
2The Circulatory System

This chapter analyzes the macrocirculation, the microcirculation, and the lymphatic
system of the vascular apparatus. We discuss the structure of the vessel wall,
the main principles of hemodynamic control, and the mechanisms of vascular
exchange. We look at the circulation from a system’s perspective and introduce
mechanical properties, such as pressure, capacity, flow, and vascular bed resistance.
In addition, we explore the structure of the capillary wall toward the description
of transcapillary transport mechanisms in microcirculation. The final part of this
chapter introduces a number of lumped parameter models in the description of the
macro- and microcirculation. In addition to WindKessel (WK) models, two and
three-element models are derived toward the representation of vessel networks. Such
models aim at capturing the steady-state, steady-periodic, and transient description
of vasculature domains. With respect to microcirculation, hydrostatic and osmotic
effects are examined, and vascular exchange is described by linear and nonlinear
filtration models. Conclusions regarding the advantages and limitations of the
discussed lumped-parameter models and future perspectives summarize this chapter.

2.1 Introduction

The evolution of species led to a more and more organized circulatory system.
Simple diffusion of extracellular liquid evolved towards a highly organized circu-
latory system in mammals. This was made possible by the heart’s pumping ability
and regulated by peripheral resistances, which together generated the arterial blood
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36 2 The Circulatory System

pressure and flow. Hemodynamics is therefore a fundamental organizing principle
selected for diversification and adaptation of life.

The circulatory system is set up by two separate systems: the cardiovascular
system, which distributes blood, and the lymphatic system, which collects lymph
and returns it into the cardiovascular system, see Fig. 2.1. The cardiovascular system
supplies blood to the body’s organs and quickly adjusts to sudden changes in
demand for oxygen, nutrients, and other factors in response to the organism’s
activity. The lymphatic system is open and essentially recycles blood plasma after
it has been filtered from the interstitial fluid, the fluid situated between cells. Both
systems cooperate in immune response.

The physiology and pathophysiology of the cardiovascular system have been
extensively studied and excellent texts are available [394, 548]. The present chapter
aims at introducing the topic to bioengineers, and the reader should then be able to
understand and model key properties of the vascular system.

2.1.1 Vascular System

The vascular (or cardiovascular) system has three main functions:

• Supply. Distribution and exchange of oxygen, nutrients, and other substances
• Cleaning. Removal of waste products
• Immune response. Delivery of leucocytes to organs in response to pathogens,

anything that can produce disease

In vertebras the cardiovascular system is closed and formed by the systemic and
the pulmonary circuits, see Fig. 2.1. The systemic circulation transports oxygenated
blood away from the left ventricle through the aorta to the rest of the body and then
returns oxygen-depleted (deoxygenated) blood back to the right ventricle. Note that
oxygen-depleted blood still contains approximately 75% of oxygen of oxygenated
blood. The pulmonary circulation transports this blood through the lungs, where it
is oxygenated. It then returns into the left ventricle and enters again the systemic
circuit. Absolute values for oxygen consumption depend on body size, and young
healthy humans at rest consume somewhere between 0.15 and 0.4 l of oxygen per
minute, a demand that can increase by 10 to 15 folds during exercise [288].

The essential components of the cardiovascular system are the heart, blood, and
blood vessels. An average adult contains roughly 5.5 l of blood, accounting for
approximately 7% of its total body weight. At rest, approximately 4 l min−1 or
80% of cardiac output is directed to the brain, heart, kidneys, and liver. Despite
the cardiovascular system is closed, oxygen, nutrients, and macromolecules move
across the wall of small blood vessels and enter the interstitial fluid on their way to
the target cells. In return, carbon dioxide and wastes pass from the interstitial fluid
directly back into small blood vessels, or through the lymphatic system back into
the cardiovascular system. The transport of substances in and out of the vascular
system is collectively called exchange.
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Fig. 2.1 The circulatory system comprises the cardiovascular system (systemic and pulmonary
circuits) and the lymphatic system. Systemic circuit: The left ventricle pumps oxygenated blood
through the aorta into all organs but the lungs. In the microcirculation blood is deoxygenated,
and then the collected blood flows through the vena cava and returns into the right ventricle.
Pulmonary circuit: The right ventricle pumps oxygen-depleted blood through the pulmonary artery
into the lungs. In the microcirculation of the lungs, blood is oxygenated and returns through the
pulmonary vein into the left ventricle. Lymphatic system: A one-way low-resistance network of
drainage channels (lymphatic capillaries) returns lymph from the interstitial to lymph nodes and
then, through the lymphatic venous anastomosis, into the venous system

The vascular system can also be seen to function in two parts: a macrocirculation
and a microcirculation.

2.1.2 Key Concepts

Although the cardiovascular system shows large anatomical variability across
species, key concepts are preserved. Some of these concepts are discussed in the
following.
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2.1.2.1 Form Follows Function
Given normal conditions, the cardiovascular system continuously adapts towards
optimal system performance. The system is then at homeostasis and remains stable
in time. Homeostasis is an essential component of biological evolution [552], and
Cannon1 [66] describes this biological system property as the following:

The highly developed living being is an open system having many relations to its
surroundings. Changes in the surroundings excite reactions in this system, or affect it
directly, so that internal disturbances of the system are produced. Such disturbances are
normally kept within narrow limits, because automatic adjustments within the system are
brought into action and thereby wide oscillations are prevented and the internal conditions
are held fairly constant.

Mechanical stress also excites vascular tissue reactions and explains a number
of properties of the vascular system. The blood pressure in the systemic circuit is
much higher than in the pulmonary circuit, and the left ventricle is therefore more
muscular and has a thicker wall than the right ventricle. For the same reason the
wall of arteries is thicker than of veins. The blood pressure determines the tension
in the vessel wall, and the circumferential [91,363,598] and axial [215] tensile force
in the vessel wall correlate with its thickness. Aside from pressure-related adaption,
the diameter of blood vessels also adjusts to the blood flow in the vessel. The blood
flows over the endothelium and induces Wall Shear Stress (WSS), a quantity that is
kept constant by adjusting the vessel’s diameter [74, 236].

The cardiovascular system uses a wide range of actions towards reaching
homeostatic targets. We may group them into four classes of mechanisms:

• Passive response. Purely passive deformation under the action of forces
• Vasoreactivity. Vasoconstriction or vasodilation due to the action or relaxation of

contractile cells in the vessel wall
• Arteriogenesis. Increase or decrease of the vessel’s diameter and wall thickness

in response to the turnover of tissue constituents
• Angiogenesis. Formation of new vessels sprouting out from pre-existing vessels

These adaptation mechanisms are linked to characteristic time scales and allow
the system to adjust quickly (passive response) or very slowly (angiogenesis)
towards meeting system needs. Whilst the aforementioned mechanisms are local,
they have distinct system-level, and thus global implications. The homogenization
of WSS would be one such example. It requires the total cross-sectional area of
the vasculature to increase from the aortic cross-section of 3 to 5 cm2 to the total
cross-section of the capillary bed of 4500 to 6000 cm2. Such a configuration of the
vascular tree is energy-efficient and keeps the blood pressure relatively low in the
systemic circuit.

1Walter Bradford Cannon, American physiologist, 1871–1945.
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2.1.2.2 Blood Flows in Closed Loops
The vascular system is closed and local alterations have global implications—blood
flowing through one organ affects the flow through another organ. Likewise, the
pulmonary circulation influences the systemic circulation and vice versa, and the
venous flow influences the arterial flow and vice versa.

The vascular system may also be divided into sub-loops with dedicated organ-
supply function, which is most clearly observed in the kidney, the heart, and
the brain. The pressure and flow within such sub-loops are separately controlled,
a mechanism known as autoregulation, and allows for the (partly) independent
operation of organs. The formation of sub-loops also explains the anatomical
organization of the vascular tree with arteries and (deep) veins often running in
parallel, and in close proximity to each other.

2.1.2.3 Vascular Network Is “Space Filling”
Only a very few tissues in mammals, such as the ligaments, the valve leaflets, and the
cornea, are avascular and do not contain blood vessels. They are entirely perfused
by diffusion. All other tissues contain vessels, with the vascular network being
“space filling”. Given limited resolutions, most of the vasculature remains invisible
to image modalities, such as Computed Tomography (CT), Magnetic Resonance
(MR), and ultrasound.

2.1.3 Cells in the Vascular System

The vascular system performs many very different tasks, such as transport and
exchange, immune response, regulation of pressure and flow, Extra Cellular Matrix
(ECM) maintenance, and the control of blood clotting and wound healing. These
functions are carried out by cells together with their delicate interactions with ECM
and blood plasma. Cells of the same type often perform multiple tasks to achieve
proper system function.

2.1.3.1 Endothelium Cell
Endothelium Cells (ECs) are joined together to form a single-cell layer (monolayer)
called endothelium that provides a clear separation between the blood and the vessel
wall. ECs are flat and 0.2 to 2µm thick. Given exposure to laminar blood flow,
they align with the flow within 12 to 14 days [162] and adapt towards an elongated
shape. The length of ECs ranges then from 1 to 20µm. In humans, ECs make up
approximately 1.0 kg and cover a surface of approximately 7000 m2. ECs in arteries,
capillaries, veins, and lymphatics are exposed to markedly different hemodynamic
environments and must perform distant functions.

ECs sense WSS, in response to which they secrete vasoactive agents that control
the tonus of adjacent contractile vascular cells, such as SMCs and pericytes.
ECs also play a crucial role in response to inflammation. They express adhesion
molecules towards capturing circulating leukocytes and promoting their transport
into the tissue. ECs are also involved in immune response and tissue remodeling.



40 2 The Circulatory System

In their vicinity, ECs prevent blood from clotting by secreting vasoactive agents. In
capillaries, ECs form a semipermeable membrane to allow oxygen, nutrients, and
other factors to move into peripheral tissues whilst retaining blood cells and plasma
in the circulation.

2.1.3.2 SmoothMuscle Cell
Smooth Muscle Cells (SMCs) can present either at the contractile phenotype or
the synthetic phenotype. At the contractile phenotype, SMC serves as a contractile
cell of arteries, arteriole, and veins. They appear at a spindle-shaped configuration,
measuring approximately 2 to 5µm in diameter and 100 to 500µm in length.
At the synthetic phenotype, the SMC synthesizes ECM proteins and has a more
cobblestone-type shape. The cell appears then less elongated than at the contractile
phenotype. In the vessel wall, SMCs are mainly aligned in circumferential vessel
direction and communicate with each other though tight junctions and gap junctions.

2.1.3.3 Pericyte
Pericytes are the contractile cells of capillaries and venules. They regulate capillary
blood flow and, together with ECs, the permeability of the vessel wall. Communi-
cation between pericytes and ECs is facilitated by integrins. Pericytes appear at an
elongated shape of approximately 5 to 10µm in length.

2.1.3.4 FibroBlast
FibroBlast (FB) synthesizes ECM proteins, out of which collagen is the most impor-
tant one. FBs are 10 to 15µm large and have a branched cytoplasm surrounding an
elliptical nucleus. Active FBs have abundant rough endoplasmic reticulum, whereas
inactive FBs, also denoted fibrocyte, appear more spindle-shaped. The active FB is
attached to collagen fibers and puts them under tension—it pulls on collagen fibers.
Given crowded FBs, they are often locally aligned in parallel clusters.

2.1.3.5 Erythrocyte
Erythrocytes (or red blood cells) are the most common type of blood cells,
constituting almost half of the volume of blood. Their principal aim is to deliver
oxygen. Erythrocytes have no nucleus, and they are highly deformable bi-concave-
shaped discs, measuring approximately 6 to 8µm in diameter and 2 to 4µm in
height.

2.1.3.6 Leukocyte
Leukocytes (or white blood cells) are cells of the immune system that are involved
in protecting the body against infectious disease and foreign invaders. Leukocytes
present in very different types, such as plasma cells, lymphocytes, and macrophages.

Plasma cells secrete large volumes of antibodies. They produce antibody
molecules that bind to foreign substance (target antigen) and initiate its
neutralization or destruction. They are 12 to 15µm large, ovoid-shaped, and
transported in blood plasma as well as in lymph. Lymphocytes are the main type
of cell found in lymph and include natural killer cells, T cells, and B cells. They
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are approximately 6 to 30µm large. Macrophages engulf and digest pathogen,
participate in the initiation and resolution of inflammation, and in the maintenance
of tissues. They are approximately 20µm in diameter and show very different
shapes, adapted to the functions to be carried out.

2.1.3.7 Platelets
Platelets (or thrombocytes) are tiny blood cells, which together with coagulation fac-
tors, stop bleeding by forming a blood clot. They have no nucleus, and non-activated
platelets are approximately 2µm large and of compact shape. On activation,
platelets turn into octopus-like shapes, with multiple arms and legs. Minutes after
activation, platelets start aggregating with each other and/or depositing on surfaces
that are not covered by ECs.

2.1.3.8 Dendritic Cell
Dendritic cells process antigen material and present it on the cell surface to the
T cells of the immune system. Dendritic cells are 10 to 15µm large and have a very
large surface-to-volume ratio.

2.1.4 Macrocirculation

The macrocirculation transports blood through the cardiovascular system. The
systemic circuit carries it through all organs, but the lungs, and the pulmonary
circuit through the lungs.

The first part of the systemic circulation is the aorta, a massive and thick-walled
artery that origins at the aortic valve. It then arches and gives branches supplying the
upper part of the body. After passing through the aortic opening of the diaphragm,
it enters the abdomen and supplies branches to abdomen, pelvis, perineum, and the
lower limbs. The renal circulation by itself is supplied with approximately 20% of
the cardiac output.

Along the vascular tree, the arterial lumen continuously decreases until blood
flows though arterioles and passes capillaries, where the exchange of oxygen,
nutrients, and other substances takes place. Capillaries are often organized in a
capillary bed, an interweaving network of capillaries supplying tissues and organs.
The blood is then collected by venules, before veins return it to the heart, see
Fig. 2.1. The properties of the different types of blood vessels are adapted to their
function:

• An artery carries blood away from the heart. The luminal diameter ranges up to
centimeters and the thick wall is designed to cope with high blood pressure.

• An arteriole connects arteries to capillaries. The lumen is approximately 10 to
100µm in diameter, and vasoreactivity (vasoconstriction or vasodilation) allows
it to control the blood flow into the capillaries.

• A capillary has a luminal diameter of approximately 5 to 8µm, just wide enough
to allow erythrocytes passing/squeezing through. The wall is permeable and
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allows the capillary to supply tissues with factors, such as oxygen and nutrients,
and to remove waste products in return.

• A venule connects capillaries to veins and has a luminal diameter of approxi-
mately 10 to 200µm. The wall is thinner than of arterioles and equipped with a
highly permeable endothelium layer.

• A vein carries blood to the heart. The wall shows a thin media and a thick
adventitia. Veins have a diameter that ranges up to centimeters and they are often
larger than arteries.

The blood flow velocity changes by four orders of magnitudes along the arterial
tree. In large arteries the blood shows phases of forward and backward flow at
velocities of tens of centimeters per second, whilst the blood flow in capillaries
is unidirectional and of tens of micrometers per second. In veins the blood flow
is generally more uniform than in arteries, a condition partly supported by valves.
Given limb veins, valves counteract gravitation and prevent from back flow. Blood
flow velocities in the systemic and pulmonary circuits are similar.

In addition to the transport function of the macrocirculation, the elasticity of the
large blood vessel is of fundamental importance to the proper physiological function
of the cardiovascular system. Especially the aorta contributes almost the entire
volume compliance to the cardiovascular system. Veins are much more distensible
than arteries, which allows them to serve as venous compartment. Approximately
60% of the blood is stored in the veins, a compartment controlled by the autonomous
nervous system.

2.1.4.1 Blood Vessel Structure and Function
Blood vessels are distensible, a key feature to lower the pulse pressure and to support
continuous flow into the distal tissue. The distensibility is a consequence of the
wall’s elasticity. It is determined by the ECM through the delicate interaction of
structures, such as elastin, collagen, ProteoGlycans (PGs), fibronectin, and fibrillin.
Whilst the ECM determines the vessel wall’s structural integrity, cells maintain
its vasoreactivity, metabolism, and immune response. Vascular cells are also able
to alter the elasticity of the vessel wall. Contractile cells can augment vessel wall
properties within seconds, whilst the effect from newly synthesized ECM appears
at a delay of weeks.

The wall of arteries, arterioles, veins, and venules is built up by three distinct
vessel wall layers: intima, media, and adventitia, see Fig. 2.2. In contrast to larger
vessels, the glycocalyx, the endothelium, and a basal membrane form the single-
layered wall of capillaries. The structure of veins and arteries is very similar. Given
the low pressure in the venous system, veins have a thinner wall than arteries. They
may also be equipped with passive valves to prevent the back flow of blood.

2.1.4.2 The Intima and the Endothelium
The interaction of the glycocalyx, the endothelium (a monolayer of EC), and
a subendothelial layer forms the intima. The glycocalyx binds different anti-
inflammatory and anti-coagulant factors, and its disruption results in thrombin
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Fig. 2.2 The layered structure of large blood vessels. The adventitia is a collagen-rich fibrous
layer that shields the inner layers from excessive mechanical forces and anchors the vessel
to its surrounding. The media is a Smooth Muscle Cell (SMC)-rich layer that determines the
physiological properties of large elastic vessels. The media is designed to withstand mechanical
load acting along the circumference. The intima is dominated by a single layer of Endothelial Cells
(ECs) that forms a lining between blood and tissue. The intima has important barrier functions

generation and platelet adhesion. The glycocalyx contributes also to EC mechan-
otransduction, and thus to the transduction of biomechanical forces into the
biomolecular response of EC. Loss of glycocalyx apparently contributes to impaired
sensing and transduction of WSS.

The endothelium provides an anti-thrombogenic and low-resistance lining
between the blood and the vessel wall tissue. It responds to WSS and produces a host
of chemical substances, such as Nitric Oxide (NO), endothelin, prostacyclin (PGI2),
and angiotensinogen, all are designed to maintain vascular homeostasis [394].
They modify the ability of platelets to adhere to the vascular wall and to aggregate
with the formation of a blood clot. The endothelium is also a selective barrier
for substances such as oxygen, nutrients, leukocytes, lipoproteins and influences
factors, such as vessel wall permeability, tonus of contractile cells, inflammation,
blood clotting, and tissue remodeling.

2.1.4.3 TheMedia
The media contains 30 to 60% vascular SMCs that are embedded in the ECM.
The media’s ECM itself contains 5 to 25% elastin, 15 to 40% collagen, and 15
to 25% other connective tissue. The media is formed by Medial Lamellar Units
(MLU), a structure that is clearly visible in elastic arteries but disappears towards
muscular arteries. Elastic arteries are rich on elastin and found at the beginning of
the vascular tree, whilst muscular arteries contain a large amount of vascular SMC
and appear downwards the vascular tree. The media is the dominating layer in large
elastic arteries and of utmost physiological relevance to the proper function of the
cardiovascular system. The media is designed to cope with stress primarily along its
circumferential direction.
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SMC in the media are specialized in tonic contraction (contractile phenotype)
but also in the production of ECM constituents (synthetic phenotype). SMC tonus
is controlled by the autonomous nervous system and regulates blood flow through
vasoreactivity in response to the body’s activity. The cells in the inner media (mainly
SMCs) are entirely fed through transmural flow, fluid flow that establishes from the
pressure differences in the lumen and the interstitial space. SMCs also participate
in inflammatory reactions by modulating vascular tone, but they have a limited
capacity in direct immune response.

2.1.4.4 The Adventitia
The adventitia is an ECM-rich layer with collagen fibers covering approximately
60 to 80% of its volume. Another 10 to 25% is occupied by other connective tissue
components. In addition to numerous macrophages providing immune response,
FB is the primary cell type found in the adventitia. It maintains the ECM and
covers approximately 10% of the adventitia’s volume. Tiny blood vessels, the vasa
vasorum, perfuse the adventitia together with the outer media and deliver cells,
such as leucocytes for immune response. The adventitia anchors blood vessels to
surrounding tissues, and its dense mesh of collagen protects the biologically vital
medial and intimal layers from overextension. The adventitia is penetrated by nerves
that control the SMCs in the media, and it is often thinner in veins than arteries.

2.1.4.5 Wall Shear Stress (WSS)
NO has an important signaling function in the vessel wall. It is produced from L-
arginine by activity of endothelial nitric oxide synthase (eNOS), an enzyme that is
continually released from healthy EC. After the diffusion of NO into the media,
it relaxes SMCs and maintains vascular patency and distensibility. Stimuli for the
release of NO from EC include WSS, exerted directly on the EC membrane or on the
endothelial layer [398], see Fig. 2.3. The expression of NO is also influenced by the
blood flow conditions, and thus the temporal occurrence of the WSS, see Fig. 2.3b.
Periodic flow stimulates greatly NO expression, whilst turbulent flow shows similar
expression to static conditions.

Aside from regulating the arterial diameter through the production of vasoactive
mediators, WSS is also an important determinant of endothelial gene expres-
sion [394]. WSS regulates factors, such as transcription factors, growth factors,
adhesion molecules, and enzymes. Endothelium function is optimal during youth
and the absence of cardiovascular disease. With age endothelial function progres-
sively deteriorates, which is then associated with the reduction of the bio-availability
of NO and anatomical changes, such as thickening of the endothelia layer. The
most obvious disfunction of the endothelium is seen with age-related diseases,
such as atherosclerosis [394]. Endothelium function is defective, not only in
patients with developed atherosclerosis, but already in persons with risk factors for
atherosclerosis [557].
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Fig. 2.3 Expression of Nitric
Oxide (NO) in relation to the
Wall Shear Stress (WSS) that
is applied to the membrane of
Endothelial Cells (ECs) (a) or
at the endothelial layer (b).
NO expression is illustrated
through the formation of [3H]
L-citrulline, a by-product of
NO expression

2.1.5 Lymphatic System

The lymphatic system constitutes a one-way low-resistance network of drainage
channels that operates in conjunction with the cardiovascular system and returns
lymph from the interstitial to the venous system, see Fig. 2.1. It plays a major
role in helping the immune system to defend the body against diseases and serves
as a “highway” for fast and efficient delivery of immune cells, as well as free
antigens [63]. In a healthy human, lymph flow of approximately eight liters per
day is expected, from which approximately half can be absorbed by lymph node
microvessels, leaving four liters per day post-nodal lymph flow left.

The lymphatic system is composed of lymphatic vessels and lymphoid organs,
such as the bone marrow, thymus, lymph nodes, spleen, Peyer’s2 patches, tonsils,
and the appendix. Lymph flow is unidirectional and establishes through the rhythmic
contraction of lymphatic contractile cells. Skeleton muscle contractions and arterial
pulsations support the synchronized opening and closing of intra-luminal lymphatic
valves—the lymph propulsion. In addition to nerves and chemicals, mechanical
factors, such as the streamwise pressure gradient, transmural pressure, preload and
afterload influence lymph propulsion.

Lymphatic vessels are absorptive vessels and found in almost all organs—
recently they have also been identified in the brain [3]. Lymph nodes are located
at the intersections of collecting lymphatics. Lymph nodes filter the interstitial
flow and break down bacteria, viruses, and waste. Under normal conditions,
interstitial fluid pressure is below atmospheric pressure whilst fluid in lymphatic

2Johann Conrad Peyer, Swiss anatomist, 1653–1712.
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Fig. 2.4 Functioning of primary valves of lymphatics capillaries. Vessel configurations at low (a)
and high (b) interstitial pressures. Arrows indicate fluid flow

capillaries is slightly above atmospheric pressure. Intra-lymphatic pressure slowly
increases along the drainage route, and thus towards the larger collecting vessels and
ultimately the thoracic duct or right lymphatic trunk, where lymph is returned to the
blood circulation. Lymph propulsion establishes flow therefore against a positive
streamwise pressure gradient.

The biomechanics of the lymphatic system are not yet very well explored, and
further details, including its modeling, are reported elsewhere [285, 355, 454].

2.1.5.1 Lymphatic Vessels
Lymphatics capillaries are approximately 10 to 60µm in diameter. A single layer
of partially overlapping lymphatic EC forms their approximately 50 to 100 nm
thick wall, see Fig. 2.4. Whilst it has neither a basal lamina nor contractile cells,
it is equipped with active valves, so-called primary valves, to collect interstitial
fluid. The lymphatic EC are oak-leaf-shaped and joined together by “button-like”
junctions to form such primary valves. The lymphatic ECs are also anchored to the
surrounding ECM through elastic fibers that function as mechanosensors. The fibers
detect increased tissue pressure and open the primary valves to allow interstitial fluid
to enter, see Fig. 2.4. Once the surrounding tissue swells, the primary valves open
and fluid, macromolecules, and immune cells enter the lymphatic capillary.

The pre-collecting lymphatics connect the capillaries to the collecting lymphat-
ics. Collecting lymphatics have diameters of 1 to 2 mm, contain intra-luminal valves,
and their ECs are highly interconnected. Similar to blood vessels, the wall of
collecting lymphatics is formed by three distinct wall layers: intima, media, and
adventitia.

As with blood vessels, lymphatics adjust in response to mechanical and bio-
chemical stimuli [189]. NO [190], histamine [396], and endothelin [484] are known
to influence lymphatic contractility. Lymph flow is complex and corresponds to
conditions of no flow, slow flow, and retrograde flow. The endothelium is therefore
exposed to a wide range of WSS, and endothelial-derived NO is expected to have
an important role in the orchestrated propulsion of the lymphatic system [127,128].
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2.1.6 Microcirculation

Organs are perfused by feed arteries that branch off a major conduit artery. Four
to six branch orders are then counted before the terminal arterioles give rise to
capillaries, where the exchange with the interstitial tissue appears.

Arterioles, capillaries, and venules regulate vascular pressure and divert blood
flow to meet local metabolic needs. Their diameters are controlled by the tonus
of pericytes, which in turn determine the pressure drop along these vessels. It
is the arterioles that play a major role in the distribution of blood towards the
most metabolically stressed areas. In contracting skeletal muscles, for example,
marked dilation is seen in the smallest arterioles [562], whilst approximately 80%
of capillaries are perfused at rest.

Delicate alterations in the capillary “forces” and vessel properties determine fluid
exchange characteristics and allow for moment-to-moment regulation of transcap-
illary fluid flow, a mechanism knows as filtration. Whilst diffusion determines the
transport of the small molecules, filtration controls the advection of large solutes.
The permeability of capillaries to water and solutes is often regarded constant, but
this property is known to change at least in response to volume regulatory hormones
and WSS that is sensed by ECs [307, 347].

Aside from exchange, the microvasculature restores blood pressure towards
normal levels and serves as an autotransfusion compartment—at vascular volume
overload fluid it automatically removed from the bloodstream and vice versa.

2.1.6.1 Exchange
Any factor in the blood that will be delivered from the capillary into the tissue
has to pass the vascular wall, formed by the glycocalyx, endothelium, and basal
membrane. This structure is adapted to support molecular exchange. Transport of
liquid and solutes between the intravascular space and the interstitium, and thus
across the semipermeable vascular endothelial barrier, is accomplished by:

• Diffusion. Transport of a substance down its concentration gradient. It is the
primary mechanism for oxygen and lipids, and partial mechanism for proteins.

• Advection. Transport of a substance together with bulk motion of water and
determined by gradients of hydrostatic and osmotic pressures. It is the primary
mechanism for water and ions, and the partial transport mechanism for proteins.

• Transcytosis. Macromolecules, such as proteins, are captured in vesicles on one
side of the EC, drawn across the cell, and ejected on the other side.

Under normal conditions, the balance of “forces” acting across the walls of
exchange vessels favors the net flux of fluid from the bloodstream to the interstitium,
a process commonly referred to as capillary filtration. Based on Starling’s3 equation
(see Sect. 2.4.2), it has been estimated that in a healthy human, approximately

3Ernest Henry Starling, British physiologist, 1866–1927.
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Fig. 2.5 Historical understanding of microcirculatory fluid fluxes between vascular (red), intersti-
tial (gray), and lymphatic (white) spaces. More recent data suggests much less reabsorption back
into the vascular space in some tissues, and much more fluid is then transferred into the lymphatic
system

90% of the fluid that moves from the vascular capillaries into the interstitium will
be reabsorbed back into the vascular system, whereas 10% will move into the
lymphatic system, see Fig. 2.5. This quantification has been proposed by Starling
in 1896 [524] and provided useful insights in vascular exchange. However, it also
failed to explain some experimental observations [338], and additional experimental
data [371] indicated much less reabsorbtion back into the vascular capillary. We may
therefore conclude that the drainage of capillary filtrate by the lymphatic system is
another dominating factor in interstitial volume homeostasis [338].

2.1.6.2 Colloid Osmotic Pressure and the Role of Albumin
Osmosis is the spontaneous flow of a solvent across a semipermeable membrane
towards a more concentrated solution, see Appendix E.2. Osmotic pressure is the
pressure that must be applied to the side of the more concentrated solution to
stop such a flow. In the vasculature, the solvent is water, and solutes are typically
macromolecules. The osmotic pressure usually tends to pull water into the vascular
system, and as such opposes the hydrostatic pressure pushing water through the
capillary wall out of the vascular system.

The Colloid Osmotic Pressure (COP), or oncotic pressure, is the osmotic
pressure exerted by proteins and largely determined by the concentration of albumin.
The total COP of an average capillary is approximately 28 mmHg with albumin
contributing approximately 22 mmHg. Albumin is produced in the liver. It is the
most abundant blood plasma protein and constitutes approximately 50% of human
plasma proteins. It is essential for maintaining COP, and as such responsible for
proper distribution of body fluids between blood vessels and body tissues. With
approximately 10 nm in diameter, albumin is smaller than most other proteins,
which allows it to pass the capillary wall relatively easy. Therefore, approximately
50 to 60% of albumin content resides in the interstitium at an average concentration
of approximately 15 g l−1. In adipose tissue concentrations of 4.3 to 10.7 g l−1,
and in skeletal muscle 9.7 to 15.7 g l−1 have been reported [138]. In addition,
glycosaminoglycans (GAGs) and collagen exclude albumin from up to 50% of
interstitial space, such that local albumin concentration approaches 20 to 30 g l−1
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in the interstitium. This is approximately half of 35 to 50 g l−1, the albumin
concentration seen in the capillary lumen [40].

Besides controlling COP, albumin transports a wide variety of substances,
such as fatty acids, calcium, phospholipids, bilirubin, enzymes, hormones, drugs,
metabolites, and ions. Like other proteins in the interstitial spaces, albumin returns
to the circulation via lymph.

2.1.6.3 Functional Adaptation of Capillaries
Regardless of capillaries being the smallest vessels, they have the highest cumulative
surface area available for exchange. Exchange of oxygen occurs primarily from
erythrocyte “packets” as they pass through the vessel, whilst CO, fluids, and
molecules up to the size of the plasma proteins are exchanged directly between
plasma and the interstitial space. Given the different exchange functions, capillaries
may be classified as continuous, fenestrated, and discontinuous, see Fig. 2.6.

Continuous capillaries have a low hydraulic conductivity and feature strong
barriers between blood and tissue. The tightest continuous capillaries form barriers
known as the Blood–Brain Barrier (BBB), the Blood–Aqueous Barrier (BAB), the
Blood–Nerve Barrier (BNB), and the blood–testes barrier. Such barriers involves
the formation of specialized adherens and tight junctional structures between
adjacent ECs. Given the BBB, it features transcytosis by specialized transporters
to facilitate one-way and selective movement of the glucose and other small solutes.
Pathological changes of the BBB are associated with stroke, Central Nervous
System (CNS) inflammation, and neuropathologies including Alzheimer’s disease,
Parkinson’s disease, epilepsy, multiple sclerosis, and brain tumors.

Fenestrated capillaries are equipped with fenestrae of the size of 20 to 100 nm
that penetrate the endothelium and conduct fluid with considerable ease. Fenestrated
capillaries are found in the kidney, area postrema, carotid body, endocrine and

Fig. 2.6 Types of capillaries.
(a) Continuous capillaries
have a continuous
endothelium and a continuous
basal membrane. Endothelial
cells (ECs) are connected via
tight junctions. (b)
Fenestrated capillaries
display endothelium with
fenestrae on top of a
continuous basal membrane.
(c) Discontinuous capillaries
are larger than the other
capillaries and show large
fenestrae and a fragmented
basal membrane
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exocrine pancreas, thyroid, adrenal cortex, pituitary, choroid plexus, small intestinal
villi, joint capsules, and epididymal adipose tissue.

Discontinuous capillaries show wide spacing between ECs, ranging up to
micrometers, on top of a fenestrated basal membrane. Discontinuous capillaries
have a very high hydraulic conductivity and are found in organs involved in the
sequestration of formed vascular cells, such as spleen, bone marrow, or in the
synthesis and degradation of fats and proteins, such as the liver.

2.1.6.4 The Glycocalyx
Fig. 2.7 illustrates the glycocalyx, a layer that plays a central role as physical barrier
at the blood–endothelial interface. It is a negatively charged polysaccharide-rich
surface layer that covers the luminal side of the endothelium. The glycocalyx is
approximately one micrometer thick; in electron microscopy its thickness appears
50 to 300 nm and in confocal microscopy 2.5 to 4.5µm. The glycocalyx layer is the
first barrier that is permeable to water and solutes, such as electrolytes and small
molecules. However, it prevents erythrocytes from contact with the EC surface
and retains plasma proteins and inflammatory leukocytes in the vascular space,
before any trans- or paracellular transfers appear. In continuous capillaries, the
filtration of species is tightly controlled by the glycocalyx layer, and its interpolymer
spaces function as a system of small pores with radii of approximately 5 nm. Given
fenestrated and discontinuous capillaries, fenestrae provide an additional pathway
for solvent and solutes, see Fig. 2.6.

2.1.6.5 Controlling Blood Pressure and the Role of Resistance Vessels
The small diameters of arterioles, capillaries, and venules poses considerable resis-
tance to blood flow—they are therefore also called resistance vessels. Resistance
vessels are highly vasoreactive, and the tonus of the pericytes in their walls controls
their diameters, a mechanism to maintain an almost constant system pressure.
During heavy exercise cardiac output is increasing four- to eightfold, whilst the
Mean Arterial Pressure (MAP) rises by about 15 to 20 mmHg, and thus by less than
20% [366].

The resistance vessels are able to divert bloodstreams, an observation already
reported in the late 1700s by Hunter:4 “blood goes to where it is needed”. Given a
local need of blood supply, the diameter of the local resistance vessels is controlled
in response to the metabolic tension of the surrounding tissue. At heavy exercise up

Fig. 2.7 Schematic
illustration of the glycocalyx
layer, a barrier at the
blood-endothelial interface

4William Hunter, Scottish anatomist and physician, 1718–1783.
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to two liters of blood flow can be redirected to the skeletal muscles [288]. Given the
onset of muscle contraction, vasodilation in the muscle microcirculation is delayed
by only 5 to 20 s [359].

Whilst MAP increases only slightly during exercise, pulse pressure can increase
dramatically. The peripheral vasodilation reduces the diastolic pressure, and the
larger blood volume ejected by the left ventricle increases the systolic pres-
sure [477], both of which contributes to the pulse pressure increase.

2.1.7 Hemodynamic Regulation

Hemodynamic regulation aims at maintaining the local equilibrium between deliv-
ery and consumption of blood-borne substances. Blood flow distribution through
the vascular system can either be controlled by the CNS, or locally through neural
impulses and hormonal cues. The endothelium, a semipermeable barrier sitting at
the strategic position between blood and wall, plays a central role and responds to
mechanical as well as chemical signals.

The tonus of contractile cells allows for the control of the vessel’s diameter
and thus the local delivery of blood to the tissue. At the physiological tonus, the
vessel has its physiological diameter, which may be increased or decreased through
the expression of vasodilators and vasoconstrictors, respectively. Whilst NO is a
dominant vasodilator in large arteries, endothelium-driven hyperpolarization fac-
tors (EDHF), such as hydrogen peroxide, epoxyeicosatrienoic acids, prostacyclin,
prostaglandin, and others contribute to the dilation of resistance vessels. The
concentration of vasoconstrictors, such as catecholamines, Atrial Natriuretic Peptide
(ANP), vasopressin, bradykinin, also affects the status of contractile vascular cells.
Many of these factors may also influence EC’s release of NO, and the net effect
from vasodilators and vasoconstrictors determines the final vessel diameter.

2.1.7.1 AutoregulationMechanisms
Hemodynamic regulation establishes at different levels, and individual vascular
regions are regulated autonomously from other parts of the vascular system.

Given myogenic regulation, the vessel dilates or constricts in response to chang-
ing intravascular pressure [282, 498]. An elevated pressure causes paradoxically
vasoconstriction and augments the arterial resistance. This mechanism enables
matching blood supply to tissue demand over the pressure range of approximately
8 to 20 kPa. Myogenic regulation is mediated by contractile vascular cells and
independent from ECs. A pressure increase in most resistance arteries involves
stretch-induced activation of nonselective cation channels. This activation causes
cell membrane depolarization, calcium influx, and cell contraction. The Bayliss5

effect is a special example of myogenic regulation of arterioles, see Fig. 2.8.

5Sir William Maddock Bayliss, English physiologist, 1860–1924.
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Fig. 2.8 The Bayliss effect is a particular myogenic regulation mechanism of arterioles. (a) A
sudden increase of the intravascular pressure causes vasoconstriction and thus increases the vessel’s
resistance towards maintaining the flow. (b) A sudden pressure drop causes vasodilatation and a
decreased resistance towards maintaining the flow

Blood flow-dependent regulation uses the ability of the vessel to sense WSS.
The endothelium responds to WSS with the release of NO that in turn relaxes the
contractile cells in the vessel wall.

The tonus of contractile vascular cells can also be controlled by other factors,
such as upstream and downstream transmission of messengers along the vessel
walls as well as the level of local metabolism. Regulatory messengers, manufactured
and released from a site of metabolic activity, influence the activation of contractile
vascular cells, especially in the wall of arterioles [548].

2.1.7.2 Short-Term Nervous Control of the Blood Pressure
Body motion and activity require the independent nervous control of the blood
pressure for the different parts of the vascular system. Given an upright standing
position for example, a gravitational shift towards the lower limbs needs to
be compensated within seconds to avoid postural hypotension, also known as
orthostatic hypotension. The vascular system is therefore equipped with pressure
sensors that continuously record the hemodynamic regime, transduce signals,
and feed the information to corresponding afferent neurons. Such receptors are
called baroreceptors in the high-pressure circulation, and voloreceptors in the low-
pressure circulation. Prominent baroreceptors are found in the carotid sinus and the
aortic arch, whilst voloreceptors are in the pulmonary artery, the atria, the ventricles,
and the vena cavae.
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2.1.7.3 Long-Term Control of the Blood Pressure
The long-term control of blood pressure involves the indirect monitoring of blood
volume. Hormonal-based control restores the blood volume and subsequently the
blood pressure. The blood volume is controlled by fluid and electrolytes, such as
sodium and potassium, excreted from the kidney. Other organs involved in blood
volume control are the hypothalamus, sympathetic nerves, adrenal gland, and others.

2.2 Mechanical System Properties

The circulatory system relies on the pumping heart and the resistance in the vascular
bed. These two effects together generated the arterial blood pressure p [Pa] and flow
q [m3 s−1]—the most fundamental mechanical properties of the circulatory system.
Pressure and flow appear as waves and propagate along the vascular tree.

The heartbeat forces the vascular system to oscillate and it is normally in
near-periodic steady-state oscillation. Given the heart suddenly stops beating, the
vascular system stops oscillating and pressure and flow decrease smoothly to zero.
This is characteristic for an over-damped system.

Although arteries have complex geometries, in this section we consider them as
long, thin-walled tubes. This 1D approximation also ignores the variation of the
velocity across the cross-section, necessarily abandoning the no-slip condition at
the wall.

2.2.1 Waves in the Vascular System

Whilst the definition of a wave is commonly linked to the specific physical phe-
nomena it represents, waves may generally be seen as disturbances that propagate
in space and time. A wave has a waveform, or profile that changes along with its
propagation. The profile may be decomposed into sub-waves. Such decomposition
is not unique, and historically, the most common way to represent cardiovascular
waveforms is the Fourier6 decomposition, see Appendix A.3. It treats the waveform
as the superposition of sinusoidal waves at the fundamental frequency and all of its
harmonics. Since Fourier analysis is carried out in the frequency domain, it can
be difficult to relate features of the Fourier representation to specific times in the
cardiac cycle.

The wave speed c [m s−1] in the cardiovascular system is determined by the area
distensibility D = (dA/dp)/A [Pa−1] of the vessel, and given by the relation

c = 1√
ρD

, (2.1)

6Jean-Baptiste Joseph Fourier, French mathematician and physicist, 1768–1830.
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where ρ [kg m−3] denotes the density of blood, and A [m2] is the cross-section of
the vessel. The derivation of (2.1) is given in Sect. 6.6.3. The waves are advected
by the blood velocity v, so that the observed speed of propagation is v + c in the
downstream direction and v − c in the upstream direction. Given normal arteries,
the blood velocity v is always lower than the wave speed c.

Example 2.1 (Upstream Pressure Wave Propagation). Blood of density ρ =
1060.0 kg m−3 is under the pressure p and flows at the velocity v in an artery
of the cross-section A, see Fig. 2.9. A pressure wave propagates at the speed
c − v in upstream direction and changes the velocity and pressure by �v and �p,
respectively.

Fig. 2.9 Upstream
propagating of a pressure
wave in a blood vessel

Control 
volume

(a) Express the mass flow rate that passes through the control volume as shown in
Fig. 2.9. The wave speed c in the vessel may be regarded much larger than the
blood flow velocity v.

(b) Use Newton’s second law of mechanics and apply it to the control volume
towards the derivation of the relation between the wave speed c, the increments
�v, �p and the blood density ρ, a relation called water hammer equation.

(c) Consider a vessel of distensibility D = 0.0301 kPa−1 and compute the wave
speed c.

(d) Compute the change of velocity �v that is caused by a pressure wave of �p =
0.23 kPa. �

Wave speed in the aorta has traditionally been determined by measuring the time
it takes for the pulse wave to travel between two measurement sites—usually from
the carotid to the femoral artery [394]. Although the peak of the pressure or the
velocity is probably the easiest to measure, it is more accurate to measure the time
of the foot of the wave. This measure alters less as the waveform changes with its
propagation, and such methods are generally known as foot-to-foot measurements.
The pressure–velocity loop provides an alternative method to measure wave speed,
see Sect. 2.2.5.

The blood vessel’s area distensibility D is not constant, but a function of the
blood pressure, a factor that influences the wave speed (2.1). Let us consider
the aorta with the aortic valve opening and closing at diastolic and late-systolic
pressures, respectively. The opening and closing of the valve trigger waves that then
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travel at different speeds along the aorta, information that may be used to identify
the non-linear stress–strain property of the vessel wall properties [301].

2.2.2 Vascular Pressure

Given a position x along the vascular path, the integration over the pressure
waveform p(x, t) [Pa] defines the mean pressure

pmean(x) = 1

T

∫ T

0
p(x, t)dt ≈ 1

3
psyst(x) + 2

3
pdiast(x) , (2.3)

where T [s] is the duration of a cardiac cycle, and psyst and pdiast denote systolic and
diastolic blood pressures, respectively. For practical reasons one would integrate not
only over one, but a number of cardiac cycles.

The mean pressure pmean continuously decreases from the aorta towards the vena
cava. However, the pressure gradient is not continuous all along the vascular path
but appears almost exclusively in arterioles, capillaries, and venules—the vessels of
the smallest diameters, see Fig. 2.10. The vascular bed houses these vessels and
therefore determines the resistance of the vascular system. This key role of the
vascular bed has already been noticed by Hales.7

Aside from the mean pressure, the pulse pressure pp = psyst − pdiast is another
important hemodynamic property of the vascular system. Hales seems again to be
the first to measure blood pressure and notice that pressure in the arterial system is
not constant, but varies over the heartbeat. The pressure wave pulse, or waveform

Fig. 2.10 Change of
pressure along the vascular
path. Mean pressure pmean
(thick line) falls quickly at the
level of the smallest vessels.
The pulse pressure pp
(hatched area) increases
towards distal arteries as a
consequence of wave
reflection, before it dissipates
at the level of the smallest
vessels. The capillaries and
the entire venous system are
free from pulsatility. The
exchange of oxygen,
nutrients, and other
substances appears at the
level of capillaries (gray area)
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7Stephen Hales, English clergyman, 1677–1761.



56 2 The Circulatory System

is not only determined by the heartbeat, but it is also a direct manifestation of
vascular properties. It is almost exclusively the elastic properties of the thoracic
aorta together with the heartbeat that determines the pressure pulse.

The pressure wave travels over the arterial tree at the wave speed c, much faster
than the blood flow velocity v. The vessel’s distensibility and diameter determine
the wave speed according to Eq. (2.1). The pulse wave travels two times faster in
large arteries, and even four times faster in small arteries as compared to the aorta.

2.2.2.1 PressureWaveform
A number of factors shape the pressure wave, resulting in its characteristic
appearance. Fig. 2.11 illustrates the typical shape of the pressure wave in the aorta.
It establishes from the superposition of the forward and backward traveling waves,
see Fig. 2.11b. The forward wave originates at the ventricle, whilst the backward
wave stems from wave reflections at downstream arterial branch points, where the
aortic bifurcation is most dominant. The reflections explain that the pulse pressure
pp increases from the aorta towards the distal arteries and that the pressure wave
looks very different in young and old subjects, see Fig. 2.11c. The aorta in old
subjects is stiffer, and thus less distensible, and pressure waves travel therefore
faster. The backward wave arrives then earlier and contributes more to the systolic
pressure augmentation.

When reaching the level of arterioles, the pressure wave flattens out due to the
high viscous dissipation of the flow in small vessels. Consequently, capillaries and
the entire venous system are free of pulsatility, see Fig. 2.10.

2.2.3 Vascular Capacity

The capacity C [m3 Pa−1], also known as volume compliance, determines the
vasculature’s ability to increase the volume of blood it holds, and thus its reser-
voir/buffering function. Given its definition

C = �V

�p
, (2.4)

it relates the increase of blood volume �V [m3] to the increase in blood pressure
�p [Pa]. The compliance, and thus the elasticity and size of the largest blood vessels
determine the capacity of the vascular system.

Fig. 2.12 shows the blood volume in the arterial and venous systems as a function
of the pressure [235]. The tangent to these curves is the respective capacity, and
Cart = 2 ml mmHg−1 and Cven = 100 ml mmHg−1 approximate the arterial and
venous capacities of an adult human. The venous system stores approximately five
times more blood than the arterial system and its capacity is approximately fifty
times larger than that of the arterial system.

The aorta contributes almost the entire capacity to the vascular system, out
of which the thoracic segment alone covers 85% [232]. The capacity of the
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Fig. 2.11 The pressure
pulse. (a) Typical pressure
waveform. The systolic
pressure is augmented by the
backward wave. The diacrotic
notch denotes the closure of
the aortic valve. (b) The
superposition of forward and
backward traveling waves
determines the pressure pulse.
(c) Typical pressure
waveforms in young and old
subjects

(b) (c)

(a)

Fig. 2.12 Pressure–volume
relationships of (a) the
arterial and (b) the venous
vascular system.
Vasoreactivity influences the
relationship as shown by the
dashed curves
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aorta is constant over a wide range of pressures and determines the circulation’s
Windkessel (WK) properties. The capacity of the aorta, and thus its elasticity, is of
utmost importance to the entire cardiovascular system. A stiff aorta increases left
ventricular load that may result in cardiac complications, such as cardiomyopathy.
In addition to genetic or elastinopathies [94], the aorta also stiffens naturally with
age. It is elastic lamellae that undergo fragmentation and thinning, leading to ectasia
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and a gradual transfer of mechanical load to collagen, which is 100 to 1000 times
stiffer than elastin and then reduces the capacity of the vascular system [224].

2.2.4 Vascular Flow

The aorta is the first arterial segment of the systemic circuit, directly connected to
the heart. A unidirectional flow of the blood ejected from the left ventricle into
the aorta is maintained through the aortic valve. It passively opens and closes
with each heartbeat. The discontinuous inflow of blood together with the aortic
capacity defines the pulsatile blood flow in the aorta. Given peak systole, blood
flows unidirectional and at velocities of approximately 60 cm s−1, whilst back flow
establishes at the diastolic phase. Back flow in the aortic arch and the abdominal
aorta reaches velocities of approximately −20 cm s−1 and −10 cm s−1, respectively.

Blood flow in the large arteries is similar to the flow in the aorta. For example in
the iliac artery, the velocities over the cardiac cycle range from approximately −7.5
to 60 cm s−1. The flow in veins is much more homogeneous as compared to arteries.
Given the saphenous vein, the velocity changes only between approximately
20 and 30 cm s−1. The distribution of the blood flow velocity over the vessel’s
cross-section is complex and influenced by factors, such as the form of the pressure
wave, the vessel’s diameter and centerline curvature, upstream and downstream flow
properties, Vortical Structure (VS) dynamics, and others. Such effects are beyond a
1D flow description and will be discussed in Chap. 6.

Flow is inverse proportional to the vasculature’s cross-sectional area. At the
level of the capillaries the largest cross-sectional area appears, and blood flows
at velocities as low as tens of micrometers per second. A Stokes8 flow is then
an adequate model of blood flow. The very low flow velocity is important to
provide enough time for the exchange of oxygen, nutrients, and other substances
in the capillaries. The blood flow is linked to the vessel’s biochemical activity
through WSS, and changes in response to factors, such as the oxygen tension of
the surrounding tissue.

Given a 1D description, the flow q and the velocity v in a vessel are related
through q = Av [m3 s−1], where A denotes the luminal cross-section of the vessel.
Similar to the pressure p(x, t), the flow q(x, t) also appears as a wave in the vascular
system, where x and t denote the position along the vascular path and the time,
respectively.

2.2.4.1 Venous Return
Given homeostasis, the time-averaged cardiac output equals the flow into the atrium,
the venous return. Venous return and cardiac output are therefore interdependent,
a relation known as the Frank–Starling mechanism. In addition to factors, such
as rhythmical contraction of limb muscles during normal locomotory activity,
vasoreactivity, respiration, and gravitation, the (partial) collapse of veins has an

8Sir George Gabriel Stokes, English/Irish physicist and mathematician, 1819–1903.
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important influence on the venous return. It appears at negative ambient pressures
and has been extensively studied [259, 422]. See also Fig. 2.13 that illustrates
some factors that influence venous return. At negative atrial pressure, veins start
to collapse and the linearity between pressure and flow is broken. Venous return can
then no longer increase at increasing pressure gradient, and the pressure–flow curve
flattens out.

2.2.5 The Pressure–Velocity Loop

Given the pressure p(x, t) and the velocity v(x, t) at the position x in a vessel, the
pressure–velocity loop may be plotted, see Fig. 2.14. At the beginning of the loop
when the pressure and velocity waves start, the tangent to the pressure–velocity

Fig. 2.13 The non-linear relation between the venous return and the atrial pressure. (a) Influence
of the total peripheral resistance. (b) Influence of the Mean Arterial Pressure (MAP)

Fig. 2.14 The
pressure–velocity loop
illustrating the weighted wave
speed ρc. The dot indicates
the beginning of the pressure
and velocity waves
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loop expresses the weighted wave speed ρc, where ρ denotes the density of blood
and c is the wave speed. The water hammer equation (2.2) �p/�v = ρc explains
this property of the pressure–velocity loop, where c >> v has been assumed in
the derivation of (2.2). It relates the pressure and velocity increments �p and �v

of wave propagation and goes back to the work of von Kries,9 and pulse wave
investigations in blood vessels [571]. Given p(x, t) and v(x, t) can be measured
accurately and simultaneously, the pressure-volume loop represents a simple and
accurate method of measuring the wave speed [304].

2.2.6 Vascular Resistance

The resistance R = �p/q [Pa s m−3] of a vessel against the flow q is expressed
by the pressure drop �p between the inlet and outlet of the segment. The viscosity
of the blood and the flow conditions in the vessel determine its resistance. Given
laminar steady-state tube flow, the Hagen10–Poiseuille11 law expresses the hydraulic
resistance, see Sect. 2.3.2.1. It states that a tube of diameter d has a resistance that is
proportional to 1/d4, and therefore only the smallest vessels, the resistance vessels,
can provide noticeable resistance to blood flow [609].

As with an individual vessel, also a network of vessels provides resistance to flow.
The dimensions of the vessels together with their organization within the network
then determine the resistance. The arrangement of vessels in series increases the
resistance, whilst their parallel arrangement reduces the resistance. Given an adult
human, Rart = 1 mmHg s ml−1 and Rven = 0.06 mmHg s ml−1 approximate the
resistances of the arterial and venous systems, respectively.

2.2.7 Transcapillary Transport

The changes of hydrostatic and osmotic pressures across the capillary wall direct
the transcapillary fluid flux, and thus the fluid exchange between the vascular
and interstitial spaces. The fluid is in principle water that solves proteins and
electrolytes, which then is called plasma. Factors such as solute size and its electrical
charge determine whether or not they can pass the semipermeable capillary wall.
The fluid flux is therefore always filtrated, and the transcapillary transport is also
called filtration. Together with the lymphatic system, filtration determines the
transcapillary solute concentrations and controls interstitial (volume) homeostasis.

Whilst the muscle tonus controls the hydrostatic pressure in the microvascula-
ture, the transcapillary solute concentrations determine the osmotic pressure. Small
solutes can easily pass the capillary wall, and in most vascular beds only the

9Johannes von Kries, German physiologist, 1853–1928.
10Gotthilf Heinrich Ludwig Hagen, German civil engineer, 1797–1884.
11Jean Léonard Marie Poiseuille, French physicist, and physiologist, 1797–1869.
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macromolecular solutes appear at significant different concentrations across the
vessel wall. The transcapillary osmotic pressure �� can therefore be approximated
by the sum of pressure differences that are exerted by such macromolecules.
Albumin is the most important macromolecule in this context and accounts for
approximately 80% of ��.

Aside from transcapillary pressure differences, the wall’s leakiness, and thus its
hydraulic conductivity Lp [m Pa−1s−1] determines how much fluid passes through
it. The conductivity is defined by Darcy’s12 law through the relation

Lp = k

ηL
, (2.5)

where k [m2] and L [m] denote the intrinsic permeability and thickness of the capil-
lary wall, whilst η [Pa s] is the viscosity of water, see Appendix E.2. The hydraulic
conductivity can also be directly measured by laboratory experiments [250].

2.3 Modeling theMacrocirculation

This section follows a top-down approach, where lumped parameter models
describe parts of the vascular system. They represent vascular complexity by a low
number of parameters yet capturing salient system features. A topology consisting
of discrete entities, representing resistance, capacity, and inductance, describes the
spatially distributed vascular system. Such models do not consider the anatomical
organization of the vessels and cannot represent features, such as wave propagation.
Lumped parameter modeling of the vascular system is well documented with
excellent reviews [596] available in the literature.

2.3.1 WindKessel Models

Whilst Weber13 seems to be the first who proposed the comparison of the capacity
(volume compliance) of the large arteries with the WindKessel (WK) present in fire
engines, it was Frank14 [173] who quantitatively formulated and popularized the
so-called two-element WK model.

2.3.1.1 Two-ElementWindKessel Model
The two-element WK model represents the systemic vascular circuit by two lumped
parameters—its total capacity C [m3 Pa−1], and its total peripheral resistance
R [Pa m−3], see Fig. 2.15. The capacity C = �V/�p describes the intake of the

12Henry Philibert Gaspard Darcy, French engineer, 1803–1858.
13Ernst Heinrich Weber, German physician, 1795–1878.
14Otto Frank, German doctor and physiologist, 1865–1944.
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blood volume �V [m3] into the (elastic) arterial system in response to the pressure
increase �p [Pa]. In contrary, the resistance R = �pmean/qCO relates the drop of
the mean pressure �pmean from the arterial side to venous side, to the cardiac output
qCO [m3 s−1]. Given the much higher pressure in the arterial than in the venous
system, the simplification R ≈ pmean art/qCO may be made, where pmean art denotes
the MAP. Whilst the elasticity of the aorta and the largest conduit arteries determines
the system’s capacity C, the resistance vessels govern the system’s resistance R.

The total flow q(t) through the system splits into the flow qR(t) through the
resistor R and the flow qC(t) into the capacitor C, see the electrical representation
of the two-element WK model in Fig. 2.15b. The flow balance then reads

q(t) = qR(t) + qC(t) = p(t)

R
+ C

dp(t)

dt
, (2.6)

where p(t) denotes the time-dependent arterial pressure, and the relations qR =
p/R and qC = C(dp/dt) describe the resistor and the capacitor, see Appendix E.1.
The governing equation of the two-element WK model (2.6) relates the pressure
p(t) and flow q(t) of the systemic circuit, a system described by the properties C

and R, respectively.
Given the pressure p(t), relation (2.6) is an algebraic expression that directly

yields q(t). In contrary, given q(t), it represents a first-order linear differential
equation in p(t) and may be solved (numerically) together with the initial condition
p(0) = p0. Fig. 2.16b illustrates such a (transient) solution for the pressure
p(t). Table 2.1 reports the systemic circuit parameters, whilst Fig. 2.16a shows

Fig. 2.15 (a) Hydraulic and
(b) electric representations of
the two-element WindKessel
(WK) model. The flow q(t)

and pressure p(t) describe the
system state, and R and C

denote vascular bed
resistance and arterial
capacity, respectively

C R

Table 2.1 System
parameters used for
WindKessel (WK) models

Vascular bed resistance R 1.1 mmHg s ml−1

Arterial capacity C 0.7 ml mmHg−1

Aortic impedancea Z 0.1 mmHg s ml−1

Arterial inertanceb L 0.02 mmHg s2 ml−1

a Only used by the three-element and four-
element WK models.
b Only used by the four-element WK model.
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Fig. 2.16 WindKessel (WK) modeling of the systemic circuit. (a) Prescribed flow profile q(t).
(b) Pressure profile p(t) according to the two-element WK model (2.6). (c) Pressure profile p(t)

according to the three-element WK model (2.20). (d) Pressure profile p(t) according to the four-
element WK model (2.30). Table 2.1 reports the parameters used for the WK models

the prescribed flow q(t) through the system. The cardiac cycle time of T = 1.0 s
has been used, and the flow waveform was interpolated between a number of data
points. The two-element WK model (2.6) has been solved at the initial condition
p0 = 80 mmHg, and Fig. 2.16b shows p(t) for the time interval from 8.0 to 10.0 s.
It is the ninth and tenth cardiac cycle, and the system has reached its steady-state
periodic condition.

Example 2.2 (Two-Element Windkessel Model Predictions). A vascular system
may be represented by a two-element Windkessel model, where R =
50.1 mmHgs ml−1 and C = 0.018 ml mmHg−1 describe the system’s resistance
and capacity, respectively. Given the cardiac cycle period T = 1 s, the flow

q(t) =
{

q0 sin(6πt) 0 ≤ t ≤ 1/6s ,

0 1/6 < t < 1s ,
(2.7)

where q0 = 18.2 ml s−1 passes the system.

(a) Use the backward-Euler time discretization method and provide a discretized
version of the two-element Windkessel model (2.6).



64 2 The Circulatory System

(b) Iteratively solve the discretized governing equation and predict the pressure p(t)

in the system at steady-state periodic conditions. Use different numbers k of time
steps towards exploring the convergence with respect to this parameter. �

Example 2.3 (Systemic Implication of EVAR Treatment). Given EndoVascular Aor-
tic Repair (EVAR), a stent-graft of diameter dsg = 2.5 cm is inserted in the
laorta = 35 cm long thoracic aorta to cover an aneurysm, see Fig. 2.17. The stent-
graft has the radial stiffness of ksg = �d/�p = 1.2 · 10−3 cm kPa−1 and covers
in total 70% of the thoracic aorta. The EVAR treatment changes the capacity C of
the systemic circuit, and before treatment, the capacity Cn = 9.7 cm3 kPa−1 and the
resistance R = 0.18 kPa s cm−3 determined the patient’s systemic circulation.

Fig. 2.17 Schematic
illustration of a thoracic
aortic aneurysm that has been
treated with EndoVascular
Aortic Repair (EVAR). The
stent-graft covers the
lsg = αlaorta long aortic
segment, where laorta and α

denote the total length of the
thoracic aorta and a
dimensionless parameter,
respectively

Stent-graft

Aneurysm

Aorta

Ao
rta

(a) Provide the relation of the capacity CEVAR(α) as a function of the stent-graft
coverage α for the EVAR-treated patient. The stent-graft coverage α = lsg/laorta
is the ratio between the stent-graft length and the length of the thoracic aorta.

(b) Consider the simplified cardiac output q(t) = Q sin(πt)2 with Q =
150 cm3 s−1 and use a two-element Windkessel (WK) model to study
the systemic implication of EVAR treatment. Consider the initial pressure
p(0) = 13.3 kPa and solve the WK governing equation for α = 0 and α = 1,
respectively. Plot the aortic pressure over the time for said parameters.
The result

I =
∫

exp(x/a) sin2(πx)dx

=a exp(x/a)
[
1 + 4a2π2 − cos(2πx) − 2aπ sin(2πx)

]
2 + 8a2π2 + K



2.3 Modeling the Macrocirculation 65

may be used to solve the linear first-order differential equation of the WK model,
where K denotes an integration constant. �

2.3.1.2 Homogeneous Solution
In most cases, only the steady-state periodic, or homogenous solution of the
problem (2.6) is of interest. The analysis in the complex plane, or Argand’s15

diagram is then convenient, see Appendix A.2. The flow and the pressure are
described by complex numbers, represented by the vectors q and p in the complex
plane, respectively.

Let us first consider the case, where the pressure p(t) = Re(p) is known, whilst
the flow q(t) = Re(q) through the system is unknown. At steady state, the pressure
p(t) (as the flow q(t)) is periodic and may be expressed by the Fourier series (see
Appendix A.3)

p(t) = Re(p) = Re

( +∞∑
n=−∞

Pn exp[iωt]
)

, (2.9)

where Pn and i = √−1 denote the complex Fourier coefficients and the imaginary
unit, respectively. Given the additive representation (2.9) of the pressure waveform
through the superposition of its harmonics, it is sufficient to consider a single
complex vector p = P exp(iωt) = P exp(iωt) with P = |P| pointing in the real
direction at the time t = 0. With the properties of the resistor and capacitor (E.1),
the governing equation (2.6) then reads

q = R−1P exp(iωt) + iCωP exp(iωt)

= P(R−1 + iCω) exp(iωt)

= Q exp(iωt) , (2.10)

where |Q| = Q = P
√

R−2 + C2ω2 and φ = arg(CRω) = arctan(CRω) denote
the amplitude (norm) and the argument of the complex flow vector q, respectively.
The time-dependent flow then reads q(t) = Re(q) = Q cos(ωt +φ), and Fig. 2.18a
illustrates it in the complex plane.

In contrary to the aforementioned analysis, we consider now the system flow q(t)

to be given, whilst the pressure p(t) is unknown. The flow q(t) = Re(q) may again
be expressed as Fourier series q = ∑+∞

n=−∞ Qn exp(iωt) with Qn denoting the

15Jean-Robert Argand, French amateur mathematician, 1768–1822.
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Fig. 2.18 Representation of flow q(t) = Re(q) and pressure p(t) = Re(p) in the complex plane.
The relation amongst them is described by a two-element WindKessel (WK) model that describes
the systemic circuit of resistance R and capacity C. (a) The pressure p is prescribed, and the WK
model governs the flow q. (b) The flow q is prescribed, and the WK model governs the pressure p

Fourier coefficients. Again, it is sufficient to consider Eq. (2.6) for a single complex
vector q(t) = Q exp(iωt) with Q = |Q| and Q pointing in the real direction at
t = 0. It yields then the governing equation

Q exp(iωt) = R−1P exp[i(ωt + φ)] + iCωP exp[i(ωt + φ)]
= P

{
R−1 exp(iφ) + Cω exp[i(φ + π/2)]

}
exp(iωt) , (2.11)

where the Ansatz p(t) = P exp(iωt) = P exp[i(ωt + φ)] has been used.
Whilst P = |P| denotes the pressure amplitude (norm), φ is the phase angle
between pressure and flow. Both parameters need to be identified from the complex
equation (2.11). Equation (2.11)1 already presents real and imaginary contributions,
and P = Q/

√
R−2 + C2ω2 denotes the norm of the flow. Towards the specification

of the phase angle φ, we may consider the expression (2.11) at the time t = 0.
The flow q points then in the real direction, and thus the imaginary part of (2.11)
vanishes. The condition

0 = Im
[
P
{
R−1 exp(iφ) + Cω exp[i(φ + π/2)]

}
exp(iωt)

]
t=0

= R−1 sin φ + Cω sin(φ + π/2)︸ ︷︷ ︸
cos φ

then determines tan φ = −RCω to be the phase angle. Fig. 2.18b illustrates flow
and pressure in Argand’s diagram at the time t = 0 when the flow q points into
the real direction. The governing equations (2.10) and (2.11) describe both the two-
element WK model, and the vector diagrams in Fig. 2.18a,b are rotated versions of
each other.
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Fig. 2.19 (a) Impedance modulus Z and (b) impedance angle φ predicted by the two-element
WindKessel (WK) (red) and the three-element WK (blue) models. The models use the parameters
listed in Table 2.1, and the gray curves show typical experimental data

2.3.1.3 Impedance
The impedance z is a complex vector that relates a system’s input and output.
In the description of the vasculature, it compares the pressure p and the flow
q. The impedance modulus |z| = Z = |p|/|q| = P/Q [Pa s m−3] is the
quotient of the pressure and flow amplitudes, whilst the impedance angle φ =
argq− argp [rad] is the phase difference between the two complex vectors q and p,
respectively. Given the flow and pressure of the two-element WK model derived in
Sect. 2.3.1.2,

Z = (R−2 + C2ω2)−1/2 and φ = arctan(RCω) (2.12)

express its impedance modulus Z and angle φ, respectively. Fig. 2.19 shows these
quantities as a function of the system frequency f = ω/(2π) and based on
the parameters listed in Table 2.1. At steady state f = 0, the entire flow runs
over the resistor; the system’s impedance is then equal to its resistance, Z =
R.

Example 2.4 (Impedance of the Vascular System). Table 2.2 reports measurements
of aortic pressure p(t) and flow q(t) in the ascending ferret aorta. Given these
measurements, the vascular system’s impedance z should be computed.

(a) Provide a Fourier series approximation of p(t) and q(t) up to M = 10
harmonics. Plot the Fourier series approximation on top of the original signal.
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Table 2.2 Measured flow and pressure waves in the ascending aorta of an individual ferret. Data
is extracted from plots reported elsewhere [62]

Time [s] Flow [ml s−1] Pressure [mmHg]

0.0 0.00 78

0.0125 0.00 78

0.025 0.04 77

0.0375 0.23 77

0.05 0.48 78

0.0625 3.00 95

0.075 4.61 97

0.0875 4.50 97

0.1 3.96 96

0.1125 3.20 93

0.125 2.10 90

0.1375 0.00 81

0.15 −0.32 83

0.1625 −0.08 85

0.175 0.14 87

0.1875 0.15 89

Time [s] Flow [ml s−1] Pressure [mmHg]

0.2 0.16 90

0.2125 0.20 90

0.225 0.30 89

0.2375 0.20 87

0.25 0.16 86

0.2625 0.13 84

0.275 0.10 84

0.2875 0.08 83

0.3 0.07 82

0.3125 0.06 81

0.325 0.06 81

0.3375 0.04 80

0.35 0.02 80

0.3625 0.00 79

0.375 0.00 78

(b) Compute the system’s impedance modulus Z and impedance angle φ, and plot
them versus the signal frequency f . �

2.3.1.4 Parameter Identification
The vascular bed’s resistance R determines the relation between the mean flow qmean
and the mean pressure pmean over the cardiac cycle. Given the time T of the cardiac
cycle, the expression

R = pmean

qmean
=
∫ T

0 p(t)dt∫ T

0 q(t)dt
(2.14)

allows us therefore to compute the resistance R from the flow q(t) and pressure
p(t), respectively. The cardiovascular system is an over-damped system, and the
heart directly determines its pulsatility. Therefore, p(t), q(t), and T may vary from
cycle to cycle, and their averages over a number of cardiac cycles should be used to
compute R through (2.14).

In addition to the resistance R, the capacity C of the two-element WK model
needs to be identified. An approach known as pressure decay method considers
the late diastolic phase, where the flow is approximately zero, see Fig. 2.16a. The
governing equation (2.6) then reads q(t) = p(t)/R + Cdp(t)/dt = 0, and the
capacity

C = �t

R ln
(

p0
p1

) (2.15)
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is given by the pressure decay over the time period �t = t1 − t0. The pressures
p0 = p(t0) and p1 = p(t1) are commonly taken at time t0 right after the diacrotic
notch, as well as at the time t1 at the end of the diastolic phase. Alternative methods
to identify C by exploring the late diastolic phase have been discussed elsewhere
[596].

Example 2.5 (Decay Method to Estimate the Vascular Resistance). Given the
organ’s arterial capacity C = 0.012 ml mmHg−1, the experimental set-up shown
in Fig. 2.20 is used to measure the vascular bed resistance R. At the time t = 0
the valve closes and stops the inflow, such that qin(t) = 0 holds for t > 0.
At the times t0 = 0.1 s and t1 = 0.9 s, the manometer measures the pressures
p0 = pin(t0) = 112.0 mmHg and p1 = pin(t1) = 75.0 mmHg, respectively.

Manometer 
Organ‘s vasculatur 

Inflow Outflow

Valve 

Fig. 2.20 Schematic illustration of an experimental set-up to estimate the vascular resistance R

of an organ

(a) Design a lumped parameter model that represents the problem at negligible
inflow qm = 0 into the manometer. Derive the model’s governing equation and
estimate the resistance R from the two pressure measurements p0 and p1.

(b) Consider the flow qm(t) = ξdpin/dt to be proportional to the pressure change,
where ξ denotes a manometer-dependent parameter. Provide the governing
equation for this problem and estimate R from the two pressure measurements
p0 and p1. Compute the relative error e = 100(R − Rexact)/Rexact [%] for
0 < ξ < 0.5C, where Rexact denotes the resistance at qm = 0.

(c) Consider the manometer to be an uptake tube with the inner diameter of di =
1.0 mm that is filled with water of the density ρ = 1000.0 kg m−3. Compute ξ

for this device and estimate the resistance R of the vascular bed from the two
pressure measurements p0 and p1. �

Least-square parameter identification is a popular approach in the identification
of model parameters. Given n measurements at the times ti of the pressure pi and
flow qi , the minimization problem

n∑
i=0

[
α(p(R,C; ti ) − pi)

2 + (q(R,C; ti ) − qi)
2
]

→ MIN (2.17)



70 2 The Circulatory System

allows the identification of the least-square optimized parameters R and C of the
two-element WK model. Here, α denotes a scaling/weighting parameter to account
for differences concerning the values of pressure and flow and to ensure that both
errors contribute to the objective function. Aside from directly using the pressure
and flow measurements, the impedance modulus Z = (R−2 + C2ω2)−1/2 and
the impedance angle φ = arctan(RCω) may also be used to estimate R and C.
The Fourier series of the pressure and flow waves provides the pairs (Zi, ωi) and
(φi, ωi) for 0 ≤ i ≤ M , see Example 2.4. Here, M is the number of harmonics
considered by the parameter identification, whilst ω denotes the angular velocity.
The minimization problem

M∑
i=0

[
α(Z(R,C;ωi) − Zi)

2 + (φ(R,C;ωi) − φi)
2
]

→ MIN (2.18)

allows then the identification of the least-square optimized parameters R and C,

where α adjusts for data range difference.
Whilst the least-square-identified parameters yield the model that best agrees

with the experimental data, the physical interpretation of R as vascular bed
resistance, and C as volume compliance cannot be guaranteed.

2.3.1.5 Three-ElementWindKessel Model
At higher frequencies, Fig. 2.19 demonstrates qualitative disagreement between
experimental data and the predictions of the two-element WK model. Whilst the
two-element WK model approaches the impedance modulus Z = 0 and the
impedance angle φ = −π/2 for the frequency f → ∞, this is not supported by
experimental data. The two-element WK model does not consider inertia effects of
the blood, which is the main reason for this shortcoming.

The acceleration and deceleration of the large blood mass in the aorta influence
the vascular system; it presents significant vascular resistance at higher frequencies.
The three-element WK model introduced therefore an additional resistance Za =
vpwρ/A, where vpw, ρ, and A denote aortic pulse wave velocity, blood density, and
aortic cross-section, respectively. The resistance Za is also called aortic impedance,
and Fig. 2.21 shows the hydraulic and electric representations of the three-element
WK model.

Given the flow q(t) across the resistor Za, the pressure drops from p(t) to p(t),
and

p(t) = p(t) − Zaq(t) (2.19)

holds. In addition, the total flow splits into the part qR(t) through the resistor and
the part qC(t) into the capacitor. It yields the relation

q(t) = qR(t) + qC(t) = p(t)

R
+ C

dp(t)

dt
,
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Fig. 2.21 (a) Hydraulic and
(b) electric representations of
the three-element WindKessel
(WK) model. Flow q(t) and
pressure p(t) describe the
system state, whilst R, Za,
and C denote the vascular bed
resistance, aortic impedance,
and arterial capacity,
respectively

and the substitution of p(t) by (2.19) then leads to the governing equation

dp(t)

dt
+ p(t)

RC
= Za

dq(t)

dt
+ R + Za

RC
q(t) (2.20)

of the three-element WK model. Given either p(t) or q(t), the relation (2.20) yields
a first-order linear differential equation. Fig. 2.16c illustrates the corresponding
(transient) solution. It is based on the prescription of the flow shown in Fig. 2.16a
and the parameters listed in Table 2.1. The solution starts at the initial condition
p0 = 80 mmHg, and Fig. 2.16c shows p(t) at steady-state periodic conditions.

The three-element WK model is probably the most widely used model to mimic
the vascular system. It is often realized as a test rig to test vascular medical devices.

Example 2.6 (Two-Element Versus Three-Element WK Models). Table 2.2 reports
measurements of the pressure p(t) and flow q(t) in the ascending ferret aorta, data
that should be used to estimate model parameters of the two-element and three-
element WK models.

(a) Estimate the peripheral resistance R of the ferret’s vascular system.
(b) Estimate the total arterial capacity C of the ferret’s vascular system.
(c) Estimate the ferret’s aortic impedance Za. The aortic diameter of 6.0 mm,

the aortic pulse wave velocity of 6.3 m s−1, and the blood density of ρ =
1060 kg m−3 may be used.

(d) Prescribe the flow given in Table 2.2 and predict the pressure through the
numerical solution of the governing equations of the two-element and three-
element WK models. �

2.3.1.6 Homogeneous Solution
The steady-state periodic analysis of the problem (2.20) is conveniently investigated
in the complex plane, where the pressure and flow waves assemble from the
superposition of p = P exp(iωt) and q = Q exp[i(ωt + φ)], respectively. The
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complex vectors p and q rotate at the angular velocity ω in the complex plane and
may be seen as sub-waves, the harmonics. The phase angle φ between both vectors
denotes the system’s impedance angle. Given this Ansatz for the pressure and flow,
the governing equation (2.20) yields

iωZ + Z

CR
= iωZa exp(iφ) + R + Za

RC
exp(iφ) , (2.21)

where the definition of the system’s impedance modulus Z = P/Q has been used.
Without loss of generality, the expression (2.21) is then investigated at the time

t = 0 towards the identification of the system unknowns, the impedance modulus
Z, and the impedance phase φ, respectively. Euler’s16 formula exp(iφ) = cos φ +
i sin φ allows us to split (2.21) into imaginary and real parts

ωZ = ωZa cos φ + R + Za

RC
sin φ ,

Z

RC
= −ωZa sin φ + R + Za

RC
cos φ ,

⎫⎪⎬
⎪⎭ (2.22)

which then results in a system with four solutions for Z and φ. The only physically
admissible solution is

Z =
√

αβ

1 + C2R2ω2 ; φ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− arccos

(
R + Za + C2R2ω2Za√

αβ

)
ω > 0

arccos

(
R + Za + C2R2ω2Za√

αβ

)
ω < 0

(2.23)

with α = 2RZa + Z2
a + R2(1 + C2ω2Z2

a ) and β = 1 + C2R2ω2.
Given the parameters listed in Table 2.1, the impedance modulus and angle (2.23)

are plotted against the system frequency f = ω/(2π) in Fig. 2.19. The three-
element WK qualitatively captures the experimental observations, and at high
frequencies the system’s impedance approaches the aortic impedance Z → Za.
At steady state f = 0, the entire flow passes the total resistance R + Za, and the
system’s impedance then is Z = R + Za.

Example 2.7 (Impedance-Based Estimation of WK Parameters). A ferret vascular
system has a cardiac cycle of T = 0.375 s, and Table 2.4 shows its impedance z up to
the frequency f of approximately 10 Hz. Given this information, the parameters of
the two-element and three-element WK models should be identified through least-
square optimization.

(a) Define an objective function � and identify the least-square-optimized model
parameters. Given the two-element WK model, the optimization problem
�(R,C;ω) → MIN determines the resistance R and the capacity C. Given

16Leonhard Euler, Swiss mathematician, physicist, astronomer, logician and engineer, 1707–1783.
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Table 2.4 Impedance modulus Z and impedance angle φ of an individual ferret vascular system,
see also Example 2.4

Frequency Impedance modulus [mmHg s ml−1] Impedance angle [rad]

0.00000 108.415 0.00000

2.66667 4.12022 −0.96618

5.33333 3.34739 0.172411

8.00000 5.01376 0.132572

10.6667 4.60703 0.056390

Table 2.5 Fourier coefficients of a cyclic flow wave q(t) with the period of T = 0.375 s

Frequency [Hz] Fourier coefficients [ml s−1]

0.00000 0.786333

2.66667 0.0276938 − 0.646413 i

5.33333 −0.555816 − 0.112961 i

8.00000 −0.0896779 + 0.408525 i

10.6667 0.216635 + 0.0557698 i

the three-element WK model, the optimization problem �(R,C,Za;ω) →
MIN determines the resistance R, the capacity C, and the characteristic aortic
impedance Za.

(b) Plot the impedance modulus Z and impedance angle φ as predicted by the WK
models on top of the data given in Table 2.4.

(c) Consider the flow wave q(t) represented by the Fourier coefficients in Table 2.5
and compute the WK model-predicted pressure p(t). Use a steady-state periodic
analysis and compare the pressure with the predictions of a transient analysis.
The numerical solution of the WK governing equations over a sufficiently large
number of cardiac cycles, may be used. �

2.3.1.7 Four-ElementWindKessel Model
Whilst the three-element WK model is suitable for many applications, the physical
interpretation of the aortic impedance may be questioned [527]. Motivated by this
shortcoming, the four-element WK model includes the total arterial inertance as an
inductor element L in the circuit, see Fig. 2.22. It influences the system only at low
frequencies.

The total flow q(t) splits into the flow qR through the vascular bed resistor R and
the flow qC into the capacitor C and determines the relation

q(t) = qR + qC = p(t)

R
+ C

dp(t)

dt
. (2.26)
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Fig. 2.22 (a) Hydraulic and
(b) electric representations of
the four-element WindKessel
(WK) model. Flow q(t) and
pressure p(t) describe the
system state. The model
parameters R, Za, C and L

denote vascular bed
resistance, aortic impedance,
arterial capacity, and total
arterial inertance, respectively

Given the flow qZ(t) over the aortic impedance Za, the total pressure p(t) drops
and

p(t) = p(t) − ZaqZ(t) (2.27)

holds. The pressure drop over Za is equal to the pressure drop over the inductor L,

L
dqL

dt
= ZaqZ(t) , (2.28)

where p − p = L(dqL/dt) has been used to describe the inductor element, see
Appendix E.1. The flow qL(t) and the flow qZ(t) together determine the total system
flow

q(t) = qL(t) + qZ(t) , (2.29)

which then closes the mathematical description of the four-element WK model.
The four equations (2.26)–(2.29) form the system

dp(t)

dt
+ p(t)

CR
= Za

dqZ(t)

dt
+ Za

RC
qZ(t) + q(t)

C
,

dqZ(t)

dt
= dq(t)

dt
− Za

L
qZ(t) ,

⎫⎪⎪⎬
⎪⎪⎭

(2.30)

of linear differential equations that governs the four-element WK model. The
expressions (2.26) and (2.27) lead to the first statement, whilst the second one
follows from (2.28) and the time derivative of (2.29).
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Given either p(t) or q(t), the system (2.30) may be solved numerically, and
Fig. 2.16d illustrates such a (transient) solution. It considers the flow shown in
Fig. 2.16a and uses the parameters listed in Table 2.1. The solution starts at the
initial condition p0 = 80 mmHg, and Fig. 2.16d shows p(t) at steady-state periodic
conditions.

2.3.2 Vessel NetworkModeling

Lumped parameter models may also be used for the analysis of a network of vessels.
Such a model facilitates the exploration of how changes in one part of the network
influence the pressure p(t) and flow q(t) somewhere else in the network. They
may therefore test the outcome of vascular interventions, for example. A lumped
parameter model expresses the pressure and flow as functions of the time t and
neglects their dependence on the vascular path coordinate x—a network model can
therefore not simulate phenomena, such as wave propagation.

Given a network of n vessel segments, the individual segments are represented by
their capacity Ci , resistance Ri , and inertance Li; i = 1, . . . , n, and then connected
at m network nodes. Different designs of lumped parameter models have been
proposed to describe the biomechanics of a vessel segment. The three-element vessel
model illustrated in Fig. 2.23 is one possible design. It models a vessel segment of
diameter d [m], length l [m], and wall thickness h [m], which is entirely filled by
blood of the density ρ [kg m−3] and the dynamic viscosity η [Pa s].

2.3.2.1 Vessel Segment Resistance
A laminar, steady-state and fully developed flow in a cylindrical vessel results in
a parabolic velocity profile over the vessel’s cross-section called a Poiseuille flow.
The WSS that develops in response to the fluid flowing over the vessel wall presents
resistance to the flow q. Given Poiseuille flow, the flow q and WSS τw are related
through q = −r3πτw/4, where r denotes the vessel radius, see Chap. 6.

Fig. 2.23 (a) Schematic and
(b) electric representations of
the three-element vessel
model. The flows
qin(t), qout(t) and the
pressures pin(t), pout(t)

describe vessel inlet and
outlet conditions. The
vessel’s biomechanical
properties are expressed by
its capacity C, resistance R,
and inertance L, respectively

(a)

(b)
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The flow q through the vessel depends on the pressure drop �p between the
vessel’s inlet and outlet, and

R = �p

q
= 128ηl

πd4 (2.31)

determines the resistance R against flow, a relation known as the law of Hagen–
Poiseuille. Poiseuille flow provides a good description in smaller vessels and veins,
whilst in large arteries the blood flow is highly influenced by inertia effects. A
parabolic velocity profile is then only present during the systolic phase of the cardiac
cycle, see Chap. 6.

The vessel’s resistance R represents energy dissipation, and in addition to
(2.31), dissipative sources may also relate to unsteady flow, flow separation,
vessel curvature, and vessel bifurcations [376]. Finally, we note that laboratory
experiments may also be used for the direct measurement of the resistance R of
a vessel.

2.3.2.2 Vessel Segment Capacity
The vessel segment’s capacity expresses the increase �V of blood volume that is
inside the vessel in response to the increase �p in pressure. This property can either
be measured experimentally or predicted through the modeling of the elasticity of
the vessel wall. Given linear elasticity, or Hooke’s17 law in the description of the
vessel wall,

C = �V

�p
= 3d3πl

16hE
(2.32)

expresses the vessel’s capacity, where E [Pa] denotes the vessel wall’s Young’s18

modulus, see Sect. 3.5.2. We may also derive the alternative expression (5.2) that
considers any non-linear elastic description of the vessel wall.

2.3.2.3 Blood Inertance
Given the mean blood flow velocity vmean = q(t)/A, the force equilibrium of
the blood segment along the axial direction reads �pA = −ρAlv̇mean, where the
contribution from WSS has been neglected. It allows us to express the pressure
increment �p = ρlq̇/A as a function of the change of flow q̇, where the cross-
section A = d2π/4 was assumed to be constant along the vessel. The inertance

L = �p

q̇
= 4ρl

d2π
(2.33)

then describes the inertia of the blood in the vessel.

17Robert Hooke, English natural philosopher, architect, and polymath, 1635–1703.
18Thomas Young, English polymath and physician, 1773–1829.
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Example 2.8 (Renal Artery Adaptation to Partial Nephrectomy). Figure 2.24
schematically illustrates the surgical removal of a part of the kidney, an intervention
called partial nephrectomy. It increases the kidney’s vascular bed resistance R by
the factor α. At baseline the renal artery has the radius r0 and wall thickness h0,
properties that alter in response to the intervention towards r and h, respectively.
Homeostasis drives the adaptation, and r and h change until the renal artery’s
Wall Shear Stress (WSS) τw as well as its circumferential wall stress σθ return to
their homeostatic values. It may be assumed that the arterial pressure and blood
properties are not influenced by the surgical intervention.

Fig. 2.24 Schematic
illustration of partial
nephrectomy, with the dark
area indicating the removed
section of the kidney

Renal artery

Renal vein

Uretar
Removed 
section

Kidney

(a) Derive the relation between the factor α that augments the resistance and the
mean flow q through the kidney.

(b) Assume Poiseuille flow and derive the relation between the WSS τw and the
mean flow q through the renal artery.

(c) Express the circumferential wall stress σθ as a function of vessel’s dimensions
and the blood pressure. Consider the thickness of the vessel to be much smaller
than its diameter.

(d) At homeostatic conditions of τw and σθ , r/r0 and h/h0 should be expressed as
functions of α. �

2.3.2.4 Governing Equation
Each lumped parameter model of a vessel has its specific governing equation, and
this section discusses the design shown in Fig. 2.23. The sum of the pressure drop
�pR over the resistance as well as �pL over the inertance, determines the total
pressure change

pin − pout = �pR + �pL = Rqout + Lq̇out , (2.37)
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where pin and pout denote the pressure at the vessel inlet and outlet, respectively.
The flow continuity

qin − qout = qC = Cṗin (2.38)

closes the mathematical description, and in the derivation of (2.37) and (2.38) the
properties of circuit elements have been used, see Appendix E.1. The model also
assumes a negligible ambient (interstitial) pressure, and the capacity C is therefore
directly exposed to the inlet pressure pin.

Equations (2.37) and (2.38) may be rearranged towards

pout = pin − R(qin − Cṗin) − L(q̇in − Cp̈in) ,

qout = qin − Cṗin ,

which then expresses the relation between input and output by the matrix equation
[

pout

qout

]
=
[

1 −R

0 1

] [
pin

qin

]
+
[

RC −L

−C 0

] [
ṗin

q̇in

]
+
[

LC 0
0 0

] [
p̈in

q̈in

]
. (2.39)

In symbolic notation it reads

dout = Kdin + Dḋin + Md̈in . (2.40)

The set {p, q, ṗ, q̇, q̈} of state variables describe the system, and a time-marching
algorithm may be used to solve the governing equation (2.40) at prescribed
boundary and initial conditions.

We may for example consider a backward-Euler discretization over the time step
�t , and the first and second time derivatives are then approximated by

ẋin = xin − xin n

�t
= xin

�t
− xin n

�t
,

ẍin = ẋin − ẋin n

�t
= xin

�t2
− xin n

�t2
− ẋin n

�t
,

⎫⎪⎪⎬
⎪⎪⎭

(2.41)

where x = p, q and (•)n denotes a quantity at the previous time step. Given such
a discretization, the system (2.40) of differential equations leads to the algebraic set
of equations

[
pout

qout

]
=
[

1 + RC
�t

+ LC
�t2 −R − L

�t

− C
�t

1

][
pin

qin

]
+ H , (2.42)

where the history vector

H =
[−RC

�t
− LC

�t2
L
�t

C
�t

0

][
pin n

qin n

]
−
[

LC
�t

0

0 0

][
ṗin n

q̇in n

]
, (2.43)
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stores information from the previous time step. Consequently, the system (2.42)
uniquely specifies the relation between input and output variables.

Example 2.9 (Two-Element Vessel Segment Model). An arterial vessel segment of
the resistance R and the capacity C is modeled by the lumped parameter model
shown in Fig. 2.25. The model is used for a steady-state periodic analysis of a
vascular network.

Vessel diameter d 5.2 mm

Vessel segment length l 12.7 cm

Vessel wall thickness h 0.5 mm

Vessel wall Young’s modulus E 34.0 kPa

Dynamic blood viscosity η 4.0 mPa s

Fig. 2.25 Electrical representations of a two-element vessel model with the corresponding vessel
segment parameters. The flows qin(t), qout(t) and the pressures pin(t), pout(t) describe the vessel
inlet and outlet conditions. The vessel’s biomechanical properties are expressed by the capacity C

and resistance R, respectively

(a) Derive the governing equations of the lumped parameter model shown in
Fig. 2.25 and rearrange them according to the system of equations

[
pout

qout

]
=
[

K11 K12

K21 K22

] [
pin

qin

]
+
[

D11 D12

D21 D22

] [
ṗin

q̇in

]
,

where pin,qin and pout,qout are complex vectors that describe the inlet and
outlet, respectively.

(b) Given the data in Fig. 2.25, compute the resistance R and the capacity C of the
vessel segment.

(c) Compute the flow and pressure in the vessel in response to the cyclic boundary
conditions pout = |pout| exp[i(ωt + π/6)] and qin = |qin| exp[iωt], where
|pout| = 12.5 Pa and |qin| = 4.3 ml s−1 are the pressure and flow amplitudes,
whilst ω = 73π denotes the angular velocity of the imaginary vectors. Use
Argand’s diagram to draw pressure and flow in the complex plane. �

Example 2.10 (Three-Element Vessel Segment Model). The lumped parameter
model in Fig. 2.26 uses the resistance R, the capacity C, and the inductance L to
describe an arterial vessel segment.
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Resistance R 2.22223 · 106 Pa s m−3

Capacity C 7.12003 · 10−10 m3 Pa−1

Inductivity L 6.1846 · 106 Pa s2 m−3

Fig. 2.26 Electrical representations of a three-element vessel model with vessel segment param-
eters. The flows qin(t), qout(t) and the pressures pin(t), pout(t) describe vessel inlet and outlet
conditions. The vessel’s biomechanical properties are expressed by the resistance R, capacity C,
and inductance L, respectively

(a) Derive the governing equations of the lumped parameter model shown in
Fig. 2.25 and rearrange them according to

dout = Kdin + Dḋin + Md̈in ,

where dout = [pout qout]T denotes the outlet condition, whilst din = [pin qin]T,
ḋin = [ṗin q̇in]T and d̈in = [p̈in q̈in]T describe the inlet conditions.

(b) Compute the flow and pressure for the steady-state periodic inflow qin =
|qin| exp[iωt] with |qin| = 4.3 ml s−1 and ω = 2π , and against the constant
outlet pressure pout = |pout| = 1000.0 Pa. Use Argand’s diagrams to illustrate
the magnitude and phase angle of each complex quantity. �

2.3.2.5 Assembly of Vessel Networks
Vessel segment models, such as the three-element model described by Eq. (2.40),
may be connected at nodes to form a network of vessels. The compatibility
conditions relate then the flow q and the pressure p (and their time derivatives)
across network nodes. Given a single vessel connects to another single vessel, the
compatibility condition at the node simply reads q1 = q2 and p1 = p2 with the
index denoting the vessel number.

Given a single vessel that bifurcates into two vessels, the compatibility condition
reads q1 = ξqq2 + (1 − ξq)q3 and p1 = p2 = p3, where the index denotes the
vessel number. The system state variable 0 ≤ ξq ≤ 1 describes how the flow splits
in the bifurcation, and identical to the other state variables, ξq is identified by the
solution of the system of equations that represents the entire network of vessels.
It might also be required to consider a pressure drop at network nodes to capture
energy dissipation from significant flow disturbance at the bifurcation. The pressure
compatibility conditions then read p1 = ξpp2. Here, 0 ≤ ξp ≤ 1 accounts for the
pressure drop, and p1 and p2 denote the pressure upstream and downstream the
bifurcation, respectively.
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Example 2.11 (Connected Vessel Segments). Figure 2.27 illustrates the connection
of three vessels and their properties. The inflow qin = q0[1 + sin(ωt)] with q0 =
0.05 ml s−1 and ω = 2π is prescribed, whilst the constant pressures p2 = 11.5 kPa
and p3 = 11.0 kPa are applied at the outlets. The vessels are filled with blood of the
density ρ = 1060 kg m−3 and the dynamic viscosity η = 3.5 mPa s .

(a) (b)

(c)

Vessel 1 Vessel 2 Vessel 3

Diameter d [mm] 1.0 0.7 0.4

Length l [mm] 55.0 31.0 24.0

Wall thickness h [mm] 0.05 0.035 0.02

Young’s modulus E [kPa] 200.0 250.0 150.0

Fig. 2.27 (a) Schematic and (b) electrical representation of a lumped parameter model that
represents three connected vessel segments (c) Geometrical and mechanical properties of vessel
segments

(a) Compute the resistance Ri , the capacity Ci , and the inductance Li of the three
vessels i = 1, 2, 3.

(b) Derive the governing equation of the i-th vessel according to the lumped
parameter model shown in Fig. 2.27b.

(c) Provide incremental governing equations of the connected vessels by consider-
ing the time derivatives of flow and pressure according to the backward-Euler
discretization (2.41).

(d) Propose an algorithm for the iterative solution of the incremental governing
equations. At the bifurcation a dissipation-free flow may be considered, and
the factor 0 ≤ ξ ≤ 1 determines the flow split.

(e) Plot the pressure at the inlet pin 1(t), the flows at the outlets qout 1(t), qout 2(t) as
well as the flow split factor ξ(t) over the time. �
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2.4 Modeling theMicrocirculation

This section describes models towards the analysis of exchange aspects in the micro-
circulation. They are limited to passive microfluidic transport mechanisms, and a
bottom-up approach aims at modeling the physics of microcirculatory exchange.
Exchange models are well documented with excellent reviews [40, 338, 493]
available in the literature.

2.4.1 Transcapillary Concentration Difference

The vessel wall of capillaries may be seen as a rigid porous body that is perforated by
a large number of micro-channels connecting the vessel lumen with the interstitial
space. The transport of substances or solutes through such micro-channels deter-
mines the transcapillary concentration difference of a solute. Towards the analysis
of this property, we consider a micro-channel of length L filled with fluid that
contains a solute at the concentration c(x) [mol m−3], where 0 ≤ x ≤ L denotes
the Cartesian coordinate along the micro-channel, and thus across the capillary wall.
Given microvascular exchange, the fluid is essentially water.

Diffusive and advective transport govern the solute flux Js [mol s−1m−2] along
the micro-channel. At steady state, Js is constant all along the channel and governed
by the first-order partial differential equation

Js = const = −D gradc(x)︸ ︷︷ ︸
Diffusion

+ c(x)v︸ ︷︷ ︸
Advection

, (2.48)

where v [m s−1] denotes the transport velocity of solute particles, whilst D [m2 s−1]
is the diffusion constant for solute particles in water. Towards a dimensionless
analysis, we may introduce ξ = x/d and normalize the solute particle path
length x with the solute particle diameter d. Equation (2.48) has then the solution
c(ξ) = Js/v + H exp(ξP e), where Pe = vd/D and H denote the Péclet19 number
and an integration constant, respectively.

The Péclet number is the ratio between advective and diffusive transport. At
large Péclet numbers the solvent moves together with the fluid flow, whilst at low
numbers it moves independently from the motion of the fluid. The solute particles
may not be spherical, and d then denotes the Stokes diameter—the diameter of the
hydrodynamically similar, but spherical particle.

The aforementioned integration constant H can be identified from the solute
concentration cv in the vascular space, and thus at the inlet of the micro-channel.
The solute concentration then reads c(ξ) = Js/v + exp(ξP e)(cv − Js/v). We may
also introduce the interstitial solute concentration ci = c(ξ = L/d), such that

19Jean Claude Eugène Péclet, French physicist, 1793–1857.
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Js = cvv − v�c

exp[Pe(L/d)] − 1
(2.49)

finally expresses the solute flux across the capillary wall, where �c = ci − cv is the
transcapillary concentration difference.

At steady state, the interstitial solute concentration ci depends on the transcapil-
lary filtration flux qf [m s−1] that determines the flow rate across the unit area of the
capillary wall, see Sect. 2.4.2. Experimental data suggest that ci is proportional to
the solute flux Js but inverse proportional to the filtration flux qf [543]. It therefore
justifies the relation ci = Js/qf and allows for the substitution of Js in (2.49). The
transcapillary concentration difference then reads [370]

�c = cv − ci = σcv
exp[Pe(L/d)] − 1

exp[Pe(L/d)] − σ
, (2.50)

where the solute particle velocity v = (1−σ)qf has been related to the filtration flux
qf through Staverman’s20 osmotic reflection coefficient σ [526], see Appendix E.3.

Example 2.12 (LDL Transport Through a Micro-channel). Low-Density Lipopro-
tein (LDL) is a protein of about 25 nm in size and transports fat molecules around
the body. Increased LDL concentration has been strongly associated with the
development of atherosclerosis—LDL that invades the vessel wall is oxidized and
then poses a risk for the development of atherosclerosis. Endothelial Cells (EC)
junctions form micro-channels, and LDL eventually slowly “leaks” across the
endothelial barrier into the vessel wall. The model system shown in Fig. 2.28 may
be used to investigate LDL transport through EC junctions.

Fig. 2.28 Transport of Low-Density Lipoprotein (LDL) of diameter d and velocity v through a
micro-channel. LDL concentrations in the bloodstream and the arterial wall are denoted by cb and
cw, respectively

(a) Consider the velocity v = qf(1 − σ) of the LDL particles and express the
LDL flux. Here, qf = 1.0 μm s−1 and σ = 0.78 denote the fluid velocity
and Staverman’s osmotic reflection coefficient, respectively.

(b) Plot the LDL flux at the Péclet numbers Pe = 0.01; 0.1; 1.0 and the boundary
concentrations of cb = 2.0 mol m−3 and cw = 0.1 mol m−3. �

20Albert Jan Staverman, Dutch chemist, 1911–1993.
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2.4.2 Filtration

Filtration is the transport of water through the capillary wall in response to
hydrostatic and osmotic pressure differences. From the vascular space to the
interstitial space, the hydrostatic pressure falls from pv to pi, whilst COP increases
from �v to �i. The exchange of water between the two spaces is determined by the
filtration flux qf [m s−1], and thus the flow rate that passes through the unit area of
wall, see Appendix E.2. Given the flow through the vessel wall is aligned with the
vessel’s radial direction, the flux qf is identical to the flow velocity.

2.4.2.1 Starling’s FiltrationModel
Filtration in the microvasculature may be described by Starling’s filtration
model [524]

qf = Lp (�p − σ��) , (2.51)

where �p = pv−pi is the transcapillary hydrostatic pressure, whilst �� = �v−�i
denotes the transcapillary COP. The term �p − σ�� is called net filtration
pressure and positive for flow from the vascular system into the interstitium.
In (2.51), Lp [m Pa−1s−1] and σ denotes the capillary wall’s hydraulic conductivity
and its Staverman’s osmotic reflection coefficient [526], respectively. Whilst the
hydraulic conductivity describes the leakiness of the wall to water, the reflection
coefficient σ corrects the theoretical COP difference to match the effective one, see
Appendices E.2 and E.3.

According to (2.51), the filtration is governed by the four “Starling forces” pv,
pi, σ�v, and σ�i. The model is also “symmetric”—the increase in pv (or �v) or
the decrease of pi (or �i) by the same amount affects the flux equally.

2.4.2.2 Predicted Exchange
The net effect from the inflow and outflow of water across the capillary walls
determines the exchange in the vascular bed. The direct measurement of exchange
is difficult, and a model, such as Starling’s filtration law (2.51), helps to interpret
(incomplete) experimental data.

The linear relation between qf and �p has been shown in a population of
vessels [321], whilst much less experimental data confirmed the linearity between
qf and �� [417]. The development of flow requires the hydrostatic pressure pv to
decrease along the vascular tree. Given human nailfold skin capillaries, pressures of
pv = 35 to 45 mmHg at the arterial side and pv = 12 to 15 mmHg at the venous
sides have been reported [322]. In addition, the interstitial hydrostatic pressure
pi = −4 to 0 mmHg is slightly below the atmospheric pressure in many tissues,
and �v = 25 to 28 mmHg is believed to represent vascular COP in humans.
Table 2.9 summarizes this information, and Starling’s law (2.51) then predicts the
fluid exchange that is shown in Fig. 2.29.
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Table 2.9 Representative parameters for the description of a number of soft biological tissues

Hydrostatic pressure in the capillary pv Arterial/venous side: 35.0/12.0 mmHg

Hydrostatic pressure in the interstitium pi −2.0 mmHg

Colloid Osmotic Pressure (COP) in the capillary �v Arterial/venous side: 28.0/25.0 mmHg

COP in the interstitium �i 1.0 mmHg

Hydraulic conductivity of the capillary wall Lp 1.5·10−9 m s−1mmHg−1

Reflection coefficient of the capillary wall σ 1.0

Fig. 2.29 Exchange of fluid
along capillaries. (a)
Transcapillary hydrostatic
pressure �p and
transcapillary Colloid
Osmotic Pressure (COP) ��.
(b) Filtration flux qf across
the capillary wall. Exchange
according to Starling’s
filtration model (2.51) and the
data listed in Table 2.9. (c)
Net outward flux at the
arterial side and net inward
flux at the venous side

These findings suggest the exchange mechanism proposed by Starling in
1896 [524]: fluid transport into the interstitial over the arterial half of the capillary
where �p > σ��, and reabsorbtion over the venous half where �p < σ��,
see Fig. 2.29c. At transient conditions this mechanism has been confirmed by more
advanced experiments [371], but counter-evidence emerged in a number of tissues
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at steady-state exchange conditions. A revised understanding of vascular exchange
is presented in Sect. 2.4.2.3.

Example 2.13 (Transport Across the Ascending Vasa Recta Wall). The model
system shown in Fig. 2.30 should be used to investigate the exchange of solutes
between the Ascending Vasa Recta (AVR) of the renal medulla and its interstitial
space. The AVR segment is L = 1.2 mm long, has a diameter of D = 29µm, and
blood flows through it at the rate q = 35 nl min−1.

Fig. 2.30 Model system to
investigate the exchange
between the Ascending Vasa
Recta (AVR) and the
interstitium

Arterial end Venous end

Interstitium

Capillary lumen

Interstitium

l

(a) Compute the distribution of the hydrostatic pressure pv along the AVR segment.
Blood may be regarded as a Newtonian fluid with the dynamic viscosity η =
3.5 mPa s, and the pressure pv art = 7.8 mmHg applies at the AVR’s arterial
end.

(b) Compute the exchange along the AVR according to Starling’s filtration law.
Within the interstitium, the hydrostatic pressure pi = 6.0 mmHg and the Colloid
Osmotic Pressure (COP) �i = 3.7 mmHg are given. In addition, COP changes
linearly from �v art = 26.0 mmHg at the arterial end to �v ven = 16.7 mmHg
at the venous end. The Staverman’s osmotic reflection coefficient σ = 0.78 and
the hydraulic conductivity Lp = 1.5 · 10−9 m s−1mmHg−1 may be assumed in
the description of the vessel wall. �

2.4.2.3 Current Understanding of Microvascular Exchange
Filtration measurements in response to a sudden change of the capillary hydro-
static pressure pv [371] challenged the aforementioned concept of microvascular
exchange. The filtration experiment recorded transient results right after the pres-
sure step as well as steady-state results at least 2 min after it. Whilst the
transient results confirmed earlier experiments [417], and once again validated the
linearity between qf and the transcapillary hydrostatic pressure �pv, the steady-state
results did not show such a linearity and therefore contradicted Starling’s filtration
law (2.51). The observed slight imbalance in the transcapillary hydrostatic pressure
at steady state favors a positive net filtration pressure. The fluid moves therefore
into the interstitial space and is then almost exclusively drained via the lymphatics.
Given the interstitial fluid volume remains constant, the filtration flux times capillary
surface is equal to lymph flow. Whilst such steady-state exchange is observed in
many tissues, the net filtration pressure is also negative in some tissues [338]. It then
facilitates the function of organs, such as the kidney and intestinal mucosa. The lion
part of the interstitial fluid is then absorbed back into the vascular compartment.
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2.4.2.4 Colloid Osmotic Pressure
The macromolecule albumin is the main contributor to the COP in the vasculature.
In the vascular space the albumin concentration remains approximately constant,
and transcapillary COP is therefore primary controlled by the interstitial albumin
concentration.

Given albumin’s transcapillary concentration �calb, Hoff’s21 law relates it to the
transcapillary COP

��alb = φRθ�calb , (2.53)

where the universal gas constant R = 8.3145 J K−1mol−1, the absolute temperature
θ [K], and the osmotic coefficient φ have been introduced, see Appendix E.2.
Albumin is a relatively small protein and passes the capillary wall together
with water, and �calb develops according to transport discussed in Sect. 2.4.1.
Given (2.50) and (2.53), the transcapillary albumin COP may therefore be expressed
by

��alb = σ�v alb
ξ − 1

ξ − σ
; ξ = exp[Pe(L/dalb)] , (2.54)

where dalb and L are the albumin’s Stokes diameter and the capillary wall thickness,
respectively. In addition, �v alb = φRθcv alb is the albumin’s COP in the vascular
space, whilst Pe = (1 − σ)qfdalb/D is the Péclet number with D [s−1m−1]
denoting albumin’s diffusion constant in water. The calculation of Pe assumes that
albumin moves at the velocity v = (1 − σ)qf across the capillary wall, where
σ and qf denote Staverman’s osmotic reflection coefficient and the filtration flux,
respectively. Equation (2.54) may easily be adapted to proteins other than albumin.

2.4.2.5 The Non-linear Filtration Law
Albumin is the main contributor to osmosis in the microcirculation, and �� in
Starling’s filtration model (2.51) may therefore be approximated by (2.54), which
then yields the relation

qf = Lp

[
�p − σ 2�v alb

1 − ξ

1 − σξ

]
; ξ = exp[Pe(L/dalb)] . (2.55)

Given the Péclet number Pe = (1 −σ)qfdalb/D, the expression (2.55) is implicit in
the filtration flux qf. Fig. 2.31 plots it against the transcapillary hydrostatic pressure
�p, where the properties in Table 2.10 have been used. The plot illustrates the non-
linearity between qf and �p. It is caused by the second term at the right side of
Eq. (2.55)1 and determines the diffusion-related contribution to �p. Diffusion is
only significant at small Péclet numbers, whilst at high Péclet numbers, this term

21Jacobus Henricus van ’t Hoff, Jr., Dutch physical chemist, 1852–1911.
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Fig. 2.31 Filtration flux qf
in relation to transcapillary
hydrostatic pressure �p, as
predicted by the non-linear
filtration model (2.55). At
high positive �p, the vessel’s
hydraulic conductivity Lp
determines exchange,
whereas almost no flux
appears at negative �p
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Table 2.10 Set of parameters used in the non-linear filtration model (2.55)

Diffusion coefficient D for albumin in water 1.0·10−14 m−2s−1

Thickness of the capillary wall L 2.0·10−6 m

Colloid Osmotic Pressure (COD) in the vascular space �v alb 28.0 mmHg

Hydraulic conductivity of the capillary wall Lp 1.5·10−9 m s−1mmHg−1

Staverman’s osmotic reflection coefficient σ 0.95

vanishes, and the relation between qf and �p is fully determined by the hydraulic
conductivity Lp of the wall. The curve in Fig. 2.31 is therefore linear at high
transcapillary hydrostatic pressures.

The non-linear filtration model (2.55) holds for steady-state conditions—given
enough time for the albumin concentration to settle down, steady-state conditions
establish, and the assumptions made to derive (2.54) hold.

Fig. 2.31 shows minimal reabsorption back into the vascular space, conditions
that holds for most, but not all tissues. In the kidney and the intestinal mucosa,
interstitial fluid is continuously renewed by protein-free fluid, which in turn breaks
the dependence of the filtration flux and the solute concentration. The assumptions
made to derive equation (2.54) are then not valid, and fluid flux is best predicted by
Starling’s filtration model (2.51).

2.4.2.6 Two-PoreModels
The filtration flux (2.55) suggests minimal reabsorption at the venous side of
capillaries [338], which is confirmed by experimental data in many tissues [371].
The lack of reabsorption backs into the vascular system, making it difficult to
reconcile with low in vivo values for whole-body lymph flow rates. A class of
models, known as two-pore models, aim at resolving this shortcoming [464]. Whilst
albumin is not amongst the largest proteins, it still cannot pass the capillary wall
through most pores. Most fluid flux qf occurs through small pores that hinder
albumin transport, whilst large pores that support the advection of albumin transport
only a minute fraction of water through the wall.
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The glycocalyx–cleft model illustrated in Fig. 2.32 is a specific case of a two-
pore model. It assumes that the glycocalyx, not the entire capillary wall, dominates
the filtration properties and represents the effective osmotic barrier. The glycocalyx
almost entirely determines the reflection coefficient σ and the transcapillary COP.
The COP underneath the glycocalyx layer is therefore very low, which in turn yields
levels of net filtration fluxes that would compare to reported lymph drainage rates.

Example 2.14 (Glycocalyx–Cleft Model). Starling’s filtration model (2.51) over-
predicts the filtration flux qf and has therefore been further developed towards the
glycocalyx–cleft model shown in Fig. 2.32. The glycocalyx layer presents a system
of ultra-fine pores in series to the larger pores formed by the endothelial clefts
and thus the spaces between adjacent Endothelial Cells (ECs). Given the strong
washout of albumin upon the filtration flux through the endothelial clefts, albumin
concentration cgc becomes very low underneath the glycocalyx layer. Along the
filtration path three distinct albumin concentrations therefore establish: cv in the
vascular space, cgc underneath the glycocalyx layer, and ci in the interstitial space,
see Fig. 2.32.

Given a L = 3.5 mm long capillary, which wall has the hydraulic conductivity of
Lp = 2.3 · 10−9 s−1mmHg−1m and the Staverman’s osmotic reflection coefficient
σ = 0.8, the glycocalyx–cleft model should be analyzed. In addition, the hydrostatic
pressure pi = −1.0 mmHg and the Colloid Osmotic Pressure (COP) �i =
3.7 mmHg are approximately constant in the interstitium. Given the vascular space,
the hydrostatic pressure changes linearly from pv art = 9.4 mmHg to pv ven =
6.7 mmHg, and the COP from �v art = 15.8 mmHg to �v ven = 13.9 mmHg
between the capillary’s arterial and venous ends, respectively.

EC

Interstitial space

EC

Vascular spaceGlycocalyx

Endothelial cleft

Fig. 2.32 Schematic illustration of the glycocalyx–cleft model. The glycocalyx layer provides a
system of ultra-fine pores in series to the larger pores formed by the Endothelial Cell (EC) clefts

(a) Compute the fluid flux qf across the capillary wall according to Starling’s
filtration model (2.51).

(b) Given cgc = (1 − α)cv + αci describes the albumin concentration underneath
the glycocalyx layer, compute the fluid flux qf according to the glycocalyx–cleft
model for α = 1.0; 0.9; 0.8. �
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2.5 Summary and Conclusion

Following the introduction of circulatory physiology, this chapter introduced a
number of concepts and models towards the exploration of vascular mechanisms
and system responses. The models have been either 1D in space or time, or
the combination of both dimensions then led to 2D problem descriptions. Such
approaches are simple and very effective in the investigation of how system parame-
ters interact and influence vascular physiology and pathology. We assumed that key
vasculature properties can be described by parameters, such as resistance, capacity,
and hydraulic conductivity. Complex vascular mechanisms have therefore been
lumped into key system parameters towards the description of surrogate vascular
functions. The introduced system parameters can either be directly measured by
tailored experiments or indirectly identified through parameter calibration methods.

The cardiovascular system is equipped with a large number of hemodynamic
regulation mechanisms towards diverting blood flows and optimally perfusing the
body [548]. It has also been hypothesized that in health homeostasis, a functional
crosstalk between central and peripheral segments of the circulation is required for
optimal operation [9]. This communication may be compromised, and a vicious
cycle of minute alterations in central arterial stiffness and peripheral resistance
starts, leading to the dramatic changes in arterial properties observed in response
to diseases and aging—the mother of all diseases.

Whilst the modeling approaches discussed in this chapter fit a number of vascular
applications, they may often fail to provide in-depth explanations of how local
physical mechanisms determine and alter vascular parameters and function. In
addition, the analysis of vascular biomechanical problems may require a multi-
dimensional space-time description of individual vessel segments. This is clearly
beyond the ability of the approaches discussed in this chapter, and the remaining
parts of this book concerns tools and models for the analysis of individual vessel
segments. It allows us then to explore localized vascular phenomena to further
our understanding of vascular function. The up-scaling or homogenization of local
vessel properties determines then the surrogate system parameters used in the
present chapter. The generalized distributed lumped parameter framework recently
reported [376] would be such an example. It allows one to compute the flow and
pressure dynamics in blood vessels upon various sources of energy dissipation
mechanisms.
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