RQA Applications

RQA is meant to be an efficient and relatively simple tool in nonlinear analysis
because it allows the identification of the hidden structure of the time series as well
as sudden phase changes. For the first purpose, we run PCA over RQA measures
Sect. 10.4.1; for the second, we propose a correlation index based on RQA with the
final aim to obtain an indicator for early detection of recessions Sect. 10.4.2.

10.4.1 Principal Component Analysis (PCA) on RQA

The recurrence quantification analysis (RQA) introduces few parameters as syn-
thetic descriptors of the global complexity of the signal, while it is possible to
exalt the minor components present in it by filtering out the redundant information
through principal component analysis (PCA). The descriptors obtained by the RQA
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could be re-dimensioned through applying the principal component analysis (PCA)
technique. PCA is a common statistical technique that provides the possibility to (1)
reduce the dimension of a data set without consistent loss of information and (2)
to separate the different and independent features of the data. The PCA procedure
describes the original data set with a lower number of parameters called main
components (PC1, PC2).

For example, the combined use of the RQA and PCA is a useful method in
clinical applications [14, 15]. In economics the PCA has been applied to recurrence
measures estimated from business cycle data [8]. Thanks to that, it was possible to
observe that RQA could distinguish differences between income, capital, investment
and consumption (see Chap. 17).

10.4.2 RQE Correlation Index on a Sample Signal

As suggested in Orlando et al. [7], in order to test whether the aforementioned
correlation index can help to understand changes in a time series, we start by
considering a known signal. Let us simulate a random signal distributed as ε ∼
N (μ, σ 2), and let us change its mean and variance as in Table 10.1 and shown in
Fig. 10.2.

Now let us apply the RQA to both the original and transformed signals by using
the parameters in Table 10.2. The resulting correlations for the original signal and
the final signal are displayed in Figs. 10.3 and 10.4, respectively. It is worth noting
that the RQE absolute correlation (10.6) is able to detect 9 of the 10 intervals
appearing in Table 10.1 (one being clouded by the windowing filtering).

In Orlando et al. [9], the index was tested on the income time series as generated
from a Kaldor–Kalecki model [5, 6] with similar results.

Table 10.1 Perturbed
random signal according to a
given μ and σ 2. For example,
for the first interval, 100
points have been randomly
generated from a N (0, 1)
distribution. For the second
interval, 40 points have been
randomly generated from a
N (1, 1) distribution, and
so on

N. Interval μ σ 2

1 0 100 0 1

2 101 140 1 1

3 141 200 1 4

4 201 280 4 4

5 281 300 4 6

6 301 400 −5 6

7 401 420 2 6

8 421 500 2 1

8 501 560 0 1

9 561 600 0 3

10 601 700 1 3
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Table 10.2 RQA parameters
of the perturbed signal

Embedding 10

Radius 80

Line 5

Shift 1

Epoch 50

Distance Meandist, Euclidean

Number of epochs 642
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Fig. 10.3 Original test signal (above) versus Spearman correlations (below). RQE absolute
correlation (in blue) is displayed next to correlation (red). Difference in the x-axis numbering
between the picture above and below is due to the windowing mechanism
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Fig. 10.4 Altered test signal (above) versus Spearman correlations (below). RQE absolute
correlation (in blue) is displayed next to correlation (red). See how the RQE correlation calculated
as in Eq. 10.6 is closer than the other, and it is able to detect more fine changes in the times
series. The difference in the x-axis between the picture above and below is due to the windowing
mechanism
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Chapter 11
On Business Cycles and Growth

Giuseppe Orlando and Mario Sportelli

11.1 Nonlinearities in Economics

The dynamic analysis of non-linear phenomena in economics dates back to 1887
with the first cobweb model (see Fig. 11.1), in which demand and supply would
adjust to the market equilibrium with some time lag. Regularly, recurring cycles
were spotted in the market prices by Benner [7], who found that producers base
their current output on the price they observe in the market during the previous year.
This behaviour can be found, for example, in agriculture because of the lag between
planting and harvesting (for the history of the model and the related theorem see
Ezekiel [22]).

One of the main problems of the cobweb dynamics consisted in the complexity
of the analysis that it involved, if we remove the naive hypothesis that producers
do not change their expectation on the price, despite it being always incorrect ex
post. In the macroeconomic field, the Keynes general theory [40] did not venture
into a dynamic analysis but was limited to explain why the system headed towards a
static equilibrium point. Only some of those who inherited Keynesian legacy, such
as Harrod in modelling economic growth, tried to embed the Keynesian analysis into
a dynamic perspective so that equilibrium or imbalance situations were generated
endogenously (for more details see Part IV).
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Fig. 11.1 Fluctuation of prices and quantities in the cobweb model. (a) Convergent case. (b)
Divergent case.

11.2 Business Cycles

11.2.1 Background and Definition

The pioneering work by Burns and Mitchell [13] gives what is considered the classic
definition of business cycles

Business cycles are a type of fluctuation found in the aggregate economic activity of nations
that organize their work mainly in business enterprises: a cycle consists of expansions
occurring at about the same time in many economic activities, followed by similarly general
recessions, contractions, and revivals which merge into the expansion phase of the next
cycle.

This definition is useful here for:

1. The creation of composite leading, coincident, and lagging indexes based on
the consistent pattern of comovement among various variables over the business
cycle (see, e.g., Shishkin [81]);

2. The identification within the business cycles of separate phases or regimes.

The National Bureau of Economic Research (NBER)[56] defines a recession
as “a significant decline in economic activity spread across the economy, lasting
more than a few months, normally visible in real GDP, real income, employment,
industrial production, and wholesale-retail sales. A recession begins just after the
economy reaches a peak of activity and ends as the economy reaches its trough.
Between trough and peak, the economy is in an expansion. Expansion is the normal
state of the economy; most recessions are brief and they have been rare in recent
decades”.



11 On Business Cycles and Growth 155

With regard to the cycle, Schumpeter [77] mentioned four stages connecting
production, stock exchange, public confidence, demand, interest rates, and prices:

1. Expansion (increase in production and prices, while interest rates are relatively
low);

2. Crisis (stock exchanges crash and multiple bankruptcies of firms occur);
3. Recession (drops in both prices and production and rise of interest rates);
4. Recovery (stock prices recover because of the fall in prices and incomes).

In addition, Schumpeter suggested that each business cycle has its own typology
according to the periodicity, so that a number of cycles were named after their
discoverers (see Table 11.1, for a review refer to Korotayev and Sergey [41]).

Figure 11.2 depicts the four stages of a business cycle: (1) expansion, (2) boom
period in which aggregate demand rises much more than aggregate output and this
overheats the economy bringing it close to its production ceiling, (3) recession, and
(4) recovery when the economy restarts to grow after a trough. The vertical distance
between the peak and the trough is called specific cycle amplitude.

Table 11.1 Business cycles taxonomy sorted by length. From left to right: type of business cycle,
name of the scholar who identified it, year in which the cycle was identified, time span of the cycle

Name Scholar First studied Length of cycle

Inventory cycle Kitchin 1923 From 3 to 5 years

Fixed investment cycle Juglar 1862 From 7 to 11 years

Demographic cycle Kuznets 1930 From 15 to 25 years

Technological cycle Kondratiev 1935 From 45 to 60 years

Fig. 11.2 Business cycle phases where recession (trough) follows expansion (peak)
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11.2.2 Literature on the Causes of Business Cycles

Theories on business cycles (for a review see Semmler [78], Hillinger [37],
Zarnowitz [93], Mullineux [55] and Cooley [17]) study volatility of economies and
may differ from each other depending on:

1. Their ability to explain cycles without having to rely on outside forces/shocks.
They are called endogenous. By contrast, exogenous business cycle theories
require the intervention of the above-mentioned forces/shocks;

2. The assumption of a general equilibrium framework (neoclassical theories) or the
assumption of market imperfections and/or disequilibrium (Keynesian theories);

3. The possibility of attributing cycles to real shocks or monetary shocks, or
excess/lack of investment or consumption;

4. The derivation of business cycles starting from the interaction of individuals
(micro-funded theories) or by considering the aggregate variables as a whole
(macro-funded theories).

Until the Keynesian revolution, classical and neoclassical explanations were the
mainstream of economic cycles; but after that revolution neoclassical macroeco-
nomics was largely spurned. Starting from the 1980s, there has been a resurgence
of neoclassical approaches. The real business cycle (RBC) theory is the most
important of them (see the seminal paper of Kydland and Prescott [43]). The main
assumption of the neoclassical approach is that individuals and firms always respond
optimally. Hence, public intervention, at the best, has no effect on the economy,
whereas most of the time it has a negative effect. Even slumps represent, given the
situation, the optimal solution. The idea behind this approach is that governments
should focus on a long-term growth instead of focussing on stabilization. RBC
differs in this way from Keynesian economics and monetarism. These two other
approaches relate recessions to some failure of the market. On the contrary, RBC
explains business cycle fluctuations with real shocks such as innovations. The
success of RBC relies on the fact that it can mimic many measurable business
cycle properties. This notwithstanding, RBC models still have some issues notably
in interpreting the Solow “residuals”, i.e. the part of growth that is not explained
by capital accumulation and labour force expansion. Arguably Solow defined the
aforementioned residuals as “a measure of our ignorance”, whereas RBC describes
them as a part of the growth that is explained by technical progress.

Hence, the identification of the root caused by economic fluctuations varies
between schools of thoughts. The Keynesian/post-Keynesian view is that cycles are
caused by the inherent instability of aggregate demand; therefore, unless governed,
economy can reach levels below or above full employment. This interpretation
created a lively debate among econometricians who had to model and measure
economies. For example, Tinbergen [87], [88], and Frisch [26] asserted that the
economy is intrinsically stable and the cycles are an effect of exogenous shocks. In
particular, Tinbergen, following Slutsky [82], modelled the “economy as a system
of stochastically disturbed difference equations, the parameters of which could be
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estimated from actual time series” [51]. Similarly, according to Frisch, the cycles
result from delays in new capital, spurred by the increased consumer demand. This
would cause recurrent, but temporary oscillations in output absorbed in two or three
cycles.

Moreover, Schumpeter identified in innovation and creative destruction the
factors that deviate the economy from Walrasian equilibrium: “capitalism is by
nature a form or method of economic change and not only never is but never
can be stationary” [76]. In this context, “imperfections” must be intended as those
perturbations of the Walrasian equilibrium that lead to booms because of high
profits made by frontrunners. This ends when more and more entrepreneurs copy the
strategy of the pioneer firms, and, therefore, greater competition depresses business
margins up to forcing foreclosures. At this point, a depression starts and the market
is cleansed of unprofitable firms. This equilibrium is maintained until technological
or other innovations lay the basis for another expansion.

In addition, Phelps [70] and Lucas [50] explain business cycles on the grounds of
incomplete information, given that “key economic decisions on pricing, investment
or production are often made on the basis of incomplete knowledge of constantly
changing aggregate economic conditions. As a result, decisions tend to respond
slowly to changes in economic fundamentals, and small or temporary economic
shocks may have large and long-lasting effects on macroeconomic aggregates”
[36]. The so-called Austrian School [23, 89] claims that a sustained period of
low interest rates leads to an excessive creation of credit and then to an unstable
imbalance between savings and investments. From this point of view, a recession (or
“credit crunch”) is caused by the need of re-establishing the equilibrium. In other
words, monetary shocks influence “relative prices, such as the term structure of
interest rates, systematically altering profit rates across economic sectors. Resource
use responds to those changes, generating a cyclical pattern of real income. The
divergence of the interest rate structure, from the previous and unchanged time
preferences, means that the expansion is unsustainable and must end in recession”
[1].

The RBC theory [17, 43], which was the mainstream view until the financial
crisis of 2008, assumes that markets are perfect. This implies that the business cycle,
in itself, is the efficient response to exogenous changes in the real economy. Other
theories such as the so-called debt deflation [8, 24, 53], which gained momentum
after 2008, contend that over-indebtedness may lead to liquidations, fall of bank
assets, credit crunch, and finally to a recession.

Given the different interpretations of business cycles, implications in terms of
control of undesired consequences, such as unemployment, inflation, etc. differ too.
From a control theory [92] point of view, the economy may be seen as a dynamical
system in which the state is limitedly known and the observations contain noise,
or which is chaotic by nature [10, 59, 65, 86, 91]. Therefore, it is applicable to
the research on controlling stochastic dynamical systems, e.g., Kushner [42], Guo
and Wang [33], Fleming and Rishel [25], as well as controlling chaotic dynamical
systems, e.g., Romeiras et al. [71], Grebogi and Laib [32], Calvo and Cartwright
[14], Pettini [69]. More recently, noise coupled with incomplete information has
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been approached in terms of static (Bashkirtseva et al. [6], Bashkirtseva [5]) or
dynamic (Bashkirtseva [4]) feedback regulators. Last but not least Orlando et al.
[66] compared an Ornstein–Uhlenbeck [61, 62] stochastic process versus a Kaldor–
Kalecki [59, 60] deterministic chaotic model and found that not only the latter is able
to represent reality as well as the first, but it could reproduce an extreme event (black
swans). In fact, in a previous paper, Orlando et al. [67] have shown that real and
simulated business cycle dynamics have similar characteristics, which means that
the aforementioned deterministic chaotic model could be a suitable tool to simulate
reality.

However, the way in which this can be empirically applied in terms of economic
policy has not been resolved yet.

11.3 Growth

As mentioned by Salvadori [74], “economic growth was central in classical political
economy from Adam Smith to David Ricardo, and then in its ‘critique’ by Karl
Marx, but moved to the periphery during the so-called ‘marginal revolution’. John
von Neumann’s growth model and Roy Harrod’s attempt to generalise Keynesian
principle of effective demand to the long-run re-ignited interest in growth theory.
Following the publication of papers by Robert Solow and Nicholas Kaldor in
the mid-1950s, growth theory became one of the central topics of the economics
profession until well into the early 1970s. After a decade of dormancy, since the
mid-1980s, economic growth has once again become a central topic in economic
theorising. The recent theory is called ‘new growth theory’, since according to it the
growth rate is determined from within the model and is not given as an exogenous
variable” [74].

While Kaldor’s theory influenced the academic debate on business cycles, Harrod
inspired Solow who, with his seminal paper “A Contribution to the Theory of Eco-
nomic Growth” (1956) [84], set the basis of modern growth theory. However, recent
research based on a thorough reading of Harrod’s theory [9, 34], challenges Solow’s
interpretation “which ultimately dominated the profession’s view of Harrod” [34].
The idea that the Harrod model “implied a tendency toward progressive collapse
of the economy” and that he invoked a fixed-coefficients production function, has
“little to do with the problem of long-run growth as Solow understood it, but instead
addressed medium-run fluctuations and the ‘inherent instability’ of economies”
[34].

There are several reasons why in this book we are dealing with the Harrod’s
model. First of all, Harrod, through Solow’s interpretation, contributed to the foun-
dation of modern growth theory. Secondly, the Harrod model provides a dynamic
framework and some guidelines for policy-makers in terms of supply-side policies.
In fact, they should consider the combination of investment, technological change,
population growth, unemployment, and aggregate demand. Another reason is that, in
his framework, the warranted rate of growth is not a single moving equilibrium, but
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a “highly unstable” one. This is called Harrod’s knife-edge instability or instability
principle.

Similarly, but coming from a different angle (i.e., static analysis and microeco-
nomic foundations of macroeconomic dynamics), Leijonhufvud defines the notion
of a corridor of stability as a time-path in which economic activities “are reasonably
well coordinated” [45]. Moreover, “the system is likely to behave differently for
large than for moderate displacements from the ‘full coordination’ time-path. Within
some range from the path (referred to as ‘the corridor’ for brevity), the sys-
tem’s homeostatic mechanisms work well, and deviation-counteracting tendencies
increase in strength. Outside that range these tendencies become weaker as the
system becomes increasingly subject to ‘effective demand failures’. If the system
is displaced sufficiently ‘far out’, the forces tending to bring it back may, on
balance, be so weak and sluggish that for all practical purposes the Keynesian
‘unemployment equilibrium’ model is as sensible a representation of its state as
economic statics will allow. Inside the corridor, multiplier-repercussions are weak
and dominated by neoclassical market adjustments; outside the corridor, they should
be strong enough for effects of shocks to the prevailing state to be endogenously
amplified. Up to a point, multiplier-coefficients are expected to increase with
distance from the ideal path. Within the corridor, the presumption is in favor
of ‘monetarist’ policy prescriptions, outside of it in favour of ‘fiscalist’. Finally,
although within the corridor market forces will be acting in the direction of clearing
markets, institutional obstacles of the type familiar from the conventional Keynesian
literature may, of course, intervene to make them ineffective at some point. Thus,
a combination of monopolistic wage-setting in unionized occupations and legal
minimum-wage restrictions could obviously cut the automatic adjustment process
short before ‘equilibrium employment’ is reached” [45].

Both views, macroeconomic and dynamic (by Harrod) and static and micro-
founded (by Leijonhufvud) converge the idea of “existence of thresholds at the
start of the mechanisms that are at work” [44]. Therefore, the idea of dynam-
ically unstable multiple equilibria or the alternative Harrod’s suggestion of a
Leijonhufvud’s “corridor stability” in our opinion is worth being explored. This
is especially because, whereas in the 1970s and the 1980s unemployment and
stagflation discarded those theories, in the twentieth century “in the leading Western
economies there have been prolonged periods when more saving would have been
beneficial, and others with every appearance of inadequate effective demand” [21].
As the Harrod’s model is one of the few able to predict that, “it still deserves serious
attention” [21].

11.4 Dynamical Systems and Economic Theory

In the last 30 years, attempts to explain and model business cycles and growth
have led to adopt in economics some mathematical tools borrowed from dynamical
systems theory. The widespread use of non-linear equations in economic models
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now appears to have established a symbiosis between the theory of dynamical
systems and the theory of economic dynamics.

11.4.1 Historical Foundations of Dynamical System and Chaos
Theory from the Economic Perspective

Many historians of mathematics acknowledge that the basic elements of the dynami-
cal system theory are due to Henry Poincaré.1 These elements are strictly connected
with the foundations of the current notion of dynamical chaos. In the scientific
lifework of Poincaré there are three main elements concerning the modern chaos
theory: (1) the qualitative theory of differential equations; (2) the study of global
stability of sets of trajectories; (3) the notion of bifurcation and the study of families
of dynamical systems depending on a parameter [3]. Poincaré introduced the phase
portrait (i.e., the set of solution curves traced in the phase space), which is employed
to study the behaviour of a system when the underlying differential equations are not
solvable. This allowed him to classify and define the singular points in the plane as
centres, saddle points, nodes, and foci. Poincaré also developed methods to reduce
the study of a continuous-time system to the study of an associated discrete-time
system. This technique is the celebrated “first return map" (also known as Poincaré
map), which is nowadays considered as one of the most important methods used
to reduce the dimension of a system, thus facilitating the study of high-dimension
systems. The notion of stability connected with the Poincaré map was taken and
refined by Lyapunov [52] and by Andronov’s Gorki school during the twentieth
century [20]. Between 1892 and 1899, in his studies of stability, Poincaré discussed
a type of orbits he called homoclinic, which are trajectories lying in the intersection
of the stable manifold and the unstable manifold of an equilibrium. At that time,
however, the scientific community (including Poincaré himself) disregarded any
further research on the topic. This happened because research in dynamical systems
was mostly devoted to problems involving either stable fixed points or periodic
orbits. Poincaré’s studies of homoclinic structures were recovered and further
developed firstly by Birkoff [11] and his school, and then, in the 1960s, by Smale
[83] and Shilnikov [80].2 Since then, homoclinic orbits become essential to the
study of chaos. In the context of global stability of systems describing rotating fluid
masses and planetary motion, Poincaré focused on families of dynamical systems
depending on a parameter, in turn depending on external characteristics. In those
cases, an exogenous variation of a parameter might drastically change the qualitative
characteristics of the system. The qualitative change of a system’s behaviour refers

1For a detailed survey on Poincaré contributions on dynamical system theory, see Bottazzini [12]
and Dahan Dalmedico (1992).
2For historical details on the development of the theory concerning the homoclinic orbits, see
Shilnikov [79].
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to the notion of bifurcation developed by the German mathematician Eberhard
Hopf in his work originally published in 1942 and then translated into English in
1976. Hopf suggested the notion of bifurcation that a dynamic system may generate
if a parameter changes because of external characteristics of the model. When
a bifurcation is detected, the qualitative dynamics of the system may drastically
change. The notion of bifurcation spread in the 1970s thanks to the contribution of
Ruelle and Takens [73] on hydrodynamics. These authors showed that, as already
indicated by Hopf, a sequence of Hopf’s bifurcations leads the system from a
stationary to a periodic solution. In addition, they showed that, if the frequency
of oscillations changes because of changes in a critical parameter, the motion of
the system becomes “very complicated, irregular and chaotic” [73, p. 168]. Chaos
theory, as currently understood, grew in the 1970s from an interdisciplinary domain
involving the qualitative theory of differential equations, fluid mechanics, and parts
of engineering and population dynamics. Although Poincaré contributed to the
growth of the dynamical system theory, the concept of chaos (as we know it) cannot
be described as a linear development of a nucleus of ideas raised and matured among
mathematicians alone. Such a development went through important steps in the first
half of the twentieth century ([3]). In the mid-1920s, Balthazar van der Pol, a Dutch
electrical engineer working for the Philips Research Laboratories, pointed out an
example of non-linear dissipative3 equation without forcing that exhibits sustained
oscillations:

ẍ + ε(x2 − 1
)
ẋ + x = 0 , ε > 0 ,

known as the van der Pol equation. This second order differential equation describes
the amplitude of an oscillating current driven by a triode. In 1926, van der Pol
investigated the qualitative behaviour of this equation for values of the parameter
ε larger than 1, thus opening new insights towards the development of the theory of
relaxation oscillations. Since then, various generalizations were explored, including
the Liénard (1928) equation

ẍ + f (x)ẋ + g(x) = p(t),

which had its first application in economic dynamics by Goodwin [29].
In the 1930s and 1940s, studies on the theory of relaxation oscillations by the

physicist Aleksandr A. Andronov allowed the identification of a large class of non-
linear structurally stable systems. These studies gave rise to a celebrated treatise
written by Andronov himself, together with his colleagues Aleksandr A. Vitt and

3A dynamical system, either in continuous or in discrete time, can be classified as conservative
or dissipative system. The former is a system where the main physical properties remain constant
over time. The latter is a system characterized by the contraction of phase space volumes over time.
Details on this classification are in Wiggins [90].
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Semen E. Kaikin. The treatise was originally published in Russian in 19374 and
translated from Russian to English in 1949 by Solomon Lefschetz under the title of
“Theory of oscillations”. Between the postwar period and the 1960s, the translation
to English of other works originally written in Russian allowed a wide diffusion
of the non-linear dynamical system theory within the field of pure and applied
mathematics.

The work on fluid turbulence of Edward Lorenz [46], in which he studied a
relevant application of non-linear dynamical system theory to meteorology (see
Sect. 5.2), opened a window on the understanding of the concept of “turbulence”.
Such concept was developed and refined by Ruelle and Takens [73], where they also
introduced the notion of strange attractor. As shown in Ruelle and Takens [73], in the
presence of a strange attractor, a deterministic dynamical system exhibits behaviour
like that of a random process.

Finally, Steve Smale, an American mathematician at the University of California
(Berkeley), introduced topological tools and methods in the dynamical system
theory, thus offering an important contribution in its development. Smale [83]
extended the properties of structurally stable systems studied by Andronov to n-
dimensional systems and showed that a two-dimensional system cannot involve
a strange attractor, but only a finite collection of fixed points or limit cycles.
In contrast, there are higher order dimensional systems (n > 2) that he called
hyperbolic, which exhibit very complicated dynamics, because they may involve
an infinite set of periodic trajectories. Universally known as Smale’s horseshoes,
this finding is one of the most relevant examples of chaos [3].

11.5 Mathematical Approaches to Business Cycles

After the Keynesian revolution, Michal Kalecki, Nicolas Kaldor, and Roy Harrod
perceived that Clark’s [16] acceleration principle together with the Keynes multi-
plier were suitable ingredients for the emergence of the cycle. Thus, a mathematical
approach to business cycles progressively replaced old theories. However, very soon
these models became inadequate to describe the persistence of the cycle, because
they made use of linear difference or differential equations that were only able to
display damped or undamped oscillations. Consequently, they failed in their main
original purpose, which was the description of persistently oscillating behaviours.

As stated in Perona [68], both Kalecki (1935, 1937) and Kaldor (1940) perceived
the necessity of employing non-linear functions to account for sustained fluctua-
tions, but did not express their arguments in mathematical terms. In fact, Kalecki
was not able to formalize appropriately his intuition regarding the assumption of a
finite lag between investment decisions and effective production of capital goods.

4As a victim of Stalinist purges in 1937, A. Vitt had his name removed from the original Russian
edition.
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Kaldor, instead, introduced the S-shaped saving and investment curves to explain
the cycle, but his analysis was limited to a graphic exposition of the argument.
In one of the early issues of Econometrica [18], the French mathematician Philip
Le Corbeiller produced a brief note suggesting the use of non-linear dynamics to
explain the existence of the cycles. Le Corbeiller mentioned the seminal work by
van der Pol and encouraged economists to develop applications of this work in eco-
nomics. However, neither Frisch nor Tinbergen and Schumpeter, i.e., the founders
of the Econometric Society and the related journal, attached any importance to
the arguments of Le Corbeiller. Probably, this happened because Frisch had the
conviction that the economic models, as the economic systems, had to be stable,
while cycles were kept alive by exogenous shocks, as emphasized by Slutsky [82].
On this idea, Frisch based his hard critique to the Kalecki models. Such a belief was
shared by others economists like Tinbergen, so that the exogenous shock approach
to the cycle was accepted as the standard econometric methodology.

Only in the early 1940s, Richard Goodwin, who met Le Corbeiller at Harvard,
perceived the great relevance and the potential applications of non-linear dynamics
to economics. Initially helped by Le Corbeiller [85], Goodwin devoted his studies
(and his life) to restating the economic theory in non-linear terms. In 1948, Goodwin
presented his first non-linear model on the cycle at the meeting of the Econometric
Society. The paper was published in 1951 on Econometrica with the title “The
Non-linear Accelerator and the Persistence of the Cycle” [29]. Today, economists
consider this paper as the first attempt to formalize in non-linear terms the Harrod
(1936) trade cycle theory [35]. Goodwin (1951) showed that the interaction between
accelerator and multiplier leads to the formalization of a Liénard type equation.
Since the Liénard equation is able to generate stable limit cycles, the persistence of
oscillations seemed to be a good description of economic fluctuations. Nonetheless,
the Liénard equation received relatively little attention in economic dynamics.
This is probably because it is not always possible to reduce a given dynamical
system to second order non-linear differential equations like the one suggested by
Liénard. Remarkable exceptions are the models by Ichimura [38], Schinasi [75],
Glombowski and Krüger [28], and Lorenz [47]. Although the non-linear accelerator
model by Goodwin did not receive great attention among the theorists of the cycle,
it had the merit of directing the interest of the economists towards the mathematical
theory of dynamical systems. Therefore, it represents the real watershed between
old and new dynamic theory in economics.

Some pioneering works including the Lyapunov second method on stability and
some fundamental theorems of dynamical systems were published at the end of
the 1950s and during the 1960s and the 1970s. Among others, we refer to the
works by Arrow et al. [2] and Negishi [57] on the stability of a Walrasian general
equilibrium model; the work by Rose [72] applied to the context of a Keynesian
framework, and the work by Chang and Smyth [15], which re-examined the Kaldor
[39] business cycle model, where the Poincare–Bendixson theorem is applied to
prove the existence of limit cycles.

Other fundamental aspects of the dynamical system theory that have been influ-
encing research in economics are the structural stability and the Hopf bifurcation



164 G. Orlando and M. Sportelli

theorem. The structural stability is a desirable feature of models aimed at explaining
real phenomena, as it prevents the limit cycle from vanishing in the face of small
perturbations. The Hopf bifurcation theorem and its extensions became a useful tool
to detect the structural stability, so that many models using that theorem have been
designed in the 1980s and the 1990s. Specifically, the works by Ichimura (1955) and
Lorenz [47, 48] provided a different formalization of a Keynesian macro-dynamic
model; Schinasi [75] considered a dynamic IS-LM model, while Glombowski and
Krüger [28, 28] aimed to reinterpret Harrod’s instability principle. Lorenz [49] and
Gandolfo [27] provide good surveys of these models. The Goodwin [30] heterodox
predator–prey model is another relevant contribution developed in those years. It had
the purpose of describing how the Marxian class struggle was a cause of persistent
oscillations in the growth rate of the economic system.

11.5.1 Detecting Nonlinearities in Data

To make the matter even more complicated, economic time series are short because
of low sampling frequency. For example, data such as the aggregate capital stock is
available only on annual basis, “some prewar U.S. output and price series are only
available for benchmark years which may be a decade apart” [19]. For this reason,
it is a common practice interpolating data to increase data frequency. However,
as explained by Dezhbakhsh and Levy [19], conventional methods are not able to
detect stationary processes because “segmented linear interpolation of a stationary
process leads to varying moments that may be viewed as an indication of non-
stationarity in a conventional sense”. Therefore, the suggestion is to analyse those
“series in the context of periodic time-series models rather than by conventional
methods” [19].

To date there are different approaches to finding the periodicity of a signal:
time–frequency representation and wavelet transformation, spectral representation,
Fourier analysis, etc. Among suitable alternatives we mention RQA as it proved
the ability in detecting non-linear behaviour or chaos in several fields. This is
because RQA is based upon a change in the correlation structure of the observed
phenomenon that is known to precede the actual event in many different systems
ranging from physiology and genetics to economics. Moreover RQA is able to find
evidence of deterministic structures in data (see Moloney et al. [54]).

Gorban et al. [31] studied the behaviour of systems approaching a critical
transition through many experiments and observations of groups of humans, mice,
trees, grassy plants, and financial time series. They observed that even before
obvious symptoms of crisis appear, correlation increases and, at the same time,
variance (and volatility) increases too. More specifically, with regard to finance,
their case study of the thirty largest companies from the UK stock market within
the period 2006–2008 supports the hypothesis of increasing correlations during a
crisis and, therefore, that correlation (or equivalently determinism) increases when
the market goes down (respectively, decreases when it recovers). Along this line,
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Orlando and Zimatore [63] defined the so-called RQE correlation index and they
have shown, on a test signal, that it is able to detect regimes’ changes. Moreover, by
computing the RQE correlation index on USA GDP data [58], they have found that
it may help in anticipating recessions [64].
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Chapter 12
Trade-Cycle Oscillations: The Kaldor
Model and the Keynesian
Hansen–Samuelson Principle
of Acceleration and Multiplier

Giuseppe Orlando

12.1 Keynesian Multiplier and Hansen–Samuelson Model

Keynesian macroeconomics is a theory for sustained unemployment focusing on the
dependence of consumption and savings on income. This was opposed to classic
theory for which the rate of interest ensures the equilibrium between investments
and savings. In Keynes’ view, interest rates are “inert downwards, due to speculation
resulting in infinitely elastic liquidity preference, i.e., demand for cash reserves”
[17]. In addition, “investments would be inelastic with respect to interest rates even
if the latter had been less inert” [17].

According to Keynes, income Y depends on a parameter m (called Keynes mul-
tiplier) times investment I . This multiplier is derived from the marginal propensity
to consume ζ . The dynamic relationship between Y and I is

Yt = mIt = 1

(1 − ζ )It . (12.1)

An explanation of business cycles is the positive (resp., negative) acceleration
due to the effect of income variation on capital accumulation. This model is based
on the Keynesian approach, and it was first described by P. Samuelson, who credited
H. Hansen for the inspiration [19]. Keynesian theory was static, but Samuelson,
building on it, kept the multiplier and ignored the monetary phenomena altogether.
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Then, in Samuelson’s view, an investment is determined by the so-called multiplier–
accelerator principle. The resulting model (also known as Hansen–Samuelson
model) is

Yt = 1 + ζ(1 + β)Yt−1 − ζβYt−2 (12.2)

with β representing the sensitivity of investments to changes of consumption C

It = β[Ct − Ct−1]. (12.3)

The second-order linear difference equation (12.2) displays different solutions
depending on the roots of the equation and on the relationship between the
parameters [14]. Here, we limit to mention that the equilibrium solution for which
Yt = Yt−1 = Yt−2 is a product of an exponential growth factor and a simple
harmonic oscillation [17]. Moreover, the frequency of oscillation is an irrational
multiple of 2π , the motion is quasi-periodic and the resulting time series never
repeats. While Samuelson made the theory dynamic through a combination of
multiplier and accelerator, its oscillations “can be explosive or damped (disregarding
a structurally unstable boundary case)” to the point of being “unrealistically
huge”[17].

In order to have bounded and yet sustained oscillations, there was already
available a solution suggested by Frisch [3] on Rayleigh’s damping system [20]
in which oscillations were sustained by exogenous shocks. A second solution was
suggested by Hicks [5] through a floor and ceiling system limiting the motion of
an otherwise explosive linear model. The mechanism was based on the assumptions
that firms follow the linear principle of acceleration. When income falls abruptly,
investments may decrease to the point that worn-out capital is not replaced at all
leading to capital’s destruction. On the other hand, when the income rises fast,
some required inputs such as capital, labour, raw materials, etc. become scarce, thus
limiting investments.

12.2 The Kaldor Model

12.2.1 History of the Kaldor Model on Business Cycles

Among economic models, one of the most fruitful applications in the field of chaotic
phenomena is the one worked out by Kaldor in 1940 for the business cycle [9].
The author’s intention, contrary to the traditional Keynesian multiplier–accelerator
concept, was to explain from a macroeconomic viewpoint the fundamental reasons
for cyclical phenomena. However, Kaldor did not formalize mathematically his
model but gave a qualitative description that prompted out authors to firstly specify
the equations and, secondly, to find out under which conditions abnormal behaviour
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could be produced or under which conditions bifurcations or even chaos could be
generated.

In his work, Morishima [13] along with Yasui [21] and Ichimura [7, 8] was the
first in formalizing mathematically Kaldor’s ideas and investigating the existence,
stability and uniqueness of limit cycles in a nonlinear trade-cycle model. Hicks [6]
and Goodwin [4] further studied the model in the form of a system of second-order
nonlinear differential equations. In particular, Goodwin [4] built his model on the
imbalance between the actual and the desired capital stock and found that without
technological progress the equilibrium is unstable and that the economy can oscil-
late inside a limit cycle. With technological progress, instead, there is no equilibrium
and recessions are shorter than expansions (which is in line with the stylized facts on
business cycles). Later, Kalecki [10] suggested dividing the investment process into
three steps, the first being the decision, the second the time needed for the production
and the last the delivery of capital goods. In such a way, the dynamics of capital
stock in the economy is described by a nonlinear difference–differential equation
that exhibits a complex behaviour (including chaos), and, as a result, oscillations
of capital induce fluctuations of other economic variables. After that, Rose [18]
introduced the Poincaré–Bendixson theory for a two-dimensional autonomous
system, and then Chiarella [2] modified the Goodwin model by introducing a model
of monetary dynamics with an adaptive expectation of inflation. In this model, the
velocity of money circulation is a nonlinear function of expected inflation.

Thirty years after the original formulation, Chang and Smith [1] reanalysed the
model, and they proved that

• The necessary and sufficient conditions enunciated by Kaldor in order to
determine that a cycle was established were neither necessary nor sufficient.
Instead, these conditions stressed that the onset of the cycle and its amplitude
were subordinated to the values of the following parameters:

– the velocity of adjustment α,
– the initial perturbations,
– the position of functions I and S with respect to each other (see Figs. 12.3

and 12.4).

• Some additional hypotheses to those adopted by Kaldor are necessary for a cycle
to arise. The above-mentioned hypotheses are conditions for the existence of a
stable equilibrium point (an attractor) for each trajectory.

• Based on the hypothesis explained by them, they were able to determine the onset
of a limit cycle by applying the Poincaré–Bendixson theorem.

Next, Krawiec et al. [11] and [12] introduced a time delay in their specification of
the Kaldor–Kalecki model. Their model admits a limit cycle. Moreover, the persis-
tence of cycles in the linear approximation depends crucially on the delay parameter
and, additionally, on both the speed of adjustment and the initial disturbances. They
also noticed that preserving the condition of an S-shaped investment function is not
necessary for creating a limit cycle if the mechanism of time delay is introduced
into the model. Finally, Orlando [15] and [16] formalized a model in which the
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investment and consumption are represented by a hyperbolic tangent instead of the
usual periodic arctangent. Moreover, he proved that his model displays a chaotic
behaviour.

12.3 Formal Description of the Kaldor Model

As mentioned, “old school” economists such as Keynes, Harrod and Kaldor
often did not formalize mathematically their models but limited themselves to a
description (sometimes even verbal only) of what they meant. Ensuing literature
have “interpreted” their theories with greater or lesser adherence to the original
author. In this section, let us formalize the Kaldor model as follows. There are two
classes of individuals: workers and capitalists. Total income (Y ) (which corresponds
to total production) is shared between them in terms of profits (P ) and wages (W )

Y = P +W,

and the share of income for each class is

1 = P/Y +W/Y.

A standard assumption adopted by Kaldor is that the propensity to save is higher for
capitalists Sp > Sw . The dynamics of economy is

Ẏt = α(It − St )

K̇t = It − δKt ,
(12.4)

where Yt , It , St and Kt define, respectively, income, investment, saving and capital
at time t . In Eq. (12.4), α is the rate by which the output responds to excess
investment I − S, and δ represents the depreciation rate of capital K .

In addition, let us assume with Kaldor that

IY > 0, IK < 0,

SY > 0, SK > 0.
(12.5)

In order to explain the dynamics of I and S, Kaldor suggested that I = I (Y,K) and
S = S(Y,K) are nonlinear functions of income and capital. This is because, in the
usual set-up, linear functions display either a stable equilibrium (see Fig. 12.1) or an
unstable one (see Fig. 12.2).

The stable equilibrium is the only level of income level at which savings and
investments are equal. When S and I are linear, there is a single equilibrium, and it
is either stable or unstable. In the first case, the model displays more stability than
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Fig. 12.1 Investment (blue curve) and saving (green curve) versus income (x-axis). The equilib-
rium exists for the level of income corresponding to I = S. When the income is on the right of YE ,
high savings are not followed by investments, and, then, the total output will reduce. On the right
of YE , instead, investments are higher than savings and the economy grows

Fig. 12.2 Investment (blue curve) and saving (green curve) versus income (x-axis). The equilib-
rium exists for the level of income corresponding to I = S. When the income is on the right of YE ,
high investments push the economy further. On the right of YE , instead, savings are higher than
investments, and the economy slows down progressively

appears to be present in the real world, and in the second case, the equilibrium is
precarious, and the outcome is either infinitive or zero income.

Kaldor’s intuition was to devise a framework in which nonlinear functions moved
dynamically. Figure 12.3 shows how the curves I (Y ) and S(Y ) cross each other in
three points A,B and C. Those points correspond to three different equilibrium
levels as defined by the equality I = S.

If production is low at YA, i.e., the level of income corresponding to the
equilibrium A, there will be an excess of capacity. This will absorb an increase
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Fig. 12.3 Investment (blue curve) and saving (green curve) versus income (x-axis). The equilib-
rium exists for the level of income corresponding to I = S. For example, if the income is between
YB and YC , the imbalance between investment and saving pushes the economy towards a higher
level of income until I = S in C

in aggregate demand, and, as a consequence, there will be no or little investment.
In the case of running high economy, e.g., Y = YC , the capacity is saturated, and
hence the cost of an additional unit of capital increases. On the other hand, the yield
of investments decreases as more rewarding initiatives have already been funded.
This explains the nonlinearity of investments.

Savings rates are assumed to be high for both low and high levels of output.
The reason is that for Y = YA, the income is almost completely consumed, and
families have presumably depleted their finances. For this reason, an increase of
income would be likely to be directed to restore some savings. For Y = YC , the
consumption is already high because an additional income will be saved.

Given the shapes of I and S, the income corresponding to the equilibrium is
YA, YB or YC . While YA and YC are stable, YB is not (on the left, savings exceed
investments, and on the right, vice versa).

For Kaldor, the business cycle is caused by capital accumulation. For example,

let us assume that Y = YC and that I depends on K in such a way that
dI

dK
< 0. In

this case, the stock of capital increases, and then the marginal productivity of capital
declines and so does the investments curve I .

When the production is high, this brings down prices, which implies that more

income can be saved. This yields
dS

dK
> 0, i.e., the savings curve shifts upwards.

This process has the effect of moving YC down and YB up (see Fig. 12.4), and it
will continue until the two points will meet, and the S and I curves will be tangent
at that point. To the left, the ensuing point of equilibrium is for Y = YA, which
represents a crash for the economy.

The equilibrium point YB = YC is stable because, on the right, when S > I , the
economy slows down, and on the left, when S < I , the economy grows.
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Fig. 12.4 Representation of investment I and saving S dynamic analysis. Because of declining
productivity, the investment shifts downwards and the ensuing price’s reduction moves saving
upwards

Key features of this cyclical process are self-generation and dynamical adjust-
ments of the macroeconomic variables that come into play. When the income is
relatively high, other forces keep it in check by producing a downward movement,
and vice versa. These forces are namely the shift of investment and saving function
and the accumulation and decumulation of capital. Those events occur over the cycle
and are embedded in the dynamics.

One additional feature of Kaldor’s model concerns the implications in terms of
fiscal policy. Income distribution between capitalists and workers determines the
amount of investment and saving because the propensity to save of the two classes
is different. In other words, a fine tuning of the distribution of income may bring
the economy to the equilibrium. This sets the distance between the Kaldor and
the Harrod models. While for the first the system is dynamically self-adjusting and
distribution mechanism may help in achieving a higher equilibrium, for the second
a change of I in relation to S kicks off a cumulative process of decline (or growth)
in both: income and production without any counterbalance.

The last noteworthy feature of Kaldor’s model is the role played by inflation.
When I > S, higher utilization of factors, rising investment and growth of
demand under full employment will cause, eventually, higher prices than wages,
thus changing the share of income in favour of capitalists. As the propensity to save
is higher for those individuals, total savings will increase more than investments, and
the equality of S and I will be restored. On the other hand, when investment and
demand decline, prices relative to wages will tend to decline. The share of workers’
income will increase and savings will decline. The new equilibrium where S = I

will be restored for a lower level of income. This mechanism is also called the
“Kaldor Effect.”
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Chapter 13
The Harrod Model

Giuseppe Orlando, Mario Sportelli, and Fabio Della Rossa

13.1 Introduction

The theoretical foundation of the Keynesian growth theory is the so-called Harrod–
Domar model. This is the consolidated opinion we find in the economic literature.
Nevertheless, after a careful reading of both the original writings of Harrod and
Domar, that “model” stands out as a commingling of two models, which had
different aims and different hypotheses. As pointed out by Pugno [15, p. 152],
the Harrod model is really a result of many works written over the period of the
author’s whole intellectual life. The first draft dates back to 1938,1 where, as Harrod
always confirmed until his last book published in 1973, the central and crucial aim
was to account for the unstable growth path characterizing capitalistic economies.

Part of this chapter has appeared in [13].
1Besomi [3] has edited this draft.
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In spite of this, as clearly shown by Besomi [2], Harrod’s readers interpreted,
almost unanimously,2 his contributions as a theory of economic growth [2]. In
particular, soon after the publication of Domar’s paper in 1946, the similarities
between their formulas (firstly noticed by Schelling, pp. 864-866 [17]) became a
sufficient condition to unite the two approaches. Therefore, by the early 1960s, it
was a common practice to speak of the “Harrod–Domar model.”

13.2 Domar’s Approach to Economic Dynamics

As Domar himself wrote in the introduction of his 1946 paper [7], his aim was to
investigate “the relation between capital accumulation and employment.” Defined
the productive capacity as the total output produced when all productive factors
(labor included) are fully employed, Domar looks for the conditions a growing
economy must satisfy to preserve the full employment over time. He pointed out
that the growth problem was entirely absent from the Keynesian system, because
it was not concerned with changes in the productive capacity. The Keynesian
approach dealt with the investment expenditure as an instrument for generating
income and disregarded the extremely essential fact that investment also increased
the productive capacity [6, pp. 72-73]. The twofold impact of investment in the
economic system allowed Domar to identify the tools to derive the conditions under
which the economy could grow in a full employment equilibrium. First, the net
investment I increases the productive capacity P , and second, the change of I
increases the income Y by means of the Keynesian multiplier.

Domar carried out his analysis on a very abstract and simplified level, so that he

defines the potential social average investment productivity as3 σ = Ṗ

I
, i.e.,

Ṗ = σI. (13.1)

Since, by virtue of the Keynesian multiplier,

Ẏ = 1

α
İ (13.2)

2There are few exceptions. Among others, Boianovsky [4], suggested that the Harrod and Domar
growth models faced problems of economic instability, not long-term growth.
3From now on, a dot over the variable will indicate the operator d/dt and continuous time
assumption.
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(α being the marginal propensity to save). The necessary equilibrium condition
between productive capacity and aggregate demand leads to

1

α
İ = σI (13.3)

because P = Y ⇔ Ṗ = Ẏ . Assumed that σ and α are constants, it follows that

I (t) = I0eασ t . (13.4)

Therefore, as long as ασ remains constant, “the maintenance of full employment
requires investment to grow at a constant rate” [6, p. 75]. As, by assumption, the
equilibrium between productive capacity and income has existed since the time t =
0, the integration between zero and t of Eq. (13.2) yields

Y (t) = 1

α

(
I0e

ασ t + B) (13.5)

because 1
α
I0 = Y0 and B = 0. The conditions for a steady growth are thus

demonstrated.
In the second part of his paper, Domar emphasized the possible disequilibria

of the economic system. Probably, this is to account for the dynamic instability
of his simple mathematical model. We think that instability was the main element
that led to combine Domar’s approach with Harrod’s dynamic theory. However, as
we shall see in the next section, the Harrod instability has nothing to do with the
mathematical notion of instability characterizing the Domar model.

13.3 Harrod’s Approach to Economic Dynamics

Preliminarily, we have to point out that Harrod never formalized his ideas in
terms of difference or differential equations. Nevertheless, Harrod (1959, p. 451)
[10] acknowledges that there is a similarity between Domar’s work and his own
contribution to the theory of a growing economy. This similarity only concerns
a potential increase of output (productive capacity) per unit of new investment
designed by Domar as σ . Harrod wrote (1959, p. 452) that he considered “how
many units of new investment are required . . . to produce an extra unit of output.”
In other words, Domar’s σ is equivalent to his capital coefficient Cr , because Cr is
“valued on the basis that the new investment is no more nor less than that required
to produce additional output.”4 As Cr deals with a steady rate of growth of income

4Let us mention thatCr was denoted by Harrod asC in his 1939 paper. Specifically, the equivalence
is such that σ = 1/Cr .
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denoted by HarrodGw = s/C, where s is Domar’s α, the formal identity of the two
equilibrium conditions seems to be evident.

Now, we have to point out that this identical result exclusively concerns the

equilibrium condition, while it does not entail the equality ασ = İ

I
= Gw = Ẏ

Y
,

which follows from Domar’s assumptions. In fact, Harrod (1959, pp. 452-453)
clearly wrote, “I make no such assumption . . . . In my equilibrium equation there
is no reference, explicit or implicit, to İ or I .” To understand Harrod’s viewpoint,
we have to recall the process leading to his “fundamental equation” (Harrod, 1939,
p. 17).

As said by Harrod, capital goods include both equipment and stock-in-trade, the
actual saving in a period is always equal to the increment of the capital stock,

S = I = CẎ , (13.6)

where S is the aggregate saving and C “the increase in the volume of goods of all
kinds (I) outstanding at the end over that outstanding at the beginning of the period
divided by the increment of production in that same period” (Harrod, 1948, p. 78).
Dividing both sides of Eq. (13.6) by Y , we have

S

Y
= C Ẏ

Y
⇒ S/Y

C
= Ẏ

Y
= G, (13.7)

i.e., the actual (effective) rate of growth of income. According to the Keynes
proposition, saving is necessarily (ex post) equal to investment, but this does not
mean that saving will be “equal to ex ante investment . . . , since unwanted accretion
or depletions of stocks may occur, or equipment may be found to have been
produced in excess of, or short of, requirements” (Harrod, 1939, p. 19). To express
the equilibrium of a steady advance, Harrod deduced his fundamental equation

Gw = Ŝ/Y

Cr
, (13.8)

where Gw is the warranted rate of growth (i.e., the rate of growth of production
equating ex ante saving and investment), Cr is the desired capital coefficient (in
Harrod’s sense), and the expected fraction of income saved Ŝ/Y .5

Let us note that both Eqs. (13.7) and (13.8) refer to the average propensity to save
that Harrod denotes by s. This implies that it is not entirely true that Domar’s α is
Harrod’s s, unless s is explicitly assumed to be constant. If this is not the case, the
marginal propensity to save may differ from the average. To see the consequence on
the steady growth, we can derive the Domar equation from the equilibrium S(Y ) =
I . In fact, differentiation of both sides with respect to time yields S′Ẏ = İ .

5Harrod refers to the expected saving in his 1973 book. The symbol Ŝ is introduced by us.
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As from Eq. (13.6), Ẏ = I/C, by substitution we get
S′

C
= İ

I
, i.e., Eq. (13.2),

and from Eq. (13.7), we have
S/Y

C
= Ẏ

Y
. Therefore, if S/Y �= S′, then Ẏ /Y �=

İ /I . To confirm this result, we can define a link between the two rates of growth.
Dividing Ẏ /Y by İ /I , we get Ẏ /Y = (1/Es)İ /I , where Es = S′/(S/Y ) is the
elasticity of saving with respect to income. This coefficient is typically greater than

one, so that
Ẏ

Y
<
İ

I
. This happens because, being residual between earnings and

consumptions, the aggregate saving has the tendency to vary quicker than income,
either in the case the business activity is rising or declining (see [5, 14]). Although
the variability of the average propensity to save questions the possibility of a steady
growth, we cannot say that this result reflects Harrod’s thought. In fact, Harrod
prevalently founds his reasoning on the disequilibrium between ex ante and ex post
investments. The disequilibrium is the main ingredient of his “instability principle.”
To understand this principle better, it may be useful to list some specific Harrod’s
assumptions often neglected by the growth theorists:

(1) It is crucial to avoid the mistake of considering C (or Cr ) as the traditional
capital/output ratio or as the technical accelerator coefficient. Harrod (1948, p.
84) explicitly points out that “Cr may not be equal to the capital coefficient in
the economy as a whole.” Specifically, C is the ratio of additional goods “of all
kinds” (i.e., new equipment and additional stocks) to the production increase
carried out at a given period. The mean of Cr is similar, but unlike C, Cr is
the ratio of desired additional goods to the expected production increase based
on entrepreneurs’ previous expectations. Neither C nor Cr may be assumed as
constant over time.

(2) The quantity C defined by Harrod is measurable and consistent with a stylized
fact described by Kaldor [12]: in the long run, the capital/output ratio K/Y has
the tendency to remain constant. Incidentally, let us notice that empirical data
suggested by Romer [16] confirm this statement. If we admit that tendency
to remain constant means that the capital/output ratio may change inside a
bounded interval, so that its average is constant over time, the consistency
between C and k = K/Y can be easily proved. The differentiation of k with
respect to time yields (after some rearrangement)

k̇ = Ẏ

Y

(
I

Ẏ
− K

Y

)
= G(C − k). (13.9)

From the analytical point of view, this result does not require any particular
comment. Given G �= 0, the sign of k̇ still depends on the difference (C − k)
that may change over time.

(3) Equation (13.9) allows us to realize that there is a difference between Harrod’s
own time scale and the usual notion of long run. Harrod always refers to the
“long period” pertaining to the typical industrial trade cycle. The long period is
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much less than the long run, and, according to the particular phase of the cycle,
meaningful differences between C and k are possible. This is because sudden
increases or cuts in inventories with respect to a slower change in the productive
capacity affect these differences.

Equipped with these assumptions, we can now explain the instability principle.
Looking at Eq. (13.9) and following Harrod (1948, p. 81), we can say that it
expresses “the conditions in which producers will be content with what they are
doing.” This equilibrium condition must be compared with what actually happens
to be confirmed. Therefore, Harrod considered Eq. (13.7) and wrote, “the greater
G is, the lower C will be.” Consequently, if G has a value above Gw, “C will
have a value below Cr .” This implies that “there will be insufficient goods in the
pipe-line and/or insufficient equipment.” Therefore, orders will be increased and the
production rises. In other words, if the actual growth is above the line of growth
consistent with a steady advance, the actual growth rate will further increase. This
leads to a new C that will be further below Cr . If G < Gw, the reasoning needs to
be reversed. Harrod (1948, p. 86) affirms that this is “an extraordinarily simple and
notable demonstration of the instability of an advancing system. Around the line of
advance, . . . , centrifugal forces are at work, causing the system to depart further and
further from the required line of advance.”

As Harrod did not attempt to build the instability principle in mathematical terms,
we think this is the reason why a contradiction emerges in his reasoning, because
Cr seems to be constant. This implies that the gap between C and Cr will be
always increasing. Really,C and Cr are interconnected variables, and the difference
between them cannot become explosive.

13.4 A Mathematical Foundation of Harrod’s Instability

To give a mathematical foundation to Harrod’s instability, a slight shifting from
his definition of the warranted rate of growth is necessary. Since in Harrod’s Gw
there are several ambiguities (see Besomi (1998, pp. 51-53)) [2], we assign to Gw
a practical meaning. In other terms, we interpret this rate of growth as the expected
rate of growth founded on the firms’ business forecasts. Following Sportelli [20], we

set Gw = Ẏe

Y
, where Ẏe is an expected change of income. Furthermore, according

to Harrod’s definition of Cr , we assume that in every period the firms decide the
investment looking at an expected change of demand:

Ij = CrẎe. (13.10)

If ex post it turns that the effective change of demand Ẏ is greater than Ẏe, then
the effective investment will be less than ex ante Ij , because stocks are below the
desired level. This implies that the actual desired coefficient Cr has become greater
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than the actual C. It follows that, if capacity utilization is near full levels, each firm
will decide investments, either to restore stocks levels or to increase (if profitable)
its actual productive capacity, to make it consistent with the level of production.

This leads to an increase in I (at least in inventories only), which will work in its
turn for a new Ẏ according to the monotonic multiplier effect. In the course of the
period, a new C will be progressively attained, and, at the same time, as firms are
careful to acquire any new information generated by the system to forecast future
demand, a new Ye will arise. The comparison of this new Ye with the perceived
current level of demand allows firms to define the actual Ẏe. In a period of rising
business activity, this value is positive, so that a further amount of investment will
be justified. This leads to a new value ofCr , which will differ from its past value. By
virtue of their definition, both C and Cr change along the given period. Therefore,
if we assume a sequence of periods with Ẏ > Ẏe, then Ij will be pushed forward to
I , while Cr will be pushed ahead of C. This conclusion allows us to infer that there
is a path dependence of Cr on the difference Ẏ − Ẏe. The greater this difference is,
the more violent the thrust forward of Cr will be.

It is clear that Ẏ < Ẏe leads to contrary conclusions. In any case, over a given
period, the difference between Cr and C never becomes explosive, because the
justified investment evolves according to the following derivative:

İj = Ċr Ẏe + CrŸe, (13.11)

where the first term on the right-hand side can be interpreted as stock investments
filling existing storehouse gap and the latter term as additional goods aimed at
restoring actual stock levels to sustain the new Ẏe and, eventually, the new equipment
required by the change Ÿe. Along the cycle, the sign of Ÿe may be reversed. Sooner
or later, this happens, and so the sign of İj will change. Consequently, the growth of
Cr will slow down initially, and its value will decrease as soon effective investments
I exceed Ij . Hence, changes in the value of C (which follows Cr ) will be bounded
over time.

We think that the Cr path dependence on the difference Ẏ − Ẏe is the basic
component of Harrod’s instability principle. Looking at the wide variety of literature
inspired by Harrod’s dynamic theory, we found only one approach able to give
a mathematical foundation to the instability. This is the work by Alexander [1],
which received an explicit approval by Harrod (1951, p. 263). The Harrod model
described later encloses Alexander’s intuitions and takes into account the dynamic
link between C and Cr . Furthermore, it stresses the interaction between Harrod’s
three rates of growth (i.e., the actual, warranted, and natural). Discrepancies between
these three growth rates are cause and consequence of economic cycles. All this is
in accordance with many of Harrod’s theses.
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13.5 Cycles

As already mentioned, Kaldor and Harrod laid down the basis for the modern
theory on growth and cycles. In particular, Kaldor suggested that growth depends
on income distribution and that the shifts between wages and profits determine the
savings ratio. Therefore, an equilibrium is achieved when Gn (the rate of growth
required for a full employment) equatesGw (the warranted rate of growth).

Keynes argued that in the short run, through the multiplier, more demand
(e.g., investments, public spending, and exports) translates into an increase in
output. Harrod shares the same opinion regarding the short term, but agrees with
Domar about the twofold impact of investment in the economic system. In fact,
“he notes that investment not only induces production through the multiplier, but
also simultaneously expands capacity. On this basis he shows that investment is
sustainable only if it is self-consistent, and for this to hold it must follow a particular
growth path which he calls the warranted path” [18]. In other terms, in Harrod’s
view, it is the discrepancy between the natural rate of growth (Gn), the warranted
rate of growth (Gw), and the actual one (G) that generates instability. This instability
could be lessened when the economy is open to foreign trades.

13.5.1 Harrod’s Knife-Edge

According to Harrod, “for a country in which Gw is tending to exceed Gn,
there is by consequence a chronic tendency to depression (because G cannot
exceed Gn), a positive value of the balance of trade expressed as a fraction of
income (i.e., the net export rate) may be beneficial” [9]. Therefore, Harrod “predicts
that incompatibilities between long-term saving and investment opportunity are all
but certain to cause prolonged unemployment (which will be structural where Gn
exceedsGw and demand deficient whereGw exceedsGn) with persistent inflation in
addition wherever long-term saving is inadequate for the natural rate of growth” [8].
In terms of public policy, “the difficulties may be too great to be dealt with by
a mere anti-cycle policy” [11], and hence the government should increase public
investment whenGw > Gn or, conversely, seek to generate more long-term savings
whenGw < Gn (see Figs. 13.1 and 13.2).

13.5.2 Discussion

The model we are testing (Sportelli et al. [19]) claims that Harrod’s speculation
holds true only for a specific set of parameters and with positive net exports coupled
with competitiveness in foreign markets. In those specific conditions, regular cycles
in the long period can be achieved. In the following, we list some variables/equations
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Fig. 13.1 The Harrod knife-edge denoting an unstable equilibrium. When G = Gn = Gw , there
is sustainable full employment. A departure from this condition may lead to recession (G′) or
booming periods (G′)

Fig. 13.2 Supply-side policy to raise the natural growth path. When G = Gw > Gn, there is a
permanent unemployment equilibrium. Policy-makers may employ supply-side policies in order to
increase both the actual growth G and the natural growth Gn

that will be used in the ensuing part where some assumptions will be made and new
variables will be identified (Table 13.1).

As in [19], we assume that

(A) The desired capital is an increasing function Φ of the difference between the
current and the expected changes of demand, i.e.,

Cr = Φ
(
Ẏ − Ẏe
Y

)
= Φ (G−Gw) (13.12)

such that Φ ′ > 0 and Φ(0) = C∗ > 1, because Ẏ = Ẏe implies I = Ij .
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Table 13.1 List of variables in the Harrod model

Variable Description

Ij Ex-ante investment including both equipment and desired inventory stocks

I Ex-post investment including both equipment and effective inventory stocks

S Ex-post saving

E Exports

M Imports

X = E −M Balance of trade

Y Effective demand

S/Y = Σ Share of income saved

x = X/Y Ratio of balance of trade to income (or simply the net export rate)

I/Y = Σ − x Share of income invested

G = Ẏ /Y Actual rate of growth of domestic income

Ye Expected demand

Cr = Ij /Ẏe Desired capital coefficienttnote:DesCap

C = Ij /Ẏ Actual capital coefficienttnote:AcCap

Gw = Ẏe/Y Warranted expected rate of growth of aggregate demand

Gn Technical progress (rate of growth)

Gf Rate of growth of foreign demand

φ Sensitivity of the difference between actual and warranted relative changes of
demand

“The requirement for new capital divided by the increment of output to sustain which the new
capital is required” [9]
“The increase in the volume of goods of all kinds outstanding at the end over that outstanding at
the beginning of the period divided by the increment of production in the same period” [9]

So that, ex-post, at the equilibrium, Cr = C∗, Ij = I , Φ(0) = C∗ >
1, and G = Gw (or equivalently, Ẏ = Ẏe). Denoted ϕ > 1 as a reaction
parameter representing how sensitive are firms to discrepancies between actual
and warranted relative changes of demand, the linearization of (13.12) in G−
Gw can be expressed as

Cr = Φ (G−Gw) = [C∗ + ϕ(G−Gw)
]
. (13.13)

(B) According to Alexander [1], changes in the growth rate of income depend on
the difference between ex-ante and ex-post investments, that is,

U = Ij − I = CrẎe − I, (13.14)

so that dividing by Y and considering that I/Y = (S − X)/Y = Σ − x, the
relative gap u = U/Y can be written as

u = U/Y = Ij /Y − I/Y = CrGw − (Σ − x)
= Φ (G−Gw)Gw −Σ + x. (13.15)
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Therefore, Ġ can be expressed as a function F of u with F increasing (resp.,
decreasing) with u, and if we assume F to be linear, we obtain

Ġ = F(u) = F (Φ (G−Gw)Gw +Σ − x)
= α {[C∗ + ϕ(G−Gw)

]
Gw −Σ + x}

(13.16)

with 0 < α < 1, because investment changes in the productive capacity make
investment sticky.

(C) The saving rate varies over time depending on unforeseen differences between
technical progress and the rate of growth and on income fluctuations:

Σ̇ = ε (Gn −Gw)+ δĠw, (13.17)

where ε and δ are sensitivity parameters, and the variable Ġw describes the
economic cycle.

(D) We set the following Eq. (13.18), where changes in the ratio of the trade balance
depend on Gf , Gn, and G as follows:

ẋ

x
= Ψ (Gf ,Gn,G) with

∂Ψ

∂Gf
> 0,

∂Ψ

∂Gn
> 0 and

∂Ψ

∂G
< 0. (13.18)

We assume that Eq. (13.18) can be rewritten as

ẋ

x
= Ψ (Gf ,Gn,G) = (ζGf + σGn − μG−m) (13.19)

with ζ, σ, μ > 0 denoting the sensitivities of the balance of trade to foreign rate
of growth, technical progress, and domestic growth rate respectively. We set
m > 0 because Y (Gf , 0, 0) < 0, i.e., a constant domestic production without
technical progress has a negative effect on the balance of trade or, equivalently,
ζGf −m < 0.

(E) The expected rate of change of aggregate demand is defined as an adaptive
expectation, i.e.,

Ġw = γ (G−Gw), (13.20)

where γ ≥ 1 denotes how quick the expected rate of growth adjusts to the
actual growth.

(F) The dynamics of technological progress is described by a continuous, increas-
ing nonlinear function of share of income saved and devoted to investments:

Gn = Gn(Σ) = β(ξ −Σ)Σ, with β > 1 and 0 < ξ < 1. (13.21)
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Therefore, Harrod’s dynamics [19] can be written as

Ġ = α {[C∗ + ϕ(G−Gw)
]
Gw −Σ + x}

Σ̇ = ε (Gn −Gw)+ δĠw
ẋ = (ζGf + σGn − μG−m) x.

(13.22)

By replacing on it Eqs. (13.20) and (13.21), we obtain the following specification
we want to test:

Ġ = α {[C∗ + ϕ(G−Gw)
]
Gw −Σ + x}

Ġw = γ (G−Gw)
Σ̇ = ε [β(ξ −Σ)Σ −Gw] + δγ (G−Gw)
ẋ = [ζGf + σβ(ξ −Σ)Σ − μG−m] x,

(13.23)

where α, γ, ε, β, δ, ζ, σ, and μ are the parameters that will be calibrated in
Chap. 18.
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Chapter 14
Growth and Cycles as a Struggle:
Lotka–Volterra, Goodwin and Phillips

Giuseppe Orlando and Mario Sportelli

14.1 Introduction

In the early 1960s, the Phillips work generated many empirical studies of the
relationship between the inflation rate and unemployment. In that work, other
explanatory variables, not only unemployment, were used to model either wages or
price dynamics. However, many papers published in those years did not pay much
attention to the evidence suggesting that the Phillips curve was not stable over time.

The breakdown of the empirical Phillips relationship began in the late 1960s
with the theoretical works by Phelps [25] and Friedman [14]. According to these
authors, workers are rational and take into account the expected price increases. For
this reason, Friedman argued that the expectation-augmented Phillips curve would
shift in such a way that, in the long run, a higher rate of inflation would not result
in any change in unemployment. The price stability is consistent only with a rate
of unemployment named by Friedman “natural rate of unemployment.” This rate is
determined by the real factors, which affect the amount of frictional and structural
unemployment in the economy. On the Keynesian side, inflationary expectations
either adjust to past wages and prices or, according to the “new-Keynesian” models
of price stickiness, motivate forward-looking inflation expectations [6, 12, 40]. In a
series of tests, Rudd and Whelan challenged the validity of those models: e. g. the
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ability of the labor share in a neo-Keynesian version of the Phillips curve to model
inflation [31]; the specification of delayed and future inflation (“hybrid” inflation)
[29]; the explanatory power of rational sticky price expectations models [30].

The link between the growth, cycles and the Phillips curve was introduced by
Goodwin [15] who transformed the conventional labour share model (for a review,
see Foley et al. [13]) into a dynamic struggle between capitalists and workers. In
fact, while the share between labour and capital could be assumed constant in
the long run, it fluctuates in actual economics. The Goodwin model has become
a powerful framework able to accommodate extensions in many directions, from
the inclusion among the endogenous variables of technical changes [34, 39] to the
coupling of Goodwin’s model with the financial instability hypothesis (FIH) by
Minsky [16, 23, 36] and from an open economy where the long-term output growth
rate is constrained by the balance of payments [9] to the incorporation of elements
by Kalecki (investment function independent of savings and mark-up pricing in
oligopolistic goods markets) and Marx (the reserve army) [33].

14.2 The Phillips Curve

The Phillips curve is a statistical relationship between unemployment and the rate
of change of the money wage rate studied by Alban W. Phillips, a New Zealand
economist, at the London School of Economics. Published in Economica in 1958
[26], the study showed that there was a nonlinear inverse relationship between the
annual average percentage rate of unemployment and the annual rate of change of
money wage rate:

ẇ

w
= f (U) s.t. f ′ < 0, (14.1)

where ẇ/w is the rate of change of the money wage rate and U the unemployment.
The curve is similar to a hyperbola with horizontal asymptote in the fourth quadrant.

The data used by Phillips were those of UK in 1861–1957. He displayed this
relationship by fitting a curve to this data. Since the observations for 1948–1957 lay
quite close to the curve fitted for the years 1861–1913, the relationship was thought
to be stable and persistent over a long period of time. This was the reason why, in the
following years, the Phillips curve played a central role in economic policy decisions
to support employment. The use of the curve as an instrument of policy was made
possible because, as suggested by Lipsey [19], the curve could be moved from a
relationship between ẇ/w and unemployment to one between the rate of change
of the price level and unemployment. This is possible both when the markets are
assumed perfectly competitive or monopolistic. In the Keynesian framework, the
Phillips curve meant that inflation would erode real wages and, thus, boost labour
demand.

Figure 14.1 shows the relation between unemployment rate [2] and inflation [1]
in the United Kingdom for the whole period studied by Phillips while Fig. 14.2
displays the said relation for the years 1861–1913 and 1948–1947 separately.
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Fig. 14.1 Relation between unemployment rate [2] and inflation [1] in the United Kingdom, 1861-
1957.
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Fig. 14.2 Relation between unemployment rate [2] and inflation [1] in the United Kingdom,
1861–1913 (orange dots) and 1948–1947 (blue diamonds).

However, while there might be a relationship between employment and inflation
in the short run, Phelps [25] and Friedman [14] argued that such relationship is hard
to find in the long run. In particular, Friedman, by giving credit to Samuelson and
Solow [32], explained that in the long run, workers and employers negotiate wages
by taking into account inflation, so that pay rises increase at rates near anticipated
inflation. Given a natural level of employment determined by the characteristics
of the economy, an increase of inflation determines a temporary increase of
employment. Agents’ expectations play a role in restoring unemployment back to
its previous level (how quickly it depends on the context). This process could lead
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to stagflation characterized by high inflation and unemployment as experienced
in developed economies in 1970s. To prevent stagflation, Friedman suggested that
central banks should not set unemployment targets below the natural rate.

A more radical critique to the foundations of Keynesian was made by the rational
expectations school led by Robert Lucas and Thomas Sargent which challenged
the idea that monetary policy could systematically affect output even in the short
run. To those critics, new Keynesian models incorporate rational expectations and
assume some price rigidity, i.e., sticky prices. In that context, markets do not clear
instantaneously: aggregate output may be below the potential level, and an increase
in liquidly can produce a short-run increase in consumption thus boosting output
without inflationary consequences. Among others, we mention the paper by Chen
et al. [8] in which it is possible to find a baseline disequilibrium AS-AD model
empirically calibrated on quarterly time series data of the US economy 1965.1-
2001.1. The model exhibits a Phillips curve, a dynamic IS curve and a Taylor interest
rate rule. The outcome is “that monetary policy should allow for sufficient steady
state inflation in order to avoid stability problems in areas of the phase space where
wages are not flexible in a downward direction” [8].

14.2.1 Perfectly Competitive Markets

We assume that, in the economy as a whole, labour is the only variable productive
factor in the short run. Given the production function y = F(L) with L as input, the
profit maximization problem of the firm is

max
L
� = max

L
(pF(L)− wL), (14.2)

where � is the profit, p the market price of output y and wL the labour cost. The
first-order condition pF ′ = w requires that the value of the marginal productivity
of labour F ′ must be equal to his price w/p. As the marginal productivity is
decreasing F

′′
< 0, the second-order conditions are satisfied. By setting F ′ = lm,

the logarithmic differentiation of the first-order condition with respect to time yields

ṗ

p
= ẇ

w
− ˙lm
lm
. (14.3)

Therefore, by substitution of the Phillips curve, Eq. (14.1), we get

ṗ

p
= f (U)− ˙lm

lm
. (14.4)

This means that, in competitive markets, if wages change according to the long-
run changes of the marginal productivity of labour, then the average labour cost
of produced goods remains unchanged and there will be no price increase in the
system.
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14.2.2 Monopolistic Markets

In this case, the assumption is that firms define the price by means of markup over
the average cost of labour

p = mwL
y

= mw
la
, (14.5)

where m is the unit markup and la = y/L the average productivity of labour. After
the logarithmic differentiation of Eq. (14.5) with respect to time, we still get

ṗ

p
= ẇ

w
− l̇a

la
= f (U)− l̇a

la
, (14.6)

if the markup is assumed constant. Like the case of competitive markets, the
productivity of labour (either marginal or average) plays a role in the price
dynamics. Nevertheless, when the markets are not competitive, the market power
of the firms cannot be neglected.

14.2.3 Calvo Model and New Keynesian Economics

As mentioned in the introduction, new Keynesian economics relies on the reinter-
pretation of the Phillips curve in terms of forward looking expectations and is based
on sticky prices. Among the most influential contributors, we recall Fischer [12],
Taylor [40] and Calvo [6].

Because of its simplicity, we use Calvo framework that deals with natural
expectations and sticky prices of the new Keynesian economics.

We adopt following notation:

• zt is the log price at time t ,
• μ is the markup over the marginal cost mct ,
• p∗

t+k is the log of the optimal price that the firm would set in period t + k in
absence of price rigidity,

• (1 − θ)t+k is the probability for a firm to set its price p∗
t+k in period t + k,

• Et
(
zt − p∗

t+k
)

is the expected loss at time t for a firm that is not able to set the
price at p∗

t+k,
• 0 ≤ β ≤ 1 is a discount rate,
• πt = pt − pt−1 is the inflation rate.

The loss function for a firm is

L(zt ) =
∞∑

k=0

(θβ)k[Et (zt − pt+k)]2 , (14.7)
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which implies that all future losses are considered, each one weighted by the
discount rate β and the probability θ .

Equation (14.7) is minimized by differentiating with respect to the price zt :

L
′
(zt ) = 2

∞∑

k=0

(θβ)kEt
(
zt − p∗

t+k
) = 0 , (14.8)

so that

∞∑

k=0

(θβ)kzt =
∞∑

k=0

(θβ)kEt (p
∗
t+k) . (14.9)

The left-hand side of Eq. (14.9) is

∞∑

k=0

(θβ)kzt = zt

1 − θβ , (14.10)

and thus

zt

1 − θβ =
∞∑

k=0

(θβ)kEt (p
∗
t+k) , (14.11)

so that

zt = (1 − θβ)
∞∑

k=0

(θβ)kEt (p
∗
t+k) . (14.12)

Note that the second order condition for the minimum is

L
′′
(zt ) = 2

∞∑

k=0

(θβ)k = 2

(1 − θβ) > 0 (14.13)

which is satisfied because θ and β ∈ (0, 1). Thus, Eq. (14.12) states that the optimal
solution for the firm, in presence of sticky prices, is a weighted average of expected
future prices.

Given that firms should set the price as a markup over marginal cost, we may
assume that

p∗
t+k = μ+mct+k , (14.14)
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so the reset price in Eq. (14.12) can be rewritten as

zt = (1 − θβ)
∞∑

k=0

(θβ)kEt (μ+mct+k). (14.15)

In general, a first-order stochastic difference equation of type

yt = aEt(yt+1)+ bxt (14.16)

has the following solution:

yt = b
∞∑

k=0

akEt(xt+k) . (14.17)

Eq. 14.15 says that zt is the solution of

zt = θβEt(zt+1)+ (1 − θβ)(μ+mct), (14.18)

where yt = zt , xt = μ+mct , a = θβ and b = 1 − θβ.
At the aggregate level, prices are a weighted average of previous prices and

current reset prices

pt = θpt−1 + (1 − θ)zt , (14.19)

which rearranged is

zt = 1

1 − θ (pt − θpt−1) , (14.20)

or equivalently

zt = 1

1 − θ
(
(1 − θ)pt + θpt − θpt−1

)

= pt + θ

1 − θ (pt − pt−1) = pt + θ

1 − θ πt (14.21)

zt = 1

1 − θ
(
pt − pt−1 + (1 − θ)pt−1

)

= 1

1 − θ (pt − pt−1)+ pt−1 = 1

1 − θ πt + pt−1 .
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pt + θ

1 − θ πt = θβEt
( 1

1 − θ πt+1 + pt
)

+ (1 − θβ) (μ+mct)

pt + θ

1 − θ πt = θβ

1 − θ Et(πt+1)+ θβpt + (1 − θβ) (μ+mct)
θ

1 − θ πt = θβ

1 − θ Et(πt+1)+ (1 − θβ) (μ+mct − pt) .

So that, by rearranging, we arrive at the New-Keynesian Phillips curve

πt = βEt(πt+1)+ (1 − θ)(1 − βθ)
θ

(μ+mct − pt ) . (14.22)

Equation (14.22) states that current prices depend on next period expected
inflation rateEt (πt+1) and real marginal costsmct−pt . As the latter is not observed
nor recorded in national accounts, this relationship is hard to test empirically.

14.3 Lotka–Volterra Model

The Lotka–Volterra ‘predator–prey’ model describes the interaction between two
species: the predator and the prey. This model was initially proposed by Alfred J.
Lotka [20], who borrowed from Verhulst the logistic map [43]. Independently, Vito
Volterra developed the same equations to explain the dynamics of the fish catches
in the Adriatic Sea [44] (cf. for further details Kinoshita [17]).

The assumptions of the model are as follows:

(a) Preys have access to unlimited food.
(b) Preys are the unique source of food for predators which, in turn, have limitless

appetite.
(c) The rate of change of both populations is proportional to the size.
(d) Genetic adaptation and environment changes are not considered.

And the model equations read

dx

dt
= αx − βxy,

dy

dt
= δxy − γy,

(14.23)

where

• x is the number of preys,
• y is the number of predators,
• α is the natural growth rate of preys in the absence of predation,
• β is the death rate of preys due to predation,
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• δxy is the natural growth rate of predators or efficiency rate of turning preys into
predators,

• γ is the natural death rate of predators in the absence of preys.

By dividing the second equation by the first in (14.24), we get

dy

dx
= −y

x

δx − γ
βy − α (14.24)

from which integration yields

βy − α
y

dy + δx − γ
x

dx = 0,

i.e.,

δx − γ ln x + βy − α ln y = A,

where A is constant.

14.4 The Goodwin Model

Richard M. Goodwin, was one of the first economists to develop a nonlinear
model of the business cycle and one of the first pioneers of chaotic dynamics in
economics. In his model on the growth cycle [15], Goodwin founds his assumptions
on the Harrod intuition that a capitalist economy grows until it arrives near
full employment, after which it collapses. To formalize this intuition, that is,
the coexistence of growth and cycle in the same model, Goodwin suggests an
economic adaptation of the Lotka–Volterra predator–prey system. In contrast to the
mainstream approach [7, 11, 35] in which cycles were caused by exogenous shocks,
this model had the advantage to explain endogenously output fluctuations together
with the ones of employment and wages.

In the framework, we are discussing that the economy produces a single good,
workers consume all their wage and capitalists save and invest all their profits.
Economic growth rate is positively related to both saving rate and capital share.
In fact, as workers do not save, a decrease in the profit share reduces investments
and, as a consequence, future output. Thus, during a recession, the lower labour
demand brings salaries down and restores the profit share of capitalists (who will
again start investing more).

In the Goodwin model and its extensions, when the economy expands, higher
labour demand generates wage inflation, so that real wages increase more than
labour productivity. This in turn implies that the wage share increases as production
increases. So when the economy is expanding, the rigidity of the labor market can
increase wages more than productivity, thus reducing investment and growth.
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14.4.1 Assumptions of Goodwin’s Model

The key assumptions of Goodwin, as described in his original work, are

(a) steady technical progress (disembodied),
(b) steady growth in the labour force,
(c) only two factors of production, labour and “capital” (plant and equipment), both

homogeneous and non-specific,
(d) all quantities real and net,
(e) all wages consumed, all profits saved and invested,
(f) a constant capital-output ratio,
(g) a real wage rate that rises in the neighbourhood of full employment.

Caveats in this list are in assumption (e), which could be changed into constant
proportional savings without altering the logic of the model, and in assumption (f),
which could be softened at the cost of overcomplicating the system. Assumptions (f)
and (g) are empirical and disputable.
In the following, we list the symbols that are used in Sect. 14.4.2 and are consistent
with Goodwin’s original paper:

(i) q output,
(ii) k capital,

(iii) w wage,
(iv) a = a0 e

αt labour productivity, where α is the growth parameter,
(v) s = q/k = 1/σ capital productivity,

(vi) k/q = σ capital-output ratio,
(vii) u = w/a workers’ share of product,

(viii) (1 − w/a) capitalists’ share of product,
(ix) (1 − w/a)q = k̇ surplus = profit = savings = investments,
(x) k̇/k = q̇/q = (1 −w/a)/σ profit rate,

(xi) n = n0 e
βt labour supply, where β is the growth parameter,

(xii) l = q/a employment,
(xiii) v = l/n employment rate.

14.4.2 Dynamics of Goodwin’s Model

The logarithmic differentiation of the employment rate and of the workers’ share of
product yields, respectively:

v̇

v
= l̇

l
− ṅ

n
= q̇

q
− α − β

u̇

u
= ẇ

w
− α,

(14.25)
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where ẇ
w

= ρv − γ is the linearized Phillips curve.
By virtue of notation (x) the system in Eq. (14.25) becomes

v̇ =
[

1 − u
σ

− (α + β)
]
v

u̇ = [−(γ + α)+ ρv] u.

(14.26)

At the equilibrium, it must be v̇ = u̇ = 0, so the solutions are: v = u = 0 and
(v∗, u∗), such that

v∗ = γ + α
ρ

,

u∗ = [1 − (β + α)σ ] .

To have economic meaning, Goodwin imposes that u∗ > 0, i.e.
1

σ
> (α + β).

By means of the linear approximation method near the two equilibria, we get the
following Jacobian matrices, respectively:

J (0, 0) =
⎡

⎣
1

σ
− (α + β) 0

0 −(γ + α)

⎤

⎦ and J (v∗, u∗) =
⎡

⎣ 0 − 1

σ
v∗

ρu∗ 0

⎤

⎦ .

As J0 = J (0, 0) is a diagonal matrix, the eigenvalues are real and of opposite
sign, the origin is a saddle point. At the equilibrium point (v∗, u∗), the eigenvalues
are purely imaginary. Therefore, the fixed point is neutrally stable (or equivalently
structurally unstable), and the trajectories are closed orbits. The specific closed orbit
where the system will be located depends on the initial condition. We are bound to
remind the reader that the system (14.26) is a rare example of integrable system of
nonlinear differential equations. The procedure is as follows.

Similarly to the Lotka-Volterra model, let us rewrite the system (14.26) as

dv

dt
= [s − (α + β)− u s] v ,

du

dt
= [−(γ + α) + ρv] u ,

(14.27)

and divide the second equation by the first, so that

du

dv
= ρv − γ − α
s − (α + β)− u s

u

v

or equivalently

[s − (α + β)− u s] v du+ [(γ + α)− ρv] u dv = 0.
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As the variables are separable, through the division by uv, we get

[
s − (α + β)

u
− s
]
du+
[
(γ + α)
v

− ρ
]
dv = 0

and integrating

∫ [
s − (α + β)

u
− s
]
du+
∫ [

(γ + α)
v

− ρ
]
dv = 0

i.e. [s − (α + β)] logu− s u+ (γ + α) log v − ρ v = A.

It follows that

us−(α+β) e−s u vγ+α e−ρv = eA. (14.28)

By setting

U = us−(α+β) e−s u, V = v−(γ+α) eρ v and B = eA, (14.29)

(14.28) can be rewritten as

U(u) = BV (v). (14.30)

This equality allows us to obtain the integral curves in the plane (v, u). In fact, to
each value of the arbitrary constant B, there is a corresponding integral curve. To
draw the integral curves, we have to investigate the shape of the curves U and V .

Hence, the curve

• U has a maximum in u∗ because

dU

du

∣
∣
∣
∣
u=u∗

= u∗,s−(α+β) e−su∗
[
s − (α + β)

u∗ − s
]

= 0

and

d2U

du2

∣
∣∣
∣
u=u∗

= −U
[
s − (α + β)

u∗,2

]
< 0.

• V has a minimum in v∗ because

dV

dv
= v−(γ+α) eρ v

[−(α + γ )
v

+ ρ
]

= 0
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Fig. 14.3 Graphical proof
that system (14.27) displays
infinite closed orbits

U

U=BV

P0

u

v

V(v)

V(v*)

V

U(u)

U(u*)
v1

u1

u*

v*

v2

u2

and

d2V

dv2

∣
∣
∣
∣
v=v∗

= V
[
α + γ
v∗,2

]
> 0.

Now, we are in position to display the integral curves in Fig. 14.3. In the second
and fourth quadrants, we qualitatively report the curves U(u) (blue) and V (v) (red)
as well as their optima u∗ and v∗.

Let us now consider a point P0 satisfying (14.30). This corresponds to choosing
a point on the straight line U = BV in the third quadrant. P0 can be projected in the
second quadrant through the inverse of U(u) so that points u1 and u2 correspond
to U−1(P0). Similarly, the inverse mapping V −1(P0) identifies points v1 and v2 in
the fourth quadrant. The projections of the four points in the first quadrant (i.e.,
the (u, v) plane) identify the coordinates (u1, v1), (u1, v2), (u2, v1) and (u2, v2)

that satisfy (14.30). Thus, by iterating the process, we can state that the system
has a periodic closed orbit corresponding, graphically, to the curve drawn in the
(u, v) plane (first quadrant). Note that, as the choice of the parameter B is arbitrary,
the system has infinitely many periodic closed orbits, around the equilibrium point
(u∗, v∗).
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14.5 Kolmogorov Prey–Predator Model

Although the Goodwin model is able to describe persistent oscillations of an
economic system, it cannot display structural stability.1 Many attempts to add this
feature were made in the 1970s and the 1980s (e.g., Desai [10] and van der Ploeg
[27, 28]). However, despite the use of additional hypotheses, the Goodwin non-
trivial equilibrium point remained a centre; if not, it became a stable node or a
focus. This type of result is a direct consequence of the structural instability: any
small perturbation (as an effect of additional hypotheses) leads to the loss of the
cycle. Kolmogorov [18] was the first to raise the problem of structural instability,
suggesting a more general version of the predator–prey system as follows:

Ṅ1

N1
= K1(N1, N2)

Ṅ2

N2
= K2(N1, N2),

(14.31)

where K1(0, 0) = 0,K2(0, 0) = 0, K1 and K2 are continuous functions with
continuous first derivatives for all N1 (the preys) and N2 (the predators). By
imposing some appropriate conditions on K1 and K2 the integral curves of system
14.31 are the coordinates displayed in Fig. 14.4.

The isoclines K1 = 0 and K2 = 0 divide the first quadrant into four parts (see
Fig. 14.4) and the singular points are the origin (0, 0), Z = (N∗

1 , N
∗
2 ) obtained by

the intersection of the isoclines K1 = K2 = 0 and B corresponding to N2 = 0
and K1 = 0. Kolmogorov provided the functions K1 and K2 with well-founded
assumptions in biological theory, and showed that system (14.31) may generate
limit cycles when the equilibrium point (N∗

1 , N
∗
2 ) is unstable. As Kolmogorov [18]

affirmed, “no integral curve starting in the domain N1 > 0, N2 > 0 can move
asymptotically toward the coordinate axes. In other words, if initially both N1 > 0
and N2 > 0, neither species can completely disappear”. In the classical model,
either there is a globally stable equilibrium or there is a globally stable cycle. Other
modifications, such as intraspecific competition among prey and predators (e.g.,
see [24]), confirm the results obtained by Kolmogorov and show that the transition
from the globally stable equilibrium to the stable cycle is obtained through non-
catastrophic Hopf bifurcations. Contrarily, Tyutyunov et al. [41], by adopting the
Patlak–Keller–Segel taxis model for the predator and “assuming that movement
velocities of predators are proportional to the gradients of specific cues emitted by
prey,” showed that the stationary regime of the model becomes unstable with respect
to small perturbations.

1For a detailed treatment of the subject, see Veneziani et al. [42].
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Fig. 14.4 First quadrant describing the dynamics of prey-predators: in part I (above K1 = 0 and
to the right of K2 = 0) preys decrease and predators increase, in part II (above K1 = 0 and to
the left of K2 = 0) both preys and predators decrease, in part III (below K1 = 0 and to the left
of K2 = 0) preys increase and predators decrease, in part IV (below K1 = 0 and to the right of
K2 = 0) both preys and predators increase. Source[18].

In summary, from a practical standpoint, Kolmogorov’s approach has the merit
of emphasizing the analytical properties that a predator–prey system must satisfy,
in order to ensure structural stability. Since then, this approach has become a
basic landmark for specific predator–prey models in biology and economics. In
such models, the existence of stable limit cycles is proved either by the Poincare–
Bendixon theorem or by the Hopf bifurcation theorem.

Among others, see the models by May [21] and Tanner [38] in mathematical
biology and Medio [22] and Sportelli [37] for applications to economics. Last but
not least, according to the Goodwin model, the wage share should lag behind the
employment rate. Moreover, this is not always true in reality, see Fig. 14.5, where
wage share ratio (blue line) [3, 5] is not close at all to employment (red line) [4].
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Chapter 15
Stable Periodic Economic Cycles
from Controlling

Ruedi Stoop

15.1 Introduction into Control Fundamentals

The emergence of periodic economic cycles in western economies is a ubiquitous
undesired, puzzling and still poorly understood, observation. Even against the large
noise component in the data, a relatively simple spectral analysis suggests the
presence of different periodic components. Among the most remarkable cycles
in the annual GDP growth rates, the Kitchin [19], the Juglar [16], and, less
prominent, the Kuznets [22] cycles stand out. As economic booms and bouts
affect modern societies with a strong and direct impact on individual biographies,
there have been considerable efforts to prevent them or at least to smoothen
their effects. Until the 1970s, as the legacy of Keynes [18], cycles were regarded
as primarily due to variations in demand (company investments and household
consumptions). Unfortunately, this theory offered very little explanation for the
observed wavelength of the periodicities. Despite, under its influence, economic
analysis focused on monetary and fiscal measures to offset demand shocks. During
the 1970s, it became obvious that stabilisation policies based on this theory failed.
Shocks on the supply side, in the form of rising oil prices and declining productivity
growth, emerged to be equally crucial for the generation of cycles. In 1982, Kydland
and Prescott [23] finally offered new approaches to the control of macroeconomic
developments. One of their conclusions was that the control should be kept constant
throughout a cycle, in order to minimise negative effects.

The remarkable stability of the observed oscillatory behaviour shown in resisting
not only against all occurred technological transformations but even against all
the attempts to eliminate them, points to a simple, fundamental origin of the
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phenomenon. It also nourishes the hope that if the origin of the phenomenon could
be understood, this insight might be used to engineer towards a softer course
of the oscillations. An extreme form of this approach was already taken in the
former socialist countries by following the Marxist [26] interpretation of economy,
leading to the centrally planned economies. To deal with this problem in democratic
societies, it is, however, necessary to be able to communicate a sufficiently simple
optimality policy. For this, an understanding of the fundamental nature of the
phenomenon and of the response that can be expected from control attempts is
necessary. For this, simple models may provide important guidelines [24].

Stability of the oscillations with cycles of nearly doubled wavelength from
Kitchin, to Juglar, to Kuznets (roughly 4, 8, and 16 years, the last obviously to
be taken with a grain of salt) suggests that the prediction problem of economics
might closely be related to chaotic processes. Although the question to which
extent real economies can be classified as chaotic can readily be disputed, low-
dimensional chaotic models might yield insight into the mechanisms that rule
economics and how economics respond to control policies. In particular, for chaotic
processes, strategies of control and for prediction have been developed that offer to
be adapted for economics. Note that already in early implementations of optimal
control programs, it was found that control mechanisms themselves may induce
chaotic behaviour [6, 7, 28] and render optimal control impossible. As a general
mechanism inherent in many of these examples, chaos is induced by a preference
function that depends on past experience. This delay mechanism naturally makes
a dynamical system infinite-dimensional, which has the tendency of resulting in
a chaotic behaviour. Despite these insights, the quest for a fundamental simple
dynamical model for economic cycles is still open.

A connected and very natural goal in economics is the desire to control economic
behaviour, in particular when economics develop wave-like fluctuation tendencies.
We shall suppose in the following that we are given a ‘temporally stable’ system—
meaning by this that we have a behaviour following fixed equations of dynamics,
at least over a considered time span, be them periodic or chaotic. That equations
may change, expressed in a dependence of system parameters, may be reasonable to
assume, but only beyond a relatively long time span compared to the time horizon
needed to establish and to maintain control. Getting control over a dynamical
systems into a desired system behaviour can be achieved by the so-called control
algorithms.

15.2 Problem Setting

In chaotic systems, all trajectories are unstable. The aim of chaos control is to
stabilise chosen natural trajectories, using additional control structures, in order to
render them robust against external perturbations from a large interval of perturba-
tion strength. In the Handbook of Chaos Control,Schuster1999, the interested reader
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will find the following passage from the excellent introductory article by Lai and
Grebogi:

Besides the occurrence of chaos in a large variety of natural processes, chaos may also occur
because one may wish to design a physical, biological or chemical experiment, or to project
an industrial plant, to behave in a chaotic manner.

In many-particle systems, often the collective behavior is more ordered than the
individual behavior (e.g., in biology (neurons, flocks of animals), economics, etc.),
so that hidden control mechanisms seem to be at work. From a similar perspective,
if a system request is to be able to respond with selectable periodic behavior, it may
be simpler to build first a chaotic system and then to exploit control mechanisms to
produce the desired response. To identify the control mechanisms and, in particular,
to stabilise the desired simpler behaviours, is the task of chaos control. To realise
the full power of this concept, one has to remark that chaos control is also applicable
to systems that are not inherently chaotic. The only difference here is that if control
is abandoned, the trajectories will settle on the stable solution instead of a chaotic
solution in the former case. In what follows, we will provide such examples.

A remarkable illustration of this concept is gait-control, i.e., the control of the
motion pattern displayed by living systems. It is well-known that animals (amphibia,
horses, even humans) change their gate depending on the environmental conditions.
Depending on the weight a human is carrying and on the roughness or steepness of
the environment, humans dance, march, set on foot after another, etc. It is similarly
imaginable that horses have an essentially chaotic gait generator that is controlled by
environment, by body weight (changing with age), and by the rider on the horseback,
to change from trod, gallop, backward motion, etc. A similar simple control can be
expected to be at work in macroeconomics, which is the major theme in this chapter.
In principle, on a more general level, chaos control is the resurrection of the old
classical problem of the control of a dynamical system seen under a novel angle.
In the following, we provide a short overview of chaos control, before we focus on
one particular control mechanism where we explore its relevance in the context of
economics.

We may distinguish five groups of control mechanisms.

(1) OGY-parametric control
(2) Local stabilisation control
(3) Delay-coordinate control
(4) Feedback control
(5) Limiter control

Below we will present but an introductory outline of these methods mostly using
1-d iterated map applications; for a broader and deeper view on this subject we may,
e.g., recommend Ref. [35] to the reader. Throughout Sect. 15.2, we will use the
letter a to denote the monitored system parameter [43].
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1. Parametric Control
This most popular control method was put forward by E. Ott, C. Grebogi and
J.E Yorke around 1990 (the ‘OGY’- method [30]). Let us expose the working
principle first in dimension one, using the quadratic parabola f : xn+1 = a0xn
(xn − 1) as the example, and let us consider, to start with, an unstable periodic
orbit {x(1), x(2), . . . , x(n)} of period n. Because of the orbits’ instability, after i
iterations, the real orbit xi will not coincide with the ‘ideal’ point x(i). We thus
have

xi+1 − x(i + 1) ≈ ∂f

∂x
|x=x(i),a=a0(xi − x(i))+

∂f

∂a
|x=x(i),a=a0Δai

= a0(1 − 2x(i))(xi − x(i))+ x(i)(1 − x(i))Δai.

If we want xi+1 to stay ultimately close in a neighbourhood of x(i + 1), we should
have |x(i + 1)− xi+1| ≈ 0. From this it follows that we need to choose

Δai = a0
(2x(i)− 1)(xi − x(i))

x(i)(1 − x(i)) .

In higher dimensions, we have

xi+1 = F(xi , a),

where a again denotes an external parameter. Similarly to above we will have

xi+1 − x(i + 1)(a0) ≈ DxF(x, a)|x(i)(a0),a0(xi − x(i)(a0))

+ DaF(x, a)|x(i)(a0),a0(a − a0).

From the first contribution we obtain a n×n-matrix applied to a vector of dimension
n, and from the second contribution we get a vector of length n. Using the ansatz

a − a0 ≈ −KT (xi − x(i)(a0)),

to render the behaviour at x(i)(a) stable, the 1 × nMatrix KT needs to be modified
accordingly. This goal is achieved if

(xi+1 − x(i)(a0))

= (DxF(x, a)|x(i)(a0),a0 − DaF(x, a)|x(i)(a0),a0K
T
)
(xi − x(i)(a0))

=: J(xi − x(i)(a0))(xi − x(i)(a0))

is asymptotically stable, which is the case if all eigenvalues of the n × n matrix J
are of absolute size smaller than unity.
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For the two-dimensional dissipative Hénon map written in the form F : {x, y} →
{a+by−x2, x} we obtain for the period-1 orbit {x1, y1} DxF =

(−2x1 b

1 0

)
,with

eigenvaluesμs/u = −x1±(b+x2
1 )

1/2 and eigenvectors {μs/u, 1} and DaF = (1, 0).
Hence, the control matrix obtains the form K =

(−2x1 − k1 b − k2

1 0

)
.

The determination of the control matrix K so that all eigenvalues are of absolute
size smaller than unity is a well-known procedure in control theory (called ‘pole
placement’). The OGY-method chooses to set the unstable eigenvalues of the matrix
KT to zero while letting the stable eigenvalues unchanged. The consequence of this
is that after control has been switched on, the trajectories approach the fixed point
of the periodic orbit along its stable manifold (in principle, also other, less natural,
choices are possible).

More generally, let for parametric control a0 be the parameter value at which an
orbit should be stabilised. Then we may write

xi+1 − x(i + 1)(a0) ≈ DF(x(i)(a), a)(xi − x(i)(a0))

≈ Dx F(x(i))|x(i)=x(i)(a0)(xi − x(i)(a0))

+ DaDx(i) F(x(i)(a), a)|a=a0Δai.

From this we get

xi+1 − x(i + 1)(a0) ≈ gΔai + DF(x(i)(a0))(xi − x(i)(a0)− gΔai),

where g = ∂x(i)(a)
∂a

|a=a0 ≈ x(i)(a)−x(i)(a0)
Δai

. Let {fi}, i = 1, . . . , n denote the
contravariant vector basis to the eigenvectors {e1, . . . , en} (fjei = δji ). Then we
have

DxF(x(i)(a0)) = μueufu + μses fs,

where μu,s describes the unstable/stable eigenvalues. From this we get

fu(xi+1 − x(i)(a0)) = 0,

which implies

fu(gΔai + DF(x(i)(a0))(xi − x(i)(a0)− gΔai) = 0.

As a consequence, we obtain

gΔai ≈ DF(x(i)(a0))(xi − x(i)(a0))− gΔai),
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which implies that, at time i, we need to choose the parametric control

Δai ≈ DxF(x(i)(a0))(xi − x(i)(a0))

g(Id − DxF(x(i)(a0)))
,

or, expressed in terms of stable/unstable manifolds, we need to take

Δai ≈ fuμu(xi − x(i)(a0))

g(1 − μu)fu . (15.1)

From a general point of view, this control only makes sense if the actual orbits
are already in the neighbourhood of the orbit that we want to control, which may, in
particular initially, take a substantial consumption of time. To speed the process up,
targeting algorithms have been designed.

Control Time
The time needed to control on a chosen orbit (called ‘control time’) is of particular
interest in applications. For the chosen control strategy, in dimension d = 1, the
ansatz

〈τ 〉 ∼ δ−γ

defines the corresponding scaling exponent γ > 0. From

P(ε, x(i)) =
∫ x(i)+ε

x(i)−ε
ρ(x(i))dx ≈ 2ερ(x(i)),

we get

〈τ 〉 = 1

p(ε)
∼ ε−1 = δ1,

from which one concludes that γ = 1.
In higher dimensions, matters become substantially more complicated. For a

class of 2d-maps, the exponent becomes [33]

γ = 1 + ln |μu|
2 ln(1/|μs |) .

Control of the dissipative Hénon map, using easy to read elementary Mathemat-
ica code, is achieved as follows:

(∗ Set the parameters ∗)
a=2.1;b=−0.3;
(∗ Defines the Henon map ∗)
Henon[{x_,y_}]:={a−x^2+b y,x};
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(∗ Defines the Jacobian for the Henon map ∗)
Jacobi[{x_,y_}]={{D[Henon[{x,y}][[1]],x],D[Henon[{x,y}][[1]],y]},
{D[Henon[{x,y}][[2]],x],D[Henon[{x,y}][[2]],y]}};

(∗ Set the initial point {0.2,1.4} and iterates the Henon map 10001 times ∗)
p=Nest[Henon,{0.2,1.4},10001];

(∗ Calculates the eigenvectors of the Jacobian for each iteration ∗)
v=Eigenvectors[Jacobi[p]];

(∗ Iterates the Henon map 5 times and stores the results in Henonp ∗)
perio=5;Henonp[{x_,y_}]:=Nest[Henon,{x,y},perio];

(∗ Defines the controlled Henon map ∗)
Hencon[pp_] :=

(∗ Computes the module for the variables ∗)
Module[{xn, xn1, h, c, v, u, eiv, hh},

(∗ Computes the module for the variables ∗)
eiv = Eigenvalues[Jacobip[pp]]; h = Max[Abs[eiv]]; hh = 0;

(∗ If the first max eigenvalue is positive set hh=1 otherwise set hh=−1 ∗)
If[h == eiv[[1]], hh = 1,]; If[h == −eiv[[1]], hh = −1,];

(∗ If the second max eigenvalue is positive set hh=1 otherwise set hh=−1 ∗)
If[h == eiv[[2]], hh = 1,]; If[h == −eiv[[2]], hh = −1,];
Print["h=", h, " eiv=", eiv, " hh=", hh];

(∗ Iterates the Henon map 5 times and stores the results in Henonp ∗)
xn1= Henonp[pp];

(∗ Computes the control as described in Eq. (15.1) ∗)
c = ((xn1 − pp)/h)∗hh;

% (∗ v = Eigenvectors[Jacobip[pp]][[2]];∗)
xn = pp − c ;
Print["x=", pp, " xn=", xn, " h=", h, " c=", c];
Return[xn]]

2. Local Stabilisation Control
We return to the one-dimensional case. Let ε be the error made after running through
a ‘quasiperiod’ (an imprecise orbit) of length n. This error will, after additional
t = n time steps, grow to

ε
′ = ε

n∏

i=1

|f ′
(xi)|.

This implies that the value of xi should be corrected by

c = c
′

∏n
i=1 |f ′

(xi)|
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Fig. 15.1 Stabilised period 3 in the chaotic regime of the inhibitory interaction to pyramidal
neurons. The numerical function was extracted from experimentally measured phase response
curves (cf. [41])

to stabilise the original orbit (see Fig. 15.1 for an illustration). For higher-
dimensional systems, the same procedure can be followed, where the correction
has to be applied in the direction of the unstable manifold.

This method can be seen as a variant of the parametric control using a particularly
simple control parameter. Control is achieved by means of a change of the slope in
the orbit point by the increase of the y-coordinate by a value of c:

Control of neural interaction map f(x) in the stable period 2 regime on a period
3 (see Fig. 15.2):

f[x_] := Mod[x + o - (0.986115480593817 - 4.68999548957753*x +
49.50892515516324*x^2 - 247.7425851646342*x^3 +
668.4931471006396*x^4 - 979.050342184131*x^5 +
735.4280170792417*x^6 - 221.9348783929893*x^7), 1];
g[x_] := x + o - (0.986115480593817 - 4.68999548957753*x +
49.50892515516324*x^2 - 247.7425851646342*x^3 +

668.4931471006396*x^4 - 979.050342184131*x^5 +
735.4280170792417*x^6 - 221.9348783929893*x^7);

perio = 3;
fcon[x_]:=Module[{xn,xn1},
b=Evaluate[g’[NestList[f, x, perio]]]; h = 1;

Do[h *= b[[i]],{i, 1, perio}]; xn1=Nest[f, x, perio];
c = (xn1 - x)/h; xn = x - c;
Return[xn]]
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Fig. 15.2 Stabilised period 3
for the inhibitory chaotic
neural interaction function
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Fig. 15.3 Stabilised period 5
in the stable regime of the
neuron interaction map where
the natural motion would be a
stable period 2
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In Fig. 15.3 we demonstrate that control on an unstable periodic orbit can be
achieved not only in the domain of chaotic, but also in the regime of stable system
behavior.

3. Delay-Coordinate Control
This control method can be particularly simple in experimental applications.
Starting fromm-dimensional vectors

x(t) = (u(t), u(t − tD), u(t − 2tD), . . .),

and the dynamical map of the form

xi+1 = G(xi, ai , ai−1, . . . , ai−μ),

we use again the ansatz

(xi+1 −x(i)(a0)) = (DxG(x, a)|x(i)(a0),a0 −DaG(x, a)|x(i)(a0),a0K
T
)
(xi−x(i)(a0))
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Fig. 15.4 Delay-coordinate
control (system: neuronal
interaction). A portion of the
signal with a fixed delay
(varying in 11 steps) was
added to the signal

x

t

that leads to

(xi+1 − x(i)(a0)) = A(xi − x(i)(a0))+ Ba(a(i)− a0)+ Bb(ai−1 − a0)

with partial derivatives at xi (a0) and μ0, respectively. The linear control

ai − a0 = −KT (xi − x(i)(a0))− k(ai−1 − a0),

with k as the control parameter, can, using

yi+1 = (xi+1, ai),

be written in a simpler way as

yi+1 − y(i)(a0) = (A − BKT )(yi − y(i)(a0)),

where A = ({A,Bb}, {0, 0}), B = (Ba, 1), and K = (K, k) are the quantities in the
generated product space. Again, this equation can be stabilised using the method
of pole placement; matrix A can again be found by a method of numerical linear
approximation. For obtaining the experimental vectors Ba and Bb, one has to rely
on the system parameter a. In Fig. 15.4 we demonstrate that control on an unstable
periodic orbit can be achieved with varying time delay.

4. Feedback Control
This method can be seen as a special case if the delay-coordinate control, where we
add to the dynamical system the by a factor c down-tuned system output of time
t − τ . The combined system (again for simplicity we constrain our presentation to
one-dimensional systems) can then be written as

f (x, c) : xi+1 = f̃ (xi)+ cxi−τ .
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The method depends on the two parameters c and τ . The variational equation has
the form

dv

dt
= Dxf (x(t), 0) v(t) + cDcf (x(t), 0) Dg(x(t)) (v(t) − v(t − τ )),

where g(t) is the (generally scalar) measurement at time t . The boundary of
stabilisation can be explored by using Floquet methods.

Feedback control program outline:

perio = 22; xanf = 0.3682632865868;
nanz = 100; x = Nest[f, xanf, nanz];
Tabelle = NestList[f, x, perio];
eps = 0.004; eps = epsanf = 0.000005; del = 0.02; nanz = 1000;
JJ = NestList[f, 0.35, 100];
Do[ eps = eps + del;

perio = 3; x = Nest[f, x, nanz];
Tabelle = NestList[f, x, perio];

J[i] = NestList[fff, x, 200], {i, 1, 10}];
Do[JJ = Join[JJ, J[i]], {i, 1, 10}];
ListPlot[JJ, Frame -> True, PlotRange -> All];
fff[x_] := Module[{xn}, xn = f[x];

Do[Tabelle[[i]] = Tabelle[[i + 1]], {i, 1, perio - 1}];
Tabelle[[perio]] = xn;
xn = xn + eps Abs[xn - Tabelle[[2]]];

Return[xn]];

As will have emerged from our presentation so far, a general problem with the
described control mechanisms is that they require considerable knowledge of the
system to be controlled and that the system needs to be carefully led towards the
desired solution. For many systems, this may not be easily available, and the control
process may be rather slow. In the next section, we will present the limiter control
method that avoids these complications and will be seen to be pretty close to the
control mechanisms that are applied in macroeconomics. With this, for economics
most relevant, control method we can easily achieve control on orbits of the original
system, as well as, additionally, on desired orbits of the system plus controller.

15.3 Controlling Economics by Thresholds

In economics, controls are applied according to economics goals that the controller
(state, federal banks, governments) wants to achieve. This is generally done by
defining limits or bandwidths, after whenever crossing them, control actions take
place. We will present in the following a chaos control method that is more
realistic seen from the point of view of economics, using the quadratic map as the
fundamental example of complex nonlinear dynamics. Later, we will motivate why
the example of the logistic map is very appropriate and essential for describing the
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evolution of macroeconomic processes. Our derivation will provide conditions for
optimal stabilisation of economic dynamics and then we will explain why exactly
the desire to control the fluctuations will even enhance periodic cycles, if not even
the control itself is at their origin.

Let us thus describe how simple control mechanisms in economics may affect
the evolution of the dynamics. Let us describe the threshold of the control threshold
by xth, above which the economy no longer develops according to its intrinsic
dynamics. For a quadratic parabola, threshold control can be described by the
equation

xn+1 =
{
μxn(1 − xn) if μxn(1 − xn) ≤ xth
(1 − α)μxn(1 − xn)+ αxth if μxn(1 − xn) > xth.

(15.2)

Here, xn and xn+1 denote the state variable at time n and n + 1, respectively.
−α is the proportionality factor of the perturbation by the applied control, whereas
xth defines the threshold for the state variable above which the correction is applied
control, see Fig. 15.5a.

For general maps f , period-k unstable periodic orbits (’UPO’) are determined
by the fixed points of the k-fold iterated map f k (cf. Fig. 15.5b), with their stability
being given by the derivative of this map at the fixed points. If the absolute value
of the derivative of the control map is less than unity, the system can be stabilised
on the UPO. We will show that based on this condition, the control mechanism
can be optimised. Figure 15.5 shows the map when modified by the control, for
different values of α. Without loss of generality, we have set the system parameter

Fig. 15.5 Modified maps used for limiter control of the period-1 orbit (a) and the period-2 orbit
(b) of the logistic map, see (15.2). (a) Full line αmin = 0.75 and dashed line αmax = 1.5 indicate
two intervention thresholds that can be seen as a chosen intervention bandwidth. Superstable orbits
are obtained for α = 1 (dotted line). (b) Full line: αmin = 0.93750; dashed line: αmax = 1.24999;
fine dashes: α = 1. Note that the present use of α differs from the later use of the symbol for
describing the ‘scaling constant’
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to μ = 4, the fully developed chaos case (maximal chaos). There are two limiting
values within which the map can be controlled: a maximal value αmax > 1 (dashed
line) and a minimal value αmin < 1 (full line). The special case α = 1 provides
superstable UPOs; this case already has been analysed by L. Glass et al. [12]. As
the simplest example for our theoretical analysis, we focus on the unstable period-1
orbit. The derivative of the unperturbed system is μ(1 − 2x∗) = −2, where x∗ =
0.75 denotes the fixed point; the absolute slope larger than 1 refers to an unstable
orbit. First we consider the case where α < 1, cf. Fig. 15.5. Driving the system
slightly out of the fixed point x∗, the trajectory alternates between the two branches
of the map that meet at the fixed point. In order to make the fixed point attractive,
the absolute value of the product of the derivatives of the two branches at the fixed
point must be smaller than 1. This leads to a condition for the minimal value of α,

| (1 − α)(μ(1 − 2x∗))2 |< 1.

Thus, the lower threshold becomes αmin = 0.75. In the case of α > 1, (long dashes),
the trajectory propagates only along the perturbed branch after pushing the system
out of the fixed point. Therefore, the corresponding condition is

| (1 − α)(μ(1 − 2x∗)) |< 1,

which yields the upper limit αmax = 1.5. These results can readily be generalised
to stabilise orbits of higher periodicity.

Note that this procedure can also be applied to the control of natural systems
(cf. Ref. [8], first experiment) and for higher-dimensional maps. For α = 1, the
derivative becomes zero at the fixed point and the periodic orbits are superstable
(Fig. 15.5, short dashes). Experimentally, this corresponds to a limiter xth that is
rigid, i.e., cannot be modified at all. At this point, the periodic orbits become
optimally stable and therefore almost insensitive to noise (as a matter of fact, the
diode used as limiter in the second experiment of Ref. [8] approximates this case).
Because of these properties, this method is called ‘hard limiter’ control (HLC) [43–
45].

This procedure of stabilising UPOs can be adapted for two-dimensional maps, as
is shown by the example of the Hénon map, see Fig. 15.6. For the controlled Hénon
map xn+1 = x̃n+1 := a+ byn− x2, if x̃n+1 ≤ xth and xn+1 = (1 − α)x̃n+1 + αxth,
if x̃n+1 ≤ xth, with yn+1 = xn for both cases, the effectivity-range of the stability
parameter α can be determined analogously. For the standard parameters a = 1.4
and b = 0.3 we obtain for the period-1 and the period-2 orbit α = 0.79011 <
α < 1.68129 and 0.80090 < α < 1.20408, respectively. Since the cutoff algorithm
requires no computational effort in experiments, optimised control is provided in a
the most simple way. A minor drawback of the presented control method is that the
perturbations can be quite large, if not assisted by targeting procedures.

Whereas a substantial effort in the earlier presented control methods is that
they require the identification of the orbits one might want to control on, here the
effort is to identify the bifurcation points of the combined dynamical-and-controller
system: Only for these values of the controller, true orbits of the original system
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Fig. 15.6 Fast switching of
the dissipative Hénon map
between periodicities
p = 1, 2, 4, 8, 16 using
HLC. x-coordinates are
shown over t = 250 iteration
steps each, where a slightly
thickened line marks the
position of the limiter.
Control of high periodicities
is at least as fast as the
control of low periodicities
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are obtained. This happens on a set of measure zero, but a similar characterisation
applies to the periodic orbits seen in a space of all potential orbits. The simplicity
of the threshold control drastically reduces the latency of the controller. As has
been shown above, the limiter control can be optimised by using ‘hard limiters’,
leading in the 1-d case to a description by the class of flat-topped maps. Earlier,
Glass and Zeng had suggested these maps for regularising cardiac rhythms [12],
in a more general context a chain of flat-topped map was used by Sinha and
Biswas to investigate adaptive dynamics [39]. Moreover, Sinha and Ditto presented
a simple network of flat-topped logistic maps which encodes numbers and performs
arithmetic computations [40].

One may ask oneself whether flat-topped maps could, similarly to their relatives
with of quadratic nonlinearities, also display a kind of universal behaviour. In
contrast to the latter family, it is to be noted first that flat-topped unimodal maps—
due to their flat tops—cannot show chaotic motion. As an ergodic chaotic trajectory
would explore the entire attractor of the system, it eventually will land on the flat
segment, from which it will continue on a periodic orbit. If we consider (non-
ergodic) maps having separated attractors, the periodic motion can only be observed
if the orbit visits the attractor which is associated with the flat segment of the map.
Flat-topped maps can, however, undergo a period doubling cascade, as a function of
the height of the top, as we show in Fig. 15.7 for three variants of the implementation
of this concept.

It comes as little surprise that these processes can be treated in full parallel to
the Feigenbaum treatment. In the first step, we therefore determine the properties
of the bifurcation cascade and then will compare it with the Feigenbaum case. We
will show that, generically, in flat-topped maps the single scaling for the opening of
the forks of the Feigenbaum case is replaced by two different scaling factors. One
of them is a trivial scaling by α = 1, which is associated with the scaling of the
top. The other scaling by α̃ depends on the derivatives of the map and can therefore
not be universal, which is why for this splited scaling, we propose the term “partial”
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Fig. 15.7 (a) Flat-topped tent, (b) spread tent, (c) spread logistic map, with corresponding
generated bifurcation diagrams (d)–(f)

universality. In the course of period doubling, flat-topped maps show an exponential
convergence towards the period doubling accumulation point. As a consequence,
the value of the scaling exponent d diverges. Of practical interest is the observation
that the convergence onto the asymptotic periodic orbit is exponential and usually
reached within a few iterations when starting from arbitrary initial conditions.
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To render life as easy as possible, we shall first switch to the flat-topped
symmetric tent map. As the curvature of the side branches that the flap-topped
parabola would introduce is of limited variation, this has no further influence on
the generic behaviour. The flat-topped symmetric tent map is given by

xi+1 =
{

1− | 2(xi − 0.5) | for 1 − |2(xi − 0.5)| < h
h otherwise.

(15.3)

Threshold h denotes our limiter, which is the natural choice of the bifurcation
parameter. Figure 15.7a, d shows the HLC-controlled tent map along with its
bifurcation diagram, where the threshold h is increased from h = 0.5 to h = 1. For
the diagram, the last 100 of a trajectory of 500 points were plotted, showing that the
associated orbits are periodic, except for h = 1. Upon this increase of h, the length
of the flat interval shrinks from Ih=0.5 = 0.5 to Ih=1.0 = 0. In Fig. 15.7d, for each h
the interval end points are shown as thin lines. In the bifurcation diagram, a period
doubling bifurcation occurs whenever an end point collides with a 2n-periodic fixed
point. Therefore, a new controlled orbit is born whenever the diagonal xn+1 = xn
first hits a flat interval of the 2n-fold iterated map. When h is increased further, the
intersection point moves along the flat interval to the other end point, where the next
period doubling bifurcation is generated. Because of the constant absolute slope of
the map, all branches in the bifurcation diagram are straight lines. For an orbit of
length 2n, the slope of the bifurcation branch that contains x = 0.5 can be written
as sn = 22n−1

, n > 0. The sequence of period doubling bifurcation can now be
calculated as the intersections of this branch with the lines corresponding to the end
points of the flat top. For n > 1 this leads to

hn = 1 −
∏n−2
k=0

(
22k − 1

)

22n−1 + 1
,

where 2n denotes the periodicity of the cycle. The location of the threshold at
which the periodicity becomes infinite can numerically be determined to be at
h∞ � 0.82490806728021.

The scaling behaviour of 1-d unimodal maps is characterised by two constants
α and δ. The constant α describes asymptotically the scaling of the fork opening
by subsequent period doubling, whereas δ represents the scaling of the intervals of
period 2n to that of period 2n−1 near the period doubling accumulation point, i.e.,
at the transition to chaos. Both values depend on the leading order of the maximum
of the map (the second order is of course the generic case). The usual Feigenbaum
constants correspond to the prominent class of maps with non-vanishing curvature
at the hump. Therefore, it is not a surprise that for flat-topped maps, Feigenbaum
scaling results are changed. The value of α can be determined from the fixed point
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of the period doubling operator T (e.g., [36])

g(x) = Tg(x) = −αg
(
g
(
−x
α

))
, (15.4)

where g(x) denotes the fixed point function. Following the Feigenbaum ansatz, we
study the renormalised function

gn,1(x) = (−α)nf 2n
hn+1

(
x

(−α)n
)
,

at hn, where 2n denotes the periodicity of the orbit. The scaling function g(x) then
is obtained as g(x) = limi→∞ limn→∞ gn,i (x). The form of the rescaled functions
gn,1(x) for n = 0, 1, 2, 3 motivates that g(x) will be a square wave. Therefore, we
make the ansatz

g(x) = 1 + b(1 +Θ(x − 1)−Θ(x + 1)), (15.5)

whereΘ(x) represents the Heaviside function. Insertion of 15.5 into 15.4 leads to

1 + b(1 +Θ(x − 1)−Θ(x + 1)) = −α
(

1 + b
(

1 +Θ
(
g

(
x

−α
)

− 1

)

−Θ
(
g

(
x

−α
)

+ 1

)))
.

This equation allows for α = 1 and b = −2 as solutions.1 The value of
α = 1 implies that in the vicinity of the accumulation point h∞, the opening of
the bifurcation fork does not change under subsequent period doubling bifurcations.
However, as the map has everywhere a nonzero slope of absolute value 2, the ratio
of the fork openings within a 2n periodic orbit is α̃ = 2.2 This is illustrated in
Fig. 15.8 which shows the location of the forks in the bifurcation diagram versus
the periodicity of the orbit. Each circle represents a bifurcation fork, the openings
of which can be calculated by multiplying all factors along the path, starting at the
period 2 orbit. For example, in order to calculate the opening size of the from top
fourth fork of period 16, we follow the bold path in Fig. 15.8 and obtain

1 ◦ α̃−1 ◦ 1 ◦ 1 ◦ α̃−4 = α̃−5.

1For g(0) = 1 one also could use the ansatz gn(x) = 1 + bx2n and take the limit for n → ∞.
Again, the solution is a square wave with b = −2. Using g(1) = −α yields α = 1 and δ−1 = 0.
2Scaling laws for ‘stars’ and ‘windows’ observed in the bifurcation diagram for h > h∞ of the
logistic map were already described by Sinha [38]. They both depend on the derivative of the map
at the origin and are therefore not universal. The scaling factor for ‘stars’ and ‘windows’ of the tent
map is 2.
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Fig. 15.8 Split scaling of
forks: The horizontal scaling
(α = 1) is universal. The
vertical scaling (α̃) depends
on the derivatives of the map

Note, that the value of α = 1 is only exact close to the accumulation point, whereas
the value of α̃ = 2 is always exact. Instead of considering the bifurcation points hn
at which periods of order 2n are born, the value of δ can be determined by using the
values Hn where the periodic orbits contain the point x = 0.5, as both sequences
converge with the same behaviour to the accumulation point h∞. The value of the
bifurcation parameter Hn is given by

Hn = 1 −
∏n−1
k=0

(
22k − 1

)

22n . (15.6)

Equation 15.6 can be written recursively as

Hn = 1 − (1 −Hn+1)
1

1 − 2−2n ,

which leads to

Hn = 1 − (1 − h∞)
∞∏

k=0

1

1 − 2−2k
. (15.7)
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Using

∞∏

k=0

(
1 − 22−k)−1 ≈

(

1 −
∞∑

k=n
2−2k
)−1

≈ 1 + 2−2n,

Eq. 15.7 reduces to

Hn = h∞ − c 2−2n, (15.8)

where c = 1 − h∞. Equation 15.8 reveals an exponential convergence towards the
fixed point. Therefore, the ratio between two subsequent intervals Hn − h∞ and
Hn+1 − h∞, which asymptotically determines the value of δ, depends on n as

δ(n)−1 = 2−2n .

This result means that in the case of the flat-topped tent map, the occurrence of
period doubling does not follow a power law as in the Feigenbaum case. Rather, it
is of exponential nature.

Unstable periodic orbits can only be controlled when the system is already in
the vicinity of the orbit. As the initial transients can become very large, targeting
algorithms have been designed [21, 37] that efficiently push the system onto the
selected orbit. The flat-topped tent map and the corresponding tent map share the
same orbit if the threshold of the flat-topped tent map coincides with the largest
fixed point of the tent map. Due to the flat top, this orbit becomes stable. Initial
conditions that lead to the flat top are on the selected orbit within one iteration.
Iterating backwards, we can determine the intervals that lead to the orbit in two
iterations, and so on. This approach is similar to the strange repeller escape problem.
The relationship suggests that in our case, the convergence onto the selected orbit is
exponential, which makes a targeting algorithm idle. The exact convergence onto the
selected orbit depends on the size of the flat top. The larger the horizontal segment
is, the faster is the convergence. As the size of the flat top is determined by the
threshold, the time constant of convergence varies with the latter. We calculated the
time constant for h∞ by propagating back the interval associated with the flat top.
For each back-iteration, 2k new intervals of half the size of the intervals obtained by
the previous step join the already recruited intervals (Fig. 15.9).

This property is due to the slope of the map, which in the present case equals 2.
Figure 15.9 gives the number of back-iterations versus half of the number of the
added intervals k. Let the differences between two subsequent values of k be denoted
by Δ(i), where i denotes the order of the backward iteration. From their values, it
is seen that k can be calculated iteratively as

k(i) = k(i − 1)+Δ(i − 1),

where i ≥ 2, k(1) = 1, Δ(1) = 1,Δ(2i) = k(i) andΔ(2i − 1) = k(i).
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Fig. 15.9 Split scaling of forks: The horizontal scaling (α = 1) is universal. The vertical scaling
(α̃) depends on the derivatives of the map

Fig. 15.10 Convergence onto orbits versus steps. (a) Flat-topped tent map (h = 0.85, h = h∞,
h = 2/3). Circles and squares from back-iteration [Eq. 15.9] and from zeta function (Eq. 15.11),
respectively. (b) Spread tent map (h = 1, h = 0.8, h = 0.6); circles: results from ζ -function
(Eq. 15.11)

If L denotes the measure of naturally, i.e., equally distributed, initial conditions
that do not lead to the selected orbit, the reduction of L due to i-fold back-iteration
can be written recursively as

L(i + 1) = L(i)− 2k(i)
l0

2i
, (15.9)

where l0 denotes the initial size of the flat top. If properly scaled, 1 − L(i) is the
probability measure for initial conditions to be controlled onto the selected orbits in
i steps. Figure 15.10a shows the convergence onto the orbit for h = 2/3, h = h∞.
and h = 0.85 (full line, dashed line, and broken line, respectively). The squares
represent calculations using Eq. 15.9. For the system to be controlled, it needs to
visit the flat segment of the graph. The determination of the measure of orbits that
reach the horizontal fragment after n iterations is equivalent to the escape problem
of a (hyperbolic) strange repeller. Indeed, the average rates either for landing on
the controlled orbit or for the escape are given by the decreasing number of chaotic
orbits as a function of iterations. For the numerical treatment of hyperbolic repellers,
one standard method is cycle expansion [2, 3]. We used this approach to check our
brute-force results for h = 2/3, cf. Fig. 15.10. The cycle expansion of the dynamical
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Fig. 15.11 (a) Generic bifurcation diagram of flat-topped maps. The (for display reasons: tent)
map is drawn over the vertical axis x (broken lines). To obtain the controlled map at control
parameter h, replace the (rightwards pointing) peak of the map by a vertical segment positioned
at h. The asymptotic controlled orbit points are also displayed with abscissa h, giving rise to
a bifurcation diagram. (b) Relation between the n-fold iterates of F (graphs Fn, n = 1, 2, 3,
shown by dashed-dotted, dashed, and full lines) and the scaling of the ‘stars’ (large circles): Back-
iterations (arrows) of the period-one fixed point x = 2/3 yield successive star locations. Their
scaling is therefore determined by the derivative F ′(0). A similar argument applies for the size of
the ‘windows’ (whose x-values are located around the small circles)

ζ -function is then governed by the cycle that corresponds to the fixed point at x = 0
and reads

1/ζ = 1 − z1

2
.

The escape rate γ is determined by the zero of the dynamical ζ -function using
z = exp(γ ). For our case, this yields γ = ln(2), implying that for arbitrary initial
conditions the probability of landing on the period 1-orbit within 5 iterations is
p = 0.95.

The scalings induced by HLC also explain the large-scale repetitive star-like
bifurcation structures and the adjacent repetitive empty bands (positions indicated in
Fig. 15.11b by the large and the small circles, respectively). It is easy to see that the
asymptotic scaling of these repetitive structures stars are both given by the derivative
of the leftmost fixed point of the map. As a consequence, both scalings are again
non-universal.

This ends our excursion on the statistical properties of the hard limiter controlled
tent map. By generalising the fully analysed tent map example of HLC, we
can, however, obtain insight into the behaviour and properties of more general
systems. We demonstrate this by choosing a family of what we shall call ‘spread
maps’: unimodal, and symmetric hard limiter controlled maps that are additionally
characterised by a segment of fixed size 2d . Why this is convenient will be apparent
in a moment. We start for simplicity with family of maps that are close to the
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previous tent map example, in which case we deal with the equation

xn+1 =

⎧
⎪⎪⎨

⎪⎪⎩

xn
h

(0.5−d) for xn ≤ 0.5 − d
(1 − xn) h

(0.5−d) for xn ≥ 0.5 + d
h elsewhere.

(15.10)

Choosing the height h at which we place the controller now entrains a change
in the slope of the piecewise linear sides of the maps, yielding further insight into
the properties of hard limiter control. As has already been promised at the beginning
our explorations, the influence of the slope at the two sides is rather small and leaves
the scaling properties and essentially also the bifurcation diagrams unchanged (cf.
Fig. 15.7b, e). Since the flat top is symmetric about the line x = 0.5 and of constant
size, the corresponding envelopes are obtained as two parallel horizontal lines at
0.5 + d and 0.5 − d . Bifurcation can only occur at these two lines. The effect
of the changed slopes of the map is reflected in the curved bifurcation branches
shown in Fig. 15.7e, in comparison with the straight lines of the flat-topped tent
map (Fig. 15.7d).

Due to the salient role of the horizontal segment for occurrence of bifurcations,
the scaling by α remains unchanged. In contrast, the scaling by α̃ changes from
one period doubling to the next. Upon a decrease of h, we observe two effects that
emerge related to orbit convergence. On the one hand, some of the orbits are lost,
which reduces the number of intervals added by back-iteration. On the other hand,
due to the decreased slope of the map, individual intervals become larger (except for
the central one). The trade-off between these effects leads to an optimal convergence
case at h ≈ 0.8. Figure 15.10b shows the time constants obtained for decreasing
heights (h = 1 (full line), h = 0.8 (dashed line), and h = 0.6 (broken line)), using
d = 0.1. For h = 1, the exponential decay constant can again be calculated using
the cycle expansion. The dynamical ζ -function then is

1/ζ = 1 − 1

1 − 2d
z, (15.11)

which leads to the escape rate γ = ln(1/(1 − 2d)). In Fig. 15.10b, the calculated
values are shown as circles.

To emphasise the origin of this phenomenon, we finally consider a last family
of spread maps on the interval [0, 1], characterised by horizontal flat top of a fixed
length 2d . We choose

xi+1 =

⎧
⎪⎪⎨

⎪⎪⎩

μxi(1 − xi − 2d) for xi ≤ (0.5 − d)
μ(xi − 2d)(1 − xi) for xi ≥ (0.5 + d)
μ(0.5 − d)2 elsewhere

(15.12)
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where d again denotes half of the flat segment size, and μ controls the opening of
the underlying parabola (cf. Fig. 15.7c). This example, in distinction of the previous
cases, is now differentiable on the interval [0, 1]. In this way, the height of the graph
becomes a function of μ (and the fixed chosen d), as h = μ(0.5−d)2. Given d , this
restricts the range ofμ to 0 < μ ≤ 1/(0.5−d)2. Upon increasingμ, also this family
exhibits a nontrivial bifurcation diagram (shown in Fig. 15.7f for d = 0.1). The
shape of this diagram differs greatly from those of the previous two families and is
closer to the ordinary period doubling bifurcation diagram of the logistic map. This
property is due to the smooth connections between the horizontal segment and the
two branches of the map. Figure 15.12a and b illustrate the differing mechanisms at
the first period doubling bifurcation for the flat-topped tent and the spread logistic
maps. In the former case, the bifurcation abruptly emerges from the single flat
segment of the second iteration. In contrast, the second iteration of the spread
logistic map already has two different flat segments, and the bifurcation occurs
along the smooth inter-segment connection. At the period doubling accumulation
point these smooth transitions turn into step like transitions, conserving the scaling
of α = 1.

Wrapping these results up, for flat-topped maps, the scaling function g(x) is a
square wave with a scaling factor α = 1 for subsequent period doubling bifurcation.
The ratio of bifurcation fork openings within orbits of order 2n depends on the
derivative of the map and therefore does not follow a universal behaviour. The
scaling factor δ diverges. Close to the transition point, this kills the power law
behaviour for the occurrence of bifurcation, and an exponential law appears, which
renders the observation of orbits of higher periodicity increasingly difficult.

We have shown that the limiter based control algorithm also works with the
Hénon map, cf. Ref. [43]. This ends our excursion into natural control of nonlinear
dynamical systems. In conclusion, we have demonstrated that control by threshold
induces a number of naively unexpected phenomena that may be well worth

Fig. 15.12 Bifurcation mechanisms of flat-topped spread tent (left panel) and logistic maps (right
panel). Second iteration maps before, at, and after bifurcations. Parameters: tent: h = 0.65, h =
2/3, h = 0.68, logistic: μ = 4.65, μ = 4.74, μ = 4.85
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to be taken into account when monitoring macroeconomic systems by the most
fundamental control measures applied in economics dynamics.

15.4 Application to a Simple Model of Macroeconomics

‘Greed and Control Rule Macroeconomics’
We first motivate the principles that advocate more specifically to use the quadratic
iterated map as a simple, but generic, model of macroeconomic development. In
this model, a primary source of cycles can be identified. We then demonstrate a
detailed mechanism of how cycles are additionally introduced when applying even
the simplest control strategies. The principles of applying the simplest and most
natural control method are explained, and the laws underlying the generation of
(super)stable cycles by means of the control, are outlined. Finally, we propose
an optimal control mechanism, work out its main properties and highlight the
difficulties of its application in economics. The obtained insights add a new facet
to the control advice by Kydland and Prescott [23]: The optimal system behaviour
is not obtained by controlling on the natural cycle, but is achieved by a controlled
period-one orbit. This not only requires a control policy that is kept fixed through
time. To acquire the period-one state, a strong initial control effort is generally
required, and control must permanently be maintained. In order to control the system
on a period-one orbit, it may be advantageous if the system is in the chaotic regime.
Finally we show how the regime of the dynamics can be identified by the system’s
response to control.

Chaos is composed of an infinite number of unstable periodic cycles of increasing
periodicities. In order to exploit this reservoir of characteristic system behaviours,
elaborate methods have been developed to stabilise (or ‘control’) intrinsically
unstable orbits, using only small control signals [11, 25, 30, 34]. By the more
detailed study of the potential of these control methods in economics [4, 14, 15,
17, 20], several limiting factors were identified. As a first shortcoming, the inherent
latency of most of the above control approaches emerged. In the context of quickly
changing economics, control, however, is required to be fast. As a second problem,
some economic data cannot be collected in a continuous fashion. This renders the
application of the standard control methods, that are based on the explicit knowledge
of the geometry of the economic dynamics, tedious, and targeting methods, designed
to improve the speed of convergence towards the desired solutions, inefficient.
Moreover, the large amount of strong noise that is characteristic for economics
tends to veil these structures. As a third requirement, the control should permit to
be formulated in terms of a simple economics policy. For control strategies that
are based on past observations (e.g., statistical data from the preceding year), this
is not easily achievable. Moreover, these control strategies lead to policy functions
involving time delays [24], which often entrain chaotic behaviour, as in the above-
mentioned pioneering examples [6, 7, 28]. These observations apply in particular to
time-delayed feedback control methods [14, 32] that for some time were proposed as
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a means of controlling financial markets. Due to these problems, the interest in the
application of dynamical systems methods for the control of economic dynamics,
has decreased thereupon.

Economies naturally tend towards the recruitment of all available resources. In
the following let us explain how human greed drives their economics towards the
boundaries and fosters a natural tendency of the system to evolve towards maximally
developed nonlinearities. While occasionally also animals are said to be greedy,
human greed takes things further than just acquiring resources for one’s self. The
basis for this is in human society, in its ability to store and trade virtually unlimited
amounts of goods. This has been triggered by the human’s change from hunters
to agriculture (manifested in the bible’s and other tales’ expel of humans from the
paradise) and is fostered by the development of the necessary technological basis
(wheel, communication, building). For humans, the distinction between constant,
constant and exponential improvement of a state is, from the perceptional point;
difficult (the focus is just on different observables that are constant (state, additive
gain, gain factor)). Moreover, if the changes are small and slow enough, the three
cases can hardly be distinguished. Only when the limits of economic systems are
approached, the distinction between the last two models becomes important. In
this case, nonlinearities matter, as they are required to keep the system within its
boundaries.

For our modelling of the dynamics of such systems, we choose the iterative
picture. The evolution of a simple model of economics takes place on three time
scales: At the lowest level, perturbations affect a deterministically changing variable
x that will be considered to represent a momentary degree of system exploitation
(second level). This setting is completed (third level) by a greed-driven parameter
μ, expressing to what extent the corresponding system conformation covers the full
theoretically available system size. For states far from the maximal exploitation
of the resources allowed by parameter μ, we allow the dynamics to grow almost
linearly. Close to maximal exploitation, the next value consumption is required to
be small, implementing in this way a kind of system recovery.

A corresponding simple and generic model of such dynamics is again provided
by the iterated logistic map on a space that we may rescale to be the unit interval

f : [0, 1] → [0, 1] : xn+1 = μxn(1 − xn).

On a time scale much slower than the one responsible for the iterative dynamics,
the principle of economic greed will gradually drive the system, via the increase
of the order parameter μ, towards the ‘critical’ value μ = 4, allowing for an ever-
growing exploitation of the phase-space [0, 1]. As can easily be seen at ‘criticality’
μ = 4, it is the nonlinearity that keeps the system states x away from the boundary:
Starting with a small value x0, upon iteration the value of x first increases in an
almost linear fashion (the approximate proportionality factor being μ), but soon as
xn approaches the upper phase-space boundary (at xn = a/4 = 1), this behaviour is
annihilated by the factor 1 − xn that sends the dynamics back to small values.



234 R. Stoop

On the human greed-driven pathway towards the globalisation of resources
(μ → 4), the asymptotic system state (obtained for n → ∞) converges initially
to a fixed state increasing in its value with μ, then suddenly changes into a period-
2 behaviour (two alternating values of x), and then undergoes a continued period
doubling bifurcation route, where a cascade of stable periodic orbits of increasing
orders 2n (where n = 2, 3, 4 . . .) characterises the asymptotic solutions [10]. Using
renormalisation theory, it can be shown that in order to reach the next bifurcation,
μ progresses geometrically, with factor q ≈ 1/4.67. This implies that the transition
point to period infinity is reached within a finite interval of μ (cf. Fig. 15.13).
Beyond this period doubling accumulation point, chaos is possible and abundant,
but while the value of parameterμ can still be increased, we observe a succession of
windows of periodic behaviour and chaotic behaviours [42], rendering a statement
how much weight the parameters μ leading to chaotic behaviour have, a highly
nontrivial one [5]. The properties exhibited by the logistic map have been found
to be characteristic for a large universality class of nonlinear processes (of which
the logistic map is the simplest representative, see, e.g., [36]). Our model thus
characterises a whole class of systems subject to such a process of self-organisation.
The quadratic parabola has therefore been used in economics in a number of
approaches. In particular, in an early example by Benhabib and Day [6], under
suitable conditions, economics were found to follow the behaviour of the logistic
map, providing an early indication for why economics could eventually become

0.4 0.5 0.7

0.8 0.19.0

Fig. 15.13 State sequences are obtained, upon increasing parameter μ, from a logistic map as a
model of economics. For small values of μ, stable regular behavior emerges. As μ is increased,
the behavior becomes increasingly complicated, until chaotic behavior emerges. The figure insets
represent the fractions of the maximally available environments that are accessible to the process
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chaotic. In their model, there is a competition between the demand for two goods.
The preference for one good is a function of past experience (this is taken account
of by an iterative implementation) and of a constraint formulated in terms of a fixed
budget. The nonlinearity parameter μ is as a decreasing function of the prices.

One might ask what happens if μ is driven beyond the critical value of μ = 4. In
this case, large-scale erratic behavior may be expected, as the process is no longer
confined to the previously invariant interval (cf. Fig. 15.14). Seen from the model
side, the process that now can leave the confinement of the unit interval, will leave
behind a Cantor structure of initial conditions that have not yet managed to explore
new lands outside the interval. After a potentially chaotic transient, the system
settles in a new area of stability, where the same scenario takes place anew, starting
at rescaled small μ. We believe that in particular the effects by technical shocks may
adequately be described in this framework. A simple thought experiment, taking
place in a sub-domain of economy, provides us with an illustrative practical model.
Consider, e.g., fishing in Norway, starting in a fjord with a single boat, focusing,
say, on salmon. The annual catch xn will be small in this case and will only mildly
affect the fish population (captured by a parameter μ & 1). Twice as large or
a doubled number of boats will roughly double the catch x̄, but will still have a
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Fig. 15.14 Mechanism of a crisis: Upon the increase of μ, the previously stable fixed point (open
circle) loses its stability. Later, the map leaves the unit-square confinement, and trajectories finally
settle in another regime (box II) offering stable dynamics (full circle). The same mechanism will
lead the process to yet another regime of stability, and so on
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small effect on the fish population. This situation that can be captured by a roughly
doubled parameterμ. Guided by greed, this process holds on. The initially observed
fixed point behaviour will finally lose its stability and a period doubling process is
initiated, captured byμ→ 4 (such processes have indeed been observed in different
ecological systems, like fish farms or sheep breeding). This is, because after a
too large capture (xn ≈ a/4), the system needs to recover. Finally, the fjord gets
overfished, fishing enters a state of crisis (term ‘crisis’ is used in nonlinear dynamics
in a closely corresponding context [13]), that holds on until a small number of larger
ships equipped with novel technologies permit to exploit the whole of the Atlantic
Ocean, fishing larger prey. The same pathway is then followed on this scaled-up
environment, until fishing on this scale starts to have a profound environmental
effect, this time on the ecological system of the Atlantic. After break down of fishing
at this scale, swimming fish factories permit to do world-wide fishing, and the same
process restarts on the world-wide scale. Finally, all oceans are overfished, where
some of the fish species are endangered to the point of extinction. Traditional fishing
then breaks down, forcing economics to develop novel technologies such as fish
farms and leaving behind residuals of Cantor-set type of the traditional fishing (for
an illustration see the sketch in Fig. 15.14).

15.5 Effects of Threshold (Limiter) Control

In real economics, the system state x (representing, e.g., demand or GDP) exhibits
strong short-term fluctuations, often of local or external origin. Whereas in the
case of small μ such perturbations are stabilised by the system itself, for larger
μ they may lead to ever more long-lived erratic excursions. To incorporate these
fluctuations into our model, we perturb x by multiplicative noise, for simplicity
chosen uniformly distributed over a finite interval. The size str of the interval from
which we sample the noise, is a measure for the amount of noise. To improve
the predictability of economics under these circumstances, it is natural to apply
control mechanisms to x; to study the fundamental effects such a control has on the
system behaviour, we have to choose the simplest control tool available that does
not additionally complicate the behaviour of the system and the properties of which
are well understood. The most natural control candidate with these properties is hard
limiter control HLC [8, 9, 29, 43, 45]. This control mechanism simply acts by simply
asking the value of x to not exceed a certain limit, a control mechanism that is simple
and in reality often is imposed. In Fig. 15.15, three time series were generated by
this model at fixed parameter μ leading, in absence of noise, to superstable period-
four orbit (for the definition of (super)stability of orbits see, e.g., [36]). Whereas
the first time series represents the uncontrolled case, for the second series, a limiter
at the highest cycle point was inserted, which is compared to a third series where
the control was on the unstable period-one orbit. Even by the eye and quite against
intuition, it is seen that the period-one orbit yields the highest average value x̄.
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Fig. 15.15 Noisy (str = 0.02) time series x of a superstable period-four orbit. Red: uncontrolled;
dark green: controlled in the maximal cycle point; light green: controlled in the unstable period-one
orbit. Period-one orbit control yields the highest average x̄
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Fig. 15.16 HLC for time-continuous and discrete dynamical systems with noise. Limiter
positions are indicated by dashed lines. (a) HLC changes chaotic into period-one behaviour
(modified from Corron et al. [9]). (b) HLC for the noisy logistic map. Placement of the limiter
around the maximum of the map preserves the natural noisy period-two orbit (red). For lower
placement, a modified period-one behaviour is obtained (green). Continuous dynamical systems
can be mapped into discrete dynamical systems by using the method of Poincaré sections [31]

Exact results for the hard limiter control (HLC) have already been presented
in this chapter. For reasons of convenience, we will once more exhibit the
nontrivial features of this control: By introducing a limiter, orbits that sojourn
into the forbidden area are eliminated (see Fig. 15.16). Modified in this way, the
system tends to replace previously chaotic with periodic behaviour. By gradually
restricting the phase-space, it is possible to transfer initially chaotic into ever
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simpler periodic motion. When the modified system is tuned in such a way that
the control mechanism is only marginally effective, the controlled orbit runs in
the close neighbourhood of an orbit of the uncontrolled system. In a series of
papers [8, 9, 29, 43, 45], this control approach was successfully applied in different
experimental settings, and its properties were fully analysed.

The model demonstrates two interesting aspects of the control of dynamical
systems. First, to some extent surprisingly from a naive physics point of view
(d’Alembert’s principle, for example), the natural system behaviour does not need to
provide the economically most efficient working mode. Additional constraints can
improve efficiency. Secondly, more surprisingly from an economics point of view,
giving away—at absolutely no request in return, even without effects of feedback—
can improve the efficiency of an economic system.

As has been already mentioned the time required to arrive in a close neighbour-
hood of the target orbit is an important characteristic of the control method. With the
classical methods, unstable periodic orbits can only be controlled when the system
is already in the vicinity of the target orbit. As the initial transients can become very
long, algorithms have been designed to speed up this process [21, 37]. HLC renders
targeting algorithms obsolete, as the control-time problem is equivalent to a strange
repeller escape (control is achieved, as soon as the orbit lands on the flat top). As a
consequence, the convergence onto the selected orbit is exponential [45].

It is also worthwhile emphasising that any control must be expected to have,
beyond the effect of the control, a potentially strong effect on the system behaviour.
The effects by HLC are fully described by one-dimensional systems. Due to
the control, naturally and exclusively, only periodic behaviour is possible. Period
doubling cascades emerge that have a super-exponential scaling δ−1(n) ∼ 2−2n

[45] and therefore are not of the Feigenbaum type. The convergence onto controlled
orbits is exponential which renders targeting algorithms obsolete. Controlled orbits
are unmodified original orbits only at bifurcation points of the controlled map.
For generic one-parameter families of maps, all bifurcation points are regular, and
isolated in a compact space. As a consequence, their Lebesgue measure is zero.
These properties substantially modify the uncontrolled system behaviour.

15.6 Natural vs. Control-Induced Cycles

It is a natural general misunderstanding to believe that control methods only apply
to inherently unstable systems. Unchanged control methods can similarly be used
to control on unstable orbits of inherently stable systems. In either case, the control
effort should be minimal. In the noise-free case, we have achieved optimal control
if after an initial phase the controller does no longer exercise any noticeable strain.
For HLC, this is naturally the case at the bifurcation points of the controlled map.
Questions that remain are whether a corresponding statement also holds true for
noisy systems, and on which of the orbits we should control.
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Economic systems start their evolution in a noisy but stable period-one state,
rendering economic predictions as simple as can be. To reduce noise, a limiter can
be placed close to, or on top of the periodic point. As the system changes into
a period-two, the question is whether to maintain control on the unstable period-
one cycle, or whether to move on to the stable period-two. While intuition seems
to favour the control of period-two (following a least effort principle, the natural
tendency would suggest to follow the ‘natural’ system state), in fact, maintaining
the period-one control is preferable, from most economic aspects. Not only that
predictions of systems controlled in the latter way are simpler and therefore offer,
as a consequence, simpler economic policies. Also most economic indicators
(taxes, budgets, etc.) are evaluated over a period of 1 year. Finally, and even most
importantly, the period-one x-average will be generally higher than that of the
controlled period-two, as well as of any other higher-order cycle. This is a simple
consequence of the convexity of the nonlinear map and can easily be proved. To
abruptly change a natural higher-order periodic behaviour into a period-one state
requires, however, generally a relatively strong initial control action. That this is
beneficial nonetheless may appear as counter-intuitive to the public, and needs to be
communicated in a well-formulated accompanying economic policy statement.

When the time-scale over which the external parameter μ varies becomes
comparable to the cycles wavelength, the optimality of the afore described control
may break down, as continued adjustments need to be made in order to follow
the changing location of the period-one. In this case, it may be preferential to
control on the natural cycle. The most obvious control goal would be in this case to
control the system as closely as possible along the underlying noise-free system. In
the numerical control results presented below, we have dealt with both mentioned
control strategies.

15.7 Detailed Control Results

The absolute difference between the ‘natural’ underlying solution and the controlled
solution, per step, provides a suitable measure to assess the efficacy of a control.

Control in the Regime of Stable Systems
If the underlying system is of periodicity larger than one and the control is on a
period-one fixed point, then the control distance becomes particularly large and
therefore this measure cannot be used for this case. For our numerical investigations,
we restrict ourselves therefore to the control on superstable orbits (by choosing
μ = 2 and μ = 1 + 51/2, for the periods one and two, respectively), and apply the
control at the cycle maximum. As a measure of efficacy, we calculate the average
deviation of the noisy controlled relative to the noise-free system, denoted by dev,
as a function of the noise and of the limiter position h. This seems to reflect best
the natural tendency of the system to return into the vicinity of the uncontrolled
noise-free system once the control is relaxed.
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Fig. 15.17 Dependence of
dev on the control point h
(summation over 500 orbit
points, period-one orbit). (a)
For zero noise, a piecewise
linear function with a
minimum (= optimal
noise-free control point)
emerges. (b) In the presence
of noise (str = 0.02), the
function becomes nonlinear,
with a nonzero minimum at
the optimal noise-free control
point
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We find that for zero noise, dev(h) is a piecewise first order function (shown
in Fig. 15.17 for the period-one orbit), where the nonzero slope, associated with h
below the maximum of the function, depends on the periodicity and on the amount
of nonlinearity expressed by μ.

In the presence of noise, the formerly piecewise linear function becomes
nonlinear, with the minimum being situated at the optimal control point of the noise-
free system. For noise strengths str < 0.1 considered to cover the realistic cases,
the deviation is a function of first order in str (see Fig. 15.17b). The stronger the
required corrections, the more the orbit histograms focus around the control point.
The controlled orbit, however, deviates ever more from the original system orbit,
which leads to a fast increase of dev.

The control on the superstable period-two orbit yields a similar picture. One
important difference, though, is that the amount of noise under which control
can still be maintained, decreases considerably. Yet, for stable orbits, control can
beneficially be applied up to relatively large noise levels (str ∼ 0.08).

Control is lost when due to the effect of noise, interchange of orbit points occurs.
This is the reason why in the presence of a substantial amount of noise, only low-
order cycles can be controlled. For a period-four orbit, already a noise level of
str > 0.01 leads to the loss of control. Interestingly, the function dev(h, str)
scales linearly with str (identical curves emerge, if h and dev are replaced by h/str
and dev/str , respectively). As a rule of thumb, by means of optimal control, the
deviation can be reduced by a factor of ∼0.5.

Control in the Regime of Chaotic Systems
If the underlying system is in the chaotic regime, all cycles are unstable, and the
control on any of them is, from the point of view represented by the control distance,
a-priori equally well justified and natural. Particularly favourable for economics
is the fact that control can be established on a period-one orbit with zero control
distance in the limit of vanishing noise.

For further investigations we again focus on the fully developed logistic map
(μ = 4). To have control on true system orbits, the bifurcation points (cf.
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Fig. 15.18 Results for the chaotic regime, where an unstable period-two orbit is controlled. (a)
First order dependence of the optimal control point displacement δh on the noise strength str . (b)
First order dependence of dev at the optimal control point, on the noise strength str

Fig. 15.11a) must be chosen as the control points, the location of which can be
determined analytically [45]. Without control, chaos prevents the system from
staying on a given cycle. Accordingly, the efficacy of the control is measured as
the difference between controlled noise-free and controlled noisy systems. In order
to obtain a period-one orbit in the noise-free case, the limiter has to be adjusted
to h = 0.75. Experiments show that in the presence of noise, the optimal control
point moves away from the noise-free optimal control point. This is in contrast to
the behaviour in the stable regime, and may be exploited to distinguish between the
two cases.

The displacement is a linear function of the noise strength, as is the deviation
dev measured at the optimal shifted control point. To provide an unstable noise-
free period-two orbit, the controller was adjusted at h = 0.904. Again, the optimal
control point’s displacement and the minimal deviation are a function of first order
in the noise strength (see Fig. 15.18a, b). The shift of the control point extends over
an interval of more than δh = 0.1, and therefore is of a size comparable to the added
noise.

Controlling period-four orbits yields an even stronger shift from the optimal
noise-free controller position at h = 0.925. The amount of sustainable noise,
however, is further reduced if compared to period-two (by a factor of ∼0.5). Beyond
a noise strength of str = 0.04, the orbit escapes control.

15.8 Conclusions

Control mechanisms of limiter type are common in economics. Quite contrary
to the expected and desired effect, it is inherent to this control method that
superstable system behaviour is generated, irrespective whether the underlying
behaviour periodic or chaotic. A first guess remedy would be the frequent change
of the position of the limiter, to compensate for the amplified or newly created
cyclic behaviour. This strategy, however, will generate even ever more erratic system
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behaviour. Our analysis shows that it is more advantageous to keep the limiter
fixed, adjusting it only over time scales where the system parameter μ changes
noticeably. In this way, reliable cycles of smaller periodicity will emerge. Among
these cycles, period-one is generally the optimal one, also seen from most economic
perspectives. To recruit this state, a strong initial intervention may be necessary, and
the control must be permanent. Otherwise, a strong relaxation onto the suboptimal
natural behaviour sets in. In the context of economics, these properties will be
used as natural arguments against our proposed control. On the plus side, a very
simple control policy can be formulated, which is of primary interest for western
democracies.

To maximise system output x̄, the minimal distance to the noise-free dynamics
could be chosen as the control target. We demonstrated that when μ varies slowly,
this control generally does not lead to the optimum. If superstable orbits are
controlled at the highest orbit point of the noise-free behaviour, the location of the
optimal control point is independent from the noise strength. In the chaotic regime,
in contrast, the optimal control point is displaced, by a function of first order in the
noise strength. Controlling at this point reduces the dev-error roughly by one fourth,
if compared to the control at the noise-free optimal point.

Detailed investigations show that the observed shift of the optimal control point
also depends on the nature of the noise. If purely positive noise is added, the shift
vanishes. From the perspective of economics, HLC-induced noise reduction can be
regarded as a substantial improvement. Since the period-one orbit has substantial
advantages, the control on the latter state is preferential.

Our framework could be of relevance for better understanding and monitoring
economic behaviours. It has been found [1] that for either very underdeveloped
or developed economies, stable fixed point behaviour is predominant. At an
intermediate level, however, complex economics emerge that can induce chaotic
dynamics of the entrepreneur’s wealth, Wn [27]. In order to control this case, HLC
in the form of a tax on assets with a sufficiently fast progression could be applied,
forcing Wn to remain below a maximal value,Wmax . With sufficient care, HLC on
a period-one could be achieved, and excessive economic variations due to chaotic
dynamics could be prevented. Political realisability will often require the use of
‘softer’ limiters (in the sense that Wn > Wmax is not strictly prohibited), but the
main features of HLC will be valid even in these cases (see our introductory part).

We emphasise that short-term cycles emerge on all levels of economics. It has
become, e.g., a common observation, that the demands for certain professionals (in
central Europe in particular for teachers) undergo large fluctuations, from 1 year
to the next. In 1 year, severe problems are encountered in recruiting a sufficient
number, so that the professional requirements have to be lowered, whereas in the
next year, there is an excess supply. We propose to interpret this as the signature of
an economy that has moved out of period-one behaviour. From the teaching quality
as well as from the individual’s biographies point of view, the occurrence of this
effect should be prevented or smoothened. Our approach offers a perspective for
understanding, studying and, potentially also engineering, such phenomena.

Our final remark refers to a possible interpretation of hard limiter control in
economics and its connection with ethics and—potentially— even into the direction
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of religion. We have found that controlling on a period-one orbit is often the optimal
control strategy. Focusing on period-one in terms of GDP entrains to think about
what should be done with ‘what is above’ this desired state. The most consistent
interpretation probably is, that this is what can be given away, without suffering
any loss in the longer term. In real world, such a control would be connected to
annihilating or dispose a part of the economic power above the period-one state.
Economic power that otherwise could be used, at a higher price to be paid for this
later. Put in a nutshell, our investigations can be seen as pointing into the direction
that sharing or giving away can be—contradicting principles of human individual
selfishness—very beneficial for all. Religions emphasising this point as a religious
policy have probably understood this point at an intuitive level; they might even
have become successful not least because this attitude leads to more successful
economies.
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Chapter 16
Kaldor–Kalecki New Model on Business
Cycles

Giuseppe Orlando

16.1 The Model

Among the economic models, one of the most fruitful applications in the field of
chaotic phenomena is that worked out by Kaldor in 1940 on the business cycle [18].
The author’s intention, contrary to the traditional Keynesian multiplier–accelerator
concept, was to explain from a macroeconomic viewpoint the fundamental reasons
for cyclical phenomena.

However, the idea that the capitalist system could suffer from distinct and,
in some ways, additional instabilities—such as the one worked out by Kaldor—
prompted many authors to find out under which conditions abnormal behaviour
could be produced, or under which conditions bifurcations or even chaos could be
generated.

In Chap. 12 we presented the continuous time Kaldor model. Here we discuss
the corresponding discrete time version

{
Yt+1 − Yt = α(It − St ) = α[It − (Yt − Ct )] ,
Kt+1 −Kt = It − δKt ,

(16.1)

where Y, I, S,K define income, investment, saving and capital, respectively. In
Eq. (16.1) α is the rate by which the output responds to excess investment and δ
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represents the depreciation rate of capital. As seen in Chap. 12, Kaldor suggested
that investment I = I (Y,K) and saving S = S(Y,K) are nonlinear s-shaped
functions of income (Y ) and capital (K).

Our proposed modifications are based on the following considerations. First
of all, it should be noted that the difference in timing between consumption
and investments reflects the process of observation, decision (including financing)
and actual investment. Therefore, we can suppose that investment It at time t is
proportional to a certain level of capital Kt−1 at time t − 1 according to a factor
which is a function of the difference (Kdt−1 −Kt−1) between desired capitalKd and
owned capital K , i.e.

It = Kt−1 · f1(K
d
t−1 −Kt−1). (16.2)

Similarly, consumptions Ct at time t can be taken proportional to income Yt at
the same time through a factor which is a function of the difference Y dt −Yt between
the desired Y d and current income Y , i.e.

Ct = Yt · f2(Y
d
t − Yt ). (16.3)

Concerning the form of the function f1(K
d − K), it should be noted that the

desired stock of capital depends on factors such as expected profit rate, expected
level of output, etc. which can be linked to Y . In fact, for example, the simple
accelerator model assumes that K is proportional to the level of production Y as
follows: I = kY (where k is a parameter called “capital–output ratio”). The flexible
accelerator model, instead, assumes that investments are modelled as I = s(Kdt−1 −
Kt−1), where s ∈ (0, 1] is a coefficient representing the speed of adjustment. In the
context of our model we assume that 0 < f1 < r for some r < 1 (where r is a
fraction of Kt−1).

Function f2(Y
d−Y ) represents the fraction of income Y that is consumed; hence

it is reasonable to assume that there exists a constant c > 0 such that c < f2 < 1
everywhere. Notice that f1 and f2 are clearly increasing (the higher the difference
between what is desired and what is owned is, and the higher is f ). According to
Kaldor’s specifications I = I (Y,K) and C = C(Y,K) are sigmoidal [30]. In order
to do so, most of papers on the Kaldor model have used the arctg function (see
Fig. 16.1).

However, it is well known that the arctg function has some downsides from
a numerical point of view (see Bradford and Davenport [6], Collicott [9], Walter
[39], Gonnet and Scholl [10]) and it is not commonly used for modelling growth
processes. Moreover, it prevents a connection to some important economical
theories such as the classic Solow–Swan growth model.1 For the abovementioned
reasons, we suggest to use two variants of the hyperbolic tangent function, namely:

f1(z1) = ρ exp(2z1/τ1)

exp(2z1/τ1)+ 1
and f2(z2) = exp(2z2/τ2)+ c

exp(2z2/τ2)+ 1
, (16.4)

1For further considerations regarding this topic see Sect. A.2.
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Fig. 16.1 Graph of arcgt (blue) versus tanh (red)

Fig. 16.2 Graph of the hyperbolic tangent showing how the parameter τ determines the knee

so that f1(z1) goes to 0 as z1 → −∞ and tends to ρ as z1 → ∞ whereas f2(z2)

goes to c as z2 → −∞ and tends to 1 as z2 → ∞. τ is the parameter controlling
the slope of the function (see Fig. 16.2).

So far, we have specified the functions, but we still need to identify their
arguments. We said that what counts for investment decisions is Kd and Y d . As
it is impossible to exactly know the desired values Kd and Y d , we can infer them
from the actual behaviour of economic agents as follows:

• As mentioned above, the desired stock of capital is associated with Y and K ,
hence it is legitimate to describe the difference Kd − K as a function of the
difference between the relative income variation (defined as ΔY/Y ) and the



250 G. Orlando

relative capital variation (defined asΔK/K), i.e.

Kdt −Kt = g1

(
Yt − Yt−1

Yt−1
− Kt −Kt−1

Kt−1

)
. (16.5)

If, for instance, the income variation (at time t − 1) has been at 3%, a smaller
capital growth (still at time t − 1) could be interpreted by entrepreneurs as a
need to adapt the stock of capital to economic growth (similarly to the Kalecki
assumption (1935)[19] that the saved part of profit is invested and the capital
growth is due to past investment decisions).

• Analogously, we can describe Y d −Y as a function of the difference between the
relative income variation and the relative consumption variation, i.e.

Y dt − Yt = g2

(
Yt − Yt−1

Yt−1
− Ct − Ct−1

Ct−1

)
. (16.6)

Hence, we are assuming that the change in consumption is a kind of barometer
of the state of health of the economy, so that, for example, in presence of high
inflation, families revise and reduce their consumption. In other words, we want to
give an account here of the variation in purchasing power due to inflation, or to
those depressive effects of the business cycle (reduction of workers’ contractual
power, downsizing followed by dismissals, etc.) or the expansive effect (rise of
real wages due to increased workers contract power because entrepreneurs need
to expand production, easier access to credit, and so on).

Concerning the form of the functions g1 and g2, we note that:

1. It is reasonable to assume that the difference x = ΔY/Y −ΔK/K has an upper
bound k > 0,

2. For x = ΔY/Y −ΔK/K > 0 the differenceKd −K = g1(x) increases with x
and tends to +∞ (respectively −∞) as x → k (respectively as x → 0+),

3. For x = ΔY/Y − ΔK/K ≤ 0 we can assume that Kd − K = g1(x) has a
constant negative value,

4. The same remarks can be made for the difference y = ΔY/Y − ΔC/C and
Y d − Y = g2(y)

Hence, we shall assume that g1 = g2 = g has the form (see Fig. 16.3)

g(x) =
⎧
⎨

⎩

h for all x ≤ 0 ,

− log((k/x)s − 1) for all x ∈ (0, k] ,
(16.7)

with h < 0 such that f1 is close to zero. It should be noted that the shape of g is an
approximation of the value function of Kahneman and Tversky [17] where on the
left the function is assumed to be flat.
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Fig. 16.3 Graph of g(x)

To sum up, the proposed Kaldor model is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yt+1 − Yt = α
[
f1

(
g

(
Yt−1 − Yt−2

Yt−2
− Kt−1 −Kt−2

Kt−2

))
+

f2

(
g

(
Yt − Yt−1

Yt−1
− Ct − Ct−1

Ct−1

))
− Yt
]
,

Kt+1 −Kt = f1

(
g

(
Yt−1 − Yt−2

Yt−2
− Kt−1 −Kt−2

Kt−2

))
− δKt .

(16.8)

These equations, together with (16.4) contain the parameters α, δ, τ1, τ2, ρ, ,̧k
that have the following meaning:

1. α is the coefficient denoting the speed adjustment of savings to investment. In the
field of physics, its reciprocal is called delay and measures the time necessary for
the adjustment. In other terms, if we assume that the time of reference 1 is equal
to a year, then the savings will adjust themselves to the investment over this
period. Therefore if α = 1/2, this means to assert that 6 months are sufficient for
achieving of the aforesaid adjustment. In general terms, we would assume α to
lay in the interval [1/4, 2).
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2. δ is a percentage that determines the fixed capital which is lost during the
productive process (due to obsolescence or actual consumption). In the model,
when running simulations, we have chosen values between 3 and 6%.

3. τ determines the “knee” of f function. It is, therefore, a measure of the reactivity
of the function to the variation in its argument: as τ grows the function is less
steep. We have constricted ourselves to values between 1 and 20.

4. ρ measures the maximum possible level of investment in terms of capital. This
value changes according to the economic system (pre-industrial, industrial, post-
industrial) and the type of investment (i.e. high or low capital intensity). A
reasonable choice is from the interval (0,0.2] where values around ρ = 0.16
are optimal to describe our economy.

5. c = 1 − ĉ represents the average level of consumption. Its complement to 1,
multiplied by actual income, determines the minimum level of consumption,
therefore it is also called the “base” level. Similarly to ρ, ĉ, is very sensitive
to the type of economy in question, but in our context economically admissible
values are assumed to be between 40 and 80%.

6. Parameter k changes according to the economic development. For instance,
it could be that the percentage variation of Y − K (respectively—C) is low
(for developed/less volatile economies) or high (for developing/more volatile
economies). Experimentally we allowed maximum differences of around
±0.20% for developed economies and ±1.20% for developing economies.

In each of the abovementioned cases—for a quite broad range of parameters—we
found that the model shows chaotic dynamics. In addition, the system can also be
used for modelling lagged perturbations or shocks (see Sect. 16.1.1). Figures 16.4
and 16.5 illustrate two examples of the system’s dynamics that differ only because
of their distinct initial conditions.

16.1.1 Simulating Shocks in the Economy

It is worth noting that using the proposed model it is possible to produce a shift that
reflects the real situation mentioned by Kaldor, i.e., at a certain stage of the economy
some factors exist that take place cumulatively and have the effect of shifting the
saving and investment functions in one direction or another. In the model, this was
achieved by operating a shift on f by adding or subtracting a value (i.e. the shock)
to the argument. The shift operator gets into action when the capital or the income
changes negatively; it has the effect of helping the system to recover from a crisis.
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Fig. 16.4 A simulation displaying a steady growth of the economy

16.1.2 Consumptions, Savings and Economic Recessions

The idea that an increase in the disposable income (possibly through fiscal stimulus
such as tax rebates) automatically translates into an increase in the aggregate
demand can be erroneous as it neglects the state of health of the economy (and
therefore the confidence in it). In fact, if confidence in the economy is low, it could
be that people may reduce their consumption during the recession years: consumers
will continue the process of deleveraging (they use the money to pay off debt and
save more) because of uncertainty in the future. For the abovementioned reason, in
the suggested model we link the change in consumption to the change in income as
follows (see (16.6)):

w = � Y
Y

− � C
C
, (16.9)

which we believe describes correctly the behaviour of consumption.
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Fig. 16.5 A simulation displaying a steady economic decline

16.2 Numerical Proof of Chaotic Behaviour of the Model

Up to now the radical change dependence on initial conditions and the irregular
trend of variables over time has only been showed graphically. This kind of evidence
is not sufficient to prove the chaoticity of a system. Therefore we must use some
numerical techniques in order to have a better insight of the possible chaotic nature
of the system in Eq. (16.8). Specifically, we will report the results obtained by
spectral analysis as well as the calculation of the correlation integral, the Lyapunov
exponents, the Kolmogorov entropy and the embedding dimension discussed in
earlier chapters.

16.2.1 Tools

Results shown in this Section were obtained using RRChaos [33] or MATLAB ver.
8.5.0.197613 (R2015a).
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16.2.2 Spectral Analysis

As already mentioned, spectral analysis extracts the spectral content from a time
series by decomposing it into different harmonics with different frequencies and, by
doing that, it identifies the contribution of each harmonic to the overall signal (see
for example Stoica and Moses [34]).

Spectral analysis may help identify chaos for a given time series to discover
hidden periodicities in data. Yet, spectral analysis cannot distinguish if a signal
is chaotic or stochastic, therefore this technique does not deliver a conclusive
answer as observed by Moon [26] and (McBurnett [24]). However, as the proposed
model is by construction deterministic, the spectral analysis can definitively help in
understanding whether the system shows chaotic dynamics.

As an example the Figs. 16.6, 16.7 and 16.8 show the cobweb diagram, the orbit
and the periodograms for different values of the parameters of the Logistic Maps.

For our Kaldorian system, we ran a simulation in order to show that for the gen-
erated time series there is no peak that clearly dominates all other peaks. Figure 16.9
and 16.10 show the behaviour of the power spectrum for the macroeconomic
variables C,K, I, Y with rectangular and Hamming windows, respectively. The
presence of several frequency peaks suggests that irregular orbits (chaos) can be
identified in the proposed model.

Fig. 16.6 Cobweb diagram and periodograms for the Logistic Map, μ = 3
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Fig. 16.7 Cobweb diagram and periodograms for the Logistic Map, μ = 3.5

16.2.3 Embedding Dimension

As discussed in Sect. 7.2, the embedding dimension is a statistical measure which
indicates the smallest dimension required to embed an object (as for instance a
chaotic attractor).

16.2.3.1 Cao Embedding Dimension’s Estimation

In order to compute this quantity, Cao [7] has suggested an algorithm based on the
work of Kennel et al. [20] for estimating the embedding dimension (see [1, 37, 40])
through E1(d) and E2(d) functions, where d denotes the dimension. The function
E1(d) stops changing when d is greater than or equal to the embedding dimension
staying close to 1. The function E2(d), instead, is used to distinguish deterministic
from stochastic signals. If the signal is deterministic, there exist some d such that
E2(d)! = 1 whilst if the signal is stochastic E2(d) is approximately 1 for all the
values (see also [3, 4]).

Figure 16.11 illustrates the behaviour of E1 and E2 function for consumption,
investment, capital and income of the proposed model. As observed in Cao [8], when
the quantity E2 has values close to 1, with some oscillations for small dimension,
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Fig. 16.8 Cobweb diagram and periodograms for the Logistic Map,μ = 4; fully developed chaos,
cf. Sect. 2.1)

the related time series is likely a random series. On the other hand, the presence
of oscillatory behaviour away from 1 when embedding dimension is small implies
some weak determinism in the considered time series. As it can be observed from
Fig. 16.11 related to the proposed model, the quantity E2 is not 1 but approaches
this value for d ≥ 10.

16.2.3.2 Symplectic Geometry Method

In addition to the Cao’s estimation, the symplectic geometry method (see M. Lei
et al. [22], H. Xie et al. [43], M. Lei and G. Meng [21]) is used as a consistency
check to verify the appropriate embedding dimension from a scalar time series.
The symplectic similarity transformation is nonlinear and has measure-preserving
properties i.e. time series remain unchanged when performing symplectic similarity
transformation. For this reason symplectic geometry spectra (SGS) are preferred to
singular value decomposition (SVD) (which is by nature a linear method that can
bring distorted and misleading results e.g. see M. Palus and I. Dvorak [29]).
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Fig. 16.9 Power spectrum with rectangular window for K, I, C, Y . The irregularity of the
spectrum hints at the possibility that the series are chaotic

In Fig. 16.12a, b we show two examples of embedding dimension for a Gaussian
white noise and the Logistic Map respectively, as obtained with the symplectic
geometry method.

Figure 16.13 depicts the behaviour of the embedding dimension for consumption,
investment, capital and income obtained using Symplectic Geometry Spectrum with
Lei method. The behaviour of these curves is in accordance with that provided by
other well-known chaotic systems in literature. This is another confirmation of the
chaotic behaviour of the proposed model.

16.2.4 Correlation Integral

As mentioned in Sect. 6.3.2.1, the correlation integral C(r) of Eq. (6.12), measures
the “degree of kinship” between two different points on the (strange) attractor and it
“represents a direct arithmetic average of the pointwise mass function” Theiler [38].

In Fig. 16.14 we plot the value of the correlation integral versus r , and versus
its logarithm in Fig. 16.15. It can be noted that when ln(C(r)) is plotted against
ln(r) the slope of the linear section can be interpreted as the dimensionality m of



16 A New Form of Kaldor–Kalecki Model on Business Cycles 259

Frequency (Hz) Frequency (Hz)

Frequency (Hz) Frequency (Hz)

Power spectrum using periodogram - hamming Power spectrum using periodogram - hamming

Power spectrum using periodogram - hamming Power spectrum using periodogram - hamming

C
ap

it
al

In
ve

st
m

en
ts

C
o

n
su

m
p

ti
o

n
s

In
co

m
e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

2

4

6

8

10

12

14

Fig. 16.10 Power spectrum with Hamming window for K, I, C, Y . The irregularity of the
spectrum indicates that the series are chaotic

the phase-space orbit within that range of r . Finally the fact that ln(C(r)) increases
regularly confirms that the system is deterministic.

16.2.5 Correlation Dimension

Another useful notion is the correlation dimension as defined in Definition 6.18
of Sect. 6.3.2.1. The correlation dimension is intended to measure the information
content “where the limit of small size is taken to ensure invariance over smooth
coordinate changes. This small-size limit also implies that dimension is a local
quantity and that any global definition of fractal dimension will require some kind
of averaging” [38].

In Fig. 16.16 it can be seen that the dimension of correlation is noninteger. As
DC is a “more relevant measure of the attractor than DH because it is sensitive to
the dynamical process of the coverage of the attractor” (Grassberger and Procaccia
[13]), we can say that the system is fractal [11, 12].
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Fig. 16.11 Embedding Cao dimension (τ = 1, data points = 10, 000)

16.2.6 Lyapunov Exponents

Lyapunov exponents are used to measure the rate at which nearby trajectories of a
dynamical system diverge (see Definition 6.6).

As a dynamic dissipative system is chaotic if its biggest Lyapunov’s exponent is
a positive number [23], we have adopted the Wolf algorithm [41, 42] to calculate
the biggest Lyapunov exponent. Other methods can be found in Stoop [35, 36]. In
our simulations, the calculated value has always been positive (see Table 16.1) with
the calculated Lyapunov’s exponents for 10,000 points simulated time series.
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Fig. 16.12 Embedding dimension symplectic geometry method. Ordinate is log
σi

tr(σi)
, abscissa

is i. The kink in the figure corresponds to the embedding dimension. (a) Embedding Dimension
for a Gaussian white noise. (b) Embedding Dimension for the Logistic Map (µ = 3.9)
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Fig. 16.13 Embedding dimension symplectic geometry method (data points = 10, 000). Ordinate

is log
σi

tr(σi)
, abscissa is i. The kink in the figure corresponds to the embedding dimension

16.2.7 Entropy

The Kolmogorov–Sinai KS entropy presented in Sect. 6.3.2.2 has been added to
supplement the abovementioned analysis because KS converges to a positive value
when time series are chaotic.

In order to measure KS we used the methodology suggested by J.C. Schouten
et al. [31, 32] and we found that it was positive (e.g. Kolmogorov entropy =
21.34561,Kolmogorov entropy KML = 3.67711, relative standard error of
KML[%] = 0.81194, total number of distances checked = 1,376,660, number of
distances found = 15,280).
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Fig. 16.14 Correlation
integral trend versus r
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Fig. 16.16 Correlation
dimension when r → 0
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Table 16.1 Lyapunov
exponents

Min Max Mean

Consumptions 6.22 11.399 10.885

Income 12.8338 19.6440 13.3534

Capital 7.3165 14.594 12.999

Investments 5.511 11.969 11.049

Notice that the iterated information corresponds to
the embedding dimension

16.2.8 Chaotic Attractor

As we have repeatedly shown, the system behaves stochastically although we know
that it is fully deterministic. In Table 16.2 we list the correlation integral versus the
embedding dimension for 10,000 points time series of C, Y, K and I. Indeed, it can be
observed that the correlation integral does not grow with the embedding dimension
confirming that the system is deterministic [23].

Finally in Fig. 16.17 we present the strange attractor for the system obtained with
software package RRChaos [33].
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Fig. 16.17 Strange attractor. Two-dimensional projection of the system in Eq. (16.8)

16.3 Conclusions

In literature, the usual set-up of the Kaldor’s model use the trigonometric investment
function arctg [2, 5, 14–16, 25], etc. We have decided, instead, to try a variant of
the hyperbolic tangent.

We wish to remark that an additional original contribution in our proposed model
is the specification of consumption and investment as a function of the difference,
respectively, between the growth rates of income and capital, and the growth rates
of income and consumption. This has been achieved by considering, à la Kalecki,
that the investment process has different timing than does consumption, hence
the difference in the considered time lags (see Eq. (16.2) vs. Eq. (16.3)). Last but
not least the model can accommodate external perturbations such as shocks by a
translation of the argument of the function f (see Sect. 16.1.1).
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Chapter 17
Recurrence Quantification Analysis
of Business Cycles

Giuseppe Orlando and Giovanna Zimatore

17.1 Introduction

There is a debate in the literature whether the dynamics of an economy is chaotic
or stochastic, and whether shocks are endogenous or exogenous (e.g. RBC theory,
Austrian School, Neo-Keynesian economics, etc.). Most studies concentrated on
financial time series (e.g. stock indices) because of accessibility of data, frequency
and length. For example, Mastroeni et al. [20, 21] found co-existence of stochastic
and chaotic behaviour in copper time series and energy prices. In finance where
data is abundant, both in terms of frequency and asset, results are mixed from no
evidence, to weak evidence to evidence type [12]. Instead, in this book, with an
extensive analysis on macroeconomic data (i.e. consumption, investment, capital
and income), we focus on economic time series with the aim to investigate two
issues. The first is the applications of recurrence plots, and their quantitative
description provided by RQA, to dynamical regimes of business time series. The
second issue we investigate is whether RQA can give some indications on the nature
of business cycles as well, as on the nature of macroeconomic variables and the
economy [30].

Part of this chapter has appeared in [30].
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RQA applications to economics and finance are not widespread, and started
later than in other fields [5, 8, 14, 22, 38]. The interest in RQA by economists
stemmed from the world financial crisis of 2007–2010, an event not anticipated
by the mainstream of economic literature [16]. In fact, the majority of economists,
basing their models on standard equilibrium, implicitly assumed that “economies
are inherently stable and that they only temporarily get off track”, Colander et al. [7].
Moreover, the paradigm of the rational representative agent, “largely ignored” [7]
the risk of new financial products and interconnections of markets. Therefore, RQA
applied to economics was seen as a potential “tool for the revealing, monitoring,
analysing and precursoring of financial bubbles, crises and crashes” Piskun and
Piskun [34]. Fabretti and Ausloos [11] found examples in financial markets where
RQA could detect a difference in state and recognize the critical regime, such that
a warning before a crash (in their case 3 months in advance) would be given.
Along this line, Addo et al. [1], looking for signals anticipating financial crises,
highlighted “the usefulness of recurrence plots in identifying, dating and explaining
financial bubbles and crisis”. In addition they claimed that the findings from the data
analysis with recurrence plots “shows that these plots are robust to extreme values,
non stationarity and to the sample; are replicable and transparent; are adaptive to
different time series and finally, can provide better chronology of financial cycles
since it avoids revision of crisis dates through time”. Strozzi et al. [35] studying the
Nordic Spot Electricity Market Data confirm that determinism and laminarity detect
“changes more clearly than standard deviation and then they provide an alternative
measure of volatility”. Moloney et al. [22] investigating arbitrage-free parity theory
for the Credit Default Swaps (CDS) and bond markets questioned the assumption of
a stable equilibrium “which is central to the arbitrage-free parity theory”. In addition
they found evidence of deterministic structures in the data and that “market is being
trapped at certain levels” where “equivalence being trapped for a period of time is a
characteristic of a nonlinear system (not a periodic or a random system)”.

17.2 Databases and Time Series

The variables on which we focus in the following study are: Capital (K), Consump-
tion (C), investment (I) and Income (Y) (see Appendix A.1). Cyclical swings of
economy are typically analysed in terms of the duration or the amplitude between
a peak and the succeeding trough [4]. The cycle Peak-Trough-Peak (PTP) can be
caused by various factors such as negative shocks in demand, in supply, in price
and in credit (i.e. when “financial distress produces sharp discontinuities in flows
of funds and spending and when the financial strains include tight monetary policy,
much lessened availability of money and credit, sharp rises of interest rates, and
deteriorating balance sheets for households, businesses, and financial institutions”)
[10] as discussed by us in Chap. 11.

In order to study business cycles and recessions we will apply the RQA on time
series extracted from different sources. This is because we want to have an extensive
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set of data, with the highest number of points possible, covering the following
dimensions: countries with different development paths (Sects. A.1.5 and A.1.3),
differences in methods for computing the capital (M1, M2 Sect. A.1.5), gross versus
net (Levy and Chen [17] Sect. A.1.4), etc. A further requirement was that, whenever
possible, the number of time series should be balanced across variable or dimension.

For the variables K (capital), C (consumption), I (investment) and Y (income)
modelled as described in Chap. 16, we collected 55 time series belonging to the
following countries: Germany (DEU), Italy (ITA), Korea (KOR), United Kingdom
(GBR), Turkey (TUR), Japan (JNP), Spain (ESP) and United States of America
(USA). This in order not only to consider the evolution in time, but also to cover
different types of economies (developed vs. developing, stagnating vs. expanding,
etc.). Moreover, it is worth noticing that the aforementioned four variables differ in
their units of measurement. In fact, the “stock” variable K represents the quantity
existing at a certain point in time, whereas “flow” variables such C, I and Y are
measured over an interval of time. For this reason we balanced our dataset by
gathering 41 flow and 14 stock variables.

17.2.1 Capital

As was mentioned in Sect. 17.1, while financial data are abundant and have many
data points, economic time series are not many and data points are very few. This is
especially true for capital stock (see Appendix A.1.4). In fact aggregate capital stock
data is only collected on an annual basis. To analyse quarterly data, we considered
the time series made available by Levy and Chen [17] who based their calculations
on time series by: (a) Musgrave [23] for annual capital stock, (b) Citicorp [6] for
investments and their price deflator series and (c) U.S. Bureau of Economic Analysis
(BEA) for annual depreciation and discard figures.

Levy and Chen calculated quarterly data which is useful for “analysing the
dynamic relationship between aggregate factors of production and output”; in fact
“it is preferable to look at the data using quarterly observations because some
dynamic phenomena that perhaps take place within the period of a year will not
be captured if annual data is used. In addition, from an econometric point of view,
the use of quarterly data instead of annual data quadruples the sample size which
makes empirical statistical inference more reliable” [17].

Adopting the same basic notation, we: (1) distinguish between time series in
nominal terms from time series in real terms (measured in 1987 dollars) by using the
suffix 87; (2) denote Segmented Linear Interpolation as M1 and Numerical Iteration
as M2; (3) adopt the following acronyms for the time series under scrutiny—
Consumer Durable Goods (CDG), Producer Durable Goods and Equipment (PDG),
Non-residential Business Structures (BS).

As was explained by Levy and Chen [17], the quarterly capital stock series are
constructed using different procedures: “The first is a segmented linear year-to-year
interpolation technique. The second technique exploits the dynamic relationship
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between the capital stock and the corresponding capital investment series and uses
annual beginning-of-the year and end-of-the-year capital stock data to estimate
the implied quarterly depreciation rates for all three categories of the aggregate
capital stock by numerical iteration over the depreciation rates until a convergence is
achieved. These depreciation rates are then used along with the quarterly investment
and the annual capital stock series to construct quarterly capital stock series” [17].

In our analysis, we focus on series built with Method 1 and 2 because, as
shown by Dezhbakhsh and Levy[9] “linear interpolation of a trend stationary series
superimposes a ‘periodic’ structure on the moments of the series” while, according
to Jaeger’s [13] “segmented linear interpolation reduces the size of shock persistence
in a difference stationary series”.

17.2.2 Income, Investment and Saving

Regarding the scope of our analysis we included countries that had very different
development paths (see Appendix A.1.5) from the Organisation for Economic Co-
operation and Development (OECD). OECD data are respectively

• Quarterly GDP Total, Percentage change, Quarterly National Accounts. This
indicator is seasonally adjusted and it is measured in percentage change from
previous quarter and from same quarter previous year [25].

• Investment (GFCF) Total, Annual growth rate (%). Aggregate National
Accounts, SNA 2008 (or SNA 1993): Gross domestic product. Gross fixed
capital formation (GFCF) is in million USD at current prices and PPPs, and in
annual growth rates [24].

• Saving rate Total. % of GDP. National Accounts at a Glance [26].

17.3 Tools

The basis of Recurrence Plots, RQA and RQE theory were discussed in Chap. 10.
RQE computes recurrence quantifications on an epoch-by-epoch basis. The RPs
shown in the following Figures were obtained with the CRP Matlab Toolbox ver.
5.22 rel. 32 [18]. RQA and RQE were obtained with the package RQA ver. 14.1
[37]. Statistical analysis was carried out by using Systat ver. 10.2 or MATLAB ver.
8.5.0.197613 (R2015a).

17.4 Results and Interpretation

In this Section we show that, in some cases, early warning signals of dramatic
changes (downturns/expansions) can be seen by computing recurrence variables
within a moving window (epoch) shifted by a given number of points (delay)
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throughout the whole sample (which is the RQE). Finally we demonstrate that RQA
is a valid technique of investigation as it is able to distinguish between real and
nominal data, as well as between net and gross time series.

17.4.1 Recurrence Quantification Analysis (RQA)

17.4.1.1 Recurrence Plot (RP) on US GDP

Figure 17.1 shows the recurrence plot of US GDP% depicted right below its time
series. From the RP, it is possible to observe the anticipating transitions to turbulent
phases. The remarkable result consists of a correspondence between vertical lines
in RP (i.e. chaos to chaos transitions) and the downturn/upturn periods.

Fig. 17.1 Changes in US GDP (above) and its Recurrence Plot (below). Data range: 01-01-1947
to 2016-01-01. ID: A191RP1Q027SBE. Gross Domestic Product, Percent Change from Preceding
Period, Quarterly, Seasonally Adjusted Annual Rate. Source: St. Louis Fed, FRED database. Note
the alignment between shocks and vertical lines in RP
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17.4.1.2 RQA Applied to Business Cycle Data

RQA defines the overall complexity of the signal in terms of quantitative indices
deriving from RP. Here, RQA was carried out on 55 time series from the dataset
mentioned above (see Appendices A.1.3–A.1.5) with the following input param-
eters [37]: time lag (or delay: the spacing between selected input points) = 1;
embedding= 10 (embedding dimension: estimated number of dominant operating
variables); radius (largest normed distance at and below which recurrent points
are defined and displayed)= 80; line (minimum number of sequential recurrent
points required to define diagonal and vertical lines) = 5. Time lag = 1 has been
chosen because, differently from financial time series, economic time series have
few data. Moreover, as specified in Sect. 7.1.1, quarterly data are independent (they
do not suffer from autocorrelation). The method chosen for normalizing vectors
in higher dimensional space uses the Euclidean norm and meandist is the method
for rescaling the recurrence matrix (i.e. the mean of rescaled distances) [19]. It is
worth mentioning that the radius has been set with the objective of maximizing the
difference among the time series of the whole dataset. This happens because when
the radius is too large, the determinism can saturate, while when the radius is too
small, few recurrences points in RP could not describe the differences among the
time series.

While more details will be provided in Sect. 17.4.3, here we can tell in advance
that with regard to US quarterly capital data, as reconstructed by Levy and Chen
(see Table A.4), no significant differences have been observed between interpolation
methods M1 and M2, while differences have been found to exist between real and
nominal as well as between net and gross time series (see Table 17.1, row 1, where
p > 0.1 for all the RQA measures, PC1 and PC2).

Table 17.1 Mann–Whitney U Test (p-values)

Row # Groupsa REC DET MAXLINE ENT TREND LAM TT PC1 PC2

1 14b Method 0.796 1 0.301 0.439 0.796 0.439 0.439 0.897 0.197

2 55c Variable 0.001 <0.001<0.001 0.028 0.002 <0.001 <0.001 <0.001 0.026

3 35d Country 0.071 0.253 0.436 0.162 0.157 0.126 0.469 0.253 0.146

4 55e Measure <0.001 <0.001<0.001 0.209 0.772 <0.001 0.967 <0.001 0.772

PC1 and PC2 calculated on REC, DET, MAXLINE and ENT
a Method: M1, M2; Variables: C, I, K, Y; Country: Germany (DEU), Italy (ITA), Korea (KOR),

United Kingdom (GBR), Turkey (TUR), Japan (JNP), Spain (ESP), United States (USA); (Unit)
Measure: Flow, Stock; (Time Series’)

b Number of time series considered by method: 8 M1, 6 M2
c Number of time series considered by variable: 10 C, 11 I, 14 K, 20 Y
d 4 DEU, 4 ITA, 4 KOR, 4 GBR, 3 TUR, 4 JNP, 4 ESP, 8 USA
e Number of time series considered by measure: 41 flow, 14 stock
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Fig. 17.2 Dynamical analysis in the sliding window mode (RQE) where percent of laminarity
(LAM) and percent of determinism (DET) refer to the same time series as in Fig. 17.1. Overlapping
sliding windows of 50 data points shifted by 1 point (49 data point overlaps) were taken. Variables
are plotted in central position in standardized units (su), i.e., after subtracting the average value
from absolute values and dividing by standard deviation in each window

17.4.1.3 Recurrence Quantification Epoch (RQE) on Business Cycle Data

To better understand the time evolution of these economic data, RQE analysis was
carried out on business cycle time series with the following parameters: Window
size = 50 points; shift = 1 point; lag = 1; embedding= 10; radius = 80; line = 5.
Even in this case, as well as in RP, the drop of DET corresponds to the grey vertical
line indicated by FRED DATA (see Fig 17.2).

These results are in line with what was reported by Bastos and Caiados [3], who,
comparing 23 stock market indices of both developed and developing countries,
found a reduction in DET and LAM during the sub-prime mortgage crisis and
even dramatic fall, during the burst of the technology bubble. The latter was also
documented in the analysis of the dot-com bubble by Fabretti and Ausloos [11]
and Kousik et al. [15], where DET and LAM reached the highest values during the
bullish period and declined before the bubble burst. Moreover, according to Piskun
et al. [34], laminarity (LAM) “is the most suitable measure, sensitive to critical
events on markets”, whereas the inverse of laminarity reflects the market volatility
(Strozzi et al. [36]).
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Fig. 17.3 Maximum correlations (in blue) between RQE measures versus recession periods (in
grey) on the US GDP [25]. As shown in the figure a change in the index is often linked to
a recession. Spearman correlations (below) versus the final test signal (above). RQE absolute
correlation (in blue) is displayed next to correlation (red). See how the RQE correlation calculated
as in Eq. (10.6) is more reactive than the other and it is able to detect more finely changes in the
original times series. Difference in the x-axis numbering between the picture above and below, is
due to the windowing mechanism. Source Orlando and Zimatore [29]

17.4.1.4 RQE Correlation Index

In order to understand the limitations of the proposed method and to provide further
detail regarding the power of RQA in anticipating transitions from laminar to
turbulent phases, we resort to the RQE (absolute) correlation index described in
Orlando and Zimatore [29] and here already discussed in Sect. 10.3.2.

As was shown in [29], while the RQE correlation index (10.6) is able to detect 9
of the 10 intervals in which a random signal was perturbed, the results displayed on
Fig. 17.3 are less conclusive.

17.4.2 Principal Component Analysis (PCA) on RQA

PCA is a multivariate statistical analytical tool successfully applied to time series.
The aim of this method is to minimize redundant information[2], [39]. In this book,
we apply PCA to recurrence measures estimated from the aforementioned economic
data, by taking advantage of the combined use of the two techniques. Therefore,
PCA has been carried out on the main four RQA measures: REC, DET, MAXLINE
and ENT. The percentage of total variance explained is respectively: PC1 = 81%;
PC2 = 11%; PC3 = 5%; PC4 = 3%.
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Fig. 17.4 Dynamical features of business time series in a principal component space as reported
in Appendix A.9. Different symbols (letters) indicate the four macroeconomic variables: I-
Investment, C-Consumption, Y-Income, K-Capital. Note how K-capital is clustered

In Fig. 17.4 PC1 vs PC2 is shown for every data series in Table A.9. As those
are obtained from RQA data, it is possible to observe that RQA preserves some
structural differences between income, consumption, investment (flow variables)
and capital (stock variable).

In order to check whether there are differences among the four macroeconomic
variables, we applied the Mann–Whitney U test. This test belongs to the class of
nonparametric tests and it checks the null hypothesis that a randomly selected value
from one sample is less than or greater than a randomly selected value from another
sample. In our case we found (see Table 17.1) that all measures are distinct at p <
0.001.

17.4.3 Statistical Analysis on RQA

An additional statistical analysis was performed on the obtained RQA measures.
Spearman’s correlations among these parameters were estimated. A multivariate
analysis of variance (MANOVA) test was conducted for I, C, Y and K variables, for
different countries, measures, investment goods, terms and interpolation methods.
Data is expressed as means ± standard deviations.



We anticipate that, in following Sects. 17.4.3.1 and 17.4.3.2, the results of our
tests show that RQA is able to capture the difference between stock and flow
(measures) as well as the dissimilarities between the four macroeconomic variables
(variables). In addition, the fact that different countries (countries) with very
different evolutions are not distinguishable, might be an indication of the chaotic
nature of economics, as in chaos different paths originate from the same underlying
deterministic dynamic. Furthermore, the analysis on different interpolation methods
provides equivalent results.

17.4.3.1 Mann–Whitney Test

The nonparametric Mann–Whitney test was carried out on the RQA measures from
the whole dataset (see Table A.9).

In summary, we observe that (between groups) results in row 1 Table 17.1:

• Fail to reject the null hypothesis that Methods 1 or 2 are equal (i.e. RQA is able
to discriminate between methods).

• The distributions of the four variables C, I, Y, K are not the same (see row
2, Table 17.1) imply that RQA can identify differences in the macroeconomic
variables.

• The distributions of data belonging to different countries (Germany (DEU), Italy
(ITA), Korea (KOR), United Kingdom (GBR), Turkey (TUR), Japan (JNP),
Spain (ESP) and USA) do not reject the null hypothesis that they are equal
(see row 3, Table 17.1), i.e. RQA cannot find substantial differences between
countries. In other terms, even though the economic development between
countries was different, from the structural point of view a given time series is just
an instance of the same hidden process. This is a general property of deterministic
models where the same model can generate any sort of path depending on
perturbations. The distributions of flow and stock variables are different (see
row 4, Table 17.1) to confirm that RQA can detect differences in the nature of
those macroeconomic variables.

17.4.3.2 Kruskal–Wallis Test

To further confirm the ability of RQA in capturing the differences between
macroeconomic variables, the following Table 17.2 reports the p-values on RQA
of the Kruskal–Wallis Test performed on the time series displayed in Table A.9.
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17.5 Conclusions

So far, in the literature, there are no clear indications whether economic data are
chaotic or not. This chapter applied RPs and their quantitative description provided
by RQA to detect structural changes in the dynamical regime of business time
series. RQA assesses the amount of deterministic structure of time series. Here it
was shown that RQA is an efficient and relatively simple tool in nonlinear analysis
of a wide class of signals. Therefore, RQA may be suitable to study business cycles
and could be used for early detection of recessions (even though some limitations
are apparent Sect. 17.4.1.4).

The results reported so far have revealed the applicability of this methodology
to economic time series; especially where other methods may fail because of
randomness, nonlinearity and non-stationarity of data, and have given new insights
into underlying dynamics. In fact both PCA and statistical analysis on RQA seem
to validate the technique as macroeconomic variables are clearly distinguishable. In
addition RQA seems to confirm that different paths in economic development may
originate from the same underlying deterministic dynamic (which is an indication
of chaos).

More research, along this line, has been done. For example, we tested whether
RQA, applied to both real data and simulations obtained from a nonlinear economic
model on the business cycle [27], may present analogies and/or similarities. This
could be helpful in understanding the nature of economic dynamics, i.e., analogies
of real data with a time series produced by a deterministic chaotic model would
indicate the presence of chaos in economy. Specifically, in [31] we analysed, through
the RQE correlation index, the times series of the US GDP versus the income
as generated from a Kaldor–Kalecki model [28]. In [33] we complemented the
abovementioned analysis by adding Poincaré Plot and related quantifiers in order
to detect spatio-temporal recurrent patterns in dynamical systems. The performed
analysis brings evidences on fractal dimension and entropy measures for both real
data and model’s simulations. The final goal was, not only to discover whether
real and simulated business cycle dynamics have similar characteristics, but also
to validate the model as a suitable tool to simulate reality. In [32] we challenged the
wisdom that only stochastic models are able to simulate reality. Thus, we compared
an Ornstein–Uhlenbeck stochastic process with a Kaldor–Kalecki deterministic
chaotic model and we showed that the proposed chaotic model is able to represent
reality as well and, furthermore, it may reproduce an extreme event (e.g. a black
swan).

We believe that this long lasting research, even that is not yet concluded, has
provided a contribution to the quest of the nature of economy and, in essence,
of human behaviour. Apart from philosophical considerations, the implication of
chaos is very practical: tools to interpret and manage economy should be rethought
and recast. Luckily, in other fields such as physics, meteorology, engineering, etc.
there is a wide array of readily available results. We believe that an interdisciplinary
approach to economics could bring significant benefits to the discipline.
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Chapter 18
An Empirical Test of Harrod’s Model

Giuseppe Orlando and Fabio Della Rossa

While Kaldor’s theory strongly influenced the academic debate on business cycles,
Harrod’s theory inspired Solow’s seminal paper “A Contribution to the Theory
of Economic Growth” (1956) [36], that set the basis for modern growth theory.
However, a recent re-evaluation of Harrod’s theory [4, 14] challenges Solow’s
interpretation “which ultimately dominated the profession’s view of Harrod” [14].
According to Solow, the Harrod model “implied a tendency toward progressive
collapse of the economy”. However this has “little to do with the problem of long-
run growth as Solow understood it, but instead addressed medium-run fluctuations,
the inherent instability” of economies” [14].

There are several reasons why in this chapter we focus on the Harrod’s model.
First of all, it is because of the abovementioned influence on the foundation of
modern growth theory. Secondly, the Harrod model provides a dynamic framework
and some guidelines to policy-makers, in terms of supply-side policies. In fact, they
should consider the combination of investment, technological change, population
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growth, unemployment and aggregate demand. Another reason is that, in his
framework, the warranted rate of growth is not a single (moving) equilibrium, but a
“highly unstable” one. This takes the name of Harrod’s knife-edge instability or the
instability principle.

Similarly, but from a different starting point (i.e. static analysis and microeco-
nomic foundations of macroeconomic dynamics), Leijonhufvud defines the notion
of a stability corridor as a time-path in which economic activities “are reasonably
well coordinated” [22]. Moreover the system is likely to behave differently for large
than for moderate displacements from the ”full coordination" time-path. Within
some range from the path (referred to as “the corridor” for brevity), the sys-
tem’s homeostatic mechanisms work well, and deviation-counteracting tendencies
increase in strength. Outside that range, these tendencies become weaker as the
system becomes increasingly subject to “effective demand failures”. If the system
is displaced sufficiently “far out”, the forces tending to bring it back may be so
weak and sluggish that for all practical purposes the Keynesian “unemployment
equilibrium” model is a sensible representation of its state. Inside the corridor,
multiplier-repercussions are weak and dominated by neoclassical market adjust-
ments. Outside the corridor, they should be strong enough for effects of shocks to the
prevailing state to be endogenously amplified. Up to a point, multiplier-coefficients
are expected to increase with distance from the ideal path. Within the corridor, the
presumption is in favour of “monetarist” policy prescriptions, outside of it in favour
of “fiscalist”. Finally, although within the corridor market forces will be acting in
the direction of clearing markets, institutional obstacles of the type familiar from the
conventional Keynesian literature may, of course, intervene to make them ineffective
at some point. Thus, a combination of monopolistic wage-setting in unionized
occupations and legal minimum-wage restrictions could obviously cut the automatic
adjustment process short before “equilibrium employment” is reached [22].

Both views, macroeconomic and dynamic (by Harrod) and static and micro-
founded (by Leijonhufvud) converge to the “existence of thresholds at the start of
the mechanisms that are at work” [21]. Therefore, the idea of dynamically unstable
multiple equilibria or the alternative Harrod’s suggestion of a Leijonhufvud’s
“corridor stability” is worth exploration in our opinion. In particular, whereas in
the 1970s and the 1980s unemployment and stagflation discarded those theories, in
the twentieth century “in the leading Western economies there have been prolonged
periods when more saving would have been beneficial, and others with every
appearance of inadequate effective demand” [12]. As the Harrod’s model is one
of the few able to predict that, “it still deserves serious attention” [12].

18.1 Background and Literature

The renewed interest in Harrod’s also due to an epistemological work that has
Besomi among its main contributors: “plunging into the original texts soon made
it obvious that the subject of Harrod’s dynamics was more intricate than the portrait



18 An Empirical Test of Harrod’s Model 285

given in textbook rendition” [4] and that many interpretations were erroneous.
Baumol [2], for instance, asserts that “the main achievement of his [Harrod’s] model
lies in the ideas it inspired in those who did not fully understand it”. In fact Harrod
himself “claimed that his dynamics was essentially different from, and indeed more
fundamental than, the mainstream interpretation of it (an interpretation which, of
course, reflected the notion of dynamics which gained almost universal acceptance
after the war)” [4].

The so-called Harrod’s Dynamics is the result of a number of works resumed
in “The Making of Harrod’s Dynamics” by Besomi [4] and the most significant of
which are “Towards a Dynamic Economics” (1948) [16] and “Economic Essays”
(1972) [17]. This happened because Harrod “returned several times on the topic of
his essays in correspondence with Keynes, who sometimes managed to force him to
re-formulate his propositions” [4].

Harrod identified two stages in explaining economic dynamics: the first was the
determination of the rate of growth at the equilibrium (given a certain ratio of saving
over income and investment per unit increase of output), the second was related to
the changes of those ratios (changes that would lead to different equilibria and would
be responsible for cycles).

Because of the different formulations, Harrod’s theory led to several distinct
interpretations. For example, according to Tinbergen [39], the model was a combi-
nation of multiplier and accelerator that could not give rise to cyclical behaviour, but
could only lead to an explosive growth or to an equilibrium. Samuelson [31, 32], in
a different formulation with lagged variables, found that for a range of the multiplier
and accelerator coefficients, there would be a cyclical behaviour.

Apart from that, the so-called Harrod–Domar model was extensively used to
explain growth as the result of the optimal combination of saving and investment.
This led to a debate on other factors determining the growth as well as around
the multiplicity of equilibria and their instability. For example, according to Solow
[36], relaxing Harrod’s assumption of a constant capital/output ratio, the system
would have drifted towards full employment. Moreover, while Harrod stressed the
mentioned “principle of instability” to describe the adjustments between effective
accumulation of capital and warranted accumulation, Solow’s interpretation solved
the puzzle by assuming that the warranted rate of growth (Gw) was constant and
that technology was flexible (even though Harrod insisted on the fact that the Gw
depended on time and cycle). Therefore, when Axel Leijonhufvud [22] sketched
the idea of a corridor, in Economic Dynamics [15] Harrod confessed that it was an
appropriate approach to what he was thinking about failures of effective demand.

Robinson [30] summarized a long debate on the post-Keynesian front and
showed how multiple equilibria could be attained if different propensities to save
across social classes were considered. Last but not least Kalecki (1933–1939) [20]
and Kaldor [19] focused on the technical progress, on the non-linearities of the
investment and savings functions and on the determinants of investment decisions.
This inspired a number of works: from multiple attractors and global bifurcations
[6] to homoclinic tangles [1], from the global existence of periodic solutions [18]
to the existence of chaotic behaviour, not for a single specific value, but within a
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reasonable interval for each parameter [25, 26]. Shaikh [34] explains key differences
between Harrodian and Keynesian theories and policies, proves the stability of the
Harrodian warranted path and shows that the Keynesian paradox of thrift is transient.
Moudud [23] shows how to combine taxation with public investments in order to
raise the warranted growth rate (which, according to Harrod, is otherwise reduced by
an increase in the budgeted deficit/GDP ratio). Serrano et al. [33] claim that Harrod’s
instability is an instance of what Hicks calls “static instability” and they show that
the Sraffian Supermultiplier [24] model overcomes the Harrodian instability. Skott
[35] contends that there is no need to introduce autonomous demand as the “driver
of long-run economic growth and as a stabilizing force”, but it would suffice to
model “the supply side (the labour market) and/or economic policy” to obtain those
results.

Finally Yoshida [41] and Sportelli [37, 38] offered, from the 1990s Harrod’s
Dynamics, a theoretical framework to explain jointly economic growth and business
cycles through the Harrod’s “instability principle”. However for Yoshida the
instability derives from a putty-clay technology in conjunction with flexibility of
prices, while for Sportelli the instability derives from the gaps between Harrod’s
rates of growth: actual, warranted and natural. Further, in that framework [37], it has
been shown that opening to foreign trade can lead to reducing cyclical instability of
the economy as was suggested by Harrod.

18.2 Material and Methods

18.2.1 Cycles

Cyclical fluctuations in economy, Fig. 18.1, correspond to the duration or the
amplitude between a high/peak and the succeeding low/trough [8]. The so-called
peak–trough–peak (PTP) cycle affects the whole economy (e.g., wages, demand,
prices, credit, etc.). Seasonal swings are typically short-term, but cyclical fluc-
tuations could last for years. A depression is a prolonged and deep recession.
As mentioned by Eckstein [11] “financial distress produces sharp discontinuities in
flows of funds and spending and when the financial strains include tight monetary
policy, much lessened availability of money and credit, sharp rises of interest
rates, and deteriorating balance sheets for households, businesses, and financial
institutions”.

18.2.2 US Recessions

In the following Fig. 18.2 we display the path of US investments alongside
recessions as reckoned by FRED (Table 18.1).
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Fig. 18.1 The business cycle can be classified into four stages: (1) expansion when economic
activity grows steadily; (2) boom when the aggregate demand grows more than the aggregate output
which overheats the economy; (3) recession phase when the aggregate output cools down after a
peak; (4) recovery after a trough. The so-called specific cycle amplitude corresponds to the vertical
distance between the peak and the trough
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1985 1990 1995 2000 2005 2010 2015 2020
0

400

800

B
ill

io
ns

 o
f C

ha
in

ed
 2

01
2 

D
ol

la
rs

1,200

1,600

2,000

2,400

2,800

3,200

3,600

Real Gross Private Domestic Investment

Fig. 18.2 US real gross private domestic investment (GPDIC1), billions of chained 2012 dollars,
seasonally adjusted annual rate. Source: FRED, Federal Reserve Bank of St. Louis; https://fred.
stlouisfed.org/series/GPDIC1, 25 May 2020. Greyed areas correspond to periods of economic
recessions (Table 18.1)
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Table 18.1 US recessions Recessions

From To

Quarter Year Quarter Year

Q4 1948 Q4 1949

Q3 1953 Q1 1954

Q4 1957 Q1 1958

Q3 1960 Q1 1961

Q1 1970 Q4 1970

Q1 1974 Q2 1975

Q1 1980 Q2 1980

Q3 1981 Q4 1982

Q3 1990 Q1 1991

Q2 2001 Q4 2001

Q1 2008 Q3 2009

US. Bureau of Economic Analysis [3]

18.2.3 Empirical Data

In order to perform our test, we have retrieved data from several sources such as the
Maddison Project, the World Bank, IMF and BEA. Annual world GDP estimate has
been retrieved from the Maddison–Penn world table [7, 13], (from 1946 to 1961).
This has been linked up with World Bank1 and IMF2 data (available from 1961
to 2018). Annual data has been changed into quarterly via the compounding law.
Time series are retrieved from their original dataset or from FRED as detailed in the
Appendix A Sect. A.1.

18.3 Calibration of Harrod’s Model

To test empirically the Harrod model we evaluated the average distance between the
historical data series reported in Appendix A.1 and the orbit produced by Eq. (13.23)
starting at time 0. Mathematically, we want to compute the quantity:

D = 1

286

286∑

t=0

(
d(t)− 1

τ̂

∫ t+1

t

φ̂
(
τ̂ t̃ , P
)
dt̃

)2

, (18.1)

1https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG.
2https://www.imf.org/external/datamapper/NGDP_RPCH@WEO/OEMDC/ADVEC/
WEOWORLD.

https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG
https://www.imf.org/external/datamapper/NGDP_RPCH@WEO/OEMDC/ADVEC/WEOWORLD
https://www.imf.org/external/datamapper/NGDP_RPCH@WEO/OEMDC/ADVEC/WEOWORLD
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Table 18.2 Harrod model parameters

Calibration

Given model Cal. #1 Cal. #2 Cal. #3

# Parameter Given value/range Calibrated value

1 α 0.5 0.28 0.29 1.09

2 ε [0.2, 1.31] 0.13 0.58 0.52

3 σ [2, 4) 1.42 1.67 2.45

4 Gf 0.03 0.03 0.00 0.54

5 C∗ 4 4.00 4.00 3.18

6 β 2.5 2.50 2.50 2.20

7 m 0.07 0.04 0.04 1.23

8 ϕ 15 15.00 15.00 14.89

9 ξ 0.18 0.18 0.18 0.20

10 μ 1.4 0.78 0.90 2.06

11 γ 1 0.56 0.57 0.36

12 δ 6.2 6.20 6.20 5.94

13 ζ 1.9 1.06 1.09 2.25

Value of D 0.38 0.71 0.55

Original data as provided in [37] with related calibrations. Ḡ = max Gn

where d(t) is the vector that stacks the data of the rate of growth of domestic income,
the expected rate of growth of aggregate demand, the share of income saved and the
net export rate for the quarter t (t = 0 is the first quarter of 1947, t = 286 is the
second quarter of 2018). Similarly, P is the vector of the 13 parameters of the model
(reported in Table 18.2), and φ̂ stacks the four variables that solve the differential
equation (13.23) with parameters set in P starting at φ̂(0, P ) = d(0): the integral
between t and t+1 allows us to compute the average value of the (continuous) signal
over the quarter of interest, to be compared with the data. Note that an additional
dummy parameter τ̂ has been added. This parameter permits us to rescale the time of
the signal produced by the model, in order to best fit with the time-scale of the data.
The optimization variables are the 13 + 1 parameters of Eq. (13.23), since they have
physical meaning only when positive, this adds a set of constraints to be satisfied.
Formally speaking, in order to find the best fitting solution, we solve the following
constrained optimization problem:

min
P,τ̂

1

286

286∑

t=0

(
d(t)− 1

τ̂

∫ t+1

t

φ̂
(
τ̂ t̃ , P
)
dt̃

)2

s.t. φ̂
(
τ̂ t, P
)

is a solution of Eq. (13.23) with parameters set as P
φ̂ (0, P ) = d(0)
P ≥ 0, τ̂ > 0.

(18.2)
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This problem is solved using the interior point method [5, 9] implemented in
the Matlab fmincon routine. Since the problem is not convex, the optimization
algorithm may converge to a local optimal solution. To better explore the space
of the optimal solutions, we introduce a multi-start algorithm: the optimization is
then run several times starting from a randomly perturbed sample drawn from a
distribution centred in the parameter setting provided in Sportelli and Celi [37].

To evaluate the abovementioned version the Harrod model, Table 18.2 reports the
parameters for both the original model and three calibrations we have obtained that
present qualitatively different behaviours (together with the value of their distance
D for calibration #2, D is computed with t ≤ 6). The model, calibrated with real
data, may display convergence to a long-run equilibrium (calibration #1, Fig. 18.3),
divergence (calibration #2, Fig. 18.4) as well as a lightly damped oscillatory
behaviour (calibration #3, Fig. 18.5). It is worth saying that the global optimum
is obtained with calibration #1. However, with calibrations #2 and #3, we displayed
sub-optimal results to provide a context for our results. In fact, qualitatively, we
obtain similar values to the ones in [37]. Moreover we agree with this conclusion
“when the value of ε is large enough, the long period dynamics of the saving rate
is such that it can generate an irregular cycle in the system only if the net export
rate is very low. On the contrary, starting from positive and meaningful values of the
net export rate, the system may simply generate a limit cycle (or at most a double
cycle) if a higher ε works together with adequate competitiveness on the foreign
markets. This is the only formal result consistent with Harrod’s intuition that a more
moderate cyclical instability can emerge in an open economy compared to a closed
one” [37].
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Fig. 18.3 Time series obtained with parameters of calibration #1 that displays convergence to the
long-run equilibrium
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Fig. 18.4 Time series obtained with parameters of calibration #2 that displays divergence from
the long-run equilibrium
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Fig. 18.5 Time series obtained with parameters of calibration #3 that displays lightly damped
oscillatory behaviour around the long-run equilibrium

18.4 Conclusions

The Harrod’s model [16] has the merit of rearranging Keynes’s ideas into a dynamic
framework with some additional specification on the supply side. In fact “where the
warranted growth rate represents an economy’s growth path on which aggregate
demand and supply remain in balance, the model’s natural growth rate reflects
the supply of productive resources and the level of technology, the long-run limit
to real output growth. The interaction between the warranted and natural growth
rates provides a useful perspective for policymaking in today’s environmentally
constrained global economy. Also, since the growth of the labour force is built
into the natural growth path, the model also helps to clarify policy choices in an
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economy impacted by immigration” [40]. Therefore “supply-side policies must
be developed along with the standard Keynesian demand side policies, and the
interactions between the two require disaggregated policies to address specific types
of investment, technological change, and demand. That is, it is not generally possible
to solve the unemployment problem by simply expanding aggregate demand” [40].
Harrod’s theory, and thereof modelization built on that [36, 37, 40, 41], may thus
be seen as the link between classical economy (that stressed the importance of
investment for growth) and the Keynesian approach “primarily concerned with
the demand and income generating effect of investment” [10]. In real life, this
theory was put into practice in India. In fact, the Indian fifth five year plan for
the years 1974–1979 was based on a mix of a Harrod macroeconomic model and
a Leontief inter-industry model, and it was aimed at achieving both self-reliance
and growth. Main priorities on the industrial sectors were the development of: (1)
core industry, (2) industry for export and diversification, (3) mass consumption
production, (4) small industry and ancillary industry feeders of large industries. The
target growth rate was 4.4% and, as a result, the actual growth rate was 4.8% [10].

Having said that, to recall the importance of the model, this test shows (for
a specific set of parameters) that it is possible to find a match between Harrod’s
suggestions and reality. This is relevant because in the long-standing debate about
chaos and non-linear dynamics in economy, even the general usefulness of those
concepts was questioned. “Stochastic modelling has proven to be able to simulate
reality fairly well. However, a stochastic behaviour implies that reality is about
exogenous randomness, while a chaotic behaviour means that reality is deterministic
and non-linearities are endogenous” [28]. The ability of chaotic deterministic
models to replicate reality is the common thread throughout this book [29].
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Chapter 19
Testing a Goodwin’s Model with Capacity
Utilization to the US Economy

Ricardo Azevedo Araujo and Helmar Nunes Moreira

19.1 Introduction

The effort to understand business cycles within a growth framework is widespread
in today’s Economics. Theories such as the real business cycles (RBC) (see Kydland
and Prescott [18]) and the dynamic stochastic general equilibrium (DSGE) (Blan-
chard e Kiyotaki [6]) have become a benchmark of mainstream macroeconomics. In
these frameworks, a representative agent chooses not only the consumption, but also
the amount of labour to be supplied to maximize the lifetime utility. Fluctuations
then arise as the optimal response of the agent to exogenous shocks, which may
be either productivity or demand shocks. But in fact, the idea that growth and
fluctuations are intertwined phenomena can be traced back to the seminal work of
Richard Goodwin [12] who developed a growth-cycle model. His class struggle
model blends aspects of the Harrod–Domar growth model with the Phillips curve,
highlighting that trend and cycle are indissolubly fused, which yields endogenous
cycles (see Harcourt [14]).

In this vein, Goodwin presents a theory of economic fluctuations, whereby the
economic variables interact with each other in an endogenous way. Hence, the cycle
emerges from the interaction of deterministic variables, and not as the outcome of
the exogenous aleatory shocks. Formally, the growth-cycle framework consists of
two simultaneous non-linear dynamic equations, one for the employment rate and
the other for the wage share. We can interpret it as a Lotka–Volterra’s predator–prey
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model in a Marxian framework, in which the wage share is the predator and the
employment rate is the prey.

Although providing a compelling explanation for economic cycles, for some
authors such as Tavani and Zamparelli [24] and Harvie [15], the Goodwin model
seems to be too simplified to explain the long-run shifts in the growth cycle. Zipperer
and Skott [26, p. 56], for instance, challenge the model on the grounds that “the large
fluctuations in utilization rates, for instance, must raise questions for the adequacy
of the Goodwin model, which takes utilization as constant”.

To furnish the model with more realism, some authors extended it to consider
under-capacity utilization. By introducing this possibility, it is obtained that the
model assigns a more inclusive role to demand. As pointed out by Hein [16, p.
248], “the rate of capacity utilization is the important indicator for the development
of demand concerning the capital stock in existence and thus becomes one of the
major factors influencing investment decisions.” Sasaki [20], for instance, blended
Kaleckian and Marxian macro-dynamic features into the model. The author then
presents an extension to Goodwin’s formulation in which an autonomous investment
function is introduced in the lines of the post-Keynesian growth model. Then he
shows that the obtained system has an asymptotically stable equilibrium that can be
destabilized into a limit cycle.

Araujo et al. [1] also focused on capacity utilization as a new variable. Here we
also aim at testing an extended Goodwin’s model with capacity utilization as an
additional variable, however, with a crucial difference. While their model considers
an autonomous investment function that relies on the accelerator principle (see e.g.
Skott [22]), we preserve the Goodwin formulation in which there is no autonomous
investment. And, unlike Sasaki, we introduce capacity utilization through Skott’s
[21] formulation of an output expansion function. This avoids the criticisms against
the Kaleckian investment functions raised by Blecker [7] and Skott [22].

Our paper has some similarities with Flaschel [10] who also advanced an exten-
sion of the Goodwin growth-cycle model considering under-capacity utilization
growth in the presence of Skott’s output expansion function. But there are also some
important differences. The first one refers to the way the extensions are made. While
we built our extension following Goodwin, and considering less than full capacity
growth according to Skott, Flaschel departed from Skott’s formulation by adding a
Phillips curve in his 2D model. Using this route, he ends up using the capital-output
ratio as a proxy for capacity utilization. Besides, Flaschel writes the model in terms
of the rate of profit, while we focused on the profit share which provides a more
precise picture of the income distribution.

Although the obtained model departs from [10] and [1], we also have found that
the system admits a family of periodic solutions if the output expansion function
registers as a function of the income distribution only. The model does not display
periodic solutions if we introduce the employment rate into “Skott’s rule”. In this
last case the qualitative properties of the model change and it becomes locally
stable. To illustrate these results, we carry out the analysis both in terms of general
functions as well as particular examples. The main contribution of this chapter
lies in providing a simple baseline model to study distributive dynamics that deals
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with the interactions amongst income distribution, labour, and goods markets while
presenting empirical support.

Finally, we test the model for the US economy. As pointed out by Zipperer and
Skott [26, pp. 52–53], the choice of the US economy is convenient insofar as “it is
as close as one gets to a closed economy, the size of the public sector is relatively
modest, and unlike Japan and many European economies, the USA did not have
large amounts of hidden unemployment in backward sectors for a good part of the
postwar period. With respect to data, moreover, quarterly series are available for
some of the key variables in heterodox models.”

To test the extended model for the US economy by using quarterly data from
1970 to 2019, we have adopted a VAR methodology. The main results of the
generalized impulse-response functions provided by the VAR model confirms the
profit-squeeze mechanism: a positive profit share innovation positively affects both
the employment rate but the rate of capacity utilization, suggesting a profit-led
pattern. We also performed the traditional Granger causality test, which yields
significant results. We organize the chapter as follows. After this introductory
Section, Sect. 19.2 presents an extension to the Goodwin model by including the
rate of capacity utilization as a new variable. Section 19.3 studies the stability and
presents simulations. Section 19.4 offers the econometric estimations of the model
for the US economy, and Sect. 19.5 presents our conclusions.

19.2 Adding Capital Utilization to Goodwin’s Model

In the original Goodwin model [12], the endogenous variables are the wage share,
ω, and the employment rate, v. Here following Skott [21], we write the system in
terms of the profit share, h, instead of the wage share. As in the original model,
let us consider a closed economy without government activity that uses capital, k,
and labour, L, to produce output, q , by using a fixed coefficient technology. The
model is built under the concept of full capacity utilization, namely μ = 1. Then,
by introducing the possibility of under-capacity utilization, namely μ < 1 it yields
a version of the model that considers a more inclusive role for demand. In the real
world, the stock of capital is often underutilized and we can use the rate of capacity
utilization as a measure of demand thus providing a less stylized explanation to the
growth cycle.

q = min
[
kμ

σ
,
l

a

]
. (19.1)

Following Goodwin, the capital-full capacity output ratio is constant but depart-
ing from his formulation, we assume that the labour-output ratio is also constant.
The efficiency condition of the Leontief function requires that kμ

σ
= l

a
. As we

assume that σ and a are assumed to be constants, and considering that the hat
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over the variables denotes the growth rate, the dynamic efficiency condition may
be written as

k̂ + μ̂ = l̂ . (19.2)

Let us assume that workers do not save and that the propensity save of capitalists
is denoted by s. Assuming, for the sake of simplicity only, that there is no
depreciation of the stock of capital, the change in the stock of capital is given by
k̇ = s(q − wl), where w is the wage. Considering that h = 1 − w/a denotes the
profit share1 since w/a is the wage share, it allows us to write, after some algebraic
manipulation, the variation of the stock of capital as

k̂ = shμ/σ. (19.3)

To determine the dynamic path of μ, let us recall that by definition μ = q/qf ,
where qf stands for the full capacity output. Then, by introducing the possibility of
under-capacity utilization, we obtain a version of the model that considers a more
inclusive role for demand. This allows a less stylized (simplified) explanation of
growth cycles that actually take into account the fact that, in the real world, the
stock of capital is often underutilized. Hence, after some algebraic manipulation,
we conclude that

μ̂ = q̂ − k̂ . (19.4)

To derive the dynamical path for q , let us follow Skott [22] through his
formulation of an output expansion function. According to this specification, higher
profitability stimulates the rate of expansion of production per unit of capital. The
rationale here is that a positive demand shock increases the profit share, with the
firms increasing the growth rate of output as a response:

q̂ = φ(h) , (19.5)

with φ′(h) > 0. But Skott [21] presented an alternative specification in which
he writes the price function in terms of the employment level too. The rationale
rests on the fact that there are adjustment costs concerning output expansion and
employment expansion. Skott and Ryoo [23, p. 837] for instance, consider that
“[h]igh rates of employment increase the costs of recruitment, and since the quit rate
tends to rise when labour markets are tight, the gross recruitment needs associated
with any given rate of expansion increase when low unemployment makes it difficult

1Our choice of writing the system in terms of the profit share instead of the wage share is related
to the fact that the extension presented here is made by using the expansion output function due to
Skott [22], which registers as a function of the profit share.
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to attract new workers.” In this case, expression (19.5) may be rewritten as

q̂ = φ(h, v) , (19.6)

with φh(h, v) > 0 and φv(h, v) < 0. In what follows we will generally refer to the
output expansion function as

q̂ = φ(·) . (19.7)

And we will make explicit if we are referring to either (19.5) or (19.6). As we show
below, the dynamics of the model changes substantially if we consider one of these
two options. Hence, by substituting expressions (19.3) and (19.7) into expression
(19.4), we obtain the differential equation for the rate of capacity utilization, namely:

μ̇ = μ[φ(·)− shμ/σ ] . (19.8)

Expression (19.8) shows, on the one hand, that if the capital accumulation grows at
a lower rate than the output, then the rate of capacity utilization will increase since
there will be a pressure on the use of the existing stock of capital. On the other hand,
if the capital accumulation grows at a higher pace than the output expansion, the rate
of capacity utilization will be on the wane, meaning that the under-utilization of the
stock of capital will increase. Let us define the function F(μ, h) = φ(·) − shμ/σ .
This allows us to rewrite expression (19.8) as

μ̂ = F(μ, h) . (19.9)

By substituting expression (19.4) into expression (19.3), we obtain after some
algebraic manipulation:

l̂ = φ(·) . (19.10)

The employment level is defined as v = l/n. Then it is possible to show that in the
presence of under-capacity utilization the differential equation for the employment
level may be written as

v̇ = v[φ(·) − η] , (19.11)

where η is the growth rate of population. To model the labour market, Goodwin [12]
has assumed a Marxian reserve army mechanism translated in terms of a Phillips
Curve, in which the growth rate of real wages increases with the employment rate.
Here let us adopt the following linear specification:

ŵ = θ(v − vo) , (19.12)
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where vo denotes the natural rate of employment. Such specification is a simplified
version of the expectations-augmented wage Phillips curve adopted by Chiarella et
al. [8]. By following Goodwin [12], we do not focus on the dynamics of prices.
Hence, we assume that the expectations of inflation do not enter the expression
(19.12), thus generating this version of the wage Phillips curve. Since h = 1−w/a,
by taking the derivative with respect to time yields ḣ = −ẇ/a. Then, by substituting
ḣ into expression (19.12), after some algebraic manipulation we obtain

ḣ = θ(1 − h)(vo − v) . (19.13)

We already mentioned that some authors, such as Sasaki [20] and Araujo et
al. [1], have already extended the Goodwin model to consider the possibility of
under-capacity utilization. The advantage of the approach presented here is in its
parsimony. After introducing a new equation for the dynamic path of capacity
utilization, the only behavioural relation that we add to the model is the output
expansion function by Skott [22]. In the next section, we study under what
circumstances such extension preserves the main conclusions of the original model
while offering some additional insights.

19.3 The Existence and Stability of Equilibria

Let us now consider the dynamical model of three autonomous non-linear differen-
tial equations formed by expressions (19.8), (19.11), and (19.13). In steady state the
relevant solution P ∗ = (v∗, h∗, μ∗) (with economic meaning) can be obtained by
considering v̇ = ḣ = μ̇ = 0.

But now we distinguish between the two versions of the output expansion
function. If we consider q̂ = φ(h), then the interior solution is obtained as follows.
From expression (19.13), v∗ = vo, since h < 1. Then, from expression (19.11), the
value of h∗ is given implicitly by h∗ = φ−1(η). The value of μ∗ is then given by
expression (19.8) according to: μ∗ = ση/sφ−1(η). By using the Hopf theorem, we
can prove the following:

Proposition 19.1 If q̂ = φ(h), the internal equilibrium point P ∗ = (v∗, h∗, μ∗) of
the dynamic system formed by expressions (19.8), (19.11), and (19.13) always has
a negative real root and a pair of pure imaginary roots, thus admitting a family of
periodic solutions.

Proof To prove this fact let us consider the Jacobian matrix calculated in P ∗ =
(v∗, h∗, μ∗), which is given by

⎡

⎣
0 voφ′(h∗) 0

−θ(1 − h∗) 0 0
0 μ∗[φ′(h∗)− (sμ∗)/σ ] −η

⎤

⎦ .
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By setting S1(P
∗), S2(P

∗), and S3(P
∗) as the coefficients of the characteristic

polynomial of matrix J evaluated at P ∗, i.e.:

λ3 + S1λ
2 + S2λ+ S3 = 0,

where

S1(P
∗) = − tr J (P ∗) = η.

The value of S2(P
∗) is given by the sum of the principal minors of J, namely

S2(P
∗) = det(J1)(P

∗)+ det(J2)(P
∗)+ det(J3)(P

∗), which yields

S2(P
∗) = voφ′(h∗)θ(1 − h∗).

The third coefficient of the characteristic polynomial, namely S3(P
∗), is given

by S3(P
∗) = − det J (P ∗). Hence

S3(P
∗) = ηθ(1 − h∗)voφ′(h∗).

Then we conclude S1(P
∗) > 0, S2(P

∗) > 0, and S3(P
∗) > 0 as 0 < h∗ < 1

and φ′(h∗) > 0. Besides, we compute the value of E as E(P ∗) = S1(P
∗)S2(P

∗)−
S3(P

∗). After some algebraic manipulation, one obtains

E(P ∗) = 0.

Then S2 > 0 and E(P ∗) = 0. Under such conditions, Asada and Semmler
[2] show that the characteristic polynomial has a pair of pure imaginary roots.2

According to Guckenheimer and Holmes [13], if the characteristic polynomial at
P ∗ has a pair of pure imaginary eigenvalues and no other eigenvalues with zero real
parts, there exist some non-constant periodic solutions of the system.

To illustrate the periodic orbits, let us assume a particular functional form for
the expansion function. Let us consider that q̂ = φ(h) = 0.91h − 0.041. Such
specification is different from the usual choices by Skott, in which a highly non-
linear function is adopted. We have chosen a linear specification because we want
to emphasize that the cyclical solution of the model does not depend on the ad-hoc
choice of a non-linear output expansion function.3

2For Asada and Semmler [2, p. 634], the characteristic polynomial has a pair of pure imaginary
roots if and only if S2 > 0 and E = 0.
3Flaschel [10] also considered a linear expansion function and justified that choice claiming that
“behaviour around the steady state should at first be assumed to be as linear as possible in order to
investigate the dynamics first on the basis of intrinsic or unavoidable non-linearities solely, that is,
as linear growth rate dynamics”.
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Fig. 19.1 Periodic solutions
in the space (v,handμ) when
the expansion function
depends on income
distribution only
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In addition, we assume that v0 = 0.96, η = 0.2775, θ = 0.5, and (s/σ ) =
0.86. Then, the steady state values are v∗ = 0.94, h∗ = 0.35, and μ∗ =
0.9219269103. The characteristic polynomial of the Jacobian matrix is given by
λ3 + 0.2775λ2 + 0.2780050λ+ 0.2275 = 0. It has a pair of pure imaginary roots
λ1,2 = ±0.527261794557504i and a negative real root λ3 = −0.2775. According
to the Proposition 19.1, all solutions are periodic. A family of periodic solutions of
v(t), h(t), and μ(t), is illustrated in Fig. 19.1.

If we consider the alternative specification for the output expansion function,
namely q̂ = φ(h, v), we obtain another solution. From expression (19.11), the value
of h∗ is given implicitly by φ(vo, h∗) = η after determining the value of v∗ = vo

from (19.13). Then, the value of μ∗ is then given by expression (19.8) according to:
μ∗ = ση/(sh∗). By using the Routh–Hurwitz criterion, we can prove the following:

Proposition 19.2 If the output expansion function depends both on the profit share
and the employment level, the singular pointP ∗ = (v∗, h∗, μ∗) of the system formed
by expressions (19.8), (19.11), and (19.13) is locally stable.

Proof Now the Jacobian calculated in P ∗ = (v∗, h∗, μ∗) is given by

⎡

⎣
voφv(v

o, h∗) voφh(v
o, h∗) 0

−θ(1 − h∗) 0 0
μ∗φv(vo, h∗) μ∗[φh(vo, h∗)− (sμ∗)/σ ] −η

⎤

⎦ .

The necessary and sufficient condition for the local stability is that all roots
of the characteristic equation have negative real parts, which from the Routh–
Hurwitz criterion requires that S1(P

∗) > 0, S2(P
∗) > 0, S3(P

∗) > 0, and
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E(P ∗) = S1(P
∗)S2(P

∗) − S3(P
∗) > 0 , where S1(P

∗), S2(P
∗), and S3(P

∗) are
the coefficients of the characteristic polynomial of matrix J evaluated at P ∗, which
is given by

λ3 + S1λ
2 + S2λ+ S3 = 0,

where

S1(P
∗) = − tr J (P ∗) = −voφv(vo, h∗)+ η,

which is positive since all the parameters are positive, 0 < h∗ < 1 and φv(vo, h∗) <
0. The value of S2(P

∗) is given by S2(P
∗) = det(J1)(P

∗) + det(J2)(P
∗) +

det(J3)(P
∗) , which yields

S2(P
∗) = voφh(vo, h∗)θ(1 − h∗)− ηφv(vo, h∗)vo

which is positive since all the parameters are positive, 0 < h < 1, and φh(vo, h∗) >
0 and φv(vo, h∗) < 0. Hence, we conclude that S2(P

∗) > 0. The third coefficient of
the characteristic polynomial, namely S3(P

∗), is given by S3(P
∗) = − detJ (P ∗).

Hence

S3(P
∗) = ηθ(1 − h∗)voφh(vo, h∗).

As 0 < h∗ < 1 and φh(vo, h∗) > 0, we conclude that the sign of S3(P
∗) > 0.

Besides, since E(P ∗) = S1(P
∗)S2(P

∗)− S3(P
∗), we obtain

E(P ∗) = φv(vo, h∗)vo[−η2 + voηφv(vo, h∗)− φh(vo, h∗)θ(1 − h∗)].

From the hypothesis made, it is easy to see that E(P ∗) > 0. Then we conclude
that the interior equilibrium P ∗ = (v∗, h∗, μ∗) given by v∗ = vo, φ(vo, h∗) = η

and μ∗ = ση/sh∗ is asymptotically stable (Fig. 19.2).

To illustrate the stable equilibrium, let us assume that the expansion function is
given by q̂ = φ(h) = 0.91h − 0.2v − 0.041. With this specification, and using
the above parameters, we obtain the following equilibrium point v∗ = 0.94, h∗ =
0.3197802198, and μ∗ = 0.9017821466. The characteristic polynomial is given by
λ3+0.25λ2+0.302586λ+0.01803766 = 0. It has a negative real root λ1 = −0.062
and a pair of complex roots λ2,3 = −0.094 ± 0.531125220632141i. According to
the Proposition 19.2, the singular point P ∗ = (0.94, 0.3197802198, 0.9017821466)
is asymptotically stable, which can be illustrated as follows (Figs. 19.3 and 19.4).

These results show that the introduction of the rate of capacity utilization as a new
variable in the Goodwin framework through the output expansion function changes
the dynamical property of the system. If the output expansion function depends
only on the income distribution, the model displays a family of periodic solutions.
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Fig. 19.2 Vector field in the
space (v,handμ) when the
expansion function depends
on income distribution only

0.90

0.8 0.9 1.0 1.1

0.25

0.30

0.35

0.45

0.400.91

0.92

0.93

0.94

Goodwin’s Growth Cycle

μ(t)

ν(t)

h(t)

Fig. 19.3 Local stable
equilibrium for (v,handμ)
when the expansion function
depends on income
distribution and employment
level

0.82

Goodwin’s Growth Cycle

0.90
1.00

1.10
0.26 0.28 0.300.32 0.340.360.38 0.400.42 0.44

0.84

0.86

0.88

0.90

0.92μ(t)

ν(t)

h(t)

0.94

0.96

0.98

1.00

If it also depends on the employment level, the dynamical property of the system
changes from a centre to a stable equilibrium. Within the Goodwin literature in
which the profit squeeze is the outcome, the profit-led is the most probable regime.
But in the end, the prevalence of wage-led or profit-led regimes depends on the
combination of parameters, which is the content of the next.
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Fig. 19.4 Vector field for (v,handμ) when the expansion function depends on income distribution
and employment level

Proposition 19.3 The interior equilibrium is either profit-led or wage-led depend-
ing on the sign of φh(v∗, h∗) − sμ∗. If φh(v∗, h∗) > sμ∗ we have a profit-led
demand regime, and if φh(v∗, h∗) < sμ∗ we have a wage-led demand regime.

Proof From expression (19.8) evaluated in steady state, we can write

F(μ∗, h∗) = φh(v∗, h∗)− sμ∗/σ = 0. (19.14)

By the implicit function theorem, we know that

∂μ

∂h
= −Fh

Fμ
= φh(v

∗, h∗)− sμ∗

sh∗ .

Then the sign of ∂μ
∂h

depends on the sign of the numerator. If φh(v∗, h∗) > sμ∗,

then ∂μ
∂h
> 0 and we have a profit-led demand regime, and if φh(v∗, h∗) < sμ∗,

then ∂μ
∂h
< 0 and we have a wage-led demand regime.

To study the existence of limit cycles, let us adopt the Hopf bifurcation theorem
for the system formed by expressions (19.8), (19.11), and (19.13) when the output
function also depends on the employment level using η > 0 as the bifurcation
parameter. Note that for η = η∗, the Jacobian matrix J = J (P ∗) has a pair of
complex eigenvalues with zero real part if and only if: S2 > 0 and E(P ∗) =
S1(P

∗)S2(P
∗)− S3(P

∗) = 0. Then we can prove the following propostion.
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Proposition 19.4 If the output expansion function depends both on the income
distribution and the employment level, the system (19.8) , (19.11), and (19.13) does
not admit a limit cycle.

Proof To study the existence of a limit cycle, let us adopt the Hopf bifurcation
theorem (see Gandolfo [11]). We have to check firstly if there exists a parameter,
known as the parameter of bifurcation, which makesE(vo, η) = 0. From expression
(19.15) one obtains

φv(v
o, h∗)vo[−η2 + voηφv(vo, h∗)− φh(vo, h∗)θ(1 − h∗)] = 0. (19.15)

From expression (19.15), two parameters are candidates to the bifurcation
parameter, η > 0 and θ . As φv(vo, h∗)vo > 0 we obtain a quadratic equation in
η, namely:

η2 − voφv(vo, h∗)η + φh(vo, h∗)θ(1 − h∗) = 0. (19.16)

It is easy to see that θ cannot be the bifurcation parameter since

θ = −η2 + voφv(vo, h∗)η
φh(vo, h∗)θ(1 − h∗)

< 0. (19.17)

Now let us try η as the bifurcation parameter. The discriminant of the quadratic
expression (19.16) is given by

Δ = [voφv(vo, h∗)]2 − 4φh(v
o, h∗)θ(1 − h∗). (19.18)

To yield a relevant solution, Δ has to be larger than zero, which requires that
[voφv(vo, h∗)]2 > 4φh(vo, h∗)θ(1 − h∗). If this condition holds, then the only
possible solution is

η∗ = voφv(v
o, h∗)

2
+

√
Δ

2
(19.19)

since the conjugate root is negative. But even in the case of expression (19.19),
we obtain after some algebraic manipulation that η < 0. Then, one concludes that
E(P ∗) > 0. Therefore, the polynomial characteristic has no two purely imaginary,
simple conjugate eigenvalues at η = η∗. Thus, the system (19.8), (19.11), and
(19.13) has no periodic orbits.

Then we demonstrated in this section that the extended Goodwin model using
the Skott formulation of an output expansion function admits a family of periodic
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solutions4 if such function relies only on the profit share as in Skott [22]. If it also
registers as a function of the employment level as in Skott [21], then the system
displays no periodic orbits. Such a result is in strike contrast with the empirical
literature testing extended versions of the Goodwin model even we consider the
possibility of under-capacity utilization (See e.g. [26]). Then we are prone to
conclude that the most parsimonious specification in which the product expansion
functions depends only on the income distribution makes the model fit better the
data. In the next section, we present one of these exercises.

19.4 Testing the Extended Goodwin Model on the US
Economy

The theory of endogenous distributive cycles has been examined empirically in a
significant number of studies. Qualitative support can be found in Desai [9], Harvie
[15], Veneziani and Mohun [25], and Zipperer and Skott [26], amongst others.
Barbosa-Filho and Taylor [4], Basu et al. [5], Kiefer and Rada [17], and Barbosa-
Filho [3] provide parametric quantitative evidence.

The present paper adopts a country-specific time series approach to the problem.
We followed the Vector Auto-Regressive (VAR) methodology used by Barbosa-
Filho [3]. He has focused on the impulse-response function for establishing the
pattern for the US economy has concluded that the “rate of employment goes down
after an exogenous increase in the wage share, as well as that the wage share
goes up after an exogenous increase in the rate of employment. These results are
characteristic of a Marxian profit-led economy (...).” However, the conclusion that
the economy is a Marxian profit-led economy does not confirm the existence of
distributive cycles unambiguously for the US economy. To establish this result other
econometric tests, such as causality should have been adopted.

Our dataset is quarterly and comprehends the period between 1970 and 2019.
All series are from the Federal Reserve Bank of St. Louis. Employment rate series
were obtained as the opposite of the unemployment rates. We compute the profit
share as the opposite of the compensation of employees as a percentage of the net
domestic income at production prices. For the VAR estimations, we converted the
series to logarithmic form. From an empirical point of view, distributive cycles can
be interpreted as the short-run dynamics that generate the long-run trend as a result
of non-linear interactions. Then, as a preliminary step, we detrended our time series
using the traditional Hodrick–Prescott filter with a smoothing parameter of 1600, as
depicted in Figs. 19.5, 19.6, and 19.7. Values of cyclical deviations of the trend are
shown on the left axis, while values of the trend itself are on the right. We focus on
the relationship between the variable trends.

4Araujo et al. [1] have already shown a similar result. But those authors have assumed an
independent investment function that departs from the Goodwin formation.
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Fig. 19.5 Profit share series: quarterly data from 1970q1 to 2019q3
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Fig. 19.6 Capacity utilization series: quarterly data from 1970q1 to 2019q3

The traditional VAR approach assumes that all series in the model are sta-
tionary. In this sense, the first step in the econometric analysis is to check
whether the detrended series contains a unit root. To this end, the Kwiatkowski–
Phillips–Schmidt–Shin (KPSS), and the Augmented Dickey–Fuller (ADF) tests are
performed. The null hypothesis of the KPSS test is that the series is stationary, and
the null hypothesis of the ADF test is that the series is non-stationary. The outcome
of these tests (see Appendix A.3) indicated that the three detrended time series are
I(0).
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Fig. 19.7 Employment level series: quarterly data from 1970q1 to 2019q3

The next step is to determine the appropriate lag length employing the Akaike
(AIC), Schwartz (SC), and Hannan–Quinn (HQ) information criteria. All these
criteria suggest that VAR(2) is the best model (see Table A.13 in Appendix A.3).
In this sense, our benchmark specification with three variables, one constant, and
two lags, provides a parsimonious model. The parameters of the VAR model are
estimated by the OLS method, and four diagnostic tests are performed (see the
Appendix A.3). The first one indicates that the VAR model with two lags is stable
insofar as the inverse roots of the AR characteristic polynomial have a modulus less
than one and lie inside the unit circle (see Fig. A.1).

The second one is performed to check the autocorrelation hypothesis. Since the
p-value of the Lagrange Multiplier test is about 0.53 in the first lag (see Table A.15),
there is no evidence of autocorrelation in the benchmark model specification. The
third one, the White heteroscedasticity test with cross terms, has a p-value close
to zero. This suggests that there is no homoscedasticity in the residuals of the
model. The last one, the Jarque–Bera test with Cholesky’s covariance (Lutkepohl
[19]), suggests that the model residuals have a normal distribution, but this result is
sensible to the orthogonalization method.

The parameters estimated by VAR models are hard to be interpreted (the t-
tests on individual coefficients are not valid because the regressors, in general,
are highly collinear). Considering this, we follow the standard literature of time
series econometrics and focus only on the generalized impulse-response functions.
Figure 19.8 presents the impulse-response functions to study how the series react to
shocks from other variables. The most relevant column is the first one, as it focuses
on the response of the employment level and capacity utilization to an exogenous
shock in the profit share.
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In line with the theoretical model presented, we expect, for a profit-led regime,
that a positive shock in the profit share increases both the employment rate and
the capacity utilization. Results indicate that a positive disturbance in the profit
share increases both the capacity utilization and the employment level. The positive
impact on the employment rate is expected insofar as higher profitably increases
accumulation, which leads to higher levels of employment. That corresponds to
the traditional distributive cycle mechanism. With higher levels of employment, we
could expect a further increase in capacity utilization due to the higher consumption
of the working class. Then we have a profit-led regime.

In Table A.14 in the Appendix, we report the Granger causality test. Results
support the hypothesis that profit share causes the employment level and capacity
utilization. But causality also runs in the opposite direction, with the employment
level and capacity utilization causing the profit share. That underpins the idea that
those variables are intrinsically related to the business cycle, and it is not possible to
refer to any of them as exogenous. The aforementioned Table A.14 in the Appendix
reports the estimate p-values.

As discussed at the beginning of this section, from an empirical point of view,
we can interpret distributive cycles as the short-run cycles that generate the long-run
trend as a result of non-linear interactions. Using quarterly data for the US economy,
we did find some empirical support to conclude that both growth and demand
regime have been profit-led in the considered period. The standard VAR model
specification provided some evidence that a positive profit share shock affects, in
the same direction, both economic growth and the rate of capacity utilization.

19.5 Conclusions

In this chapter, we extended Goodwin’s model by considering the rate of capacity
utilization as a new variable in the system. The introduction of this variable allows
us to better understand the connections amongst the employment level, profit share,
and rate of capacity utilization. When using the output expansion as a function
of the profit share only, the model exhibits periodic orbits, implying that original
insight of the Goodwin model is preserved. But supposing that the output expansion
also as a function of the employment level, the model has an asymptotically stable
equilibrium that displays no periodic orbits amongst the variables (which departs
from Goodwin’s prediction of endogenous distributive cycles).

Finally, we empirically addressed the relationship between employment, income
distribution, and capacity utilization to the US economy using quarterly data from
1970 to 2019. By using generalized impulse-response functions provided by the
VAR model, we have concluded that a positive profit share innovation affects
the employment rate and the rate of capacity utilization positively, suggesting a
profit-squeeze mechanism. Granger causality also gives support to the idea that all
variables are intrinsically related and determined by each other. Even though these
results correspond to an indirect assessment of our theoretical model, they show that
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our theoretical framework can reproduce the main dynamics found in data, adding
some robustness to the analysis made by us.
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Chapter 20
Financial Stress, Regime Switching
and Macrodynamics

Pu Chen and Willi Semmler

20.1 Introduction

Since the seminal papers on cointegration by Engle and Granger [7] and Johansen
[16] vector error correction model (VECM) has been widely used to model
macroeconomic time series. The virtue of VECM is that it permits to test both
the economic concepts of equilibrium and the adjustment process towards the
equilibrium. Then, the long-run equilibrium relations as well the adjustment to the
equilibrium can be empirically testable. However, the phenomena of business cycles
point to differences in the adjustment process during different phases of the business
cycle. Hence, regime switching vector autoregressive models have been used by
many researchers, such as Hamilton [11], Mittnik et al. [18] and Chen et al. [5], to
take into account the impact of the different phases in the business cycle. Balke et
al. [3] combine these two classes of models and present the regime switching vector
error correction models. Since then, regime switching VECM has been applied in
numerous empirical analysis.

Balke et al. [3] applied threshold VECM to reflect discrete adjustment responses
to a cointegrating relationship when it is “too far from the equilibrium”. The cointe-
gration relation is obtained through a regression relying on the super consistency of
the least square (LS) estimator. The model specification is verified through tests of
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the existence of the threshold nonlinearity. Hansen et al. [12] propose a maximum
likelihood estimation for a two regime threshold VECM, where the switching
variable is also the endogenous cointegrating relationship. A grid search algorithm
is proposed to estimate both the cointegration vector and the threshold value for
the regime classification simultaneously. An R package is available for this class of
threshold VECMs.1

Most empirical research works of threshold VECMs follow the approach pro-
posed in Hansen et al. [12], Bec et al. [4], Saikkonen [20, 21]. They present a more
general class of regime switching error correction models, where the number of
regimes can be more than two and the switching can be a discontinuous adjustment
or a continuous smooth transition. Saikkonen [21] points out a difficulty in this class
of models is “to determine theoretically the exact number of I (1) components in the
models”. Hence, it is inconclusive how to test the cointegration rank in this class of
models. Common to the mentioned regime switching error correction models is that
the cointegrating relations are linear, and the adjustments are nonlinear or switching.
The thresholds are determined endogenously.

Gonzalo et al. [9] take a different approach to regime switching error correction
models. In their models, the cointegrating relations are switching whereas the
adjustment is linear. The switching variable is an exogenously stationary variable.
This approach is less attractive as the switching long-run equilibrium relations are
hard to justify. In addition, leaving an influencing variable not included in the
VECM is also hard to justify. In this chapter, we will present a specific regime
switching VECM where the cointegrating relation is linear, while the switching is
determined by a stationary variable in the system.

20.2 Self-exciting Threshold Cointegrated Autoregressive
Model

We consider a regime switching autoregressive model of order p that consists of
two regimes:

ΔXt =
(
α(1)βXt−1 +

L−1∑

j=1

φ
(1)
j ΔXt−j + u(1)t

)
1[ft−d≤τ ]+

(
α(2)βXt−1 +

L−1∑

j=1

φ
(2)
j ΔXt−j + u(2)t

)
1[ft−d>τ ] , (20.1)

u
(i)
t ∼ N(0,Σ(i)), for i = 1, 2 ,

1See Stigler et al. [22] for more details.
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where Xt is a p dimensional vector, β is a p × r matrix with p > r , β is called
cointegration vectors, r is called cointegration rank, ft−d is the threshold variable
observed at time t − d , and the regimes are defined by the prespecified threshold
values −∞ = τ0 < τ < ∞. For ft−d = g(ΔXj,t−1,ΔXj,t−2, . . . ,ΔXj,t−d), i.e.,
the threshold variable is a function of the lagged endogenous variables

ft−d = g(ΔXj,t−1,ΔXj,t−2, . . . ,ΔXj,t−d ) = Xj,t−1,

i.e., the threshold variable is simply a component ofXt with one lag. τ is the thresh-
old value. The model is called self-exciting threshold cointegrated autoregressive
model of order L with two regimes, and it is denoted as SETCIAR(L, d, 2).

Our model differs from many threshold VECMs mentioned in the previous
section in that the switching variable is an I (0) (integrated of order 0) variable
which does not involve any estimation. In addition, the threshold value τ is such
that the sample can be separated into two different regimes by a suitable setting.

This setting simplifies many technical issues in parameter estimation and speci-
fication tests. In principle, the data analysis could be conducted in the two separate
subsamples, each of which is a conventional VECM. The only issue of concern is
how to take into account the restriction of the same cointegration relations across
the two regimes to increase the efficiency of estimation.

20.2.1 Test of Cointegration Rank

As described in the last section, the test of the cointegration rank could be done
in principle in two separate subsamples. This approach might, however, lead to
conflicting results with respect to the cointegration rank in the two subsamples.
We use the fact that the cointegration space is identical in the two regimes and
test the cointegration rank in the whole sample. The procedure can be described as
follows:

• Run the auxiliary regression:

ΔXt = π̂0 +
L−1∑

i=1

π̂
(1)
l ΔXt−l1[Xj,t−1≤τ ] +

L−1∑

i=1

π̂
(2)
l ΔXt−l1[Xj,t−1>τ ] + ût ,

(20.2)

Xt−1 = θ̂0 +
L−1∑

i=1

θ̂
(1)
l ΔXt−l1[Xj,t−1≤τ ] +

L−1∑

i=1

θ̂
(2)
l ΔXt−l1[Xj,t−1>τ ] + v̂t ,

(20.3)
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• let

Σ̂vv = 1

T

T∑

t=1

v̂t v̂
′
t ,

Σ̂uu = 1

T

T∑

t=1

ût û
′
t ,

Σ̂vu = 1

T

T∑

t=1

v̂t û
′
t ,

Σ̂uv = 1

T

T∑

t=1

ût v̂
′
t .

• Calculate the eigenvalues of

Σ̂−1
vv Σ̂vuΣ̂

−1
uu Σ̂uv, (20.4)

with ordered eigenvalues λ̂1 > λ̂2 > . . . > λ̂p. These eigenvalues can be used to
calculate the Johansen test statistics. Following [15], we have the trace test:

LA − L0 = −T
p∑

i=r+1

log(1 − λi). (20.5)

The critical value for the tests can be found in [17].

20.2.2 Parameter Estimation

Following Lemma 13.1 in [17], after a proper normalization, the eigenvectors of
(20.4) that correspond the r largest eigenvalues span the cointegration space and
hence are consistent estimator of β. After obtaining a consistent estimator of β̂,
the other regime-dependent parameters can be estimated through the following
regression:

ΔXt =
(
α̂(1)β̂Xt−1 +

L−1∑

i=1

φ̂
(1)
l ΔXt−l

)
1[Xj,t−1≤τ ]+

(
α̂(2)β̂Xt−1 +

L−1∑

i=1

φ̂
(2)
l ΔXt−l

)
1[Xj,t−1>τ ] + ût . (20.6)
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In the above regression we plug in the estimated β̂Xt−1 as a regressor. Because
β̂ is consistent, then the estimator α̂(i), φ̂(i)l are consistent for i = 1, 2 and l =
1, 2, . . . , L − 1.

20.2.3 Test of Switching

A key hypothesis of the regime switching VECM in (20.1) is the existence of two
regimes. This should, however, be tested against the data. To test the null of no
switching against the alternative of switching, a likelihood ratio test can be applied,
given that the cointegrating relations have consistently been estimated. This boils
down to testing the following parameter restrictions in the linear regression of
(20.6):

HO :(α(1), φ(1)l , . . . , φ(1)L−1) = (α(2), φ(2)l , . . . φ(2)L−1) ,

HA :(α(1), φ(1)l , . . . , φ(1)L−1) �= (α(2), φ(2)l , . . . φ(2)L−1) .

20.3 Test of the Model on Economic Data

The dynamic interaction between financial stress and real output has drawn renewed
attention of many researchers after the global financial crisis. Mittnik et al. [18,
19] develop a decision theoretical model that results in asymmetric interaction in
different regimes. Mittnik et al. [18] and Chen et al. [5] apply regime switching VAR
models to take into account the nonlinearity in the data. Following this approach,
we apply a regime switching vector error correction model to investigate asymmetric
adjustments to the equilibrium in different regimes.

We consider three variables in our study: the IMF financial stress index, the
industrial output index, and the short-term interest rate. These three variables are
chosen to be a measure of the real output, a measure of the financial stress, and a
measure of the policy responses, respectively. The data are from IMF and OECD
statistics.
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The IMF Financial Soundness Indicators (FSI) is available for a large number
of EU countries [1].2 The IMF’s (2011) FSI3 refers to three major sources and
measures of instability, namely: (1) a bank related index—a 12-month rolling
beta of bank stock index and a Ted or interbank spread, (2) a security related
index—a corporate bond yield spread, an inverted term spread, and a monthly stock
returns (measured as declines), 6-month rolling monthly squared stock returns and
finally, (3) an exchange rate index—a 6-month rolling monthly squared change
in real exchange rates. All three sets of variables are detrended and scaled with
their standard deviations in order to normalize the measures. Both the Industrial
Production Indices and the short run interest rates are taken from the OECD
Statistics.

20.3.1 Discrimination of Regimes

Identification of regimes is critical in modelling a Multi-Regime VAR (MRVAR)
model [8, 19]. While many researches identify the regimes based on the sign and
the size of the error correction term, which represent deviations from the long-
run equilibrium, we identify the regime by the periods of the interest rate cuts or
the periods of interest rate hikes. Typically during recession periods of a business
cycle, we observe consecutive interest rates cuts, while during expansion periods,
we observe rate hikes. Interest rate cuts and interest rate hikes reflect different policy
responses to different economic circumstances, which aim at adjusting the economy
to the long-run equilibrium state. This way of identification of the regimes simplifies
the model specification and inference. In principle, we could divide the cointegration
analysis in two separate subsamples of the respective regimes. However, a joint

2The Federal Reserve Bank of Kansas City and the Fed St. Louis have also developed a general
financial stress index, called KCFSI and STLFSI, respectively. The KCFSI and the STLFSI take
into account the various factors generating financial stress. The KC index is a monthly index, the
STL index a weekly index, to capture more short run movements, see also Hatzius et al. [13].
Those factors can be taken as substitutes for the leverage ratios as measuring financial stress. See
also the Bank of Canada index for Canada, i.e., Illing and Lui [14]. Both the KCFSI and STLFSI
include a number of variables and financial stress is related to an: (1) increase in the uncertainty
of the fundamental value of the assets, often resulting in higher volatility of the asset prices, (2)
increase in uncertainty about the behaviour of the other investors, (3) increase in the asymmetry of
information, (4) increase in the flight to quality, (5) decrease in the willingness to hold risky assets,
and (6) decrease in the willingness to hold illiquid assets. The principle component analysis is then
used to obtain the FSI. Linear OLS coefficients are normalized through their standard deviations
and their relative weights computed to explain an FSI index. A similar procedure is used by Adrian
and Shin [2] to compute a macro economic risk premium. We want to note that most of the variables
used are highly correlated with credit spreads. The latter have usually the highest weight in the
index, for details see Hakkio and Keeton [10, Tables 2–3].
3This is published for advanced as well for developing countries, see IMF (2008) and IMF FSI
(2011).
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analysis will increase the efficiency of the inference and also avoid the problem that
we might obtain two different sets of cointegration relations.

20.3.2 Model Specification

The specification of the model consists of the following three steps:

• Test of unit roots in the time series

Country USA DEU FRA ITA ESP

log(IP )

ADF 0.0100 0.02396 0.2013 0.1491 0.4520

PP 0.5449 0.1041 0.4711 0.4966 0.7575

CFSI

ADF 0.7328 0.6946 0.3821 0.2185 0.2185

PP 0.9481 0.8363 0.8438 0.841 0.8410

R

ADF 0.4813 0.0907 0.1197 0.0427 0.0972

PP 0.8503 0.5502 0.5597 0.4685 0.4166

• Selection of the lag length in a two regime VAR in levelL, for a system consisting
of three variables yt = (log(IPt ), CFSIt , Rt )′.
The results of the lag selection using the BIC criteria are summarized in the
following table:

Country USA DEU FRA ITA ESP

Lag length regime 1 2 2 2 2 2

Lag length regime 2 2 2 2 2 2

• Testing the cointegration rank in a two regime VECM for the selected lag length
L − 1. The following tables show the results of Johansen trace test for the five
countries respectively:

USA teststatistic critical_value
r <= 0 | 24.5834318 21.49
r <= 1 | 9.4880552 15.02
r <= 2 | 0.7729179 8.19

DEU teststatistic critical_value
r <= 0 | 31.709765 21.49
r <= 1 | 11.640522 15.02
r <= 2 | 1.955265 8.19

FRA teststatistic critical_value
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r <= 0 | 41.628683 21.49
r <= 1 | 15.789192 15.02
r <= 2 | 1.084153 8.19

ITA teststatistic critical_value
r <= 0 | 32.67530 21.49
r <= 1 | 10.07149 15.02
r <= 2 | 1.95474 8.19

ESP teststatistic critical_value
r <= 0 | 26.58546122 21.49
r <= 1 | 13.46680497 15.02
r <= 2 | 0.02376718 8.19

The test results show that only in the system of FRA there are two cointegration
relations, while in all other four countries there is only one cointegration relation
in the system respectively.

• Model selection based on information criteria to discriminate between one
regime VECM and two regime VECM. We estimate a standard one regime
VECM and a two regime VECM for a system consisting of three variables
yt = (FSIt , IPt , Rt )

′. We use AIC to discriminate between a VECM or an
MRVECM. The AIC is given by

AIC(M,p1, p2) =
M∑

j=1

[
Tj log |Σ̂j | + 2n

(
npj + n+ 3

2

)]
, (20.7)

whereM = 2 is the number of regimes; pj is the autoregressive order of regime
j ; Tj is the number of observations associated with regime j ; Σ̂j is the estimated
covariance matrix of the residuals of regime j ; and n denotes the number of
variables in the vector yt .4

Country USA DEU FRA ITA ESP

AIC OR 198.6 358.8 100.3 299.2 212.5

AIC MR 34.6 327.6 73.7 238.6 180.7

The values of the AIC criteria of the one regime models are all larger than those
of the AIC criteria of the two regime models. Hence the AIC information criteria
favour the two regime VECMs.

4The AIC takes into account for possible heterogeneity in the constant terms, cj , and residual
covariance, Σj , across regimes. This AIC criterion is also applied in Mittnick and Semmler [18].
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• Test of regime switching
Since a one regime VACM can be seen as a multi-regime with identical
parameters in the different regimes, we can test the existence of multi-regimes
through testing the null of equal parameters across different regimes against the
alternative of unequal parameters in different regimes.

HO : (α(1), φ(1)l , . . . , φ(1)L−1) = (α(2), φ(2)l , . . . φ(2)L−1)

HA : (α(1), φ(1)l , . . . , φ(1)L−1) �= (α(2), φ(2)l , . . . φ(2)L−1)

Country USA DEU FRA ITA ESP

p-value 1.005E−13 0.00010 6.47E−08 6.84E−10 9.98E−06

The test results show clearly that the null of one regime is rejected in all five
countries, i.e., the data support the specification of regime switching VECMs.
This is consistent with the results of model selection based on the AIC criteria.

20.3.3 Impulse and Response

The following impulse response functions (see Fig. 20.1) are the within-regime
impulse response function (see Ehrmann [6] for more details). They can be used
to trace out short run dynamics of the system. The impulses are all a one unit
impulses, the responses are the responses of the system in (20.1), i.e., they are the
industrial output, the financial stress index and the short run interest rate denoted by
(IPt , FSIt , Rt ), respectively.

The three graphs on the first row are responses of (IPt , FSIt , Rt ) to a one unit
positive impulse of IP . The graphs on the second row are responses to the shock of
a one unit increase in FSI . The graphs in the third row are responses to the shock
of a one unit increase in R. The first three rows are impulse responses in the rate-cut
regime. The second three rows are impulse responses in the non-rate-cut regime. We
observe:

• A one unit output shock will have a long lasting positive effect on the output
over 20 periods. The effects are stronger in the non-rate-cut regime than in the
rate-cut regime. In the rate-cut regime the effects of the output shock on FSI and
R are statistically insignificant, in the non-rate-cut regime the output shock will
decrease the financial stress and decrease the short-term interest rate.

• A one unit financial stress shock has lasting effects on the financial stress in both
regimes over 20 quarters. Its effects are more persistent in the non-rate-cut regime
than in the rate-cut regime. The shock has negative effects on the output in both
regimes. Interestingly, the shock has opposite effects on the short-term interest
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Fig. 20.1 Impulse response function of the rate-cutting and the non-rate-cutting regimes USA
showing that: (1) a positive output shock may have positive effect on the output, almost no effect on
FSI andR in the rate-cut regime, and a negative effect in the non-rate-cut regime on financial stress
short-term interest rate; (2) a positive financial stress shock has positive effects on the financial
stress in non-rate-cut and rate-cut regimes, negative effects on the output in both regimes, opposite
effects on the short-term interest rate; (3) a positive interest rate shock has positive effects on
the short-term interest rate, a negative impact on the output in the non-rate-cut regime, a positive
impact in the rate-cut regime, a positive effect on the financial stress in the non-rate-cut regime,
and negligible in the rate-cut regime
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Fig. 20.1 (continued)

rate. While in the rate-cut regime the financial stress shock will decrease the
short-term rate, in the non-rate-cut regime it will increase the short-term interest
rate.

• The one unit interest rate shock has lasting effects on the short-term interest rate.
Its effects are significantly larger in the non-rate-cute regime than in the rate-cut
regime. The interest rate shock has different effects in the two regimes. While
in the non-rate-cut regime an interest hike shock has a negative impact on the
output, it has a positive impact on the output in the rate-cut regime, though the
effects are not statistically significant. In the non-rate-cut regime, the interest
rate shock will increase the financial stress; its effect in the rate-cut regime is
insignificant.

The following graphs (see Fig. 20.2) are the impulse response functions of
Germany. The three graphs on the first row are responses of (IP, FSI,R) to a
one unit impulse of IP . The three graphs in the second row are responses to FSI .
The first three rows contain the responses in the rate-cut regime and the second three
rows contain the responses in the non-rate-cut regime.

• A one unit output shock will have a long lasting positive effect on the output
over 20 periods. The effects are similar and statistically significant in both the
non-rate-cut regime and the rate-cut regime. The one unit output shock has no
statistically significant effect on the financial stress and the short-term interest
rate in both regimes.

• The shock of a one unit increase in financial stress index has lasting effects on
the financial stress in both regimes. While in the rate-cut regime the effects die
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Fig. 20.2 Impulse response function of the rate-cutting and non-rate-cut regimes in DEU showing
that: (1) A positive output shock may have positive effect on the output, almost no effect on FSI
and R in the rate-cut regime, and a negative effect in the non-rate-cut regime on financial stress
short-term interest rate; (2) A positive financial stress shock has positive effects on the financial
stress in non-rate-cut and rate-cut regimes, negative effects on the output in both regimes, opposite
effects on the short-term interest rate; (3) A positive interest rate shock has positive effects on the
short-term interest rate, a negative impact on the output in both regimes, a positive (but statistically
insignificant) effect on the financial stress in the non-rate-cut regime and rate-cut regime
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Fig. 20.2 (continued)

out after 20 periods, the effects remain significant in the non-rate-cut regime. The
shock has negative effects on the output in both regimes. However, the effects in
the non-rate-cut regime are stronger than in the rate-cut regime. The shock has
a negative effect on the short-term interest rate in the rate-cut regime, while its
effects in the non-rate-cute regime are statistically insignificant.

• A one unit interest rate shock has lasting effects on the short-term interest rate in
the non-rate-cut regime. Its effects in the rate-cute regime vanish after 10 periods.
The unitary shock (one unit positive impulse) in interest rate has a negative effect
on the output in both regimes, though the effects are not statistically significant.
In both regimes, the shock of one unit increase in the short-term interest rate will
increase the financial stress, although these effects are not statistically significant.

The next diagrams are the impulse response functions for Italy (see Fig. 20.3).
The orders of the IRFs are organized in the same way as in the previous graphs. In
the Italian case we observe:

• A one unit output shock will have a lasting effect on the output in both regimes.
The effect is slightly stronger in the non-rate-cut regime. Its effects on the
financial stress and the short-term interest rate are statistically insignificant in
both regimes.

• A one unit financial stress shock has a significant negative impact on output in
both regimes. The effects are stronger in the non-rate-cut regime. The effects of
the financial stress shock on financial stress die out in the rate-cut regime after 15
periods, while the effects remain persistent in the non-rate-cut regime. Notably,
the responses of the short-term interest rate are negative in the rate-cut regime,
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Fig. 20.3 Impulse response function of the rate-cutting and the non-rate-cutting regimes ITA
showing that: (1) A positive output shock may have positive effect on the output and no statistically
significant effect on FSI and R; (2) A positive financial stress shock has positive effects on the
financial stress in non-rate-cut and rate-cut regimes, negative effects on the output in both regimes,
opposite effects (but statistically not significant) on the short-term interest rate; (3) A positive
interest rate shock has positive effects on the short-term interest rate, a positive impact on the
output in both regimes and no effect on the financial stress
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Fig. 20.3 (continued)

but positive in the non-rate-cut regime, though the effects are not statistically
significant.

• While a one unit interest rate shock has no significant effects on the financial
stress in both regimes, it has positive impact on output in both regimes. The
shock has positive and persistent effects on the short-term interest rate in both
regimes. The effects are stronger in the rate-cut regime.

Because the impulse response functions of the four European countries are by and
large very similar (see Figs. 20.2, 20.3, 20.4 and 20.5), we summarize the features
of the IRFs in the following Table 20.1.

• While the responses of IP to FSI are negative and significant in both regimes,
the responses of IP to R are in most cases statistically insignificant in both
regimes. The responses of IP to an output shock are statistically significant and
long lasting in both regimes.

• The responses of FSI to financial stress shocks are decreasingly lasting in both
regimes. However, while the responses will die out in the rate-cut regime, the
responses remain positive in the non-rate-cut regime permanently. The responses
of FSI to interest rate shocks and to output shocks are statistically insignificant
in both regimes.

• The responses ofR to output shocks are statistically insignificant in both regimes.
Notably, the responses ofR to a financial stress shock are negative and significant
in the rate-cut regime, while the responses are positive and significant in the non-
rate-cut regime. The responses of R to short-term interest rate shocks are in most
cases persistently lasting in both regimes.
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Fig. 20.4 Impulse response function of the rate-cutting and the non-rate-cutting regimes FRA
displaying similar results of Fig. 20.3
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Fig. 20.4 (continued)

20.4 Concluding Remarks

Using the IMF financial stress index and OECD industrial production index and
short-term interest rate data, for the USA, the EU countries, our regime switching
vector error correction model enables us to conduct a parallel analysis in different
regimes. By using the regime switching VECM, we could show that the responses
are asymmetric in the two different regimes, namely the rate-cut regime and the
non-rate-cut regime.

Generally, the financial stress shocks have a large and persistent negative impact
on the real side of the economy, and the impact is stronger in the non-rate-cut regime
than in the rate-cut regime. This asymmetric impact of financial stress on the real
side of the economy is because rate cuts as an instrument of the monetary policy
are often aimed at reducing the financial stress and hence offset the impact of the
latter on the real activity, while in the rate hikes regime increase in interest rate
will worsen the financial stress, enforcing the adverse effect of the latter on the real
activities.

Looking at the impact of real activities on the financial stress: they are statisti-
cally insignificant in both regimes. Empirically, we find that financial stress shocks
have asymmetric effects on the short-term interest rate, depending on the regime the
economy is in. Overall, in the rate-cut regime a financial stress shock will decrease
the short-term rate while in the non-rate-cut regime the shock will increase the short-
term rate though in some cases the effects are not statistically significant.
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Fig. 20.5 Impulse response function of the rate-cutting and the non-rate-cutting regimes ESP
displaying similar results of Fig. 20.3
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Fig. 20.5 (continued)

While there is heterogeneity across countries with smaller countries showing
weaker channels in the financial-real interaction, there is more similarity in larger
economies. Across countries, there are common features in the sense that the
European countries show very similar response patterns in the two regimes,
respectively.
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Table 20.1 Summary of the results of the impulse response functions for Germany, France, Italy
and Spain

Response of IP Response of FSI Response of R

DEU (RC)

IP shock Temporally decreasing Insignificant Insignificant

FSI shock Negative and significant Temporal decreasing Negative and significant

R shock Insignificant Insignificant Temporally decreasing

(NRC)

IP shock Temporally decreasing Insignificant Insignificant

FSI shock Negative and significant Temporal decreasing Insignificant

R shock Insignificant Insignificant Temporally increasing

FRA (RC)

IP shock Positive lasting Insignificant Insignificant

FSI shock Insignificant Temporal decreasing Negative and significant

R shock Insignificant Insignificant Positive and lasting

(NRC)

IP shock Positive lasting Insignificant Insignificant

FSI shock Insignificant Temporal decreasing Positive and significant

R shock Insignificant Insignificant Positive and lasting

ITA (RC)

IP shock Persistently lasing Insignificant Insignificant

FSI shock Negative and significant Temporally decreasing Negative and significant

R shock Positive and significant Insignificant Temporally increasing

(NRC)

IP shock Temporal increasing Insignificant Insignificant

FSI shock Negative and significant Persistently lasting Positive but insignificant

R shock Insignificant Insignificant Positive lasing

ESP(RC)

IP shock Constantly lasting Insignificant Insignificant

FSI shock Insignificant Temporal decreasing Negative and significant

R shock Temporally positive Insignificant Temporally increasing

(NRC)

IP shock Temporal increasing Insignificant Insignificant

FSI shock Negative and significant Temporal decreasing Positive and significant

R shock Insignificant Insignificant Persistently lasting
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A.1 The Dataset

Time series are taken from a range of sources such as the US Bureau of Economic
Analysis (BEA), IMF, the World Bank, Penn World Table by Feenstra et al. [7],
Levy and Chen [13] and the OECD as retrieved from their original dataset or from
FRED and explained in detail below.

A.1.1 US Recessions

Table A.1 shows USA Recessions, as retrieved from FRED (Federal Reserve Bank
of St. Louis).

A.1.2 World GDP Data

For testing Harrod’s model, annual world GDP estimate has been retrieved from
the Maddison–Penn world table [4, 8], (from 1946 to 1961). This has been linked
up with the World Bank (https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.
ZG) and IMF (https://www.imf.org/external/datamapper/NGDP_RPCH@WEO/
OEMDC/ADVEC/WEOWORLD) data (available from 1961 to 2018). Annual data
has been changed into quarterly via the compounding law.
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Table A.1 US recessions Recessions

From To

Quarter Year Quarter Year

Q4 1948 Q4 1949

Q3 1953 Q1 1954

Q4 1957 Q1 1958

Q3 1960 Q1 1961

Q1 1970 Q4 1970

Q1 1974 Q2 1975

Q1 1980 Q2 1980

Q3 1981 Q4 1982

Q3 1990 Q1 1991

Q2 2001 Q4 2001

Q1 2008 Q3 2009

US Bureau of Economic Analysis[2]

A.1.3 BEA Data

In Table A.2 we list the time series considered for our analysis on business cycle
as retrieved from FRED. Units were transformed in percent change from preceding
period (apart from time series n. 3 for which percent change was already taken).

In Table A.3 we list the time series considered for testing Harrod’s model as
retrieved from FRED.

A.1.4 Levy and Chen Data—USA

In Table A.4 we list the time series on capital reconstructed as described by Levy
and Chen [13].

Table A.2 Time series on consumption, income and investment

No. Time series Data points Frequency Data range (from to) Type Account code/ID

1 USA
PCEC

274 Quarterly nnnnnnn-01 to
2015-07-01

C DPCERC1tnote:BEA-1

2 USA
DPCER

275 Quarterly nnn-01 to
nn-01

C DPCERL1tnote:BEA-2

3 USA
GDP

274 Quarterly 1947-01-01 to
2015-07-01

Y A191RC1tnote:BEA-3

4 USA
RGPDI FI

274 Quarterly 1947-04-01 to
2015-07-01

I A007RL1tnote:BEA-4

(continued)
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Table A.2 (continued)

No. Time series Data points Frequency Data range (from to) Type Account code/ID

5 USA
GPDI

274 Quarterly 1947-01-01 to
2015-07-01

I A006RC1tnote:BEA-5

6 USA
RGPDI

275 Quarterly 1947-04-01 to
2015-10-01

I A006RL1tnote:BEA-6

US Bureau of Economic Analysis, Personal Consumption Expenditures (PCEC), Seasonally
Adjusted Annual Rate, Percent Change, retrieved from FRED, Federal Reserve Bank of St. Louis;
https://research.stlouisfed.org/fred2/series/PCEC/, January 2, 2016
US Bureau of Economic Analysis, Real Personal Consumption Expenditures
(DPCERL1Q225SBEA), Seasonally Adjusted Annual Rate, Percent Change, retrieved
from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/
DPCERL1Q225SBEA, June 21, 2016
US Bureau of Economic Analysis, Gross Domestic Product (GDP), Seasonally Adjusted Annual
Rate, Percent Change, retrieved from FRED, Federal Reserve Bank of St. Louis; https://research.
stlouisfed.org/fred2/series/GDP/, January 3, 2016
US Bureau of Economic Analysis, Real Gross Private Domestic Investment: Fixed Invest-
ment (A007RL1Q225SBEA), Seasonally Adjusted Annual Rate, Percent Change, retrieved
from FRED, Federal Reserve Bank of St. Louis; https://research.stlouisfed.org/fred2/series/
A007RL1Q225SBEA/, January 3, 2016
US Bureau of Economic Analysis, Gross Private Domestic Investment (GPDI), Seasonally
Adjusted Annual Rate, Percent Change, retrieved from FRED, Federal Reserve Bank of St. Louis;
https://research.stlouisfed.org/fred2/series/GPDI/, January 2, 2016
US Bureau of Economic Analysis, Real Gross Private Domestic Investment
(A006RL1Q225SBEA), Seasonally Adjusted Annual Rate, Percent Change, retrieved from
FRED, Federal Reserve Bank of St. Louis; (A006RL1Q225SBEA), https://research.stlouisfed.
org/fred2/series/A006RL1Q225SBEA/, June 27, 2016

A.1.5 OECD Data

Regarding the scope of our analysis, we included countries that had very different
development paths. OECD data are, respectively, quarterly GDP (percent change),1

investment (GFCF) (annual growth rate %)2 and saving rates (% of GDP).3

In the following we start, first, by listing the data directly taken from the OECD
database (Tables A.5 and A.8) and then the time series as retrieved from FRED
(Tables A.6 and A.7); units were transformed in percent change from preceding
period (Table A.8).

1Quarterly GDP total, percent change, previous period, Q2 1947–Q1 2016. Source: Quarterly
National Accounts. This indicator is seasonally adjusted, and it is measured in percent change
from previous quarter and from the same quarter previous year [16].
2Investment (GFCF) total, annual growth rate (%), 1951–2014. Source: Aggregate National
Accounts, SNA 2008 (or SNA 1993): gross domestic product. Gross fixed capital formation
(GFCF) is in million USD at current prices and PPPs, and in annual growth rates [15].
3Saving rate total, % of GDP, 1970–2014. Source: National Accounts at a Glance [17].

https://research.stlouisfed.org/fred2/series/PCEC/
https://fred.stlouisfed.org/series/DPCERL1Q225SBEA
https://fred.stlouisfed.org/series/DPCERL1Q225SBEA
https://research.stlouisfed.org/fred2/series/GDP/
https://research.stlouisfed.org/fred2/series/GDP/
https://research.stlouisfed.org/fred2/series/A007RL1Q225SBEA/
https://research.stlouisfed.org/fred2/series/A007RL1Q225SBEA/
https://research.stlouisfed.org/fred2/series/GPDI/
https://research.stlouisfed.org/fred2/series/A006RL1Q225SBEA/
https://research.stlouisfed.org/fred2/series/A006RL1Q225SBEA/
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Table A.3 BEA time series

Time Data range

No. series Data points Frequency (from to) BEA account code

1 USA SAVE 287 Quarterly 1947-01-01 to
2018-07-01

A929RC1tnote:BEA-1

2 USA
GPDIC1

287 Quarterly 1947-04-01 to
2018-07-01

A006RXtnote:BEA-2

3 USA
NETEXP

287 Quarterly 1947-01-01 to
2018-07-01

A019RCtnote:BEA-3

4 USA
GDPDEF

287 Quarterly 1947-04-01 to
2018-07-01

A191RDtnote:BEA-4

5 USA GPD 287 Quarterly 1947-01-01 to
2018-07-01

A191RCtnote:BEA-5

US Bureau of Economic Analysis, Gross Saving (GSAVE), retrieved from FRED, Federal Reserve
Bank of St. Louis; https://fred.stlouisfed.org/series/GSAVE, 20 February 2019
US Bureau of Economic Analysis, Real Gross Private Domestic Investment (GPDIC1), retrieved
from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/GPDIC1, 20
February 2019. US Bureau of Economic Analysis
Net Exports of Goods and Services (NETEXP), retrieved from FRED, Federal Reserve Bank of St.
Louis; https://fred.stlouisfed.org/series/NETEXP, 20 February 2019
US Bureau of Economic Analysis, Gross Domestic Product: Implicit Price Deflator (GDPDEF),
retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/
GDPDEF, 20 February 2019
US Bureau of Economic Analysis, Gross Domestic Product (GDP), retrieved from FRED, Federal
Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/GDP, 20 February 2019

Table A.4 Time series on Capital—USA

No. Code Terms Gross/net Goods Method Type

1 M1BS87G Real Gross BS 1 K

2 M1CDGG Nominal Gross CDG 1 K

3 M1CDG87G Real Gross CDG 1 K

4 M2BS87G Real Gross BS 2 K

5 M2CDGG Nominal Gross CGD 2 K

6 M2CDG87G Real Gross CGD 2 K

7 M1BSG Nominal Gross BS 1 K

8 M1PDGG Nominal Gross PDG 1 K

9 M2PDG87G Real Gross PDG 2 K

10 M1BS87N Real Net BS 1 K

11 M1CDG87N Real Net CGD 1 K

12 M1PDG87N Real Net PDG 1 K

13 M2BS87N Real Net BS 2 K

14 M2PDG87N Real Net PDG 2 K

Data points = 175, data range = 1948–1991

https://fred.stlouisfed.org/series/GSAVE
https://fred.stlouisfed.org/series/GPDIC1
https://fred.stlouisfed.org/series/NETEXP
https://fred.stlouisfed.org/series/GDPDEF
https://fred.stlouisfed.org/series/GDPDEF
https://fred.stlouisfed.org/series/GDP
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Table A.5 Time series on income

No. Time series Data points Data range (from to) Type Country Code/ID

1 Tot Q GDP
perc. c.
KOR

183 1970 (Q2)–2015 (Q4) Y Korea TQGDP
PC_CHGPP
KOR

2 Tot Q GDP
perc. c.
GBR

243 1955 (Q2)–2015 (Q4) Y UK TQGDP
PC_CHGPP
GBR

3 Tot Q GDP
perc. c.
ESP

223 1960 (Q2)–2015 (Q4) Y Spain TQGDP
PC_CHGPP
ESP

4 Tot Q GDP
perc. c.
JPN

222 1960 (Q2)–2015 (Q3) Y Japan TQGDP
PC_CHGPP
JPN

5 Tot Q GDP
perc. c.
TUR

222 1960 (Q2)–2015 (Q3) Y Turkey TQGDP
PC_CHGPP
TUR

6 Tot Q GDP
perc. c.
DEU

223 1960 (Q2)–2015 (Q4) Y Germany TQGDP
PC_CHGPP
DEU

7 Tot Q GDP
perc. c.
ITA

223 1960 (Q2)–2015 (Q4) Y Italy TQGDP
PC_CHGPP
ITA

8 Tot Q GDP
perc. c.
USA

275 1947 (Q2)–2015 (Q4) Y USA TQGDP
PC_CHGPP
USA

Organization for Economic Co-operation and Development
Quarterly GDP total, percent change, previous period, Q2 1947–Q4 2015. Source: Quarterly
National Accounts, OECD [16]

A.1.6 RQA Tables

Table A.9 reports the RQA calculated on 55 real-world time series and the related
PCA.

A.2 Considerations on tanh versus arctan

To our knowledge, many papers (see Mircea et al. [14], Kaddar and Alaoui [12],
Januárioa et al. [10] Agliari et al. [1], Januario et al. [11], Bischi et al. [3], etc.) on
the Kaldor’s model have adopted the arctan function. However, this function has
some well-known issues (see Bradford and Davenport [5], Collicott [6], Walter [18],
Gonnet and Scholl [9]):

• arctan has a branch cut at infinity
• arctan poses an issue to calculators with vector addition when the components of

the resultant vector are found as it is hard to distinguish the quadrant of the angle.
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Table A.8 Time series on income

No. Code/ID Data points Data range (from to) Type Country

1 B1_GE GPSA KOR Y 184 1970 (Q2)–2016 (Q1) Y Korea

2 B1_GE GPSA GBR Y 244 1955 (Q2)–2016 (Q1) Y United Kingdom

3 B1_GE GPSA ESP Y 224 1960 (Q2)–2016 (Q1) Y Spain

4 B1_GE GPSA JPN Y 224 1960 (Q2)–2016 (Q1) Y Japan

5 B1_GE GPSA TUR Y 224 1960 (Q2)–2016 (Q1) Y Turkey

6 B1_GE GPSA DEU Y 224 1960 (Q2)–2016 (Q1) Y Germany

7 B1_GE GPSA ITA Y 224 1960 (Q2)–2016 (Q1) Y Italy

8 B1_GE GPSA USA Y 276 1947 (Q2)–2016 (Q1) Y USA

9 B1_GE GPSA ICE Y 224 1960 (Q2)–2016 (Q1) Y Iceland

10 B1_GE GPSA GRE Y 224 1960 (Q2)–2016 (Q1) Y Greece

11 B1_GE GPSA FRA Y 224 1960 (Q2)–2016 (Q1) Y France

B1_GE: Gross domestic product—expenditure approach, GPSA: growth rate compared to previous
quarter, seasonally adjusted, quarterly data[17]

For example, arctan(0) = 0 only some of the time. Other times, arctan(0) = π .
For this reason, the correct evaluation of arctan requires the so-called quadrant
analysis.

• The analytical relation arctan(−x) = −arctan(x) can be dangerous as it can
destroy quadrant information if poorly applied.

• For a real number x such that x �= 0

f (x) = arctan(x)+ arctan(1

x
) =
⎧
⎨

⎩

π
2 for x > 0

−π
2 for x < 0

is constant. In other terms the expression

f ′(x) = 1

1 + x2 + 1

1 + 1
x2

(− 1

x2 ) (A.1)

is zero. In fact, by simplifying Eq. (A.1), we get

1

1 + x2 − 1

1 + x2 = 0. (A.2)
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• For x, y ∈ Re such that x �= 0

arctan(x)+ arctan(y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

arctan(
x+y
1−xy ) for xy < 1

arctan(
x+y
1−xy )+ π for xy > 1, x, y > 0

arctan(
x+y
1−xy )− π for xy > 1, x, y < 0.

So the issue with the arctan is that for x+y
1−xy it is possible to pass through ∞

even when both x and y are finite (namely when xy = 1). In addition x+y
1−xy goes

from large positive to large negative (and vice versa).

Hence, the reason why we decided to choose the hyperbolic tangent is that we
did not want to run into the above-mentioned issues, as the function tanh(z) is an
analytical function of z that is defined over the whole complex z-plane and does not
have branch cuts and branch points. In addition hyperbolic functions can be defined
as simple rational functions of the exponential function of z; for real values of
argument, they are real-valued functions and, last but not least, hyperbolic functions
are periodic with a real period 2πi or πi (versus the half-period of [−π

2 ,
π
2 ] for the

arctan).

A.3 Test Results of the Goodwin Model on US Economy

A.3.1 Unit Root Tests

From the ADF and DF-GLS tests presented in Tables A.10, A.11 and A.12, we
conclude that detrented time series do not have unitary roots.

Table A.10 ADF and DF-GLS tests for the detrended profit share series

Method Intercept (t-statistic) Trend/intercept (t-statistic) Prob.

ADF −6.303916 −6.287742 0.01

DF-GLS −2.850337 −3.991788 0.01

Table A.11 ADF and DF-GLS tests for the detrended capacity utilization

Method Intercept (t-statistic) Trend/intercept (t-statistic) Prob.

ADF −6.443794 −6.4273 0.01

DF-GLS −5.358919 −6.155664 0.01
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Table A.12 ADF and DF-GLS tests for the detrended employment level

Method Intercept (t-statistic) Trend/intercept (t-statistic) Prob.

ADF −5.724463 −5.707365 0.01

DF-GLS −4.234430 −5.282049 0.01

A.3.2 Lag Length Criteria

In table A.13, we show that all the tests employed, namely AIC, SC and HC, confirm
that a VAR with 2 lags is the better specification to the model.

A.3.3 Granger Non-causality Test

In table A.14, the Granger non-causality test allows us reject the null that there is no
causality between the variables in all cases.

Table A.13 Lag length
criteria

Lag AIC SC HQ

0 −19.05770 −19.000624 −19.03685

1 −23.48974 −23.28392 −23.40636

2 −23.90029a −23.54009a −23.74436a

3 −23.85545 −23.34088 −23.64698

4 −23.84410 −23.17517 −23.57310

5 −23.79447 −22.97117 −23.46093

6 −23.73363 −22.75596 −23.33756

7 −23.75110 −22.61907 −23.29249

8 −23.74217 −22.45576 −23.22102
aIndicates lag order selected by the criterion
AIC, akaike information criterion
SC, Schwarz information criterion
HQ, Hannan–Quinn information criterion

Table A.14 Pairwise
Granger causality tests

Null hypothesis F-statistic Prob.

μ does not cause h 11.2425 2.E−05

μ does not cause v −5.358919 −6.155664

h does not cause μ 5.91624 0.0032

h does not cause v 4.22609 0.0160

v does not cause h 13.7628 3.E−06

v does not cause μ 5.85223 0.0034
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Table A.15 Autocorrelation
LM test

Lags LM-stat Prob.

1 8.033584 0.5308

2 10.60378 0.3038

3 11.70280 0.2306

Fig. A.1 Inverse roots of AR
characteristic polynomial

A.3.4 Autocorrelation Test

In Table A.15, the p-value of the LM test in the first lag points to no autocorrelation
in the model specification.

A.3.5 Stability of VAR

Figure A.1 shows that the inverse roots of the characteristic polynomial lie inside
the unit circle, thus proving the stability of VAR.

A.4 Financial Stress, Regime Switching and Macrodynamics

The data in the following are related to the estimation of model reported in Chapter
20.
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A.4.1 Estimation Results

UAS

Response Y1 :

Call:
lm(formula = Y1 ~ 0 + CI1 + CI2 + Z2)

Residuals:
Min 1Q Median 3Q Max

-4.3042 -0.3200 -0.0346 0.3350 1.6155
Coefficients:

Estimate Std. Error t value Pr(>|t|)
CI1 -0.021528 0.005803 -3.710 0.000256 ***
CI2 -0.019034 0.006877 -2.768 0.006071 **
Z2 0.085960 0.089910 0.956 0.339963
Z2 -0.720779 0.121243 -5.945 9.3e-09 ***
Z2 0.619314 0.206680 2.996 0.003007 **
Z2 -0.017067 0.087487 -0.195 0.845491
Z2 -0.500733 0.205907 -2.432 0.015728 *
Z2 0.716359 0.370439 1.934 0.054270 .
Z2St 9.799366 2.618460 3.742 0.000226 ***
Z2NSt 8.763251 3.122889 2.806 0.005410 **
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.5746 on 249 degrees of freedom
Multiple R-squared: 0.3077, Adjusted R-squared: 0.2799
F-statistic: 11.07 on 10 and 249 DF, p-value: 1.366e-15

Response Y2 :

Call:
lm(formula = Y2 ~ 0 + CI1 + CI2 + Z2)

Residuals:
Min 1Q Median 3Q Max

-0.50888 -0.10160 0.00029 0.09216 0.67331

Coefficients:
Estimate Std. Error t value Pr(>|t|)

CI1 0.0007286 0.0017491 0.417 0.677
CI2 -0.0029499 0.0020730 -1.423 0.156
Z2 -0.0064500 0.0271012 -0.238 0.812
Z2 0.8170348 0.0365457 22.357 < 2e-16 ***
Z2 -0.0515848 0.0622988 -0.828 0.408
Z2 -0.1239410 0.0263709 -4.700 4.31e-06 ***
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Z2 0.8964068 0.0620658 14.443 < 2e-16 ***
Z2 0.1741562 0.1116599 1.560 0.120
Z2St -0.3555005 0.7892716 -0.450 0.653
Z2NSt 1.3726344 0.9413196 1.458 0.146
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.1732 on 249 degrees of freedom
Multiple R-squared: 0.8055, Adjusted R-squared: 0.7977
F-statistic: 103.2 on 10 and 249 DF, p-value: < 2.2e-16

Response Y3 :

Call:
lm(formula = Y3 ~ 0 + CI1 + CI2 + Z2)

Residuals:
Min 1Q Median 3Q Max

-1.24842 -0.04737 0.01539 0.06202 0.62568

Coefficients:
Estimate Std. Error t value Pr(>|t|)

CI1 -0.001147 0.001647 -0.696 0.486793
CI2 -0.001677 0.001952 -0.859 0.391017
Z2 -0.019040 0.025519 -0.746 0.456316
Z2 -0.317148 0.034413 -9.216 < 2e-16 ***
Z2 0.110889 0.058662 1.890 0.059880 .
Z2 -0.056034 0.024832 -2.257 0.024903 *
Z2 0.068606 0.058443 1.174 0.241559
Z2 0.354798 0.105142 3.374 0.000858 ***
Z2St 0.413961 0.743202 0.557 0.578030
Z2NSt 0.861273 0.886375 0.972 0.332153
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.1631 on 249 degrees of freedom
Multiple R-squared: 0.4983, Adjusted R-squared: 0.4782
F-statistic: 24.74 on 10 and 249 DF, p-value: < 2.2e-16

DEU

Response Y1 :

Call:
lm(formula = Y1 ~ 0 + CI1 + CI2 + Z2)

Residuals:
Min 1Q Median 3Q Max

-4.6104 -0.9759 0.1005 0.8901 4.2094
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

CI1 -0.030082 0.008529 -3.527 0.000500 ***
CI2 -0.016754 0.010384 -1.614 0.107894
Z2 -0.312315 0.070909 -4.404 1.58e-05 ***
Z2 -0.846365 0.414972 -2.040 0.042449 *
Z2 4.356535 0.898185 4.850 2.17e-06 ***
Z2 -0.383271 0.107941 -3.551 0.000459 ***
Z2 -0.637484 0.616605 -1.034 0.302205
Z2 0.937635 1.355205 0.692 0.489659
Z2St 14.903988 4.087707 3.646 0.000324 ***
Z2NSt 8.386001 5.008474 1.674 0.095315 .
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.402 on 249 degrees of freedom
Multiple R-squared: 0.2639, Adjusted R-squared: 0.2344
F-statistic: 8.929 on 10 and 249 DF, p-value: 1.552e-12

Response Y2 :

Call:
lm(formula = Y2 ~ 0 + CI1 + CI2 + Z2)

Residuals:
Min 1Q Median 3Q Max

-0.48358 -0.11645 -0.00612 0.09462 0.84283

Coefficients:
Estimate Std. Error t value Pr(>|t|)

CI1 0.002840 0.001089 2.607 0.00967 **
CI2 0.004020 0.001326 3.031 0.00269 **
Z2 0.011172 0.009057 1.234 0.21850
Z2 0.739553 0.053000 13.954 < 2e-16 ***
Z2 -0.149310 0.114717 -1.302 0.19427
Z2 0.003049 0.013786 0.221 0.82512
Z2 0.753068 0.078753 9.562 < 2e-16 ***
Z2 -0.153896 0.173087 -0.889 0.37480
Z2St -1.341432 0.522084 -2.569 0.01077 *
Z2NSt -1.929305 0.639685 -3.016 0.00283 **
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.179 on 249 degrees of freedom
Multiple R-squared: 0.7211, Adjusted R-squared: 0.7099
F-statistic: 64.37 on 10 and 249 DF, p-value: < 2.2e-16

Response Y3 :
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Call:
lm(formula = Y3 ~ 0 + CI1 + CI2 + Z2)

Residuals:
Min 1Q Median 3Q Max

-0.62563 -0.04667 -0.00572 0.05050 0.57775

Coefficients:
Estimate Std. Error t value Pr(>|t|)

CI1 -0.0026283 0.0005873 -4.475 1.16e-05 ***
CI2 0.0009444 0.0007150 1.321 0.18777
Z2 0.0069302 0.0048826 1.419 0.15704
Z2 -0.0816146 0.0285737 -2.856 0.00465 **
Z2 0.4802570 0.0618463 7.765 2.12e-13 ***
Z2 0.0023727 0.0074325 0.319 0.74982
Z2 -0.0380330 0.0424576 -0.896 0.37123
Z2 0.1669123 0.0933153 1.789 0.07488 .
Z2St 1.2244665 0.2814672 4.350 1.98e-05 ***
Z2NSt -0.3817482 0.3448685 -1.107 0.26939
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.09653 on 249 degrees of freedom
Multiple R-squared: 0.6035, Adjusted R-squared: 0.5876
F-statistic: 37.91 on 10 and 249 DF, p-value: < 2.2e-16

FRA

Response Y1 :

Call:
lm(formula = Y1 ~ 0 + CI1 + CI2 + Z2)

Residuals:
Min 1Q Median 3Q Max

-5.2160 -0.8313 -0.0256 0.8534 2.9165

Coefficients:
Estimate Std. Error t value Pr(>|t|)

CI11 -0.022609 0.010656 -2.122 0.03485 *
CI12 -0.013747 0.006840 -2.010 0.04553 *
CI21 -0.009797 0.011265 -0.870 0.38533
CI22 -0.015175 0.006136 -2.473 0.01407 *
Z2 -0.359760 0.073769 -4.877 1.93e-06 ***
Z2 -0.518231 0.578740 -0.895 0.37142
Z2 2.622130 0.784568 3.342 0.00096 ***
Z2 -0.580714 0.087013 -6.674 1.63e-10 ***
Z2 -0.882209 0.678616 -1.300 0.19481
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Z2 -0.304945 1.271613 -0.240 0.81068
Z2St 17.506928 8.369754 2.092 0.03749 *
Z2NSt 12.732507 8.149832 1.562 0.11950
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.266 on 247 degrees of freedom
Multiple R-squared: 0.2769, Adjusted R-squared: 0.2418
F-statistic: 7.884 on 12 and 247 DF, p-value: 1.985e-12

Response Y2 :

Call:
lm(formula = Y2 ~ 0 + CI1 + CI2 + Z2)

Residuals:
Min 1Q Median 3Q Max

-0.32420 -0.07719 -0.00816 0.07479 0.36201

Coefficients:
Estimate Std. Error t value Pr(>|t|)

CI11 0.0027942 0.0010420 2.682 0.00782 **
CI12 0.0017387 0.0006688 2.600 0.00989 **
CI21 0.0016161 0.0011016 1.467 0.14364
CI22 0.0011026 0.0006000 1.838 0.06733 .
Z2 0.0089416 0.0072136 1.240 0.21632
Z2 0.7226645 0.0565928 12.770 < 2e-16 ***
Z2 -0.1061146 0.0767199 -1.383 0.16787
Z2 0.0022721 0.0085086 0.267 0.78967
Z2 0.7763191 0.0663592 11.699 < 2e-16 ***
Z2 0.0355327 0.1243460 0.286 0.77530
Z2St -2.2199693 0.8184455 -2.712 0.00715 **
Z2NSt -1.3640623 0.7969402 -1.712 0.08822 .
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.1238 on 247 degrees of freedom
Multiple R-squared: 0.78, Adjusted R-squared: 0.7693
F-statistic: 72.97 on 12 and 247 DF, p-value: < 2.2e-16

Response Y3 :

Call:
lm(formula = Y3 ~ 0 + CI1 + CI2 + Z2)

Residuals:
Min 1Q Median 3Q Max

-0.66976 -0.03917 -0.00326 0.04256 0.55536
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

CI11 -0.0023404 0.0007933 -2.950 0.00348 **
CI12 -0.0010796 0.0005092 -2.120 0.03499 *
CI21 0.0014095 0.0008387 1.681 0.09412 .
CI22 0.0004279 0.0004568 0.937 0.34984
Z2 0.0113364 0.0054922 2.064 0.04005 *
Z2 -0.1886088 0.0430880 -4.377 1.77e-05 ***
Z2 0.4536679 0.0584122 7.767 2.15e-13 ***
Z2 0.0035198 0.0064782 0.543 0.58739
Z2 0.0500872 0.0505239 0.991 0.32248
Z2 0.1366102 0.0946733 1.443 0.15030
Z2St 1.5332117 0.6231398 2.460 0.01456 *
Z2NSt -0.7771781 0.6067663 -1.281 0.20145
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.09423 on 247 degrees of freedom
Multiple R-squared: 0.6165, Adjusted R-squared: 0.5978
F-statistic: 33.08 on 12 and 247 DF, p-value: < 2.2e-16

ITA

Response Y1 :

Call:
lm(formula = Y1 ~ 0 + CI1 + CI2 + Z2)

Residuals:
Min 1Q Median 3Q Max

-4.1314 -0.9066 0.0853 0.8361 3.3934

Coefficients:
Estimate Std. Error t value Pr(>|t|)

CI1 -0.05140 0.01967 -2.613 0.009520 **
CI2 -0.01458 0.02360 -0.618 0.537087
Z2 -0.25974 0.07453 -3.485 0.000581 ***
Z2 -0.84642 0.40186 -2.106 0.036182 *
Z2 3.24466 0.73791 4.397 1.63e-05 ***
Z2 -0.31816 0.10541 -3.018 0.002805 **
Z2 -1.31439 0.57341 -2.292 0.022728 *
Z2 0.85086 1.17999 0.721 0.471537
Z2St 24.02949 9.19996 2.612 0.009551 **
Z2NSt 6.85465 11.07099 0.619 0.536381
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.372 on 249 degrees of freedom
Multiple R-squared: 0.1793, Adjusted R-squared: 0.1463
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F-statistic: 5.439 on 10 and 249 DF, p-value: 2.703e-07

Response Y2 :

Call:
lm(formula = Y2 ~ 0 + CI1 + CI2 + Z2)

Residuals:
Min 1Q Median 3Q Max

-0.43339 -0.08835 -0.00486 0.07351 0.48315
Coefficients:

Estimate Std. Error t value Pr(>|t|)
CI1 0.001147 0.002027 0.566 0.5721
CI2 -0.004455 0.002432 -1.832 0.0681 .
Z2 0.007418 0.007680 0.966 0.3350
Z2 0.798872 0.041411 19.291 <2e-16 ***
Z2 -0.154101 0.076041 -2.027 0.0438 *
Z2 -0.015995 0.010862 -1.473 0.1421
Z2 0.945586 0.059090 16.002 <2e-16 ***
Z2 0.214504 0.121597 1.764 0.0789 .
Z2St -0.575723 0.948051 -0.607 0.5442
Z2NSt 2.101402 1.140860 1.842 0.0667 .
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.1414 on 249 degrees of freedom
Multiple R-squared: 0.7741, Adjusted R-squared: 0.7651
F-statistic: 85.34 on 10 and 249 DF, p-value: < 2.2e-16

Response Y3 :

Call:
lm(formula = Y3 ~ 0 + CI1 + CI2 + Z2)

Residuals:
Min 1Q Median 3Q Max

-0.61162 -0.04247 0.00116 0.05225 0.57112

Coefficients:
Estimate Std. Error t value Pr(>|t|)

CI1 0.003987 0.001558 2.559 0.01110 *
CI2 0.001613 0.001869 0.863 0.38892
Z2 0.008605 0.005904 1.458 0.14622
Z2 -0.164785 0.031836 -5.176 4.67e-07 ***
Z2 0.412723 0.058458 7.060 1.65e-11 ***
Z2 0.001994 0.008351 0.239 0.81149
Z2 0.050449 0.045426 1.111 0.26783
Z2 0.157956 0.093480 1.690 0.09233 .
Z2St -1.939109 0.728831 -2.661 0.00831 **
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Z2NSt -0.678377 0.877055 -0.773 0.43998
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.1087 on 249 degrees of freedom
Multiple R-squared: 0.6013, Adjusted R-squared: 0.5853
F-statistic: 37.56 on 10 and 249 DF, p-value: < 2.2e-16

ESP

Response Y1 :

Call:
lm(formula = Y1 ~ 0 + CI1 + CI2 + Z2)

Residuals:
Min 1Q Median 3Q Max

-6.8188 -0.7661 0.0857 0.8912 3.7255

Coefficients:
Estimate Std. Error t value Pr(>|t|)

CI1 -0.005423 0.003076 -1.763 0.079120 .
CI2 -0.009271 0.005372 -1.726 0.085645 .
Z2 -0.232775 0.072704 -3.202 0.001544 **
Z2 -0.468354 0.496402 -0.943 0.346340
Z2 2.209631 0.774192 2.854 0.004679 **
Z2 -0.396459 0.115467 -3.434 0.000698 ***
Z2 -2.556434 0.933940 -2.737 0.006642 **
Z2 1.714808 1.323997 1.295 0.196459
Z2St 3.055453 1.678804 1.820 0.069957 .
Z2NSt 4.424431 2.901769 1.525 0.128594
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 1.359 on 249 degrees of freedom
Multiple R-squared: 0.1295, Adjusted R-squared: 0.09456
F-statistic: 3.705 on 10 and 249 DF, p-value: 0.0001208

Response Y2 :

Call:
lm(formula = Y2 ~ 0 + CI1 + CI2 + Z2)

Residuals:
Min 1Q Median 3Q Max

-0.43382 -0.07172 -0.00660 0.06308 0.52136
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Coefficients:
Estimate Std. Error t value Pr(>|t|)

CI1 0.0004013 0.0003029 1.325 0.187
CI2 -0.0002469 0.0005291 -0.467 0.641
Z2 -0.0072140 0.0071606 -1.007 0.315
Z2 0.7115438 0.0488907 14.554 <2e-16 ***
Z2 -0.1052133 0.0762504 -1.380 0.169
Z2 -0.0050644 0.0113724 -0.445 0.656
Z2 0.8923137 0.0919841 9.701 <2e-16 ***
Z2 0.0193351 0.1304008 0.148 0.882
Z2St -0.2589694 0.1653459 -1.566 0.119
Z2NSt 0.1326148 0.2857960 0.464 0.643
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.1338 on 249 degrees of freedom
Multiple R-squared: 0.6985, Adjusted R-squared: 0.6864
F-statistic: 57.7 on 10 and 249 DF, p-value: < 2.2e-16

Response Y3 :

Call:
lm(formula = Y3 ~ 0 + CI1 + CI2 + Z2)

Residuals:
Min 1Q Median 3Q Max

-0.70281 -0.04322 0.00555 0.04430 0.56517

Coefficients:
Estimate Std. Error t value Pr(>|t|)

CI1 0.0006248 0.0002331 2.680 0.00785 **
CI2 -0.0004809 0.0004072 -1.181 0.23868
Z2 0.0134097 0.0055104 2.434 0.01566 *
Z2 -0.1555518 0.0376234 -4.134 4.87e-05 ***
Z2 0.4417635 0.0586778 7.529 9.40e-13 ***
Z2 -0.0040956 0.0087515 -0.468 0.64020
Z2 0.0839661 0.0707855 1.186 0.23667
Z2 0.1818118 0.1003487 1.812 0.07122 .
Z2St -0.4027356 0.1272404 -3.165 0.00174 **
Z2NSt 0.3452909 0.2199317 1.570 0.11769
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 0.103 on 249 degrees of freedom
Multiple R-squared: 0.5869, Adjusted R-squared: 0.5703
F-statistic: 35.37 on 10 and 249 DF, p-value: < 2.2e-16
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