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Foreword

Cardiovascular disease remains a leading cause of disability and death worldwide.
Given that the primary function of the cardiovascular system is biomechanical—to
transport blood and substances therein via a pressurized system—it is not surprising
that vascular biomechanics is fundamental to understanding cardiovascular health
and disease. Indeed, all primary vascular cells—endothelial cells of the intima,
smooth muscle cells of the media, and fibroblasts of the adventitia—are exquisitely
sensitive to changes in their local biomechanical environment, often changing
gene expression accordingly. Knowledge of the biomechanics is thus critical
both for understanding the molecular and cellular basis of vascular biology and
for understanding tissue-level behaviors such as vasoconstriction-vasodilatation,
the development of atherosclerotic plaques or aneurysms, and even catastrophic
ruptures.

Vascular biomechanics builds upon the foundations of nonlinear continuum
mechanics, hence one must understand well this fundamental area of study.
Problems within vascular biomechanics often involve complex geometries, material
properties, and applied loads, hence numerical methods are often essential for
understanding health and disease. The physiology and pathophysiology further
require an understanding of both the vascular wall and the hemodynamics, thus
necessitating an understanding of both the solid mechanics and fluid mechanics and
the associated anatomy and histology, that is, the study of gross and fine structures
of tissues.

This book, Vascular Biomechanics: Concepts, Models and Applications, by
Professor T. Christian Gasser appropriately emphasizes the foundations of nonlinear
continuum mechanics and methods of numerical solution, primarily via the finite
element method. It similarly considers together both the solid and fluid mechanics,
which provides a balanced approach to formulating and solving critical problems
important to both basic science studies and clinical translation. Discussions of the
mechanics are balanced by those of the physiology and histology.

The reader is encouraged to study well the foundations—biological, mechanical,
and computational—for it is only via reliance on the foundations that important new
problems can be formulated and solved. In conclusion, it is critical to remember
that biomechanics must include the development and extension of mechanics, not
just application, hence the full power and promise of vascular biomechanics will
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viii Foreword

be achieved only by understanding the basic principles and approaches so well that
they can be developed further. In the words of Professor Y.C. Fung, regarded by
many as the Father of Modern Biomechanics, “enjoy the work.”

New Haven, CT, USA Jay D. Humphrey
February 15, 2021



Preface

The development of the vascular system was a critical step in the evolution
of species. It allowed organisms to meet the growing metabolic demands and
opened the door for the development of more complex forms of life. Vascular
function depends on the delicate interaction between blood flow and vascular
tissue—biomechanical factors are therefore common denominators of many vascu-
lar pathologies. Even considering epidemic threats from viruses, such as COVID 19,
it is vascular diseases that are by far the most common cause of death in the
industrialized world. The biomechanics of the vascular system is therefore a very
important object to study.

Aren’t there enough books available on vascular biomechanics? Indeed, the
importance of the topic led to a large number of texts, many of which are truly
masterpieces. Unfortunately, most texts are rather narrow and poorly cover the many
interdisciplinary aspects of the vascular system. Disciplines such as mathematics,
physics, imaging, medicine, and biochemistry provide the foundation for successful
vascular biomechanics applications, see Fig. 1.1. A fundamental understanding of
the vascular system therefore requires the tight integration of these disciplines, and
I truly believe that broader vascular biomechanics texts are needed to better train
students and to solve vascular challenges.

What does this book cover? This book aims at providing the reader with holistic
information of biomechanics-related aspects of the vascular system. It addresses
analytical and numerical solving strategies and covers topics such as vascular
perfusion, vascular tissue mechanics, blood flow mechanics, and vasoreactivity as
well as tissue growth and remodeling. Whilst top-down approaches are followed to
introduce the topic, bottom-up approaches, often linked to fundamental governing
principles, are favored later in the text.

To whom is this book addressed? This text is primarily addressed to readers who
have a basic background in mathematics and mechanics. The main target groups
are students and researchers in classical and computational vascular biomechanics.
The book is self-consistent and may be used as course text at undergraduate as
well as graduate levels. The book could also be of interest to developers of vascular
devices and experts working with the regulatory approval of biomedical simulations.
Selective parts also cover topics of interest to students of continuum mechanics,
physics, scientific computing, and medicine.
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x Preface

How is this book designed? This book follows the principle “learning by
doing” and provides many fully through, calculated examples for active learning,
immediate recall, and self-examination. The introduced concepts are illuminated
through example applications. It is when the spark jumps between the concepts and
their application that learning happens. Besides re-enforcing the theory, examples
are designed to actively extend the content of the individual chapters, to proof
statements and to gain new insights. You have to work hard, and I fully admit that
some of these examples are quite difficult to solve, especially when seen for the first
time. Creative thinking is required to crack them.

Some additional thoughts and information. Whilst the solutions to all examples
are provided at the end of the book, do not look it up directly. Use your imagination
and try to solve the examples by your own first. Any attempt, even the unsuccessful
ones, will help you to master new skills into that most prestigious thing— under-
standing. If solving an example does not work out directly, find some distraction
and try again later—you might even sleep over it to unfold your brain’s hidden
capacities [72]. Many of the examples in this book can be carried out with “paper
and pen”, others require software. I used MATHEMATICA (Wolfram Research Inc.)
and COMSOL (COMSOL AB) to solve some more complex examples, and these
input files are available as additional material at the publisher’s website.

Stockholm, Sweden T. Christian Gasser
July 7, 2022

The original version of this book was revised. The correction to this book is available at https://
doi.org/10.1007/978-3-030-70966-2_8

https://doi.org/10.1007/978-3-030-70966-2_8
https://doi.org/10.1007/978-3-030-70966-2_8
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1Modeling in Bioengineering

This chapter discusses concepts and strategies toward the development and testing
of bioengineering models. We explore the complexity of vascular bioengineering
problems and then introduce the Intended Model Application (IMA), a target that
determines the design of all development protocols. Following the specification
of models and their development, approaches to test bioengineering models are
discussed — model sensitivity, verification, and validation are explored. Given their
importance in bioengineering, statistical approaches are analyzed, and we cover top-
ics, such as study design, hypothesis testing, correlation testing, and mean difference
testing. In addition to statistical modeling, the basics of Artificial Intelligence-based
(AI-based) modeling approaches are also discussed. A case study is then used to
exemplify the aforementioned key features of bioengineering modeling. The study
explores the rupture risk assessment of Abdominal Aortic Aneurysms (AAA), a
clinical exercise in the treatment of AAA patients. Conclusions concerning optimal
model complexity and future perspectives summarize this chapter.

1.1 Introduction

Bioengineering modeling plays a prominent role in the study of biological systems
and processes and can be of great help to explore the vasculature. Specifically,
the power of computational modeling has fundamentally changed both industry
and health care. Already today, competitiveness in these fields is tightly linked to
modeling expertise. Whilst some properties of a biological system can be directly
measured, the exploration of others, and especially in vivo properties, requires
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2 1 Modeling in Bioengineering

models. In addition, prospective events, and questions such as What would be the
outcome from a certain clinical intervention in an individual patient?, can only
thoroughly be studied through model-based simulations.

A modeler should always focus on the Intended Model Application (IMA), also
sometimes called Context of Use (CoU). What bioengineering question should
be answered? IMA guides all development steps, from specifying the model
requirements all along to its verification and validation [15, 491]. In addition,
biological data is always uncertain, and designing a bioengineering model as well
as drawing conclusions from it requires statistical methods; some of which are
discussed in this chapter. A case study illustrates the integration of the different
modeling concepts and concluding remarks then summarize the chapter. Whilst this
chapter describes the vascular often through black-box modeling, the subsequent
parts of this book will focus on white-box modeling.

Vascular biomechanics is a specialization of bioengineering and uses highly
multidisciplinary problem solving strategies that may be illustrated by the tree
in Fig. 1.1. The tree’s roots represent branches of knowledge that merge to the
stem, which then allows to form branches representing vascular bioengineering
applications. The interaction amongst disciplines, such as mathematics, physics,
imaging, medicine, and biochemistry, is the basis to address applications in the fields
of diagnostics, device design, treatment planning, forensic analysis, and functional
imaging. Given very different ways of thinking and curricula, the individual
disciplines use very different methods and strategies for problem solving—they
need to be synchronized towards successful bioengineering work.

1.1.1 Bottom-Up Approach

A bottom-up approach is the assembling of pieces to give rise to more complex
systems. Engineering problem solving often follows such an approach, and the
pieces may be seen as knowledge blocks. Frequently such knowledge blocks
represent basic physical principles, and a bottom-up approach is a principle-
dominated solution strategy. Principles, such as Newton’s1 laws of mechanics,
are used, and a problem description that violates such basic principles would be
unacceptable. Inductive reasoning integrates knowledge blocks leading to top-level
systems, as complex as an airplane, a vehicle production line, or a Finite Element
Method (FEM) model.

Given the vasculature being a complex hierarchical structure, the bottom-up
analysis of a practically relevant question requires the integration of a large number
of unit blocks. Whilst such a problem description still allows to draw qualitative
conclusions, quantitative predictions are challenging. Almost always it is required
to introduce phenomenological “scaling” parameters to calibrate the problem
description to match experimental observations.

1Sir Isaac Newton, English mathematician, physicist, astronomer, theologian, 1642–1726.
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Fig. 1.1 The “vascular biomechanics tree” aims at illustrating the holistic approach of vascular
biomechanical problem solving. Disciplines, such as mathematics, system design, biochemistry,
medicine, and physics, form the roots, whilst the branches lead to new knowledge and applications
in fields, such as diagnostics, device design, patient treatment, and drugs

1.1.2 Top-Down Approach

The patient is very complex, and modeling it through the assembly of fully review-
able knowledge blocks according to the bottom-up approach is never possible.
Clinical science therefore often uses a top-down approach. It may be seen as
the breaking down of a system into simpler sub-structures to gain better insight.
This eventually allows for the exploration of bioengineering phenomena through
deductive reasoning. Principles are less enforced, and a clinical method is regarded
suitable as long as it is able to treat the patient, regardless of whether or not it
violates any physical principles.

Clinical research questions are frequently posted retrospectively, such as Which
treatment did have a statistical effect on the outcome? Given a treatment’s benefit
has been established through a retrospective study, its clinical implementation would
still critically depend on the positive outcome from additional prospective validation
studies.

Too much complexity hinders deductive reasoning, and the pre-clinical approach
investigates a less complex system, such as an animal model or a wet laboratory
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experiment. Whilst such a system may be simple enough to draw conclusions, its
relevance to a real clinical problem is in many cases greatly compromised.

1.1.3 Opportunities and Challenges

Biomechanical investigations may advance our understanding of vascular physiol-
ogy and pathologies, interactions with medical devices, drug delivery pathways, the
interplay between structure and function of vascular tissues, mechanotransduction,
and many others. The success of such investigations is often related to the appre-
ciation of the vasculature’s multidisciplinary complexity. Whilst a purely medical
perspective often misses physical principles, purely engineering approaches under-
estimate the clinical dimensions of the problem. In addition, medical investigations
are often purely observational, whilst the engineering perspective is often too much
focused on solving (complex) equations—the underlying equations may even lack
experimental evidence.

In conclusion, medical and engineering approaches to vascular biomechanical
problems are often isolated and not very much interacting. This naturally hinders
their potential. Aside from the aforementioned structural challenges related to
medical and engineering curricula, the exploration of vascular bioengineering
problems faces many more specific challenges, some of them are listed below:

• Engineering challenges. Due to the complexity of the vasculature, traditional
engineering methods are often not directly applicable. They require specific
further developments and even the introduction of fundamentally new paradigms.
The inherent property of vascular tissue to adapt to mechanical and biochemical
environments remains one such challenging modeling task—it is far from solved.
In addition, the investigation of an entire vascular organ and the comprehensive
understanding of a biological process may require the coupling of bioengineering
models amongst structural, fluid, chemical, and electrical fields.

• Data acquisition challenges and uncertainty. Laboratory testing of biological
systems is challenging, especially with respect to human samples. Ethical
aspects, sample harvesting constraints, and difficulties in providing an adequate
in vitro testing environment are some of the challenges an investigator faces. Bio-
logical data is uncertain, and the intra-specimen and inter-specimen variability of
input parameters, such as loading conditions and constitutive properties, weakens
the predictability and benefit of bioengineering models.

• Validation challenges. The clinical acceptance of a bioengineering model
requires sound prospective validation that demonstrates its clinical and economic
benefits. Such validations are always time consuming and often challenged
by ethical and other constraints. The successful clinical integration of a
bioengineering model is often prevented by insufficient clinical validation.

• Product development challenges. An engineering solution might have a limited
market or might be too expensive for its initial commercial deployment. It
might neither be practical nor easy to be integrated into the clinical work flow.
The proposed product might even threaten the market of operational medical
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companies as well as the routine work of clinicians. Finally, a moderate clinical
benefit might not justify the risks from the clinical integration of a bioengineering
solution and then results in failure of medical device approval.

1.2 Model Design

A model represents the real object or process to some degree of completeness, and
A. Einstein2 states:

everything should be made as simple as possible, but no simpler.3 Any intelligent fool can
make things bigger and more complex. It takes a touch of genius—and a lot of courage to
move in the opposite direction.4

The flat earth hypothesis is an adequate model for many civil engineering
applications. It is sufficient for the design of a house, and using a spherical
gravitational field, and thus working with a spherical earth model, would clearly be
an excess for such an exercise. Newton’s laws of mechanics are also perfectly usable
for many conditions, even known being only a special case of the theory of general
relativity and to fail at velocities in the range of the light speed. Likewise, continuum
theories are successful even though matter is discrete and inhomogeneous at small
length-scales. However, the introduction of a representative length-scale, and thus a
Representative Volume Element (RVE) over which properties are averaged, allows
for the continuum-mechanical problem description.

1.2.1 Simplifications

A model introduces approximations to the real problem, and as with other modeling
activities, the IMA guides making such simplifications. Figure 1.2 illustrates a
typical vascular biomechanics model, and simplifications relate to the following
aspects:

• Vascular geometry. Blood vessels of diameters ranging from micrometers to
centimeters fill the entire human body. The modeler has to separate the length-
scales and specify a length-scale above which the individual geometry of the
vasculature is to be explicitly modeled. Below such length-scale the effect of
“small vessels” is represented by a boundary model—or in some cases they may
be simply neglected.

• Material properties. The vascular wall shows complex mechanical properties.
They are influenced by histological, biological, and clinical factors. The modeler
has to decide which mechanical properties are essential and which ones may be
neglected.

2Albert Einstein, German-born theoretical physicist, 1879–1955.
3http://quoteinvestigator.com/2011/05/13/einstein-simple/#more-2363.
4http://www.alberteinsteinsite.com/quotes/einsteinquotes.html.

http://quoteinvestigator.com/2011/05/13/einstein-simple/#more-2363
http://www.alberteinsteinsite.com/quotes/einsteinquotes.html
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Fig. 1.2 Assumptions to be
made on the input and output
of vascular biomechanics
simulations. Each assumption
needs to be validated with
respect to the Intended Model
Application (IMA)

Vascular geometry

Material properties

Boundary conditions

Loading conditions

Numerical methods

Output data 
analysis

• Boundary and initial conditions. A simulation object will only cover a certain
domain of the real problem. The modeler has to specify how the model interacts
with its surrounding across such boundaries in time and space. Given multi-
field models, boundary conditions also have to be specified across the different
solution fields.

• Loading conditions. Blood vessels are exposed to complex time-dependent
mechanical loadings, and the modeler has to select load cases that are of
relevance to the IMA. Loading stems from factors, such as the blood pressure,
body motion, and interactions with other organs and tissues.

• Numerical methods. A biomechanics model has to ensure governing principles
and requires the solution of an initial Boundary Value Problem (iBVP) by an
appropriate numerical method. It is up to the modeler to select an appropriate
and stable numerical frame to solve the systems of governing equations.

• Output data analysis. A biomechanics model generates a large amount of data,
such as stress and strain throughout the entire vessel wall, or blood flow velocity
in the entire lumen. The modeler has to relate this information to the IMA, which
again requires assumptions to be made.

In conclusion, a biomechanics model relies on a number of simplifications, all of
which are made on the basis of uncertain information. A model therefore requires
careful validation against the IMA.

1.2.2 Strategies

A model may always be seen as a transformation matrix that transforms the
vector x of input variables to the vector y of output variables. Given a linear
model, the transformation matrix is constant. However, for a non-linear model, the
transformation matrix is not constant and may depend on the input x, the output
y, or any other factor. Modelers follow very different strategies to develop the
transformation matrix.

A model design may be ranked according to the feasibility to understand
a model’s inner working and how it reflects the physics of the bioengineering
problem. A design that fully provides such information is called a white-box
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model, whilst a black-box model’s structure does not correlate with the underlying
physical processes of the bioengineering problem. Practically all models are gray-
box models, and they are in between the limits of the white-box and black-box
model, respectively.

1.2.2.1 White-BoxModel
White-box models break down the response of the system into its underlying
physical mechanisms and fully disclose the model’s inner working. Such a model
design provides full physical explanation of how model input is transformed into
model output. White-box models implement physical processes, and they represent
a realistic, but still reduced, description of the real problem. A model will always
introduce approximations, and thus a fully accurate model cannot exist as it would
be essentially a copy of reality.

White-box models allow for the hierarchical integration of physical processes
and their interactions. They provide deep insights into a bioengineering problem
and foster the acquisition of qualitative knowledge. A White-box model allows to
describe a problem based on limited experimental data and is very flexible towards
model revisions. However, the description of the problem’s underlying physics
may be complex, and the computation of model output requires often considerable
computational resources.

1.2.2.2 Black-BoxModel
Black-box models do not refer to any underlying physics—they use empirical
descriptions or sets of transfer parameters to relate model input and output.
Consequently, they do not allow for a physical explanation of how input transforms
into output. Black-box models use purely phenomenological descriptions, and they
provide quantitative data without deep insights into bioengineering processes. Back-
box models require sufficient experimental data for robust model calibration, and
their design is inflexible towards model revisions; the whole model needs a re-
calibration after any minor change in model design. However, they rapidly transform
model input into output, and the complexity of many bioengineering problems may
require the black-box approach.

1.2.2.3 Gray-BoxModel
A gray-box model implements a physical representation of the bioengineering
problem, where phenomenological descriptions approximate some of the physics. A
gray-box model may linearize a non-linear process or simplify physics by averaging
over localized properties.

1.2.2.4 SurrogateModel
Model reduction techniques may be used to simplify a model towards making it
applicable for a specific task, such as its integration in a clinical work flow. The
model is then called a surrogate model. Given a number of applications, the time
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that is needed to transform model input into output is minimized at the loss of model
accuracy and fidelity.

1.3 Model Development and Testing

Figure 1.3 illustrates the model development cycle. It starts with the description of
the real world problem that is to be represented by the model. The task specifies
the IMA, a list of model requirements, performance targets and risk assessment
aspects. Given this information, the mathematical equations representing the real
world problem are formulated. Often, they may not have a closed-form solution, and
numerical methods are used to compute the model output. The model’s predictions
are then tested by verification and validation, exercises that conclude whether or
not the model requires revision. Test protocols are determined by the IMA [491]
and risk aspects. Given all tests are passed, the model is deployed, and the IMA
specifies the domain within which it is allowed to operate.

1.3.1 Sensitivity Analysis

Biomechanical models are complex and depend on a large number of uncertain
input parameters. Many biomechanical models are non-linear and require a careful
investigation of how input uncertainties propagate towards the model output. A
parameter sensitivity analysis is therefore an essential step in the development of
a model. In addition to the specification of quality requirements for input data, it is
also a critical exercise in the medical device approval process.

A single output variable of a model may always be represented by a function
y = f (x), where x is a vector of n uncertain model parameters (x1, x2, . . . , xn) and
y is a chosen univariate model output; several model outputs may be investigated
consecutively. The sensitivity of y with respect to the model parameters x may
be investigated either locally or globally. A local analysis draws conclusions at a

Fig. 1.3 Model development
cycle. All development and
testing activities are carried
out in relation to the Intended
Model Application (IMA)
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given position x0 in the parameter space. The variation of the output may then be
expressed by

�y = s(x0) ·�x , (1.1)

where s(x0) = ∂y/∂x|x0 denotes the sensitivity vector. The model is therefore
linearized at x and the sensitivity explored at such linearization.

In contrary to the local analysis, a global sensitivity analysis explores the model’s
output for the entire parameter space, the domain covered by all (relevant) model
parameters x [488].

Example 1.1 (Sensitivity of the Resistance of a Blood Vessel). The resistance
R [Pa s m−3] of a vessel describes the relation between the pressure p [Pa] and
the flow q [m3s−1]. Given a cylindrical vessel of the length l and diameter d, the
resistance is given by Hagen–Poiseuille’s law

R = pi − po

q
= 128lη

πd4 , (1.2)

where the term pi −po [Pa] denotes the pressure drop between inlet and outlet, and
η [Pa s] describes the blood’s dynamic viscosity, see Sect. 2.3.2.1.

(a) Compute the sensitivity vector s = ∂R/∂x to explore the local sensitivity of
Hagen–Poiseuille’s law to variations of x = [l d η]T. Express the absolute
resistance error �R and the relative resistance error �R/R in response to the
variation of the input information.

(b) Consider the variation of a single parameter at the time and estimate the
accuracy of the input to ensure R would not change by more than ±10%.

(c) What is the largest possible relative error of R to be expected from the estimates
in Task (b)? �

Example 1.2 (Global Versus Local Sensitivity Measures). A biomechanical Finite
Element Method (FEM) model is used to compute a risk index r . The FEM model
uses several input parameters, out of which the wall thickness h and the tissue
stiffness s are the most uncertain inputs. Through a sequence of computation, the
data in Table 1.1 has been acquired. Given this information, the model’s local
and global sensitivity with respect to its two input parameters h and s should be
investigated.
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Table 1.1 Finite Element Method (FEM) model computations of the risk index r . Data represent
48 predictions by varying the model’s wall thickness h and the tissue stiffness s, respectively

s [kPa]

h [mm] 100 400 700 1000 1300 1600

0.5 0.558955 0.964567 1.48654 2.08449 2.74171 3.44859

1.0 0.553621 0.966734 1.50520 2.12866 2.82038 3.57075

1.5 0.538621 0.964234 1.53021 2.19616 2.94538 3.76825

2.0 0.508955 0.952067 1.55654 2.28199 3.11171 4.03609

2.5 0.459621 0.925234 1.57921 2.38116 3.31438 4.36925

3.0 0.385621 0.878734 1.59321 2.48866 3.54838 4.76275

3.5 0.281955 0.807567 1.59354 2.59949 3.80871 5.21159

4.0 0.143621 0.706734 1.57521 2.70866 4.09038 5.71075

(a) Identify the coefficients ai, bj , ck of the polynomial surrogate model

r = a0 + a1h+ a2h
2 + b1s + b2s

2 + c1hs + c2hs
2 + c3h

2s + c4h
2s2

(1.3)

from the data points listed in Table 1.1.
(b) Compute the local sensitivity at the point h = 2.0 mm and s = 900.0 kPa in the

parameter space. How much would the wall thickness alteration of 0.6 mm and
tissue stiffness alteration of 250 kPa influence the risk index?

(c) Consider the normal distributed wall thickness h = 2.0(SD 0.6)mm and the
tissue stiffness s = 900.0(SD 250.0) kPa to investigate the global sensitivity of
the model. Use Monte Carlo simulation and compute the distribution of the risk
index r . The notation a(SD b) denotes the mean a and the Standard Deviation
(SD) of a sample, see Sect. 1.4. �

1.3.1.1 Sobol’s Variance-Based Sensitivity Analysis
Sobol’s variance-based sensitivity analysis [513] is a form of a global sensitivity
analysis that allows to relate the variance of individual input parameters to the
model’s output variance. It considers the input parameter space of 0 < xi < 1 , i =
1, . . . , n and relies on the ANalysis Of VAriances (ANOVA)-representation of the
model response function

y = f (x1, x2, . . . , xn) =f0 +
∑

i

fi(xi)+
∑

i<j

fij (xi, xj )

+ · · · + f12···n(x1, x2, . . . , xn) , (1.4)

where all functions (other than f0) satisfy the orthogonality condition

∫ 1

0
fi···j (xi, . . . , xj )dxk = 0 for k = i, . . . , j .
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With the definition of the variance

V = Var(y) =
∫
(f (x)− f0)

2dx =
∫
f 2(x)dx − f 2

0 ,

the ANOVA-representation (1.4) yields the variance decomposition

V =
∑

i

∫
f 2
i (xi)dxi

︸ ︷︷ ︸
Vi=Var(y|xi )

+
∑

i<j

∫
f 2
ij (xi, xj )dxidxj

︸ ︷︷ ︸
Vij=Var(y|xi ,xj )−Vi−Vj

+ · · · , (1.5)

where the notation Vi = Var(y|xi) denotes the variance of y under the variation
of xi , and Vij = Var(y|xi, xj ) − Vi − Vj the variance of y that arises from mixed
effects of varying xi and xj , respectively.

With the variance decomposition (1.5), Sobol’s sensitivity indices

Si = Vi

V
, Sij = Vij

V
, · · ·

can be introduced. The sum over all Sobol’s sensitivity indices is one.
The first-order sensitivity (or main effect) index Si specifies the relative effect

of the input variable xi on the model’s output y. Similarly, Sij denotes the second-
order effect on y and it arises from the mixed interaction of the input variables xi
and xj . Mixed effects are often neglected in a sensitivity analysis.

Example 1.3 (Sobol’s Variance-Based Sensitivity Analysis). A biomechanical
Finite Element Method (FEM) model computes a risk factor r , where the wall
thickness H and tissue strength S are the most uncertain inputs. Sobol’s variance-
based sensitivity analysis should be used to explore the model’s global sensitivity
to these two input parameters. To this end, the surrogate model

r = 0.555︸ ︷︷ ︸
f0

−0.03(h− 1/2)− 0.4(h− 1/2)3︸ ︷︷ ︸
fh

+0.25(s − 1/2)︸ ︷︷ ︸
fs

+0.1(h− 1/2)(s − 1/2)︸ ︷︷ ︸
fhs

(1.6)

may be used, where the wall thickness H and the tissue strength S have been
transformed, such that their dimensionless counterparts 0 < h < 1 and 0 < s < 1
cover the unit-square parameter space.

(a) Show that the model (1.6) is an ANalysis Of VAriances (ANOVA)-
representation.

(b) Compute Sobol’s sensitivity indices.
(c) How do the variances Var(h) = 0.2 and Var(s) = 0.1 translate into the variances

Var(r|h) and Var(r|s) of the risk factor r? �
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1.3.2 Verification

Verification aims at testing the correctness of the model’s mathematical imple-
mentation, see Fig. 1.3. Are the equations solved correctly? is therefore asked by
verification exercises. They test the model for analytical errors, software coding
errors, parameter input failure, and ensure the appropriateness of the applied numer-
ical technique to solve the mathematical equations. Verification is performed at each
(sub) model level and uses black-box and white-box testing approaches. Black-box
testing verifies that a given input results in the correct output, whilst white-
box testing verifies the correct inner functioning of the model implementation.
Verification exercises foresee approaches, such as testing model predictions against
closed-form solutions, perform software code inspections and data plausibility
checks.

1.3.3 Validation

Validation aims at testing that a model predicts the desired features of the real object
or process, see Fig. 1.3. It ensures that the model represents the real object or process
up to the level specified by the IMA. Are the correct equations solved? is asked by
validation exercises. Whilst each modeling assumption needs to be validated sepa-
rately, it is of utmost importance that the global model output is validated against
experimental observations. A validation study should be well-designed and should
not contain any confounding factors, see Sect. 1.3.3.1. In bioengineering, validation
is often challenged by ethical constraints and cost aspects, factors that often form
the bottleneck towards the successful clinical integration of bioengineering models.

1.3.3.1 Study Design
Generally, a study may be seen as a controlled approach to understand cause and
effect of a treatment, such as a drug, a clinical intervention or a diagnostic parameter.
The analyst tries then to control of how study units are assigned to groups and which
treatment they receive. All studies consist of the following three parts.

• Study units. Recipients of treatment, such as people, animals, or plants.
• Independent variables. Factors that are controlled and manipulated by the

analyst. Factors are causal or explanatory problem variables. The amount of a
drug administered to the study units could be such a factor.

• Dependent variables. Response variables that represent the cause or effect of a
treatment, such as the number of patients free from symptoms at the end of the
study.

A well-designed study provides a clean test of causal connections between
dependent and independent variables—it eliminates the influence of extraneous
(or lurking) variables. Extraneous variables are variables that influence the study,
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often in an unknown way. They are neither independent variables nor dependent
variables. Steps to reduce the effects of extraneous variables are important, and a
well-designed study implements the following approaches:

• Control. Making a study as similar as possible for the study units in each
treatment condition. Double blinding is such an approach, where neither study
subjects nor analysts receive information about the treatment.

• Randomization. Using chance methods to assign study units to treatment groups,
which in turn randomizes the influence of extraneous variables. Randomization
also greatly enhances the appropriateness of statistical analysis methods, many
of which assume random distribution of variables.

• Replication. Assigning each treatment to many study units. The more study
units are in each treatment condition, the lower the variability of the dependent
measures.

Given the influence of extraneous variables has not been eliminated, the study is
confounded. A confounded study provides plausible alterative explanations for the
observed relationship between independent and dependent variables.

1.4 Statistics-BasedModeling

Biological data is uncertain and statistics-based modeling is a common approach
to describe bioengineering phenomena. A model is simply seen as a black-box and
thus a mathematical function that correlates model input and output. This section
discusses some methods of defining and testing such models, and the statistical
preliminaries are listed in Appendix A.1.

1.4.1 Correlation Amongst Variables

Given observational data of a bioengineering phenomenon, a correlation test
explores whether or not a correlation between variable exists—a correlation could
then be expressed by a model. A correlation test provides a correlation coefficient
−1 ≤ r ≤ +1. Positive and negative correlation coefficients denote positive
and negative correlations, respectively. Given a positive correlation, the dependent
variable increases with the increasing independent variable. The opposite holds for a
negative correlation. The larger the absolute value |r| of the correlation coefficient,
the stronger is the correlation between the variables. Testing the dependence of a
single variable yi with respect to a single independent variable xi is called simple
correlation testing.
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1.4.1.1 Pearson’s Product-Moment Correlation Coefficient
Pearson’s5 correlation coefficient indicates the linear relation between two vari-
ables given in interval or ratio scales. With xi, yi; i = 1, . . . , n, denoting a sample
with the means x = (

∑n
i=1 xi)/n and y = (

∑n
i=1 yi)/n, the Pearson’s correlation

coefficient reads

r =
∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n
i=1(yi − y)2

. (1.8)

Figure 1.6 shows scatter plots of distributed data points together with their
Pearson’s correlation coefficient r . The sets (a)–(c) show linearly correlated data,
and the Pearson’s correlation coefficients adequately describe such correlations. The
sample in Fig. 1.6a shows the strongest possible positive correlation, the sample in
Fig. 1.6b shows a strong negative correlation, and the sample in Fig. 1.6c shows
uncorrelated data, respectively.

The sample shown in Fig. 1.6d illustrates the strongest possible, but non-linear
correlation. Due to the non-linearity, any linear correlation measure, such as the
Pearson’s correlation coefficient, fails to address that. Given the particular case, the

Fig. 1.6 Pearson’s correlation coefficients r specifying linear correlations between the variables
xi and yi . The linear correlation coefficient adequately specifies the data sets (a)–(c), but it fails to
capture the perfect, but non-linear correlation shown in (d)

5Karl Pearson, English mathematician and biostatistician, 1857–1936.
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Pearson’s correlation coefficient yields r = 0.826, instead of the value of one for a
perfect correlation.

1.4.1.2 Spearman’s Rank Correlation Coefficient
Spearman’s6 correlation coefficient rs indicates the monotonic (linear or non-linear)
relation between two variables given in interval or ratio scales. The Spearman’s
correlation works by calculating the Pearson’s correlation (1.8), but on the rank
data. Consequently, it reads

rs(xi, yi) = r(rg(xi), rg(yi)) , (1.9)

where rg(xi) and rg(yi) denote the rank variables of xi and yi , respectively. Ranking
data is a transformation in which numerical values are replaced by their rank when
the data are sorted. For example, the rank data of the set xi = {2.7, 0.1, 1.9, 3.4}
reads rg(xi) = {3, 1, 2, 4}.

Figure 1.7a,b illustrates Spearman’s correlation coefficients for selective exam-
ples. Figure 1.7a shows the scatter plot of the raw data xi, yi , whilst Fig. 1.7b shows

Fig. 1.7 Spearman’s correlation coefficients rs specifying the monotonic relations between the
variables xi and yi . (a), (b) Perfect non-linear correlation, where (a) shows the raw data, and
(b) the rank data, respectively. The non-linear correlation coefficient adequately determines the
non-linear monotonic sample shown in (c), but it fails to describe the perfect, but non-monotonic
correlation in (d)

6Charles Edward Spearman, English psychologist, 1863–1945.
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the rank variables rg(xi), rg(yi). The rank data is always linearly related, which
allows using the Pearson’s correlation (1.8). Regardless a linear correlation analysis
would be meaningless for the non-linearly correlated data in Fig. 1.7a, the Pearson’s
correlation coefficient is shown in brackets.

Figure 1.7c shows the Spearman’s correlation coefficient (1.9) of dispersed data.
Again, the (meaningless) Pearson’s correlation coefficient is given in brackets. A
perfect but non-monotonic correlation between xi and yi is shown in Fig. 1.7d.
Given non-monotonic correlations, the Spearman’s correlation coefficient is mean-
ingless. Despite the perfect correlation, the Spearman’s correlation coefficient
would be rs = −0.0714. A non-monotonic sample may be split into monotonic
sub-samples, or more advanced correlation methods may be used to explore non-
monotonic data samples.

1.4.2 RegressionModeling

Regression modeling is used to predict dependent variables based on the values of
independent variables or a cause and effect relationship amongst them. Predicting
one dependent variable from one independent variable is called simple regression
modeling.

With xi, yi; i = 1, . . . , n, denoting a sample with the means x = (
∑n
i=1 xi)/n

and y = (
∑n
i=1 yi)/n, a simple linear regression model reads

yi = b0 + b1xi + ei , (1.10)

where ei denotes the i-th error term or residuum. The coefficients b0 and b1 are
identified through least-square optimization,

n∑

i=1

e2
i =

n∑

i=1

(yi − b0 − b1xi)
2 → MIN ,

where the square of the error terms ei is minimized. Figure 1.8 illustrates a scatter
plot with the (linear) regression line on top of the sample data.

The coefficient of determination of a simple linear regression model reads

R2 =
[

1
n

∑n
i=1(xi − x)(yi − y)

sxsy

]2

(1.11)

where

sx =
√∑n

i=1(xi − x)2
n− 1

; sy =
√∑n

i=1(yi − y)2
n− 1
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Fig. 1.8 Linear regression to predict the dependent variable yi from the independent variable
xi . The coefficient of determination R2 denotes the quality of the regression, and least-square
optimization defines the regression line shown in blue. The Pearson’s correlation coefficient is
denoted by r , and p is the significance of the regression

denote the Standard Deviation (SD) of the sample. The coefficient of determination
ranges from 0 ≤ R2 ≤ 1, where R2 = 0 means that the data cannot be predicted,
whilst for R2 = 1, it can be predicted at no error, and thus at ei = 0. The
definitions (1.8) and (1.11) directly yield the relation

R2 = [r(n− 1)/n]2 (1.12)

between the Pearson’s product-moment correlation coefficient r and the coefficient
of determination R2.

1.4.2.1 Significance of a Regression
As for any probabilistic data analysis, the significance of the results should be
investigated. Following Hypothesis Testing (see Sect. 1.4.3), the data may be tested
against the Null HypothesisH0 : b1 = 0, where b1 denotes the parameter introduced
by the regression model (1.10). Such a test investigates the probability that the slope
of the regression line is zero, circumstances at which xi and yi are uncorrelated.
Thus, the statistic reads

t = r
√
n− 2√

1 − r2
, (1.13)

and rejecting H0 has the probability of p = 2
∫ t
−∞ ρt(x)dx. Here, ρt(x) denotes the

Probability Density Function (PDF) of the student7 t-distribution (A.3) of n − 2
degrees of freedom. The determination of the two parameters b0 and b1 leads to

7Denoted after William Sealy Gosset, English statistician, 1876–1937, who used the pen name
“student”.
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the deduction of two degrees of freedom from the data, and the test is a two-tailed
significance test, which explains the factor 2 when computing the probability p.

Example 1.4 (Correlation of Vessel Wall Stiffness and Strength). An in vitro tissue
characterization study used tensile testing to measure the vessel wall stiffness
parameter x and the vessel wall strength y. The observed data comprises obser-
vations from vessel wall specimens taken from n = 20 animals, see Table 1.2.

Table 1.2 Stiffness parameter x and tensile strength y of vessel wall samples acquired from
n = 20 animals

Stiffness Strength

Specimen x [kPa] y [kPa]

1 86.5 906.1

2 191.7 1301.9

3 193.3 1854.5

4 228.2 627.5

5 128.0 1299.1

6 169.8 1751.3

7 219.1 1538.5

8 182.4 1815.9

9 155.8 880.7

10 194.3 1352.8

Stiffness Strength

Specimen x [kPa] y [kPa]

11 233.7 1907.2

12 172.7 3060.1

13 245.2 1871.4

14 175.4 1516.3

15 300.5 2462.8

16 266.7 1851.2

17 190.0 2640.5

18 350.7 1821.5

19 384.0 2272.3

20 257.8 2491.5

A correlation analysis should be performed to draw conclusion from the acquired
experimental data, addressing the following tasks:

(a) Investigate, whether the stiffness parameter x and the tensile strength y are
linearly, or non-linearly correlated.

(b) Compute the correlation coefficient r and the coefficient of determination R2.
(c) Consider the significance level of 5%, and test the statistical significance of a

potential correlation between x and y. �

1.4.2.2 Non-linear Regression
A simple linear regression model requires a linear correlation between xi and
yi , which in turn yields a normally distributed residuum ei of the regression
model (1.10). Appendix A.1.3 outlines methods of testing the distribution of random
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data. Given xi and yi would not be linearly correlated, one or both variables may
be transformed, such that the transformed variables yield linear correlation. Such a
transformation rule naturally depends on the individual data sample and the reader
is referred to the statistics literature [382].

1.4.2.3 Multiple Regression
More than one independent variable may have an effect on the dependent variable.
Predicting one dependent variable from a number of independent variables is called
multiple regression modeling. Given two independent variables xA

i and xB
i , a linear

multiple regression model reads

yi = b0 + bA
1 x

A
i + bB

1 x
B
i + ei ,

where ei denotes the i-th error term or residuum, and the coefficients b0, bA
1 and bB

1
are identified through least-square optimization, and thus

∑n
i=1 e

2
i → MIN. It may

be difficult to identify a set of variables causing independent effects on the response
variable—variables often interact in an unknown (and hidden) way.

Stepwise regression is one way to solve multiple regression problems. An
automatic procedure adds or removes independent variables (explanatory variables)
of the regression model, a selection process that is governed by optimizing the
model’s significance [289]. Techniques, collectively known as Artificial Intelligence
(AI) or Machine Learning (ML), may also be used to deal with interacting variables,
see Sect. 1.5.

1.4.2.4 Multivariant Regression
A multivariant regression model uses a number of independent (explanatory)
variables and predicts several outcome variables. Such models aim at understanding
the relationships between variables and their relevance to the problem being studied.

1.4.3 Hypothesis Testing

The best way to test the significance of a model would be to examine the entire
population, and thus all data eventually processed by the model. Since that is often
impractical, conclusions have to be drawn from a random sample taken from the
population, a method called hypothesis testing. It refers to the formal procedures
to accept or reject statistical hypotheses. The test uses sample data taken from
populations to answer questions related to observations in the populations. Given
the sample data are not consistent with the statistical hypothesis, the hypothesis is
rejected. There are two types of statistical hypotheses:

Null Hypothesis H0. The Null Hypothesis is usually the hypothesis in which
sample observations result purely from chance.
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Alternative Hypothesis Ha. The Alternative Hypothesis is the hypothesis in
which sample observations are influenced by some non-random cause.

The Null Hypothesis H0 and the Alternative Hypothesis Ha are mutually
exclusive.

Let us consider the problem of assessing whether or not a dice is fair, and thus
each face f = 1, 2, 3, 4, 5, 6 has the same probability p(f ) of appearance. This
could be tested with

H0 : p(f ) = 1/6 ; Ha : p(f ) �= 1/6 (1.17)

with H0 and Ha being the Null Hypothesis and the Alternative Hypothesis,
respectively. Rejecting H0 would mean that the dice is not fair, and rejecting Ha
would mean that the dice is fair.

The strength of evidence in support of a Null Hypothesis H0 is measured by
the probability and thus the p-value. If the p-value is less than the (predefined)
significance level, we reject the hypothesis. A test of a statistical hypothesis, for
which the region of rejection is on one or both sides of the sampling distribution, is
called a one-tailed or a two-tailed test, respectively. Figure 1.10 illustrates that.

In summary, statistical hypothesis testing commonly follows the following three
distinct steps:

• State the hypotheses to be tested and specify the statistics that represent the
problem.

• Formulate an analysis plan, and calculate the probability p under the Null
Hypothesis H0.

• Given p is below the (selected) significance level, reject the Null Hypothesis, and
draw conclusions.

Fig. 1.10 Statistical hypothesis testing the population mean μ. (a) Rejecting the Null Hypothesis
H0 : μ ≤ 2 is illustrated by the highlighted domain and yields a one-tailed test. (b) Rejecting the
Null Hypothesis H0 : |μ| ≤ 2 is illustrated by the highlighted domain and yields a two-tailed test
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1.4.3.1 Error and Power of a Hypothesis Test
A Type I error occurs when the Null Hypothesis H0 is incorrectly rejected, and thus
a false positive is predicted. The probability of committing a Type I error is called
the significance level. For the aforementioned example with the dice, H0 would be
rejected although the dice would in fact be fair.

A Type II error occurs when the Null Hypothesis H0 fails to reject a negative
observation, and thus a false negative is predicted—H0 would not be rejected
although the dice would in fact be unfair. The probability of committing a Type II
error is called the power of the test. The greater the sample size and the higher
the significance level (i.e., the lower the probability of committing a Type I error),
the greater is the power of the test. In addition, the greater the difference between
the “true” value of a parameter and the value specified in the Null Hypothesis, the
greater is the power of the test.

Example 1.5 (Testing for Clairvoyance). A person is shown the reverse of n = 25
randomly chosen playing cards and asked which of the four suits it belongs to. The
person should be tested for clairvoyance according to the following tasks:

(a) Formulate a suitable Null Hypothesis H0 and an Alternative Hypothesis Ha.
(b) Draw a tree diagram and compute the number of false positives in such a test.
(c) Compute the significance level for at least x = 9 correct answers.
(d) Compute how many answers have to be correct to reach a significance level of

less than 5%. �

1.4.4 Mean Difference Test

Whether or not two samples stem from different populations may be investigated by
a mean difference test. Such a test is typically appropriate for normally distributed
populations and a sample size of 15 or more. The sample should not contain outliers
and samples of smaller sizes should be symmetric. Preliminaries of data distribution
testing in statistics are summarized in Sect. A.1.3.

1.4.4.1 One-Sample t-test
The one-sample t-test tests the Null Hypothesis H0 : μ = μ0 that the population
mean μ is equal to a specific value μ0. Given a sample of the size n, the mean x,
and the SD s, the statistic reads

t = x − μ0

s/
√
n
. (1.18)

Consequently, the two-tailed significance test of rejecting H0 has the probability
p = 2

∫ t
−∞ ρt(x)dx, where ρt(x) denotes the PDF of the student t-distribution (A.3).
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The one-sample t-test may also be used to test the difference x = x2 − x1 of
observations x1 and x2 taken from n paired samples.

1.4.4.2 Two-Sample t-test of Independent Samples
Given two independent samples x and y, the two-sample t-test specifies whether or
not the two samples stem from different populations. The Null Hypothesis H0 :
μx = μy is commonly used, where μx and μy denote the population means related
to the samples x and y. Consequently, rejecting H0 would suggest that the two
samples stem from different populations. In general, the two samples would be of
different sizes nx, ny and SD sx, sy, such that the statistic reads

t = x − y
s

; s =
√
s2

x

nx
+ s2

y

ny
, (1.19)

where s denotes a weighted SD. Such a test is called Welch8 t-test, a generalization
of the student’s t-test.

In order to compute the probability of rejecting H0, the nearest integer of the
expression

(s2
x/nx + s2

y/ny)
2/

[
(s2

x/nx)
2

nx − 1
+ (s2

y/ny)
2

ny − 1

]
(1.20)

determines the degrees of freedom ν of the problem. Finally, rejecting H0 has the
probability of p = 2

∫ t
−∞ ρt(x)dx of the two-tailed significance test, where ρt(x)

denotes the PDF of the student t-distribution (A.3).

Example 1.6 (Conclusions from Vessel Wall Stiffness Data). Let us consider an
in vivo tissue characterization study to investigate the effect of hypertension on
the stiffness of the rat aorta. The vessel’s stiffness has been acquired at baseline,
and the rats have then been medicated to increase their blood pressure. After six
weeks the stiffness was measured again in the same animals. The data was acquired
independently by two experimentalists (experimentalist A and experimentalist B)
and in a number of different animals. It is reported in Table 1.3, and the significance
level of p = 0.05 may be used for hypothesis testing.

Conclusions from the data in Table 1.3 should be drawn through the analysis of
the following tasks:

8Bernard Lewis Welch, British statistician, 1911–1989.
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Table 1.3 Aorta wall stiffness acquired through an in vivo tissue characterization study. The
samples A1–A20 have been acquired by experimentalist A, and the samples B1 to B23 by
experimentalist B

Baseline Medicated Change

Sample [kPa] [kPa] [kPa]

A1 1235.6 827.5 −408.1

A2 595.6 705.1 109.5

A3 833.0 974.9 141.9

A4 498.5 955.4 456.9

A5 709.7 1194.2 484.6

A6 996.7 912.4 −84.3

A7 540.8 944.7 403.9

A8 612.3 867.5 255.2

A9 592.2 964.4 372.2

A10 1193.7 1161.7 −32.0

A11 579.9 1010.7 430.8

A12 707.8 753.5 45.6

A13 763.7 946.0 182.3

A14 1089.4 1121.6 32.2

A15 883.6 954.9 71.3

A16 628.6 911.1 282.5

A17 614.9 590.4 −24.5

A18 909.3 1108.7 199.5

A19 628.2 1243.5 615.3

A20 953.0 1169.2 216.2

Baseline Medicated Change

Sample [kPa] [kPa] [kPa]

B1 634.8 837.6 202.8

B2 771.3 1121.8 350.5

B3 1496.3 1118.4 −378.0

B4 554.3 569.8 15.5

B5 1346.6 909.7 −436.9

B6 1217.5 1018.8 −198.7

B7 535.6 1010.9 475.3

B8 1246.3 715.9 −530.5

B9 298.2 1075.4 777.1

B10 978.0 1110.7 132.7

B11 1203.3 872.6 −330.7

B12 1181.9 1004.1 −177.9

B13 512.0 1275.8 763.8

B14 785.6 925.7 140.1

B15 483.3 1115.5 632.2

B16 590.1 1068.0 477.8

B17 1122.8 717.4 −405.4

B18 814.4 1008.6 194.2

B19 1709.0 979.5 −729.5

B20 466.2 964.4 498.2

B21 45.2 1041.6 996.4

B22 543.0 1056.0 513.0

B23 776.5 797.9 21.5

(a) Is the experimental data normally distributed?
(b) Is the experimental data independent of the experimentalist who acquired it?
(c) Does the medication change the stiffness of the aorta in the rats? �

1.5 Artificial Intelligence

Artificial Intelligence (AI), also called Machine Learning (ML), refers to the
area of computer science that creates machines (software) to perform a specific
task without using explicit instructions. It may be defined as a system’s ability
to correctly interpret external data, to learn from such data, and to use those
learnings to achieve specific goals and tasks through flexible adaptation [297].
AI algorithms often mimic cognitive functions, such as learning and problem
solving by using algorithms based on Artificial Neural Network (ANN), Bayesian
Networks (BN), mathematical optimization, support vector networks, decision trees,
and nearest neighbor. Such approaches are able to process large amounts of data
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and use it to make worthwhile predictions [377]. AI algorithms do not simply
learn from data but enhance themselves and their predictive capability by learning
new heuristics. The solution of practically relevant problems is often linked to the
availability of High Performance Computing (HPC) resources and large data sets
of experimental observations. This field of modeling is rapidly progressing with
numerous mathematical algorithms being available [257].

1.5.1 Learning and Prediction

AI algorithms acquire their knowledge through learning or training using different
approaches. Supervised learning acquires knowledge from data that contains both
the inputs and the desired outputs. It is very similar to a regression analysis,
see Sect. 1.4.2, where the independent variables are the input and the dependent
variables are the output. The knowledge governed from learning is then represented
by the coefficients of the regression model. However, AI approaches are superior
in dealing with potential dependence among the independent variables as well as
any non-linearity associated with the problem. In unsupervised learning, the AI
algorithm acquires knowledge from a set of data that contains only inputs and no
desired outputs.

Real world data is often polluted, and anomaly detection, also known as outlier
detection, is used to clean the data from “suspicious” observations, prior to the
commencement learning phase.

1.5.2 Artificial Neural Network

ANNs are models that are vaguely inspired by the structure of the brain. Nodes
represent neurons and are connected by edges, which themselves represent the
synapses in a biological brain, see Fig. 1.14a. Each edge can transmit a signal
(information) from one node to another. A node processes the received information

Fig. 1.14 Two common
model approaches used in
Artificial Intelligence (AI).
(a) An Artificial Neural
Network (ANN) is an
interconnected group of
nodes that mimic a network
of neurons in a biological
brain. (b) A Bayesian
Network (BN) models
conditional dependence of
variables in a network
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and then signals the nodes connected to it. In common ANN implementations, the
signal that is transmitted through edges is a real number, and the output of each node
is a non-linear function of the sum of its inputs. Edges have a weight that increases
or decreases the strength of its signal. The weights are specified during the model’s
learning or training phase. A node may have a threshold, whereby a signal is only
sent if it exceeds said threshold.

Typically, nodes are aggregated into layers. Different layers may perform
different transformations upon their inputs. The signals travel from the input layer,
through hidden layers, to the output layer. An ANN that uses multiple hidden layers
uses a deep learning approach and may require advanced learning algorithms as well
as HPC resources.

ANN training, and thus the identification of weights, can be seen as an optimiza-
tion problem. The backpropagation algorithm follows this concept and allows for
the efficient training of an ANN, following a gradient descent approach that exploits
the chain rule [481].

Example 1.7 (Training an Artificial Neural Network). Figure 1.15 shows part of an
Artificial Neural Network (ANN). The inputs x1 and x2 are weighted by w1 and
w2, and the node N then determines the output y. The node N is represented by the
logistic function

y = [1 + exp(−z)]−1 , (1.22)

where z =∑2
i=1 xiwi denotes the cumulative input.

Fig. 1.15 Part of an Artificial Neural Network (ANN) with x1, x2, and y denoting the inputs and
the output, respectively. The weights w1 and w2 are identified by training

Table 1.4 Set of training
data. The input is denoted by
x1, x2, whilst ỹ is the desired
output of node N

x1 x2 ỹ

−1.0 0.3 0.2

−0.9 0.1 0.3

2.0 2.0 0.9

3.0 1.0 1.0

(a) Express the “learning process” of the ANN through a least-square optimization
problem.

(b) Identify the weights w1 and w2 through supervised learning, where Table 1.4
lists the set of training data. �
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1.5.3 Bayesian Network

A BN, also known as a Bayes9 network, or a decision network, is a probabilistic
model that represents a set of variables and their conditional dependencies.

Let us consider a patient with a condition who may be either treated with Drug A
or Drug B. Both drugs have the risk for dangerous interactions and must not be
administered together. The BN shown in Fig. 1.16 represents this problem, where
each variable (administration of Drug A, administration of Drug B, and Treatment
Success) can either be True (T) or False (F). The administration of both drugs is
conditionally dependent (they must not be administered together), and both drugs
influence the probability of the Treatment Success.

A Conditional Probability Table expresses the conditional dependence amongst
all variables, see Table 1.5. The left table reports that Drug A is administered
to 20% of the patients, whilst 80% do not receive it. The middle table reports
the administration of Drug B. Regardless of dangerous interactions amongst the
two drugs, some patients received both drugs, see the bottom line in the table.
The right table reports the probability of the Treatment Success in relation to the
administration of the two drugs.

In conclusion, a BN is a complete model for its variables and their relationships
that can be used to answer any probabilistic queries. Given AI applications, the
information held by the Conditional Probability Tables is acquired through learning
or training. Similar to ANN, optimization methods may be used to train a BN.

Adm. Drug A
Treatment
Success

Adm. Drug B

Fig. 1.16 Treating a condition with two different drugs. Variables and their conditional depen-
dencies are represented by a Directed Acyclic Graph

Table 1.5 Conditional probability tables. The three binary variables administration of Drug A,
administration of Drug B, and Treatment Success describe the problem

Adm. Drug A

T F

0.2 0.8

Adm. Drug B

Adm. Drug A T F

F 0.4 0.6

T 0.01 0.99

Treatment Success

Adm. Drug A Adm. Drug B T F

F F 0.0 1.0

F T 0.8 0.2

T F 0.9 0.1

T T 0.99 0.01

9Thomas Bayes, English statistician and philosopher, 1701–1761.
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1.5.4 Decision Tree

A large number of observations may be used to “grow” a decision tree through such
data, a process called decisions tree learning. Figure 1.17 illustrates the application
of a decision tree towards the prediction of the vascular wall stiffness. The decision
tree starts at its root: a cohort of patients with properties, such as patients’ gender,
their smoking status, and their age. In addition, each patient entry contains a
vessel wall stiffness ki [kPa], a variable that depends on patient attributes. It is
this parameter that should be predicted by the decision tree model. For the present
example, the mean wall stiffness in the root cohort is k = 98.3 kPa, see Fig. 1.17.
The cohort is then split into two sub-cohorts, A and B, towards the homogenization
of either sub-cohort with respect to ki . Commonly, this involves the minimization
of a cost function

∑

i∈A
(ki − kA)2 +

∑

i∈B
(ki − kB)2 → MIN , (1.24)

where kA and kB denote the means of ki in the sub-cohorts, respectively. This
determines the optimal partitioning of the data. The process is inherently recursive
and concludes with a number of sub-cohorts and their respective mean vascular wall
stiffness.

Fig. 1.17 Decision tree learning towards the prediction of the stiffness of the vascular wall. A
box denotes a patient cohort with a number of attributes (F-female; M-male; SL 0-smoking level
0; SL 1-smoking level 1; AG 0-age group 0; AG 1-age group 1; AG 2-age group 2), and below
each box the mean vessel wall stiffness within such cohort is reported. Branches develop through
recursive splitting towards homogenizing the vessel wall stiffness in the (emerging) sub-cohorts.
The red dashed lines indicate where the cohorts are split
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Different criteria are used to cease the splitting and to prune the tree, operations
that are necessary in order to avoid overfitting and to reduce the complexity of
the tree. Given that the stiffness of the vascular wall is a continuous variable, the
aforementioned example represents a regression decision tree. The prediction of a
particular disease status would use a binary variable pi ∈ {0, 1}, and a classification
decision tree then describes the problem.

1.6 Case Study: Biomechanical Rupture Risk Assessment

This case study integrates some of the aforementioned concepts towards an Abdom-
inal Aortic Aneurysm (AAA) rupture risk assessment model. AAA disease is a
serious condition and causes many deaths, especially in men exceeding 65 years
of age. Progressive treatment, and thus either surgical or endovascular AAA repair,
cannot (and should not) be offered to all patients. AAA repair is recommended if
AAA rupture risk is deemed to exceed the risk of intervention. Whilst the hospital-
specific treatment risks are reasonably predictable, assessing the risk of in vivo AAA
rupture in individual patients remains the bottleneck in clinical decision making.

1.6.1 Shortcomings of the Current AAA Risk Assessment

The current clinical practice for the assessment of AAA rupture risk relates to
the aneurysm’s largest transverse diameter, as well as its change over time. AAA
repair is generally recommended if the largest diameter either exceeds 55 mm
or grows faster than 10 mm per year [76, 225, 547]. The majority of clinicians
follow this advice10 and use both the aforementioned indication criteria for clinical
decision making. This somewhat crude assessment of rupture risk is however
the subject of much debate—AAAs with diameters smaller than 55 mm can and
do rupture (even under surveillance), whilst many aneurysms larger than 55 mm
remain quiescent [110, 393]. Given especially the poor sensitivity of the diameter-
based criteria, the cost-effectiveness of AAA patient treatment is sub-optimal. The
drawback of the present AAA repair indicator has also triggered considerable
research in the field, and a more individualized AAA repair indication would be of
great clinical benefit. The Biomechanical Rupture Risk Assessment (BRRA) [159,
193,206,353,449,509,555,567,575] is one such concept and forms the basis of our
cases study.

10See the survey amongst vascular clinicians at https://www.artecdiagnosis.com/files/
Vascops_survey2006.pdf

https://www.artecdiagnosis.com/files/Vascops_survey2006.pdf
https://www.artecdiagnosis.com/files/Vascops_survey2006.pdf
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1.6.2 IntendedModel Application

The BRRA model seeks to provide a biomechanics-based rupture risk index, which
could be integrated directly into the clinical decision making process towards
advising the clinician whether or not progressive aneurysm treatment is necessary.
The diagnostic information should be derived from routinely taken Computed
Tomography-Angiography (CT-A) images together with other patient information,
such as age, gender, and medical history. The diagnostic information should also be
derived directly by clinical operators, using standard computational facilities that
are available in the hospital.

1.6.3 Failure Hypothesis

Raising the tension in the vessel wall to supra-physiological levels, leads to the
formation of local stress concentrations that eventually damage the tissue at the
micro-scale. Given the compromised biological integrity of aneurysm tissue [86],
such micro-defects cannot heal, and the vessel wall continues to accumulate weak
links. The micro-defects then merge together and lead to the formation of macro-
defects that then eventually rupture the AAA wall.

A number of engineering concepts are available towards studying the initiation
and propagation of failure (macro-defects) in materials [399]. The introduction of
a risk index ξ = σM/Y that relates the von Mises11 stress σM in the wall to the
wall strength Y is one such concept. The index ξ is calculated throughout the
aneurysmatic aorta, with its maximum serving as a diagnostic risk index called Peak
Wall Rupture Index (PWRI).

1.6.4 Work Flow and Diagnostic Information

A robust, fast, and operator-insensitive simulation pipeline is required to implement
the BRRA in the clinical work flow, and Fig. 1.18a illustrates such an approach using
the A4clinics software (VASCOPS GmbH, Graz, Austria). An Image Segmentation
step acquires a 3D geometrical model, and a Mesh Generation step prepares
the structure towards its numerical analysis [17]. The user sets patient-specific
properties, and a Structural Analysis then computes the AAA wall stress that is
required to carry the blood pressure for the individual aneurysm anatomy. A Data
Analysis step extracts key geometrical and biomechanical parameters, information
that is then reported together with other examination data in the Analysis Report.
The whole analysis takes approximately 10 min using standard laptops or PCs.

The individual risk of rupture may be related to the risk of the mean population
AAA patient through the Rupture Risk Equivalent Diameter (RRED), see Fig. 1.18b.

11Richard von Mises, Austrian–Hungarian mathematician, 1883–1953.
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Fig. 1.18 (a) Workflow of the Biomechanical Rupture Risk Assessment (BRRA) of Abdominal
Aortic Aneurysms (AAAs) using the A4clinics software (VASCOPS GmbH, Graz, Austria). (b)
Definition of the Rupture Risk Equivalent Diameter (RRED) for an individual AAA patient. The
RRED denotes the diameter of an average AAA that experiences the same Peak Wall Rupture
Index (PWRI) as the individual case

The RRED reflects the size of the average aneurysm that experiences the same
biomechanical rupture risk as the individual case [206]. It translates the individual
biomechanical risk into a diameter risk, the currently applied risk stratification
parameter in the clinics. The RRED connects the individual biomechanical assess-
ment with the outcome of large diameter-based clinical trials, such as the UK small
aneurysm trial [206, 547].

1.6.5 KeyModeling Assumptions

Any modeling assumption should be assessed against the IMA and the uncertainty
of model input information. An efficient BRRA model should only include model-
ing details that improve the clinical outcome and disregard all the other knowledge
of the biomechanical problem.

1.6.5.1 Organ-Level Model
A continuum approach at the macroscopic length-scale of centimeters, is used to
model AAA biomechanics. The model encompasses the infrarenal aorta, and an
accurate 3D geometrical representation has been reported to be the most critical
parameter for reliable wall stress predictions [123, 449]. The model is fixed at
the renal arteries and the aortic bifurcation, no contact with surrounding organs
is considered, and the wall stress is computed at Mean Arterial Pressure (MAP).
The discretized structural biomechanical problem model is then solved using the
non-linear FEM [618].
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1.6.5.2 Vascular TissueModel
The histology of the vessel wall is very complex, giving rise to the highly non-linear,
anisotropic, and time-dependent mechanical tissue properties, see Sect. 5.3. Not all
of this complexity needs to be modeled.

AAA wall stress computations are not particularly sensitive to constitutive
descriptions [123, 449], as long as the wall’s low initial stiffness is followed by
the stiffening observed at higher strains [436]. In addition, whilst Intra-Luminal
Thrombus (ILT) tissue is highly porous [5, 196] and contains a lot of water, a
single phase model that neglects fluid flow within the tissue predicts AAA wall
stress at sufficient accuracy in the context of the BRRA [18, 433]. The isotropic
two-parameter Yeoh model [608], calibrated to mean population data of the AAA
wall [449] as well as the ILT [196], has therefore been used in the modeling of AAA
tissue.

The strength of the AAA wall is highly dispersed and influenced by many
factors [143, 171, 172, 352, 357, 458, 504]. Wall strength and wall thickness are
strongly negatively correlated [203], an observation that favors the use of a uniform
wall thickness in the BRRA model.

1.6.6 Clinical Validation

The BRRA reflects the real object up to a limited degree of completeness. Whether
or not the model addresses the most important aspects of the real world problem
needs to be validated—the model is to be tested against its IMA. As a minimum
requirement, the BRRA diagnosis has to demonstrate an improvement over state-
of-the-art clinical practice. The implementation into the regular clinical work flow
would then be justified. Validation addresses always different aspects; some of such
exercises are discussed below.

Operator Variability Intra-operator and inter-operator variability of the A4clinics
rupture risk assessment system has been tested in clinical environments [279, 545].
Model assessments showed an intra-operator variability of 2.7% [497] for PWRI
predictions and of 1.5% for maximum diameter measurements. This high precision
could only be achieved with active (deformable) image segmentation models [17,
606].

Retrospective Comparison Between Ruptured and Non-ruptured AAAs The diag-
nostic value of the BRRA method has been studied for almost 20 years [159,
193, 206, 353, 435, 449, 555, 567, 575]. Given these studies, Peak Wall Stress
(PWS) has been regularly shown to be higher in ruptured/symptomatic AAAs
than in intact/non-symptomatic AAAs [305, 508]. The integration of wall strength,
based on a statistical model that correlates mechanical in vitro tests with patient
characteristics [570], then further improved the discrimination between ruptured
and non-ruptured cases [193, 353]. Figure 1.19 summarizes these results and shows
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p < 0.001

Fig. 1.19 Size-adjusted comparison between ruptured and non-ruptured Abdominal Aortic
Aneurysms (AAAs). The comparison is based on the difference between Rupture Risk Equivalent
Diameter (RRED) and the maximum transversal diameter (D). The number of patients and the
one-tailed p-value are denoted by n and p, respectively. Image has been adjusted from [206]

that the RRED was, on average, 14.0 mm larger in patients who experienced AAA
ruptured than in non-ruptured cases.

Quasi-prospective Comparison Between Ruptured and Non-ruptured AAAs CT-A
acquisitions from patients before the rupture of their AAA provide ideal information
to validate the BRRA. Given such data, the BRRA was able to discriminate between
AAAs that ruptured as compared to a baseline-matched control group of stable
cases [144]. In more than half of the cases, the rupture sites correlated even with
the location, where PWRI has been predicted. The authors therefore concluded that
asymptomatic AAA patients with high PWRI and RRED values have an increased
rupture risk.

Female Versus Male AAA Rupture Risk Whilst AAA prevalence in females is
several times lower than in males, female aneurysms rupture at smaller diame-
ters [120, 247, 328]. In vitro AAA wall characterization also shows a lower strength
of the female AAA wall [566, 570], a wall weakening effect that is considered by
the BRRA—the computational biomechanical risk of a, on average, 53 mm large
female AAA relates to a, on average, 66.2 mm male AAA [206].

Correlation of PWRI and FDG-Uptake 18-Fluoro-Deoxy-Glucose (18F-FDG),
a tracer for Positron Emission Tomography (PET) imaging [485], allows for
the indirect evaluation of the AAA wall’s biological activity through its energy
consumption. Vascular cells respond to the mechanical load [11], and although
the aneurysmatic wall loses its biological vitality [86, 373], PET-scan images still
showed a reasonable correlation between wall stress and 18F-FDG-uptake [352,
391].
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Correlation of PWRI and Wall Histopathology The AAA’s complex geometry and
morphology leads to highly inhomogeneous wall stress. AAA wall segments that
experienced high wall stress showed fewer Smooth Muscle Cells (SMCs), fewer
elastic fibers, more soft and hard plaques, as well as a trend towards heightened
fibrosis [143].

1.7 Summary and Conclusion

Biomechanical modeling is a key component in the exploration of life science prob-
lems. A model represents the real object or process up to the degree of complexity
as it is determined by the IMA [491]. The IMA guides model development and
testing, and a modeler should always try to keep a model as simple as possible.
No model is complete, and one can criticize any model. Is the model correct? is
a meaningless question, instead one should ask Does the model fulfill its intended
task? Modeling does not seek to replicate reality, which would be impossible. The
quote, every model is wrong, but only a few are useful12, is a fitting statement to
describe the nature of a model.

The model’s complexity is usually increased in an effort to improve its accuracy,
and thus towards decreasing the systematic model error, see Fig. 1.20. However, a
complex model is not necessary more accurate than a simple one—frequently the
opposite is true; a (simple) linear model will always propagate input uncertainties
linearly to the output, whilst a (complex) non-linear model could amplify such input
errors, potentially leading to vastly incorrect predictions.

The model’s input information will always be uncertain, especially when data
is required to be collected in a clinical environment. Uncertainties propagate, and
thus more input information increases the random model error, see Fig. 1.20. The
optimal model complexity is a trade-off between a model’s systematic and random
errors, and practically it is the quality of the input information that limits the level
of model complexity. Measures to improve the quality of the input data, such as

Fig. 1.20 Model error as a
function of the model’s
complexity. The systematic
model error decreases with
model complexity, whilst its
uncertainty and thus random
errors increase with model
complexity. The optimal
model complexity is a
compromise between both
errors
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12George E. P. Box, British statistician, 1919–2013.
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standardized data acquisition protocols, are often more successful, when compared
to an increased model complexity.

Up till now, vascular biomechanical modeling has not gained much clinical
acceptance, with very few vascular biomechanics models proposed in the literature
having been at any assistance to clinicians. Even following decades of vascular
biomechanical research a chasm between engineering and clinical approaches
remains. To maneuver biomechanical simulation technology towards their clin-
ical application, models require rigorous validation with respect to the IMA.
Validation studies must be well-designed to avoid confounding factors. Without
sound validation, the assistance a biomechanical model is able to provide is
limited. Bioengineering work has to shift from model development towards model
validation.

Many biomechanical models are overloaded with mechanical complexities and
fail to solve or explain a bioengineering problem. In bioengineering, a model can
only be a tool to explore a certain biological phenomenon13, and bioengineering
work should not be limited to the exercise of designing such models.

Given the complexity of the vascular system, black-box modeling approaches
have gained significant clinical interest. Whilst such approaches are straightforward
to implement, a statistical correlation must not be confused with causation, and
black-box models can only provide limited biological insights. White-box modeling
approaches account for the physics of the vascular system. They are often more
challenging but allow for a much deeper understanding of physiological and
pathological vascular mechanisms—the development of such models will cover the
forthcoming chapters.

13Rik Huiskes, Professor of Biomedical Engineering, 1944–2010.



2The Circulatory System

This chapter analyzes the macrocirculation, the microcirculation, and the lymphatic
system of the vascular apparatus. We discuss the structure of the vessel wall,
the main principles of hemodynamic control, and the mechanisms of vascular
exchange. We look at the circulation from a system’s perspective and introduce
mechanical properties, such as pressure, capacity, flow, and vascular bed resistance.
In addition, we explore the structure of the capillary wall toward the description
of transcapillary transport mechanisms in microcirculation. The final part of this
chapter introduces a number of lumped parameter models in the description of the
macro- and microcirculation. In addition to WindKessel (WK) models, two and
three-element models are derived toward the representation of vessel networks. Such
models aim at capturing the steady-state, steady-periodic, and transient description
of vasculature domains. With respect to microcirculation, hydrostatic and osmotic
effects are examined, and vascular exchange is described by linear and nonlinear
filtration models. Conclusions regarding the advantages and limitations of the
discussed lumped-parameter models and future perspectives summarize this chapter.

2.1 Introduction

The evolution of species led to a more and more organized circulatory system.
Simple diffusion of extracellular liquid evolved towards a highly organized circu-
latory system in mammals. This was made possible by the heart’s pumping ability
and regulated by peripheral resistances, which together generated the arterial blood

The original version of this chapter was revised: ESM has been added. The correction to this
chapter is available at https://doi.org/10.1007/978-3-030-70966-2_8
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pressure and flow. Hemodynamics is therefore a fundamental organizing principle
selected for diversification and adaptation of life.

The circulatory system is set up by two separate systems: the cardiovascular
system, which distributes blood, and the lymphatic system, which collects lymph
and returns it into the cardiovascular system, see Fig. 2.1. The cardiovascular system
supplies blood to the body’s organs and quickly adjusts to sudden changes in
demand for oxygen, nutrients, and other factors in response to the organism’s
activity. The lymphatic system is open and essentially recycles blood plasma after
it has been filtered from the interstitial fluid, the fluid situated between cells. Both
systems cooperate in immune response.

The physiology and pathophysiology of the cardiovascular system have been
extensively studied and excellent texts are available [394, 548]. The present chapter
aims at introducing the topic to bioengineers, and the reader should then be able to
understand and model key properties of the vascular system.

2.1.1 Vascular System

The vascular (or cardiovascular) system has three main functions:

• Supply. Distribution and exchange of oxygen, nutrients, and other substances
• Cleaning. Removal of waste products
• Immune response. Delivery of leucocytes to organs in response to pathogens,

anything that can produce disease

In vertebras the cardiovascular system is closed and formed by the systemic and
the pulmonary circuits, see Fig. 2.1. The systemic circulation transports oxygenated
blood away from the left ventricle through the aorta to the rest of the body and then
returns oxygen-depleted (deoxygenated) blood back to the right ventricle. Note that
oxygen-depleted blood still contains approximately 75% of oxygen of oxygenated
blood. The pulmonary circulation transports this blood through the lungs, where it
is oxygenated. It then returns into the left ventricle and enters again the systemic
circuit. Absolute values for oxygen consumption depend on body size, and young
healthy humans at rest consume somewhere between 0.15 and 0.4 l of oxygen per
minute, a demand that can increase by 10 to 15 folds during exercise [288].

The essential components of the cardiovascular system are the heart, blood, and
blood vessels. An average adult contains roughly 5.5 l of blood, accounting for
approximately 7% of its total body weight. At rest, approximately 4 l min−1 or
80% of cardiac output is directed to the brain, heart, kidneys, and liver. Despite
the cardiovascular system is closed, oxygen, nutrients, and macromolecules move
across the wall of small blood vessels and enter the interstitial fluid on their way to
the target cells. In return, carbon dioxide and wastes pass from the interstitial fluid
directly back into small blood vessels, or through the lymphatic system back into
the cardiovascular system. The transport of substances in and out of the vascular
system is collectively called exchange.
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Fig. 2.1 The circulatory system comprises the cardiovascular system (systemic and pulmonary
circuits) and the lymphatic system. Systemic circuit: The left ventricle pumps oxygenated blood
through the aorta into all organs but the lungs. In the microcirculation blood is deoxygenated,
and then the collected blood flows through the vena cava and returns into the right ventricle.
Pulmonary circuit: The right ventricle pumps oxygen-depleted blood through the pulmonary artery
into the lungs. In the microcirculation of the lungs, blood is oxygenated and returns through the
pulmonary vein into the left ventricle. Lymphatic system: A one-way low-resistance network of
drainage channels (lymphatic capillaries) returns lymph from the interstitial to lymph nodes and
then, through the lymphatic venous anastomosis, into the venous system

The vascular system can also be seen to function in two parts: a macrocirculation
and a microcirculation.

2.1.2 Key Concepts

Although the cardiovascular system shows large anatomical variability across
species, key concepts are preserved. Some of these concepts are discussed in the
following.
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2.1.2.1 Form Follows Function
Given normal conditions, the cardiovascular system continuously adapts towards
optimal system performance. The system is then at homeostasis and remains stable
in time. Homeostasis is an essential component of biological evolution [552], and
Cannon1 [66] describes this biological system property as the following:

The highly developed living being is an open system having many relations to its
surroundings. Changes in the surroundings excite reactions in this system, or affect it
directly, so that internal disturbances of the system are produced. Such disturbances are
normally kept within narrow limits, because automatic adjustments within the system are
brought into action and thereby wide oscillations are prevented and the internal conditions
are held fairly constant.

Mechanical stress also excites vascular tissue reactions and explains a number
of properties of the vascular system. The blood pressure in the systemic circuit is
much higher than in the pulmonary circuit, and the left ventricle is therefore more
muscular and has a thicker wall than the right ventricle. For the same reason the
wall of arteries is thicker than of veins. The blood pressure determines the tension
in the vessel wall, and the circumferential [91,363,598] and axial [215] tensile force
in the vessel wall correlate with its thickness. Aside from pressure-related adaption,
the diameter of blood vessels also adjusts to the blood flow in the vessel. The blood
flows over the endothelium and induces Wall Shear Stress (WSS), a quantity that is
kept constant by adjusting the vessel’s diameter [74, 236].

The cardiovascular system uses a wide range of actions towards reaching
homeostatic targets. We may group them into four classes of mechanisms:

• Passive response. Purely passive deformation under the action of forces
• Vasoreactivity. Vasoconstriction or vasodilation due to the action or relaxation of

contractile cells in the vessel wall
• Arteriogenesis. Increase or decrease of the vessel’s diameter and wall thickness

in response to the turnover of tissue constituents
• Angiogenesis. Formation of new vessels sprouting out from pre-existing vessels

These adaptation mechanisms are linked to characteristic time scales and allow
the system to adjust quickly (passive response) or very slowly (angiogenesis)
towards meeting system needs. Whilst the aforementioned mechanisms are local,
they have distinct system-level, and thus global implications. The homogenization
of WSS would be one such example. It requires the total cross-sectional area of
the vasculature to increase from the aortic cross-section of 3 to 5 cm2 to the total
cross-section of the capillary bed of 4500 to 6000 cm2. Such a configuration of the
vascular tree is energy-efficient and keeps the blood pressure relatively low in the
systemic circuit.

1Walter Bradford Cannon, American physiologist, 1871–1945.
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2.1.2.2 Blood Flows in Closed Loops
The vascular system is closed and local alterations have global implications—blood
flowing through one organ affects the flow through another organ. Likewise, the
pulmonary circulation influences the systemic circulation and vice versa, and the
venous flow influences the arterial flow and vice versa.

The vascular system may also be divided into sub-loops with dedicated organ-
supply function, which is most clearly observed in the kidney, the heart, and
the brain. The pressure and flow within such sub-loops are separately controlled,
a mechanism known as autoregulation, and allows for the (partly) independent
operation of organs. The formation of sub-loops also explains the anatomical
organization of the vascular tree with arteries and (deep) veins often running in
parallel, and in close proximity to each other.

2.1.2.3 Vascular Network Is “Space Filling”
Only a very few tissues in mammals, such as the ligaments, the valve leaflets, and the
cornea, are avascular and do not contain blood vessels. They are entirely perfused
by diffusion. All other tissues contain vessels, with the vascular network being
“space filling”. Given limited resolutions, most of the vasculature remains invisible
to image modalities, such as Computed Tomography (CT), Magnetic Resonance
(MR), and ultrasound.

2.1.3 Cells in the Vascular System

The vascular system performs many very different tasks, such as transport and
exchange, immune response, regulation of pressure and flow, Extra Cellular Matrix
(ECM) maintenance, and the control of blood clotting and wound healing. These
functions are carried out by cells together with their delicate interactions with ECM
and blood plasma. Cells of the same type often perform multiple tasks to achieve
proper system function.

2.1.3.1 Endothelium Cell
Endothelium Cells (ECs) are joined together to form a single-cell layer (monolayer)
called endothelium that provides a clear separation between the blood and the vessel
wall. ECs are flat and 0.2 to 2µm thick. Given exposure to laminar blood flow,
they align with the flow within 12 to 14 days [162] and adapt towards an elongated
shape. The length of ECs ranges then from 1 to 20µm. In humans, ECs make up
approximately 1.0 kg and cover a surface of approximately 7000 m2. ECs in arteries,
capillaries, veins, and lymphatics are exposed to markedly different hemodynamic
environments and must perform distant functions.

ECs sense WSS, in response to which they secrete vasoactive agents that control
the tonus of adjacent contractile vascular cells, such as SMCs and pericytes.
ECs also play a crucial role in response to inflammation. They express adhesion
molecules towards capturing circulating leukocytes and promoting their transport
into the tissue. ECs are also involved in immune response and tissue remodeling.
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In their vicinity, ECs prevent blood from clotting by secreting vasoactive agents. In
capillaries, ECs form a semipermeable membrane to allow oxygen, nutrients, and
other factors to move into peripheral tissues whilst retaining blood cells and plasma
in the circulation.

2.1.3.2 SmoothMuscle Cell
Smooth Muscle Cells (SMCs) can present either at the contractile phenotype or
the synthetic phenotype. At the contractile phenotype, SMC serves as a contractile
cell of arteries, arteriole, and veins. They appear at a spindle-shaped configuration,
measuring approximately 2 to 5µm in diameter and 100 to 500µm in length.
At the synthetic phenotype, the SMC synthesizes ECM proteins and has a more
cobblestone-type shape. The cell appears then less elongated than at the contractile
phenotype. In the vessel wall, SMCs are mainly aligned in circumferential vessel
direction and communicate with each other though tight junctions and gap junctions.

2.1.3.3 Pericyte
Pericytes are the contractile cells of capillaries and venules. They regulate capillary
blood flow and, together with ECs, the permeability of the vessel wall. Communi-
cation between pericytes and ECs is facilitated by integrins. Pericytes appear at an
elongated shape of approximately 5 to 10µm in length.

2.1.3.4 FibroBlast
FibroBlast (FB) synthesizes ECM proteins, out of which collagen is the most impor-
tant one. FBs are 10 to 15µm large and have a branched cytoplasm surrounding an
elliptical nucleus. Active FBs have abundant rough endoplasmic reticulum, whereas
inactive FBs, also denoted fibrocyte, appear more spindle-shaped. The active FB is
attached to collagen fibers and puts them under tension—it pulls on collagen fibers.
Given crowded FBs, they are often locally aligned in parallel clusters.

2.1.3.5 Erythrocyte
Erythrocytes (or red blood cells) are the most common type of blood cells,
constituting almost half of the volume of blood. Their principal aim is to deliver
oxygen. Erythrocytes have no nucleus, and they are highly deformable bi-concave-
shaped discs, measuring approximately 6 to 8µm in diameter and 2 to 4µm in
height.

2.1.3.6 Leukocyte
Leukocytes (or white blood cells) are cells of the immune system that are involved
in protecting the body against infectious disease and foreign invaders. Leukocytes
present in very different types, such as plasma cells, lymphocytes, and macrophages.

Plasma cells secrete large volumes of antibodies. They produce antibody
molecules that bind to foreign substance (target antigen) and initiate its
neutralization or destruction. They are 12 to 15µm large, ovoid-shaped, and
transported in blood plasma as well as in lymph. Lymphocytes are the main type
of cell found in lymph and include natural killer cells, T cells, and B cells. They
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are approximately 6 to 30µm large. Macrophages engulf and digest pathogen,
participate in the initiation and resolution of inflammation, and in the maintenance
of tissues. They are approximately 20µm in diameter and show very different
shapes, adapted to the functions to be carried out.

2.1.3.7 Platelets
Platelets (or thrombocytes) are tiny blood cells, which together with coagulation fac-
tors, stop bleeding by forming a blood clot. They have no nucleus, and non-activated
platelets are approximately 2µm large and of compact shape. On activation,
platelets turn into octopus-like shapes, with multiple arms and legs. Minutes after
activation, platelets start aggregating with each other and/or depositing on surfaces
that are not covered by ECs.

2.1.3.8 Dendritic Cell
Dendritic cells process antigen material and present it on the cell surface to the
T cells of the immune system. Dendritic cells are 10 to 15µm large and have a very
large surface-to-volume ratio.

2.1.4 Macrocirculation

The macrocirculation transports blood through the cardiovascular system. The
systemic circuit carries it through all organs, but the lungs, and the pulmonary
circuit through the lungs.

The first part of the systemic circulation is the aorta, a massive and thick-walled
artery that origins at the aortic valve. It then arches and gives branches supplying the
upper part of the body. After passing through the aortic opening of the diaphragm,
it enters the abdomen and supplies branches to abdomen, pelvis, perineum, and the
lower limbs. The renal circulation by itself is supplied with approximately 20% of
the cardiac output.

Along the vascular tree, the arterial lumen continuously decreases until blood
flows though arterioles and passes capillaries, where the exchange of oxygen,
nutrients, and other substances takes place. Capillaries are often organized in a
capillary bed, an interweaving network of capillaries supplying tissues and organs.
The blood is then collected by venules, before veins return it to the heart, see
Fig. 2.1. The properties of the different types of blood vessels are adapted to their
function:

• An artery carries blood away from the heart. The luminal diameter ranges up to
centimeters and the thick wall is designed to cope with high blood pressure.

• An arteriole connects arteries to capillaries. The lumen is approximately 10 to
100µm in diameter, and vasoreactivity (vasoconstriction or vasodilation) allows
it to control the blood flow into the capillaries.

• A capillary has a luminal diameter of approximately 5 to 8µm, just wide enough
to allow erythrocytes passing/squeezing through. The wall is permeable and
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allows the capillary to supply tissues with factors, such as oxygen and nutrients,
and to remove waste products in return.

• A venule connects capillaries to veins and has a luminal diameter of approxi-
mately 10 to 200µm. The wall is thinner than of arterioles and equipped with a
highly permeable endothelium layer.

• A vein carries blood to the heart. The wall shows a thin media and a thick
adventitia. Veins have a diameter that ranges up to centimeters and they are often
larger than arteries.

The blood flow velocity changes by four orders of magnitudes along the arterial
tree. In large arteries the blood shows phases of forward and backward flow at
velocities of tens of centimeters per second, whilst the blood flow in capillaries
is unidirectional and of tens of micrometers per second. In veins the blood flow
is generally more uniform than in arteries, a condition partly supported by valves.
Given limb veins, valves counteract gravitation and prevent from back flow. Blood
flow velocities in the systemic and pulmonary circuits are similar.

In addition to the transport function of the macrocirculation, the elasticity of the
large blood vessel is of fundamental importance to the proper physiological function
of the cardiovascular system. Especially the aorta contributes almost the entire
volume compliance to the cardiovascular system. Veins are much more distensible
than arteries, which allows them to serve as venous compartment. Approximately
60% of the blood is stored in the veins, a compartment controlled by the autonomous
nervous system.

2.1.4.1 Blood Vessel Structure and Function
Blood vessels are distensible, a key feature to lower the pulse pressure and to support
continuous flow into the distal tissue. The distensibility is a consequence of the
wall’s elasticity. It is determined by the ECM through the delicate interaction of
structures, such as elastin, collagen, ProteoGlycans (PGs), fibronectin, and fibrillin.
Whilst the ECM determines the vessel wall’s structural integrity, cells maintain
its vasoreactivity, metabolism, and immune response. Vascular cells are also able
to alter the elasticity of the vessel wall. Contractile cells can augment vessel wall
properties within seconds, whilst the effect from newly synthesized ECM appears
at a delay of weeks.

The wall of arteries, arterioles, veins, and venules is built up by three distinct
vessel wall layers: intima, media, and adventitia, see Fig. 2.2. In contrast to larger
vessels, the glycocalyx, the endothelium, and a basal membrane form the single-
layered wall of capillaries. The structure of veins and arteries is very similar. Given
the low pressure in the venous system, veins have a thinner wall than arteries. They
may also be equipped with passive valves to prevent the back flow of blood.

2.1.4.2 The Intima and the Endothelium
The interaction of the glycocalyx, the endothelium (a monolayer of EC), and
a subendothelial layer forms the intima. The glycocalyx binds different anti-
inflammatory and anti-coagulant factors, and its disruption results in thrombin
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Adventitia

Media

Intima

Fig. 2.2 The layered structure of large blood vessels. The adventitia is a collagen-rich fibrous
layer that shields the inner layers from excessive mechanical forces and anchors the vessel
to its surrounding. The media is a Smooth Muscle Cell (SMC)-rich layer that determines the
physiological properties of large elastic vessels. The media is designed to withstand mechanical
load acting along the circumference. The intima is dominated by a single layer of Endothelial Cells
(ECs) that forms a lining between blood and tissue. The intima has important barrier functions

generation and platelet adhesion. The glycocalyx contributes also to EC mechan-
otransduction, and thus to the transduction of biomechanical forces into the
biomolecular response of EC. Loss of glycocalyx apparently contributes to impaired
sensing and transduction of WSS.

The endothelium provides an anti-thrombogenic and low-resistance lining
between the blood and the vessel wall tissue. It responds to WSS and produces a host
of chemical substances, such as Nitric Oxide (NO), endothelin, prostacyclin (PGI2),
and angiotensinogen, all are designed to maintain vascular homeostasis [394].
They modify the ability of platelets to adhere to the vascular wall and to aggregate
with the formation of a blood clot. The endothelium is also a selective barrier
for substances such as oxygen, nutrients, leukocytes, lipoproteins and influences
factors, such as vessel wall permeability, tonus of contractile cells, inflammation,
blood clotting, and tissue remodeling.

2.1.4.3 TheMedia
The media contains 30 to 60% vascular SMCs that are embedded in the ECM.
The media’s ECM itself contains 5 to 25% elastin, 15 to 40% collagen, and 15
to 25% other connective tissue. The media is formed by Medial Lamellar Units
(MLU), a structure that is clearly visible in elastic arteries but disappears towards
muscular arteries. Elastic arteries are rich on elastin and found at the beginning of
the vascular tree, whilst muscular arteries contain a large amount of vascular SMC
and appear downwards the vascular tree. The media is the dominating layer in large
elastic arteries and of utmost physiological relevance to the proper function of the
cardiovascular system. The media is designed to cope with stress primarily along its
circumferential direction.
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SMC in the media are specialized in tonic contraction (contractile phenotype)
but also in the production of ECM constituents (synthetic phenotype). SMC tonus
is controlled by the autonomous nervous system and regulates blood flow through
vasoreactivity in response to the body’s activity. The cells in the inner media (mainly
SMCs) are entirely fed through transmural flow, fluid flow that establishes from the
pressure differences in the lumen and the interstitial space. SMCs also participate
in inflammatory reactions by modulating vascular tone, but they have a limited
capacity in direct immune response.

2.1.4.4 The Adventitia
The adventitia is an ECM-rich layer with collagen fibers covering approximately
60 to 80% of its volume. Another 10 to 25% is occupied by other connective tissue
components. In addition to numerous macrophages providing immune response,
FB is the primary cell type found in the adventitia. It maintains the ECM and
covers approximately 10% of the adventitia’s volume. Tiny blood vessels, the vasa
vasorum, perfuse the adventitia together with the outer media and deliver cells,
such as leucocytes for immune response. The adventitia anchors blood vessels to
surrounding tissues, and its dense mesh of collagen protects the biologically vital
medial and intimal layers from overextension. The adventitia is penetrated by nerves
that control the SMCs in the media, and it is often thinner in veins than arteries.

2.1.4.5 Wall Shear Stress (WSS)
NO has an important signaling function in the vessel wall. It is produced from L-
arginine by activity of endothelial nitric oxide synthase (eNOS), an enzyme that is
continually released from healthy EC. After the diffusion of NO into the media,
it relaxes SMCs and maintains vascular patency and distensibility. Stimuli for the
release of NO from EC include WSS, exerted directly on the EC membrane or on the
endothelial layer [398], see Fig. 2.3. The expression of NO is also influenced by the
blood flow conditions, and thus the temporal occurrence of the WSS, see Fig. 2.3b.
Periodic flow stimulates greatly NO expression, whilst turbulent flow shows similar
expression to static conditions.

Aside from regulating the arterial diameter through the production of vasoactive
mediators, WSS is also an important determinant of endothelial gene expres-
sion [394]. WSS regulates factors, such as transcription factors, growth factors,
adhesion molecules, and enzymes. Endothelium function is optimal during youth
and the absence of cardiovascular disease. With age endothelial function progres-
sively deteriorates, which is then associated with the reduction of the bio-availability
of NO and anatomical changes, such as thickening of the endothelia layer. The
most obvious disfunction of the endothelium is seen with age-related diseases,
such as atherosclerosis [394]. Endothelium function is defective, not only in
patients with developed atherosclerosis, but already in persons with risk factors for
atherosclerosis [557].
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Fig. 2.3 Expression of Nitric
Oxide (NO) in relation to the
Wall Shear Stress (WSS) that
is applied to the membrane of
Endothelial Cells (ECs) (a) or
at the endothelial layer (b).
NO expression is illustrated
through the formation of [3H]
L-citrulline, a by-product of
NO expression

2.1.5 Lymphatic System

The lymphatic system constitutes a one-way low-resistance network of drainage
channels that operates in conjunction with the cardiovascular system and returns
lymph from the interstitial to the venous system, see Fig. 2.1. It plays a major
role in helping the immune system to defend the body against diseases and serves
as a “highway” for fast and efficient delivery of immune cells, as well as free
antigens [63]. In a healthy human, lymph flow of approximately eight liters per
day is expected, from which approximately half can be absorbed by lymph node
microvessels, leaving four liters per day post-nodal lymph flow left.

The lymphatic system is composed of lymphatic vessels and lymphoid organs,
such as the bone marrow, thymus, lymph nodes, spleen, Peyer’s2 patches, tonsils,
and the appendix. Lymph flow is unidirectional and establishes through the rhythmic
contraction of lymphatic contractile cells. Skeleton muscle contractions and arterial
pulsations support the synchronized opening and closing of intra-luminal lymphatic
valves—the lymph propulsion. In addition to nerves and chemicals, mechanical
factors, such as the streamwise pressure gradient, transmural pressure, preload and
afterload influence lymph propulsion.

Lymphatic vessels are absorptive vessels and found in almost all organs—
recently they have also been identified in the brain [3]. Lymph nodes are located
at the intersections of collecting lymphatics. Lymph nodes filter the interstitial
flow and break down bacteria, viruses, and waste. Under normal conditions,
interstitial fluid pressure is below atmospheric pressure whilst fluid in lymphatic

2Johann Conrad Peyer, Swiss anatomist, 1653–1712.
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Fig. 2.4 Functioning of primary valves of lymphatics capillaries. Vessel configurations at low (a)
and high (b) interstitial pressures. Arrows indicate fluid flow

capillaries is slightly above atmospheric pressure. Intra-lymphatic pressure slowly
increases along the drainage route, and thus towards the larger collecting vessels and
ultimately the thoracic duct or right lymphatic trunk, where lymph is returned to the
blood circulation. Lymph propulsion establishes flow therefore against a positive
streamwise pressure gradient.

The biomechanics of the lymphatic system are not yet very well explored, and
further details, including its modeling, are reported elsewhere [285, 355, 454].

2.1.5.1 Lymphatic Vessels
Lymphatics capillaries are approximately 10 to 60µm in diameter. A single layer
of partially overlapping lymphatic EC forms their approximately 50 to 100 nm
thick wall, see Fig. 2.4. Whilst it has neither a basal lamina nor contractile cells,
it is equipped with active valves, so-called primary valves, to collect interstitial
fluid. The lymphatic EC are oak-leaf-shaped and joined together by “button-like”
junctions to form such primary valves. The lymphatic ECs are also anchored to the
surrounding ECM through elastic fibers that function as mechanosensors. The fibers
detect increased tissue pressure and open the primary valves to allow interstitial fluid
to enter, see Fig. 2.4. Once the surrounding tissue swells, the primary valves open
and fluid, macromolecules, and immune cells enter the lymphatic capillary.

The pre-collecting lymphatics connect the capillaries to the collecting lymphat-
ics. Collecting lymphatics have diameters of 1 to 2 mm, contain intra-luminal valves,
and their ECs are highly interconnected. Similar to blood vessels, the wall of
collecting lymphatics is formed by three distinct wall layers: intima, media, and
adventitia.

As with blood vessels, lymphatics adjust in response to mechanical and bio-
chemical stimuli [189]. NO [190], histamine [396], and endothelin [484] are known
to influence lymphatic contractility. Lymph flow is complex and corresponds to
conditions of no flow, slow flow, and retrograde flow. The endothelium is therefore
exposed to a wide range of WSS, and endothelial-derived NO is expected to have
an important role in the orchestrated propulsion of the lymphatic system [127,128].
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2.1.6 Microcirculation

Organs are perfused by feed arteries that branch off a major conduit artery. Four
to six branch orders are then counted before the terminal arterioles give rise to
capillaries, where the exchange with the interstitial tissue appears.

Arterioles, capillaries, and venules regulate vascular pressure and divert blood
flow to meet local metabolic needs. Their diameters are controlled by the tonus
of pericytes, which in turn determine the pressure drop along these vessels. It
is the arterioles that play a major role in the distribution of blood towards the
most metabolically stressed areas. In contracting skeletal muscles, for example,
marked dilation is seen in the smallest arterioles [562], whilst approximately 80%
of capillaries are perfused at rest.

Delicate alterations in the capillary “forces” and vessel properties determine fluid
exchange characteristics and allow for moment-to-moment regulation of transcap-
illary fluid flow, a mechanism knows as filtration. Whilst diffusion determines the
transport of the small molecules, filtration controls the advection of large solutes.
The permeability of capillaries to water and solutes is often regarded constant, but
this property is known to change at least in response to volume regulatory hormones
and WSS that is sensed by ECs [307, 347].

Aside from exchange, the microvasculature restores blood pressure towards
normal levels and serves as an autotransfusion compartment—at vascular volume
overload fluid it automatically removed from the bloodstream and vice versa.

2.1.6.1 Exchange
Any factor in the blood that will be delivered from the capillary into the tissue
has to pass the vascular wall, formed by the glycocalyx, endothelium, and basal
membrane. This structure is adapted to support molecular exchange. Transport of
liquid and solutes between the intravascular space and the interstitium, and thus
across the semipermeable vascular endothelial barrier, is accomplished by:

• Diffusion. Transport of a substance down its concentration gradient. It is the
primary mechanism for oxygen and lipids, and partial mechanism for proteins.

• Advection. Transport of a substance together with bulk motion of water and
determined by gradients of hydrostatic and osmotic pressures. It is the primary
mechanism for water and ions, and the partial transport mechanism for proteins.

• Transcytosis. Macromolecules, such as proteins, are captured in vesicles on one
side of the EC, drawn across the cell, and ejected on the other side.

Under normal conditions, the balance of “forces” acting across the walls of
exchange vessels favors the net flux of fluid from the bloodstream to the interstitium,
a process commonly referred to as capillary filtration. Based on Starling’s3 equation
(see Sect. 2.4.2), it has been estimated that in a healthy human, approximately

3Ernest Henry Starling, British physiologist, 1866–1927.
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Fig. 2.5 Historical understanding of microcirculatory fluid fluxes between vascular (red), intersti-
tial (gray), and lymphatic (white) spaces. More recent data suggests much less reabsorption back
into the vascular space in some tissues, and much more fluid is then transferred into the lymphatic
system

90% of the fluid that moves from the vascular capillaries into the interstitium will
be reabsorbed back into the vascular system, whereas 10% will move into the
lymphatic system, see Fig. 2.5. This quantification has been proposed by Starling
in 1896 [524] and provided useful insights in vascular exchange. However, it also
failed to explain some experimental observations [338], and additional experimental
data [371] indicated much less reabsorbtion back into the vascular capillary. We may
therefore conclude that the drainage of capillary filtrate by the lymphatic system is
another dominating factor in interstitial volume homeostasis [338].

2.1.6.2 Colloid Osmotic Pressure and the Role of Albumin
Osmosis is the spontaneous flow of a solvent across a semipermeable membrane
towards a more concentrated solution, see Appendix E.2. Osmotic pressure is the
pressure that must be applied to the side of the more concentrated solution to
stop such a flow. In the vasculature, the solvent is water, and solutes are typically
macromolecules. The osmotic pressure usually tends to pull water into the vascular
system, and as such opposes the hydrostatic pressure pushing water through the
capillary wall out of the vascular system.

The Colloid Osmotic Pressure (COP), or oncotic pressure, is the osmotic
pressure exerted by proteins and largely determined by the concentration of albumin.
The total COP of an average capillary is approximately 28 mmHg with albumin
contributing approximately 22 mmHg. Albumin is produced in the liver. It is the
most abundant blood plasma protein and constitutes approximately 50% of human
plasma proteins. It is essential for maintaining COP, and as such responsible for
proper distribution of body fluids between blood vessels and body tissues. With
approximately 10 nm in diameter, albumin is smaller than most other proteins,
which allows it to pass the capillary wall relatively easy. Therefore, approximately
50 to 60% of albumin content resides in the interstitium at an average concentration
of approximately 15 g l−1. In adipose tissue concentrations of 4.3 to 10.7 g l−1,
and in skeletal muscle 9.7 to 15.7 g l−1 have been reported [138]. In addition,
glycosaminoglycans (GAGs) and collagen exclude albumin from up to 50% of
interstitial space, such that local albumin concentration approaches 20 to 30 g l−1
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in the interstitium. This is approximately half of 35 to 50 g l−1, the albumin
concentration seen in the capillary lumen [40].

Besides controlling COP, albumin transports a wide variety of substances,
such as fatty acids, calcium, phospholipids, bilirubin, enzymes, hormones, drugs,
metabolites, and ions. Like other proteins in the interstitial spaces, albumin returns
to the circulation via lymph.

2.1.6.3 Functional Adaptation of Capillaries
Regardless of capillaries being the smallest vessels, they have the highest cumulative
surface area available for exchange. Exchange of oxygen occurs primarily from
erythrocyte “packets” as they pass through the vessel, whilst CO, fluids, and
molecules up to the size of the plasma proteins are exchanged directly between
plasma and the interstitial space. Given the different exchange functions, capillaries
may be classified as continuous, fenestrated, and discontinuous, see Fig. 2.6.

Continuous capillaries have a low hydraulic conductivity and feature strong
barriers between blood and tissue. The tightest continuous capillaries form barriers
known as the Blood–Brain Barrier (BBB), the Blood–Aqueous Barrier (BAB), the
Blood–Nerve Barrier (BNB), and the blood–testes barrier. Such barriers involves
the formation of specialized adherens and tight junctional structures between
adjacent ECs. Given the BBB, it features transcytosis by specialized transporters
to facilitate one-way and selective movement of the glucose and other small solutes.
Pathological changes of the BBB are associated with stroke, Central Nervous
System (CNS) inflammation, and neuropathologies including Alzheimer’s disease,
Parkinson’s disease, epilepsy, multiple sclerosis, and brain tumors.

Fenestrated capillaries are equipped with fenestrae of the size of 20 to 100 nm
that penetrate the endothelium and conduct fluid with considerable ease. Fenestrated
capillaries are found in the kidney, area postrema, carotid body, endocrine and

Fig. 2.6 Types of capillaries.
(a) Continuous capillaries
have a continuous
endothelium and a continuous
basal membrane. Endothelial
cells (ECs) are connected via
tight junctions. (b)
Fenestrated capillaries
display endothelium with
fenestrae on top of a
continuous basal membrane.
(c) Discontinuous capillaries
are larger than the other
capillaries and show large
fenestrae and a fragmented
basal membrane
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exocrine pancreas, thyroid, adrenal cortex, pituitary, choroid plexus, small intestinal
villi, joint capsules, and epididymal adipose tissue.

Discontinuous capillaries show wide spacing between ECs, ranging up to
micrometers, on top of a fenestrated basal membrane. Discontinuous capillaries
have a very high hydraulic conductivity and are found in organs involved in the
sequestration of formed vascular cells, such as spleen, bone marrow, or in the
synthesis and degradation of fats and proteins, such as the liver.

2.1.6.4 The Glycocalyx
Fig. 2.7 illustrates the glycocalyx, a layer that plays a central role as physical barrier
at the blood–endothelial interface. It is a negatively charged polysaccharide-rich
surface layer that covers the luminal side of the endothelium. The glycocalyx is
approximately one micrometer thick; in electron microscopy its thickness appears
50 to 300 nm and in confocal microscopy 2.5 to 4.5µm. The glycocalyx layer is the
first barrier that is permeable to water and solutes, such as electrolytes and small
molecules. However, it prevents erythrocytes from contact with the EC surface
and retains plasma proteins and inflammatory leukocytes in the vascular space,
before any trans- or paracellular transfers appear. In continuous capillaries, the
filtration of species is tightly controlled by the glycocalyx layer, and its interpolymer
spaces function as a system of small pores with radii of approximately 5 nm. Given
fenestrated and discontinuous capillaries, fenestrae provide an additional pathway
for solvent and solutes, see Fig. 2.6.

2.1.6.5 Controlling Blood Pressure and the Role of Resistance Vessels
The small diameters of arterioles, capillaries, and venules poses considerable resis-
tance to blood flow—they are therefore also called resistance vessels. Resistance
vessels are highly vasoreactive, and the tonus of the pericytes in their walls controls
their diameters, a mechanism to maintain an almost constant system pressure.
During heavy exercise cardiac output is increasing four- to eightfold, whilst the
Mean Arterial Pressure (MAP) rises by about 15 to 20 mmHg, and thus by less than
20% [366].

The resistance vessels are able to divert bloodstreams, an observation already
reported in the late 1700s by Hunter:4 “blood goes to where it is needed”. Given a
local need of blood supply, the diameter of the local resistance vessels is controlled
in response to the metabolic tension of the surrounding tissue. At heavy exercise up

Fig. 2.7 Schematic
illustration of the glycocalyx
layer, a barrier at the
blood-endothelial interface

4William Hunter, Scottish anatomist and physician, 1718–1783.
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to two liters of blood flow can be redirected to the skeletal muscles [288]. Given the
onset of muscle contraction, vasodilation in the muscle microcirculation is delayed
by only 5 to 20 s [359].

Whilst MAP increases only slightly during exercise, pulse pressure can increase
dramatically. The peripheral vasodilation reduces the diastolic pressure, and the
larger blood volume ejected by the left ventricle increases the systolic pres-
sure [477], both of which contributes to the pulse pressure increase.

2.1.7 Hemodynamic Regulation

Hemodynamic regulation aims at maintaining the local equilibrium between deliv-
ery and consumption of blood-borne substances. Blood flow distribution through
the vascular system can either be controlled by the CNS, or locally through neural
impulses and hormonal cues. The endothelium, a semipermeable barrier sitting at
the strategic position between blood and wall, plays a central role and responds to
mechanical as well as chemical signals.

The tonus of contractile cells allows for the control of the vessel’s diameter
and thus the local delivery of blood to the tissue. At the physiological tonus, the
vessel has its physiological diameter, which may be increased or decreased through
the expression of vasodilators and vasoconstrictors, respectively. Whilst NO is a
dominant vasodilator in large arteries, endothelium-driven hyperpolarization fac-
tors (EDHF), such as hydrogen peroxide, epoxyeicosatrienoic acids, prostacyclin,
prostaglandin, and others contribute to the dilation of resistance vessels. The
concentration of vasoconstrictors, such as catecholamines, Atrial Natriuretic Peptide
(ANP), vasopressin, bradykinin, also affects the status of contractile vascular cells.
Many of these factors may also influence EC’s release of NO, and the net effect
from vasodilators and vasoconstrictors determines the final vessel diameter.

2.1.7.1 AutoregulationMechanisms
Hemodynamic regulation establishes at different levels, and individual vascular
regions are regulated autonomously from other parts of the vascular system.

Given myogenic regulation, the vessel dilates or constricts in response to chang-
ing intravascular pressure [282, 498]. An elevated pressure causes paradoxically
vasoconstriction and augments the arterial resistance. This mechanism enables
matching blood supply to tissue demand over the pressure range of approximately
8 to 20 kPa. Myogenic regulation is mediated by contractile vascular cells and
independent from ECs. A pressure increase in most resistance arteries involves
stretch-induced activation of nonselective cation channels. This activation causes
cell membrane depolarization, calcium influx, and cell contraction. The Bayliss5

effect is a special example of myogenic regulation of arterioles, see Fig. 2.8.

5Sir William Maddock Bayliss, English physiologist, 1860–1924.
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Fig. 2.8 The Bayliss effect is a particular myogenic regulation mechanism of arterioles. (a) A
sudden increase of the intravascular pressure causes vasoconstriction and thus increases the vessel’s
resistance towards maintaining the flow. (b) A sudden pressure drop causes vasodilatation and a
decreased resistance towards maintaining the flow

Blood flow-dependent regulation uses the ability of the vessel to sense WSS.
The endothelium responds to WSS with the release of NO that in turn relaxes the
contractile cells in the vessel wall.

The tonus of contractile vascular cells can also be controlled by other factors,
such as upstream and downstream transmission of messengers along the vessel
walls as well as the level of local metabolism. Regulatory messengers, manufactured
and released from a site of metabolic activity, influence the activation of contractile
vascular cells, especially in the wall of arterioles [548].

2.1.7.2 Short-Term Nervous Control of the Blood Pressure
Body motion and activity require the independent nervous control of the blood
pressure for the different parts of the vascular system. Given an upright standing
position for example, a gravitational shift towards the lower limbs needs to
be compensated within seconds to avoid postural hypotension, also known as
orthostatic hypotension. The vascular system is therefore equipped with pressure
sensors that continuously record the hemodynamic regime, transduce signals,
and feed the information to corresponding afferent neurons. Such receptors are
called baroreceptors in the high-pressure circulation, and voloreceptors in the low-
pressure circulation. Prominent baroreceptors are found in the carotid sinus and the
aortic arch, whilst voloreceptors are in the pulmonary artery, the atria, the ventricles,
and the vena cavae.
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2.1.7.3 Long-Term Control of the Blood Pressure
The long-term control of blood pressure involves the indirect monitoring of blood
volume. Hormonal-based control restores the blood volume and subsequently the
blood pressure. The blood volume is controlled by fluid and electrolytes, such as
sodium and potassium, excreted from the kidney. Other organs involved in blood
volume control are the hypothalamus, sympathetic nerves, adrenal gland, and others.

2.2 Mechanical System Properties

The circulatory system relies on the pumping heart and the resistance in the vascular
bed. These two effects together generated the arterial blood pressure p [Pa] and flow
q [m3 s−1]—the most fundamental mechanical properties of the circulatory system.
Pressure and flow appear as waves and propagate along the vascular tree.

The heartbeat forces the vascular system to oscillate and it is normally in
near-periodic steady-state oscillation. Given the heart suddenly stops beating, the
vascular system stops oscillating and pressure and flow decrease smoothly to zero.
This is characteristic for an over-damped system.

Although arteries have complex geometries, in this section we consider them as
long, thin-walled tubes. This 1D approximation also ignores the variation of the
velocity across the cross-section, necessarily abandoning the no-slip condition at
the wall.

2.2.1 Waves in the Vascular System

Whilst the definition of a wave is commonly linked to the specific physical phe-
nomena it represents, waves may generally be seen as disturbances that propagate
in space and time. A wave has a waveform, or profile that changes along with its
propagation. The profile may be decomposed into sub-waves. Such decomposition
is not unique, and historically, the most common way to represent cardiovascular
waveforms is the Fourier6 decomposition, see Appendix A.3. It treats the waveform
as the superposition of sinusoidal waves at the fundamental frequency and all of its
harmonics. Since Fourier analysis is carried out in the frequency domain, it can
be difficult to relate features of the Fourier representation to specific times in the
cardiac cycle.

The wave speed c [m s−1] in the cardiovascular system is determined by the area
distensibility D = (dA/dp)/A [Pa−1] of the vessel, and given by the relation

c = 1√
ρD

, (2.1)

6Jean-Baptiste Joseph Fourier, French mathematician and physicist, 1768–1830.
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where ρ [kg m−3] denotes the density of blood, and A [m2] is the cross-section of
the vessel. The derivation of (2.1) is given in Sect. 6.6.3. The waves are advected
by the blood velocity v, so that the observed speed of propagation is v + c in the
downstream direction and v − c in the upstream direction. Given normal arteries,
the blood velocity v is always lower than the wave speed c.

Example 2.1 (Upstream Pressure Wave Propagation). Blood of density ρ =
1060.0 kg m−3 is under the pressure p and flows at the velocity v in an artery
of the cross-section A, see Fig. 2.9. A pressure wave propagates at the speed
c − v in upstream direction and changes the velocity and pressure by �v and �p,
respectively.

Fig. 2.9 Upstream
propagating of a pressure
wave in a blood vessel

Control 
volume

(a) Express the mass flow rate that passes through the control volume as shown in
Fig. 2.9. The wave speed c in the vessel may be regarded much larger than the
blood flow velocity v.

(b) Use Newton’s second law of mechanics and apply it to the control volume
towards the derivation of the relation between the wave speed c, the increments
�v, �p and the blood density ρ, a relation called water hammer equation.

(c) Consider a vessel of distensibility D = 0.0301 kPa−1 and compute the wave
speed c.

(d) Compute the change of velocity �v that is caused by a pressure wave of �p =
0.23 kPa. �

Wave speed in the aorta has traditionally been determined by measuring the time
it takes for the pulse wave to travel between two measurement sites—usually from
the carotid to the femoral artery [394]. Although the peak of the pressure or the
velocity is probably the easiest to measure, it is more accurate to measure the time
of the foot of the wave. This measure alters less as the waveform changes with its
propagation, and such methods are generally known as foot-to-foot measurements.
The pressure–velocity loop provides an alternative method to measure wave speed,
see Sect. 2.2.5.

The blood vessel’s area distensibility D is not constant, but a function of the
blood pressure, a factor that influences the wave speed (2.1). Let us consider
the aorta with the aortic valve opening and closing at diastolic and late-systolic
pressures, respectively. The opening and closing of the valve trigger waves that then
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travel at different speeds along the aorta, information that may be used to identify
the non-linear stress–strain property of the vessel wall properties [301].

2.2.2 Vascular Pressure

Given a position x along the vascular path, the integration over the pressure
waveform p(x, t) [Pa] defines the mean pressure

pmean(x) = 1

T

∫ T

0
p(x, t)dt ≈ 1

3
psyst(x)+ 2

3
pdiast(x) , (2.3)

where T [s] is the duration of a cardiac cycle, and psyst and pdiast denote systolic and
diastolic blood pressures, respectively. For practical reasons one would integrate not
only over one, but a number of cardiac cycles.

The mean pressure pmean continuously decreases from the aorta towards the vena
cava. However, the pressure gradient is not continuous all along the vascular path
but appears almost exclusively in arterioles, capillaries, and venules—the vessels of
the smallest diameters, see Fig. 2.10. The vascular bed houses these vessels and
therefore determines the resistance of the vascular system. This key role of the
vascular bed has already been noticed by Hales.7

Aside from the mean pressure, the pulse pressure pp = psyst − pdiast is another
important hemodynamic property of the vascular system. Hales seems again to be
the first to measure blood pressure and notice that pressure in the arterial system is
not constant, but varies over the heartbeat. The pressure wave pulse, or waveform

Fig. 2.10 Change of
pressure along the vascular
path. Mean pressure pmean
(thick line) falls quickly at the
level of the smallest vessels.
The pulse pressure pp
(hatched area) increases
towards distal arteries as a
consequence of wave
reflection, before it dissipates
at the level of the smallest
vessels. The capillaries and
the entire venous system are
free from pulsatility. The
exchange of oxygen,
nutrients, and other
substances appears at the
level of capillaries (gray area)
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7Stephen Hales, English clergyman, 1677–1761.
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is not only determined by the heartbeat, but it is also a direct manifestation of
vascular properties. It is almost exclusively the elastic properties of the thoracic
aorta together with the heartbeat that determines the pressure pulse.

The pressure wave travels over the arterial tree at the wave speed c, much faster
than the blood flow velocity v. The vessel’s distensibility and diameter determine
the wave speed according to Eq. (2.1). The pulse wave travels two times faster in
large arteries, and even four times faster in small arteries as compared to the aorta.

2.2.2.1 PressureWaveform
A number of factors shape the pressure wave, resulting in its characteristic
appearance. Fig. 2.11 illustrates the typical shape of the pressure wave in the aorta.
It establishes from the superposition of the forward and backward traveling waves,
see Fig. 2.11b. The forward wave originates at the ventricle, whilst the backward
wave stems from wave reflections at downstream arterial branch points, where the
aortic bifurcation is most dominant. The reflections explain that the pulse pressure
pp increases from the aorta towards the distal arteries and that the pressure wave
looks very different in young and old subjects, see Fig. 2.11c. The aorta in old
subjects is stiffer, and thus less distensible, and pressure waves travel therefore
faster. The backward wave arrives then earlier and contributes more to the systolic
pressure augmentation.

When reaching the level of arterioles, the pressure wave flattens out due to the
high viscous dissipation of the flow in small vessels. Consequently, capillaries and
the entire venous system are free of pulsatility, see Fig. 2.10.

2.2.3 Vascular Capacity

The capacity C [m3 Pa−1], also known as volume compliance, determines the
vasculature’s ability to increase the volume of blood it holds, and thus its reser-
voir/buffering function. Given its definition

C = �V

�p
, (2.4)

it relates the increase of blood volume �V [m3] to the increase in blood pressure
�p [Pa]. The compliance, and thus the elasticity and size of the largest blood vessels
determine the capacity of the vascular system.

Fig. 2.12 shows the blood volume in the arterial and venous systems as a function
of the pressure [235]. The tangent to these curves is the respective capacity, and
Cart = 2 ml mmHg−1 and Cven = 100 ml mmHg−1 approximate the arterial and
venous capacities of an adult human. The venous system stores approximately five
times more blood than the arterial system and its capacity is approximately fifty
times larger than that of the arterial system.

The aorta contributes almost the entire capacity to the vascular system, out
of which the thoracic segment alone covers 85% [232]. The capacity of the
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Fig. 2.11 The pressure
pulse. (a) Typical pressure
waveform. The systolic
pressure is augmented by the
backward wave. The diacrotic
notch denotes the closure of
the aortic valve. (b) The
superposition of forward and
backward traveling waves
determines the pressure pulse.
(c) Typical pressure
waveforms in young and old
subjects

(b) (c)

(a)

Fig. 2.12 Pressure–volume
relationships of (a) the
arterial and (b) the venous
vascular system.
Vasoreactivity influences the
relationship as shown by the
dashed curves
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aorta is constant over a wide range of pressures and determines the circulation’s
Windkessel (WK) properties. The capacity of the aorta, and thus its elasticity, is of
utmost importance to the entire cardiovascular system. A stiff aorta increases left
ventricular load that may result in cardiac complications, such as cardiomyopathy.
In addition to genetic or elastinopathies [94], the aorta also stiffens naturally with
age. It is elastic lamellae that undergo fragmentation and thinning, leading to ectasia
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and a gradual transfer of mechanical load to collagen, which is 100 to 1000 times
stiffer than elastin and then reduces the capacity of the vascular system [224].

2.2.4 Vascular Flow

The aorta is the first arterial segment of the systemic circuit, directly connected to
the heart. A unidirectional flow of the blood ejected from the left ventricle into
the aorta is maintained through the aortic valve. It passively opens and closes
with each heartbeat. The discontinuous inflow of blood together with the aortic
capacity defines the pulsatile blood flow in the aorta. Given peak systole, blood
flows unidirectional and at velocities of approximately 60 cm s−1, whilst back flow
establishes at the diastolic phase. Back flow in the aortic arch and the abdominal
aorta reaches velocities of approximately −20 cm s−1 and −10 cm s−1, respectively.

Blood flow in the large arteries is similar to the flow in the aorta. For example in
the iliac artery, the velocities over the cardiac cycle range from approximately −7.5
to 60 cm s−1. The flow in veins is much more homogeneous as compared to arteries.
Given the saphenous vein, the velocity changes only between approximately
20 and 30 cm s−1. The distribution of the blood flow velocity over the vessel’s
cross-section is complex and influenced by factors, such as the form of the pressure
wave, the vessel’s diameter and centerline curvature, upstream and downstream flow
properties, Vortical Structure (VS) dynamics, and others. Such effects are beyond a
1D flow description and will be discussed in Chap. 6.

Flow is inverse proportional to the vasculature’s cross-sectional area. At the
level of the capillaries the largest cross-sectional area appears, and blood flows
at velocities as low as tens of micrometers per second. A Stokes8 flow is then
an adequate model of blood flow. The very low flow velocity is important to
provide enough time for the exchange of oxygen, nutrients, and other substances
in the capillaries. The blood flow is linked to the vessel’s biochemical activity
through WSS, and changes in response to factors, such as the oxygen tension of
the surrounding tissue.

Given a 1D description, the flow q and the velocity v in a vessel are related
through q = Av [m3 s−1], where A denotes the luminal cross-section of the vessel.
Similar to the pressure p(x, t), the flow q(x, t) also appears as a wave in the vascular
system, where x and t denote the position along the vascular path and the time,
respectively.

2.2.4.1 Venous Return
Given homeostasis, the time-averaged cardiac output equals the flow into the atrium,
the venous return. Venous return and cardiac output are therefore interdependent,
a relation known as the Frank–Starling mechanism. In addition to factors, such
as rhythmical contraction of limb muscles during normal locomotory activity,
vasoreactivity, respiration, and gravitation, the (partial) collapse of veins has an

8Sir George Gabriel Stokes, English/Irish physicist and mathematician, 1819–1903.



2.2 Mechanical System Properties 59

important influence on the venous return. It appears at negative ambient pressures
and has been extensively studied [259, 422]. See also Fig. 2.13 that illustrates
some factors that influence venous return. At negative atrial pressure, veins start
to collapse and the linearity between pressure and flow is broken. Venous return can
then no longer increase at increasing pressure gradient, and the pressure–flow curve
flattens out.

2.2.5 The Pressure–Velocity Loop

Given the pressure p(x, t) and the velocity v(x, t) at the position x in a vessel, the
pressure–velocity loop may be plotted, see Fig. 2.14. At the beginning of the loop
when the pressure and velocity waves start, the tangent to the pressure–velocity

Fig. 2.13 The non-linear relation between the venous return and the atrial pressure. (a) Influence
of the total peripheral resistance. (b) Influence of the Mean Arterial Pressure (MAP)

Fig. 2.14 The
pressure–velocity loop
illustrating the weighted wave
speed ρc. The dot indicates
the beginning of the pressure
and velocity waves
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loop expresses the weighted wave speed ρc, where ρ denotes the density of blood
and c is the wave speed. The water hammer equation (2.2) �p/�v = ρc explains
this property of the pressure–velocity loop, where c >> v has been assumed in
the derivation of (2.2). It relates the pressure and velocity increments �p and �v
of wave propagation and goes back to the work of von Kries,9 and pulse wave
investigations in blood vessels [571]. Given p(x, t) and v(x, t) can be measured
accurately and simultaneously, the pressure-volume loop represents a simple and
accurate method of measuring the wave speed [304].

2.2.6 Vascular Resistance

The resistance R = �p/q [Pa s m−3] of a vessel against the flow q is expressed
by the pressure drop �p between the inlet and outlet of the segment. The viscosity
of the blood and the flow conditions in the vessel determine its resistance. Given
laminar steady-state tube flow, the Hagen10–Poiseuille11 law expresses the hydraulic
resistance, see Sect. 2.3.2.1. It states that a tube of diameter d has a resistance that is
proportional to 1/d4, and therefore only the smallest vessels, the resistance vessels,
can provide noticeable resistance to blood flow [609].

As with an individual vessel, also a network of vessels provides resistance to flow.
The dimensions of the vessels together with their organization within the network
then determine the resistance. The arrangement of vessels in series increases the
resistance, whilst their parallel arrangement reduces the resistance. Given an adult
human, Rart = 1 mmHg s ml−1 and Rven = 0.06 mmHg s ml−1 approximate the
resistances of the arterial and venous systems, respectively.

2.2.7 Transcapillary Transport

The changes of hydrostatic and osmotic pressures across the capillary wall direct
the transcapillary fluid flux, and thus the fluid exchange between the vascular
and interstitial spaces. The fluid is in principle water that solves proteins and
electrolytes, which then is called plasma. Factors such as solute size and its electrical
charge determine whether or not they can pass the semipermeable capillary wall.
The fluid flux is therefore always filtrated, and the transcapillary transport is also
called filtration. Together with the lymphatic system, filtration determines the
transcapillary solute concentrations and controls interstitial (volume) homeostasis.

Whilst the muscle tonus controls the hydrostatic pressure in the microvascula-
ture, the transcapillary solute concentrations determine the osmotic pressure. Small
solutes can easily pass the capillary wall, and in most vascular beds only the

9Johannes von Kries, German physiologist, 1853–1928.
10Gotthilf Heinrich Ludwig Hagen, German civil engineer, 1797–1884.
11Jean Léonard Marie Poiseuille, French physicist, and physiologist, 1797–1869.
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macromolecular solutes appear at significant different concentrations across the
vessel wall. The transcapillary osmotic pressure�� can therefore be approximated
by the sum of pressure differences that are exerted by such macromolecules.
Albumin is the most important macromolecule in this context and accounts for
approximately 80% of ��.

Aside from transcapillary pressure differences, the wall’s leakiness, and thus its
hydraulic conductivity Lp [m Pa−1s−1] determines how much fluid passes through
it. The conductivity is defined by Darcy’s12 law through the relation

Lp = k

ηL
, (2.5)

where k [m2] and L [m] denote the intrinsic permeability and thickness of the capil-
lary wall, whilst η [Pa s] is the viscosity of water, see Appendix E.2. The hydraulic
conductivity can also be directly measured by laboratory experiments [250].

2.3 Modeling theMacrocirculation

This section follows a top-down approach, where lumped parameter models
describe parts of the vascular system. They represent vascular complexity by a low
number of parameters yet capturing salient system features. A topology consisting
of discrete entities, representing resistance, capacity, and inductance, describes the
spatially distributed vascular system. Such models do not consider the anatomical
organization of the vessels and cannot represent features, such as wave propagation.
Lumped parameter modeling of the vascular system is well documented with
excellent reviews [596] available in the literature.

2.3.1 WindKessel Models

Whilst Weber13 seems to be the first who proposed the comparison of the capacity
(volume compliance) of the large arteries with the WindKessel (WK) present in fire
engines, it was Frank14 [173] who quantitatively formulated and popularized the
so-called two-element WK model.

2.3.1.1 Two-ElementWindKessel Model
The two-element WK model represents the systemic vascular circuit by two lumped
parameters—its total capacity C [m3 Pa−1], and its total peripheral resistance
R [Pa m−3], see Fig. 2.15. The capacity C = �V/�p describes the intake of the

12Henry Philibert Gaspard Darcy, French engineer, 1803–1858.
13Ernst Heinrich Weber, German physician, 1795–1878.
14Otto Frank, German doctor and physiologist, 1865–1944.
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blood volume �V [m3] into the (elastic) arterial system in response to the pressure
increase �p [Pa]. In contrary, the resistance R = �pmean/qCO relates the drop of
the mean pressure�pmean from the arterial side to venous side, to the cardiac output
qCO [m3 s−1]. Given the much higher pressure in the arterial than in the venous
system, the simplification R ≈ pmean art/qCO may be made, where pmean art denotes
the MAP. Whilst the elasticity of the aorta and the largest conduit arteries determines
the system’s capacity C, the resistance vessels govern the system’s resistance R.

The total flow q(t) through the system splits into the flow qR(t) through the
resistor R and the flow qC(t) into the capacitor C, see the electrical representation
of the two-element WK model in Fig. 2.15b. The flow balance then reads

q(t) = qR(t)+ qC(t) = p(t)

R
+ C dp(t)

dt
, (2.6)

where p(t) denotes the time-dependent arterial pressure, and the relations qR =
p/R and qC = C(dp/dt) describe the resistor and the capacitor, see Appendix E.1.
The governing equation of the two-element WK model (2.6) relates the pressure
p(t) and flow q(t) of the systemic circuit, a system described by the properties C
and R, respectively.

Given the pressure p(t), relation (2.6) is an algebraic expression that directly
yields q(t). In contrary, given q(t), it represents a first-order linear differential
equation in p(t) and may be solved (numerically) together with the initial condition
p(0) = p0. Fig. 2.16b illustrates such a (transient) solution for the pressure
p(t). Table 2.1 reports the systemic circuit parameters, whilst Fig. 2.16a shows

Fig. 2.15 (a) Hydraulic and
(b) electric representations of
the two-element WindKessel
(WK) model. The flow q(t)
and pressure p(t) describe the
system state, and R and C
denote vascular bed
resistance and arterial
capacity, respectively

C R

Table 2.1 System
parameters used for
WindKessel (WK) models

Vascular bed resistance R 1.1 mmHg s ml−1

Arterial capacity C 0.7 ml mmHg−1

Aortic impedancea Z 0.1 mmHg s ml−1

Arterial inertanceb L 0.02 mmHg s2 ml−1

a Only used by the three-element and four-
element WK models.
b Only used by the four-element WK model.
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Fig. 2.16 WindKessel (WK) modeling of the systemic circuit. (a) Prescribed flow profile q(t).
(b) Pressure profile p(t) according to the two-element WK model (2.6). (c) Pressure profile p(t)
according to the three-element WK model (2.20). (d) Pressure profile p(t) according to the four-
element WK model (2.30). Table 2.1 reports the parameters used for the WK models

the prescribed flow q(t) through the system. The cardiac cycle time of T = 1.0 s
has been used, and the flow waveform was interpolated between a number of data
points. The two-element WK model (2.6) has been solved at the initial condition
p0 = 80 mmHg, and Fig. 2.16b shows p(t) for the time interval from 8.0 to 10.0 s.
It is the ninth and tenth cardiac cycle, and the system has reached its steady-state
periodic condition.

Example 2.2 (Two-Element Windkessel Model Predictions). A vascular system
may be represented by a two-element Windkessel model, where R =
50.1 mmHgs ml−1 and C = 0.018 ml mmHg−1 describe the system’s resistance
and capacity, respectively. Given the cardiac cycle period T = 1 s, the flow

q(t) =
{
q0 sin(6πt) 0 ≤ t ≤ 1/6s ,
0 1/6 < t < 1s ,

(2.7)

where q0 = 18.2 ml s−1 passes the system.

(a) Use the backward-Euler time discretization method and provide a discretized
version of the two-element Windkessel model (2.6).
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(b) Iteratively solve the discretized governing equation and predict the pressure p(t)
in the system at steady-state periodic conditions. Use different numbers k of time
steps towards exploring the convergence with respect to this parameter. �

Example 2.3 (Systemic Implication of EVAR Treatment). Given EndoVascular Aor-
tic Repair (EVAR), a stent-graft of diameter dsg = 2.5 cm is inserted in the
laorta = 35 cm long thoracic aorta to cover an aneurysm, see Fig. 2.17. The stent-
graft has the radial stiffness of ksg = �d/�p = 1.2 · 10−3 cm kPa−1 and covers
in total 70% of the thoracic aorta. The EVAR treatment changes the capacity C of
the systemic circuit, and before treatment, the capacity Cn = 9.7 cm3 kPa−1 and the
resistance R = 0.18 kPa s cm−3 determined the patient’s systemic circulation.

Fig. 2.17 Schematic
illustration of a thoracic
aortic aneurysm that has been
treated with EndoVascular
Aortic Repair (EVAR). The
stent-graft covers the
lsg = αlaorta long aortic
segment, where laorta and α
denote the total length of the
thoracic aorta and a
dimensionless parameter,
respectively

Stent-graft

Aneurysm

Aorta

Ao
rta

(a) Provide the relation of the capacity CEVAR(α) as a function of the stent-graft
coverage α for the EVAR-treated patient. The stent-graft coverage α = lsg/laorta
is the ratio between the stent-graft length and the length of the thoracic aorta.

(b) Consider the simplified cardiac output q(t) = Q sin(πt)2 with Q =
150 cm3 s−1 and use a two-element Windkessel (WK) model to study
the systemic implication of EVAR treatment. Consider the initial pressure
p(0) = 13.3 kPa and solve the WK governing equation for α = 0 and α = 1,
respectively. Plot the aortic pressure over the time for said parameters.
The result

I =
∫

exp(x/a) sin2(πx)dx

=a exp(x/a)
[
1 + 4a2π2 − cos(2πx)− 2aπ sin(2πx)

]

2 + 8a2π2 +K
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may be used to solve the linear first-order differential equation of the WK model,
where K denotes an integration constant. �

2.3.1.2 Homogeneous Solution
In most cases, only the steady-state periodic, or homogenous solution of the
problem (2.6) is of interest. The analysis in the complex plane, or Argand’s15

diagram is then convenient, see Appendix A.2. The flow and the pressure are
described by complex numbers, represented by the vectors q and p in the complex
plane, respectively.

Let us first consider the case, where the pressure p(t) = Re(p) is known, whilst
the flow q(t) = Re(q) through the system is unknown. At steady state, the pressure
p(t) (as the flow q(t)) is periodic and may be expressed by the Fourier series (see
Appendix A.3)

p(t) = Re(p) = Re

( +∞∑

n=−∞
Pn exp[iωt]

)
, (2.9)

where Pn and i = √−1 denote the complex Fourier coefficients and the imaginary
unit, respectively. Given the additive representation (2.9) of the pressure waveform
through the superposition of its harmonics, it is sufficient to consider a single
complex vector p = P exp(iωt) = P exp(iωt) with P = |P| pointing in the real
direction at the time t = 0. With the properties of the resistor and capacitor (E.1),
the governing equation (2.6) then reads

q = R−1P exp(iωt)+ iCωP exp(iωt)

= P(R−1 + iCω) exp(iωt)

= Q exp(iωt) , (2.10)

where |Q| = Q = P
√
R−2 + C2ω2 and φ = arg(CRω) = arctan(CRω) denote

the amplitude (norm) and the argument of the complex flow vector q, respectively.
The time-dependent flow then reads q(t) = Re(q) = Q cos(ωt +φ), and Fig. 2.18a
illustrates it in the complex plane.

In contrary to the aforementioned analysis, we consider now the system flow q(t)
to be given, whilst the pressure p(t) is unknown. The flow q(t) = Re(q) may again
be expressed as Fourier series q = ∑+∞

n=−∞ Qn exp(iωt) with Qn denoting the

15Jean-Robert Argand, French amateur mathematician, 1768–1822.
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Fig. 2.18 Representation of flow q(t) = Re(q) and pressure p(t) = Re(p) in the complex plane.
The relation amongst them is described by a two-element WindKessel (WK) model that describes
the systemic circuit of resistance R and capacity C. (a) The pressure p is prescribed, and the WK
model governs the flow q. (b) The flow q is prescribed, and the WK model governs the pressure p

Fourier coefficients. Again, it is sufficient to consider Eq. (2.6) for a single complex
vector q(t) = Q exp(iωt) with Q = |Q| and Q pointing in the real direction at
t = 0. It yields then the governing equation

Q exp(iωt) = R−1P exp[i(ωt + φ)] + iCωP exp[i(ωt + φ)]
= P

{
R−1 exp(iφ)+ Cω exp[i(φ + π/2)]

}
exp(iωt) , (2.11)

where the Ansatz p(t) = P exp(iωt) = P exp[i(ωt + φ)] has been used.
Whilst P = |P| denotes the pressure amplitude (norm), φ is the phase angle
between pressure and flow. Both parameters need to be identified from the complex
equation (2.11). Equation (2.11)1 already presents real and imaginary contributions,
and P = Q/

√
R−2 + C2ω2 denotes the norm of the flow. Towards the specification

of the phase angle φ, we may consider the expression (2.11) at the time t = 0.
The flow q points then in the real direction, and thus the imaginary part of (2.11)
vanishes. The condition

0 = Im
[
P
{
R−1 exp(iφ)+ Cω exp[i(φ + π/2)]

}
exp(iωt)

]

t=0

= R−1 sinφ + Cω sin(φ + π/2)︸ ︷︷ ︸
cosφ

then determines tanφ = −RCω to be the phase angle. Fig. 2.18b illustrates flow
and pressure in Argand’s diagram at the time t = 0 when the flow q points into
the real direction. The governing equations (2.10) and (2.11) describe both the two-
element WK model, and the vector diagrams in Fig. 2.18a,b are rotated versions of
each other.
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Fig. 2.19 (a) Impedance modulus Z and (b) impedance angle φ predicted by the two-element
WindKessel (WK) (red) and the three-element WK (blue) models. The models use the parameters
listed in Table 2.1, and the gray curves show typical experimental data

2.3.1.3 Impedance
The impedance z is a complex vector that relates a system’s input and output.
In the description of the vasculature, it compares the pressure p and the flow
q. The impedance modulus |z| = Z = |p|/|q| = P/Q [Pa s m−3] is the
quotient of the pressure and flow amplitudes, whilst the impedance angle φ =
argq− argp [rad] is the phase difference between the two complex vectors q and p,
respectively. Given the flow and pressure of the two-element WK model derived in
Sect. 2.3.1.2,

Z = (R−2 + C2ω2)−1/2 and φ = arctan(RCω) (2.12)

express its impedance modulus Z and angle φ, respectively. Fig. 2.19 shows these
quantities as a function of the system frequency f = ω/(2π) and based on
the parameters listed in Table 2.1. At steady state f = 0, the entire flow runs
over the resistor; the system’s impedance is then equal to its resistance, Z =
R.

Example 2.4 (Impedance of the Vascular System). Table 2.2 reports measurements
of aortic pressure p(t) and flow q(t) in the ascending ferret aorta. Given these
measurements, the vascular system’s impedance z should be computed.

(a) Provide a Fourier series approximation of p(t) and q(t) up to M = 10
harmonics. Plot the Fourier series approximation on top of the original signal.
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Table 2.2 Measured flow and pressure waves in the ascending aorta of an individual ferret. Data
is extracted from plots reported elsewhere [62]

Time [s] Flow [ml s−1] Pressure [mmHg]

0.0 0.00 78

0.0125 0.00 78

0.025 0.04 77

0.0375 0.23 77

0.05 0.48 78

0.0625 3.00 95

0.075 4.61 97

0.0875 4.50 97

0.1 3.96 96

0.1125 3.20 93

0.125 2.10 90

0.1375 0.00 81

0.15 −0.32 83

0.1625 −0.08 85

0.175 0.14 87

0.1875 0.15 89

Time [s] Flow [ml s−1] Pressure [mmHg]

0.2 0.16 90

0.2125 0.20 90

0.225 0.30 89

0.2375 0.20 87

0.25 0.16 86

0.2625 0.13 84

0.275 0.10 84

0.2875 0.08 83

0.3 0.07 82

0.3125 0.06 81

0.325 0.06 81

0.3375 0.04 80

0.35 0.02 80

0.3625 0.00 79

0.375 0.00 78

(b) Compute the system’s impedance modulus Z and impedance angle φ, and plot
them versus the signal frequency f . �

2.3.1.4 Parameter Identification
The vascular bed’s resistanceR determines the relation between the mean flow qmean
and the mean pressure pmean over the cardiac cycle. Given the time T of the cardiac
cycle, the expression

R = pmean

qmean
=
∫ T

0 p(t)dt∫ T
0 q(t)dt

(2.14)

allows us therefore to compute the resistance R from the flow q(t) and pressure
p(t), respectively. The cardiovascular system is an over-damped system, and the
heart directly determines its pulsatility. Therefore, p(t), q(t), and T may vary from
cycle to cycle, and their averages over a number of cardiac cycles should be used to
compute R through (2.14).

In addition to the resistance R, the capacity C of the two-element WK model
needs to be identified. An approach known as pressure decay method considers
the late diastolic phase, where the flow is approximately zero, see Fig. 2.16a. The
governing equation (2.6) then reads q(t) = p(t)/R + Cdp(t)/dt = 0, and the
capacity

C = �t

R ln
(
p0
p1

) (2.15)
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is given by the pressure decay over the time period �t = t1 − t0. The pressures
p0 = p(t0) and p1 = p(t1) are commonly taken at time t0 right after the diacrotic
notch, as well as at the time t1 at the end of the diastolic phase. Alternative methods
to identify C by exploring the late diastolic phase have been discussed elsewhere
[596].

Example 2.5 (Decay Method to Estimate the Vascular Resistance). Given the
organ’s arterial capacity C = 0.012 ml mmHg−1, the experimental set-up shown
in Fig. 2.20 is used to measure the vascular bed resistance R. At the time t = 0
the valve closes and stops the inflow, such that qin(t) = 0 holds for t > 0.
At the times t0 = 0.1 s and t1 = 0.9 s, the manometer measures the pressures
p0 = pin(t0) = 112.0 mmHg and p1 = pin(t1) = 75.0 mmHg, respectively.

Manometer 
Organ‘s vasculatur 

Inflow Outflow

Valve 

Fig. 2.20 Schematic illustration of an experimental set-up to estimate the vascular resistance R
of an organ

(a) Design a lumped parameter model that represents the problem at negligible
inflow qm = 0 into the manometer. Derive the model’s governing equation and
estimate the resistance R from the two pressure measurements p0 and p1.

(b) Consider the flow qm(t) = ξdpin/dt to be proportional to the pressure change,
where ξ denotes a manometer-dependent parameter. Provide the governing
equation for this problem and estimate R from the two pressure measurements
p0 and p1. Compute the relative error e = 100(R − Rexact)/Rexact [%] for
0 < ξ < 0.5C, where Rexact denotes the resistance at qm = 0.

(c) Consider the manometer to be an uptake tube with the inner diameter of di =
1.0 mm that is filled with water of the density ρ = 1000.0 kg m−3. Compute ξ
for this device and estimate the resistance R of the vascular bed from the two
pressure measurements p0 and p1. �

Least-square parameter identification is a popular approach in the identification
of model parameters. Given n measurements at the times ti of the pressure pi and
flow qi , the minimization problem

n∑

i=0

[
α(p(R,C; ti )− pi)2 + (q(R,C; ti )− qi)2

]
→ MIN (2.17)
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allows the identification of the least-square optimized parameters R and C of the
two-element WK model. Here, α denotes a scaling/weighting parameter to account
for differences concerning the values of pressure and flow and to ensure that both
errors contribute to the objective function. Aside from directly using the pressure
and flow measurements, the impedance modulus Z = (R−2 + C2ω2)−1/2 and
the impedance angle φ = arctan(RCω) may also be used to estimate R and C.
The Fourier series of the pressure and flow waves provides the pairs (Zi, ωi) and
(φi, ωi) for 0 ≤ i ≤ M , see Example 2.4. Here, M is the number of harmonics
considered by the parameter identification, whilst ω denotes the angular velocity.
The minimization problem

M∑

i=0

[
α(Z(R,C;ωi)− Zi)2 + (φ(R,C;ωi)− φi)2

]
→ MIN (2.18)

allows then the identification of the least-square optimized parameters R and C,
where α adjusts for data range difference.

Whilst the least-square-identified parameters yield the model that best agrees
with the experimental data, the physical interpretation of R as vascular bed
resistance, and C as volume compliance cannot be guaranteed.

2.3.1.5 Three-ElementWindKessel Model
At higher frequencies, Fig. 2.19 demonstrates qualitative disagreement between
experimental data and the predictions of the two-element WK model. Whilst the
two-element WK model approaches the impedance modulus Z = 0 and the
impedance angle φ = −π/2 for the frequency f → ∞, this is not supported by
experimental data. The two-element WK model does not consider inertia effects of
the blood, which is the main reason for this shortcoming.

The acceleration and deceleration of the large blood mass in the aorta influence
the vascular system; it presents significant vascular resistance at higher frequencies.
The three-element WK model introduced therefore an additional resistance Za =
vpwρ/A, where vpw, ρ, and A denote aortic pulse wave velocity, blood density, and
aortic cross-section, respectively. The resistance Za is also called aortic impedance,
and Fig. 2.21 shows the hydraulic and electric representations of the three-element
WK model.

Given the flow q(t) across the resistor Za, the pressure drops from p(t) to p(t),
and

p(t) = p(t)− Zaq(t) (2.19)

holds. In addition, the total flow splits into the part qR(t) through the resistor and
the part qC(t) into the capacitor. It yields the relation

q(t) = qR(t)+ qC(t) = p(t)

R
+ C dp(t)

dt
,
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Fig. 2.21 (a) Hydraulic and
(b) electric representations of
the three-element WindKessel
(WK) model. Flow q(t) and
pressure p(t) describe the
system state, whilst R, Za,
and C denote the vascular bed
resistance, aortic impedance,
and arterial capacity,
respectively

and the substitution of p(t) by (2.19) then leads to the governing equation

dp(t)

dt
+ p(t)

RC
= Za

dq(t)

dt
+ R + Za

RC
q(t) (2.20)

of the three-element WK model. Given either p(t) or q(t), the relation (2.20) yields
a first-order linear differential equation. Fig. 2.16c illustrates the corresponding
(transient) solution. It is based on the prescription of the flow shown in Fig. 2.16a
and the parameters listed in Table 2.1. The solution starts at the initial condition
p0 = 80 mmHg, and Fig. 2.16c shows p(t) at steady-state periodic conditions.

The three-element WK model is probably the most widely used model to mimic
the vascular system. It is often realized as a test rig to test vascular medical devices.

Example 2.6 (Two-Element Versus Three-Element WK Models). Table 2.2 reports
measurements of the pressure p(t) and flow q(t) in the ascending ferret aorta, data
that should be used to estimate model parameters of the two-element and three-
element WK models.

(a) Estimate the peripheral resistance R of the ferret’s vascular system.
(b) Estimate the total arterial capacity C of the ferret’s vascular system.
(c) Estimate the ferret’s aortic impedance Za. The aortic diameter of 6.0 mm,

the aortic pulse wave velocity of 6.3 m s−1, and the blood density of ρ =
1060 kg m−3 may be used.

(d) Prescribe the flow given in Table 2.2 and predict the pressure through the
numerical solution of the governing equations of the two-element and three-
element WK models. �

2.3.1.6 Homogeneous Solution
The steady-state periodic analysis of the problem (2.20) is conveniently investigated
in the complex plane, where the pressure and flow waves assemble from the
superposition of p = P exp(iωt) and q = Q exp[i(ωt + φ)], respectively. The
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complex vectors p and q rotate at the angular velocity ω in the complex plane and
may be seen as sub-waves, the harmonics. The phase angle φ between both vectors
denotes the system’s impedance angle. Given this Ansatz for the pressure and flow,
the governing equation (2.20) yields

iωZ + Z

CR
= iωZa exp(iφ)+ R + Za

RC
exp(iφ) , (2.21)

where the definition of the system’s impedance modulus Z = P/Q has been used.
Without loss of generality, the expression (2.21) is then investigated at the time

t = 0 towards the identification of the system unknowns, the impedance modulus
Z, and the impedance phase φ, respectively. Euler’s16 formula exp(iφ) = cosφ +
i sinφ allows us to split (2.21) into imaginary and real parts

ωZ = ωZa cosφ + R + Za

RC
sinφ ,

Z

RC
= −ωZa sinφ + R + Za

RC
cosφ ,

⎫
⎪⎬

⎪⎭
(2.22)

which then results in a system with four solutions for Z and φ. The only physically
admissible solution is

Z =
√
αβ

1 + C2R2ω2 ; φ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− arccos

(
R + Za + C2R2ω2Za√

αβ

)
ω > 0

arccos

(
R + Za + C2R2ω2Za√

αβ

)
ω < 0

(2.23)

with α = 2RZa + Z2
a + R2(1 + C2ω2Z2

a ) and β = 1 + C2R2ω2.
Given the parameters listed in Table 2.1, the impedance modulus and angle (2.23)

are plotted against the system frequency f = ω/(2π) in Fig. 2.19. The three-
element WK qualitatively captures the experimental observations, and at high
frequencies the system’s impedance approaches the aortic impedance Z → Za.
At steady state f = 0, the entire flow passes the total resistance R + Za, and the
system’s impedance then is Z = R + Za.

Example 2.7 (Impedance-Based Estimation of WK Parameters). A ferret vascular
system has a cardiac cycle of T = 0.375 s, and Table 2.4 shows its impedance z up to
the frequency f of approximately 10 Hz. Given this information, the parameters of
the two-element and three-element WK models should be identified through least-
square optimization.

(a) Define an objective function � and identify the least-square-optimized model
parameters. Given the two-element WK model, the optimization problem
�(R,C;ω) → MIN determines the resistance R and the capacity C. Given

16Leonhard Euler, Swiss mathematician, physicist, astronomer, logician and engineer, 1707–1783.
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Table 2.4 Impedance modulus Z and impedance angle φ of an individual ferret vascular system,
see also Example 2.4

Frequency Impedance modulus [mmHg s ml−1] Impedance angle [rad]

0.00000 108.415 0.00000

2.66667 4.12022 −0.96618

5.33333 3.34739 0.172411

8.00000 5.01376 0.132572

10.6667 4.60703 0.056390

Table 2.5 Fourier coefficients of a cyclic flow wave q(t) with the period of T = 0.375 s

Frequency [Hz] Fourier coefficients [ml s−1]

0.00000 0.786333

2.66667 0.0276938 − 0.646413 i

5.33333 −0.555816 − 0.112961 i

8.00000 −0.0896779 + 0.408525 i

10.6667 0.216635 + 0.0557698 i

the three-element WK model, the optimization problem �(R,C,Za;ω) →
MIN determines the resistance R, the capacity C, and the characteristic aortic
impedance Za.

(b) Plot the impedance modulus Z and impedance angle φ as predicted by the WK
models on top of the data given in Table 2.4.

(c) Consider the flow wave q(t) represented by the Fourier coefficients in Table 2.5
and compute the WK model-predicted pressure p(t). Use a steady-state periodic
analysis and compare the pressure with the predictions of a transient analysis.
The numerical solution of the WK governing equations over a sufficiently large
number of cardiac cycles, may be used. �

2.3.1.7 Four-ElementWindKessel Model
Whilst the three-element WK model is suitable for many applications, the physical
interpretation of the aortic impedance may be questioned [527]. Motivated by this
shortcoming, the four-element WK model includes the total arterial inertance as an
inductor element L in the circuit, see Fig. 2.22. It influences the system only at low
frequencies.

The total flow q(t) splits into the flow qR through the vascular bed resistor R and
the flow qC into the capacitor C and determines the relation

q(t) = qR + qC = p(t)

R
+ C dp(t)

dt
. (2.26)
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Fig. 2.22 (a) Hydraulic and
(b) electric representations of
the four-element WindKessel
(WK) model. Flow q(t) and
pressure p(t) describe the
system state. The model
parameters R, Za, C and L
denote vascular bed
resistance, aortic impedance,
arterial capacity, and total
arterial inertance, respectively

Given the flow qZ(t) over the aortic impedance Za, the total pressure p(t) drops
and

p(t) = p(t)− ZaqZ(t) (2.27)

holds. The pressure drop over Za is equal to the pressure drop over the inductor L,

L
dqL

dt
= ZaqZ(t) , (2.28)

where p − p = L(dqL/dt) has been used to describe the inductor element, see
Appendix E.1. The flow qL(t) and the flow qZ(t) together determine the total system
flow

q(t) = qL(t)+ qZ(t) , (2.29)

which then closes the mathematical description of the four-element WK model.
The four equations (2.26)–(2.29) form the system

dp(t)

dt
+ p(t)

CR
= Za

dqZ(t)

dt
+ Za

RC
qZ(t)+ q(t)

C
,

dqZ(t)

dt
= dq(t)

dt
− Za

L
qZ(t) ,

⎫
⎪⎪⎬

⎪⎪⎭
(2.30)

of linear differential equations that governs the four-element WK model. The
expressions (2.26) and (2.27) lead to the first statement, whilst the second one
follows from (2.28) and the time derivative of (2.29).
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Given either p(t) or q(t), the system (2.30) may be solved numerically, and
Fig. 2.16d illustrates such a (transient) solution. It considers the flow shown in
Fig. 2.16a and uses the parameters listed in Table 2.1. The solution starts at the
initial condition p0 = 80 mmHg, and Fig. 2.16d shows p(t) at steady-state periodic
conditions.

2.3.2 Vessel NetworkModeling

Lumped parameter models may also be used for the analysis of a network of vessels.
Such a model facilitates the exploration of how changes in one part of the network
influence the pressure p(t) and flow q(t) somewhere else in the network. They
may therefore test the outcome of vascular interventions, for example. A lumped
parameter model expresses the pressure and flow as functions of the time t and
neglects their dependence on the vascular path coordinate x—a network model can
therefore not simulate phenomena, such as wave propagation.

Given a network of n vessel segments, the individual segments are represented by
their capacity Ci , resistance Ri , and inertance Li; i = 1, . . . , n, and then connected
at m network nodes. Different designs of lumped parameter models have been
proposed to describe the biomechanics of a vessel segment. The three-element vessel
model illustrated in Fig. 2.23 is one possible design. It models a vessel segment of
diameter d [m], length l [m], and wall thickness h [m], which is entirely filled by
blood of the density ρ [kg m−3] and the dynamic viscosity η [Pa s].

2.3.2.1 Vessel Segment Resistance
A laminar, steady-state and fully developed flow in a cylindrical vessel results in
a parabolic velocity profile over the vessel’s cross-section called a Poiseuille flow.
The WSS that develops in response to the fluid flowing over the vessel wall presents
resistance to the flow q. Given Poiseuille flow, the flow q and WSS τw are related
through q = −r3πτw/4, where r denotes the vessel radius, see Chap. 6.

Fig. 2.23 (a) Schematic and
(b) electric representations of
the three-element vessel
model. The flows
qin(t), qout(t) and the
pressures pin(t), pout(t)

describe vessel inlet and
outlet conditions. The
vessel’s biomechanical
properties are expressed by
its capacity C, resistance R,
and inertance L, respectively

(a)

(b)
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The flow q through the vessel depends on the pressure drop �p between the
vessel’s inlet and outlet, and

R = �p

q
= 128ηl

πd4 (2.31)

determines the resistance R against flow, a relation known as the law of Hagen–
Poiseuille. Poiseuille flow provides a good description in smaller vessels and veins,
whilst in large arteries the blood flow is highly influenced by inertia effects. A
parabolic velocity profile is then only present during the systolic phase of the cardiac
cycle, see Chap. 6.

The vessel’s resistance R represents energy dissipation, and in addition to
(2.31), dissipative sources may also relate to unsteady flow, flow separation,
vessel curvature, and vessel bifurcations [376]. Finally, we note that laboratory
experiments may also be used for the direct measurement of the resistance R of
a vessel.

2.3.2.2 Vessel Segment Capacity
The vessel segment’s capacity expresses the increase �V of blood volume that is
inside the vessel in response to the increase�p in pressure. This property can either
be measured experimentally or predicted through the modeling of the elasticity of
the vessel wall. Given linear elasticity, or Hooke’s17 law in the description of the
vessel wall,

C = �V

�p
= 3d3πl

16hE
(2.32)

expresses the vessel’s capacity, where E [Pa] denotes the vessel wall’s Young’s18

modulus, see Sect. 3.5.2. We may also derive the alternative expression (5.2) that
considers any non-linear elastic description of the vessel wall.

2.3.2.3 Blood Inertance
Given the mean blood flow velocity vmean = q(t)/A, the force equilibrium of
the blood segment along the axial direction reads �pA = −ρAlv̇mean, where the
contribution from WSS has been neglected. It allows us to express the pressure
increment �p = ρlq̇/A as a function of the change of flow q̇, where the cross-
section A = d2π/4 was assumed to be constant along the vessel. The inertance

L = �p

q̇
= 4ρl

d2π
(2.33)

then describes the inertia of the blood in the vessel.

17Robert Hooke, English natural philosopher, architect, and polymath, 1635–1703.
18Thomas Young, English polymath and physician, 1773–1829.



2.3 Modeling the Macrocirculation 77

Example 2.8 (Renal Artery Adaptation to Partial Nephrectomy). Figure 2.24
schematically illustrates the surgical removal of a part of the kidney, an intervention
called partial nephrectomy. It increases the kidney’s vascular bed resistance R by
the factor α. At baseline the renal artery has the radius r0 and wall thickness h0,
properties that alter in response to the intervention towards r and h, respectively.
Homeostasis drives the adaptation, and r and h change until the renal artery’s
Wall Shear Stress (WSS) τw as well as its circumferential wall stress σθ return to
their homeostatic values. It may be assumed that the arterial pressure and blood
properties are not influenced by the surgical intervention.

Fig. 2.24 Schematic
illustration of partial
nephrectomy, with the dark
area indicating the removed
section of the kidney

Renal artery

Renal vein

Uretar
Removed 
section

Kidney

(a) Derive the relation between the factor α that augments the resistance and the
mean flow q through the kidney.

(b) Assume Poiseuille flow and derive the relation between the WSS τw and the
mean flow q through the renal artery.

(c) Express the circumferential wall stress σθ as a function of vessel’s dimensions
and the blood pressure. Consider the thickness of the vessel to be much smaller
than its diameter.

(d) At homeostatic conditions of τw and σθ , r/r0 and h/h0 should be expressed as
functions of α. �

2.3.2.4 Governing Equation
Each lumped parameter model of a vessel has its specific governing equation, and
this section discusses the design shown in Fig. 2.23. The sum of the pressure drop
�pR over the resistance as well as �pL over the inertance, determines the total
pressure change

pin − pout = �pR +�pL = Rqout + Lq̇out , (2.37)
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where pin and pout denote the pressure at the vessel inlet and outlet, respectively.
The flow continuity

qin − qout = qC = Cṗin (2.38)

closes the mathematical description, and in the derivation of (2.37) and (2.38) the
properties of circuit elements have been used, see Appendix E.1. The model also
assumes a negligible ambient (interstitial) pressure, and the capacity C is therefore
directly exposed to the inlet pressure pin.

Equations (2.37) and (2.38) may be rearranged towards

pout = pin − R(qin − Cṗin)− L(q̇in − Cp̈in) ,

qout = qin − Cṗin ,

which then expresses the relation between input and output by the matrix equation
[
pout

qout

]
=
[

1 −R
0 1

] [
pin

qin

]
+
[
RC −L
−C 0

] [
ṗin

q̇in

]
+
[
LC 0
0 0

] [
p̈in

q̈in

]
. (2.39)

In symbolic notation it reads

dout = Kdin + Dḋin + Md̈in . (2.40)

The set {p, q, ṗ, q̇, q̈} of state variables describe the system, and a time-marching
algorithm may be used to solve the governing equation (2.40) at prescribed
boundary and initial conditions.

We may for example consider a backward-Euler discretization over the time step
�t , and the first and second time derivatives are then approximated by

ẋin = xin − xin n

�t
= xin

�t
− xin n

�t
,

ẍin = ẋin − ẋin n

�t
= xin

�t2
− xin n

�t2
− ẋin n

�t
,

⎫
⎪⎪⎬

⎪⎪⎭
(2.41)

where x = p, q and (•)n denotes a quantity at the previous time step. Given such
a discretization, the system (2.40) of differential equations leads to the algebraic set
of equations

[
pout

qout

]
=
[

1 + RC
�t

+ LC
�t2

−R − L
�t

− C
�t

1

][
pin

qin

]
+ H , (2.42)

where the history vector

H =
[−RC

�t
− LC
�t2

L
�t

C
�t

0

][
pin n

qin n

]
−
[
LC
�t

0

0 0

][
ṗin n

q̇in n

]
, (2.43)
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stores information from the previous time step. Consequently, the system (2.42)
uniquely specifies the relation between input and output variables.

Example 2.9 (Two-Element Vessel Segment Model). An arterial vessel segment of
the resistance R and the capacity C is modeled by the lumped parameter model
shown in Fig. 2.25. The model is used for a steady-state periodic analysis of a
vascular network.

Vessel diameter d 5.2 mm

Vessel segment length l 12.7 cm

Vessel wall thickness h 0.5 mm

Vessel wall Young’s modulus E 34.0 kPa

Dynamic blood viscosity η 4.0 mPa s

Fig. 2.25 Electrical representations of a two-element vessel model with the corresponding vessel
segment parameters. The flows qin(t), qout(t) and the pressures pin(t), pout(t) describe the vessel
inlet and outlet conditions. The vessel’s biomechanical properties are expressed by the capacity C
and resistance R, respectively

(a) Derive the governing equations of the lumped parameter model shown in
Fig. 2.25 and rearrange them according to the system of equations

[
pout

qout

]
=
[
K11 K12

K21 K22

] [
pin

qin

]
+
[
D11 D12

D21 D22

] [
ṗin

q̇in

]
,

where pin,qin and pout,qout are complex vectors that describe the inlet and
outlet, respectively.

(b) Given the data in Fig. 2.25, compute the resistance R and the capacity C of the
vessel segment.

(c) Compute the flow and pressure in the vessel in response to the cyclic boundary
conditions pout = |pout| exp[i(ωt + π/6)] and qin = |qin| exp[iωt], where
|pout| = 12.5 Pa and |qin| = 4.3 ml s−1 are the pressure and flow amplitudes,
whilst ω = 73π denotes the angular velocity of the imaginary vectors. Use
Argand’s diagram to draw pressure and flow in the complex plane. �

Example 2.10 (Three-Element Vessel Segment Model). The lumped parameter
model in Fig. 2.26 uses the resistance R, the capacity C, and the inductance L to
describe an arterial vessel segment.
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Resistance R 2.22223 · 106 Pa s m− 3

Capacity C 7.12003 · 10− 10 m3 Pa− 1

Inductivity L 6.1846 · 106 Pa s2 m− 3

Fig. 2.26 Electrical representations of a three-element vessel model with vessel segment param-
eters. The flows qin(t), qout(t) and the pressures pin(t), pout(t) describe vessel inlet and outlet
conditions. The vessel’s biomechanical properties are expressed by the resistance R, capacity C,
and inductance L, respectively

(a) Derive the governing equations of the lumped parameter model shown in
Fig. 2.25 and rearrange them according to

dout = Kdin + Dḋin + Md̈in ,

where dout = [pout qout]T denotes the outlet condition, whilst din = [pin qin]T,
ḋin = [ṗin q̇in]T and d̈in = [p̈in q̈in]T describe the inlet conditions.

(b) Compute the flow and pressure for the steady-state periodic inflow qin =
|qin| exp[iωt] with |qin| = 4.3 ml s−1 and ω = 2π , and against the constant
outlet pressure pout = |pout| = 1000.0 Pa. Use Argand’s diagrams to illustrate
the magnitude and phase angle of each complex quantity. �

2.3.2.5 Assembly of Vessel Networks
Vessel segment models, such as the three-element model described by Eq. (2.40),
may be connected at nodes to form a network of vessels. The compatibility
conditions relate then the flow q and the pressure p (and their time derivatives)
across network nodes. Given a single vessel connects to another single vessel, the
compatibility condition at the node simply reads q1 = q2 and p1 = p2 with the
index denoting the vessel number.

Given a single vessel that bifurcates into two vessels, the compatibility condition
reads q1 = ξqq2 + (1 − ξq)q3 and p1 = p2 = p3, where the index denotes the
vessel number. The system state variable 0 ≤ ξq ≤ 1 describes how the flow splits
in the bifurcation, and identical to the other state variables, ξq is identified by the
solution of the system of equations that represents the entire network of vessels.
It might also be required to consider a pressure drop at network nodes to capture
energy dissipation from significant flow disturbance at the bifurcation. The pressure
compatibility conditions then read p1 = ξpp2. Here, 0 ≤ ξp ≤ 1 accounts for the
pressure drop, and p1 and p2 denote the pressure upstream and downstream the
bifurcation, respectively.
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Example 2.11 (Connected Vessel Segments). Figure 2.27 illustrates the connection
of three vessels and their properties. The inflow qin = q0[1 + sin(ωt)] with q0 =
0.05 ml s−1 and ω = 2π is prescribed, whilst the constant pressures p2 = 11.5 kPa
and p3 = 11.0 kPa are applied at the outlets. The vessels are filled with blood of the
density ρ = 1060 kg m−3 and the dynamic viscosity η = 3.5 mPa s .

(a) (b)

(c)

Vessel 1 Vessel 2 Vessel 3

Diameter d [mm] 1.0 0.7 0.4

Length l [mm] 55.0 31.0 24.0

Wall thickness h [mm] 0.05 0.035 0.02

Young’s modulus E [kPa] 200.0 250.0 150.0

Fig. 2.27 (a) Schematic and (b) electrical representation of a lumped parameter model that
represents three connected vessel segments (c) Geometrical and mechanical properties of vessel
segments

(a) Compute the resistance Ri , the capacity Ci , and the inductance Li of the three
vessels i = 1, 2, 3.

(b) Derive the governing equation of the i-th vessel according to the lumped
parameter model shown in Fig. 2.27b.

(c) Provide incremental governing equations of the connected vessels by consider-
ing the time derivatives of flow and pressure according to the backward-Euler
discretization (2.41).

(d) Propose an algorithm for the iterative solution of the incremental governing
equations. At the bifurcation a dissipation-free flow may be considered, and
the factor 0 ≤ ξ ≤ 1 determines the flow split.

(e) Plot the pressure at the inlet pin 1(t), the flows at the outlets qout 1(t), qout 2(t) as
well as the flow split factor ξ(t) over the time. �
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2.4 Modeling theMicrocirculation

This section describes models towards the analysis of exchange aspects in the micro-
circulation. They are limited to passive microfluidic transport mechanisms, and a
bottom-up approach aims at modeling the physics of microcirculatory exchange.
Exchange models are well documented with excellent reviews [40, 338, 493]
available in the literature.

2.4.1 Transcapillary Concentration Difference

The vessel wall of capillaries may be seen as a rigid porous body that is perforated by
a large number of micro-channels connecting the vessel lumen with the interstitial
space. The transport of substances or solutes through such micro-channels deter-
mines the transcapillary concentration difference of a solute. Towards the analysis
of this property, we consider a micro-channel of length L filled with fluid that
contains a solute at the concentration c(x) [mol m−3], where 0 ≤ x ≤ L denotes
the Cartesian coordinate along the micro-channel, and thus across the capillary wall.
Given microvascular exchange, the fluid is essentially water.

Diffusive and advective transport govern the solute flux Js [mol s−1m−2] along
the micro-channel. At steady state, Js is constant all along the channel and governed
by the first-order partial differential equation

Js = const = −D gradc(x)︸ ︷︷ ︸
Diffusion

+ c(x)v︸ ︷︷ ︸
Advection

, (2.48)

where v [m s−1] denotes the transport velocity of solute particles, whilstD [m2 s−1]
is the diffusion constant for solute particles in water. Towards a dimensionless
analysis, we may introduce ξ = x/d and normalize the solute particle path
length x with the solute particle diameter d. Equation (2.48) has then the solution
c(ξ) = Js/v+H exp(ξP e), where Pe = vd/D and H denote the Péclet19 number
and an integration constant, respectively.

The Péclet number is the ratio between advective and diffusive transport. At
large Péclet numbers the solvent moves together with the fluid flow, whilst at low
numbers it moves independently from the motion of the fluid. The solute particles
may not be spherical, and d then denotes the Stokes diameter—the diameter of the
hydrodynamically similar, but spherical particle.

The aforementioned integration constant H can be identified from the solute
concentration cv in the vascular space, and thus at the inlet of the micro-channel.
The solute concentration then reads c(ξ) = Js/v + exp(ξP e)(cv − Js/v). We may
also introduce the interstitial solute concentration ci = c(ξ = L/d), such that

19Jean Claude Eugène Péclet, French physicist, 1793–1857.
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Js = cvv − v�c

exp[Pe(L/d)] − 1
(2.49)

finally expresses the solute flux across the capillary wall, where �c = ci − cv is the
transcapillary concentration difference.

At steady state, the interstitial solute concentration ci depends on the transcapil-
lary filtration flux qf [m s−1] that determines the flow rate across the unit area of the
capillary wall, see Sect. 2.4.2. Experimental data suggest that ci is proportional to
the solute flux Js but inverse proportional to the filtration flux qf [543]. It therefore
justifies the relation ci = Js/qf and allows for the substitution of Js in (2.49). The
transcapillary concentration difference then reads [370]

�c = cv − ci = σcv
exp[Pe(L/d)] − 1

exp[Pe(L/d)] − σ , (2.50)

where the solute particle velocity v = (1−σ)qf has been related to the filtration flux
qf through Staverman’s20 osmotic reflection coefficient σ [526], see Appendix E.3.

Example 2.12 (LDL Transport Through a Micro-channel). Low-Density Lipopro-
tein (LDL) is a protein of about 25 nm in size and transports fat molecules around
the body. Increased LDL concentration has been strongly associated with the
development of atherosclerosis—LDL that invades the vessel wall is oxidized and
then poses a risk for the development of atherosclerosis. Endothelial Cells (EC)
junctions form micro-channels, and LDL eventually slowly “leaks” across the
endothelial barrier into the vessel wall. The model system shown in Fig. 2.28 may
be used to investigate LDL transport through EC junctions.

Fig. 2.28 Transport of Low-Density Lipoprotein (LDL) of diameter d and velocity v through a
micro-channel. LDL concentrations in the bloodstream and the arterial wall are denoted by cb and
cw, respectively

(a) Consider the velocity v = qf(1 − σ) of the LDL particles and express the
LDL flux. Here, qf = 1.0 μm s−1 and σ = 0.78 denote the fluid velocity
and Staverman’s osmotic reflection coefficient, respectively.

(b) Plot the LDL flux at the Péclet numbers Pe = 0.01; 0.1; 1.0 and the boundary
concentrations of cb = 2.0 mol m−3 and cw = 0.1 mol m−3. �

20Albert Jan Staverman, Dutch chemist, 1911–1993.
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2.4.2 Filtration

Filtration is the transport of water through the capillary wall in response to
hydrostatic and osmotic pressure differences. From the vascular space to the
interstitial space, the hydrostatic pressure falls from pv to pi, whilst COP increases
from�v to�i. The exchange of water between the two spaces is determined by the
filtration flux qf [m s−1], and thus the flow rate that passes through the unit area of
wall, see Appendix E.2. Given the flow through the vessel wall is aligned with the
vessel’s radial direction, the flux qf is identical to the flow velocity.

2.4.2.1 Starling’s FiltrationModel
Filtration in the microvasculature may be described by Starling’s filtration
model [524]

qf = Lp (�p − σ��) , (2.51)

where�p = pv−pi is the transcapillary hydrostatic pressure, whilst�� = �v−�i
denotes the transcapillary COP. The term �p − σ�� is called net filtration
pressure and positive for flow from the vascular system into the interstitium.
In (2.51), Lp [m Pa−1s−1] and σ denotes the capillary wall’s hydraulic conductivity
and its Staverman’s osmotic reflection coefficient [526], respectively. Whilst the
hydraulic conductivity describes the leakiness of the wall to water, the reflection
coefficient σ corrects the theoretical COP difference to match the effective one, see
Appendices E.2 and E.3.

According to (2.51), the filtration is governed by the four “Starling forces” pv,
pi, σ�v, and σ�i. The model is also “symmetric”—the increase in pv (or �v) or
the decrease of pi (or �i) by the same amount affects the flux equally.

2.4.2.2 Predicted Exchange
The net effect from the inflow and outflow of water across the capillary walls
determines the exchange in the vascular bed. The direct measurement of exchange
is difficult, and a model, such as Starling’s filtration law (2.51), helps to interpret
(incomplete) experimental data.

The linear relation between qf and �p has been shown in a population of
vessels [321], whilst much less experimental data confirmed the linearity between
qf and �� [417]. The development of flow requires the hydrostatic pressure pv to
decrease along the vascular tree. Given human nailfold skin capillaries, pressures of
pv = 35 to 45 mmHg at the arterial side and pv = 12 to 15 mmHg at the venous
sides have been reported [322]. In addition, the interstitial hydrostatic pressure
pi = −4 to 0 mmHg is slightly below the atmospheric pressure in many tissues,
and �v = 25 to 28 mmHg is believed to represent vascular COP in humans.
Table 2.9 summarizes this information, and Starling’s law (2.51) then predicts the
fluid exchange that is shown in Fig. 2.29.
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Table 2.9 Representative parameters for the description of a number of soft biological tissues

Hydrostatic pressure in the capillary pv Arterial/venous side: 35.0/12.0 mmHg

Hydrostatic pressure in the interstitium pi −2.0 mmHg

Colloid Osmotic Pressure (COP) in the capillary �v Arterial/venous side: 28.0/25.0 mmHg

COP in the interstitium �i 1.0 mmHg

Hydraulic conductivity of the capillary wall Lp 1.5·10−9 m s−1mmHg−1

Reflection coefficient of the capillary wall σ 1.0

Fig. 2.29 Exchange of fluid
along capillaries. (a)
Transcapillary hydrostatic
pressure �p and
transcapillary Colloid
Osmotic Pressure (COP) ��.
(b) Filtration flux qf across
the capillary wall. Exchange
according to Starling’s
filtration model (2.51) and the
data listed in Table 2.9. (c)
Net outward flux at the
arterial side and net inward
flux at the venous side

These findings suggest the exchange mechanism proposed by Starling in
1896 [524]: fluid transport into the interstitial over the arterial half of the capillary
where �p > σ��, and reabsorbtion over the venous half where �p < σ��,
see Fig. 2.29c. At transient conditions this mechanism has been confirmed by more
advanced experiments [371], but counter-evidence emerged in a number of tissues
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at steady-state exchange conditions. A revised understanding of vascular exchange
is presented in Sect. 2.4.2.3.

Example 2.13 (Transport Across the Ascending Vasa Recta Wall). The model
system shown in Fig. 2.30 should be used to investigate the exchange of solutes
between the Ascending Vasa Recta (AVR) of the renal medulla and its interstitial
space. The AVR segment is L = 1.2 mm long, has a diameter of D = 29µm, and
blood flows through it at the rate q = 35 nl min−1.

Fig. 2.30 Model system to
investigate the exchange
between the Ascending Vasa
Recta (AVR) and the
interstitium

Arterial end Venous end

Interstitium

Capillary lumen

Interstitium

l

(a) Compute the distribution of the hydrostatic pressure pv along the AVR segment.
Blood may be regarded as a Newtonian fluid with the dynamic viscosity η =
3.5 mPa s, and the pressure pv art = 7.8 mmHg applies at the AVR’s arterial
end.

(b) Compute the exchange along the AVR according to Starling’s filtration law.
Within the interstitium, the hydrostatic pressure pi = 6.0 mmHg and the Colloid
Osmotic Pressure (COP) �i = 3.7 mmHg are given. In addition, COP changes
linearly from �v art = 26.0 mmHg at the arterial end to �v ven = 16.7 mmHg
at the venous end. The Staverman’s osmotic reflection coefficient σ = 0.78 and
the hydraulic conductivity Lp = 1.5 · 10−9 m s−1mmHg−1 may be assumed in
the description of the vessel wall. �

2.4.2.3 Current Understanding of Microvascular Exchange
Filtration measurements in response to a sudden change of the capillary hydro-
static pressure pv [371] challenged the aforementioned concept of microvascular
exchange. The filtration experiment recorded transient results right after the pres-
sure step as well as steady-state results at least 2 min after it. Whilst the
transient results confirmed earlier experiments [417], and once again validated the
linearity between qf and the transcapillary hydrostatic pressure�pv, the steady-state
results did not show such a linearity and therefore contradicted Starling’s filtration
law (2.51). The observed slight imbalance in the transcapillary hydrostatic pressure
at steady state favors a positive net filtration pressure. The fluid moves therefore
into the interstitial space and is then almost exclusively drained via the lymphatics.
Given the interstitial fluid volume remains constant, the filtration flux times capillary
surface is equal to lymph flow. Whilst such steady-state exchange is observed in
many tissues, the net filtration pressure is also negative in some tissues [338]. It then
facilitates the function of organs, such as the kidney and intestinal mucosa. The lion
part of the interstitial fluid is then absorbed back into the vascular compartment.
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2.4.2.4 Colloid Osmotic Pressure
The macromolecule albumin is the main contributor to the COP in the vasculature.
In the vascular space the albumin concentration remains approximately constant,
and transcapillary COP is therefore primary controlled by the interstitial albumin
concentration.

Given albumin’s transcapillary concentration �calb, Hoff’s21 law relates it to the
transcapillary COP

��alb = φRθ�calb , (2.53)

where the universal gas constant R = 8.3145 J K−1mol−1, the absolute temperature
θ [K], and the osmotic coefficient φ have been introduced, see Appendix E.2.
Albumin is a relatively small protein and passes the capillary wall together
with water, and �calb develops according to transport discussed in Sect. 2.4.1.
Given (2.50) and (2.53), the transcapillary albumin COP may therefore be expressed
by

��alb = σ�v alb
ξ − 1

ξ − σ ; ξ = exp[Pe(L/dalb)] , (2.54)

where dalb and L are the albumin’s Stokes diameter and the capillary wall thickness,
respectively. In addition, �v alb = φRθcv alb is the albumin’s COP in the vascular
space, whilst Pe = (1 − σ)qfdalb/D is the Péclet number with D [s−1m−1]
denoting albumin’s diffusion constant in water. The calculation of Pe assumes that
albumin moves at the velocity v = (1 − σ)qf across the capillary wall, where
σ and qf denote Staverman’s osmotic reflection coefficient and the filtration flux,
respectively. Equation (2.54) may easily be adapted to proteins other than albumin.

2.4.2.5 The Non-linear Filtration Law
Albumin is the main contributor to osmosis in the microcirculation, and �� in
Starling’s filtration model (2.51) may therefore be approximated by (2.54), which
then yields the relation

qf = Lp

[
�p − σ 2�v alb

1 − ξ
1 − σξ

]
; ξ = exp[Pe(L/dalb)] . (2.55)

Given the Péclet number Pe = (1 −σ)qfdalb/D, the expression (2.55) is implicit in
the filtration flux qf. Fig. 2.31 plots it against the transcapillary hydrostatic pressure
�p, where the properties in Table 2.10 have been used. The plot illustrates the non-
linearity between qf and �p. It is caused by the second term at the right side of
Eq. (2.55)1 and determines the diffusion-related contribution to �p. Diffusion is
only significant at small Péclet numbers, whilst at high Péclet numbers, this term

21Jacobus Henricus van ’t Hoff, Jr., Dutch physical chemist, 1852–1911.
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Fig. 2.31 Filtration flux qf
in relation to transcapillary
hydrostatic pressure �p, as
predicted by the non-linear
filtration model (2.55). At
high positive �p, the vessel’s
hydraulic conductivity Lp
determines exchange,
whereas almost no flux
appears at negative �p
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Table 2.10 Set of parameters used in the non-linear filtration model (2.55)

Diffusion coefficient D for albumin in water 1.0·10−14 m−2s−1

Thickness of the capillary wall L 2.0·10−6 m

Colloid Osmotic Pressure (COD) in the vascular space �v alb 28.0 mmHg

Hydraulic conductivity of the capillary wall Lp 1.5·10−9 m s−1mmHg−1

Staverman’s osmotic reflection coefficient σ 0.95

vanishes, and the relation between qf and �p is fully determined by the hydraulic
conductivity Lp of the wall. The curve in Fig. 2.31 is therefore linear at high
transcapillary hydrostatic pressures.

The non-linear filtration model (2.55) holds for steady-state conditions—given
enough time for the albumin concentration to settle down, steady-state conditions
establish, and the assumptions made to derive (2.54) hold.

Fig. 2.31 shows minimal reabsorption back into the vascular space, conditions
that holds for most, but not all tissues. In the kidney and the intestinal mucosa,
interstitial fluid is continuously renewed by protein-free fluid, which in turn breaks
the dependence of the filtration flux and the solute concentration. The assumptions
made to derive equation (2.54) are then not valid, and fluid flux is best predicted by
Starling’s filtration model (2.51).

2.4.2.6 Two-PoreModels
The filtration flux (2.55) suggests minimal reabsorption at the venous side of
capillaries [338], which is confirmed by experimental data in many tissues [371].
The lack of reabsorption backs into the vascular system, making it difficult to
reconcile with low in vivo values for whole-body lymph flow rates. A class of
models, known as two-pore models, aim at resolving this shortcoming [464]. Whilst
albumin is not amongst the largest proteins, it still cannot pass the capillary wall
through most pores. Most fluid flux qf occurs through small pores that hinder
albumin transport, whilst large pores that support the advection of albumin transport
only a minute fraction of water through the wall.
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The glycocalyx–cleft model illustrated in Fig. 2.32 is a specific case of a two-
pore model. It assumes that the glycocalyx, not the entire capillary wall, dominates
the filtration properties and represents the effective osmotic barrier. The glycocalyx
almost entirely determines the reflection coefficient σ and the transcapillary COP.
The COP underneath the glycocalyx layer is therefore very low, which in turn yields
levels of net filtration fluxes that would compare to reported lymph drainage rates.

Example 2.14 (Glycocalyx–Cleft Model). Starling’s filtration model (2.51) over-
predicts the filtration flux qf and has therefore been further developed towards the
glycocalyx–cleft model shown in Fig. 2.32. The glycocalyx layer presents a system
of ultra-fine pores in series to the larger pores formed by the endothelial clefts
and thus the spaces between adjacent Endothelial Cells (ECs). Given the strong
washout of albumin upon the filtration flux through the endothelial clefts, albumin
concentration cgc becomes very low underneath the glycocalyx layer. Along the
filtration path three distinct albumin concentrations therefore establish: cv in the
vascular space, cgc underneath the glycocalyx layer, and ci in the interstitial space,
see Fig. 2.32.

Given a L = 3.5 mm long capillary, which wall has the hydraulic conductivity of
Lp = 2.3 · 10−9 s−1mmHg−1m and the Staverman’s osmotic reflection coefficient
σ = 0.8, the glycocalyx–cleft model should be analyzed. In addition, the hydrostatic
pressure pi = −1.0 mmHg and the Colloid Osmotic Pressure (COP) �i =
3.7 mmHg are approximately constant in the interstitium. Given the vascular space,
the hydrostatic pressure changes linearly from pv art = 9.4 mmHg to pv ven =
6.7 mmHg, and the COP from �v art = 15.8 mmHg to �v ven = 13.9 mmHg
between the capillary’s arterial and venous ends, respectively.

EC

Interstitial space

EC

Vascular spaceGlycocalyx

Endothelial cleft

Fig. 2.32 Schematic illustration of the glycocalyx–cleft model. The glycocalyx layer provides a
system of ultra-fine pores in series to the larger pores formed by the Endothelial Cell (EC) clefts

(a) Compute the fluid flux qf across the capillary wall according to Starling’s
filtration model (2.51).

(b) Given cgc = (1 − α)cv + αci describes the albumin concentration underneath
the glycocalyx layer, compute the fluid flux qf according to the glycocalyx–cleft
model for α = 1.0; 0.9; 0.8. �
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2.5 Summary and Conclusion

Following the introduction of circulatory physiology, this chapter introduced a
number of concepts and models towards the exploration of vascular mechanisms
and system responses. The models have been either 1D in space or time, or
the combination of both dimensions then led to 2D problem descriptions. Such
approaches are simple and very effective in the investigation of how system parame-
ters interact and influence vascular physiology and pathology. We assumed that key
vasculature properties can be described by parameters, such as resistance, capacity,
and hydraulic conductivity. Complex vascular mechanisms have therefore been
lumped into key system parameters towards the description of surrogate vascular
functions. The introduced system parameters can either be directly measured by
tailored experiments or indirectly identified through parameter calibration methods.

The cardiovascular system is equipped with a large number of hemodynamic
regulation mechanisms towards diverting blood flows and optimally perfusing the
body [548]. It has also been hypothesized that in health homeostasis, a functional
crosstalk between central and peripheral segments of the circulation is required for
optimal operation [9]. This communication may be compromised, and a vicious
cycle of minute alterations in central arterial stiffness and peripheral resistance
starts, leading to the dramatic changes in arterial properties observed in response
to diseases and aging—the mother of all diseases.

Whilst the modeling approaches discussed in this chapter fit a number of vascular
applications, they may often fail to provide in-depth explanations of how local
physical mechanisms determine and alter vascular parameters and function. In
addition, the analysis of vascular biomechanical problems may require a multi-
dimensional space-time description of individual vessel segments. This is clearly
beyond the ability of the approaches discussed in this chapter, and the remaining
parts of this book concerns tools and models for the analysis of individual vessel
segments. It allows us then to explore localized vascular phenomena to further
our understanding of vascular function. The up-scaling or homogenization of local
vessel properties determines then the surrogate system parameters used in the
present chapter. The generalized distributed lumped parameter framework recently
reported [376] would be such an example. It allows one to compute the flow and
pressure dynamics in blood vessels upon various sources of energy dissipation
mechanisms.



3ContinuumMechanics

This chapter concerns linear and non-linear Continuum Mechanics. We introduce
the Representative Volume Element (RVE) and provide the kinematic description
for the deformation of a body between its reference and spatial configuration,
respectively. The presentation of strain measures is followed by the introduction
of the Cauchy stress. An analysis of the individual stress/strain components,
coordinate transformations and the derivation of the principal stresses/strains aims
at acquainting the reader with the basic concepts of tensor analysis. We then use
the Piola transformation to introduce the first and second Piola-Kirchhoff stresses,
respectively. Motivated by the objective description of rate effects, material time
derivatives of strains and stresses are developed. In addition, we introduce a number
of constitutive models that cover linear, non-linear, finite strain and viscoelastic
descriptions. Many of which concern the description of an incompressible material
– the stress then contains a Lagrange pressure contribution. Two sections of this
chapter address the general principles of Continuum Mechanics. The reader is
first familiarized with Free Body Diagrams (FBD), mass conservation, momentum
balance, the first and second laws of thermodynamic, Maxwell transport and
localization, as well as the strong and weak forms of the Boundary Value Problem
(BVP). Concepts towards the description of damage and failure are then discussed,
and a summary concludes the chapter.

The original version of this chapter was revised: ESM has been added. The correction to this
chapter is available at https://doi.org/10.1007/978-3-030-70966-2_8
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3.1 Introduction

In the previous chapter, we used lumped parameter models and other low-
dimensional descriptions in the exploration of the vasculature system—a small
number of parameters represented key system features, such as resistance, capacity,
and hydraulic conductivity. A number of investigations, such as the study of many
vascular diseases, however require a more localized approach and continuum
mechanics represents then a more powerful analysis tool.

Continuum mechanics is a well developed discipline with plenty of excellent and
comprehensive textbooks [53,185,271,354,401]. The present chapter covers linear
and non-linear continuum approaches for solid mechanical and fluid mechanical
applications. It is self-consistent and develops all knowledge to solve a wide range
of vascular biomechanical problems. The in-depth understanding of continuum
mechanics is not only fundamental to the analytical solution of vascular problems,
but also for the effective use of advanced numerical approaches, such as the Finite
Element (FE) method.

The back bone of continuum mechanics is the introduction of the Representative
Volume Element (RVE) and thus the description of a material’s continuum proper-
ties. The RVE should be large enough to allow a homogenized characterization of
material properties, but at the same time, the RVE should be much smaller than
the characteristic dimension of the vascular problem. A problem to be analyzed
by continuum mechanics must therefore allow to separate at least two scales: (i)
the global scale, at which the vascular problem is resolved by a discretization
method such as the FE method, and (ii) the local scale, at which all heterogeneity is
homogenized through the RVE. Vascular tissue, and to so some extend also blood,
shows a hierarchical structure that may challenge such separation of scales.

3.2 Kinematics

We consider a continuous body that occupies the reference configuration �0 within
the Cartesian coordinate system {e1, . . . , endim}, where ndim denotes the problem’s
spatial dimension. The body moves in space, and given the time t , it occupies
the spatial configuration �. The motion χ(X, t) maps a material particle from its
reference position X into its spatial (or current) position x(t) = χ(X, t), see Fig. 3.1.
The material particle’s position x(t) fully describes a Cauchy1 or Boltzmann2

continuum. Higher-order continua, such as the Cosserat3 continuum, use in addition
to the position x(t), also the rotation of the particle.

1Augustin-Louis Cauchy, French mathematician and physicist, 1789–1857.
2Ludwig Eduard Boltzmann, Austrian physicist and philosopher, 1844–1906.
3Eugène-Maurice-Pierre Cosserat, French mathematician and astronomer, 1866–1931.
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Fig. 3.1 The motion χ(X, t)
maps the body from its
reference configuration �0 to
its spatial configuration �

3.2.1 Deformation Gradient

At time t , the deformation in the vicinity of a particle, is defined by the deformation
gradient

F(X, t) = Gradχ(X, t) = ∂χ(X, t)/∂X ; FiJ = ∂χi/∂XJ . (3.1)

It contains information of the rigid body motion as well as the deformation of the
material particle and satisfies detF > 0 to avoid self-penetration of the continuum.

The deformation gradient’s eigenvalue representation reads

F = λi n̂i ⊗ N̂i ; i = 1, . . . , ndim ,

where λi denotes the i-th principal stretch. The unit vectors n̂i and N̂i represent the
i-th principal stretch directions in the spatial � and reference �0 configuration,
respectively. The deformation gradient F is therefore a two-point tensor that
“connects” � with �0. This is also indicated by its index notation FiJ—the lower
case index i relates to �, whilst the upper case index J relates to �0.

3.2.2 Multiplicative Decomposition

Any motion χ(X) may be split into a number of incremental motions χ i; i =
1, . . . , n, each of which successively applied, and χ(X) = χn(χn−1(· · · χ1(X) · · · ))
then yields the total motion. The multiplicative decomposition

F(X) = ∂χ(X)/∂X = FnFn−1 · · ·F1(X) (3.2)

reflects then the motion, where the total deformation gradient is the product of
the incremental deformation gradients Fi = ∂χ i (X)/∂χ i−1(X) ; i = 1, . . . , n,
respectively.
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Fig. 3.2 Polar decomposition of the local motion χ(X). (a) Right polar decomposition χ(X) =
χ rigid(χdefo(X)). (b) Left polar decomposition χ(X) = χdefo(χ rigid(X)). Intermediate configura-
tions are dashed

3.2.3 Polar Decomposition

Any local motion χ(X) may be decomposed into χ rigid and χdefo, mappings
that relate to rigid body motion and deformation, respectively. The right polar
decomposition χ(X) = χ rigid(χdefo(X)) or the left polar decomposition χ(X) =
χdefo(χ rigid(X)) expresses then the total motion of the material particle, see Fig. 3.2.

With (3.1), we may therefore use the right polar decomposition F = RU or the left
polar decomposition F = vQ to express the deformation gradient, where U and
v denote the right and left stretch tensors, respectively. The rotation tensors R,Q
denote the rigid body rotations with the properties R−1 = RT,Q−1 = QT and
detR = detQ = +1.

The eigenvalue representations of the right and left stretch tensors read

U = λiN̂i ⊗ N̂i ; v = λi n̂i ⊗ n̂i ; i = 1, . . . , ndim ,

where λi denotes the principal stretches, whilst n̂i and N̂i are the principal stretch
directions in � and �0. The right and left stretch tensors are therefore one-point
referential and spatial tensors, respectively. It is illustrated by their index notations
UIJ and vij—the upper case indices relate to�0, whilst the lower case indices relate
to �.

3.2.4 Deformation of the Line Element

A line element dL at the position X in �0 may be seen as a fiber segment of a fiber-
reinforced continuum, see Fig. 3.3. The unit direction vector a0(X)with |a0(X)| = 1
denotes its orientation, and the motion χ(X) maps it to its spatial position x in �.
The linear transform a = Fa0, with F denoting the deformation gradient, specifies
the transformation of the line element, and

λa = dl

dL
= |Fa0|

|a0| =
√
a0FTFa0 = √

A : C = √I4 = |a| (3.3)
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Fig. 3.3 Deformation of the
line element during the
motion χ(X) between the
reference and spatial
configurations �0 and �,
respectively. The unit
direction vector a0 describes
the orientation of a fiber
segment at the position X in
�0

then determines the stretch of the fiber segment. Here, C = FTF denotes the right
Cauchy–Green4 strain (see Sect. 3.2.7.2), whilst A = a0 ⊗ a0 is a structural tensor
and reflects the structure of the fiber-reinforced continuum at the position X. In (3.3),
I4 = C : A represents an invariant that is formed by the symmetric second-order
tensors C and A. It is commonly denoted as the fourth invariant, in addition to the
standard three invariants of a second-order tensor in 3D, see Appendix A.7.

3.2.5 Deformation of the Volume Element

Let us consider the referential volume element dV = dX1dX2dX3 that represents
a 3D material particle at the position X in �0, see Fig. 3.4. The motion χ(X) maps
the particle to its spatial configuration x, and it deforms from a cuboid in �0 into a
parallelepiped in �. The particle’s spatial volume reads

dv = (dx1 × dx2) · dx3 = (FdX1 × FdX2) · FdX3

=
⎛

⎝

⎡

⎣
F11

F21

F31

⎤

⎦×
⎡

⎣
F12

F22

F32

⎤

⎦

⎞

⎠ ·
⎡

⎣
F13

F23

F33

⎤

⎦ dX1dX2dX3 = detFdV ,

where

dv = JdV (3.4)

expresses the volume deformation, and J = detF then denotes the volume ratio. It
implies the condition detF > 0 of the deformation gradient (3.1) to avoid a negative
volume element dv from a self-penetrating continuum.

3.2.6 Deformation of the Area Element

Let us consider the referential area vector dS = NdS that represents the area
element dS at the position X in �0, see Fig. 3.5. The motion χ(X) maps it to
ds = nds in the spatial configuration.

4George Green, British mathematical physicist, 1793–1841.
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Fig. 3.4 Deformation of the
volume element during the
motion χ(X) between the
reference and spatial
configurations �0 and �,
respectively. The cuboid of
the volume dV in �0 deforms
towards the parallelepiped of
the volume dv in �

Fig. 3.5 Deformation of the
area element during the
motion χ(X) between the
reference and spatial
configurations �0 and �,
respectively. The square of
area dS in �0 deforms
towards the parallelogram of
area ds in �. The
corresponding area vectors
are denoted by dS and ds,
respectively

We may use the spatial volume element dv = dx3 · ds = FdX3 · ds towards the
derivation of the relation between dS and ds. Given the volume ratio (3.4), it reads
dv = JdV = JdX3 · dS, and

ds = JF−TdS ; dsi = JF−1
Ai dSA (3.5)

then expresses the relation between the spatial and referential area elements. Whilst
this expression is known as Nanson’s5 formula, it has been used earlier by others,
such as Piola.6

Example 3.1 (Deformation of Line, Volume, and Area Elements). The homogenous
deformation gradient

F =
[

3 1
0 1.3

]
(3.6)

5Edward J. Nanson, British mathematician, 1850–1936.
6Gabrio Piola, Italian mathematician, 1794–1850.
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specifies the mapping of a 2D body between its reference �0 and spatial �
configurations, respectively. Given a homogenous deformation, all particles of the
body are equally deformed, and F is therefore constant throughout the body.

(a) The unit direction vector a0 = [0.9553 0.2955]T determines the orientation of
elastic fibers in �0 that are embedded in the body. Compute the stretch within
such fibers, where the assumption of affine deformation between the fibers and
the continuum may be used.

(b) Given the body has the referential area A = 2.0 m2, compute its spatial area
a. Note that the area in 2D corresponds to the volume in 3D and therefore the
transformation of the volume element is to be applied.

(c) Consider the normal vector dS = [0.7 dx1 3.2 dx2]T that is perpendicular to
a line element dx in �0 and compute the corresponding normal vector ds in
�. Note that a line element in 2D corresponds to the area element in 3D and
therefore the transformation of the area element is to be applied. �

3.2.7 Concept of Strain

Strain is a dimensionless measure of the deformation of the material particle—
it expresses the average deformation over the RVE. Normal strain reflects the
change in length, whilst shear strain expresses the change in angle between pairs
of lines initially perpendicular to each other, see Fig. 3.6. Normal strains and shear
strains are collectively represented by a second-order strain tensor. In 3D, such
a strain tensor has six independent components. With strains being normalized
displacements, the use of different references results in different strain definitions.

As outlined in Sect. 3.2.3, the motion χ(X) can always be split into rigid body
motion and deformation-related motion. Given both are small, a geometrically
linear analysis may be carried out, whilst, if both are finite, a geometrically
exact analysis is needed. Some problems may be determined by a small particle
deformation on top of large rigid body motions; a finite rotation analysis may then
be used.

Fig. 3.6 Shape changes of a
material particle due to (a)
normal and (b) shear strains.
The dashed line indicates the
material particle’s
undeformed configuration,
whilst u1 and u2 denote the
respective displacements
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3.2.7.1 Engineering, or Linear Strain
At small deformations, the body’s undeformed and deformed configurations are
almost identical, �0 ≈ �, and the engineering (or linear) strain is an adequate
strain measure.

Figure 3.6 illustrates the deformation of the material particle due to normal
and shear strains, respectively. For illustration purposes the displacements u1 and
u2 have been magnified. Their normalized counterparts determine the engineering
normal strain ε11 = u1/L1 and the engineering shear strain ε12 = (u1/L2 +
u2/L1)/2. Given an infinitesimal small material particle, and thus the kinematics
at the limit L1, L2 → 0, the engineering strain tensor reads

ε = 1

2

[
gradu + (gradu)T

]
. (3.9)

It represents a symmetric second-order tensor, which in Cartesian coordinates has
the components εij = (

∂ui/∂xj + ∂uj /∂xi
)
/2; i, j = 1, . . . , ndim, where ndim

denotes the spatial dimension. The eigenvalue representation ε = εiN̂i ⊗ N̂i; i =
1, . . . , ndim expresses the engineering strain through the principal stains εi and
principal strain directions N̂i .

The individual strain components cannot be independent from each other, and
they have to satisfy the strain compatibility conditions. Given a 2D problem in
Cartesian coordinates, the strain compatibility reads

∂2ε11

∂x2
2

− 2
∂2ε12

∂x1∂x2
+ ∂2ε22

∂x2
1

= 0 ,

whilst in 3D six such compatibility conditions are to be satisfied [185].

3.2.7.2 Non-linear Strain Measures
At finite deformations, the body’s reference configuration �0 is different from its
spatial configuration �, and non-linear strain measures are to be used to correctly
express the strain of the material particle. Different non-linear strain measures may
be defined and the most common ones are listed below.

The right Cauchy–Green strain

C = FTF ; CIJ = FaIFaJ (3.10)

is a strain tensor that is formulated with respect to the body’s reference configuration
�0. It is the square of the right stretch tensor U. Given a ndim-dimensional problem,
C = λ2

i N̂i ⊗ N̂i; i = 1, . . . , ndim expresses therefore its eigenvalue representation,
where λi and N̂i denote the principal stretches and the principal stretch directions
in �0, respectively.
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The left Cauchy–Green strain

b = FFT ; bij = FiAFjA (3.11)

is a strain tensor that is formulated with respect to the body’s spatial configuration
�. It is the square of the left stretch tensor v, and its eigenvalue representation
therefore reads b = λ2

i n̂i ⊗ n̂i; i = 1, . . . , ndim with n̂i denoting the principal
stretch directions in the spatial configuration �. The right and left Cauchy–Green
strains are relative strain measures, and given a strain-free body, C = b = I holds.

The Green–Lagrange7 strain

E = 1

2
(C − I) = 1

2
(FTF − I) ; EIJ = 1

2
(FaIFaJ − δIJ ) (3.12)

is a strain tensor that is formulated with respect to the body’s reference configuration
�0, and δIJ denotes the Kronecker8 delta. The Green–Lagrange strain’s eigenvalue
representation reads E = EiN̂i ⊗ N̂i; i = 1, . . . , ndim, where Ei = (λ2

i − 1)/2
expresses the relation between the eigenvalues Ei and the principal stretches λi .

Another often used strain measure is the Euler–Almansi9 strain

e = 1

2
(I − b−1) = 1

2
(I − F−TF−1) ; eij = 1

2
(δij − F−1

Ai F
−1
Aj ) . (3.13)

It is formulated with respect to the spatial configuration �, and its eigenvalue
representation reads e = ei n̂i ⊗ n̂i; i = 1, . . . , ndim, where the principal strains ei
and the principal stretches λi are related by ei = (1−λ−2

i )/2. The Green–Lagrange
strain and the Euler–Almansi strain are absolute strain measures, and given a strain-
free body, E = e = 0 holds. At the small-strain limit, both strain measures approach
the engineering strain, and thus E → ε; e → ε holds for � ≈ �0.

Example 3.2 (Non-linear Deformation and Strain Measures). The 2D motion x =
χ(X, t) = [(1.5X2

1 +X2)t 1.3X2t]T determines the mapping between the reference
configuration �0 and the spatial configuration� of a continuum body, where X and
t denote the referential particle position and the time, respectively.

(a) Compute the deformation gradient F, and discuss its physical validity in space
X and time t .

(b) Compute the velocity gradient, a quantity defined by l = ḞF−1.
(c) Compute the right Cauchy–Green strain C, the left Cauchy–Green strain b, the

Green–Lagrange strain E, and the Euler–Almansi strain e. �

7Joseph-Louis Lagrange, Franco-Italian mathematician and astronomer, 1736–1813.
8Leopold Kronecker, German mathematician, 1823–1891.
9Emilio Almansi, Italian mathematician, 1869–1948.
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Example 3.3 (Linear Versus Non-linear Strain Measures). A 2D rigid body rotation
R maps a material particle from its reference position X to its spatial position x =
RX.

(a) Introduce the displacement vector u = x−X of the transformation and compute
the engineering strain ε. Discuss the validity of this strain measure.

(b) Compute the Green–Lagrange strain E and discuss the result. �

Example 3.4 (Independence of Strain Measures from Rigid Body Rotation). Use
the polar decomposition theorem and show that the below listed strain measures
are independent from the rigid body rotation that is superimposed on the spatial
configuration � of a body.

(a) Right and left Cauchy–Green strains
(b) Green–Lagrange and Euler–Almansi strains �

Example 3.5 (Simple and Pure Shear Deformation Kinematics). A unit cube of
incompressible material moves from its reference configuration �0 to its current
configuration � in response to the shear stress τ that acts at its faces, see Fig. 3.7a.
The corresponding motion χ(X) may be presented within the principal stretch
coordinate system {̂e1, ê2, ê3} as it is shown in Fig. 3.7b. Given small deformation,
this deformation can also be expressed within the coordinate system {e1, e2, e3} that
is rotated at the angle π/4, see Fig. 3.7c. The deformation kinematics illustrated in
Fig. 3.7b,c are commonly called pure shear and simple shear, respectively.

Fig. 3.7 Shear deformation
kinematics. (a) The shear
stress τ causes the motion
χ(X) that maps the unit cube
from its reference �0 to its
spatial configuration �. (b)
Pure shear kinematics. (c)
Simple shear kinematics

(a) Consider pure shear kinematics and describe the corresponding motion χ̂ps and
deformation gradient F̂ps.

(b) Consider simple shear kinematics and describe the corresponding motion χ ss
and deformation gradient Fss.
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(c) Consider pure shear kinematics and describe the corresponding motion χps and
deformation gradient Fps.

(d) Given small strains, show that pure shear and simple shear yield the same right
Cauchy–Green strain.

(e) Show that pure shear, but not simple shear is free of rigid body rotation. �

3.2.7.3 Particular Strain States
Some applications may not support an unconstrained development of the defor-
mation, which then results in distinct strain states. Plain strain is such a case
and determined by the components ε13 = ε23 = ε33 = 0 of the engineering
strain ε. Given non-linear strain measures, equivalent conditions hold. Rotational
symmetry defines another particular strain state, where no shear strain in the plane
perpendicular to the axis of symmetry is able to develop.

3.3 Concept of Stress

Stress represents the load that acts at the material particle in average over the RVE.
It expresses the force that passes through the material particle, divided by the area
through which it passes. The force dPn that acts perpendicular to the area ds leads
to the normal stress σ11 = dPn/ds [Pa], whilst the force dPs that acts in parallel
to the area ds leads to the shear stress σ12 = dPs/ds [Pa], see Fig. 3.8a,b. Given
a general load case, normal stress appears together with shear stress, and the state
of stress may be represented by a second-order tensor—the Cauchy stress σ . The
balance of angular momentum

σ = σT (3.19)

requires the Cauchy stress tensor to be symmetric.
Given the 3D Cartesian coordinate system {e1, e2, e3}, three normal stress

components σ11, σ22, σ33 together with three shear stress components σ12, σ23, σ13
define the stress state of the material particle, see Fig. 3.8c. They act at the faces
that are perpendicular to the Cartesian base vectors ei . The notation σij denotes the
stress component that acts at the face perpendicular to ei and that points into the

Fig. 3.8 Definition of stress.
(a) Normal stress
σ11 = dPn/ds, and (b) shear
stress σ12 = dPs/ds. (c) The
normal stress components
σ11, σ22, σ33 and the shear
stress components
σ12, σ23, σ13 determine the
traction vectors t1, t2, t3,
respectively



102 3 ContinuumMechanics

Table 3.1 Basic 3D stress states

Simple tension σ11 = σ and σij = 0 otherwise

Biaxial tension σ11 = σ1, σ22 = σ2 and σij = 0 otherwise

Plane stress σ13 = σ23 = σ33 = 0 and σij �= 0 otherwise

Simple shear� σ12 = τ and σij = 0 otherwise

Pure bending σ11 = cx2 and σij = 0 otherwise

Pure torsion�� σ12 = g(r) and σij = 0 otherwise

� Corresponds to the deformation kinematics “simple shear” at small deformations.
�� The radius r2 = x2

1 + x2
2 is the distance from the center of rotation, and g(r) is a function of r .

direction ej , see Fig. 3.8c. The sum of the stress components that act at the i-th
face of the material particle determines the traction vector ti with i = 1, . . . , ndim
denoting the problem’s spatial dimension. A stress state σ has to satisfy the local
equilibrium conditions (see Sect. 3.6.2), and some basic stress states that are a priori
at equilibrium are listed in Table 3.1. At finite deformations, the body’s reference
configuration �0 differs from its spatial configuration �, and stress tensors other
than the Cauchy stress may be defined, see Sects. 3.3.7 and 3.3.8.

Example 3.6 (Symmetry of the Cauchy Stress Tensor). Figure 3.9 shows the spatial
configuration � of a material particle at homogeneous stress and with respect to the
2D Cartesian coordinate system {e1, e2}. The material particle is at rest and free of
body forces.

Fig. 3.9 Material particle
loaded by the normal stress
σ11, σ22 and the shear stress
σ12, σ21

(a) Use the balance of linear momentum, also known as Euler’s first principle, and
show that the particle is at linear equilibrium.

(b) Use the balance of angular momentum, also known as Euler’s second principle,
and show that the particle is at angular equilibrium given the Cauchy stress
tensor is symmetric σ = σT. �
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Fig. 3.10 The traction
vector t = σn acts at the area
element ds perpendicular to
the unit normal n. It
maintains the stress σ

underneath a hypothetical cut
through the spatial
configuration � of a
continuum body

Hypothetical 
cut plane 

3.3.1 Cauchy Stress Theorem

We consider a body at its spatial configuration �, where the Cauchy stress σ (x)
acts at a material particle that is located at the spatial position x. A hypothetical
cut through this body would release the stress underneath the cut, and towards
reestablishing the stress state of before cutting, the traction t(x) is to be applied, see
Fig. 3.10. The traction t acts at the area element ds that is perpendicular to the unit
normal vector n(x), and according to Cauchy’s stress theorem, the linear transform

t(x) = σ (x)n(x) ; ti = σiana , (3.20)

provides the relation between the traction t and the Cauchy stress σ . It determines
the traction t needed to counterbalance the stress underneath the hypothetical cut.

3.3.2 Principal Stresses

Whilst the stress state σ is independent from the coordinate system, its components
σij change when changing the coordinate system. It is always possible to find
a coordinate system {̂n1, . . . , n̂ndim}, within which the shear stress components
disappear, and σij = 0 for i �= j holds. Such a stress state is called principal
stress state, and the traction vectors ti; i = 1, . . . , ndim are in parallel to the
corresponding base vectors n̂i of the coordinate system, see Fig. 3.11. The condition
t = λ̂n then holds, where λ = |t| is the magnitude of the traction vector and
represents the normal stress at the face of the material particle. Given Cauchy’s
stress theorem (3.20), this condition then reads t = σ n̂ = λ̂n and may be rewritten
as a classical eigenvalue problem

(σ − λI)̂n = 0 . (3.21)

Given the symmetry of the Cauchy stress tensor σ = σT, the statement (3.21)
represents a symmetric eigenvalue problem with ndim real solutions (λi, n̂i ); i =
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Fig. 3.11 Material particle
at principal stress within the
coordinate system
{̂n1, n̂2, n̂3} of principal stress
directions

1, . . . , ndim. In addition, the eigenvectors are perpendicular to each other, n̂i · n̂j =
δij , where δij denotes the Kronecker delta. The eigenvalues λi and the eigenvectors
n̂i are then the principal stresses and principal stress directions of the stress state σ .

Given a 3D problem, the roots of the characteristic equation λ3−I1λ2+I2λ−I3 =
0 are the solution of the eigenvalue problem (3.21), where the three stress invariants

I1 = trσ = σ11 + σ22 + σ33 ,

I2 =
[
(trσ )2 − trσ 2

]
/2

= σ11σ22 + σ11σ33 + σ22σ33 − σ 2
12 − σ 2

13 − σ 2
23 ,

I3 = detσ ,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3.22)

have been introduced.
Most commonly, the principal stresses are denoted by σi (instead of λi), and

σ = σi n̂i ⊗ n̂i ; i = 1, . . . , ndim (3.23)

denotes then the eigenvalue representation of the stress σ .

3.3.3 Coordinate Rotation and Stress Components

We may consider the rod shown in Fig. 3.12 and explore the stress during coordinate
system rotations. The rod may be seen as 2D continuum, and in response to the
external load P , the internal stress components σ11, σ22, σ12 develop. The linear
momentum balance allows us to express the stress tensor by

σ =
[
σ11 = P/a σ12 = 0
σ12 = 0 σ22 = 0

]
,

where the components σ11, σ22, σ12 are taken with respect to the Cartesian coordi-
nate system {e1, e2}, and a denotes the rod’s cross-section. The only non-zero stress
component is σ11 = P/a [Pa], a stress that acts along the e1 direction. The inset
in Fig. 3.12a shows the material particle and the corresponding stress components
σ11, σ22, σ12 at its faces. They are aligned with the coordinate base vectors e1, e2.
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Fig. 3.12 2D continuum at
simple tension. (a) Stress
components acting at a
material particle with respect
to the Cartesian coordinate
system {e1, e2}. (b) Stress
components acting at the
plane ε that is rotated by the
angle α against the e1
direction

We can now explore the stress components at the face ε that is rotated by the angle
α against the e1 base vector, see Fig. 3.12b.

The normal stress σn and the shear stress τn act at ε, a plane determined by the
unit normal vector n = [cosα − sinα]T. The Cauchy stress theorem (3.20) allows
us then to compute the traction vector

t = σn = [ (P/a) cosα 0
]T

that acts at the face ε, and basic vector algebra yields the normal stress

σn = t · n = (σn) · n = (P/a) cos2 α . (3.24)

Given the tangential vector m = [sinα cosα]T at the face ε, the vector subtraction

τnm = t − σn = (P/a) cosα
[

1 − cos2 α sinα cosα
]T

allows us to express the shear stress

τn = (τnm) · m = (P/a) cosα sinα (3.25)

that acts at the face ε.
We may introduce a diagram with the x-axis and y-axis denoting the normal

stress (3.24) and shear stress (3.25), respectively. Given such a stress space, the
curve (σn(2α), τn(2α)) = (P/a cos2 α, P/a cosα sinα) determines a circle, known
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Fig. 3.13 Stress state at the rotated face ε in (a) the physical space and (b) Mohr’s stress circle in
the stress space

as Mohr’s10 stress circle, see Fig. 3.13. The clockwise rotation of α in the physical
space corresponds to the counter-clockwise rotation of 2α in the stress space.

Example 3.7 (Cauchy Stress State in 2D). A material particle is loaded by the
Cauchy stress

σ =
[−5 3

3 10

]
[MPa]

with respect to the Cartesian coordinate system {e1, e2}.

(a) Sketch the stress components that act at the faces of the material particle.
(b) Draw Mohr’s stress circle and determine the principal stresses σ1, σ2 together

with the principal stress directions n̂1, n̂2.
(c) Compute σ1, σ2 and n̂1, n̂2 through the solution of the corresponding eigenvalue

problem.
(d) Compute the coordinate transformation R that rotates the Cartesian base vectors

e1, e2 into the principal stress directions n̂1, n̂2.
(e) Draw a general conclusion regarding the stress state, and the components of the

stress tensor, upon coordinate transformation. �

3.3.4 Isochoric and Volumetric Stress

For some applications, it is convenient to split the stress

σ = σ + σ vol = σ + (trσ/ndim︸ ︷︷ ︸
−p

)I (3.27)

10Christian Otto Mohr, German civil engineer, 1835–1918.
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in isochoric (or deviatoric) σ = devσ and volumetric (or hydrostatic) σ vol = −pI
contributions, where p denotes the negative hydrostatic pressure, and ndim is the
spatial dimension of the problem. The description of ductile materials would be
one such example. Plastic yielding depends on the isochoric stress σ rather than on
the total stress σ , and the invariants of σ are therefore of particular interest in the
description of ductile materials. Given the definition of σ , its first invariant J1 = trσ
is identically zero, whilst the others may be expressed through

J2 = 1/2[(trσ )2 − trσ 2] = −1/2σklσ lk = −I 2
1 /3 + I2 ;

J3 = detσ = 2I 3
1 /27 − I1I2/3 + I3 ,

where the stress invariants I1, I2, and I3 according to the definitions (3.22) have
been used.

3.3.5 Octahedral Stress and vonMises Stress

The octahedral stress is the stress that acts at the octahedral plane ε, a plane
perpendicular to n = (1/

√
3)[1 1 1]T in the principal stress coordinate system

{̂n1, n̂2, n̂3}, see Fig. 3.16a. Given the Cauchy stress theorem (3.20), the normal
stress σoct and the shear stress τoct at ε read

σoct = t · n = (σn) · n = 1

3
(σ1 + σ2 + σ3) = 1

3
I1 = −p ;

τoct =
√
t · t − σ 2

oct =
√

1

3
(σ 2

1 + σ 2
2 + σ 2

3 )−
1

9
(σ1 + σ2 + σ3)2

= 1

3

√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2 = 1

3

√
2I 2

1 − 6I2 =
√

−2

3
J2 ,

where σi; i = 1, 2, 3 denotes the principal stresses of σ .

Fig. 3.16 (a) Octahedral
normal stress σoct and shear
stress τoct in the principal
stress space {̂n1, n̂2, n̂3}. (b)
The cylinder of the radius
r = √

2/3 σM around the
hydrostatic axis
σ1 = σ2 = σ3 describes a
stress state of constant
von Mises stress σM in
{̂n1, n̂2, n̂3}
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The octahedral shear stress τoct is a particularly important stress. It is often
used towards assessing the risk of plastic failure (yielding) of a ductile material.
Given simple tension, σ11 = σ and σij = 0 for all other stress components, the
octahedral shear stress then yields τoct = √

2/3 σ . The von Mises11 stress σM scales
the octahedral shear stress τoct, such that σM = σ holds at simple tension. Given a
general 3D stress state, the von Mises stress then reads

σM = 3√
2
τoct = √−3J2

= 1√
2

√
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ11 − σ33)2 + 6(σ 2

12 + σ 2
23 + σ 2

13)

= 1/
√

2
√
(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2 , (3.28)

where σij ; i, j = 1, 2, 3, are the components of σ with respect to the Cartesian
coordinate system {e1, e2, e3}, whilst the principal stresses are denoted by σi . In
the principal stress space {̂n1, n̂2, n̂3}, a constant von Mises stress σM prescribes a
cylinder of radius r = √

2/3 σM around the hydrostatic axis σ1 = σ2 = σ3, see
Fig. 3.16b.

Example 3.8 (Octahedral Stress and von Mises Stress). A material particle is
loaded at the Cauchy stress

σ =
⎡

⎣
10 5 0
5 25 5
0 5 −14

⎤

⎦ [MPa]

with respect to the Cartesian coordinate system {e1, e2, e3}.

(a) Compute the second invariant J2 of the deviatoric stress σ .
(b) Compute the octahedral normal σoct and shear τoct stresses.
(c) Compute the von Mises stress σM. �

Example 3.9 (Octahedral and von Mises Stresses of Basic Stress States). Consider
a continuum body at (i) simple tension, (ii) equi-biaxial tension, and (iii) simple
shear.

(a) Use the matrix notation to express these stress states with respect to the
Cartesian coordinate system {e1, e2, e3}.

(b) Compute the von Mises stress σM and the octahedral shear stress τoct of the
aforementioned stress states. �

11Richard von Mises, Austrian–Hungarian mathematician, 1883–1953.
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3.3.6 Cauchy Stress in Rotated Coordinates

The Cauchy stress relates the force dt = tds to the area element ds = nds, where
the traction vector t and the normal n are defined in the spatial configuration �
of the continuum body. At the time t , � is the physically existing configuration,
and the Cauchy stress is therefore also called “true stress”. Given the rotation of
the coordinate system, or alternatively the rotation of �, the components σij of the
Cauchy stress tensor σ change. Towards the exploration of this transformation we
consider the rigid body rotation R that maps the body’s spatial configuration� into a
new spatial configuration �̃, see Fig. 3.17. The traction vector t and the unit normal
vector n rotate into t̃ = Rt and ñ = Rn, respectively. The application of Cauchy’s
stress theorem (3.20) to the rotated configuration �̃ then reads t̃ = σ̃ ñ = Rt =
σ̃Rn, and therefore t = RTσ̃Rn holds. The comparison of this result with (3.20)
reveals that

σ̃ = RσRT ; σ̃ij = RiaσabRjb (3.30)

determines the transformation of the Cauchy stress tensor with respect to the
rigid body rotation R. The Cauchy stress transforms therefore according to the
transformation of a spatial one-point tensor.

3.3.7 First Piola–Kirchhoff Stress

The first Piola–Kirchhoff,12 or engineering stress P, relates the force dt = tds
in the spatial configuration � to the area element dS = NdS in the reference
configuration �0, see Fig. 3.18a. Cauchy’s stress theorem (3.20) together with
Nanson’s formula (3.5) then yields dt = σJF−TNdS = PNdS and reveals the
relation

Fig. 3.17 Change of the
traction vector t and the
normal vector n under rigid
body rotation R of the body’s
spatial configuration from �

to �̃

12Gustav Robert Kirchhoff, German physicist, 1824–1887.
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e3

e2

e1

e3

e2

e1

N Nn

��(X) ��(X)

n dt = tdsdt = tds

dS dS

Ω0 Ω Ω0 Ω

ds ds

dt = tds
dT = F–1tds

Fig. 3.18 Definition of (a) the first Piola–Kirchhoff stress P through the relation dt = PNdS, and
(b) the second Piola–Kirchhoff stress S through the relation dT = SNdS

P = JσF−T ; PiI = JσiaF
−1
Ia . (3.31)

It is known as the first backward Piola transform of the Cauchy stress and relates
the first Piola–Kirchhoff stress P to the Cauchy stress σ .

The first Piola–Kirchhoff stress is a two-point tensor, and it relates to the spatial
configuration� as well as to the reference configuration�0. Given the principal first
Piola–Kirchhoff stresses Pi; i = 1, . . . , ndim, its eigenvalue representation reads
P = Pi n̂i ⊗ N̂i , where n̂i and N̂i denote the eigenvectors in � and �0, respectively.
The first Piola–Kirchhoff stress is a two-point tensor, and the question regarding its
symmetry does not make much sense—one cannot compare referential N̂i to spatial
n̂i base vectors. Nevertheless, the coefficients of the first Piola–Kirchhoff stress may
be represented by a matrix, and such a matrix would not be symmetric.

A rigid body rotation R of the body’s spatial configuration � influences only
one “leg” of the first Piola–Kirchhoff stress. It transforms only the traction vectors
t̃ = Rt, but not the normal N of the referential area element. The rotated first Piola–
Kirchhoff stress therefore reads P̃ = RP.

3.3.8 Second Piola–Kirchhoff Stress

Towards the derivation of the second Piola–Kirchhoff stress S, the force dt = tds
in the spatial configuration � is “pulled-back,” which then defines the force dT =
F−1tds in the reference configuration�0, see Fig. 3.18b. The force dT is then related
to the area element dS = NdS in �0 and defines the second Piola–Kirchhoff S.
Given Cauchy’s stress theorem (3.20) together with Nanson’s formula (3.5), the
expression dT = F−1σJF−TNdS = SNdS holds, and the relation

S = JF−1σF−T ; SIJ = JF−1
Ia σabF

−1
Jb (3.32)
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may be deduced. It is known as the second backward Piola transform and relates
the second Piola–Kirchhoff stress S to the Cauchy stress σ . Given (3.31) and (3.32),
the expression

S = F−1P ; SIJ = F−1
Ia PaJ (3.33)

follows and provides the relation between the first and second Piola–Kirchhoff
stresses.

The second Piola–Kirchhoff stress is a referential one-point tensor that is entirely
defined in the reference configuration �0. Its eigenvalue representation reads
S = SiN̂i ⊗ N̂i , where Si and N̂i , i = 1, . . . , ndim denote the principal second
Piola–Kirchhoff stresses and eigenvectors in �0, respectively. The definition (3.32)
results in the symmetry of the second Piola–Kirchhoff stress, S = ST, and given
its definition in �0, it is not affected by a rigid body rotation R of the spatial
configuration, S̃ = S.

Example 3.10 (Stress Measures at Finite Deformations). The 2D motion χ(X) =
[3.0X1 + X2 1.3X2]T determines the kinematics of a material particle, and the
Cauchy stress

σ =
[

1 5
5 −10

]
[MPa]

specifies its loading in the spatial configuration �.

(a) Compute the deformation gradient F, the volume ratio J , and the inverse
deformation gradient F−1.

(b) Express the loading of the material particle through the first Piola–Kirchhoff
stress P and the second Piola–Kirchhoff stress S, respectively. �

3.3.9 Implication of Material Incompressibility on the Stress State

Given an incompressible material, the volumetric stress σ vol = −pI with p =
−trσ/ndim denoting the negative hydrostatic pressure, is no longer a function
of the strain (or strain rate) but appears as a Lagrange contribution to enforce
the incompressibility. This property of an incompressible material motivates the
decoupling of the Cauchy stress σ = σ − pI as introduced in Sect. 3.3.4.

Given the second Piola–Kirchhoff stress (3.32) and the incompressibility J = 1,
the decoupled stress representation then reads S = S−pC−1, where S = F−1σF−T

and C = FTF denote the isochoric second Piola–Kirchhoff stress and the right
Cauchy–Green strain, respectively.
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3.4 Material Time Derivatives

The time derivative of a property that is connected to a material particle is called
a material time derivative. We may also see the material time derivative as the
derivative that is “felt” by the material particle. Such derivatives appear in balance
laws, and they are also used to describe the constitutive properties of rate-dependent
materials. The material time derivative has to be objective and thus independent
from the choice of the underlying coordinate system. Given that the body’s spatial
configuration � moves in space, the computation of the material time derivative of
a spatial quantity may be more challenging than of a quantity that is defined in the
body’s fixed reference configurations �0.

3.4.1 Kinematic Variables

3.4.1.1 Velocity Gradient
The spatial gradient of the particle velocity v(x) is called the velocity gradient

l = gradv = ∂v(x, t)
∂x

= ∂v(x, t)
∂X

∂X
∂x

= ḞF−1 ; lij = ḞiAF
−1
Aj , (3.34)

where Ḟ = d(∂χ/∂X)/dt = ∂(dχ/dt)/∂X = Gradv denotes the material time
derivative of the deformation gradient. The velocity gradient specifies how fast two
neighboring points move relative to each other upon the motion χ(X, t). Through
l = w + d, the velocity gradient can be decomposed into the spin tensor w and the
rate of deformation tensor d, respectively.

3.4.1.2 Rate of Deformation
The Green–Lagrange strain E is defined in �0 and its material time derivative reads

Ė = (ḞTF + FTḞ)/2. The multiplication of Ė from the left with F−T and from the
right with F−1 may be seen as the “push forward” of Ė to the spatial configuration
�. It defines the rate of deformation tensor

d = 1

2

(
F−TḞT + ḞF−1

)
= 1

2

(
lT + l

)
; dij = (lj i + lij )/2 , (3.35)

the symmetric part of the velocity gradient (3.34).

3.4.1.3 Spin Tensor
The skew-symmetric part of the velocity gradient (3.34) is the spin tensor

w = 1

2
(l − lT) = 1

2

(
ḞF−1 − F−TḞT

)
; wij = (lj i − lij )/2 . (3.36)
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Fig. 3.19 Rotation of a
material particle at position x.
The angular velocity ω

specifies the particle’s
velocity v = r × ω

The right polar decomposition F = RU allows us to express the spin tensor through

w = ṘRT + 1

2
R
(
U̇U−1 − U−1U̇

)
RT , (3.37)

where the symmetry UT = U of the right stretch tensor and the orthogonality
RRT = I of the rotation tensor have been used. The derivation of (3.37) also
used ṘRT = −RṘT, a relation that directly follows from the time derivative of
the orthogonality RRT = I. Given a rigid body motion, U = I, and the spin tensor
then reads

w = ṘRT =
⎡

⎣
0 −w12 w13

w12 0 −w23

−w13 w23 0

⎤

⎦ =
⎡

⎣
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤

⎦ ,

where ωi; i = 1, 2, 3 denotes the components of the angular velocity ω in 3D, see
Fig. 3.19.

3.4.1.4 Rate of Volume Change
Given Jacobi’s13 formula ∂detF/∂F = JF−T and the definition J = detF of the
volume ratio, J̇ = ∂J/∂F : Ḟ = JF−T : Ḟ = J I : ḞF−1 expresses the rate of
volume change. We may then use the velocity gradient gradv = l = ḞF−1 and
derive the expressions

J̇ = J I : ḞF−1 = J I : l = J I : gradv = Jdivv = J trd , (3.38)

where d = (l + lT)/2 is the rate of deformation tensor, whilst div(•) = I : grad(•)
denotes the divergence operator. With the property trd = C−1 : Ė from Appendix C,
J̇ = JC−1 : Ė yields another alterative expression of the rate of volume change.

Example 3.11 (The Physical Meaning of the Rate of Deformation Tensor). The
homogeneous 2D motion χ(t) has the components

χ1 = x1 = X1 + γX2t ; χ2 = x2 = X2 , (3.39)

a mapping that determines simple shear kinematics, where the scalar γ denotes the
amount of shear.

13Carl Gustav Jacob Jacobi, German mathematician, 1804–1851.
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Fig. 3.20 Simple shear
determines the mapping of
convective vectors between
their reference configurations
in �0 and their spatial
configurations in �. (a) The
vectors m0 and n0 are aligned
and (b) rotated by π/4 with
respect to the Cartesian base
vectors e1 and e2

(a) Compute the rate of deformation tensor d and the spin tensor w that follow from
the motion (3.39).

(b) Consider the convective vectors m and n that are connected to the body and
follow its (homogeneous) motion χ(t). Compute the time derivatives of the
inner products m · n and m · m, and provide physical interpretations of these
quantities.

(c) Study the deformation of the pairs (m0 = [1 0]T,n0 = [0 1]T) and (m0 =
[√2

√
2]T,n0 = [−√

2
√

2]T) of convective vectors, see Fig. 3.20. �

3.4.2 Stress Rates

Stress rates are used in the description of time-dependent physical processes—they
have therefore to be objective. Towards the exploration of their objectivity, let us
consider the spatial configuration �̃ that establishes through the rigid body rotation
R applied to �. Given the Cauchy stress σ in � and the transformation (3.30),

d

dt
σ̃ = ˙RσRT = ṘσRT + Rσ̇RT + Rσ ṘT (3.40)

expresses the time derivative of the Cauchy stress. Given the Cauchy stress is a
spatial one-point tensor, we expect its time derivative also to transform like a spatial
one-point tensor, and thus according to ˙̃σ = Rσ̇RT. The expression (3.40) shows
that said property does not hold, and the time derivative of the Cauchy stress is
therefore not objective and must not be used for the description of physical processes
at finite deformations.

In contrary to the Cauchy stress σ , the second Piola–Kirchhoff stress S is a
referential one-point tensor and independent from a rigid body rotation R of the
spatial configuration �. Its time derivative Ṡ is therefore a priori an objective stress
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rate. Other objective stress rates are the Truesdell14 rate of the Cauchy stress

o
σ= J−1FṠFT = J−1F

[
d
(
JF−1σF−T

)
/dt
]
FT = σ̇ − lσ − σ lT + (trl)σ

or the Jaumann15 rate of the Cauchy stress



σ= σ̇ + σw − wσ

with l = gradv and w = (l−lT)/2 denoting the velocity gradient and the spin tensor,
respectively. The reasoning behind these definitions is given elsewhere [354].

3.4.3 Power-Conjugate Stress and Strain rates

Given different definitions of stress and strain in finite deformation theory, defor-
mation power results from the multiplication of so-called power-conjugate pairs
of stress and strain rate. Here, deformation power refers to the Helmholtz16 free
energy (or strain energy) per unit time and denotes the portion of the material’s
internal power that can be turned into mechanical power. Section 3.5.3 provides
more information of the Helmholtz free energy.

The Coleman17–Noll18 relation (3.129) S = 2∂�/∂C allows us to compute
the second Piola–Kirchhoff stress S, where � [J m−3] denotes the Helmholtz free
energy per unit undeformed material volume, whilst C is the right Cauchy–Green
strain. The deformation power per unit undeformed material volume therefore reads

�̇ = d�

dt
= ∂�

∂C
: dC

dt
= 1

2
S : Ċ , (3.41)

and thus S and Ċ/2 are power-conjugate quantities.
Given the definition (3.33) of the second Piola–Kirchhoff stress together with the

strain definitions (3.10) and (3.12), the alternative expression �̇ = S : Ė = P : Ḟ
follows from (3.41). The second Piola–Kirchhoff stress S is therefore also power-
conjugate to the Green–Lagrange strain rate Ė, whilst the first Piola–Kirchhoff stress
P is power-conjugate to rate of the deformation gradient Ḟ.

Towards the derivation of a power-conjugate pair that relates to the body’s
spatial configuration �, we consider the deformation power �̇ [J s−1] of the entire

14Clifford Ambrose Truesdell III, American mathematician, natural philosopher, and historian of
science, 1919–2000.
15Gustav Jaumann, Austrian physicist, 1863–1924.
16Hermann Ludwig Ferdinand von Helmholtz, German physician and physicist, 1821–1894.
17Bernard D. Coleman, American physician, 1929-date.
18Walter Noll, American mathematician, 1925–2017.
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continuum body. Given the specific deformation power (3.41), the definition (3.32)
of the second Piola–Kirchhoff stress and the time derivative Ċ = ḞTF+ FTḞ of the
right Cauchy–Green strain, the expression

�̇ = 1

2

∫

�0

S : ĊdV = 1

2

∫

�0

JF−1σF−T : (ḞTF + FTḞ)dV =

= 1

2

∫

�

[tr(F−1σF−TḞTF)+ tr(F−1σF−TFTḞ)]dv =

= 1

2

∫

�

[tr(σF−TḞT)+ tr(σ ḞF−1)]dv =

= 1

2

∫

�

σ : (lT + l)dv =
∫

�

σ : d︸︷︷︸
ψ̇

dv

determines the body’s deformation power. The derivation used the volume ratio J =
dv/dV , the rate of deformation tensor d = (l + lT)/2, as well as the properties I :
A = trA and tr(ABC) = tr(BCA). The Cauchy stress σ and the rate of deformation
d are therefore power-conjugate, and ψ̇ = σ : d determines the power per unit
deformed material volume.

3.5 Constitutive Modeling

A constitutive model is the mathematical description of the material’s mechanical
properties. A material may exhibit many, often complex, physical phenomena, and
it is the Intended Model Application (IMA) that specifies which ones should be
captured by a particular constitutive model. This section presents the basics of
constitutive modeling including linear and non-linear descriptions—many more
constitutive descriptions are discussed in the following chapters of this book.

3.5.1 SomeMechanical Properties of Materials

3.5.1.1 Incompressibility
An incompressible material preserves its volume during the deformation. The
volumetric stress σ vol = −pI is then independent from the deformation and may
be represented by a penalty or Lagrange contribution. Given an incompressible
material, its bulk modulus, and thus the resistance against volume change, is infinite.

3.5.1.2 Isotropy and Anisotropy
If the mechanical properties are independent of the spatial orientation, the material
is isotropic, otherwise it is anisotropic. Most vascular tissues are anisotropic. The
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characterization of an anisotropic material requires more experimental tests to be
performed than of an isotropic material. Aside from its dependence on the strain,
the stress in an anisotropic material depends also on structural information, such
as the orientations along which the material is softest and stiffest, known as the
principal material axes. Given an isotropic material, the principal stress directions
coincide with the principal strain directions. This is in general not the case for an
anisotropic material.

3.5.1.3 Strain Energy in Solids
The deformation of a body results in the transformation of external work W into
strain energy �. Given simple tension of a linear-elastic bar of length l, the external
work W = Pu/2 is “used” to elongate the bar by u = lε11, where P = σ11s

denotes the force acting on the rod’s cross-section s, see Fig. 3.21a. An ideal
reversible process transforms the external work completely into strain energy, and
W = � = Pu/2 = σ11slε11/2 holds. The strain energy per unit volume of a
material, or its specific strain energy, then reads � = �/V = σ11ε11/2.

Given simple shear of a linear-elastic block of the dimensions l× s, the external
work W = Pu/2 is “used” to distort the block by u = 2lε12, where P = σ12s

denotes the shear force acting at the area s, see Fig. 3.21b. It is noted that the shear
angle γ12 = 2ε12 is twice the shear strain ε12. An ideal reversible process acquires
the strain energy � = Pu/2 = σ12sl2ε12/2, and the specific strain energy therefore
reads � = �/V = σ12ε12.

The generalization of the aforementioned results towards a multiaxial stress state
of a linear-elastic material yields the specific strain energy � = σ : ε/2, an
expression that reads

� = σabεab/2

= σ11ε11/2 + σ22ε22/2 + σ33ε33/2 + σ12ε12 + σ23ε23 + σ13ε13

in index notation of a 3D problem.
Given a non-linear material, the specific strain energy reads� = ∫

t
σ (ε) : dε(t),

where the integral is taken over the deformation path of the material particle. The
strain energy of an elastic material is path-independent, and � is independent of
how the final strain state ε(t) has been reached. At finite deformations the strain
energy may be either defined with respect to the undeformed material volume and
denoted by �, or with respect to the deformed material volume and denoted by ψ .

Fig. 3.21 External work
W = Pu/2 to deform a
linear-elastic body according
to (a) simple tension and (b)
simple shear, respectively

s
s
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3.5.1.4 Dissipation in Isothermal Solids
At isothermal conditions, the Clausius19–Duhem20 inequality (3.124) results in the
dissipation

D = −ψ̇ + σ : d ≥ 0 (3.42)

per unit spatial volume, and thus per unit volume of the deformed material. Here,
the Cauchy stress σ multiplied with the rate of deformation d determines the
deformation power σ : d, whilst ψ̇ denotes the rate of the solid’s Helmholtz free
energy per unit spatial volume.

Given a viscoelastic material, the stress σ = σ e + σ v may be decomposed
into the elastic stress σ e and the viscose, or over stress σ v. The viscose stress
refers to contributions from dashpot-like elements in the rheological description
of viscoelastic solids, see Sect. 3.5.4. The viscose stress σ v depends on the strain,
the strain rate, and the loading history of the material. At fixed deformation and
increasing time t , σ v tends to zero, and at the limit t → ∞, the elastic stress σ e
characterizes the material.

The elastic part of the deformation power is fully recoverable, it is therefore
equal to the rate of the Helmholtz free energy, σ e : d = ψ̇ , and the dissipation of a
viscoelastic material then reads

D = σ v : d ≥ 0 . (3.43)

The dissipation has to be non-negative for all possible deformations to comply with
the second law of thermodynamics, see Sect. 3.6.3.2.

3.5.1.5 Dissipation in Isothermal Fluids
In contrary to solids, (inelastic) fluids cannot store strain energy, and thus ψ̇ = 0.
At isothermal conditions, the Clausius–Duhem inequality (3.124) then reads

D = σ : d ≥ 0 (3.44)

and determines the dissipation D per unit spatial volume—the entire deformation
power σ : d is then dissipated.

We may consider an incompressible Newtonian fluid (see Sect. 3.5.4.1) to further
elaborate on the dissipation inequality. Given such a rheological description, the
stress σ = 2ηd − pI develops in the fluid, where η and p denote the dynamic
viscosity and the fluid pressure, respectively. The power D = σ : d = (2ηd −
pI) : d = 2ηd : d is then dissipated. In the derivation of this expression, the
incompressibility (3.38) I : d = 0, also known as the continuity condition of an

19Rudolf Julius Emanuel Clausius, German physicist and mathematician, 1822–1888.
20Pierre Maurice Marie Duhem, French physicist, mathematician, historian, and philosopher of
science, 1861–1916.
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incompressible fluid, has been used. Note that the dissipation D of the Newtonian
fluid is strictly positive for any rate of deformation d.

3.5.1.6 Stiffness
The stiffness describes how the stress changes in response to the strain. The internal
structure of vascular tissue is continuously renewed, and its stiffness may therefore
change over time in response to factors, such as aging and disease. The stiffness is
described by the fourth-order tensor C that relates the stress increment �σ to the
strain increment �ε according to

�σ = C : �ε .

Given a 1D problem, the stiffness is the tangent to the stress–strain curve, see
Fig. 3.22. The stiffness tensor of an isotropic linear-elastic material is constant and
determined by two material parameters—the Young’s modulus and the Poisson’s21

ratio, for example. See Sect. 3.5.2 for alternative sets of parameters. The stiffness of
a non-linear material is not constant and depends on the strain. It is therefore not an
intrinsic material property.

The stiffness tensor preserves always minor symmetry cijkl = cjikl = cij lk ,
and for most materials also major symmetry cijkl = cklij . The stiffness tensor of
an elastic material is positive definite, and �ε : C : �ε remains positive for any
possible strain increment �ε.

Given a geometrically non-linear analysis, it is convenient to use the stiffness
C with respect to the undeformed material. It is a referential one-point tensor that
relates to the body’s reference configuration �0. The referential stiffness expresses
the increment of the second Piola–Kirchhoff stress by

�S = C : �E = 2C : �C ,

where �E and �C denote the increments of the Green–Lagrange strain and
the right Cauchy–Green strain, respectively. The push-forward operation cijkl =
J−1FiIFjJ FkKFlLCIJKL relates the referential stiffness tensor C to the spatial
stiffness tensor C, where F and J denote the deformation gradient and the volume
ratio, respectively.

Given a hyperelastic material (see Sect. 3.5.3), the referential stiffness tensor

Fig. 3.22 Stress versus
strain properties of a
strain-stiffening material in
1D. The stiffness
k = �σ/�ε is not constant
but increases with the strain

Strain

St
re

ss

21Baron Siméon Denis Poisson, French mathematician, engineer, and physicist, 1781–1840.
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C(C) = 4
∂2�(C)
∂C∂C

(3.45)

derives from the strain energy �(C) per unit reference volume. The expres-
sion (3.45) preserves major and minor symmetries and leads to 21 independent
components of the stiffness tensor. The decoupling of the stiffness tensor in the
isochoric (or deviatoric) C and volumetric (or hydrostatic) Cvol contributions may
be motivated for some applications.

Given an incompressible material, for example, Cvol is Lagrange contribution,
whilst it is a penalty contribution in the description of a quasi-incompressible
material.

3.5.1.7 Strength
The strength denotes the stress level at which a material mechanically fails. As with
the stiffness, the strength of vascular tissue may change over time.

A material may fail by a number of different mechanisms. A ductile material
yields under shear stress, whilst a brittle material fractures under normal stress.
A failure hypothesis often introduces an equivalent (scalar) stress that represents
the material’s vulnerability to failure and characterizes its strength under multi-
axial stress conditions. The von Mises stress and the Tresca22 stress are widely
used equivalent stress measures for ductile materials, whilst the maximum principal
stress, also known as the Rankine23 criterion, may be used to describe brittle
materials. A number of other failure mechanisms and theories have also been
proposed, and some concepts are discussed in Sect. 3.8.

3.5.1.8 Fracture Toughness
The fracture toughness is a property that describes the ability of a material to
resist fracture. The propagation of a fracture requires energy towards the creation
of new fracture surface, and releases energy due to elastic unloading of the body
in the vicinity of the crack tip. Given the energy needed to generate fracture
surface is lower than the energy released through elastic unloading, a fracture will
spontaneously propagate. The fracture toughness is tightly linked to the internal
dissipation or energy release rate Dint [J m−2] and thus the energy that dissipates
per unit of newly created fracture surface area.

3.5.2 Linear-Elastic Material

A linear-elastic or Hooke24 material exhibits linear stress–strain properties. Given
simple tension, it behaves very similar to a linear-elastic spring. The normal stress

22Henri Édouard Tresca, French mechanical engineer, 1814–1885.
23William John Macquorn Rankine, Scottish mechanical engineer, 1820–1872.
24Robert Hooke, English natural philosopher, architect, and polymath, 1635–1703.
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σ11 and the normal strain ε11 are related by σ11 = Eε11, where the proportionality
factorE is called Young’s modulus. The normal strain along one direction, however,
influences the normal strain in the perpendicular directions, a phenomenon known as
Poisson’s effect. Given the aforementioned simple tension conditions, the material
is therefore not only strained by ε11, but also in the perpendicular directions, ε22 =
ε33 = −νε11. The proportionality factor ν is called Poisson’s ratio.

Given simple shear, σ12 = 2Gε12 expresses the relation between the shear stress
σ12 and the shear strain ε12, where the proportionality factor G is called shear
modulus. In contrary to the normal strains, the shear strain within one plane does
not influence the shear strains perpendicular to it—the shear strains are uncoupled.

The Young’s modulus E, the shear modulus G, and the Poisson’s ratio ν are
not independent from each other. Given an isotropic linear-elastic material, the
kinematics relation

E = 2(1 + ν)G (3.46)

holds amongst them. The isotropic linear-elastic material is therefore fully described
by two independent material parameters.

Example 3.12 (Coupling Between Material Parameters). The Young’s modulus E,
the shear modulus G, and the Poisson ratio ν describe the properties of an isotropic
linear-elastic material. They are not independent, and the relation amongst these
parameters should be explored at small deformations.

Fig. 3.23 Quadratic 2D
material point at simple
tension. (a) Reference
configuration. (b) Deformed
configuration with ε and γ
denoting normal and shear
strains. (c) Normal strain ε
and normal stress σ . (d)
Shear strain γ and shear
stress τ .

π
4

π
4 γ

π
4

+

(a) Figure 3.23a,b illustrates the deformation of a 2D material particle. The particle
is represented by a square of unit edge length and loaded at simple tension.
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Given such kinematics and the assumption of small deformations, derive the
relation between the normal strain ε, the shear strain γ , and Poisson’s ratio ν.

(b) Consider the deformed material particle once in principal stress directions,
and twice at π/4 rotated to it, see Fig. 3.23c,d. Given this access, derive the
relation (3.46) between E, G, and ν of the linear-elastic isotropic material. �

3.5.2.1 Hooke’s Law in Voigt’s Notation
Towards the expression of a linear-elastic material, it is convenient to introduce
Voigt’s notation. Given a 3D problem, the stress and strain are then expressed
by the six-dimensional vectors σ = [σ11 σ22 σ33 σ12 σ23 σ13]T and ε =
[ε11 ε22 ε33 ε12 ε23 ε13]T, respectively. Consequently, an isotropic linear-elastic
material may be expressed by

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

ε12

ε23

ε13

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

= 1

E

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 1 + ν 0 0
0 0 0 0 1 + ν 0
0 0 0 0 0 1 + ν

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
g

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ12

σ23

σ13

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (3.49)

where g denotes the compliance matrix—it is constant and, here, expressed by the
Young’s modulus E and the Poisson’s ratio ν. The linear relation (3.49) may be
inverted to express the stress as a function of the strain. It then reads

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

σ11

σ22

σ33

σ12

σ23

σ13

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

= Ê

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

(1 − ν) ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1 − 2ν 0 0
0 0 0 0 1 − 2ν 0
0 0 0 0 0 1 − 2ν

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
c

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

ε11

ε22

ε33

ε12

ε23

ε13

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (3.50)

where c denotes the stiffness matrix, and Ê = E/[(1 − 2ν)(1 + ν)] is the effective
Young’s modulus.
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3.5.2.2 Hooke’s Law in Tensor Notation
The relation σ = C : ε expresses a linear-elastic material, where C denotes the
fourth-order elasticity tensor. It reads

cijkl = Eν

(1 + ν)(1 − 2ν)
δij δkl + E

2(1 + ν) (δikδjl + δilδjk) , (3.51)

where E and ν are the Young’s modulus and the Poisson’s ratio, respectively. The
Kronecker delta is denoted by δij , and the expression (3.51) allows for the easy
verification that the elasticity tensor C satisfies major symmetry cijkl = cklij and
minor symmetry cijkl = cjikl = cij lk .

3.5.2.3 Hooke’s Lawwith Decoupled Shear and Bulk Contributions
The linear-elastic material may also be expressed by

σ = C : ε = σ + σ vol = (C + Cvol) : ε ,

where σ and σ vol denote the isochoric and volumetric stress contributions, respec-
tively. The decoupled elasticity tensor C then reads

cijkl = G[δikδjl + δilδjk − (2/3)δij δkl]︸ ︷︷ ︸
cijkl

+Kδij δkl︸ ︷︷ ︸
cvol ijkl

,

where δij is the Kronecker delta, whilstG = E/[2(1 + ν)] and K = E/[3(1 − 2ν)]
denote the shear and bulk moduli, respectively. Whilst G specifies the material’s
resistance against shape changes, such as shearing, K represents its resistance
against volume changes.

Example 3.13 (Hooke Material at Specific Load Cases). Consider Voigt’s nota-
tion (3.49) of a linear-elastic material in 3D, and derive particular stress–strain
expressions for the conditions of (a) simple tension, (b) simple shear, (c) plane
stress, and (d) plane strain. �

3.5.3 Hyperelasticity

The hyperelastic description of a material assumes that the deformation energy, and
thus the mechanical work to deform the solid, is fully recovered upon unloading
and no energy dissipation then appears. Towards its description, it is convenient to
introduce the Helmholtz free energy, or strain energy � = U − θS [J m−3], where
θ is the temperature, whilst U and S denote the internal energy and the entropy,
respectively. The latter two quantities are related to the unit undeformed volume of
the material. The linear-elastic material at small deformations is a special case of a
hyperelastic material that is described by the strain energy � = σ : ε/2 = ε : C :
ε/2.
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The material’s strain energy is either dominated by the energetic contribution U
or by the entropic contribution −θS. A crystalline material is typically an energetic-
elastic material, where the strain energy � ≈ U is stored through the change of
the distance between the atoms of the crystals. In contrary, rubber is an entropic-
elastic material and the strain energy � ≈ −θS is stored upon straightening out the
macromolecular chains, rather than stretching them.

3.5.3.1 Coupled Formulation
The Helmholtz free energy � is a function of the deformation, and it is convenient
to use a referential strain measure as the argument of such a function. The energy
is then a priori independent from the rigid body rotation R upon the body’s spatial
configuration �. The right Cauchy–Green strain C is such a strain measure, and the
Helmholtz free energy then reads � = �(C). With the three invariants I1 = trC,
I2 = [

(trC)2 − trC2
]
/2, and I3 = detC of a 3D problem, the free energy may be

expressed by � = �(I1, I2, I3).
Given an anisotropic material, the Helmholtz free energy is also a function of

the internal material structure. We may use n structural tensors Ai , i = 1, . . . , n
to describe such structure, and the Helmholtz free energy can again be expressed
through the invariants Ii, i = 1, . . . , m; �(C,Ai ) = �(I1, . . . , Im). The invariants
Ii are then formed by C and any possible combinations of C and Ai [519].

Coleman and Noll’s procedure (3.129) allows us to compute the second Piola–
Kirchhoff stress

S = 2
∂�(I1, I2, I3, . . . , Im)

∂C
= 2

∂�(I1, I2, I3, . . . , Im)

∂Ii

∂Ii

∂C
, (3.54)

where the terms ∂Ii/∂C may be derived from the deformation kinematics.
Appendix C reports these expressions for i = 1, 2, 3 and more general expressions
are reported elsewhere [256]. Given the second Piola–Kirchhoff stress, the Piola
transform (3.32) allows to compute the Cauchy stress σ = J−1FSFT.

For most applications, the Helmholtz free energy is a strongly convex potential
with respect to the deformation gradient F. It then leads to a positive-definite
elasticity tensor, and the material obeys the physical requirement of increasing stress
at increasing deformation. The design of such free energy functions is challenging.
As an example, see the constitutive framework of a priori polyconvex transverse
isotropic strain energy functions [497].

3.5.3.2 Volumetric–Isochoric Decoupled Formulation
It may be convenient to decompose the motion χ(X) = χ(χvol(X)) of the material
point X in volumetric (volume-changing) χvol and isochoric (shape-changing) χ

contributions, see Fig. 3.24. The total deformation gradient F = Gradχ(X) = FFvol
is then expressed by the isochoric F = Gradχ(χvol(X)) = J−1/3F and respective
volumetric Fvol = Gradχvol(X) = J 1/3I contribution, where J denotes the volume
ratio. Such an approach links to the decomposition of the stress discussed in
Sect. 3.3.4. It motivates the split of the Helmholtz free energy
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Fig. 3.24 The total motion
χ(X) = χ(χvol(X)) is
decomposed in the volumetric
motion χvol followed by the
isochoric motion χ

�(J,C) = �iso(C)+�vol(J ) (3.55)

in isochoric �iso and volumetric �vol contributions, where C = F
T
F denotes the

isochoric right Cauchy–Green strain. Given the definition of C, its third invariant is
zero, and an invariant-based description of (3.55) then reads � = �iso

(
I 1, I 2

) +
�vol(J ) with I 1 = trC and I 2 = (I 1

2 − trC2)/2 denote the first and second
invariants of C, respectively.

Whilst the additive decomposition (3.55) is generally applicable to isotropic
materials regardless whether they are compressible or incompressible, it can only
describe anisotropic materials at their incompressible limit. Given incompressibility,
�vol “degenerates” to a Lagrange contribution that enforces the incompressibility
independent from the constitutive properties.

Given the Helmholtz free energy (3.55), Coleman and Noll’s procedure (3.129)
defines the second Piola–Kirchhoff stress

S = 2
∂�(J,C)
∂C

= 2
∂�iso(C)

∂C
: ∂C
∂C︸ ︷︷ ︸

S

+ 2
∂�vol(J )

∂J

∂J

∂C︸ ︷︷ ︸
Svol

, (3.56)

also decomposed into isochoric S and volumetric Svol contributions, respectively.
The deformation kinematics determine the terms ∂J/∂C = JC−1/2 and ∂C/∂C =
J−2/3[I − (C ⊗ C−1)/3] (see Appendix C), and the second Piola–Kirchhoff
stress (3.56) then reads

S = 2J−2/3Dev

(
�iso(C)

∂C

)
− JpC−1 , (3.57)

where p = −∂�vol(J )/∂J is the negative hydrostatic pressure, whilst Dev(•) =
(•)−[C : (•)]C−1/3 denotes the deviator operator in the referential description. Its
“push-forward” yields the spatial deviator operator dev(•) = (•)− [I : (•)]I/3.
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The Piola transform σ = J−1FSFT allows us then to compute the Cauchy stress

σ = J−1FSFT = 2F

[
Dev

(
�iso(C)

∂C

)]
FT

︸ ︷︷ ︸
σ

−pI︸︷︷︸
σ vol

, (3.58)

where σ and σ vol are the respective isochoric and volumetric contributions, whilst
F = J−1/3F denotes the isochoric deformation gradient.

The stress expressions (3.56) and (3.58) may also be used in the description of
quasi-incompressible materials. The volumetric strain energy�vol(J ) serves then as
a penalty term towards approximately enforcing the incompressibility J = detF≈ 1.

3.5.3.3 Incompressible Formulation
The description of incompressible solids may be derived from the afore-introduced
volumetric–isochoric decoupled formulation. Given incompressibility, the volu-
metric stress contribution Svol “degenerates” towards Svol = −pC−1 with the
hydrostatic pressure p set to satisfy the incompressibility condition, J = detF = 1.
In contrast to Sect. 3.5.3.2, p is now not derived from a strain energy function but
a deformation-independent Lagrange parameter and determined by the particular
Boundary Value Problem (BVP).

Coleman and Noll’s procedure for incompressible materials (3.132) then yields
the second Piola–Kirchhoff stress

S = 2Dev

(
∂�iso(C)

∂C

)

︸ ︷︷ ︸
S

−pC−1
︸ ︷︷ ︸

Svol

. (3.59)

Given incompressibility J = 1, the right Cauchy–Green strain is now identical to
the isochoric right Cauchy–Green strain C = J−2/3C = C, and therefore only
isochoric strain energy appears, � = �iso.

The Piola transform (3.32), together with the incompressibility condition J = 1,
allows us then to compute the Cauchy stress

σ = FSFT = 2dev

(
F
∂�iso(C)

∂C
FT

)

︸ ︷︷ ︸
σ

−pI︸︷︷︸
σ vol

, (3.60)

where σ and σ vol denote the isochoric and volumetric stress contributions, respec-
tively.
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3.5.4 Viscoelasticity

The viscoelastic description of a material assumes that the work done by external
forces is not entirely transformed into elastic deformation energy, but a part
dissipates into heat. The work that entered the mechanical system can therefore
not been fully recovered upon mechanical unloading.

3.5.4.1 Newtonian Viscosity Model
A viscose fluid may be seen as a viscoelastic material that lacks the ability to store
elastic energy. We consider it at the stress σ = σ − pI, where σ and p denote the
isochoric stress and the negative hydrostatic pressure, respectively. Whilst the stress
σ depends on the shear rate, the pressure p is independent from the deformation but
determined by the BVP.

The constitutive model of a viscose fluid describes the isochoric stress σ as a
function of the shear rate and thus in response to the velocity gradient gradv. The
Newtonian25 fluid model considers a linear relation between stress and strain rate,
an assumption that holds for many homogeneous liquids. Given a 1D flow at the
shear rate ε̇12, the model yields the shear stress σ12 = 2ηε̇12 = η(∂v1/∂x2 +
∂v2/∂x1), where η [Pa s] denotes the viscosity, a constant for a Newtonian fluid.
We may generalize this expression, and the system

σ = η

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂v1

∂x1

1

2

(
∂v1

∂x2
+ ∂v2

∂x1

)
1

2

(
∂v1

∂x3
+ ∂v3

∂x1

)

1

2

(
∂v1

∂x2
+ ∂v2

∂x1

)
∂v2

∂x2

1

2

(
∂v2

∂x3
+ ∂v3

∂x2

)

1

2

(
∂v1

∂x3
+ ∂v3

∂x1

)
1

2

(
∂v2

∂x3
+ ∂v3

∂x2

)
∂v3

∂x3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
σ

−
⎡

⎣
p 0 0
0 p 0
0 0 p

⎤

⎦

of equations then describes the Newtonian fluid in 3D Cartesian coordinates. In
addition to shear stress components, the isochoric stress σ may also contain normal
stress components. Given symbolic notation, the Newtonian fluid reads

σ = 2ηd − pI , (3.61)

where d = (gradv + gradTv)/2 denotes the rate of deformation tensor. The
continuity trd = 0 of an incompressible fluid verifies that p in (3.61) satisfies
p = −trσ/ndim and thus represents the negative hydrostatic pressure, where ndim
denotes the spatial dimension of the fluid problem.

25Sir Isaac Newton, English mathematician, astronomer, theologian, author, and physicist, 1642–
1726.
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3.5.4.2 Linear Viscoelasticity
We consider a 1D linear viscoelastic material that satisfies the (Boltzmann)
superposition principle. The material is loaded by the stress σ(t) = �σH(t − t0),
where H(x) denotes the Heaviside26 step function with the values 0 and 1 for
x < 0 and x ≥ 0, respectively. The stress step �σ at the time t0 causes the strain
ε(t) = J (t − t0)�σ , where J (x) [Pa−1] is the creep compliance or creep function,
a function that determines the material’s response to the unit step in stress.

Given the linearity of the problem, the application of the stress σ(t) = �σH(t−
t1), and thus the step �σ at the time t1, then causes the strain ε(t) = J (t − t1)�σ ,
and a sequence of n stress increments �σ at the times ti yields the strain ε(t) =∑n
i=1 εi(t) = ∑n

i=1 J (t − ti )�σ . A sequence of infinitesimally small stress
increments dσ = σ̇ (t)dt defines the strain

ε(t) =
t∫

ξ=−∞
J (t − ξ)σ̇ (ξ)dξ , (3.62)

where σ̇ (t)may be seen as the history of stress rates. The convolution or hereditary
integral in (3.62), known as Boltzmann’s superposition integral, relates stress and
strain of a linear viscoelastic material—it represents the constitutive information of
the material.

We may also load the linear viscoelastic body by the infinitesimal small-strain
increments dε = ε̇dt , and arguments similar to aforementioned ones then lead to
the stress

σ(t) =
t∫

ξ=−∞
G(t − ξ)ε̇(ξ)dξ , (3.63)

where ε̇(t) denotes the history of strain rates, whilst the relaxation function
G(x) [Pa] represents the material’s response to the unit step in strain and thus
contains the constitutive information.

The creep function J (t) and the relaxation function G(t) have to satisfy a
number of physical constraints. Given ordinary materials, J (t) increases, whilst
G(t) decreases with the time t . The functions also satisfy the conditions J (t →
∞) ≥ 0 and G(t → ∞) = 0. Laplace27 and Fourier transforms may be used to
solve the convolution integrals (3.62) and (3.63), see Appendices A.4 and B.

26Oliver Heaviside, electrical engineer, mathematician, and physicist, 1850–1925.
27Pierre-Simon, marquis de Laplace, French mathematician, physicist, and astronomer, 1749–
1827.
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3.5.4.3 Maxwell Rheology Element
A dashpot and a spring that are arranged in series constitute a Maxwell element,
see Fig. 3.25a. With the viscosity η [Pa s] of the dashpot and the stiffness E [Pa]
of the spring, σd = η(dεd/dt) and σs = Eεs expresses the stress in these devices,
where t is the time, whilst εd and εs denote the strains in the dashpot and the spring,
respectively. The time derivative of the kinematic compatibility ε = εd + εs then
reads

dε

dt
= 1

E

dσ

dt
+ σ

η
(3.64)

and expresses the relation between the stress σ and the strain rate ε̇ of the Maxwell
element. The equilibrium σ = σd = σs has also been used in the derivation of this
expression.

The dissipation D = σ(dεd/dt) = σ 2/η > 0 of the Maxwell rheology element
appears entirely in the dashpot. At very high as well as at very low strain rates, the
model does not dissipate any energy. At very high strain rates the dashpot “locks”,
whilst at very low strain rates no stress develops in the Maxwell model. Both of
these conditions suppress the dissipation of energy.

Given a constant strain rate ε̇, the governing equation (3.64) of the Maxwell
element becomes an inhomogeneous linear ordinary differential equation. It may be
multiplied with the integrating factor g(t) = exp[∫ (1/τ)dt] = exp(t/τ ) and then
reads

dσ

dt
exp(t/τ )+ σ

τ
exp(t/τ ) = d

dt

[
σ exp(t/τ )

] = E
dε

dt
exp(t/τ ) ,

where τ = η/E [s] denotes the relaxation time. The integration of this differential
equation yields the stress

σ(t) = η
dε

dt
+ C exp(−t/τ ) , (3.65)

where the integration constant C is to be determined form the initial condition.
Let us consider the development of the stress in a relaxation experiment to further

explore the properties of the Maxwell element. The strain increment �ε is applied

Fig. 3.25 Basic rheological elements that use dashpot and spring devices towards the description
of the viscoelastic properties of solids and fluids. (a) Maxwell element. (b) Kelvin–Voigt element.
(c) Standard Solid element
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Fig. 3.26 Stress relaxation predicted by the Maxwell rheology element. (a) Normalized stress
σ(t)/�σ and (b) logarithmic normalized stress log[σ(t)/�σ ] as a function of the time. The
relaxation time is denoted by τ , and its physical meaning is illustrated in the diagrams

at the time t = 0 and then kept constant to allow the stress to relax over the time t .
Given�ε is applied within the infinitely short time domain 0 < t < 0+, the dashpot
“locks”, and the spring accommodates the entire strain. The Maxwell element then
instantaneously responds with the stress �σ = E�ε and allows us to identify the
integration constant in (3.65) from �σ = Eε̇ + C exp(−t/τ ). Given the property
ε̇ = 0 for t ≥ 0+ of the relaxation experiment, the integration constant reads C =
�σ , and

σ(t) = �σ exp(−t/τ ) (3.66)

determines the stress of the Maxwell element. Figure 3.26 illustrates the relaxation
response, where the normalized stress σ(t)/�σ as well as the logarithmic nor-
malized stress log[σ(t)/�σ ] over time are shown. The figure also illustrates the
physical meaning of the relaxation time τ .

The linearity of the Maxwell element allows the superposition of stress incre-
ments. The application of �ε at the times ti; i = 1, . . . , n then yields the resulting
stress

σ(t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 ; t < t0 ,

�σ0 exp(−(t − t0)/τ) ; t+0 ≤ t < t1 ,

�σ0 exp(−(t − t0)/τ)+�σ1 exp(−(t − t1)/τ) ; t+1 ≤ t < t2 ,

· · ·
(3.67)

Given infinitesimally small “stress steps” dσ = Eε̇dt , the series (3.67) approaches
the convolution integral

σ(t) = E

∫ t

ξ=−∞
exp(−(t − ξ)/τ)ε̇dξ . (3.68)
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Fig. 3.27 Development of
the normalized stress
according to the Maxwell
rheological element, where E
and τ denote the elastic
stiffness and the relaxation
time, respectively. At the time
0 < t < 1 s, the constant
strain rate k is prescribed,
whilst the strain is constant at
t > 1 s
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The comparison of Eqs. (3.68) and (3.63), reveals that G(x) = E exp(−x/τ)
determines the relaxation function of the Maxwell element.

Towards the further exploration of the Maxwell element, we will now investigate
the stress in response to the strain

ε(t) =
⎧
⎨

⎩

0 for t < 0 ,
kt for 0 ≤ t ≤ 1 s ,
k for t > 1 s ,

where k [s−1] is a constant proportionality factor. During the time interval 0 ≤ t ≤
1 s, relation (3.68) yields the stress

σ(t) = Ek

∫ t

ξ=0
exp[−(t − ξ)/τ ]dξ = Ekτ {exp[−(t − ξ)/τ ]}tξ=0

= Ekτ [1 − exp(−t/τ )] for 0 ≤ t ≤ 1s , (3.69)

where ε̇(t) = k and the initial condition σ(0) = 0 have been used. At t > 1, the
strain rate ε̇(t) = 0 holds, and (3.68) then yields the stress

σ(t) = Ek

∫ 1.0

ξ=0
exp[−(t − ξ)/τ ]dξ = Ekτ {exp[−(t − ξ)/τ ]}1

ξ=0

= Ekτ {exp[−(t − 1)/τ ] − exp(−t/τ )} for 1 < t < ∞ .

Figure 3.27 plots the normalized stress response of the Maxwell rheological element
for different relaxations times τ .

The analysis of the stress response (3.69) allows us to explore the physical
properties of the Maxwell element. At its limits (3.69) reads

σ(t) =
{
Ekτ = ηk for τ � t ,

Ekt = Eε for τ  t ,
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where the series representation exp(x) = 1 + x + x2/2! + · · · has been used in
the derivation of these expressions. Given a very slow process τ � t , the Maxwell
element responds like a viscous fluid, whilst for a very fast process τ  t it has
elastic spring-like properties.

3.5.4.4 Kelvin–Voigt Rheology Element
A dashpot and a spring that are arranged in parallel constitute a Kelvin–Voigt
element, see Fig. 3.25b. As in Section 3.5.4.3, σd = η(dεd/dt) and σs = Eεs are the
stresses in the dashpot and the spring, respectively. The equilibrium

σ = Eε + ηdε

dt

then expresses the stress σ as a function of the strain ε and the strain rate ε̇. The
kinematic compatibility ε = εd = εs has also been used in the derivation of this
expression.

The dissipation D = σd(dεd/dt) = σ 2
d /η > 0 appears entirely in the dashpot.

At very low strain rates no stress develops in the dashpot, and no energy is
therefore dissipated. The Kelvin–Voigt element yields infinite stress in response to
an instantaneous strain change and acts then as a rigid body.

Example 3.14 (Linear Viscoelasticity—Kelvin–Voigt Element). Let us consider the
Kelvin–Voigt rheology element of Sect. 3.5.4.4, whose viscoelastic properties are
governed by the ordinary differential equation ε̇ + ε/τ = σ/η. It has constant
coefficients, and the ratio τ = η/E of the viscosity η and stiffness E denotes the
model’s retardation time.

(a) Given a constant stress σ , solve the governing equation of the Kelvin–Voigt
element and express the strain ε(t) up to an unknown integration constant C.

(b) Consider a creep experiment and apply the stress increment �σ at the time
t = 0. The stress is then kept constant and the strain ε(t) develops over the time
t . Identify the integration constant C of the creep test, and plot the normalized
strain ε(t)/�ε over the time t for different retardation times τ . Here, �ε =
�σ/E denotes the strain that is reached at the time t  τ and thus at the
thermodynamic equilibrium of the Kelvin–Voigt element.

(c) Derive the strain ε(t) in response to the application of n stress increments
�σ at the times ti; i = 1, . . . , n. Generalize the discrete expression towards
infinitesimally small stress increments dσ = σ̇dt/E, where σ̇ (t) denotes the
stress rate.

(d) Compute the strain that the Kelvin–Voigt element predicts in response to the
stress

σ(t) =
⎧
⎨

⎩

0 for t < 0 ,
kt for 0 ≤ t ≤ 1 s ,
k for t > 1 s ,
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where k [Pa s−1] is a constant proportionality factor. Plot the strain response
within the time interval 0 < t < 5 s as well as for the retardation time τ = 0.1;
1.0; 10.0 s.

(e) Consider the loading σ(t) = kt and describe the properties of the Kelvin–Voigt
element at the limits τ  t and τ � t , respectively. �

3.5.4.5 Standard Solid Rheology Element
A mainspring that is arranged in parallel to a Maxwell element (see Sect. 3.5.4.3)
constitutes the Standard Solid element, see Fig. 3.25c. Let us consider a mainspring
of the stiffness Ee [Pa], whilst the Maxwell element contains a dashpot of the
viscosity ηM [Pa s] and a spring of the stiffness EM [Pa]. At the dashpot strain εMd
and the spring strain εMs, the stress σM = η(dεMd/dt) = EMεMs appears in the
Maxwell element, where t denotes the time. In addition to the stress of the Maxwell
element, the mainspring contributes the stress σe = Eeε, where ε denotes the strain
of the Standard Solid element.

The kinematic compatibility ε = εMd + εMs, together with the equilibrium
σ = σM + σe, governs the properties of the Standard Solid element. The time
differentiation of the kinematic compatibility then reads

dε

dt
= dεMd

dt
+ dεMs

dt
= σ − Eeε

η
+ 1

EM

(
dσ

dt
− Ee

dε

dt

)
,

where the constitutive descriptions of the dashpot and springs as well as the
equilibrium of the Standard Solid element have been used. After some algebraic
manipulation this relation yields the governing equation

dε

dt
=

dσ
dt + EM

η
(σ − Eeε)

EM + Ee
(3.74)

of the Standard Solid element. Given the fixed strain ε, the over-stress σM = EMεMs
of the Maxwell element tends to zero at t → ∞ and defines the thermodynamic
equilibrium of the Standard Solid element.

The Standard Solid element has solid-like properties. Given constant stress σ ,
the strain approaches the stable limit of ε = σ/Ee in time, whilst the model shows
elastic properties in response to instantaneous strain changes. The dissipation D =
σM(dεMd/dt) = σ 2

M/η > 0 appears entirely in the dashpot of the Maxwell element,
and, as with the Maxwell element, the Standard Solid element does not dissipate
energy at very high as well as very low strain rates.

An alternative to the governing equation (3.74) of the Standard Solid element
may be derived, which has advantages towards its numerical implementation. We
may decouple the elastic and inelastic deformations and consider the over stress
σM = EMεMs, the stress contributed by the Maxwell element. Its time derivative
then yields the rate equation
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dσM

dt
+ σM

τ
= β

dσe

dt
, (3.75)

where the kinematics relation ε = εMd + εMs together with the constitutive
expressions σM = η(dεMd/dt) and σe = Eeε has been used. In (3.75), β = EM/Ee
denotes a dimensionless stiffness factor, whilst τ = η/EM [s] is the relaxation time
of the Maxwell element. The rate Eq. (3.75) determines the development of the over
stress σM, which is then to be added to the stress σe of the mainspring.

3.5.4.6 GeneralizedModels
The generalization of the aforementioned 1D rheology models leads to the descrip-
tion of ndim-dimensional viscoelastic materials. Given small deformations, ε and σ
may be simply replaced by the respective ndim-dimensional tensorial quantities—
the engineering strain ε and the Cauchy stress σ , see Table 3.2.

Given finite deformations, the objectivity of the constitutive description is to be
preserved, and we therefore use a priori objective strain and stress measures. The
strain ε and the stress σ of the 1D descriptions are then replaced by the Green–
Lagrange strain E and the second Piola–Kirchhoff stress S, see Table 3.2. They
are defined in the body’s reference configuration �0, which ensures the objectivity
of the constitutive model. Given applications at small and finite deformations, the
Young’s modulus E is substituted by the elasticity tensors C and C, respectively.

Table 3.3 lists governing equations of a number of viscoelastic models, which
can be derived through the generalization of the Maxwell model, the Kelvin–
Voigt model, and the Standard Solid model, respectively. Given the Standard Solid
model, the continuum may be seen as the superposition of a Maxwell body and a
purely elastic body [194]. These bodies correspond to the Maxwell element and
the mainspring of the respective 1D Standard Solid Model, see Fig. 3.25c. The
Maxwell body is described by the relaxation time τ , and the parameter β that relates
its stiffness to the stiffness of the elastic body; CM = βCe at small deformations
and CM = βCe at finite deformations. Such a generalized description avoids the
explicit introduction of stiffness tensors (see last row in Table 3.3) and supports the
description of non-linear materials.

Table 3.2 Stress, strain, and stiffness definitions of 1D as well as ndim-dimensional rheology
models at small and finite deformations

Parameter 1D small defo. ndim small defo. ndim finite defo.

Strain ε ε = 1
2 (gradu + gradTu) E = 1

2 (F
TF − I)

Stress σ σ S
Stiffness E C = ∂σ/∂ε C = ∂S/∂E

E: Young’s modulus; ε: engineering strain; E: Green–Lagrange strain; σ : Cauchy stress; S: second
Piola–Kirchhoff stress; C: spatial elasticity tensor; C: referential elasticity tensor; u: displacement;
F: deformation gradient
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Table 3.3 Governing equations of 1D as well as ndim-dimensional rheology models at small and
finite deformations

Model 1D small defo. ndim small defo. ndim finite defo.

Maxwell ε̇ = σ̇ /E + σ/η ε̇ = C
−1 : σ̇ + σ/η Ė = C

−1 : Ṡ + S/η

Kelvin–Voigt σ = Eε + ηε̇ σ = C : ε + ηε̇ S = C : E + ηĖ
Standard Solid σ = σM + σe ; σ = σM + σ e ; S = SM + Se ;

σ̇M + σM/τ = βσ̇e σ̇M + σM/τ = βσ̇ e ṠM + SM/τ = βṠe

E: Young’s modulus; η: viscosity; τ : relaxation or retardation time; ε: engineering strain; E:
Green–Lagrange strain; σ : Cauchy stress; S: second Piola–Kirchhoff stress; C: spatial elasticity
tensor; C: referential elasticity tensor. Indexes e andM denote elastic and viscose contributions to
stress and strain, and superimposed dot denotes the material time derivative, respectively

3.5.4.7 Visco-hyperelasticity for Incompressible Materials
A hyperelastic description may be used to define the elastic stress and the
elasticity modulus of finite strain viscoelastic models. The elastic properties are then
represented by the Helmholtz free energy function �(C,�) per unit undeformed
material, where C and � denote the right Cauchy–Green strain and a strain-like
internal, and therefore hidden variable.

We consider the generalized Standard Solid model of an incompressible material
that is illustrated in Fig. 3.30. The free energy �iso(C,CM) = �iso E(C) +
�iso M(CM) describes the material, where �iso E(C) and �iso M(CM) denote the
energies that are stored in the elastic body (mainspring) and the spring of the
Maxwell body, respectively. The hidden internal variable is then the right Cauchy–
Green strain of the spring of the Maxwell body, � = CM.

Coleman and Noll’s procedure for incompressible materials (3.131) allows us to
express the second Piola–Kirchhoff stress

S = 2
∂�iso E(C)

∂C
+ 2

∂�iso M(CM)

∂CM
: ∂CM

∂C
− κC−1 , (3.76)

where κ denotes the Lagrange pressure that is required to enforce incompressibility
J = 1. The pressure κ is to be distinguished from the hydrostatic pressure p.

In the relation (3.76), the term ∂CM/∂C describes the relation between the strain
increment �CM of the spring of the Maxwell body and the total strain increment
�C. It is usually an implicit relation and specified through a rate equation. Given
its a priori objectivity, the Green–Lagrange strain E may be used in the formulation
of the rate equation. It could read

ĖM + 1

τ
EM = Ė , (3.77)

where τ denotes the relaxation time. The rate equation (3.77) satisfies the physical
limits at very fast and at very slow deformations. At the limit t << τ the dashpot
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Fig. 3.30 Generalized Standard Solid rheology element with �iso E(C) and �iso M(CM) repre-
senting the strain energy stored in the two (hyperelastic) springs/bodies

locks, and ĖM = Ė, whilst at t >> τ the deformation is too slow to activate the
spring of the Maxwell body, and ĖM = 0 follows from (3.77).

Towards closing the viscoelastic description, a Helmholtz free energy
�iso(C,CM) that satisfies the Clausius–Duhem inequality (3.124) −(∂�iso(C,CM)/

∂CM) : ĊM ≥ 0 of isothermal processes is selected. The model then obeys the
second law of thermodynamics, see Sect. 3.6.3.2.

Example 3.15 (Strain-Based Viscoelastic Generalization of the Incompressible neo
Hookean Material). We consider an incompressible viscoelastic material whose
properties are represented by the rheological element shown in Fig. 3.30. The
Helmholtz free energy �iso(C,CM) per unit (undeformed) material depends on the
right Cauchy–Green strain C, as well as the hidden strain variable CM, the right
Cauchy–Green strain of the Maxwell body. The material is characterized by the
Helmholtz free energy

�iso(C,CM) = G

2
[(trC − 3)+ β(trCM − 3)] (3.78)

and may be seen as the generalization of the classical neo Hookean material
model, where G [Pa] denotes the material’s elastic small-strain shear modulus. The
dimensionless parameter β represents the ratio between stiffness of the elastic body
(main spring) and the stiffness of the Maxwell body.

(a) Consider simple tension and compute the Cauchy stress at the material’s
thermodynamic limit.

(b) Assume the Green–Lagrange strain EM = (CM − I)/2 in the Maxwell body to
be described by the rate equation (3.77), and consider simple tension through
the description of the Green–Lagrange strain component

E11(t) =
⎧
⎨

⎩

0 for t < 0 ,
kt for 0 ≤ t ≤ 1 s ,
k for t > 1 s

(3.79)
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in tensile direction, where k [s−1] is a constant proportionality factor. Plot
the development of the normalized strain component EM 11/k of the Maxwell
spring at 0 < t < 5 s and τ = 0.1; 1.0; 10.0 s.

(c) Given the parameters k = 1.0 s−1 and β = 0.6, compute the normalized
Cauchy stress σ11/G in response to simple tension determined by (3.79). Plot
the normalized stress at 0 < t < 5 s and τ = 0.1; 1.0; 10.0 s. �

3.5.4.8 Stress-Decomposed Visco-hyperelasticity for Incompressible
Materials

Alternatively to the derivation directly from the Helmholtz free energy �iso(C,�)
outlined in Sect. 3.5.4.7, visco-hyperelastic descriptions may also be based on the
additive decomposition S = SE +SM −pC−1 of the second Piola–Kirchhoff stress.
The deviatoric stress contributions SE and SM represent constitutive information,
and the term pC−1 enforces the incompressibility, where p and C denote the
negative hydrostatic pressure and the right Cauchy–Green strain, respectively.
Whilst SE = 2J−2/3Dev[∂�iso E(C)/∂C] follows from the free energy �iso E with
Dev(•) = (•) − [C : (•)]C−1/3 denoting the referential deviator operator in 3D
(see Sect. 3.5.3.2), the over stress SM develops implicitly through a rate equation,
such as

ṠM + 1

τ
SM = βṠE , (3.89)

where τ [s] and β denote the relaxation time and a stiffness parameter, respectively.
The over stress SM may be related to the Maxwell body of the Standard Solid
rheology model shown in Fig. 3.30. The factor β in (3.89) therefore denotes the
ratio between the stiffness of the Maxwell body and the stiffness of the elastic body.
Given the linear governing equation (3.89), the convolution integral

SM(t) = β

t∫

0

exp[−(t − ξ)/τ ]ṠEdξ (3.90)

represents the closed-form solution of the over stress.
The stress-decomposed visco-hyperelastic approach leads to an extremely effi-

cient numerical implementation [194, 222, 291, 506]. Whilst the description has not
been derived from the free energy potential �iso(C,�), its algorithmic tangent
C = 2∂S/∂C shows major symmetry and therefore proves the existence of the
potential �iso(C,�).

Example 3.16 (Stress-Based Viscoelastic Generalization of the Incompressible neo
Hookean Material). We consider an incompressible viscoelastic material whose
elastic properties are determined by the neoHookean Helmholtz free energy
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�iso E(C) = G

2
(I1 − 3) , (3.91)

where I1 = trC and G denote the first invariant of the right Cauchy–Green strain C
and the small-strain shear modulus, respectively.

(a) Consider simple tension kinematics and compute the Cauchy stress at the
material’s thermodynamic limit.

(b) The decomposed representation S = SE + SM − pC−1 of the second Piola–
Kirchhoff stress may be used, where the potential (3.91) determines the
isochoric elastic stress SE, whilst the rate equation (3.90) governs the over stress
SM. Compute the Cauchy stress at simple tension according to the stretch

λ(t) =
⎧
⎨

⎩

1 for t < 0 ,
1 + kt for 0 ≤ t ≤ 1 s ,
1 + k for t > 1 s ,

(3.92)

as a function of the time t , where k is a constant proportionality factor. Given
the parameters k = 1.0 s−1 and β = 0.6, plot the normalized Cauchy
stress component σ11/G for the time 0 < t < 5 s and the relaxation times
τ = 0.1; 1.0; 10.0 s. �

3.5.5 Multiphasic Continuum Theories

A body may consist of multiple material phases that influence each other during
deformation. Given tissue biomechanics, the case of a solid phase (skeleton) that
is immersed in fluid is of substantial importance, and several continuum theories
have been developed towards the description of such a body. The two most popular
theories are the mixture theory and the theory of poroelasticity. Despite the mixture
theory is more general and provides better conceptual mechanisms to integrate
physical situations [102], poroelasticity can still handle complexities, such as blood
flow through the beating myocardial tissue [77].

3.5.5.1 Mixture Theory
The mixture theory generalizes the principles of continuum mechanics upon a
number of interpenetrable continua. It uses the basic assumption that, at any time,
all phases co-exist at the material point and therefore occupy simultaneously the
same position within the RVE [55]. Figure 3.33 aims at illustrating a two-phase
mixture. The transport of phases relative to each other is then captured by diffusion
models, such a Fick’s law, see Appendix E.2.

As with other models, the mixture theory requires constitutive relations to close
the system of balance equations. Given the right Cauchy–Green strain C determines
the deformation of all phases that co-exist at a material point, the strain energy of
the mixture of n phases then reads
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Fig. 3.33 Representative
Volume Element (RVE) of a
two-phase (fluid and solid)
material used in (a)
poroelasticity and (b) mixture
theory. In poroelasticity the
phases determine separate
domains within the RVE,
whilst in mixture theory, they
co-exist in space and occupy
simultaneously the entire
RVE

X

Ω0

�(C) =
n∑

i=1

ξi�i(C) with
n∑

i=1

ξi = 1, (3.98)

where ξi and �i denote the referential volume fraction and the strain energy
per unit reference volume of the i-th phase, respectively. Most mixture models
of soft biological tissues assume affine deformation. The interfaces amongst the
n constituents are then rigid and C directly determines the deformation of the
individual phases.

3.5.5.2 Poroelasticity Theory
Poroelasticity regards an elastic solid phase (skeleton) immersed in a fluid phase—
both phases occupy two separate domains of the RVE, see Fig. 3.33. Let us denote
the volume fraction of fluid by ξ . The continuity of the fluid (see Sect. 3.6.1) at the
material point then reads ξ̇ = −divq, where q [m s−1] denotes the fluid flux—a
property that is equivalent to the fluid filtration velocity discussed in Sect. 2.4.2.
Given a Darcy-type filter law, we may use q = −Lpgradp − bf f to relate the
fluid flux q to the fluid (or pore) pressure p, see Appendix E.2. Here, Lp and bf f
denote the hydraulic conductivity and the body force that acts at the fluid phase,
respectively.

According to Biot28 [48], we may decompose the stress σ = σ e −αpI, where σ e
denotes the effective solid Cauchy stress, α is Biot’s effective stress coefficient, and
p is the negative hydrostatic pressure. At quasi-static conditions, the conservation
of linear momentum (see Sect. 3.6.2)

divσ = divσ e − αpI = bf (3.99)

describes then the poroelastic material, where bf denotes the bulk body force per
unit volume.

28Maurice Anthony Biot, Belgian–American applied physicist, 1905–1985.
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As with other models, poroelasticity theory requires constitutive relations to
express σ e and to close the system of balance equations. Despite Biot’s theory being
derived for small deformations, it may be generalized towards finite deformations.

Objective stress rates, such as Jaumann’s rate of the Cauchy stress


σ= σ̇+σw−wσ ,

are then used to implement (3.99), where l = gradv and w = (l − lT)/2 denote the
velocity gradient and the spin tensor, respectively [433].

3.6 Governing Laws

A number of physical principals govern the motion χ of a continuum body. It
has to obey the balance of mass and momentum, as well as the first and second
laws of thermodynamics. Such principles may be formulated within a Lagrangian
description or an (advective) Eulerian description, see Fig. 3.34. Whilst both
descriptions monitor the material particle at the spatial configuration �, they use
different reference systems. Given the Lagrangian description, the observer is
moving together with the continuum body, whilst in the Eulerian description, the
observer does not move and is fixed to the coordinate system. The Lagrangian
description is commonly used for solids, whilst fluids are most often described
within an Eulerian setting.

In addition to the procedures discussed in this section, Maxwell transport and
localization provides an alternative approach in the derivation of governing laws,
see Sect. 3.7.1.

3.6.1 Mass Balance

The mass dm = ρdv [kg] of each material particle remains constant, and therefore

Dm

Dt
= 0 (3.100)

Eulerian 
description

Lagrangian 
description

Fig. 3.34 Observation of a material particle at its spatial position x using the Lagrangian
description and the Eulerian description. A flash lamp denotes the observer, which is either fixed
to the moving body � (Lagrangian description) or to the (stationary) coordinate system {e1, e2}
(Eulerian description)
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holds, where D(•)/Dt denotes the material time derivative. It corresponds to the
change that is “felt” by the material particle.

The conservation of mass describes vascular tissue at the time scale of the cardiac
cycle. However, over the duration of hours and days, factors, such as turnover of
tissue constituents and cell migration may result in mass change. The material point
is then no longer described by a closed system but by an open system, as discussed
in Chap. 7.

3.6.1.1 Lagrangian Description
In Lagrange description the material time derivative is equal to the partial derivative,
D(•)/Dt = ∂(•)/∂t . Given a material particle of the mass dm, the conservation of
mass then reads

Dm

Dt
= ∂(ρdv)

∂t
= ∂ρ

∂t
dv + ρ ∂(dv)

∂t
= 0 , (3.101)

where ρ [kg m−3] and dv [m3] denote the density and volume of the material
particle at its spatial position x and thus properties of the deformed particle. The
conservation of mass may also be expressed by

∂ρ

∂t
+ ρdivv = 0 , (3.102)

where v denotes the velocity of the material particle. The derivation of this
relation considered the volume element dv = JdV as well as the rate of volume
change (3.38)4, J̇ = Jdivv, where J denotes the volume ratio.

Given an incompressible material, the density ρ is a constant, and

∂J

∂t
= 0

expresses the conservation of mass. Other representations of the conservation
of mass directly follow from the alternative relations of the rate of volume
change (3.38).

3.6.1.2 Eulerian Description
In Eulerian description, the conservation of mass reads

Dm

Dt
= D(ρdv)

Dt
= Dρ

Dt
dv + ρD(dv)

Dt
= 0 , (3.103)

which with the material time derivative D(•)/Dt = ∂(•)/∂t + (•) divv then reads

Dm

Dt
=
(
∂ρ

∂t
+ ρ divv

)
dv +

(
∂(dv)

∂t
+ dv divv

)
ρ = 0 .
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Given an incompressible material, the condition Dρ/Dt = 0 may be used, and the
mass balance then reads D(dv)/Dt = 0. It may also be expressed by

divv = 0 , (3.104)

where v denotes the velocity of the material particle, and dv = JdV as well as
the rate of volume change (3.38)4 has been used. The conservation of mass of an
incompressible material therefore defines a divergence-free velocity field. In fluid
mechanics, the conservation of mass is commonly called flow continuity.

Example 3.17 (Continuity of the Incompressible Flow). An incompressible fluid
flows at the velocity v through a control volume (domain) �. Given an Eulerian
problem description, the domain � is fixed in space, and the linear expansion of the
flow velocity v(x +�x) = v + gradv(x)�x yields the velocity components shown
in Fig. 3.35.

v2

vr

vθ

v1

Ω

Ω

Fig. 3.35 Incompressible flow through a control volume � that is fixed in space. Problem
description with respect to (a) the 2D Cartesian coordinate system {e1, e2} and (b) the cylindrical
coordinate system {er , eθ }

(a) Given the Cartesian coordinate system {e1, e2} shown in Fig. 3.35a, derive the
flow continuity and verify the expression (3.104).

(b) Given the cylindrical coordinate system {er , eθ } shown in Fig. 3.35b, derive the
flow continuity equation and verify the expression (3.104). �

3.6.2 Balance of Linear Momentum

We may hypothetically free the material particle and use a Free Body Diagram
(FBD; see Sect. 3.7.2) to relate the external forces that act at the material particle
to the internal forces (stresses) that appear within the particle. Given the balance of
momentum, these forces have to be in equilibrium at any time t . A material particle
of the density ρ that moves at the velocity v therefore has to satisfy Cauchy’s linear
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momentum equation

ρ
Dv
Dt

= divσ + bf , (3.107)

where σ denotes the Cauchy stress tensor, whilst bf are body forces with respect
to the unit spatial volume. Cauchy’s momentum equation (3.107) represents the
application of Newton’s second law of mechanics [392] to a continuum body and
holds for all its material particles.

In addition to the balance of linear momentum, the material particle has to be
at angular momentum equilibrium. With the symmetry of the Cauchy stress tensor
σ = σT, the balance of angular momentum is a priori satisfied.

3.6.2.1 Lagrangian Description
In Lagrangian description, Dv/Dt = ∂v/∂t denotes the material particle’s acceler-
ation, and the system

ρ

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂v1

∂t

∂v2

∂t

∂v3

∂t

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂σ11

∂x1
+ ∂σ12

∂x2
+ ∂σ13

∂x3

∂σ21

∂x1
+ ∂σ22

∂x2
+ ∂σ23

∂x3

∂σ31

∂x1
+ ∂σ32

∂x2
+ ∂σ33

∂x3

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎣

bf 1

bf 2

bf 3

⎤

⎥⎥⎦ (3.108)

expresses Cauchy’s momentum equation (3.107) within 3D Cartesian coordinates.
It determines the distribution of the stress within the body.

Example 3.18 (Equilibrium of the Material Particle in 2D). Let us consider a
material particle of the density ρ [kg m−3] that accelerates at v̇ [m s−2]. The particle
is part of a 2D continuum body at inhomogeneous plane stress conditions.

(a) Consider the Cartesian coordinate system {e1, e2} and apply all stresses that act
at the material particle.

(b) Provide the linear momentum equilibrium along the e1 and e2 directions and
compare the result to (3.107).

(c) Consider the cylindrical coordinate system {er , eθ }, and apply all stresses that
act at the material particle of a rotational symmetric problem.

(d) Provide the linear momentum equilibrium along the er and eθ directions and
compare the result to (3.107). �

Example 3.19 (Inflated Thick-Walled Linear-Elastic Cylinder). Figure 3.37 shows
a thick-walled circular tube that represents an artery, where ri = 2.0 mm and ro =
3.0 mm denote its inner and outer radii, respectively. The tube is inflated at the
internal pressure pi, and the linear-elastic material with the Young’s modulus E =
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625 kPa and the Poisson’s ration ν = 0.49 describes the vessel wall properties.
Given small deformations, the radial σr and the circumferential σθ Cauchy stress
components derive from the fundamental solution

σr(r) = a0

r2 + b0 + c0(2 ln r + 1) ; σθ (r) = −a0

r2 + b0 + c0(2 ln r + 3)

(3.111)

of the rotational symmetric plane stress problem, where a0, b0, c0 denote constants
to be identified from the underlying Boundary Value Problem (BVP) [532].

Fig. 3.37 Inflated
thick-walled cylinder
representing an artery. The
radius r points to the radial
position of a material particle,
whilst pi denotes the inflation
pressure

(a) Show that the fundamental solution (3.111) satisfies Cauchy’s momentum
equation (3.107).

(b) Identify the constants a0, b0, and c0 from the boundary conditions, together with
the strain compatibility at rotational symmetry

∂(rεθ )

∂r
− εr = 0 . (3.112)

Plot the radial σr and the circumferential σθ stresses throughout the vessel wall
at diastolic pi d = 75 mmHg and systolic pi s = 120 mmHg blood pressures,
respectively.

(c) Compute the radial displacement pulsation �r at the inside and at the outside
of the vessel that appears in response to the pulse pressure. �

3.6.2.2 Eulerian Description
Given an Eulerian description, the material particle’s acceleration reads Dv/Dt =
∂v/∂t + grad(v) · v, where v denotes its velocity. In addition to the local rate
of velocity change ∂v/∂t , the advective (or convective) rate of velocity change
grad(v)·v contributes to the acceleration. Figure 3.39 aims at illustrating the physical
meaning of the advective rate of velocity change. It shows a steady-state, ∂v/∂t = 0,
flow through a nozzle. According to the Eulerian-type problem description, the
nozzle is fixed in space. The velocity vi at the inlet accelerates towards the velocity
vo at the outlet, which, at steady state, can only be achieved through the advective
term grad(v) · v.
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Fig. 3.39 Steady-steady
flow through a nozzle that
illustrates advective
acceleration from the inflow
velocity vi towards the
outflow velocity vo

Domain is fixed in space

Given a Newtonian fluid, we may substitute the stress term in Cauchy’s momen-
tum equation (3.107) by the Newtonian viscosity model σ = 2ηd − pI, where
d = (gradv+ gradTv)/2 denotes the rate of deformation tensor, whilst p is the fluid
pressure, see Sect. 3.5.4.1. Cauchy’s momentum equation (3.107) then leads to the
Navier29–Stokes30 equation. It reads ρ(∂v/∂t + v · gradv) = div(2ηd − pI) + bf
and may also be expressed by

ρ

(
∂v
∂t

+ v · gradv
)

= ηdiv(gradv)− gradp + bf , (3.115)

where div(gradv) denotes the vector Laplacian of v. Given 3D Cartesian coordinates
{e1, e2, e3}, the Navier–Stokes equations read

ρ

⎡

⎢⎢⎢⎢⎢⎣

Dv1

Dt
Dv2

Dt
Dv3

Dt

⎤

⎥⎥⎥⎥⎥⎦
= η

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2v1

∂x2
1

+ ∂2v1

∂x2
2

+ ∂2v1

∂x2
3

+ ∂2v1

∂x1∂x2
+ ∂2v1

∂x1∂x3

∂2v2

∂x2
1

+ ∂2v2

∂x2
2

+ ∂2v2

∂x2
3

+ ∂2v2

∂x1∂x3
+ ∂2v2

∂x2∂x3

∂2v3

∂x2
1

+ ∂2v3

∂x2
2

+ ∂2v3

∂x2
3

+ ∂2v3

∂x1∂x3
+ ∂2v3

∂x2∂x3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡

⎢⎢⎢⎢⎢⎣

∂p

∂x1
∂p

∂x2
∂p

∂x3

⎤

⎥⎥⎥⎥⎥⎦
+
⎡

⎢⎣
bf 1
bf 2
bf 3

⎤

⎥⎦ ,

where the material time derivative

⎡

⎢⎢⎢⎢⎢⎣

Dv1

Dt
Dv2

Dt
Dv3

Dt

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

∂v1

∂t
∂v2

∂t
∂v3

∂t

⎤

⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

v1
∂v1

∂x1
+ v1

∂v1

∂x2
+ v1

∂v1

∂x3

v2
∂v2

∂x1
+ v2

∂v2

∂x2
+ v2

∂v2

∂x3

v3
∂v3

∂x1
+ v3

∂v3

∂x2
+ v3

∂v3

∂x3

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

is to be used.
The different terms in the Navier–Stokes equation represent different physical

forces, and the normalization of Eq. (3.115) allows the assessment of their individual

29Claude-Louis Navier, French engineer and physicist. 1785–1836.
30Sir George Gabriel Stokes, English–Irish physicist and mathematician, 1819–1903.
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influence on a particular fluid flow problem. One possible normalization introduces
the characteristic (problem-specific) length L, velocity V , and time T . The spatial
position x = x∗L, the velocity v = v∗V , the time t = t∗T , the pressure p =
p∗ρV 2, and the body force bf = b∗

f ρg may then be substituted in (3.115). It leads
to the dimensionless Navier–Stokes equation

Sr
∂v∗

∂t∗
+ v∗ · grad∗v∗ = div∗(grad∗v∗)

Re
= −grad∗p∗ + b∗

f

Fr2 , (3.116)

where the divergence div∗(•) and the gradient grad∗(•) have been defined with
respect to the normalized dimension x∗. The Strouhal31 Sr = L/(T V ), the
Reynolds32 Re = VLρ/η, and the Froude33 Fr = V/

√
gL numbers indicate the

extent to which mass effects, viscous forces, and body forces influence the fluid
mechanical problem, respectively.

3.6.3 Thermodynamic Laws

The motion χ of a body may be regarded as a thermodynamic process, where
the body passes through a number of thermodynamic states. Such states are then
governed by the laws of thermodynamics.

3.6.3.1 The First Law of Thermodynamics
The first law of thermodynamics states that the energy of a closed system is
preserved. The change of system energy ė equals then the heat supply hinput and
power input pinput; ė = hinput + pinput. The system energy contains two parts, the
internal energy u, such as elastic and chemical energies, and the kinetic energy
ρ|v|2/2. They are taken with respect to the unit spatial volume, and the energy
conservation of the subdomain �s shown in Fig. 3.40 then reads

D

Dt

∫

�s

(
u+ ρ |v|2

2

)
dv

︸ ︷︷ ︸
Change of system energy

=
∫

�s

hinputdv +
∫

�s

pinputdv

︸ ︷︷ ︸
Input of heat and power

. (3.117)

The heat may be supplied by the heat flux qh or the heat source rh. The net heat
supply to the subdomain �s is therefore expressed by

∫

�s

hinputdv =
∫

�s

rhdv −
∫

∂�s

qh · nds =
∫

�s

(rh − divqh)dv , (3.118)

31Vincenc Strouhal, Czech physicist, 1850–1922.
32Osborne Reynolds, Irish innovator, 1842–1912.
33William Froude, English engineer, 1810–1879.



3.6 Governing Laws 147

Fig. 3.40 Subdomain �s of
a continuum body that is
exposed to the heat flux q, the
heat source r , and the surface
traction t. The outward
normal vector to the system
boundary ∂�s is denoted by n

where n denotes the outward normal vector to the subdomain’s surface ∂�s, and the
divergence theorem (A.8.2) has been used in the derivation of this expression.

The power input pinput is associated with the body force bf that acts within �s,
and the traction t = σn at the boundary ∂�s. The last expression in (3.117) then
reads
∫

∂�s

pinputdv =
∫

�s

v · bfdv +
∫

∂�s

v · σnds

=
∫

�s

[v · bf + div(vσ )] dv

=
∫

�s

[v · (bf + divσ )+ σ : d] dv =
∫

�s

(
ρ

2

D|v|2
Dt

+ σ : d
)

dv ,

(3.119)

where the rate of deformation d = (grad v + grad Tv)/2 and the divergence
theorem (A.8.2) have been used. In addition, Cauchy’s momentum equation (3.107)
allowed the substitution of v · (bf + divσ ) through the term (1/2)D|v|2/Dt .

Given the heat supply (3.118) and the power input (3.119), the energy conserva-
tion (3.117) reads

∫

�s

(u̇+ divqh − rh − σ : d) dv = 0 . (3.120)

This integral condition holds for any spatial subdomain �s of the body, and
localization therefore yields the strong condition

u̇+ divqh − rh − σ : d = 0 (3.121)

of the energy balance of the material particle. Given a Lagrange description,
the internal energy’s material time derivative u̇ corresponds to its partial time
derivative ∂u/∂t , whilst it reads ∂u/∂t + udivv in the Eulerian description of the
thermodynamical process.



148 3 ContinuumMechanics

Example 3.20 (Conservation of Energy in Material Description). Similar to the
spatial version of the conservation of energy (3.121), the first law of thermodynam-
ics may also be expressed with respect to the body’s reference configuration and
thus in its material description. Let us consider a subdomain of a continuum body
whose reference and spatial configurations are denoted by�s 0, and�s, respectively.
The body’s motion is slow, and kinetic effects may be neglected.

(a) Given the internal energy U per unit reference volume, express the subdomain’s
change of system energy.

(b) Given the heat flux Qh per unit reference area and the heat source Rh per unit
reference volume, express the net accumulation of heat within the subdomain

(c) Pull-back equation (3.119)4 to �s 0, and express the power input that enters the
subdomain.

(d) Given the results of the previous tasks, derive the first law of thermodynamics
in material description. �

3.6.3.2 The Second Law of Thermodynamics
We consider a body� at the absolute temperature θ that undergoes a thermodynam-
ical process. The heat flux qh and the heat source rh express the influx −div(qh/θ)

and the respective supply rh/θ of entropy s per unit spatial volume. The second law
of thermodynamics states that the rate γ of production of entropy s is never negative,
leading to the inequality

γ = ṡ −
[ rh
θ

− div
(qh

θ

)]
≥ 0 . (3.122)

The relation div(qh/θ) = (divqh)/θ − (qh · gradθ)/θ2 together with the heat
source rh = u̇ + divqh − σ : d, an expression that derives from the energy
conservation (3.121), then gives

γ θ = θ ṡ − u̇+ σ : d − qh · gradθ

θ
≥ 0 , (3.123)

where u denotes the internal energy, whilst σ and d are the Cauchy stress and the
rate of deformation, respectively.

With the definition of the Helmholtz free energy ψ = u − sθ per unit spatial
volume, the rate of internal energy reads u̇ = ψ̇ + sθ̇ + θ ṡ, and the second law of
thermodynamics then reads

γ θ = −ψ̇ − sθ̇ + σ : d − qh · gradθ

θ
≥ 0 , (3.124)

a relation known as Clausius–Duhem inequality.
The inequality (3.124) may also be expressed in its material description,
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−�̇ − Sθ̇ + P : Ḟ − Qh · Gradθ

θ
≥ 0 , (3.125)

where S denotes the entropy per unit reference volume. Here, the Helmholtz
free energy � = U − Sθ and the internal energy U are related to the unit
reference volume. In addition, Qh is the heat flux per unit reference area, whilst
Grad θ and DivQh denote the material gradient of the temperature θ and the
material divergence operator, respectively. Given the Cartesian coordinate system
{e1, e2, e3}, Gradθ = ∂θ/∂XI eI (no summation) expresses the gradient, and the
divergence reads DivQh = ∂Qh I /∂XI . The material version of the Clausius–
Duhem inequality (3.125) expresses the stress power P : Ḟ per unit reference
volume, where P and F denote the first Piola–Kirchhoff stress and the deformation
gradient, respectively.

Given a Lagrange description, the material time derivative D(•)/Dt of the scalar
(•) is equal to its partial time derivative ∂(•)/∂t , whilst in Eulerian description, it
reads ∂(•)/∂t + (•)divv, where v denotes the velocity.

3.6.4 The Relation Between the Stress and the Helmholtz Free
Energy

We consider a body that is described by a Helmholtz free energy � per unit refer-
ence volume. The formulation is objective and of the form � = �(F,H1, . . . ,Hn),
where F and Hi denote the deformation gradient and n internal (hidden) variables,
respectively. The body undergoes the motion χ(t), and like any other admissible
thermodynamic process, it obeys the Clausius–Duhem inequality (3.125). Given
most vascular biomechanical applications, such a process is isothermal, and θ̇ = 0
as well as Gradθ = 0 applies. It then leads to the isothermal version −�̇ + P :
Ḟ ≥ 0 of the Clausius–Duhem inequality, and with �(F,H1, . . . ,Hn), it yields the
inequality

(
P − ∂�

∂F

)
: Ḟ − ∂�

∂Hi
: Ḣi ≥ 0 (3.126)

of an admissible process. The inequality (3.126) holds for arbitrary deformations
and then implies the constitutive relation

P = ∂�(F,H1, . . . ,Hn)
∂F

(3.127)

between the first Piola–Kirchhoff stress P and the free energy function �.
We may also introduce n stress-like variables Li = ∂�/∂Hi that are work-

conjugate to the hidden variables Hi . Given (3.126) holds for any deformation, the
inequality
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−Li : Ḣi ≥ 0 (3.128)

ensures the body’s motion obeys the second law of thermodynamics. The afore-
mentioned approach to derive the constitutive relation (3.127) and the dissipation
inequality (3.128) is known as Coleman and Noll’s procedure.

The expressions (3.127) and (3.128) use two-point tensors, and equivalent
expression with referential one-point tensors may be derived. We therefore introduce
the a priori objective free energy � = �(C,G1, . . . ,Gn) as a function of the
right Cauchy–Green strain C and the strain-like internal variables Gi . As with C,
the internal variables Gi are symmetric second-order tensors that are defined in
the body’s reference configuration �0. Given the first Piola transform (3.31), the
constitutive relation (3.127) expresses then the second Piola–Kirchhoff stress by

S = F−1P = 2
∂�(C,G1, . . . ,Gn)

∂C
, (3.129)

where the chain rule P = (∂�/∂C) : (∂C/∂F) and the property (∂C/∂F) :
F−1 = 2I have been used in the derivation of this expression. In equivalence to
the dissipation inequality (3.128), the dissipation per unit reference volume then
reads −Mi : Ġi ≥ 0, where Mi = ∂�/∂Gi are n stress-like variables that are
work-conjugate to Gi .

3.6.4.1 Stress of an Incompressible Material
For a number of applications, the deformation of vascular tissue can be considered
to be incompressible. The motion χ is then constrained, and the constraint
equation J − 1 = 0 is to be enforced in the material’s constitutive description.
Following the Lagrange multiplier method, we introduce the Lagrangian � =
�iso(C,G1, . . . ,Gn) − κ(J − 1), where the isochoric free energy �iso represents
constitutive information, whilst the term κ(J−1) serves as Lagrangian contribution.
It enforces the incompressibility, and κ is the Lagrange multiplier. The Coleman and
Noll procedure then yields

S = 2
∂�iso(C,G1, . . . ,Gn)

∂C
+ 2κ

∂(J − 1)

∂J

∂J

∂C
, (3.130)

and, with ∂J/∂C = JC−1/2 and J = 1, the second Piola–Kirchhoff stress of an
incompressible material reads

S = 2
∂�iso(C,G1, . . . ,Gn)

∂C
− κC−1 . (3.131)
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We emphasize that the Lagrange parameter κ in the afore-derived expressions
does not represent the hydrostatic pressure p, and therefore the two contributions
at the right-hand side of (3.131) do not represent isochoric and hydrostatic stress
contributions, respectively. The decoupled representation would instead read

S = 2Dev

[
∂�iso(C,G1, . . . ,Gn)

∂C

]

︸ ︷︷ ︸
S

−pC−1
︸ ︷︷ ︸

Svol

, (3.132)

where S and Svol are the isochoric and respective volumetric second Piola–Kirchhoff
stresses, whilst Dev(•) = (•)− [C : (•)]C−1/3 denotes the deviator operator in the
referential description.

Given (3.131) and (3.132), the application of the second Piola transform (3.32)
for incompressible materials J = 1 then yields the two corresponding expressions

σ = 2F
∂�iso(C,G1, . . . ,Gn)

∂C
FT − κI (3.133)

and

σ = 2dev

[
F
∂�iso(C,G1, . . . ,Gn)

∂C
FT
]

︸ ︷︷ ︸
σ

−pI︸︷︷︸
σ vol

(3.134)

of the Cauchy stress, where σ and σ vol denote its isochoric and volumetric
contributions, respectively. In the derivation of these expressions the identity
dev[F(•)FT] = F {Dev[(•)]}FT has been used, see Appendix C.

The hydrostatic pressure p in (3.132) and (3.134) may be seen as a Lagrange
parameter that enforces the incompressibility. As with κ , it is independent of the
material’s deformation and entirely defined by the individual BVP.

Example 3.21 (The Incompressible neoHookean Material). The neoHookean
Helmholtz free energy �iso(C) = G(I1 − 3)/2 per unit (reference) volume
describes an incompressible body, where I1 = trC denotes the first invariant of
the right Cauchy–Green strain C, whilst G is the shear modulus in the reference
configuration. Compute the material’s normalized Cauchy stress as a function of
the deformation, given the following four motions χ(X):
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(a) Simple tension. The components

χst 1 = λX1 ; χst 2 = X2/
√
λ ; χst 3 = X3/

√
λ (3.135)

describe the motion, where λ denotes the stretch in tensile direction.
(b) Equi-biaxial tension. The components

χbt 1 = λX1 ; χbt 2 = λX2 ; χbt 3 = X2/(λ1λ2) (3.136)

describe the motion, where λ denotes the stretch in the two tensile directions.
(c) Simple shear. The components

χss 1 = X1 + γX2 ; χss 2 = X2 ; χss 3 = X3 (3.137)

describe the motion, where γ denotes the amount of shear.
(d) Pure shear. The components

χps 1 = X1 −X2 + (X1 +X2)λ
2

2λ
; χps 2 = X2 −X1 + (X1 +X2)λ

2

2λ
;

χps 3 = X3 (3.138)

describe the motion, where λ denotes the principal stretch. Given small defor-
mations, λ = 1 − γ /2 relates the stretch λ and the amount of shear γ . �

3.7 General Principles

As with other mechanics disciplines, continuum mechanics uses a number of
principles towards the solution of specific applications, and some of them are
discussed in this section.

3.7.1 Maxwell Transport and Localization

The balance equations in continuum mechanics discussed in the previous sections
may also have been derived through a two-step approach, called Maxwell transport
and localization procedure. Let us consider the derivation of the conservation of
mass. Given the subdomain �s shown in Fig. 3.42,

∂

∂t

∫

�s

ρ(x, t)dv = 0 (3.140)

holds, where ρ(x, t) denotes the density per unit spatial volume. The subdomain
�s is not fixed in space, it evolves over time, and the time derivative of the integral
cannot directly be computed. In a first step, we therefore pull-back the integral to
the subdomain’s fixed reference configuration �s 0. Given the transformation of the
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volume element dv = JdV , the conservation of mass in the reference configuration
then reads

∂

∂t

∫

�s 0

ρ(x(X, t), t)JdV = 0 .

The integrand may now be differentiated, and (3.140) then reads

∫

�s 0

∂

∂t
(Jρ)dV =

∫

�s 0

(
∂ρ

∂t
+ ρdivv

)
JdV = 0 ,

where the rate of volume change (3.38)4 has been used. In the second step, the
integral is pushed forward to the spatial configuration �s. The conservation of mass
then reads

∫

�s

(
∂ρ

∂t
+ ρdivv

)
dv = 0 ,

and the shrinkage of the domain �s towards a point, a process called localization,
yields

∂ρ

∂t
+ ρdivv = 0 ,

in accordance with the expression (3.102).

Example 3.22 (Equilibrium in Material Description). We consider a body under
the action of the body force bf per unit spatial volume. The motion χ(X) maps
a subdomain from its reference configuration �s 0 to its spatial configuration �s,
see Fig. 3.42. The subdomain’s surfaces and unit normal vectors are denoted by
∂�s 0, ∂�s and N,n in the respective configurations.

Fig. 3.42 The motion χ(X)
maps a subdomain from its
referential configuring �s 0 to
its spatial configuration �s

(a) Given the spatial configuration �s, derive the linear momentum equation and
show that the localization of this expression then yields Cauchy’s (static)
momentum equation (3.107).
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(b) Show that the linear moment equilibrium with respect to the body’s reference
configuration may be expressed by

DivP + Bf = 0 , (3.141)

where Div(•) denotes the divergence with respect to the reference configuration,
whilst P and Bf are the first Piola–Kirchhoff stress and the body forces with
respect to unit referential volume, respectively. �

3.7.2 Free Body Diagram

A Free Body Diagram (FBD) is the simplest abstraction of the forces that act at a
physical object and may be used to derive the relation between external and internal
forces of a continuum body. The internal forces are introduced by the hypothetical
sectioning of the continuum body and can then be related to stress components
through Euler’s first and second principle, respectively. Simplifications, such as
plane stress, are often used in the application of FBD.

We may consider Fig. 3.43a towards the illustration of a FBD. It shows a
sphere of radius r [m] and a wall thickness h [m] at its spatial and thus deformed
configuration �. Given the symmetry of the problem, the inflation at the pressure
pi [Pa] determines an equi-biaxial stress state in the wall, described by the Cauchy
stress σ [Pa]. The radius of the sphere is much larger than its wall thickness, r  h,
and therefore the condition of plane stress (or a membrane stress state) represents a
reasonable approximation to the stress in the wall.

As shown in Fig. 3.43b, the introduced sectioning “frees” the stress σ , which
in turn leads to the FBD shown in Fig. 3.43c. The inflation pressure pi causes
the external force Pp = r2πpi, whilst the stress σ leads to the internal force
Pσ = 2rπhσ . Given the symmetry of the problem, only the forces along the axial
direction are of relevance and appear in the FBD. The multiplication of the pressure

pi

pi

Pp

Pσ

2r

Ω

σ

Fig. 3.43 Inflated thin-walled sphere. (a) Problem definition. (b) Hypothetically dissected struc-
ture to free internal forces. (c) Free Body Diagram (FBD)
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pi with the sphere’s projected area r2π determines therefore the external force Pp,
see Fig. 3.43b. Euler’s first principle, and thus the equilibrium in the axial direction,
then reads Pp − Pσ = 0. It allows us to express the stress through

σ = rpi

2h
, (3.144)

a function of the inflation pressure pi and the spatial properties r, h of the deformed
sphere. This continuum mechanical problem is called statically determined, and the
function (3.144) does not involve any material properties of the sphere.

Example 3.23 (The Inflated Thin-Walled and Linear-Elastic Circular Tube). We
consider an artery that is represented by a thin-walled circular tube of the diameter
d = 5 mm and the wall thickness h = 0.4 mm. The tube is inflated at the pressure
pi, and the wall may be described by a linear-elastic material with the Young’s
modulus E = 625 kPa and the Poisson’s ratio ν = 0.49. Given this problem, small
deformation theory may be used.

(a) Express the wall stress as a function of the pressure pi and the geometrical
properties d and h.

(b) Given the diastolic pi d = 75 mmHg and the systolic pi s = 120 mmHg blood
pressures, compute the corresponding change �d of the vessel’s diameter.

(c) Compute the capacity C [mm3 mmHg−1] of a vessel segment of the length
l = 8.0 cm. It may be assumed that the vessel’s length remains constant during
pressure pulsations. �

3.7.3 Boundary Value Problem

The Boundary Value Problem (BVP) is the mathematical description of a problem
in continuum mechanics. Let us consider a solid mechanics problem, where a
body occupies the spatial domain �, and the displacement u denotes the pri-
mary, or essential unknown. Within �, Cauchy’s momentum equation (3.107)
ρ
(
D2u/Dt2

) = divσ + bf applies, where bf denotes the body force per unit spatial
volume.

The body’s surface ∂� is split into ∂�u and ∂�t, such that ∂�u ∪ ∂�t =
∂� and ∂�u ∩ ∂�t = {0} holds. At �u a Dirichlet34 or essential boundary
condition prescribes the displacement u = u, whilst at �t a Neumann35 or natural
boundary condition prescribes the traction t = σn = t, where Cauchy’s stress
theorem (3.20) has been used and n denotes the normal vector to the boundary, see
Fig. 3.45a. The specification of Dirichlet and Neumann boundary conditions relates

34Johann Peter Gustav Lejeune Dirichlet, German mathematician, 1805–1859.
35Carl Gottfried Neumann, German mathematician, 1832–1925.
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∂Ωt ∂Ωt

∂Ωu ∂Ωv

Ω Ω

bf
bf

Fig. 3.45 Boundary Value Problem (BVP) in continuum mechanics. (a) BVP in solid mechanics
using a Lagrange description, where � moves with the body. (b) BVP in fluid mechanics using an
Eulerian description, where � is fixed in space

independently to the individual displacement components. For example, at a node
the first displacement component may be specified by a Dirichlet condition, whilst
a Neumann condition sets the second component of the nodal force vector.

Given a transient problem, the mathematical description is closed by the
specification of the velocity and displacement over � at the time t0, Du/Dt = v0
and u = u0. The BVP is then called an initial BVP (iBVP) and described by the set

divσ + bf = ρ
D2u
Dt2

in � ,

u = u at ∂�u ,

t = σn = t at ∂�t ,

Du
Dt

= v0;u = u0 in � at t = t0 .

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(3.146)

A Lagrangian description is commonly used for solid mechanics problems. The
domain � follows then the motion of the body, and Du/Dt = ∂u/∂t and
D2u/Dt2 = ∂2u/∂t2 express the first and second material time derivatives of the
displacement.

In the description of a fluid mechanical problem, the velocity v denotes the
primary, or essential unknown, see Fig. 3.45b. The iBVP then reads

divσ + bf = ρ
Dv
Dt

in � ,

v = v at ∂�v ,

t = σn = t at ∂�t ,

v = v0 in � at t = t0 ,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(3.147)
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Sand

Fig. 3.46 Principle of Virtual Work (PVW). The beam’s equilibrium configuration (dashed line) is
perturbed by an admissible virtual displacement δu(x). It is compatible with the Dirichlet boundary
conditions at the left and right ends of the beam

and an Eulerian description is commonly used. The domain� is then fixed in space,
and Dv/Dt = ∂v/∂t+gradv·v expresses the material time derivative of the velocity.

The sets (3.146) and (3.147) represent the strong form of the iBVP, and the
equilibrium equation is directly enforced at the material point level. Whilst such
a description is used by a number of numerical methods, the Finite Element Method
(FEM) uses the weak or integral form of the iBVP, see Chap. 4.

3.7.4 Principle of Virtual Work

The Principle of Virtual Work (PVW) is an energy principle that may be used to solve
problems in continuum mechanics. Let us consider the beam in Fig. 3.46 towards the
illustration of the PVW. The beam is clamped at the left end and simply supported at
its right end. Given the weight of a pile of sand that rests on it, the displacement u(x)
deforms the beam into its equilibrium configuration, indicated by the dashed line in
Fig. 3.46. We may now “freeze” the loading and introduce the admissible virtual
displacement δu(x) that (hypothetically) perturbs the beam around its equilibrium
configuration. Aside from being continuous, δu(x) has to be compatible with the
Dirichlet boundary conditions. Given the problem shown in Fig. 3.46, an admissible
virtual displacement therefore satisfies δu(0) = δu′(0) = δu(L) = 0.

The perturbation δu(x) moves the external forces and deforms the beam, which
then results in the external work δWext and the respective internal work δWint. If
and only if δWext = δWint, the PVW concludes that the perturbation δu(x) has been
superimposed onto the beam’s equilibrium configuration. The PVW is an alternative
version of Newton’s second law of mechanics and represents the weak form of the
BVP. Calculus of Variations represents an alternative, and more general method, to
derive a problem’s description in the weak form, see Sect. 4.3.

Example 3.24 (Applications of the Principle of Virtual Work). The Principle of
Virtual Work (PVW) δWext = δWint, where Wext and Wint denote the external and
respective internal virtual works, should be used to derive the equilibrium conditions
of the following mechanical systems:
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v η

Fig. 3.47 Mechanical systems at equilibrium. (a) Rigid body loaded by the forces Pi . (b) Spring
of stiffness k loaded by the gravitational forceG. (c) Fluid of viscosity η that is loaded by the shear
stress τ0 and moves at the velocity v

(a) A rigid body that is loaded by n constant forces Pi , i = 1, . . . , n, see Fig. 3.47a.
(b) A spring of stiffness k that is loaded by the constant gravitational force G, see

Fig. 3.47b.
(c) A fluid layer of the thickness H and the base area A that is loaded by the shear

stress τ0, see Fig. 3.47c. The fluid within the layer moves at the velocity v =
Vy/H , where V denotes the surface velocity. The layer is at steady state, and
the fluid has the constant viscosity η. �

3.7.4.1 Principle of Virtual Work for Small Deformation Problems
Towards the application of the PVW in solid mechanics, we consider the BVP in
Fig. 3.45a at small deformations. The equilibrium displacement u is perturbed by the
admissible virtual displacement δu—given small deformation theory, δu is small.
The perturbation then leads to the virtual work relation

∫

�

σ : δεdv
︸ ︷︷ ︸

δWint

=
∫

�

bf · δudv +
∫

∂�

t · δuds
︸ ︷︷ ︸

δWext

, (3.148)

where δε = [∂δu/∂X + (∂δu/∂X)T]/2 denotes the virtual engineering strain in
response to the virtual displacement δu. The expression (3.148) reflects the weak or
integral form of the BVP (3.146) at small deformations and static conditions.

3.7.4.2 Principle of Virtual Work for Finite Deformation Problems
Using work-conjugate stress and strain measures, the PVW may be directly applied
to finite deformation problems. It then reads

∫

�

σ : gradsδudv
︸ ︷︷ ︸

δWint

=
∫

�

bf · δudv +
∫

∂�

t · δuds
︸ ︷︷ ︸

δWext

, (3.149)

where gradsδu = [∂δu/∂x + (∂δu/∂x)T]/2 denotes the symmetric gradient of
the virtual displacement δu. Expression (3.149) represents the PVW in its spatial
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formulation. The integrations are therefore taken over the spatial configuration �,
and the body force bf and the traction t relate to the unit spatial volume and the unit
spatial surface, respectively.

The spatial domain � moves in time and complicates the application of (3.149),
difficulties prevented with the material version of the PVW. Towards its derivation,
we use the second Piola transform (3.32) σ = J−1FSFT, the volume transform
dv = JdV , Cauchy’s stress theorem (3.20) t = σn, and Nanson’s formula (3.5)
nds = JF−TNdS. The PVW equation (3.149) may then be expressed by

∫

�0

J−1FSFT : gradsδuJdV =
∫

�0

bf · δuJdV +
∫

∂�0

σJF−TN · δudS ,

where S denotes the second Piola–Kirchhoff stress, whilst N is the normal vector to
∂�0. All integrations are now taken over the referential and thus fixed configuration.
Given the body force per unit reference volume Bf = Jbf and Cauchy stress
theorem T = PN, the material version of the PVW then reads

∫

�0

S : δEdV

︸ ︷︷ ︸
δWint

=
∫

�0

Bf · δudV +
∫

∂�0

T · δudS

︸ ︷︷ ︸
δWext

, (3.150)

where δE = FTgradsδuF denotes the virtual Green–Lagrange strain, see
Appendix D. The expressions (3.149) and (3.150) reflect the weak or integral
form of the BVP (3.146) at static conditions in the spatial and material description,
respectively.

3.8 Damage and Failure

At loading beyond a body’s elastic limit, the integrity of the material’s microstruc-
ture is harmed and damage develops. Given vascular tissue, micro-defects such
as breakage and/or pull-out of collagen fibrils start to appear. If healing is not
able to repair such micro-defects, the tissue continues to accumulate weak links—
its stiffness and strength diminish. Exceeding a certain threshold micro-defects
coalesce towards the formation of macro-defects, and a single macro-defect then
eventually propagates and fractures the material. A number of engineering concepts,
such as Continuum Damage Mechanics (CDM), Linear Fracture Mechanics (LFM),
and cohesive zone modeling allow the study of the formation and propagation of
failure in materials.

CDM follows a Kachanov-type formulation [290], where a damage parameter
describes the state of damage. Given isotropic damage, the damage parameter is a
scalar and represents the density of micro-defects, whilst in anisotropic damage, a
damage tensor describes the density together with the orientation of micro-defects.
The damage parameter relates the stress σ of the continuum to the stress σ eff of a
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virtually undamaged material. For isotropic damage it reads

σ = (1 −D)σ eff , (3.151)

where D denotes the scalar damage parameter. In anisotropic damage similar
relations are used, where a symmetric second-order (or higher-order) damage tensor
determines the state of damage.

3.8.1 Physical Consequences of Damage

The accumulation of damage eventually leads to strain softening. The stress then
decreases at increasing strain, and the material’s stiffness tensor is no longer positive
definite—the physics of the mechanical problem changes fundamentally.

We consider the rod at simple tension shown in Fig. 3.48 to demonstrate the
consequences of strain softening. The material is described by the strain-dependent
Young’s modulus E(ε), and the rod has the constant cross-section A. Equilibrium
along the axial direction reads −Aρdx(∂2u/∂t2)− Aσ(x)+ Aσ(x + dx) = 0 and
determines the governing equation

∂2u(x, t)

∂t2
− c ∂

2u(x, t)

∂x2 = 0 with c = E(ε)/ρ , (3.152)

where the linear expansion σ(x + dx) = σ(x) + dσ = σ(x) + E(ε)(∂2u/∂x2)dx
has been used. Equation (3.152) represents a wave propagation problem and the
parameter c determines the physics of the problem. For at E(ε) > 0 (and thus
c > 0) the problem is elliptic and waves can propagate along the rod, whilst at
E(ε) < 0 (and thus c < 0), the material exhibits strain softening, the problem is
hyperbolic, and waves cannot propagate along the rod.

Given a multi-dimensional small-strain problem, the aforementioned 1D condi-
tion E(ε) > 0 relates to the strong ellipticity condition. Thus, �ε : C(ε) : �ε >

0 for all possible strain increments �ε, where C(ε) denotes the (non-constant)
elasticity tensor [354]. A similar condition refers to finite deformation problems
[46, 402].

Fig. 3.48 Forces acting at
the cross-section of a rod at
simple tension
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Fig. 3.49 Naive rupture test
showing markedly different
strain versus force F
responses in the strain
softening phase. The different
responses are linked to three
pairs of markers that are used
to calculate the (average)
strain in the tensile sample
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3.8.2 Strain Localization

Strain softening results in strain localization, and the deformation then localizes
in a narrow domain within which all irreversible processes appear. The study
of strain localizations requires appropriate computational and experimental tools.
The classical (non-polar) continuum is inadequate to analyze strain localizations
and requires regularization to avoid non-physical results. Given the non-polar
continuum, strain localizes within an infinitesimally small volume and no energy
is then dissipated by an inherently dissipative process, such as damage [31]. In
contrary, the failure in a real material localizes always within a finite volume, which
size is determined by the local stress state and the material’s microstructure—
parameters that determine the internal length-scale of the failure process. The
non-polar continuum contains no internal length-scale and can therefore not be
directly used to analyze material failure [287].

Strain localization challenges also the experimental characterization of materials,
as schematically illustrated by the tensile test in Fig. 3.49. The set-up uses markers
in the acquisition of the (averaged) strain ε̄ = (l − L)/L, where L and l

denote the distance between corresponding markers in the respective configuration.
The experimental measurements dependent on the marker positions. The strain
calculated from markers that are close to the localization zone (case (a) in Fig. 3.49)
results in a more ductile response as from markers further away from the localization
zone (case (c) in Fig. 3.49).

Example 3.25 (Strain Localization in a Rod at Tension). The development of a
strain localization in a rod at tension is a well discussed problem [618]. Figure 3.50
illustrates such a rod of the length L = 10.0 m and the cross-section A = 1.0 m2. It
is discretized by n equal sections of the length l = L/n, and Fig. 3.50b shows the
bi-linear stress–strain properties of the material. The stress increases at the stiffness
E = 10.0 MPa until it reaches the elastic limit Y = 1.0 MPa and then decreases at
the softening stiffness H = 1.0 MPa.
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We gradually increase the displacement u at the rod’s right end. The load P
then develops up to the limit P = Pmax, a configuration indicated by State (II) in
Fig. 3.50a, and all n sections have the same strain ε = u/L. Given the limit load is
reached, a further increase of u leads to the reduction of P . The rod starts then to
develop a strain localization and the solution bifurcates, see State (III) in Fig. 3.50.
The section with the (numerically) smallest cross-section (in Fig. 3.50 this section
is shaded) follows the strain softening path, whilst all the other sections elastically
unload until the structure is completely stress-free at State (IV).

u

P = 0

Y

P = 0

P = Pmax

P < Pmax

arctanE

arctanH

Fig. 3.50 Rod at simple tension that develops a strain localization. (a) The deformations at a
number of loading states. (b) Bi-linear stress–strain properties with the corresponding loading
states illustrated

(a) Given the rod in the strain softening phase, express the averaged strain ε̄ = u/L

as a function of the material properties E and H , as well as the number of
sections n.

(b) Compute the energy D per unit volume that has been dissipated at State (IV).
(c) Regularize the problem by substituting H with the “section size-dependent”

softening modulus Hreg = H/n. Compute then the regularized averaged strain
ε̄reg and the regularized dissipation Dreg. �

A number of approaches have been reported to regularize the non-polar contin-
uum towards preventing non-physical results in the description of strain softening
materials. The gradient-enhanced damage model [425] would be one such concept.
The evolution of the damage parameter D in a material point is then influenced
by the deformation in the vicinity of the point, a non-local effect that may
be incorporated by diffusion equations that are coupled to the other governing
equations of the problem [415].

3.8.3 Linear Fracture Mechanics

In Linear Fracture Mechanics (LFM), the fracture toughness is expressed through
the stress intensity factor Ki [Pa m1/2], a theoretical construct to capture the stress
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Fig. 3.52 Mechanical concepts used in the analysis of fracture problems. (a) Modes i =
I, II, III of the loading at the crack tip to define the stress intensity factorsKi . (b) Path � around
a crack tip to compute the J-integral in 2D

near the crack tip. The subscript i = I, II, III denotes the loading of the crack tip
according to Fig. 3.52a. The corresponding stress intensity factors then read

KI = lim
x1→0

√
2πx1σ22 ; KII = lim

x1→0

√
2πx1σ12 ; KIII = lim

x1→0

√
2πx1σ23 ,

where x1 and σ denote the distance from the crack tip and the stress at the crack
tip, respectively. Figure 3.52b illustrates the stress at the crack tip in 2D towards the
definition of these parameters.

Given a linear-elastic material (see Sect. 3.5.2) with the Young’s modulus E and
the Poisson’s ratio ν, the expression

D = K2
I

(
1 − ν2

E

)
+K2

II

(
1 − ν2

E

)
+K2

III

(
1 + ν
E

)

relates the stress intensity factorsKI ,KII ,KIII to the dissipation, or energy release
rate D of the propagating fracture. The energy release rate D [J m−2] represents the
energy that is dissipated per unit of newly created fracture surface area. In addition
to small strains, LFM requires the formation of a sharp crack tip, both of which
limits the application of LFM in vascular biomechanics.

3.8.4 Non-linear Fracture Mechanics

The non-linear mechanical properties of vascular tissue and the formation of a
blunted crack tip hinder the application of LFM. Despite failure mechanisms of
vascular tissues are still poorly understood, a number of tools are available to
analyze non-linear fracture problems—some of them are discussed below.
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3.8.4.1 J-Integral
The J-integral represents a technique for the calculation of the energy release rate D
of a material in response to the propagation of a fracture [81, 460]. Given the strain
energy density ψ = ∫ ε

0 σ : dε of a solid, the J-integral in 2D reads

J =
∫

�

(
ψdx2 − t · ∂u

∂x1
ds

)
= D , (3.155)

where n denotes the normal to the path � encompassing the crack tip, see Fig. 3.52b.
In addition, u and t = σn denote the displacement and the Cauchy traction vector,
respectively. The J-integral (3.155) is independent of the definition of �, as long as
the path is closed [81, 460].

3.8.4.2 Cohesive ZoneModeling
Cohesive zone modeling introduces a Traction Separation Law (TSL) that serves as
a surrogate measure of the failure process. The TSL defines the traction that acts in
response to the opening of the crack faces, see Fig. 3.53. It may be derived from a
cohesive potential that governs the material-dependent resistance against failure and
thus specifies the properties of the cohesive zone independently from the properties
of the bulk material.

We may introduce an isotropic cohesive potential�c(ud, ζ ) per unit undeformed
area of the failure surface [200, 413], where ud is the opening displacement, whilst
ζ denotes a scalar internal variable that determines the state of damage. Coleman
and Noll’s procedure [97] allows us then to compute the cohesive traction T = PN
and the dissipation D according to

T = ∂�c

∂ud
; D = −∂�c

∂ζ
ζ̇ ≥ 0 , (3.156)

where P and N denote the first Piola–Kirchhoff stress and the normal to the failure
zone in the reference configuration �0, respectively. Cohesive zone modeling is a
well-established concept [135] to describe failure in metals [26] and concrete [254],
and it has also been used to describe the fracture of biological tissues [200, 233].

Fig. 3.53 Mechanical
representation of a fracture by
a cohesive zone model. A
Traction Separation Law
(TSL) serves as a surrogate
description of the failure
process and defines the
traction T as a function of the
opening of the crack faces ud



3.9 Summary and Conclusion 165

3.9 Summary and Conclusion

Continuum mechanics is a powerful tool in the investigation of biomechanical
problems. It allows us to explore solid mechanical as well as fluid mechanical
aspects of the vascular circulation. Factors, such as stress and strain, are not only of
great importance to understand the physiology of the vascular system, but they are
also common denominators of cardiovascular pathologies and thus factor of direct
clinical relevance.

In continuum mechanics a solid or fluid is represented by an infinite number of
material particles, each of which represents the material’s internal structure through
the RVE. The stress describes the mechanical loading of the RVE and may be
regarded as the most fundamental quantity in continuum mechanics. It develops
according to Cauchy’s equation of motion and thus through Newton’s laws of
mechanics.

The material’s constitutive description is needed to close the set of equations that
describe a problem in continuum mechanics. It expresses the relation between stress
and strain of the material particle. A constitutive description therefore represents
a surrogate description of the RVE’s mechanical properties and specifies how the
material’s internal structure interacts in the transmission of the mechanical load.
It may explicitly represent such interactions, or simply using a phenomenological
relation between the stress and deformation, eventually even based on Machine
Learning (ML) technology. We may consider the deformation of a body as a
thermodynamic process, an especially powerful concept in the description of
finite deformation problems. Given the complexity of the vasculature, the related
constitutive models are discussed in detail in the subsequent chapters.

The iBVP is the mathematical description of a problem in continuum mechanics
and allows us to formulate many questions in biomechanics. The analytical solution
of the iBVP is only possible for a very limited number of problems. The exploration
of most vascular biomechanics problems therefore requires the numerical approxi-
mation of the iBVP. One such approach, the FEM, is discussed in the next chapter.
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This chapter introduces the linear and non-linear Finite Element Method (FEM).
It begins with the spatial discretization of a continuum body, followed by the
introduction of shape functions and gradient operators. We then discuss the Calculus
of Variations, where problems such as diffusion, advection-diffusion, linear and
non-linear solid mechanics, as well as incompressible flow are covered. The
corresponding discretized sets of equations are provided in the next section. As
vascular problems are inherently characterized by incompressible deformations, we
therefore consider constraints at the finite element level, where Penalty, Lagrange
and augmented-Lagrange methods are discussed. Next, the contributions of the
individual finite elements are assembled into a global system of equations, and
the stability and regularization of the discretized equations are explored. We then
present a set of methods to solve the system of FEM equations- it covers the solution
of sparse linear systems, non-linear systems, arc-length methods as well as explicit
and implicit solution approaches. A number of case studies exemplify the solution
of structural and fluid flow problems, and a summary concludes the chapter.

4.1 Introduction

The Finite Element Method (FEM) is the most widely used numerical method
to solve partial differential equations (PDE) and thus also the first choice to
compute solutions to problems in vascular biomechanics. A problem is subdivided
into a large number of finite elements and then approximated through a discrete
system of interconnected nodes. Time-marching or predictor–corrector methods

The original version of this chapter was revised: ESM has been added. The correction to this
chapter is available at https://doi.org/10.1007/978-3-030-70966-2_8
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are used to compute the independent nodal variables, such as the displacement u
of a solid mechanical problem or the velocity v of a fluid mechanical problem.
The FEM emerged from mathematical and engineering approaches, and the term
“finite element” appears first in the 1960s [93]. Today excellent texts describe the
FEM [30,34,53,457,617–619], and efficient commercial and open-source software
support the solution of FEM problems for different applications.

Considerable insight in a problem, such as properties of the expected solution,
can be gained by knowing the type of PDE that determines its physics. The classifi-
cation of PDEs rests on whether lines or surfaces exist across which the derivation
of the solution is discontinuous [34]. PDEs may be classified into three types:

• The hyperbolic PDE describes problems, such as wave propagation. Discon-
tinuities in initial conditions propagate through the system. Given non-linear
problems, even smooth data may localize towards shock waves.

• The elliptic PDE describes problems, such as the deformation of elastic bodies.
The solutions are smooth, even for discontinues initial conditions. However,
boundary data tend to affect the entire domain. A major difficulty is that acute
corners in the boundary lead to singularities in the solution.

• The parabolic PDE describes problems, such as heat conduction and may be
seen as somewhere in between the hyperbolic and elliptic problems.

This chapter aims at reviewing the foundation of the FEM towards targeted
vascular biomechanics applications.

4.2 Spatial Discretization

The domain � is approximated by �h = ∑ne
i=1�e, which itself is split into ne

subdomains �e, the so-called finite elements, see Fig. 4.1. The discretization of �h

allows us to focus on a single finite element �e towards the implementation of
the governing equations. Each finite element has nnpe nodes xi , and the element
connectivity specifies their arrangement. This information is stored in the FEM data
structure.

4.2.1 Shape Function

The nnpe finite element nodes store the independent problem variables, such as the
displacements ui; i = 1, . . . , nnpe, of a structural mechanical problem. They are the
essential variables of the FEM problem. The shape function Ni(ξ) interpolates such
variables over the finite element �e, and the expression

u(ξ) =
nnpe∑

i=1

Ni(ξ)ui (4.1)

then specifies their value at the natural coordinate ξ inside the finite element.
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Element level

Global level

1

2

3

5

6
7

8

9 10

11

12
13

14
1

2

4

4

3

node coordinates

1 x11 x12
2 x21 x22
3 x31 x32
4 x41 x42
5 x51 x52
.
.
.

element connectivity

Ω1 12 13 5 1

Ω2 2 14 4 6

Ω3 6 4 7 8

Ω4 5 13 2 6

Ω5 10 11 12 1

.

.

.

Fig. 4.1 Spatial discretization of the 2D domain �h through the nodes xi; i = 1, . . . , 14 and the
quadrilateral finite elements �e; e = 1, . . . , 8. (left) The global node numbering i = 1, . . . , 14
describes the global problem, whilst the local node numbering i = 1, 2, 3, 4 corresponds to the
level of the finite element. (right) The FEM data structure stores the nodal coordinates and the
element connectivity

We may also introduce h, a ndof-dimensional vector that stores the essential
variables of one finite element. Given a continuum finite element with ndim denoting
the problem’s number of dimensions, the vector h has the dimension ndof =
nnpendim. The interpolation (4.1) then reads

u = Nh ; ui = Niaha , (4.2)

where N is the ndim × ndof-dimensional interpolation matrix. It reads

N =

⎡

⎢⎢⎣

N1 0 0 . . . Nnnpe 0 0

0 N1 0 . . . 0 Nnnpe 0

0 0 N1 . . . 0 0 Nnnpe

⎤

⎥⎥⎦

for a 3D continuum problem, whilst N = [N1 . . . Nnnpe

]
interpolates scalar essential

variables.
Given an isoparametric finite element formulation, the interpolation of the spatial

coordinate x uses the same shape functions as used to interpolate u, and thus x(ξ) =∑nnpe
i=1 Ni(ξ)xi .
The shape functions are often defined within the finite element’s natural coor-

dinate ξ , a domain linked to the finite element’s global coordinate x through
the Jacobian transformation J = ∂x/∂ξ . Whilst the introduction of the natural
coordinate ξ is not necessary, it allows for an easier design of shape functions.
Figure 4.2 illustrates the mapping of a quadrilateral finite element between its
physical domain, described by the global coordinate x, and its parent domain, the
bi-square (−1 ≤ ξ1 ≤ 1; −1 ≤ ξ2 ≤ 1) and described by the natural coordinate
ξ = [ξ1 ξ2]T.
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Fig. 4.2 Jacobian
transformation J = ∂x/∂ξ
that maps the finite element
from its physical domain into
the parent domain. The
example shows a quadrilateral
finite element of nodes
xi; i = 1, 2, 3, 4, that then
transforms into the bi-square
(−1 ≤ ξ1 ≤ 1; −1 ≤ ξ2 ≤ 1)

Physical domain Parent domain

1 2

34

1 2

3

4

For the FEM to yield numerically stable and plausible results, the shape functions
have to guarantee at least three properties:

• Property of unity, such that
∑nnpe
i=1 Ni(ξ) = 1 holds for all ξ

• Delta property, such that Ni(ξ j ) = δij holds, where ξ j denotes the natural
coordinates of the j -th finite element node, and δij is the Kronecker delta

• Linear independence, such that
∑nnpe
i=1 ciNi(ξ) �= 0 holds for the non-zero

coefficients ci

Whilst these requirements are sufficient for continuum finite elements, structural
finite elements, such as beams and plates, require addition properties of the shape
functions to be satisfied [618]. Given FEM problems with moving meshes, such
as finite deformation problems in Lagrange formulation, the shape functions are
functions of the essential problem variables.

4.2.1.1 Shape Functions for 1D Problems
Given a two-noded line element that covers the domain −1 ≤ ξ ≤ 1 of the natural
coordinate, the corresponding linear shape functions read

N1(ξ) = (1 − ξ)/2 ; N2(ξ) = (1 + ξ)/2 , (4.3)

which is illustrated in Fig. 4.3a. We may add a mid-point node, which then leads to
a three-noded finite element and the quadratic shape functions

N1(ξ) = (ξ2 − ξ)/2 ; N2(ξ) = (ξ2 + ξ)/2 ; N3(ξ) = 1 − ξ2 (4.4)

shown in Fig. 4.3b. It can easily be shown that the polynoms (4.3) and (4.4) satisfy
the aforementioned requirements of shape functions.

4.2.1.2 Shape Functions for 2D Problems
Given the natural coordinates −1 ≤ ξ1 ≤ 1 and −1 ≤ ξ2 ≤ 1 of a quadrilateral
finite element, 2D shape functions may be designed through the generalization of
1D shape functions. The bi-linear shape functions

N1(ξ1, ξ2) = 1

4
(1 − ξ1)(1 − ξ2) ; N2(ξ1, ξ2) = 1

4
(1 + ξ1)(1 − ξ2) ;

N3(ξ1, ξ2) = 1

4
(1 + ξ1)(1 + ξ2) ; N4(ξ1, ξ2) = 1

4
(1 − ξ1)(1 + ξ2) (4.5)
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Fig. 4.3 Shape functions for
1D finite elements plotted at
their parent domain
−1 ≤ ξ ≤ 1. (a) Two-noded
finite element with linear
shape functions
Ni(ξ); i = 1, 2. (b)
Three-noded finite element
with quadratic shape
functions Ni(ξ); i = 1, 2, 3

specify the interpolation of field variables, where the node numbering corresponds
to the parent domain shown in Fig. 4.2.

An alternative representation of the bi-linear shape functions separates the
constant, linear, and non-linear terms according to

⎡

⎢⎢⎣

N1

N2

N3

N4

⎤

⎥⎥⎦ = 1

4

⎡

⎢⎢⎣

1
1
1
1

⎤

⎥⎥⎦+ 1

4

⎡

⎢⎢⎣

−1
1
1

−1

⎤

⎥⎥⎦ ξ1 + 1

4

⎡

⎢⎢⎣

−1
−1
1
1

⎤

⎥⎥⎦ ξ2 + 1

4

⎡

⎢⎢⎣

1
−1
1

−1

⎤

⎥⎥⎦ ξ1ξ2 ,

where the last term, the so-called hourglass term, hosts the non-linear contributions.
Whilst quadrilateral elements perform very good and are widely used, the

generation of quadrilateral meshes may be challenging. Triangular elements often
ease mesh generation and support straightforward local mesh refinement—one
triangle is simply split into three sub-triangles. In contrary, quadrilaterals do not
support local mesh refinement and mesh refinement always require complex non-
local mesh manipulations.

The unit rectangular triangle is the parent domain of triangular finite elements,
and the shape functions then read

N1 = ξ1 ; N2 = ξ2 ; N3 = 1 − ξ1 − ξ2 .

They may also be interpreted as area coordinates, Ni = Ai/A; i = 1, 2, 3, where
Ai denote the sub-areas, whilst A = ∑3

i=1Ai is the area of the triangular finite
element, see Fig. 4.4.

Whilst shape functions are often based on polynomial expressions, any other
function may be used that satisfies the aforementioned requirements of shape
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Fig. 4.4 Jacobian
transformation J that maps a
triangular finite element from
its physical domain to its
parent domain. The shape
function may be seen as area
coordinates

3 1

2

3

2

1

Physical domain Parent domain

functions. The literature is rich on shape functions, and some of them are tailored to
the solution of specific problems [619]. Even Non-Uniform Rational Basis Spline
(NURBS) may be used to build finite elements, an approach known as isogeometric
analysis [269]. In addition, the Virtual Element Method (VEM) does not explicitly
introduce shape functions and allows to use arbitrarily shaped finite elements [12].

Example 4.1 (Transformation of the Quadrilateral Finite Element). The nodal
coordinates

[
x1

y1

]
=
[

0.0
0.0

]
;
[
x2

y2

]
=
[

3.5
0.5

]
;
[
x3

y3

]
=
[

3.0
2.3

]
;
[
x4

y4

]
=
[−0.5

2.4

]
,

specify a quadrilateral finite element with the dimensions given in centimeters.

(a) Provide the expressions for the interpolation of the global coordinates x =
[x y]T.

(b) Compute the Jacobian transformation matrix J = ∂x/∂ξ that maps the finite
element to its parent domain −1 ≤ ξ ≤ 1 and −1 ≤ η ≤ 1 with ξ = [ξ η]T.

(c) Show that the expressionA = 4det J(ξ = 0, η = 0) denotes the area of the finite
element. �

4.2.1.3 Shape Functions for 3D Problems
The extension of the quadrilateral finite element to the eight-noded hexahedral finite
element yields the tri-linear shape functions

N1 = 1

8
(1 − ξ1)(1 − ξ2)(1 − ξ3) ; N2 = 1

8
(1 + ξ1)(1 − ξ2)(1 − ξ3) ;

N3 = 1

8
(1 + ξ1)(1 + ξ2)(1 − ξ3) ; N4 = 1

8
(1 − ξ1)(1 + ξ2)(1 − ξ3) ;

N5 = 1

8
(1 − ξ1)(1 − ξ2)(1 + ξ3) ; N6 = 1

8
(1 + ξ1)(1 − ξ2)(1 + ξ3) ;

N7 = 1

8
(1 + ξ1)(1 + ξ2)(1 + ξ3) ; N8 = 1

8
(1 − ξ1)(1 + ξ2)(1 + ξ3) ,
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whilst the four-noded linear tetrahedral finite element is described by the shape
functions

N1 = ξ1 ; N2 = ξ2 ; N3 = ξ3 ; N4 = 1 − ξ1 − ξ2 − ξ3 .

Many other shape functions have been proposed and successfully used in the
solution of FEM problems, see amongst others [619].

4.2.2 Gradient Interpolation

Given the interpolation (4.1), the symmetric spatial gradient of the essential variable
reads

gradsu(ξ) = 1

2

nnpe∑

i=1

ui ⊗ gradNi(ξ)+ gradNi(ξ)⊗ ui . (4.6)

It is convenient to introduce Voigt notation and to express the ns independent
components of gradsu through a vector gradv

su. Given a continuum finite element in
1D, 2D, and 3D, ns = 1, ns = 4 and ns = 6, respectively. The gradient interpolation
then reads

gradv
su = Bh , (4.7)

where the gradient interpolation matrix B is a ns ×ndofnnpe-dimensional matrix that
stores the spatial gradients of the shape functions. It reads

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1/∂x1 0 0 . . . ∂Nnnpe/∂x1 0 0

0 ∂N1/∂x2 0 . . . 0 ∂Nnnpe/∂x2 0

0 0 ∂N1/∂x3 . . . 0 0 ∂Nnnpe/∂x3

∂N1/∂x2 ∂N1/∂x1 0 . . . ∂Nnnpe/∂x2 ∂Nnnpe/∂x1 0

0 ∂N1/∂x3 ∂N1/∂x2 . . . 0 ∂Nnnpe/∂x3 ∂Nnnpe/∂x2

∂N1/∂x3 0 ∂N1/∂x1 . . . ∂Nnnpe/∂x3 0 ∂Nnnpe/∂x1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

for a 3D continuum problem, and we used the Voigt notation with the storage
convention [(•)11 (•)22 (•)33 (•)12 (•)23 (•)13]T. To interpolate the gradient of
a scalar essential variable over the finite element, the gradient interpolation matrix
in 3D reads

B =
⎡

⎢⎣
∂N1/∂x1 . . . ∂Nnnpe/∂x1

∂N1/∂x2 . . . ∂Nnnpe/∂x2

∂N1/∂x3 . . . ∂Nnnpe/∂x3

⎤

⎥⎦ .
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The shape functions Ni(ξ) are functions of the natural coordinate ξ , and the
computation of the gradient with respect to the global coordinate x requires the
Jacobian matrix J = ∂x/∂ξ . Given its inverse J−1 = ∂ξ/∂x exists, the expression

∂Ni(ξ)

∂x
= ∂Ni(ξ)

∂ξ
: ∂ξ
∂x

= ∂Ni(ξ)

∂ξ
: J−1 ; i = 1, . . . , nnpe

allows us then to compute the coefficients of B.
Finally, the divergence of a vector u may be interpolated by divu = G · h, where

the ndof-dimensional divergence interpolation matrix G has been introduced. It reads

G = [ ∂N1/∂x1 ∂N1/∂x2 ∂N1/∂x3 . . . ∂Nnnpe/∂x1 ∂Nnnpe/∂x2 ∂Nnnpe/∂x3

]

for a 3D continuum problem.

Example 4.2 (Displacement and Strain Interpolation). A quadrilateral finite ele-
ment with the bi-linear shape function (4.5) approximates the displacement u of
a solid mechanical problem.

(a) Assemble the displacement interpolation matrix N.
(b) Consider the definition of the engineering strain ε = (gradu + grad Tu)/2 and

derive the strain interpolation matrix B, such that εv = Bh holds.
(c) Given the finite element’s global and natural coordinates are related by the

Jacobian matrix

J =
[

1.75 −0.25
0.1 − 0.15η 1.05 − 0.15ξ

]
,

compute the numerical expressions of the matrices N and B at the natural
coordinates ξ = 0.3 and η = −0.1. �

4.2.3 Mixed and Hybrid Finite Elements

The interaction of physical processes often determines a biomechanical problem,
where each process is described by an individual set of essential variables. The
flow of an incompressible fluid would be such an example—the flow velocity v and
the fluid pressure p are then essential problem variables. The velocity and pressure
could then be stored at the finite element nodes by the two vectors h and q of the
essential problem variables, respectively. The both fields may be interpolated at dif-
ferent interpolation orders, which then leads to a hybrid finite element, see Fig. 4.5.

Given a constraint problem, such as the incompressible deformation of the
vessel wall, an irreducible finite element approach may show volume locking—
the discretized problem is then (much) stiffer than the continuum problem. The
irreducible FEM uses the minimum number and thus the irreducible set of problem
variables to interpolate the solution over the finite element. In contrary, a mixed
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1
2

3

4

1

Fig. 4.5 Hybrid finite element with a bi-linear interpolation of the velocity v, and a constant
interpolation of the pressure p. The velocity v is stored at the four vertex nodes, whilst the pressure
p is stored at a single mid-point node

finite element approach introduces additional variables, more than necessary, to
interpolate the solution over the finite element. At some points over the finite
element domain, the solution fields are then connected through the problem’s
constraint equations. The mixed finite element also leads to a hybrid finite element,
given the essential variables are prescribed at different interpolation orders.

4.3 Calculus of Variations

The description of a physical problem is often given by local governing equations,
which then directly yields the strong form of the problem description. Whilst
some numerical concepts, such as the Finite Difference Method (FDM), directly
use the strong form, the FEM requires the weak or integral form of the problem
description. The weak form of some engineering problems may be derived through
concepts, such as the Principle of Virtual Work (PVW). However, such physics-
motivated principles are not available for all engineering problems, and the more
general machinery of Calculus of Variations allows then the derivation of the weak
form from any strong form description of a problem. Calculus of Variations is a
method that multiplies the governing equations with a test function, also known as
admissible variation. The result is then integrated over the body’s spatial domain,
and the Dirichlet boundary condition is embedded—the problem’s weak form has
now been derived.

Given the strong form description of a problem has a solution, it is identical
to the solution of the weak form problem description, a statement known as the
Fundamental Lemma of Calculus of Variations. The weak form is also known as the
irreducible description, and no additional reduction of the order of differentiation
of the essential variable is therefore possible. The accuracy of a numerical method
is directly compromised by the number of differentiations of the essential variables,
whilst an integration over the variables does not contribute (much) to the numerical
error.
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4.3.1 Diffusion Boundary Value Problem

The diffusion of a substance is described by the Poisson1 equation, and the strong
form description of such a transport problem reads

div(gradc)+ α = 0 in � ,

c = c at ∂�c ,

gradc · n = q at ∂�q ,

⎫
⎬

⎭ (4.8)

where the concentration c is the independent or essential problem variable. The
particular physical properties determine the constant α. Figure 4.6 illustrates the
Boundary Value Problem (BVP) that describes the diffusion of a substance. The
Dirichlet and Neumann boundary conditions are formulated along ∂�c and ∂�q,
respectively. Along ∂�c the value of c is set to c, whilst along ∂�q the normal flux
q = gradc · n is set to q, where n denotes the outward-oriented normal vector to the
boundary ∂�.

Following Calculus of Variations, we first introduce a continues test function δc,
also known as admissible variation of the essential variable c. The test function δc is
arbitrary but vanishes along the Dirichlet boundary, and thus δc = 0 holds at ∂�c.
The local governing equation div(gradc) + α = 0 is then multiplied with δc and
integrated over �, which yields

∫

�

δc div(gradc)dv = −
∫

�

δc αdv .

Integration by parts of the term at the left-hand side yields

∫

�

δc div(gradc)dv =
∫

�

div (δc gradc) dv −
∫

�

gradδc · gradc dv ,

Fig. 4.6 Boundary Value
Problem (BVP) that describes
the diffusion of a substance,
and thus the distribution of its
concentration c(x) within the
body �. The normal flux
gradc(x) · n = q is prescribed
along the Neumann boundary
∂�q, whilst the concentration
c(x) = c is prescribed along
the Dirichlet boundary ∂�c

1Siméon Denis Poisson, French mathematician, engineer, and physicist, 1781–1840.
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which, with the divergence theorem
∫
�

div (δc gradc) dv = ∫
∂�
δc grad · nds =∫

∂�
δc qds, then results in the diffusion problem’s weak form

∫

�

gradδc · gradc dv =
∫

∂�q

δc qds +
∫

�

δc αdv , (4.9)

where the condition δc = 0 at ∂�c has been used. The weak form problem
description (4.9) is irreducible and involves only the first derivative, whilst the strong
form (4.8) requires the second derivative of c.

4.3.2 Advection–Diffusion Boundary Value Problem

A more general transport is described by the Advection–Diffusion (AD) problem.
For simplicity we consider the steady-state AD problem, which strong form reads

v · gradc − νdiv(gradc)+ α = 0 in � ,

c = c at ∂�c ,

gradc · n = q at ∂�q ,

⎫
⎪⎪⎬

⎪⎪⎭
(4.10)

where c is the essential problem variable—it could be the concentration of a
substance. In addition, ν describes the diffusivity of the substance within the body
�, whilst v denotes the adventive velocity and thus the velocity of the medium that
advects the substance. Dirichlet and Neumann boundary conditions are formulated
along ∂�c and ∂�q, respectively.

Calculus of Variations and thus the aforementioned manipulations lead to the
weak form
∫

�

δc v · gradc dv +
∫

�

ν gradδc · gradc dv =
∫

∂�q

δc qds +
∫

�

δcαdv (4.11)

of the AD problem, where δc denotes the test function.

Example 4.3 (Heat Conduction Problem). Given a body of the density ρ [kg m−3]
and the specific heat c [J kg−1 K−1], the partial differential equation

−divq + r = ρc
∂θ

∂t
(4.12)

determines a transient heat conduction problem and describes how the temperature
θ changes over the time t within the domain�. Here, div(•) is the spatial divergence
operator, whilst q [W m−2] and r [W m−3] denote the heat flux and the heat
source, respectively. The partial differential equation (4.12) is complemented by the
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Dirichlet boundary condition θ = θ at ∂�θ and the Neumann boundary condition
q · n = q at ∂�q, where n denotes the outward normal vector to the boundary ∂�.

(a) Multiply the transient heat conduction problem (4.12) with the admissible
variation of the temperature δθ and integrate then over the domain �.

(b) Embedded the Dirichlet boundary condition and use Fourier’s law qi =
−k∂θ/∂xi towards the derivation of the weak form of the transient heat
conduction problem. Here, k [W m−1 K−1] denotes the thermal conductivity of
the isotropic thermal body. �

4.3.3 Linear Solid Mechanics Boundary Value Problem

We consider a solid body that occupies the spatial configuration �, and the
displacement u is the essential variable in the description of the problem. The
displacement u, the velocity u̇, and the acceleration ü then determine the state of
motion. Given a linear-elastic isothermal body, the Cauchy stress reads σ (u) = C :
ε(u), where C and ε(u) = gradsu denote the elasticity tensor and the engineering
strain, respectively. At the Dirichlet boundary ∂�u the displacement u = u and
at the Neumann boundary ∂�t the traction t = σn = t are prescribed. The
outward-oriented normal vector to ∂�t is denoted by n. Given a transient problem,
the Cauchy’s momentum equation divσ + bf = ρü + ηu̇ describes the motion
of the particle, where bf [N m−3] denotes the body force per unit volume, whilst
ρ [kg m−3] is the density. In addition, η [N s m−4] denotes a friction-like resistance
per unit volume. The strong form of the BVP then reads

divσ + bf − ρü − ηu̇ = 0 in � ,

u = u at ∂�u ,

t = σn = t at ∂�t .

⎫
⎪⎪⎬

⎪⎪⎭
(4.15)

It is complemented with the initial conditions for the displacement u = u0 and
the velocity u̇ = u̇0 that describe the motion of the body at the time t = t0, and
thus at the beginning of the analysis. The set of Eqs. (4.15), together with the initial
conditions, describes the initial BVP (iBVP).

Following Calculus of Variations, the Cauchy’s momentum equation divσ +bf −
ρü − ηu̇ = 0 is multiplied with δu and integrated over �, which then yields

∫

�

δu · (divσ + bf − ρü − ηu̇)dv = 0 , (4.16)

where the test function δu satisfies the condition δu = 0 at ∂�u. Integration by parts

∫

�

δu · divσ dv =
∫

�

div(σ δu)dv −
∫

�

(σ : gradδu) dv
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and the divergence theorem
∫
�

div(σ δu)dv = ∫
∂�
δu · σn ds allow us to express

(4.16) through

∫

∂�

δu · σn ds +
∫

�

[
δu · (bf − ρü − ηu̇)− σ : gradsδu

]
dv = 0 ,

where the symmetry σ = σT of the Cauchy stress has been used. With the Cauchy
stress theorem t = σn = t and the Dirichlet condition δu = 0 at ∂�u, the
iBVP (4.15) may be expressed by its weak form

∫

∂�t

t · δuds +
∫

�

δu · (bf − ρü − ηu̇)dv
︸ ︷︷ ︸

δ�ext

−
∫

�

σ : gradsδu dv
︸ ︷︷ ︸

δ�int

= 0 , (4.17)

where δ�ext and δ�int denote the external and internal work upon the variation δu.
Recalling the definition of the admissible engineering strain δε = gradsδu, the weak
form (4.17) is identical to the PVW, see Sect. 3.7.4. It is irreducible and involves
only the first derivative of the displacement, whilst the term divσ that appears in the
strong form (4.15) involves the second derivative of u.

4.3.4 Non-linear Solid Mechanics Boundary Value Problem

Large deformations, a non-linear constitutive model, and non-constant external
forces lead to a non-linear problem in solid mechanics. Equation (4.17) is then to
be generalized. Let us for simplicity consider a body at so-called dead loads, the
external loads t = t0 and bf = bf 0 are then constant, and

δ�int =
∫

�

δe : σ dv

is the only non-linear term in the generalized version of (4.17), where the variation
of the Euler–Almansi strain δe = gradsδu has been introduced. It is convenient to
express δ�int with respect to the non-moving reference configuration �0,

δ�int =
∫

�

δe : σ dv =
∫

�0

δE : S dV , (4.18)

where S = JF−1σF−T denotes the second Piola–Kirchhoff stress and δE =
sym(FT Gradδu) is the variation of the Green–Lagrange strain. The variation of
kinematic quantities is listed in Appendix D.

Given the fixed configuration �0, expression (4.18)2 simplifies the derivation of
the directional derivativeDuδ�int = δ�int(u+�u)−δ�int(u) along the increment
�u of the displacement u. The linearization in the reference configuration may be
pushed forward to the spatial configuration �. It then yields
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Duδ�int =
∫

�

(
gradsδu : grads�uσ + gradsδu : C : grads�u

)
dv , (4.19)

where the spatial elasticity C expresses the relation between the stress and the strain
according to �σ = C : grads�u. Example 4.4 further details this derivation.

Given the linearization (4.19), the geometrical contribution

Duδ�int geo =
∫

�

(
gradsδu : grads�uσ

)
dv (4.20)

and the material contribution

Duδ�int mat =
∫

�

(
gradsδu : C : grads�u

)
dv (4.21)

are distinct parts of the linearized internal work.
Finite deformation problems in solid mechanics follow a Lagrangian description,

where the finite element mesh follows the deformation of the continuum. The
term gradsδu therefore depends on the displacement and caused the geometric
contribution (4.20). The material contribution (4.21) appeared already in the linear
FEM problem, but now it is no longer a constant.

Example 4.4 (Linearization of a Spatial Variational Statement). The spatial config-
uration � moves in time and complicates the linearization of variational statements
formulated with respect to �. It is therefore convenient to pull back the variational
statement to the reference configuration �0, linearize it at the fixed configuration
�0, and then push forward the linearized statement to the spatial configuration �.

(a) Linearize the relation (4.18)2, and provide the directional derivative Duδ�int
with respect to the reference configuration �0.

(b) Use the Piola transform together with the transformation of the volume element
and show that the expression (4.19) represents the linearization of variational
statement (4.18). �

4.3.5 Incompressible Flow Boundary Value Problem

Problems in fluid mechanics commonly use an Eulerian description, where the
finite element mesh is fixed in space and the fluid flows through it. The fluid then
occupies the fixed spatial domain �, and the velocity v is the essential variable in
the description of such a problem. Given an incompressible, laminar, and isothermal
flow, the set
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divv = 0 in � ,

divσ + bf − ρDv
Dt

= 0 in � ,

v = v at ∂�u ,

t = σn = t at ∂�t

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(4.24)

describes the strong form of the iBVP, where Dv/Dt = ∂v/∂t + v · gradv denotes
the material time derivative of the velocity and thus the acceleration felt by the fluid
particle. The description expresses the continuity, the conservation of momentum,
and the boundary conditions. The initial velocity v = v0 describes the motion of the
fluid at the time t = t0 and complements (4.24).

Given the two local Eqs. (4.24)1 and (4.24)2, we introduce the test functions δp
and δv and apply the Calculus of Variations independently to both expressions. Their
weak forms then read

∫

�

δp divvdv = 0 ,

∫

∂�t

δv · tds +
∫

�

δv ·
(
bf − ρDv

Dt

)
dv −

∫

�

δd : σ dv = 0 ,

where δd = gradsδv denotes the symmetric virtual velocity gradient, and the
divergence theorem has been used.

With the decoupled representation of the stress σ = σ − pI, we get

∫

�

δp divvdv = 0 ,
∫

�

δv · ρ
(
∂v
∂t

+ v · gradv
)

dv +
∫

�

δd : σ dv

−
∫

�

divδvp dv −
∫

∂�t

δv · t ds −
∫

�

δv · bfdv = 0,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(4.25)

where the deviatoric stress σ (d) is defined by the constitutive model of the fluid. The
continuity (4.24)1 may also be seen as a constraint equation, and the test function
δp would then be a Lagrange multiplier.

4.4 Finite Element Equations

Given the spatial interpolation of the essential variables as well as their test
functions, the discretized weak form of the (initial) BVP may be derived. The
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Galerkin2 approach, first introduced by Ritz,3 uses the same interpolations for the
essential variables and their test functions, whilst the Petrov4–Galerkin approach
uses different functions to interpolate the two fields.

4.4.1 Diffusion Problems

The concentration c(x) and its gradient may be interpolated through c = Naha and
gradc = Biaha , where the nnpe-dimensional vector h stores the concentrations at
the finite element nodes, whilst N and B are interpolation and gradient interpolation
matrices, respectively. Following the Galerkin approach the same matrices are used
to interpolate the test function δc(x), and thus δc = Naδha and gradδc = Biaδha
with δh denoting the nodal variations. The weak form (4.9) of the diffusion problem
and the e-th finite element is then given by

δhi

⎡

⎢⎢⎢⎢⎣

∫

�e

BaiBajdv

︸ ︷︷ ︸
Dij

hj −
(∫

�e

αNidv +
∫

∂�e q

qNids

)

︸ ︷︷ ︸
fi

⎤

⎥⎥⎥⎥⎦
= 0 , (4.26)

where D and f are the finite element’s diffusion matrix and the force vector,
a terminology borrowed from structural mechanics. Given arbitrary (admissible)
nodal variation δh, the statement (4.26) yields the set of algebraic linear equations

Dh − f = 0 . (4.27)

It represents the discretized diffusion problem of the e-th finite element, where D
is a symmetric nnpe × nnpe matrix, whilst h and f are nnpe-dimensional vectors,
respectively.

4.4.2 Advection–Diffusion Problems

Following the Galerkin approach, the concentration c(x) and the test function
δc(x) are interpolated according to c = Naha and δc = Naδha . The gradients
then read gradc = Biaha and gradδc = Biaδha , where h and δh store the
concentrations and the admissible variations at the nnpe finite element nodes, whilst
N and B are interpolation and gradient interpolation matrices, respectively. The AD
problem (4.11) of the e-th finite element is then expressed by the discrete weak form

2Boris Grigoryevich Galerkin, Soviet mathematician and an engineer, 1871–1945.
3Walther Heinrich Wilhelm Ritz, Swiss theoretical physicist, 1878–1909.
4Georgii Ivanovich Petrov, Russian scientist in the field of aerodynamics, gas dynamics, and space
research, 1912–1987.
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δhi

⎡

⎢⎢⎢⎢⎣

(∫

�e

NivaBajdv

︸ ︷︷ ︸
Kij

+
∫

�e

BaiνBajdv

︸ ︷︷ ︸
Dij

)
hj

−
(∫

�e

αNidv +
∫

∂�e q

qNids

)

︸ ︷︷ ︸
fi

⎤

⎥⎥⎥⎥⎦
= 0 , (4.28)

where K and D are the advection and diffusion matrices, whilst f denotes the force
vector. Given arbitrary (admissible) nodal variation δh, the statement (4.28) yields
the algebraic set of linear equations

(K + D)h − f = 0 , (4.29)

where K is a non-symmetric and D is a symmetric nnpe × nnpe matrix, whilst h and
f are nnpe-dimensional vectors, respectively.

Example 4.5 (The 1D Advection–Diffusion Finite Element). Consider a two-noded
finite element of length h[m] that models a 1D Advection–Diffusion (AD) prob-
lem (4.11).

(a) Use the linear shape functionsN1, N2 given in (4.3) and provide the expressions
of the advection matrix K, the diffusion matrix D, and the force vector f of a
Galerkin finite element.

(b) Use the shape functions N1, N2 for the interpolation of c, and the shape
functions S1 = (1 − ξ)/2 − 3β(1 − ξ2)/4 and S2 = (1 + ξ)/2 + 3β(1 − ξ2)/4
for the interpolation of the test function δc, where β denotes a constant that
weights the non-linear terms in S1 and S2. Given these interpolations, provide
the expressions of K, D, and f of the corresponding Petrov–Galerkin finite
element. �

4.4.3 Linear Solid Mechanics Problems

Following the Galerkin approach, the displacement u(x) and the test function δu(x)
are interpolated according to ui = Niaha and δui = Niaδha , where h and δh
store the displacements and its admissible variations at the nnpe finite element
nodes, whilst N denotes the ndim × ndof-dimensional interpolation matrix. The
same interpolation is used for the velocity u̇i = Niaḣa and the acceleration üi =
Niaḧa , where ḣ and ḧ store the nodal velocities and accelerations, respectively. The
symmetric gradients of u(x) and δu(x) are the engineering strain and the respective
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virtual engineering strain. They are expressed by εi = Biaha and δεi = Biaδha ,
where B denotes the ns × ndof gradient interpolation matrix.

Given a linear-elastic material at small strains, Hooke’s law σ = C : ε describes
the stress σ as a function of the engineering strain ε, where C denotes a constant
stiffness tensor. In Voigt notation, Hooke’s law (3.49) reads σi = Cij εj ; i, j =
1, . . . , ns, which together with the aforementioned interpolations, yields the weak
form

δhi

⎡

⎢⎢⎢⎢⎣

∫

�e

NaiρNajdv

︸ ︷︷ ︸
Mij

ḧj +
∫

�e

NaiηNajdv

︸ ︷︷ ︸
Cij

ḣj +
∫

�e

BciCcaBajdv

︸ ︷︷ ︸
Kij

hj

−
(∫

�e

bf aNaidv +
∫

∂�e t

taNaids

)

︸ ︷︷ ︸
fi

⎤

⎥⎥⎥⎦ = 0 (4.30)

of the linear solid mechanics problem (4.17) and the e-th finite element.
Given arbitrary (admissible) nodal variation δh, the statement (4.30) yields the

linear system of differential equations

Mḧ + Cḣ + Kh − f = 0 , (4.31)

where f denotes the ndof-dimensional element nodal force vector, whilst M, C, and
K are the finite element’s ndof × ndof-dimensional and symmetric mass, damping,
and stiffness matrices, respectively.

4.4.3.1 The Linear Truss Finite Element Equations
Figure 4.7 shows a two-noded finite element that represents a truss of the cross-
section A and length l. It represents a 1D problem, and the truss is loaded by the
body force bf along the x direction. The material has the density ρ, and the Young’s
modulus E describes linear-elastic properties.

1 2

Fig. 4.7 A single two-noded finite element that represents a truss of cross-section A and length
l. It is loaded by the body force bf. Its linear-elastic material has the density ρ and the Young’s
modulus E
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The mapping x = (1 + ξ)l/2 relates global and natural coordinates of the finite
element and defines the Jacobian transformation J = ∂x/∂ξ = l/2. We consider
the linear shape functions (4.3) together with their spatial gradients (4.6), and the
matrices

N = 1

2
[(1 − ξ) (1 + ξ)] ; B = 1

l
[−1 1] (4.32)

then define the interpolation of the displacements and strains, respectively. These
matrices have a single row, and we will use the simplified notation N1i = Ni and
B1i = Bi for i = 1, 2 in the following.

Given the displacement interpolation N together with the definition shown
in (4.30), the truss element’s nodal force vector reads

f =
∫

�e

bfNidv = bfAl

4

∫ ξ=1

ξ=−1

[
1 − ξ
1 + ξ

]
dξ = bfAl

2

[
1
1

]
, (4.33)

where the volume element dv = Adx = AJdξ = (Al/2)dξ has been used. The total
external load bfAl is therefore split into half and then allocated to the two element
nodes.

In addition, the definition shown in (4.30) specifies the truss element’s mass
matrix

M =
∫

�e

NiρNjdv

= ρAl

4

∫ ξ=1

ξ=−1

[
(1 − ξ)2 (1 − ξ)(1 + ξ)

(1 − ξ)(1 + ξ) (1 + ξ)2
]

dξ = m

6

[
2 1
1 2

]
, (4.34)

where m = ρAl denotes the mass of the truss element. Calculus of Variations
has been used in the derivation of (4.34)—it is therefore known as the variational
consistent mass matrix. It is symmetric but shows off-diagonal terms, which
significantly increase the time of the explicit solution of the global set of equations,
see Sect. 4.8.5. The mass matrix is therefore often approximated by a diagonal, or
lumped mass matrix, where the sum of all coefficients in one row (or column) are
lumped into the diagonal. Given the mass matrix (4.34), the corresponding lumped
mass matrix then reads

Mlumped = m

2

[
1 0
0 1

]
,

and each of the two nodes “receives” half of the element mass. A lumped mass
matrix neglects gyroscopic effects, which can be important to consider in the
analysis of structures that involve large finite elements.

The strain interpolation B, and the definition shown in (4.30), allows us to
compute the truss element’s stiffness matrix

K =
∫

�e

BiEBjdv = BiBj
EA

2l

∫ ξ=1

ξ=−1
dξ = EA

l

[
1 −1

−1 1

]
, (4.35)
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where the Young’s modulus E expresses the material’s elasticity tensor Cij of the
1D truss problem. The analyzed truss problem has neither a contribution from
frictional forces, η = 0, nor a Neumann boundary term, t = 0. All contributions of
the weak form (4.30) have therefore been derived.

With the mass matrix (4.34), the stiffness (4.35), and the nodal forces (4.33), the
system

m

6

[
2 1
1 2

] [
ü1

ü2

]
+ EA

l

[
1 −1

−1 1

] [
u1

u2

]
= bfAl

2

[
1
1

]

of second-order differential equations then expresses the equilibrium of the truss
finite element.

Example 4.6 (Vessel Segment at Quasi-static Tension). The tensile force of P =
0.3 N loads a stiff vessel segment of the length l = 1.2 cm, a problem that may be
modeled by a single linear truss element, see Fig. 4.8. The Young’s modulus E =
223.5 kPa describes the linear-elastic properties of the vessel wall, and di = 3.2 mm
and do = 5.8 mm are the inner and outer vessel diameters, respectively.

21

Fig. 4.8 A two-noded finite element represents a vessel segment of the length l. It is loaded by the
force P and simply supported at the left end. The parameters di, do and E describe the geometry
and the linear-elastic vessel wall properties, respectively

(a) Derive the set of algebraic equations that describes the finite element’s quasi-
static equilibrium.

(b) Solve the problem and compute the distribution of the displacement along the
vessel’s axial direction. �

4.4.4 Non-linear Solid Mechanics Problems

The substitution of the test function gradient gradv
s δu = δev = Bδh in the

variation (4.18)1 yields δ�int = fiδhi with

fi =
∫

�e

Baiσadv (4.36)

denoting the nodal force vector. For a non-linear solid mechanics problem, the
gradient interpolation matrix B and the stress σ are non-linear functions of the
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displacements—the nodal force f is then also a non-linear function of the nodal
displacement h.

Given the gradient expressions gradv
s δu = Bδh and gradv

s�u = B�h, the
linearized variational statement (4.21) yields Duδ�int mat = δhiKmat ij�hj , where

Kmat ij =
∫

�e

BaiCabBbjdv (4.37)

is the material stiffness matrix of the finite element, and Cab denotes the material’s
stiffness matrix in Voigt notation. Whilst Cab is sparsely populated for a Hooke
material, it is in general fully populated in the description of a non-linear material
at finite deformations.

The substitution of the displacement δu = Nδh and �u = N�h in the
geometrical stress contribution (4.20) yields Duδ�int geo = δhiKgeo ij�hj , where

Kgeo ij =
∫

�e

∂Nai

∂xc
σab

∂Ncj

∂xb
dv (4.38)

denotes the geometric stiffness matrix, and σab are the components of the Cauchy
stress. The structure of the interpolation matrix results in a diagonally populated
geometric stiffness matrix [53].

Both stiffness contributions, Kgeo and Kmat, are functions of the essential variable
h and need to be computed at each iteration of the Newton–Raphson5-based solution
method, see Sect. 4.8.6.1. Given an iterative solution schema to solve a finite
element problem, the stress σ in (4.38) refers to the stress at the beginning of the
iteration, and the geometric stiffness Kgeo ij is therefore also called initial stress
stiffness.

The nodal force vector (4.36) as well as the stiffness matrices (4.37) and (4.38)
are integrals over the deformed finite element—they are commonly computed
through numerical quadrature, see Sect. 4.4.6.

4.4.4.1 Pressure Boundary Condition
A pressure p0 may be prescribed along the Neumann boundary ∂�t. The traction
t = −p0n then acts at ∂�t, where n denotes the outward normal to the boundary.
Given finite deformations, the boundary deforms and then changes the traction—the
pressure load is therefore also called a follower load. The external contribution from
the pressure boundary to the virtual work reads

δ�ext p =
∫

∂�t

δu · t ds = −p0

∫

∂�t

δu · n ds . (4.39)

5Joseph Raphson, English mathematician, 1648–1715.
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With the displacement interpolation δui = Niaδha , it may be expressed through
δ�ext p = fp iδhi , where

fp i = −p0

∫

∂�t

Nainads

denotes the contribution of the pressure boundary to the nodal force vector.
Towards the derivation of the external stiffness from the pressure boundary

condition, we use Nanson’s formula (3.5) nds = JF−TNdS to pull back the
expression (4.39) to the reference configuration. It then reads

δ�ext p = −p0

∫

∂�t

δu · n ds = −p0

∫

∂�0 t

δu · JF−TNdS , (4.40)

and the integration is now taken over the fixed domain ∂�0 t. Consequently,

Duδ�ext p = −p0

∫

∂�0 t

δu ·Du

(
JF−T

)
NdS

= −p0

∫

∂�0 t

δu ·
(
DuJ F−T + J DuF−T

)
NdS

= −p0

∫

∂�0 t

δu ·
(
Jdiv�u F−T − J gradT�uF−T

)
NdS (4.41)

expresses the directional derivative of δ�ext p, where the results DuJ = Jdiv�u
and DuF−1 = −F−1grad�u have been used, see Appendix D.

The push-forward of (4.41), and thus another application of Nanson’s formula,
yields

Duδ�ext p = −p0

∫

∂�t

δu ·
(
I div�u − gradT�u

)
nds (4.42)

and expresses the linearization of the pressure loading. Given the displacement
interpolations δui = Niaδha and �ui = Nia�ha , this expression reads

Duδ�ext p = δhi (−p0)

∫

∂�t

(
Nai

∂Ncj

∂xc
na −Nai ∂Ncj

∂xa
nc

)
ds

︸ ︷︷ ︸
Kp ij

�hj ,

where Kp ij denotes the stiffness matrix of the pressure boundary condition. In
general this stiffness matrix is not symmetric Kp �= KT

p .
A different derivation, not based on the pull-back of the expression (4.39) to the

reference configuration, has been reported elsewhere [53].
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4.4.5 Incompressible Flow Problems

Given the interpolation matrix N, the divergence interpolation matrix G, and the
gradient interpolation matrix B, the expressions vi = Niaha , ∂vi/∂xi = Gaha , and
di = Biaha interpolate the velocity v(x), its divergence divv(x), and the rate of
deformation d(x) over the finite element. Here, the nnpendim-dimensional vector h
stores the nodal velocities. With the identity v · gradv = grad|v|2/2, we may also
express the advective acceleration by grad|v|2/2 = N2

iah
2
a/2.

In addition to the velocity v(x), the pressure p(x) is also an independent variable
of an incompressible flow. The expression p = Naqa interpolates it over the
finite element, where the nnpe-dimensional vector q holds the nodal pressures. The
pressure p is a scalar, and thus the interpolation matrix differs from the interpolation
matrix applied to the velocities. It is indicated by a single index of the coefficients
Na , whilst the interpolation matrix that interpolates the velocity has the coefficients
Nia with two indices.

Given a Galerkin approach, and thus using the same interpolations for the
physical variables v, p and their test functions δv, δp, the two variational state-
ments (4.25) may be discretized and result in

δqi

∫

�e

NiGjdv

︸ ︷︷ ︸
Dij

hj = 0 ;

(4.43)

δhi

⎡

⎢⎢⎢⎢⎣

∫

�e

NaiρNajdv

︸ ︷︷ ︸
Mij

∂hj

∂t
+ 1

2

∫

�e

NaiρN
2
ajdv

︸ ︷︷ ︸
Aij

h2
j +

∫

�e

BciccaBajdv

︸ ︷︷ ︸
Kij

hj

−
∫

�e

GiNjdv

︸ ︷︷ ︸
DT
ij

qj −
(∫

�e

bf aNaidv +
∫

∂�e t

taNaids

)

︸ ︷︷ ︸
fi

⎤

⎥⎥⎥⎥⎥⎦
= 0 ,

(4.44)

where the stiffness cij in (4.44) represents the Voigt notation of the stiffness tensor
C = ∂σ/∂d and thus the resistance of the fluid against shearing.

Given arbitrary (admissible) nodal variations δh and δq, the statement (4.44)
yields the non-symmetric system of first-order partial differential equations

Mḣ + Ah2 + Kh − DTq − f = 0 . (4.45)
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It is to be solved under the constraint Dh = 0, which represents the continuity (4.43)
of the incompressible fluid. In (4.45), f denotes the nnepndim-dimensional nodal
force vector, M, A, K are nnepndim × nnepndim-dimensional square matrices, whilst
D is of the dimension nnepndim × nnep. Due to the advective acceleration term, the
system (4.45) is non-linear, even for the case of constant matrices.

4.4.6 Numerical Quadrature

Finite elements frequently use polynomial shape functions, which allows the
analytical computation of the integrals towards expressing the element force vector
and the element stiffness matrices. However, a numerical quadrature of these
integrals is often faster. The integrals are transformed from the element’s physical
domain �e to its parent domain ωe, and the quadrature is then performed over
ωe. The Jacobian transformation J connects �e and ωe, and given the relation
ds = detJdsω between the area elements ds and dsω,

I =
∫

∂�e

F(x)ds =
∫

∂ωe

F(ξ)detJ(ξ)dsω ≈
lint∑

l

F(ξ l )detJ(ξ l )wl (4.46)

expresses a surface integral and thus allows for the computation of the Neumann
contribution to the finite element nodal force vector. Here, ξ l; l = 1, . . . , lint denotes
the integration points’ natural coordinates, and wl are their weights. Given the
relation dv = detJdvω of the volume elements dv and dvω,

I =
∫

�e

F(x)dv ≈
lint∑

l

F(ξ l )detJ(ξ l )wl (4.47)

expresses a volume integral and allows us to compute the body force contribution to
the finite element nodal force vector as well as the computation of the finite element
stiffness matrices.

Whilst any quadrature rule may be applied, Gauss6–Legendre7 quadrature is
commonly used to compute the integrals of the FEM equations. Table 4.1 reports
Gauss–Legendre integration point coordinates ξl and weights wl in 1D.

The superposition of 1D quadrature is used to integrate over higher-dimensional
functions, and thus

I =
∫ +1

−1

∫ +1

−1
F(ξ1, ξ2)dξ1dξ2 ≈

kint∑

k

lint∑

l

F(ξ1 kξ2 l )wkwl (4.48)

6Johann Carl Friedrich Gauss, German mathematician and physicist, 1777–1855.
7Adrien-Marie Legendre, French mathematician, 1752–1833.
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Table 4.1 Integration point coordinates ξl and weights wl of 1D Gauss–Legendre quadrature

lint Integration point coordinates and weights (ξl , wl)

1 (0.0, 2.0)

2 (±0.57735, 2.0)

3 (0.0, 0.88889); (±0.77460, 0.55556)

4 (±0.86113, 0.34786); (±0.33998, 0.65214)

5 (0.0, 0.56889); (±0.90618, 0.23693); (±0.53847, 0.47863)

6 (±0.66121, 0.36076); (±0.23862, 0.46791); (±0.93247, 0.17132)

7 (0.0, 0.41796); (±0.40585, 0.38183); (±0.74153, 0.27970); (±0.94911, 0.12948)

represents the numerical integration of the 2D function F(ξ1, ξ2). Gauss–Legendre
quadrature has the order 2n − 1, such that n integration points along a spatial
coordinate direction are required for the exact integration of the function F(ξ) of the
polynomial degree n. Given triangular and tetrahedral elements, similar quadrature
rules exist [619].

Example 4.7 (Nodal Forces and Stiffness of a Quadrilateral Finite Element). A
small section of a vessel wall may be modeled as a 2D plane stress problem and
should be described by a single quadrilateral finite element, see Fig. 4.9. The wall is
h = 1.0 mm thick and the finite element has the nodal coordinates

[
x1

y1

]
=
[

0.0
0.0

]
;
[
x2

y2

]
=
[

3.0
0.3

]
;
[
x3

y3

]
=
[

4.0
2.0

]
;
[
x4

y4

]
=
[−0.5

3.4

]
,

where the numbers are given in millimeters. A linear-elastic constitutive description
of the vessel wall may be used, and

⎡

⎣
σ11

σ22

σ12

⎤

⎦ = E

1 − ν2

⎡

⎣
1 ν 0
ν 1 0
0 0 1 − ν

⎤

⎦

⎡

⎣
ε11

ε22

ε12

⎤

⎦ (4.49)

1
2

3

4

Fig. 4.9 Quadrilateral finite element at plane stress. The element represents a vessel segment
made of linear-elastic material with the Young’s modulus E and the Poisson’s ratio ν. The element
is h thick and loaded by the traction t along the edge between node 1 and node 2
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then describes the relation between stress and strain, where E = 1.3 MPa and ν =
0.45 denote the Young’s modulus and Poisson’s ratio, respectively. The traction t =
[0.3 0.5]T [N mm−1] acts along the edge that is formed by node 1 and node 2 of the
finite element, see Fig. 4.9.

(a) Compute the strain interpolation matrix B in the center of the finite element.
(b) Identify the required number of Gauss–Legendre integration points to compute

exact expressions of the nodal force vector f and the element stiffness matrix K.
(c) Use Gauss–Legendre integration to compute exact expressions of f and K, and

investigate the eigenvalues of K.
(d) Use one-point Gauss–Legendre integration to compute K and explain why this

matrix is rank-deficit. �

4.5 Constrained Problems

The essential variables of many biomechanical problems cannot “freely” develop—
they have to satisfy constraints. Given the flow problem discussed in Sect. 4.4.5, the
incompressibility of the fluid represents such a constraint. It led to the expression
Dh = 0 in addition to the momentum equation (4.45). A constrained problem may
also be formulated by including the constraint directly at the finite element level, a
concept followed in this section. We will outline such an approach in the description
of an incompressible material and therefore split the Cauchy stress tensor σ = σ +
σ vol into deviatoric σ and volumetric σ vol stress contributions. The deviatoric stress
σ represents constitutive information, whilst the volumetric stress σ vol represents
the constraint and enforces the incompressibility, see Sect. 3.3.9.

4.5.1 Penalty Constraint

The decoupled stress representation σ = σ + σ vol results in a decoupled elasticity
tensor C = C + Cvol, where C and Cvol denote the volumetric and isochoric
contributions, respectively. The Penalty method implements the condition Cvol >>

C towards approximating an incompressible material. At the incompressible limit the
coefficients of Cvol would then tend to infinity, and incompressibility holds exactly.
However, the larger the coefficients of Cvol relative to the coefficients of C, the larger
is the condition number of the matrix that represents C. It is then more challenging
to solve the penalty-constrained finite element problem.

A finite element problem may be seen as an optimization problem, where the
solution represents the displacement u at the minimum of the potential, see Fig. 4.10.
The Penalty method augments the isochoric potential �(u) and adds a penalty
contribution to deformation states that violate the constraint C(u) = 0. It then
results in a potential �P(u) whose minimization is more challenging than the
minimization of the unconstraint potential �(u). Whilst the Penalty method is
easy to implement and adds no additional degrees of freedom to the finite element
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Fig. 4.10 Constrained
optimization using the
Penalty method towards
approximately enforcing the
constraint C(u1, u2) = 0.
Adding the penalty
contribution results in a more
“valley-like” potential
�P(u1, u2). It is then more
challenging to find the
minimum �P → min, as
compared to an unconstrained
optimization � → min

Unconstrained potential

Penalty-constrained potential

Constraint

problem, it is always a trade-off between the error of violating the constraint and
the difficulty (time) to solve the constraint problem.

4.5.2 Lagrange Constraint

The Lagrange method considers the constraint C(u) = 0 by adding a Lagrange
contribution to the isochoric potential �(u). The Lagrange potential then reads

�L(u, p) = �(u)+
∫

�

p (J (u)− 1) dv , (4.50)

where the displacement u and the Lagrange parameter p are the essential (indepen-
dent) problem variables. Given an incompressible material, the Lagrange parameter
p may be identified as the hydrostatic pressure p = trσ/ndim with ndim denoting
the numbers of dimension. The pressure is then no longer a function of u, but an
additional essential problem variable. Given the two independent variables u and
p, the potential (4.50) represents a two-field variational problem and leads to two
variational statements. They read

δu�L(u, p) =
∫

�

σ (u) : gradsδu dv +
∫

�

p J(u)divδu dv − δu�ext

=
∫

�

(σ (u)+ pI) : gradsδu dv − δu�ext = 0 ;

δp�L(u, p) =
∫

�

δp(J (u)− 1)dv − δp�ext = 0 ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(4.51)

where the variation of the volume ratio δuJ (u) = J (u)divδu has been used, see
Appendix D. Whilst the variational statement (4.51)1 appears formally identical to
the displacement-based finite element formulation (4.17), it is noted that p in (4.51)1
is an independent variable.
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The linearization of the variational statements (4.51) yields

Duδu�L =
∫

�

(gradδu : grad�uσ + gradδu : C : grad�u) dv ,

Duδp�L = Dpδu�L =
∫

�

(
gradδu : grad�upI + gradδu : Cp : grad�u

)
dv ,

Dpδp�L = 0 ,

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(4.52)

where Dbδa�L denotes the directional derivative of δa�L along the direction b.
These results may be derived by pulling back (4.51) to the reference configuration
�0, carrying out the actual linearization by using the expressions in Appendix D,
and then pushing the results forward to the current configuration �.

The first and second terms in (4.52)1,2 refer to geometrical and material
contributions, respectively. The isochoric stiffness is denoted by C and depends on
the displacement u, whilst the Lagrange parameter p determines the volumetric
stiffness Cp = p(I ⊗ I − 2I) with I = (δij δkl + δikδjl)/2 denoting the fourth-
order identity tensor. We may interpolate the essential variables u, p and the
corresponding test functions δu, δp in (4.51) and (4.52), which then leads to the
force vector and the stiffness matrix of the Lagrange-constrained finite element.

Whilst the Lagrange method always enforces the constraint exactly, it results in
zeros in the diagonal of the finite element stiffness, the so-called pivot elements,
see (4.52)3. It may be seen as a general drawback and does not allow to solve a
Lagrange-constrained problem with fast Gaussian elimination-based solvers.

4.5.3 Augmented-Lagrange Constraint

The Augmented-Lagrange method uses the potential

�AL(u, p) = �L(u, p)− 1

2κ

∫

�

p2dv (4.53)

to implement the constraint C(u) = 0, an approach that for κ → ∞ approaches
the Lagrange potential (4.50). It avoids the ill-conditioning of the finite element
stiffness matrix as well as zero pivot elements, drawbacks known from the penalty-
constrained and the Lagrange-constrained problems, respectively.

The Augmented-Lagrange potential (4.53) leads to the two variational statements

δu�AL(u, p) =
∫

�

(σ (u)+ pI) : gradsδu dv − δu�ext = 0 ,

δp�AL(u, p) =
∫

�

δp[(J (u)− 1)− p/κ]dv − δp�ext = 0 ,

⎫
⎪⎪⎬

⎪⎪⎭
(4.54)
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where the results (4.51) have been used. Localization of (4.54)2 yields the Euler
equation p = κ(J (u)− 1) and allows to substitute the additional degree of freedom
p. The finite element is then fully described by the displacement u and is known as
general displacement finite element implementation [53].

Example 4.8 (Hu–Washizu Variational Principles). Material incompressibility may
lead to volume looking of a structural problem. The solution of the finite element-
approximated description is then (much) stiffer than the continuum problem. At
the finite element level, locking is the direct consequence of the shape functions
not being able to represent the constraint deformation all over the finite element.
Volume locking may be resolved by a variational formulation that introduces the
additional kinematic variable θ that represents the change of the element volume. It
must not be confused with the volume ratio J = detF(u), which is a function of the
displacement u. Given the displacement u and the pressure p, the potential

�HW(u, p, θ) = �(u)+
∫

�

U(θ)dv +
∫

�

p(J − θ)dv −�ext = 0 (4.55)

then defies the three-field Hu–Washizu variational principle, where u, p, θ are the
essential variables.

(a) Derive the three variational statements that follow from the potential (4.55).
(b) Consider an augmented Hu–Washizu potential L(u, p, θ, λ) = �HW(u, p, θ)
+∫

�
λh(θ)dv, where h(θ) denotes a function with the condition h(1) = 0, whilst

λ is an additional essential variable. Derive the four variational statements that
follow from L(u, p, θ, λ). �

4.6 Globalization

The finite element representation of an engineering problem requires the assembly
of the global system of equations, and thus the allocation of the contributions from
the individual finite elements to the respective global nodes. Figure 4.11 illustrates

1 2 3 45 6

E = 1.5 · 105 Pa ;A = 8.0 cm2 ; bf = 98.0 N dm−3

l1 = 1.0 cm; l2 = 1.4 cm; l3 = 1.9 cm; l4 = 0.7 cm; l5 = 1.2 cm

Fig. 4.11 Truss structure discretized by five two-noded finite elements that is simply supported
at node 1. The truss is loaded by the body force bf, has the cross-section A and is made of linear-
elastic material with the Young’s modulus E
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this process for a 1D truss that is discretized by ne = 5 linear elements of the length
le; e = 1, . . . , 5. The truss has the cross-section A and is loaded by the body force
bf, whilst the Young’s modulus E describes its linear-elastic material properties.
The global force vector f is then assembled according to

f =
ne

A
e=1

fe ,

which, given the nodal force vector fe = bfAle[1 1]T/2 of the e-th finite element,
reads

f = bfAl1

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
0
0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

+ bfAl2

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
0
0
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

+ bfAl3

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
1
0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

+ bfAl4

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

+ bfAl5

2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
0
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

In addition to the nodal forces, we also have to allocate the finite element stiffness

Ke = EA

le

[
1 −1

−1 1

]

of the e-th finite elements to the nodal stiffness of the respective global nodes. The
operation

K =
ne

A
e=1

Ke

then explicitly reads

K =EA
l1

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0
−1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

+ EA

l2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 1 −1 0 0 0
0 −1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦
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+EA
l3

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 −1 0
0 0 0 0 0 0
0 0 −1 0 1 0
0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

+ EA

l4

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 −1
0 0 0 0 −1 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

+EA
l5

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 −1
0 0 0 0 0 0
0 0 0 −1 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Given the contributions of all finite elements have been assembled, we derive at
the global system

Kh − f = 0 (4.56)

of ndof equations. The ndof-dimensional vectors h and f store the essential variables
and the nodal forces, respectively. The ndof × ndof-dimensional global stiffness
matrix K is sparsely populated, and, in many cases, also symmetric.

The allocation of the values in the stiffness matrix depends on the global node
numbering. The narrower the non-zero terms are populated around the diagonal, and
thus the smaller the bandwidth of K, the faster and more robustly the system (4.56)
may be solved. Automatic algorithms are used to renumber the global nodes towards
minimizing the bandwidth of K [619]. In addition, sparse storage approaches
avoid storing zero elements of K and optimize memory management of FEM
problems [418].

The global system of Eqs. (4.56) of the truss problem and the parameters shown
in Fig. 4.11 reads

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

12000 −12000 0 0 0 0
−12000 20571 −8571 0 0 0

0 −8571 14887 0 −6316 0
0 0 0 10000 0 −10000
0 0 −6316 0 23459 17143
0 0 0 −10000 17143 27143

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

u5

u6

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0.392
0.941
1.294
0.47

1.019
0.745

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Because of detK = 0, it cannot be solved without embedding the Dirichlet boundary
condition u1 = 0. The system has otherwise a zero eigenvalue that represents the
translation of the truss along the x direction.
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The Dirichlet boundary condition u1 = 0 removes the first row and column from
the system. It then reads

⎡

⎢⎢⎢⎢⎢⎣

20571 −8571 0 0 0
−8571 14887 0 −6316 0

0 0 10000 0 −10000
0 −6316 0 23459 17143
0 0 −10000 17143 27143

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

u2

u3

u4

u5

u6

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

0.941
1.294
0.47

1.019
0.745

⎤

⎥⎥⎥⎥⎥⎦
,

and the nodal displacements u2 = 0.37, u3 = 0.78, u4 = 1.14, u5 = 1.21, u6 =
1.26 mm is the solution to the problem.

4.7 Stabilization

The stability of the solution of non-linear problems is of major interest, and a
solution may become unstable because of physical and/or numerical reasons. In
this section we will address numerical stability and thus instabilities that are linked
to the discretization of a physically stable problem. The analysis is limited to
linear problems and we “hope” that our conclusions may also apply to non-linear
problems.

4.7.1 Positive Definiteness of the Finite Element Stiffness

One source of instabilities of a discretized structural problem can be linked to
instantaneous spurious deformation modes at the finite element level. Let us
consider a structural finite element with Kh = f determining the equilibrium at the
element level. Dirichlet boundary conditions have already been implemented and
suppress any rigid body motion. Lyapunov8 stability would then require that small
perturbations in the load vector�f = f�− f at most result in small alterations of the
displacements�h = h�−h, where (•)� denotes quantities of the perturbed system.
The finite element would otherwise be unstable. Given a symmetric finite element
stiffness K, the relation K�h = �f implies that Lyapunov stability is ensured for
any positive definite K.

Figure 4.12 shows an hourglass-instability, an instability seen with quadrilateral
or hexahedral finite elements and caused by the under-integration of the stiffness
matrix. It is one cause of an instable finite element. Whilst under-integration is a
common approach to avoid locking of finite elements or to speed up the computa-

8Aleksandr Mikhailovich Lyapunov, Russian mathematician, mechanician, and physicist, 1857–
1918.
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Fig. 4.12 Quadrilateral
finite element showing an
hourglass-instability. The
quadrature by a single
integration point leads to
under-integration and a
non-positive-definite element
stiffness

34

1 2

Integration 
point

tions, it leads to rank-deficiency and therefore a non-positive definite K. Methods for
the stabilization of under-integrated finite elements are well reported [35,266,601].

4.7.2 Stabilization of the Advection–Diffusion Finite Element

The AD problem discussed in Sect. 4.3.2 shows another type of numerical insta-
bility. It is not related to the positive definiteness of the element stiffness matrix
but appears in an advection-dominated problem. A high value of the advective
term v · grad c in relation to the diffusive term νdiv(gradc) of the governing
equations (4.10) then results in an unstable solution. The same instability appears
in the description of fluid mechanical problems (4.3.5) with a significant adventive
velocity term v · gradv and thus at high Reynolds number Re.

We may consider the 1D AD Galerkin finite element analyzed in Example 4.5
towards the exploration of such an instability. The governing system (4.29) then
reads

(
v

2

[−1 1
−1 1

]
+ ν

h

[
1 −1

−1 1

])[
c1

c2

]
= αh

2

[
1
1

]
, (4.57)

where v, ν, and α denote the advective velocity, the diffusivity, and a constant that
describes the physics of the problem. In addition, the finite element is h long, and c1
and c2 are the essential problem variables at the two nodes. Figure 4.13 illustrates a
1D AD problem discretized by n such finite elements. The system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Pe

⎡

⎢⎢⎢⎢⎢⎣

−1 1

−1 0 1

−1 0 1

−1 0 1

. . .
. . .

. . .

⎤

⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎢⎣

1 −1

−1 2 −1

−1 2 −1

−1 2 −1

. . .
. . .

. . .

⎤

⎥⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

⎡

⎢⎢⎢⎢⎢⎣

c1

c2

c3

c4

.

.

.

⎤

⎥⎥⎥⎥⎥⎦
= k

⎡

⎢⎢⎢⎢⎢⎣

1

2

2

2

.

.

.

⎤

⎥⎥⎥⎥⎥⎦
(4.58)

then determines the numerical problem and the unknowns are stored in the vector
h = [c1 . . . cn+1]T. Towards a dimensionless study of the problem, the elemental
Péclet number Pe = vh/(2ν) and the factor k = αh2/(2ν) have been introduced.
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Fig. 4.13 Galerkin finite
element-based predictions of
the 1D Advection–Diffusion
(AD) problem at different
elemental Péclet numbers Pe.
The advective velocity v
points in the positive x
direction, and k = 0.005
defines the right-hand side of
the AD problem. The
problem is discretized by
n = 10 finite elements, and
c = 0.0 describes Dirichlet
boundary conditions at node 1
and node 11, respectively

Exact

Va
r

1      2        3       4        5        6       7        8       9      10     11
ia
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e 

c 

The elemental Péclet number specifies the ratio between advective and diffusive
transport over one finite element.

Figure 4.13 shows the result from the solution of the system (4.58). Whilst at low
Pe numbers the numerical solution approximates the exact solution

cexact = 1

v

[
x − 1 − exp(vx/ν)

1 − exp(v/ν)

]

of the problem, at larger Pe numbers, however, we observe spurious node-to-node
oscillations around the exact solution. Given a high Pe number, a sharp boundary
layer develops close to the right boundary of the problem and then “triggers” the
oscillations in the solution.

4.7.2.1 Full Upwind Stabilization
Different approaches have been proposed to stabilize the AD problem and to
suppress the aforementioned oscillations in the solution. At the i-th node, the
algebraic relation

v
ci+1 − ci−1

2h︸ ︷︷ ︸
≈dc/dx

−ν ci+1 − 2ci + ci−1

h2
︸ ︷︷ ︸

≈d2c/dx2

= α (4.59)

derives directly from the system (4.58) and illustrates the approximations used
to express the first and second derivatives of c by the Galerkin finite element.
The approach introduces a truncation error and solves an AD problem with less
diffusivity and thus less dissipation than the exact problem. We may therefore add
artificial diffusivity to compensate for the truncation error.

In contrary to the Galerkin approach, the finite difference discretization at the
i-th node leads to
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v
ci − ci−1

h
− ν ci+1 − 2ci + ci−1

h2 = α , (4.60)

where backward-Euler and mid-point rules have been used to approximate adventive
and diffusion terms, respectively. This discretization of the AD problem does not
show oscillations in the solution. The identical discretization is achieved through
the alteration of (4.59) towards

v
ci+1 − ci−1

2h
− (ν + ν�) ci+1 − 2ci + ci−1

h2 = α ,

where the diffusivity ν� = vh/2 has been added to stabilize the problem. We
may express the added diffusivity directly at the finite element level, and the
system (4.57) then reads

(
v

2

[−1 1
−1 1

]
+ ν + ν�

h

[
1 −1

−1 1

])[
c1

c2

]
= αh

2

[
1
1

]
, (4.61)

an approach known as full upwind stabilization. Figure 4.14 shows the results
achieved with this method. Whilst it prevents oscillations, the solution is overly
diffusive and affects also the results at low Pe numbers.

4.7.2.2 Petrov–Galerkin Finite Elements
A Petrov–Galerkin finite element uses different shape functions to interpolate the
physical quantity and its corresponding test function. It leads to a non-symmetric
effect on the i-th node, as shown in Fig. 4.15. To achieve an upwind stabilization, the
influence of the upwind side needs to be amplified. The bubble mode 3β(1 − ξ2)/4
may be considered in addition to the linear shape functions. The expressions

S1 = (1 + ξ)/2 − 3β(1 − ξ2)/4 ; S2 = (1 − ξ)/2 + 3β(1 − ξ2)/4 (4.62)

then determine the interpolation δc = Siδhi of the test function, where ξ = 2x/h−1
denotes the natural coordinate, whilst β specifies the amount of upwinding. It is

Fig. 4.14 Numerical
predictions of the full upwind
stabilized 1D
Advection–Diffusion (AD)
problem at different
elemental Péclet numbers Pe
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ri
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le

 c
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1                      2 

Fig. 4.15 Upwind stabilization of the 1D Advection–Diffusion (AD) problem through Petrov–
Galerkin finite elements. Bubble modes are added to the linear shape functions and alter the
interpolation of the test function δc. It results in a non-symmetric effect at the finite element nodes

only the test function’s interpolation that is changed, and c = Nihi still expresses
the interpolation of the physical quantity c. The advection and diffusion matrices

K = v

2

[−1 1
−1 1

]
+ β v

2

[
1 −1

−1 1

]

︸ ︷︷ ︸
upwinding

; D = ν

h

[
1 −1

−1 1

]

together with the force vector

f = αh

2

[
1
1

]
+ β αh

2

[−1
1

]

︸ ︷︷ ︸
upwinding

then define the Petrov–Galerkin 1D AD finite element, see Example 4.5. The
upwinding contribution of f affects only the domain’s boundary and is neglected
in many applications. The diffusion matrix D and the upwinding contribution to
K have the same structure, which allows to express the finite element equations
according to (4.61), where ν� = βvh/2 determines the added diffusivity. Here, the
parameter β controls the amount of added diffusivity. It should be large enough to
suppress oscillations, but at the same time as small as possible to prevent overly
dissipative results.

4.7.2.3 Generalization for Multi-dimensional Problems
The aforementioned ideas of stabilizing the 1D AD problem may be extended to
higher dimensions. The artificial diffusivity is then added through an anisotropic
diffusion tensor

ν� = ν�
v ⊗ v
|v|2 . (4.63)

The only non-zero eigenvalue of ν� is |v|2 and points in the direction of the
flow velocity v. Along the flow direction the diffusivity ν� is then added towards
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stabilizing the problem, whilst it remains unchanged perpendicular to the flow—
crosswind diffusion is therefore avoided.

Given the property νdiv(gradc) = νI : grad(gradc), the AD problem (4.10) may
be rewritten, and the artificial diffusivity ν� can be added to the physical diffusivity
νI. The local expression v · gradc − (νI + ν�) : grad(gradc)+ α = 0 then governs
the stabilized AD problem, and (4.63) leads to

v · gradc − ν�

|v|2 (v ⊗ v) : grad(gradc)− νdiv(gradc)+ α = 0 .

Calculus of Variations applied to the first three terms yields

∫

�

(
δc + ν�

|v|2 v · grad δc

)
v · gradc dv +

∫

�

ν gradδc · gradc dv ,

where the surface terms are not of interest for the present analysis and have been
neglected. The Galerkin interpolation c = Nihi and δc = Niδhi then determines
the advection and diffusion matrices

Kij =
∫

�e

(
Ni + ν�

|v|2 vaBai
)

︸ ︷︷ ︸
Si

vbBbj dv ; Dij =
∫

�e

Baiν Baj dv (4.64)

of the e-th finite element. We may interpret Si as a newly defined shape function
in the interpolation of the test function, δc = Siδhi , and K would then have
been derived from a Petrov–Galerkin approximation. Given D is still based on a
Galerkin approximation, the matrices (4.64) arise from an inconsistent variational
formulation, known as inconsistent Streamline Upwind (SU) stabilization.

4.7.2.4 Petrov–Galerkin Formulations
Petrov–Galerkin formulations for stabilized AD problems may be summarized by
the following weak form

∫

�

δc v · gradc dv +
∫

�

ν gradδc · gradc dv +
∫

�

P(δc)τR(c) dv
︸ ︷︷ ︸
Stabilization term

=
∫

∂�q

δc qds −
∫

�

δcαdv , (4.65)

where τ denotes a user-selected stabilization parameter, and R(c) = v · gradc −
νdiv(gradc)+ α is the residual error of the AD problem (4.10)1. Given this residual
error term, the effect of the stabilization will be small for a low R. The operator
P(δc) is determined by the specific stabilization formulation.
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The Streamline Upwind Petrov–Galerkin (SUPG) stabilization [59, 268] is one
of the most widely used stabilization methods and implements

P(δc) = v · gradδc and τ = ν�/|v|2 .

The Galerkin least-square (GLS) stabilization is another frequently used
method [270].

Example 4.9 (SUPG-Stabilized 1D Advection–Diffusion Problem). To avoid oscil-
lating solutions at coarse finite element meshes, the Advection–Diffusion (AD)
problem requires stabilization. In this exercise the Streamline Upwind Petrov–
Galerkin (SUPG)-stabilized finite element should be used to solve the 1D AD
problem.

(a) Consider the linear shape functions (4.3), and provide the expressions of K, D,
and f of the SUPG-stabilized finite element. Given the stabilization parameter β,
the artificial diffusivity ν� = βvh/2 may be considered, where h and v denote
the finite element length and the advective velocity, respectively.

(b) Explain why the SUPG-stabilized finite element can be regarded as a consistent
Petrov–Galerkin finite element.

(c) Consider the discretized problem shown in Fig. 4.13 and use the diffusivity ν =
1.0 m2 s−1, the constant finite element length h = 0.1 m, and the parameter
α = 1.0 s−1 of the AD problem. Compute the essential variable c for the Péclet
number Pe = 1.0 and estimate the stabilization parameter β by trial and error
that gives the closest result to the exact solution of this problem. �

As with the AD problem, Galerkin-based FE formulations of the incompressible
flow (4.43) and (4.44) may also result in spurious node-to-node oscillations of
the velocity. It is known to appear in advection-dominated flows as well as flows
with sharp boundary layers. The use of inappropriate combinations of interpolation
functions for the velocity v and the pressure p fields is also known to be a source
of a numerical instability. It results in oscillations that primarily effect the pressure
field. Very similar approaches to the ones discussed to stabilize the AD problem
have also been used to stabilize incompressible flows [546].

4.8 Solving the System of Finite Element Equations

The individual bioengineering application determines the system of equations to be
solved. Whilst a linear static structural problem yields a system of linear algebraic
equations, a non-linear transient problem requires the solution of a system of
non-linear partial differential equations in time. The systems may or may not be
symmetric, and in many cases the essential variables have to satisfy constraints. In
this section some of the most popular approaches to solve systems of FEM equations
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are discussed. They can also be used to solve systems from many other discretization
methods.

4.8.1 Solving Sparse Linear Systems

Direct or iterative solution stagiest may be used to solve the linear system

Kh − f = 0 (4.68)

of algebraic equations, and thus to compute the essential variables h. Given FEM
applications, the system of Eqs. (4.68) is in general very large, which makes its
solution computationally demanding. The matrix K, is constant, sparsely populated,
and for many applications it is also symmetric. Storage schemas, such as skyline
storage and sparse storage, greatly reduce the time needed to solve, as well as the
memory to store the data. Sparse storage schemas store only the non-zero elements
of K, but in a way that still enables efficient computations, especially of matrix
vector products.

4.8.1.1 Direct SolutionMethods
Direct solution schemas, and thus variants of Gaussian elimination, are the method
of choice for “small” systems of up to approximately 100k unknowns. Parallel
computing splits the finite element problem into smaller sub-problems, and given
enough processors, even large problems may be efficiently solved by direct methods.

LU factorization is a direct solution method and expresses the matrix through
K = LU, where L and U are lower and upper triangular matrices, respectively. Here,
U is the established notation in linear algebra and must not be mixed up with the
right stretch tensor used in continuum mechanics. All Gaussian elimination-based
methods are unstable in their pure form, and a non-zero pivot has to be ensured at
every step of the elimination process. Given finite precision arithmetic, already small
pivots can make the schema unstable or introduce considerable numerical errors in
the solution. Pivoting is therefore used.

Pivoting interchanges rows of the equation system to ensure relatively large
entries as pivot elements. Strategies, such as partial pivoting, complete pivoting,
and rook pivoting, are known. The result of pivoting is the permutation matrix IP
that swaps rows or columns. The system of Eqs. (4.68) then reads

Kh − f = 0

with K = IPK, f = IPf, and h = IPh representing the rearranged matrix and vectors,
respectively.

LDU factorization is another commonly used approach to solve sparse linear
systems that emerge from the FEM. It uses upper U and lower L triangular matrices
of the property L = UT together with the decomposition K = LDU, where D is a
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nonsingular diagonal matrix. Consequently, the system (4.68) reads LDUh = f and
its solution involves the three consecutive steps

Forward reduction: set DUh = z and solve Lz = f for z ;
Diagonal scaling: set Uh = y and solve Dy = z for y ;
Back substitution: solve Uh = y for h .

Many other direct solution approaches are known, and the literature is rich of
methods to solve sparse linear systems [113].

4.8.1.2 Iterative SolutionMethods
The matrix of FEM problems is diagonally populated, a structure that supports the
application of iterative solution methods, the strategy of choice to solve “large”
systems of more than approximately 100k unknowns.

Change of sign and adding Ah to both sides of equation (4.68) yield

Ah = Ah + f − Kh , (4.69)

where A is a diagonal matrix to be specified later. The substitution h = hn, applied
only to the right side of (4.69), yields then the iteration rule

Ah = Ahn + f − Khn . (4.70)

Given A approximates the finite element problem and therefore contains “similar”
information than K, the expression (4.70) yields a fixpoint iteration and converges
to the solution of (4.68). This iteration is only efficient for a diagonal matrix A, and
the system of Eqs. (4.70) can then be solved row by row. The diagonal matrix A may
be formed by the diagonal terms of K, or by lumping all column elements of K into
the corresponding diagonal term of A.

The convergence of the iteration (4.70) can be enhanced through preconditioning.
The system (4.68) is then multiplied with a problem-specific precondition matrix
before the iteration (4.70) starts. Iterative solution methods that are based on many
other approaches are known, and the literature is rich in the description of fast
iterative solvers [140].

Example 4.10 (Solving a Linear System of Equations). The symmetric system of
linear equations Kh = f with

K =

⎡

⎢⎢⎣

8 2 1 0
2 9 5 3
1 5 12 2
0 3 2 6

⎤

⎥⎥⎦ ; f =

⎡

⎢⎢⎣

0
0
1
2

⎤

⎥⎥⎦
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represents a discretized structural problem.

(a) Use a LU factorization-based direct solution method to solve the system of
equations and report h.

(b) Use an iterative solution method to solve the system of equations and report its
convergence. �

4.8.2 Time Integration

The solution of a transient FEM problem requires the integration of a system of
partial differential equations in time. To explore such a problem, let us for simplicity
consider the first-order differential equation dy/dt = f (t, y), where y and t denote
the essential variable and the time, respectively. An explicit or implicit approach
may be used to integrate the function f (t, y). Given the essential variable yn at the
time tn, an explicit method allows for the explicit expression of the essential variable
yn+1 at the time tn+1 = tn+�t , and thus at the time increment�t later. In contrary,
implicit methods require the solution of an implicit system of equations to calculate
the essential variable yn+1. In general, a time-marching iteration

yn+1 = yn + φ�t

may be used for the integration—it is explicit for φ = φ(tn, yn) and implicit for
φ = φ(tn+1, yn+1).

The Euler integration uses the factor φ = dy/dt and leads either to explicit
or implicit integrations, known as forward-Euler and respectively backward-Euler
integrations, see Fig. 4.18. The Euler integration is first-order accurate and its global
truncation error, the error at a given time t , is therefore proportional to the step size
�t . The error estimation

Fig. 4.18 Numerical integration of a first-order differential equation with the exact solution
denoted by the function f (t) (dashed curve). (a) Forward-Euler and (b) Backward-Euler inte-
gration yield the approximations y(t) (solid curves)
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ε(�t) = |f − y| < C�tq

has then the coefficient q = 1. The constant C depends on the function f . In
contrary, the local truncation error, the error per step, is proportional to �t2. The
Euler integration is the simplest case of a family of time-marching algorithms,
known as Runge9–Kutta10 methods.

Aside the accuracy, the stability of the time integration is crucial to the solution
of problems. It defines conditions for the step size �t that then lead to a converged
numerical solution. It is especially important for stiff problems, where the solution
of the problem shows sharp gradients in time, conditions that may trigger the
formation of instabilities.

Example 4.11 (Stability of the Euler Integration). Consider the stiff differential
equation

dy/dt = −yt ; y(0) = 1 (4.72)

and test the stability of the Euler integration.

(a) Specify the iteration of forward-Euler and backward-Euler integrations, respec-
tively.

(b) Use the step size �t = 9/10 and compute the forward-Euler and backward-
Euler integrations in the interval 0 ≤ t ≤ 9. �

4.8.3 Non-linear Formulations

A number of bioengineering problems are described by non-linear governing
equations. The essential variable h is then determined by the non-linear vector
equation

g(h)− f(h) = 0 , (4.73)

where g(h) and f(h) denote the internal and external contributions to the nodal
forces, respectively. Non-linearities may stem from factors, such as a non-linear
constitutive description, finite deformations, the advective term in the material time
derivative, and follower loads.

A first-order Taylor expansion of (4.73) around h0 and over the increment �h
yields the system

g(h0)+ K(h0)�h − f(h0)− Kf(h0)�h = K(h0)�h − Kf(h0)�h = 0 (4.74)

9Carl David Tolmé Runge, German mathematician, physicist, and spectroscopist, 1856–1927.
10Martin Wilhelm Kutta, German mathematician, 1867–1944.
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of linearized equations, where K(h0) and Kf(h0) are the internal and external
contributions to the system stiffness, respectively. The derivation of (4.74)2 used
the equilibrium relation g(h0)− f(h0) = 0 at the state h0 of the essential variable.

The internal K and external Kf contributions depend on the particular appli-
cation. Given the linear problem discussed in Sect. 4.6, the constant external load
bf results in Kf = 0, which together with the constant stiffness K reduces the
equilibrium (4.73) to Kh − f = 0 and thus to the linear system (4.68).

4.8.4 Incremental Formulation

Given the external f and internal g nodal forces as well as the nodal contributions
from inertia m and damping d,

m(ḧ)+ d(ḣ)+ g(h)− f(h) = 0 (4.75)

determines the motion of a material particle. It describes how the particle’s state of
motion, characterized by the displacement h, the velocity ḣ, and the acceleration ḧ,
changes over time.

Let us consider a small deviation from the equilibrium state. The incremental
relation �m(ḧ) + �d(ḣ) + �g(h) − �f(h) = 0 then follows from relation (4.75)
and yields

M(h)�ḧ + D(h)�ḣ + K(h)�h − Kf(h)�h = 0 , (4.76)

where the linear approximations �m(ḧ) = M�ḧ, �d(ḣ) = D(h)�ḣ, �g(h) =
K(h)�h, and �f(h) = Kf(h)�h have been used. The mass and damping matrices
are denoted by M and D, whilst K and Kf are the stiffness matrices upon internal
and external nodal forces, respectively. The solution of the system (4.76) provides
the increments�h,�ḣ, and�ḧ and allows us then to update the state h = hn+�h,
ḣ = ḣn +�ḣ, and ḧ = ḧn +�ḧ, where (•)n denotes state variables at the previous
time tn.

Whilst the boundary conditions have already been included in (4.76), the
computation of h, ḣ, ḧ over the time t also requires the specification of the state
variables at the time t = 0—the initial conditions of the problem.

4.8.5 Explicit Solution

The explicit solution strategy solves the system (4.76) for the acceleration, which
then reads

Mn�ḧn+1 = Kf n�hn − Dn�ḣn − Kn�hn , (4.77)
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where (•)n denotes quantities known from the last time point, whilst (•)n+1 are
the quantities to be calculated. Given a lumped mass matrix, the acceleration
increment �ḧn+1 is rapidly computed. The matrix Mn is then a diagonal matrix
and (4.77) represents an iteration rule—it avoids solving a system of equations.
The acceleration ḧn+1 = ḧn + �ḧn+1 and the time increment �t allow then
the update of the velocities ḣn+1 = ḣn + ḧn+1�t , as well as the displacements
hn+1 = hn+ ḣn+1�t . A single update step therefore determines this time-marching
algorithm.

The solution strategy uses exclusively information at the time tn to compute
the system state at tn+1, it is therefore an explicit time integration. The Courant–
Friedrichs–Lewy (CFL) criterion [100]

�t < αmin(h/c) (4.78)

may be used to set the time step �t and ensure the stability of the solution. The
factor α is often set to one, whilst h [m] and c [m s−1] denote the characteristic
length of the smallest finite element in the problem and the speed of sound in the
material. The CFL criterion ensures that a sound wave would not propagate through
the smallest finite element during one time step.

An explicit solution is recommended for problems with significant inertia or
viscose forces, where the first or second terms in (4.76) therefore contribute a fair
amount to the nodal forces. Given the solution of non-linear problems with an
explicit solution strategy, it is always difficult to control the drift from the exact
solution.

4.8.6 Implicit Solution

The implicit solution strategy solves the system (4.76) for the displacements. It is
then rewritten as

K�(h)�h − f� = 0 , (4.79)

where K� and f� are the algorithmic stiffness matrix and the algorithmic load vector,
respectively.

Let us consider the first-order transient problem D�ḣ + K�h − Kf�h = 0 to
exemplify the derivation of K� and f�. Given�ḣn+1 = ḣn+1−ḣn and the backward-
Euler approximation ḣn+1 ≈ �hn+1/�t of the velocity, the time-discretized system
reads

Dn+1�hn+1/�t − Dn+1ḣn + Kn+1�hn+1 − Kfn+1�hn+1 = 0

(Dn+1/�t + Kn+1 − Kf n+1)︸ ︷︷ ︸
K�n+1

�hn+1 − Dn+1ḣn︸ ︷︷ ︸
f�n+1

= 0 ,
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an expression according to (4.79).
The algorithmic stiffness and the load vector are in general given by

K� = k1K + k2D + k3M − Kf ; f� = (m1D +m2M)ḧn + (d1D + d2M)ḣn ,

where the applied time-integration method, such as the Newmark method or the
Hilber–Hughes–Taylor method [267], then determines the coefficients ki, di,mi .
For many applications D and M are constant, and the algorithmic load vector f�

is then independent from the current time. It may be regarded as a history vector,
and the system

K�n+1�hn+1 − f�n = 0 (4.80)

then describes the non-linear problem—its solution will be discussed in the
following sections.

4.8.6.1 Newton–RaphsonMethod
A non-linear FEM problem may always be expressed by the system

K�(h)�h − f� = r(h) (4.81)

of equations, where r = 0 denotes the residuum. The quasi-static problem with dead
loads is a particular case: K�(h) = K(h) then denotes the stiffness from the internal
contributions to the nodal forces, and f�(h) = 0. The non-linear system (4.81) is
solved iteratively through the minimization of the residuum r until |r| < ε, where
ε denotes a tolerance level. Given the solution hn at the previous step, the current
increment �h can be computed and allows us to update the solution h = hn +�h.

The Newton–Raphson fixpoint iteration �h ← �h − [∂r/∂h]−1 r represent
a common approach to solve the system (4.81). Figure 4.20 exemplifies the
computation of the increment �hn+1, which then is used to update the essential
variable hn+1 = hn + �hn+1. Given the large dimension of a FEM system, its
stiffness matrix K� = ∂r/∂h is not inverted and the allocation of memory to store
�h is also avoided. The practical implementation of the Newton–Raphson fixpoint
iterations then reads

h ← h − δh with δh from solving K�(h)δh = 0 and h0 = 0 . (4.82)

Given a continuous residuum r and a vector h that is close to the solution, the
Newton–Raphson fixpoint iteration converges quadratically. The solution is then
found within a small number (three to six) of iterations and satisfies the condition

log(|r|n+1)/ log(|r|n) ≈ 2 (4.83)

between two consecutive iterations.
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Fig. 4.20 Newton–Raphson
fixpoint iteration to compute
the essential variable h at the
residuum r = 0. Starting at
hn and the residuum rn, the
image illustrates the iterations
δhi , which then sum up and
determine the increment
�hn+1. The update
hn+1 = hn +�hn+1 finally
yields the solution

4.8.6.2 Load Incrementation
The Newton–Raphson iteration may not converge for large increments �h and
thus for initializations hn that are too far away from the solution hn+1. Whilst
for transient problems the time step �t can be reduced, load incrementation is
commonly applied for quasi-static problems towards overcoming this drawback
of the Newton–Raphson method. A load factor 0 ≤ λ ≤ 1 is introduced, and
instead of (4.73), g(h) − λf = 0 is then solved, where we considered dead loads
for simplicity. Given the solution is found, the load factor λ is increased, and the
problem is solved again. It is equivalent to the solution of the system

K(h)�h −�f = r(h) , (4.84)

at each load increment �f = (λn+1 − λn)f and leads to two nested loops, see
Table 4.4. The load factor λ may also be linked to the essential variables h, which
then leads to a separate family of solution techniques, known as arc-length or
continuation methods, see Sect. 4.8.6.4.

4.8.6.3 Dirichlet VersusNeumann Boundary Conditions
The description of either Dirichlet or Neumann boundary conditions can have
important implication towards the ability to solve a non-linear problem. Let us
consider a truss of Young’s modulus E and cross-section A under tension. It is
modeled by two finite elements of the lengths La = ξL and Lb = (1 − ξ)L

with 0 < ξ < 1, see Fig. 4.21. Element b is linear-elastic and has the stiffness
kb = EA/[(1 − ξ)L], whilst element a reflects softening and then failure of the
truss. The referential stiffness ka0 = EA/(ξL) of element a changes with increasing
engineering strain ε = u1/(ξL) towards ka = −(ka0/ε) exp(−ε)[exp(−ε)− 1].

The two equations F = −ka0 exp[−u1/(ξL)]{exp[−u1/(ξL)] − 1} and F =
kb(u2 − u1) describe then the internal equilibrium at node 1, and given the
substitution u1 = u2 − F/kb, the residuum equation

r(u2, F ) = ka0α(α − 1)+ F = 0 with α = exp[(F/kb − u2)/(ξL)] (4.85)
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Table 4.4 Algorithm to
solve a non-linear FEM
problem with load
incrementation and
Newton–Raphson iterations

(1) Set load increment �λ = 1/nl with nl denoting the
number of load increments

(2) Initialize essential variables h = 0 and load iteration
λ = 0

(3) Set load increment �f = �λf

(4) Loop over load incrementation

Do While λ ≤ 1

λ ← λ+�λ
(5) Loop over Newton–Raphson iteration

Do While |r| ≥ 10−8

Compute δh from the direct or iterative

solution of K(h)δh −�f = r(h)
h ← h − δh

End Do

End Do

Fig. 4.21 Two finite elements to model the failure of a truss at tension. Element a captures strain
softening, whilst element b has linear-elastic properties

represents the problem. We may prescribe either the load F or the displacement u2,
which would represent either a Neumann or a Dirichlet boundary condition at the
right end of the truss. A Newton–Raphson method may then be used to solve for the
non-prescribed variable.

Table 4.5 illustrates the prescription of the Dirichlet boundary condition or the
displacement-controlled approach. The displacement u2 is prescribed, whilst the
iteration F ← F − δF with δF = r(∂r/∂F )−1 determines the force. In contrary,
Table 4.6 illustrates the prescription of the Neumann boundary condition or the load-
controlled approach, where the force F is prescribed and u2 ← u2 − δu2 with
δu2 = r(∂r/∂u2)

−1 determines the displacement. Given the distensibility ∂r/∂F �=
0, the displacement-controlled approach is able to compute strain softening, whilst
the load-controlled approach terminates as soon as the ultimate load is reached.
Here, the stiffness ∂r/∂u2 = 0 and can therefore not be inverted. Figure 4.23 shows
the force versus displacement computed with the displacement-controlled and load-
controlled solution approaches.
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Table 4.5 Algorithm for the
displacement-controlled
solution of the
residuum (4.85)

(1) Set Parameters

ξ = 0.4;E = 70.0 MPa;A = 1.0 cm2;L = 0.5 m

kb = EA/[(1 − ξ)L]; ka0 = EA/(ξL)

(2) Set displacement increment �u2 = 1/n with n denoting
the number of increments

(3) Initialize variables u2 = 0 and F = 0

(4) Loop over load incrementation

Do While u2 ≤ n�u2

u2 ← u2 +�u2

(5) Loop over Newton–Raphson iteration

r = 1

Do While r ≥ 10−8

r = ka0α[α−1]+F ;K = ka0α(2α−1)
Lξkb

+1 with

α = exp
[
F/kb−u2
ξL

]

F ← F − δF with δF = r/K

End Do

End Do

Table 4.6 Algorithm for the
load-controlled solution of
the residuum (4.85)

(1) Set Parameters

ξ = 0.4;E = 70.0 MPa;A = 1.0 cm2;L = 0.5 m

kb = EA/[(1 − ξ)L]; ka0 = EA/(ξL)

(2) Set load increment �u2 = 1/n with n denoting the
number of increments

(3) Initialize variables u2 = 0 and F = 0

(4) Loop over load incrementation

Do While F ≤ n�F

F ← F +�F
(5) Loop over Newton–Raphson iteration

r = 1

Do While r ≥ 10−8

r = ka0α[α − 1] + F ;K = − ka0α(2α−1)
ξL

with

α = exp
[
F/kb−u2
ξL

]

u2 ← u2 − δu2 with δu2 = r/K

End Do

End Do

Example 4.12 (Spring Lever Structure). Figure 4.22 shows a structure that is loaded
by the force F . A rigid lever redirects the force into a spring of the stiffness
k = 1.2 N mm−1. The structure is weightless, and the dimensions a = 38 mm and
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b = 20 mm define its unloaded configuration. The equilibrium determines it spatial
configuration, which may be parameterized by the vertical displacement v.

Fig. 4.22 Structure that is
loaded by the force F , which
is then redirected through a
rigid lever into a spring. The
displacement v defines the
structure’s spatial
configuration

(a) Derive the non-linear governing equation of this problem.
(b) Use a Newton–Raphson algorithm to compute the force F upon a prescribed

displacement v.
(c) Use a Newton–Raphson algorithm to compute the displacement v upon a

prescribed force F . �

4.8.6.4 Arc-Length, or ContinuationMethods
A structure may exhibit a so-called snap-back behavior. The force versus dis-
placement path becomes then instable, and the structure quickly changes its
configuration. Even a displacement-controlled solution approach does not allow to
solve the problem. Whilst a transient solution approach, and thus considering the
dynamics of the snap-back, would be fully feasible, it is much faster to compute the
quasi-static solution with the arc-length method.

The arc-length solution approach introduces the load factor λ, an additional
degree of freedom that weights the external load. It needs to be distinguished
from Sect. 4.8.6.2, where the load factor has been imposed in the solution of the
problem. Now, the nodal displacements u together with the load factor λ define the
generalized variable h = [u λ]T, and the problem is solved along the path that is
formed by the increments �h. Given a quasi-static problem with g and f denoting
the internal and respective external nodal forces, the system

g − λf = ru ; �u ·�u + η2�λ2f · f −�h2 = rλ (4.89)

then defines the problem, where �h is a predefined step size. It may be seen as
the radius of a hypersphere in a space that is formed by the problem’s degrees of
freedom. The external force acting on the structure is λf, and η in (4.89)2 serves
as a scaling factor that weights the influence of the displacement and the load in
determining the solution path. At the limit cases η = 0 and η = ∞, the arc-length
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Fig. 4.23 Force displacement properties of the truss problem shown in Fig. 4.21 and the use of the
parameters E = 70.0 MPa, A = 1.0 cm2, L = 0.5 m, and ξ = 0.4. (a) Displacement-controlled
solution. (b) Load-controlled solution with non-converged results towards the ultimate load level
of the structure

method resembles the displacement-controlled and force-controlled approaches,
respectively.

Given a trial (or guess) of the generalized variable, the Newton–Raphson
iteration h ← h − K−1r with

K =
[
∂ru/∂u ∂ru/∂λ

∂rλ/∂u ∂rλ/∂λ

]
and r =

[
ru

rλ

]
(4.90)

serves then as the corrector step and determines h. Even for the case the
displacement-controlled stiffness ∂ru/∂u would be singular, K in (4.90)1 is not
singular and may be inverted. However, K is neither symmetric nor banded. Whilst
the aforementioned concept founds the basics of all arc-length approaches, many
different variants are known [106].

Let us solve the problem shown in Fig. 4.21 with a specific arc-length method,
known as pseudo-displacement control. The displacement of a single node then
controls the problem, and Δu2

1 substitutes the term �u · �u in Eq. (4.892). Given
u1, u2, and F , the non-linear system

ru 1 = ka0α(α − 1)+ λF = 0 ;
ru 2 = kb(u2 − u1)− λF = 0 ;
rλ = �u2

1 +�λ2η2F 2 −�h2 = 0

then determines the problem, where the abbreviation α = exp[−u1/(ξL)] has been
used. In addition�h defines the step size of the solution method, and�u1,�u2 and
�λ denote the increments of the nodal displacements and load factor, respectively.

Given a trial state, the Newton–Raphson iteration

⎡

⎣
u1

u2

λ

⎤

⎦←
⎡

⎣
u1

u2

λ

⎤

⎦−

⎡

⎢⎢⎣

− ka0
ξL
(2α2 − α) 0 F

−kb kb −F
2�u1 0 2F 2η2�λ

⎤

⎥⎥⎦

−1⎡

⎣
ru 1

ru 2

rλ

⎤

⎦
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corrects the guess. Figure 4.25 illustrates results for different ξ values, and Table 4.8
reports the algorithm that has been used to compute said results.

Fig. 4.25 Force
displacement properties of the
truss problem shown in
Fig. 4.21. The parameter ξ
describes the discretization,
and the example uses
E = 70.0 MPa, A = 1.0 cm2,
and L = 0.5 m
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Table 4.8 Algorithm for the arc-length controlled solution of the problem shown in Fig. 4.21

(1) Set Parameters

ξ = 0.4;E = 70.0 MPa;A = 1.0 cm2;L = 0.5 m

kb = EA/[(1 − ξ)L]; ka0 = EA/(ξL)

(2) Set reference load F = 1.0 · 103 N and scaling factor η = 1.0 · 10−4.

(3) Set step size �h = 0.01 and the number of increments n = 300.

(4) Set initial conditions h0 = 0 and �h = [√�s 0
√
�s]T

(5) Loop over arc-length path increments

Do i = 1, . . . , n

(6) Set trial state

h = h0 +�h
(7) Loop over Newton–Raphson iteration

|r| = 1

Do While |r| ≥ 10−8

α = exp[−h1/(ξL)];�h1 = h1 − h0 1;�h3 = h3 − h0 3

r =

⎡

⎢⎢⎢⎣

ka0α(α − 1)+ h3F

kb(h2 − h1)− h3F

�h2
1 +�h2

3η
2h2

3 −�h2

⎤

⎥⎥⎥⎦ ; K =

⎡

⎢⎢⎢⎣

− ka0
ξL
(2α2 − α) 0 F

−kb kb −F
2�h1 0 2F 2η2�h3

⎤

⎥⎥⎥⎦

h ← h − K−1r
End Do

(8) Update solution

�h = h − h0; h0 = h

End Do
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4.8.6.5 Incompressible Flow Equation
The incompressible flow equation (4.45) and the flow incompressibility Dh = 0
may be solved monolytically, and the entire system of equations

[
M 0
0 0

] [
ḣ
q̇

]
+
[
Ah + K −DT

D 0

] [
h
q

]
=
[
f
0

]
(4.91)

is then solved together towards computing the nodal velocity h and the nodal
pressure q.

The solution of the entire system (4.91) is challenging and time consuming—it
may alternatively be decoupled into weakly interacting sub-systems. One of such
methods is Chorin’s projection method [87]. It assumes that viscous forces and
pressure forces weakly interact, and we may therefore decouple the system (4.91).
The momentum equation (4.45) is split into the two sub-systems

Mḣ + Ah2 + Kh − f = 0 , (4.92)

Mḣ − DTq = 0 (4.93)

and solved together with the incompressibility Dh = 0.
We may now compute the intermediate velocity h� by solving (4.92) and then

update the solution with (4.93) to compute the final velocity h. However, the
pressure momentum (4.93) requires the nodal pressure q, which may be derived
as follows. Given the derivation of the incompressible flow equations in Sect. 4.3.5,
the pressure momentum (4.93) corresponds to the local expression

divp I = −ρ(∂v)/∂t , (4.94)

where p and ρ denote the pressure and density of the fluid, respectively. Let us
imagine the flow is already at its intermediate velocity h�. The discretization of
the pressure momentum (4.94) then reads divp I = −ρ(vn+1 − v�)/�t , where �t
and vn+1 denote the time increment and the velocity at the time tn+1, respectively.
Given the incompressibility divvn+1 = 0, the divergence of this expression yields
the Poisson equation

div(divp)− ρdivv�/�t = 0 . (4.95)

The FEM approximation of Poisson’s equation has been discussed in Sect. 4.8 and
leads to the linear system Dq− fq = 0. Its solution then yields the nodal pressure q.
The time discretization of (4.93), M(h−h�)/�t−DTq may finally be used to update
the nodal velocities h. Table 4.9 summarizes the three steps of Chorin’s projection
method.
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Table 4.9 Chorin’s projection method to solve incompressible flow problems

(1) Compute the intermediate velocity h� from the solution of Mḣ� + Ah� 2 + Kh� − f = 0.

(2) Compute the nodal pressure q from the solution of Dq − fq = 0.

(3) Update the velocity and compute h from the solution of M(h − h�)/�t − DTq.

4.9 Case Study: Planar Biaxial Testing

Planar biaxial testing is a commonly applied experimental protocol in the charac-
terization of the vessel wall [482], see Fig. 4.26a. We consider a flat quadratic patch
of the edge length A = 16.0 mm and the thickness H = 2.3 mm. At in total 20
anchor points the sample is hooked up to stiff wires that connect it to the actuators
of the testing machine. The dimensions a = 9.2 mm and b = A/12 determine the
spacing and positioning of the wires, and the FEM should be used in the exploration
of the stress distribution within the test sample. Section 5.6 and Appendix F provide
additional information about planar biaxial testing of vascular wall tissue.

4.9.1 Mechanical ProblemDescription

Given the symmetry of the problem, we model the quadrant x1 ≥ 0, x2 ≥ 0 and use
the 2D plane stress assumption in the description of the mechanical problem, see
Fig. 4.26b. The displacements u1, u2 are directly prescribed at the anchor points,
whilst u1 = u2 = 0 holds at the symmetry axes, respectively. These settings
determine the problem’s Dirichlet boundary conditions, and the Neumann condition
of zero traction applies to all other boundary conditions. Body forces are neglected
in this analysis.

The vessel wall is described as an incompressible Yeoh material, where �(C) =
c1(I1 − 3) + c2(I1 − 3)2 denotes the strain energy per unit (undeformed) tissue
volume. Here, I1 = trC denotes the first invariant of the right Cauchy–Green strain
C, whilst c1 = 1.1 kPa and c2 = 15.5 kPa are the material parameters characterizing
the vessel wall sample.

The problem has been discretized by a quadratic triangular FEM mesh of
approximately 69k degrees of freedom, and the Lagrange method enforced the
incompressibility. We do not expect any limit points in the force versus displacement
properties of the problem, and therefore a standard displacement-controlled static
analysis is performed until the target displacements u1 = 4.0 mm and u2 = 2.0 mm
will be reached.

4.9.2 Results and Verification

Figure 4.27 shows the computed distribution of the Cauchy stress components σ11
and σ22 superimposed on the deformed configuration � of the wall sample. The
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Fig. 4.26 Planar biaxial tension experiment towards the characterization of the vessel wall. (a) A
rectangular patch of vessel wall is hooked up to stiff wires and then exposed to the displacements
u1 and u2. (b) Mechanical problem description exploiting problem symmetries and using the 2D
plane stress assumption

Fig. 4.27 Cauchy stress
distribution in the vessel wall
at planar biaxial testing. The
deformation corresponds to
u1 = 4.0 mm and
u2 = 2.0 mm, and σ11 (left)
and σ22 (right) are shown. For
illustrative purposes, the
analyzed domain is mirrored
and the stress shown in half
of the test sample C
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prescription of the displacements u1 and u2 directly at the finite element nodes
results in stress concentrations and therefore highly inhomogeneous stress close to
the anchor points. Away from the anchor points the stress state homogenizes and
reaches the Cauchy stress components σ11 = 131.85 kPa and σ22 = 75.36 kPa at
the center of the sample. The stretches λ1 = 1.513 and λ2 = 1.200 then correspond
to this stress state. Given the analyzed quarter of the tissue sample, the prescription
of the displacements at the anchor points results in the total reaction force of
F1 = 1.5249 N and F2 = 1.2011 N along the x1 and x2 directions, respectively.

Towards the verification of these results, we consider an incompressible biaxial
deformation in principal stress directions. Coleman and Noll’s procedure (5.7) then
yields the Cauchy stress

σ1 = α(λ2
1 − λ−2

1 λ−2
2 ) ; σ2 = α(λ2

2 − λ−2
2 λ−2

1 ) , (4.96)

where the first invariant I1 = λ2
1 + λ2

2 + λ−2
1 λ−2

2 and the parameter α = 2c1 +
4c2(I1 − 3) have been used. We may approximate the principal stretches by λ1 =
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1 + 2u1/A = 1.5 and λ2 = 1 + 2u2/A = 1.25, values close to the FE predictions in
the center of the sample. The expression (4.96) then yields σ1 = 138.0 kPa and σ2 =
89.7 kPa, values that again verify the FEM results. The stress is mainly distributed
over the square of tissue that is inside of the anchor points, see Fig. 4.27. The force
in the x1 and x2 directions then reads F1 = P1H(5A/12) = 1.411 N and, F2 =
P2H(5A/12) = 1.1 N, where Pi = σi/λi, i = 1, 2 (no summation), denote the
principal first Piola–Kirchhoff stress.

4.10 Case Study: Inflated Cylindrical Vessel

The stress and deformation of the vessel wall during the inflation experiment
shown in Fig. 4.28a should be investigated. At the unloaded configuration the vessel
segment isL = 8.0 cm long, andRi = 8.0 mm andRo = 11.0 mm are the respective
inner and outer radii. We neglect residual stresses, and this configuration is therefore
also the vessel’s stress-free configuration. The vessel is cannulated, mounted at its
reference length L in the testing device, and then inflated up to the pressure of
pi = 26.0 kPa.

The vessel wall is modeled as an incompressible Yeoh material, where �(C) =
c1(I1 − 3) + c2(I1 − 3)2 denotes the strain energy per unit (undeformed) tissue
volume. Here, I1 = trC denotes the first invariant of the right Cauchy–Green
strain C, whilst c1 = 18.1 kPa and c2 = 138.0 kPa are the material parameters
characterizing the vessel wall sample.

The symmetry of the problem allows us to perform a 2D axisymmetric analysis,
where the domain Ri ≤ r ≤ Ro, 0 ≤ z ≤ L/2 determines the reference
configuration �0, see Fig. 4.28b. The displacements ur = uz = 0 are prescribed
at the level of the cannulation z = L/2, and the symmetry condition uz = 0 at
z = 0 completes the description of the problem’s Dirichlet boundary conditions.
At the endothelium r = Ri the pressure pi acts and “follows” the structure during
deformation, whilst the vessel’s outer surface is traction-free. Neumann boundary

Fig. 4.28 Inflation of a
cylindrical vessel segment.
(a) The sample is cannulated
at it reference length L and
then inflated at the pressure
pi. (b) Axisymmetric
structural analysis model
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conditions are used in the prescription of these conditions. Body forces are neglected
in this analysis.

4.10.1 Results and Verification

Figure 4.29a illustrates the distribution of the von Mises stress in the vessel wall at
pi = 26.0 kPa inflation. It represents the result from a static FEM analysis that used
quadratic triangular finite elements of approximately 2.5k degrees of freedom with
the Lagrange method enforcing the incompressibility.

We may use a membrane model to verify the FE results. As with the previous
example, the vessel wall is at biaxial tension. Given (4.96)1, the circumferential
Cauchy stress in the membrane then reads

σθ = α(λ2
θ − λ−2

θ ) ; α = 2c1 + 4c2(λ
2
θ + λ−2

θ − 2) , (4.97)

where edge effects of the inflation experiment have been neglected, and λz = 1
specifies the axial stretch. Given the equilibrium in the circumferential direction
pi(d − h) = 2σθh and the stress expression (4.97), the inflation pressure reads

pi = 2α(1 − λ−4
θ )H/(Dm −H/λ2

θ ) ,

whereDm = Ri +Ro denotes the diameter of the membrane model. In addition, the
relations h = H/λθ and dm = Dmλθ have been used to express the wall thickness
and the diameter of the deformed vessel. Given the circumferential stretch λθ , the
inflation pressure pi may be plotted over the vessel’s outer diameter do = dm+h, see
Fig. 4.29(b). The plot compares the membrane-based solution to the FEM-predicted
outer vessel diameter at z = 0. The non-linearity of the Yeoh material leads to a
high stress gradient across the wall thickness, a bending effect that is not considered

Fig. 4.29 (a) von Mises stress in the vessel wall at 26.0 kPa inflation. For a better visualization,
the 2D axisymmetric solution has been rotated around the vessel axis. (b) Development of the outer
diameter in the center of the vessel at increasing inflation pressure
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by the membrane model, and then explains the significantly stiffer response of the
FEM solution.

4.11 Case Study: Bulge Inflation

A bulge inflation experiment may be used to explore the elastic and failure
properties of the vessel wall [476]. Given the present application, we consider a
flat circular patch of the diameter D = 4.0 cm and the thickness H = 1.5 mm that
is clamped along the circumference and inflated by the pressure pi, see Fig. 4.30a.
A FEM model should be used to compute the stress in the sample during the bulge
inflation experiment.

4.11.1 Mechanical ProblemDescription

Body forces are neglected, and the vessel wall is described by an incompressible
neoHookean material, where �(C) = G(I1 − 3)/2 represents the strain energy per
unit (undeformed) tissue volume. Here, I1 = trC denotes the first invariant of the
right Cauchy–Green strain C, and the referential shear modulus G = 422.5 kPa
characterizes the vessel wall specimen.

Given the isotropic description of the vessel wall, the bulge inflation is rotational
symmetric. The domain 0 ≤ r ≤ D/2 and 0 ≤ z ≤ H then defines the
reference configuration �0 of the 2D axisymmetric structural analysis problem, see
Fig. 4.30b. Other than the pressure pi that acts at z = 0, the boundary is traction-
free, conditions that determine the problem’s Neumann boundary conditions. The
pressure pi “follows” the surface and results in a non-symmetric stiffness of our
problem, see Sect. 4.4.4.1.

The symmetry condition ur = 0 at r = 0 specifies the problem’s Dirichlet
boundary conditions. We could also prescribe ur = uz = 0 at r = D/2,
another Dirichlet boundary condition. However, this leads to severe mesh distortion
and local buckling at large deformations, which eventually terminates the FEM
computations, see Fig. 4.30c. At r = D/2, we instead prescribe a linear-elastic

Fig. 4.30 Bulge inflation
experiment. (a) A circular
patch of vessel wall is
clamped and then exposed to
the pressure pi. (b)
Axisymmetric structural
analysis model. (c) Severe
mesh distortion with the
description of a Dirichlet
boundary condition at
r = D/2
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boundary condition with the spring stiffness kbc = 1.0 GPa m−1. Alternative
boundary conditions, including contact modeling that more accurately reflects the
clamping of the tissue sample, would also be possible, but not further considered in
the present case study.

4.11.2 Analytical Problem Assessment

We explore basic characteristics of the bulge inflation problem with a coarse
analytical approximation prior to the FEM computation. The test specimen may
then be approximated by a membrane that deforms into sphere, see Fig. 4.31a. The
sphere has the radius R = D2/(8t) + t/2, where t denotes the deflection in the
center. The model assumes the stretch λ = 2Rβ/D to be homogenously distributed
all over the specimen, where the angle β = arcsin[D/(2R)] is shown in Fig. 4.31a.
The kinematics result in an equi-biaxial deformation λ = λθ = λr with the Cauchy
stress

σ = G(λ2 − λ−4)

in the membrane. This expression follows from (4.96) and the incompressibility
λθλrλz = 1, where θ, r and z denote the principal stress–stretch directions, the
circumferential, radial, and axial directions, respectively.

The static equilibrium Dπhσ sinβ = piD
2π/4 relates the stress σ in the

membrane to the inflation pressure p, where h = H/λ2 denotes the thickness of
the deformed membrane. We may use the substitution sinβ = D/(2R), and the
pressure then reads

pi = 2Hσ

Rλ2 ,

where σ , λ, and R are explicit functions of the deflection t . The pressure pi may
therefore be plotted over t , a graph shown by the dashed curve in Fig. 4.31b. We
notice a limit point of the pressure-deflection properties, beyond which pi decreases
with increasing deflection t .

The above-outlined analytical assessment represents a very coarse structural
description of the problem. Most important, the applied kinematics are incompatible
with the boundary conditions of the problem—close to the clamping an equi-
biaxial deformation cannot develop. The stress in the sample can therefore not be
homogeneous, as it is illustrated by the FEM-based result in Fig. 4.32.

4.11.3 Solution Strategy and Results

As with the aforementioned analytical assessment, we also expect a limit point
to appear in the FEM analysis of the problem—a standard static analysis cannot
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Fig. 4.31 Simplified solution of the bulge inflation experiment. (a) Spherical deformation-based
kinematics. (b) Pressure pi as a function of the deflection t with limit points

Fig. 4.32 FEM-based
simulation of the bulge
inflation experiment. The
inflation corresponds to the
deflection of uz 0 = 22.5 mm
in the center of the test
specimen, and the von Mises
stress is plotted onto the
deformed configuration.
Towards a better
visualization, the computed
2D axisymmetric solution has
been rotated around the
vertical axis
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be used to solve the bulge inflation problem. We therefore express the inflation
pressure by pi = λp0, where λ and p0 denote a load factor and a reference pressure,
respectively. The global residuum equation

rλ = uz 0 − uz 0(λ) = 0

is then added to the system of equations and couples the load factor λ, an additional
degree of freedom, to the other degrees of freedom of our model. Here, uz 0 denotes
the axial deflection in the center, and thus at the finite element node located at
r = z = 0, whilst uz 0 is the prescribed deflection of this node. The outlined
approach is equivalent to a pseudo-displacement-controlled arc-length method and
supports computations beyond the limit point, and thus of an instable equilibrium.
However, it avoids the access to the increments of solution variables as they have
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been used in Sect. 4.8.6.4. The problem has been discretized by 506 quadratic
triangular finite elements and the Lagrange method enforced the incompressibility.
Figure 4.32 illustrates the deformation of the test specimen and the corresponding
von Mises stress.

4.12 Case Study: Flow Through a Network of Conduit Arteries

The FEM should be used to compute mean arterial flow in the major conduit
arteries below the diaphragm. A network of rigid cylindrical tubes with circular
cross-sections may be used in the description of the vascular tree, see Fig. 4.33.
A Newtonian fluid with the dynamic viscosity of η = 3.5 mPa s describes the
rheological properties of blood, and we consider Stokes flow to describe the blood
flow. Hagen–Poiseuille’s law (2.31) then determines the resistance of a vessel
segment. The aortic flow qinl = 30 ml s−1 is prescribed at the level of the diaphragm,
and the pressure of pout = 13.0 kPa is set at all outlets. Vasoreactivity of the
downstream tissue strongly influences the outlet pressures at the individual vessels,
factors not considered in the present analysis. Gravitational effects are also not
considered, and we assume ideal flow in all bifurcations—no pressure drops to
appear across the connection points.

A static analysis is performed and the system of equations with 468 degrees of
freedom is solved. Figure 4.34 illustrates the distribution of the pressure, flow rate,
and the velocity over the arterial tree, respectively.

Fig. 4.33 Geometry and
vessel dimensions to model
the blood flow through a
network of cylindrical tubes Celiac
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Fig. 4.34 Flow through a network of conduit arteries. The inflow of the abdominal aorta as well
as the pressures at the individual vessel outlets is prescribed. (a) Pressure. (b) Flow rate. (c) Flow
velocity

4.13 Case Study: Flow Through the Cylindrical Tube

The FEM should be used to explore fluid flow through a straight cylindrical tube, a
widely used model to study blood flow in the vasculature. Blood may be described
by a Newtonian fluid with the dynamic viscosity of η = 3.5 mPa s and the density
ρ = 1060 kg m−3. The vessel segment of the length l = 30.0 cm and the diameter
d = 2.4 cm aims at modeling the human aorta. The blood flow in the aorta is
complex, and steady-state as well as steady-pulsatile conditions should be explored.
Regardless of the problem being rotational symmetric, a full 3D analysis should be
performed—it would support the development of any instabilities of the numerically
predicted solution.

4.13.1 Steady-State Analysis

In addition to the no-slip boundary condition at the wall, we prescribe the inlet
velocity vinl = 40.0 cm s−1 homogenously over the inlet cross-section, see Fig. 4.35.
These conditions determine the problem’s Dirichlet boundary, whilst the prescrip-
tion of the outlet pressure pout = 13.3 kPa specifies the Neumann boundary. Given
an incompressible fluid and a rigid vessel wall, the actual value of the outlet pressure
does not influence the predicted blood flow. We also notice that the prescription of
the inflow velocity of an incompressible fluid in the confined domain results in a
highly constraint problem.

Figure 4.37a shows the development of the velocity profile of the steady-state
tube flow. The result has been achieved with a tetrahedral finite element mesh of
approximately 250k degrees of freedom. The mesh has been refined close to the wall
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No-slip

Fig. 4.35 Flow of an incompressible Newtonian fluid through the circular tube. The description
of the inflow velocity vinl together with the no-slip condition at the wall defines the problem’s
Dirichlet boundary, whilst the outlet pressure pout specifies the problem’s Neumann boundary

Fig. 4.36 Numerically predicted velocity profiles of Newtonian fluid flow in the circular tube. (a)
Steady-state flow in comparison to the fully developed, and thus Poiseuille flow. (b) Pulsatile flow
at a number of time points. Blue and red velocity profiles correspond to forward and backward
flows, respectively

towards a better approximation of the strain rate gradient in the boundary layer. The
tube is much shorter than the hydrodynamic entrance length of lh = 0.05Re d =
345.6 cm that is needed to establish a Poiseuille flow, where Re = vdρ/η = 2880
denotes the Reynolds number. Even at the end of the tube, the Poiseuille flow
profile (6.34)

v = 8q

d2π

[
1 −

(
2r

d

)]
(4.98)

has therefore not yet been established, where q = vinld
2π/4 = 181.0 ml s−1

denotes the flow rate through the vessel, see Fig. 4.36a.

4.13.2 Steady-Pulsatile Analysis

The inlet velocity vinl = v0 sin(2πt) with v0 = 40.0 cm s−1 and the no-slip
condition at the wall describes the problem’s Dirichlet boundary, whilst the outlet
pressure pout = 0 sets the Neumann boundary. A transient analysis with the
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Fig. 4.37 Development of the velocity profile in the cylindrical tube. The inlet velocity is
prescribed homogenously over the inlet cross-section and the flow develops against the constant
outlet pressure. (a) Steady-state flow. (b) Pulsatile flow at peak inflow
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0.0 10.667 0.255 16.333

0.005 10.733 0.28 16.000

0.015 11.333 0.32 14.667

0.025 12.000 0.375 14.400

0.05 13.333 0.4 14.000

0.07 14.000 0.425 13.333

0.1 14.667 0.59 12.000

0.19 16.133 0.7 11.400

0.21 16.333 0.8 10.933

0.23 16.400 0.9 10.667

Fig. 4.38 Pressure waveform over the cardiac cycle time T = 0.9 s that represents normal
ventricular function [119]

aforementioned tetrahedral finite element mesh has been used to compute the flow
over the time period 0.0 ≤ t ≤ 3.0 s and thus over three cycles.

Figure 4.37b shows the development of the velocity profile at the time t = 2.25 s,
conditions of peak inflow of the third cycle. The computed velocity profiles at a
number of time points and 18.0 cm downstream the inlet are shown in Fig. 4.36b.
Given the inertia effects the velocity is very different from the steady-state flow.
The flow changes its direction, and flow reversal starts at the layer close to the wall.

4.13.3 Transient Analysis withWindKessel Outlet Boundary
Condition

We describe the pressure pinl at the inlet by the profile shown in Fig. 4.38, whilst a
three-element WindKessel (WK) model describes the systemic circuit at the outlet
of the flow domain, see Sect. 2.3.1.5 and Fig. 4.39a. The differential equation (4.99)

C
dpout (t)

dt
= R1 + R2

R2
q(t)− pout (t)

R2
+ R1

dq(t)

dt
, (4.99)
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Fig. 4.39 (a) Pressure wave at the inlet and WindKessel (WK) at the outlet describe Neumann
boundary conditions. (b) Development of the outlet pressure and system flow over a number of
cardiac cycles. (c) Axial velocity at selective cross-sections and time points in the cardiac cycle

together with the initial condition pout(0) = 0, then describes the relation between
the time-dependent outlet pressure pout(t) and the system flow q(t). Here, R1 =
0.1 mmHg s ml−1, R2 = 1.8 mmHg s ml−1, and C = 0.9 ml mmHg−1 are the
resistances and the capacitance of the systemic circuit, respectively. Given this
set-up, a transient analysis computes the flow over a number of cardiac cycles.
Figure 4.39b illustrates the development of the outlet pressure and system flow—
already at the second cardiac cycle the system reached its steady-pulsatile response.
In addition, Fig. 4.39c shows the axial velocity at selective cross-sections and time
points in the cardiac cycle.

4.14 Summary and Conclusion

Over the past half century, computer simulation has become the third pillar of
science alongside theory and experiment. The FEM has emerged as one of the
greatest successes and has revolutionized engineering design and analysis. This
chapter has been designed to equip the reader with knowledge for the targeted
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application of the FEM in the solution of vascular biomechanics problems. Whilst
modern software eases the use of the FEM, the understanding of the algorithm
running in the background is mandatory for efficient problem solving. This is
especially true for the many non-linear problems in vascular biomechanics. A
deeper understanding directly results in a higher success rate and less frustration
in the application of the FEM. One is also advised to always start with a very
simple model (linear, low dimensionality, robust boundary conditions, etc.) and then
successively refine it until the required model fidelity has been reached.

The spatial discretization and the interpolation of problem variables, together
with the weak form of the governing BVP, are the very foundation of the FEM.
Whilst the local BVP of many bioengineering problems is readily available, the
Calculus of Variations allowed us to derive its weak form. This procedure has been
demonstrated for several classes of engineering problems. Many vascular biome-
chanics applications are characterized by constraints, and the essential variables
can then not freely develop. Constraints can either be directly introduced at the
finite element level or solved in addition to the set of governing equations—both
approaches have been discussed.

The FEM-discretized problem results in a system of equations to be solved for
the essential nodal variables. The nature of the engineering problem and the type
of the investigation determine this system and different solution strategies have
been reviewed. Given the non-linear character of most biomechanical problems, the
numerical stability of the solution is important for an efficient numerical analysis.
We exemplified the stabilization of the AD problem and discussed a number of
approaches, methods that have also been successfully applied to other problems,
such as the description of the incompressible flow.

A number of case studies concluded the chapter and demonstrated the application
of the FEM in vascular biomechanics—more such problems will be provided in the
forthcoming chapters.
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This chapter concerns the analysis of conduit vessels, and given their clinical
relevance in vascular disease, it mainly relates to arteries. We begin with the
histology of the vessel wall, with specific emphasis placed on collagen and elastin,
the main structural proteins in the ExtraCellular Matrix (ECM). Following the
general description of vessel wall properties, vessels, such as the aorta, carotid,
coronary, iliac and femoral are addressed in greater detail. Atherosclerosis and
aneurysm disease, two common vascular diseases are then discussed, where the
influence of biomechanical factors in the disease progression is specially analyzed.
A key section of this chapter concerns the constitutive description of the vessel
wall, where phenomenological and histomechanical approaches are addressed. The
inflated tube, a common loading example, is used to test the structural implications
of the different constitutive models. In addition to elastic and viscoelastic descrip-
tions, we also analyze damage and failure models in the description of the vessel
wall. Experimental data from planar biaxial tissue characterization is then used to
estimate material parameters for a number of constitutive descriptions. A case study
uses the Finite Element Method (FEM) to predict the stress in the aneurysmatic
aorta, and concluding remarks summarize the chapter.

5.1 Introduction

The (visco)-elastic properties of the conduit vessels play a critical role in the
proper functioning of the cardiovascular system [394]. Large arteries determine
the compliance of the vascular system, and the relation between arterial stiffness
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and cardiovascular morbidity and mortality is well documented [332]. In addition,
large veins serve as compartments for blood and thus influence the long-term
blood pressure. The mechanical properties of the veins are therefore linked to
hypertension, a factor known to cause a number of cardiovascular diseases.

Aside from the aforementioned circulatory implications, arteries themselves are
particularly prone to mechanics-triggered injuries, and histopathological changes
of the artery wall show striking spatial correlation with biomechanical stress. The
literature reports a number of such observations. The dilation of the ascending
aorta occurs preferentially at its outer curvature [218] and thus at the site of
the maximum axial stress. The alteration of blood flow, and thus of Wall Shear
Stress (WSS), from above-knee amputations causes a five-fold higher prevalence
for Abdominal Aortic Aneurysm (AAA) development [579]. Regions of the vessel
wall exposed to complex blood flow are more likely to develop atherosclerotic
lesions [176, 315, 612]. Many more studies may be listed, and there has therefore
been an enormous motivation to assess the mechanical properties of vessels so as
to understand cardiovascular physiology, and the role of tissue stress and strain
in pathology. Besides being of a purely scientific interest, such information would
improve clinical therapeutics and diagnostics, and may help to optimize the design
of vascular devices, amongst many other applications.

A blood vessel should always be seen as a dynamic biological system. In addition
to the passive deformation in response to external forces, the vessel also adapts
through the action of contractile cells in the wall, as well as the continuous turnover
of the wall’s internal tissue structure. These mechanisms allow the vessels to change
their mass and mechanical properties in time and in response to environmental
cues. Whilst the present chapter discusses the passive mechanical properties of the
vessel wall, Chap. 7 concerns mechanisms of chemo-mechanotransduction in the
description of vessel wall adaptation mechanisms.

5.2 Histology andMorphology of the Vessel Wall

ECM components, such as elastin, collagen, ProteoGlycans (PGs), GlycosAmino-
Glycan (GAG), fibronectin, and fibrillin ensure the vessel wall’s structural integrity,
whilst vascular cells, such as Endothelial Cells (EC), Smooth Muscle Cells (SMC),
FibroBlasts (FB), and myofibroblasts maintain its metabolism. ECM components
in the vessel wall are continuously produced and degraded—in the normal vessel
these processes are at homeostatic equilibrium. Whilst the cells produce ECM
components, it is primarily Matrix MetalloProteinases (MMPs) that degrades
them [365].

The production and degradation of tissue constituents determine the continuous
turnover of vascular tissue, a mechanism that allows the wall to grow and remodel.
The vessel’s geometrical, histological, and mechanical properties change along
the vascular tree towards the maintenance of conditions for optimal mechanical
operation [445]. The properties of the vessel wall alter also in response to many
other factors, such as age, disease, and lifestyle.
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5.2.1 Layered Vessel Wall Organization

The vessel wall is formed by intima, media, and adventitia, layers that are separated
by the Internal Elastica Lamina (IEL) and the External Elastic Lamina (EEL), see
Fig. 5.1.

Situated inner to the IEL, the intima is the innermost layer, see Fig. 5.1a. It
is composed of the endothelium, a single layer of ECs that rests on a thin basal
membrane and a subendothelial layer of ECM. Collagen type IV, laminin, and
PG [611] form the basal membrane and provide physical support for ECs. It
mechanically decouples shear deformation from other deformations of the vessel
wall and allows the EC to sense and respond to Wall Shear Stress (WSS). Whilst
WSS sensing plays an important role in vessel biomechanics, the structural–
mechanical impact of the intima is often negligible in non-diseased conduit vessels.
The endothelium also provides an anti-thrombogenic and low-resistance lining
between blood and vessel tissue and has important barrier function.

Situated between the IEL and the EEL, the media is the middle layer of the vessel
wall, see Fig. 5.1a. It consists of a complex 3D network of SMCs, elastin, collagen
fibers, and fibrils, as well as other connective tissue. These structural components
are predominantly aligned along the circumferential vessel direction [195, 400] and
organized in repeating Medial Lamellar Units (MLUs) of 13 to 15μm thickness [91,
126,400], see Fig. 5.1b. The thickness of MLUs is independent of the radial location
in the wall and the number of MLUs increases with increasing vessel diameter—in
the human aorta up to 60 MLUs may be found. The tension that is carried by a
single MLU in the normal wall remains constant at about 1.6 to 2.4 N m−1 [91].
The media’s layered structure is gradually lost towards the periphery, and a discrete
laminated architecture is hardly present in muscular arteries or smaller veins. The
high SMC content equips the media with excellent vasoactivity. This property is
especially important in smaller vessels to regulate bloodstreams, see Chap. 2.

Situated outside of the EEL, the adventitia is the outermost vessel wall layer,
see Fig. 5.1a. It consists mainly of FBs embedded in an ECM of thick bundles of
collagen, PGs, GAGs, and some other connective tissue, such as a few number
of elastin fibers. The FBs continuously synthesize ECM compounds, mainly to
maintain the high amount of collagen in the layer. The adventitia shields the
vital medial and intimal layers from overstretching and anchors the vessel to its
surrounding. It is perforated by nerves connecting the SMCs in the medial layer, and
hosts the vasa vasorum, tiny blood vessels that perfuse not only the adventitia itself,
but also the outer media. In contrary, the intima and the inner media are perfused by
the radial convection of fluid that establishes through the pressure gradient between
the circulation and the much lower interstitial pressure in the adventitia.

The thickness of the individual vessel wall layers depends on the blood vessel’s
physiological function and changes with age and diseases, such as atherosclerosis
and aneurysm formation.
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Fig. 5.1 Histological idealization of the normal aorta. (a) The vessel wall is composed of three
layers: Intima (I), Media (M), and Adventitia (A). The intima is the innermost layer consisting of
a single layer of endothelial cells, a thin basal membrane, and a subendothelial layer. (b) Smooth
Muscle Cells (SMCs), elastin, and collagen are key mechanical constituents in the media, and are
arranged in Medial Lamellar Units (MLUs) with the thickness of 13 to 15μm. In the adventitia, the
primary constituents are collagen fibers and FibroBlasts (FB). (c) Collagen fibers with a thickness
in the range of micrometers are assembled by 50 to 300 nm thick collagen fibrils. Load transition
between collagen fibrils is (likely) maintained by Proteoglycan (PG) bridges. (d) Elastin fibers
with a thickness of hundreds of nanometers are formed by an amorphous core of highly cross-
linked elastin protein that is encapsulated by 5 nm thick microfibrils. Elastin fibers present as thin
concentric elastic sheets, rope-like interlamellar elastin fibers, and thick radial struts

5.2.2 Differences Between Arteries and Veins

Despite the structures of arteries and veins are very similar, some key differences
may be noticed. Whilst the arterial wall is thicker to cope with the higher blood
pressure in the arterial system, arteries also contain more elastin than veins to
support recoil in response to the high-pressure pulsatility. Given the very low-
pressure gradient along the venous path, some veins are equipped with passive
valves to establish unidirectional blood flow. No such valves are needed in the
arterial system.
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5.2.3 Extra Cellular Matrix (ECM)

The ECM is a highly organized network of proteins that contain, amongst many
others, collagen, elastin, and a loose network of PGs. See the schematic repre-
sentation of the aorta in Fig. 5.1. The 3D organization of ECM components is
vital to the vessel’s proper physiological functioning—the ECM rather than being
merely a system of scaffolding for the surrounding cells is a mechanical structure
that controls the micro-mechanical and macro-mechanical environments of vascular
tissue. It quantifies the amount of stress and strain that is transmitted to the
individual cells, known to influence their metabolism [70] and factors, such as cell
adhesion, proliferation, migration, differentiation, and gene expression.

5.2.3.1 Collagen Structure
Collagen of the types I, III, IV, V, and VI are found in the vessel walls. The fibrilar
collagen types I and III make-up most of the collagen, out of which type I accounts
for 50 to 70%. Type IV is mainly seen in the basal membrane and around SMCs.
Veins tend to have in general a higher collagen content than arteries.

Collagen is at a continuous state of deposition and degradation at a normal
half-life time of 60 to 70 days [395]. The continuous maintenance of the collagen
structure relies on a delicate (coupled) balance between production and degradation.
Whilst cells, such as SMCs, FBs, and myofibroblasts [394] synthesize collagen, it is
mainly MMPs, collectively called collagenases, that degrade it. Collagen synthesis
lasts throughout the lifespan, and given a normal vessel, it leads to collagen of stable
quality.

Collagen contributes stiffness, strength, and toughness to the vascular wall.
Earlier observations indicated that the collagen-rich abdominal aorta is stiffer than
the collagen-poor thoracic aorta [37, 323], and the regional variation of aortic
properties has then later been specifically documented [514]. Apart from the amount
of collagen in the wall, its spatial orientation [175], as well as the spread in
orientations [202], strongly influences its macroscopic mechanical properties. At
Mean Arterial Pressure (MAP), only approximately 6 to 7% of collagen fibers are
mechanically engaged [14, 226].

Collagen fibrils range from fifty to a few hundreds of nanometers in diameter,
and they may be seen as the basic building block of many collagenous tissues [175].
However, it is their organization into suprafibrillar structures that dominates
the vessel wall’s macroscopic mechanical properties. Within the MLU, and thus
between the elastic lamellae of the media, collagen fibrils or bundles of fibrils
(10 to 40 fibrils per bundle) run in parallel closely enveloping the SMCs [400].
The collagen fibers are not woven together but aligned in parallel, very much like in
tendon or ligament, a structure designed to cope with high mechanical load [400],
see Fig. 5.1b.

The collagen fibrils that build a collagen fiber are cross-linked towards the
formation of a structure that is suitable to carry mechanical load. PG bridges [499,
500] could potentially support such interfibrillar cross-linking, see Fig. 5.1c. A



238 5 Conduit Vessels

PG unit consists of a “core protein” with one or more covalently attached GAG
chain. Small PGs, such as decorin, bind non-covalently but specifically to collagen
fibrils and cross-link adjacent collagen fibrils at about 60 nm intervals [499].
Reversible deformability of the PG bridges is crucial to serve as shape-maintaining
modules [499] and, fast and slow deformation mechanisms have been identified.
The fast (elastic) deformation is supported by the sudden extension of about 10%
of the L-iduronate (an elastic sugar) at a critical load of about 200 pN [246]. The
slow (viscous) deformation is based on a sliding filament mechanism of the twofold
helix of the glycan [499]. It could also explain the large portion of macroscopic
viscoelasticity that characterizes collagen. PG-based cross-linking is supported by
a number of experimental studies that highlight the role played by PG in inter-
fibril load transmission [342,470,492,499], a mechanism that also has been verified
through theoretical investigations [157, 456, 576]. However, the biomechanical role
of PGs is still somewhat uncertain, and some data indicates minimal, if any, PG
contribution to the tensile properties of the tissue [157, 462, 463].

5.2.3.2 Elastin Structure
Elastin functions in partnership with collagen. It mainly determines the mechanical
properties of the vessel wall at low strain levels [468] and is important to recoil
arteries during each pulse cycle. Whilst elastin in the adventitia plays a negligible
role, it is a main structural component of the media. Elastin presents as 1.0 to 2.0μm
thick concentric sheets (71%), 100 to 500 nm thick rope-like interlamellar elastin
fibers (27%), and approximately 1.5μm thick radial struts (2%) [39, 126, 400], see
Fig. 5.1b. The elastin sheets encapsulate the MLUs, and they are perforated and
gusseted by elastin fibers, see Fig. 5.1d. In muscular arteries, the layered structure
of the vessel wall is lost and most elastin appears in the EEL, a layer that is then
thicker and formed by elastic fibers predominantly aligned along the vessel’s axial
direction. They are important to maintain the axial prestress of the vessel to avoid
bucking of the vessels during, for example, limb motion [292].

Microscopy studies indicate that elastin is made-up of repeating self-similar
structures at many length-scales [538]. An amorphous core of highly cross-linked
elastin protein accounts for 90% of the mass, whilst 10% relate to a fibrillar
mantle of about 5 nm thick microfibrils [92, 442], see Fig. 5.1d. A number of
elastin molecules are cross-linked and connected to each other as well as to other
molecules, such as microfibrils, fibulins, and collagen.

It is the shift from the low-pressurized to the high-pressurized circulation around
the birth that triggers the production of elastin in central arteries [149]. Elastin is
synthesized and secreted by vascular SMCs and FBs, a process that normally stops
soon after puberty once the body reaches maturity. Although the dense lysyl cross-
linking makes elastin fibrils extremely insoluble and stable that then explains the
half-life times of tens of years [7], elastin may be degraded by selective MMPs,
collectively called elastases. Elastases cause disruption of elastin fiber integrity and
diminish mechanical tissue properties.

Elastin is a critical autocrine factor that maintains vascular homeostasis through
a combination of biomechanical support and biologic signaling [11, 310]. Whilst
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elastin degradation has been related to diseases, such as atherosclerosis, Marfan
syndrome, Cutis laxa, it is also important for physiological processes, such as
growth, wound healing, pregnancy, and tissue remodeling [595]. The proteolytic
degradation of elastin may therefore have also important consequences in normal
elastogenesis and repair processes [585]. The repair of protease-damaged elastin
does not appear to produce elastin of the same quality than originally laid down
during primary vascular growth [518]. In addition, elastic fibers that are damaged or
degraded with aging or disease, are often not repaired but replaced by collagen and
PG that then stiffens the vessel wall [94].

Elastin and rubber share a number of mechanical similarities, such as high
deformability, entropic-elasticity, and both materials go through a glassy transition.
In contrary to rubber, elastin’s hydrophobic interactions are a determining factor in
its elasticity, and it is only elastic when swollen in water [585].

5.2.4 Cells

Vascular cells sense and respond to mechanical loads, a mechanism that allows
the vessel to undergo many changes during normal development, ageing, and in
response to diseases or implanted medical devices. The cells work in partnership
with the ECM, and it is this orchestrated response that then leads to a vessel of
optimal physiological function. In addition, cells produce a number of immune
and inflammatory mediators that stimulate the migration of immune cells and
inflammatory cells from the bloodstream into the vessel wall.

A single layer of ECs forms the endothelium, a non-thrombotic surface between
blood and tissue. ECs have a half-life time of 1 to 3 years. They are constantly
exposed to WSS, in response to which they secret vasoactive agents that are then
transported into the wall and control the tonus of adjacent contractile SMCs.

SMCs are aligned with the circumferential direction and at a radial tilt of
approximately 20 degrees [180, 400]. Aside from their physiological functions,
abnormal SMC function is also involved in a number of vascular diseases, such as
atherosclerosis, restenosis, hypertension, and the formation of aneurysms. SMCs are
able to switch between phenotypes in response to environmental cues—pulsatility
and pressure appear to determine the SMC phenotype in the arteries [52].

At the contractile phenotype, SMCs are quiescent and do not proliferate. The
cells contract in response to electrical, chemical, or mechanical stimuli, factors that
provide control over the vessel’s diameter [375]. It is a key property for resistance
vessels towards the diversion of bloodstreams. Whilst a conduit vessel is too large
to divert bloodstreams, SMC contraction influences the vessel stiffness, and thus the
pulse wave velocity.

SMCs at their synthetic or dedifferentiated phenotype can migrate, proliferate,
and react with a number of proinflammatory and secretary responses to respond
to injuries and diseases. As with FBs, SMC produce also ECM proteins and
simultaneously secrete MMPs, both of which controls the remodeling of the vessel
wall tissue.
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5.3 Mechanical Properties and Experimental Observations

The biomechanical properties of the vessel wall have been investigated by a large
number of experimental studies, and data of many vessels are available in the
literature [2]. In vitro tensile testing displays pronounced stress softening during
the first few loading cycles, until the tissue is preconditioned and a stable cyclic
response is observed, see Fig. 5.2. Even after preconditioning, the vessel wall shows
strain-rate dependency, and exhibits phenomena, such as creep, relaxation, and
dissipation at cyclic loading, see Fig. 5.3a. The dissipation at cyclic loading over
a frequency that ranges over five orders of magnitude does not change by a factor
of more than two [540]. This observation led to the pseudo-elastic description of
the vessel wall. The loading and unloading paths are rate-independent, but different,
and the tissue then yields frequency-independent dissipation at cyclic loading.

The normal artery is highly deformable, and as with most soft biological tissues,
exhibits a non-linear stress versus strain response [478]. The wall progressively
stiffens at levels around the vessel’s physiological in vivo strain, see Fig. 5.3b.
The characterization of vascular tissue after the selective digestion of elastin or
collagen [129, 231, 358, 468] helped to understand this phenomenon. The data
suggested that the vessel wall stiffens in response to the gradual recruitment of
the embedded wavy collagen fibers [468, 490, 599], a mechanism that explains
not only the non-linear elasticity of the vessel wall, but also the vessel wall’s
anisotropy [421, 568], see Fig. 5.3b, c. The vessel wall appears often stiffest along
the circumferential direction and thus along the direction most collagen fibers are
aligned [195, 400]. Tissue stiffness may be seen as the mechanical manifestation of
the vessel wall’s histological composition, and the collagen-rich muscular arteries
are regularly stiffer than the elastic arteries. The stiffness of the vessel wall
depends on the deformation and changes during normal development, ageing, and
in response to disease and many other factors.

The artery wall may be regarded as a mixture of solid components, such as
elastin, collagen, and SMCs, that are immersed in water. Much of this water
is not particularly mobile, but bound to the hydrophile PG, GAG, and elastin.
The large amount of bounded water then explains that in vivo the volumetric

Fig. 5.2 Preconditioning of
a vessel wall sample taken
from the porcine descending
thoracic aorta. The data has
been recorded during the first
three loading cycles of planar
equi-biaxial testing. The plot
shows the circumferential
First Piola–Kirchhoff stress
versus the circumferential
stretch
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Fig. 5.3 Mechanical properties of the vessel wall with stress and strain magnitudes characteristic
for a normal artery. (a) Stress-stretch properties of the vessel wall at cyclic loading. The area
enclosed by the loading and unloading curves represents the specific energy that is dissipated
during a single loading cycle. (b) Non-linear stress-stretch properties (solid line) of the vessel
wall at simple tension. The dashed lines denote the individual contributions from collagen and
elastin, respectively. At the in vivo deformation, the transition from the soft elastin-dominated to
the stiff collagen-dominated properties appears. (c) Anisotropy of the vessel wall. The properties
along the circumferential vessel direction are stiffer than along the axial direction. (d) Residual
stress of the load-free vessel wall leads to approximately homogenous stress across the wall of the
vessel that is inflated at Mean Arterial Pressure (MAP). (e, f) The axial pre-stretch λz influences
the pressure-diameter properties and the axial force of a vessel segment. Given inflation at the in
vivo axial pre-stretch λ�z , the axial force is independent from the inflation pressure
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Fig. 5.4 Stress-stretch
properties of the vessel
wall exposed to
supra-physiological loading.
Compared to the
physiological loading cycle
(a), the vessel wall shows
remaining deformations and
softening after the exposure
to supra-physiological
loadings (b)
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strain is three orders of magnitude lower than the circumferential strain [69]. For
many mechanical problems the vessel wall may therefore been regarded as an
incompressible homogenized mixture of solid constituents immersed in water. The
affinity of water to PG, GAG, and elastin results in the development of water
pressure within the tissue that is inhomogeneously distributed across the vessel
wall [471].

The continuous turnover of tissue constituents tends to homogenize the stress
across the vessel wall. The excision (and deflation) of a vessel segment from its
in vivo configuration introduces therefore residual stresses in the vessel’s load-
free configuration. Residual stresses in arteries have been known for at least half
a century [37], and their biomechanical consequences are well discussed in the
literature [88, 183, 444, 558]. It is reported that both, circumferential [88, 558] and
longitudinal [584] strips change their curvature when excised from the load-free
artery. Residual stresses in the vascular wall are therefore multi-dimensional and
disregarding residual stresses can be a severe limitation [114, 302, 349]. Given
(passive) biomechanical simulations, the neglection of residual stresses then often
leads to considerable stress gradients across the wall at the vessel’s in vivo loading,
see Fig. 5.3d. This is not physiological and in contradiction to the uniform stress
hypothesis [183].

Within the body, the vessel wall is under a multi-axial stress state with σr, σθ ,
and σz denoting the principal Cauchy stresses in radial, circumferential, and axial
directions, respectively. The radial stress is approximately one order of magnitude
lower than the others, and plane stress is a commonly-used approximation of
the loading of the vessel wall. Whilst the in vivo circumferential stress σθ is
directly related to the blood pressure, the axial stress σz is also influenced by
the vessel’s axial pre-stretch. Experiments that pressurized arteries at their in vivo
length indicated that the axial force within the vessel did not depend on the inflation
pressure [593], see Fig. 5.3e, f. This observation suggests that arteries in the body
pulsate in diameter, but not along their axial direction. The ascending thoracic aorta
is an exception and shows in addition to circumferential also axial pulsation [155].

The exposure of vascular tissue to supra-physiological mechanical stress leads to
(irreversible) rearrangements of the tissue’s microstructure. Given vascular tissue,
damage-related effects [142,410] and plasticity-related effects [410,489] have been
documented, observations that somewhat remind on preconditioning, see Fig. 5.4.



5.3 Mechanical Properties and Experimental Observations 243

Fig. 5.5 Some major arteries
of the systemic circulation
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5.3.1 Aorta

The aorta is the first arterial segment of the systemic blood circulation, directly
connected to the left ventricle through the aortic valve. It is the largest artery in the
human body, and the diaphragm at the level of the twelfth thoracic vertebra separates
it into the thoracic and abdominal aorta, see Fig. 5.5. The thoracic aorta is formed
by the ascending thoracic aorta, the aortic arch, and the descending thoracic aorta.
The level of the renal arteries separates the abdominal aorta and splits it into the
suprarenal and infrarenal segments.

Given its prominent role, the aorta is one of the best explored vessels. At its
origin it has a diameter of approximately 3.0 cm, which reduces to approximately
1.8 to 2.0 cm at the aortic bifurcation, situated at the level of the fourth lumbar
vertebra. Different segments of the aorta have different embryologic origins. SMC
in the aortic arch origins from the neural crest, in the descending thoracic aorta from
the somites and in the infrarenal aorta from the splanchnic mesoderm [317].

The aorta’s pressure-diameter property is of critical importance to the entire car-
diovascular system and determines its pressure-flow characteristics. The compliance
of the aorta is responsible for almost the entire capacity of the systemic circulation
and defines its WindKessel (WK) properties. The aortic capacity is constant over a
wide range of pressures, and the thoracic aorta alone contributes 85% to it [232].
Collagen fibers are undulated and they gradually engage with the stretch of the
vessel wall. In the abdominal aorta approximately 10% and 30% of the collagen
seem to be engaged at diastolic and systolic deformations, respectively [16].

As with other arteries, the aorta is axially pre-stretched in the body. In humans,
the pre-stretch is approximately 5% [16], a property that remarkably reduces with
age [264] and changes between the different aortic segments [232]. The aortic
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Fig. 5.6 Variation of the geometrical properties and the histological composition of the porcine
aorta reported elsewhere [514]. (a) Change of the outer aortic diameter and thicknesses of the
medial and the adventitial layers. The intimal layer thickness covers less than 1% of the total wall
thickness. (b) Relative area density of elastin and collagen in the medial and the adventitial layers.
The relative area density represents the area that is covered by the respective constituent in his-
tological stains (Asc.Thor.-Ascending thoracic aorta; Arch.-Aortic arch; Desc.Thor.-Descending
thoracic aorta; Abdominal-Abdominal aorta)

morphology varies remarkably from the root to the bifurcation, alterations that
reflect the transition from an elastic vessel towards a muscular vessel, see Fig. 5.6.
The abdominal aorta is equipped with a thick adventitia and then stiffer than the
thoracic aorta. The circumferential stiffness seems to be highest at the level of the
diaphragm [232, 540], and it might also be higher in males than in females [516].
Aortic stiffness and strength is further discussed in relation to aneurysmal disease
in Sect. 5.4.6.

The aorta is highly vulnerable to aging. The amount of elastin in the wall
decreases, whilst collagen and MMP-2 increase with age. The aged aortic wall is
also thinner, shows split and fraying of MLUs, as well as an increased level of
elastin glycation and collagen cross-linking. All these morphological changes may
explain why the aorta’s diameter and stiffness [16, 23, 284, 327, 394, 472] increase
much faster over time than of any other artery. The thoracic aorta also grows faster
in diameter than other vessels. However, it maintains its circumferential compliance,
and the comparison of the vessel’s load-free configurations does not show a faster
widening in favor of the thoracic aorta [294]. In the thoracic aorta the stretch over a
cardiac cycle decreases with age from approximately 14% to 6% [294].

5.3.2 Carotid Artery

The left and right common carotid arteries supply the head and the neck, see
Fig. 5.5. Whilst the left common carotid artery originates directly from the aortic
arch, the right common carotid artery is formed at the bifurcation of the brachio-
cephalic artery. The common carotid artery divides at the level of the fourth cervical
vertebra and forms the external and internal carotid arteries. The internal carotid
arteries supply the brain, whilst the external carotid arteries supply the face, scalp,
and neck. The carotid sinus is a dilated area at the base of the internal carotid
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artery, right superior to the bifurcation of the internal and external carotid arteries.
The carotid sinus hosts baroreceptors that continuously record blood pressure and
feed the information to corresponding afferent neurons, see Sect. 2.1.7. The external
and internal carotid arteries are approximately 6.5 mm and 5.0 mm in diameter, a
measure that depends on many factors [311]. Given its clinical significance, the
biomechanics of the carotid artery are well explored. The diseased (atherosclerotic)
carotid artery is involved in many strokes, and the intima-media thickness of the
carotid artery wall is a marker of subclinical atherosclerosis.

5.3.3 Coronary Artery

At the root of the ascending aorta, the lumen has three small pockets between the
cusps of the aortic valve and the wall of the aorta—the aortic sinuses. The left
and right aortic sinuses give rise to the left and right coronary arteries, vessels
that supply together the cardiac muscle, see Fig. 5.5. The contraction of the heart
muscle generates its own blood flow, and coronary flow differs therefore from all
other arteries. During the systolic phase, the left ventricular contraction “throttles”
or squeezes coronary blood flow and the majority (approximately 80%) of the flow
appears during the diastolic phase, when the heart is relaxed, see the bottom panel in
Fig. 5.7. The cross-talk between coronary flow and cyclic heart muscle contraction
determines unique pulsatile characteristics. Pressure and flow waveforms as well as
arterial and venous phasic differences distinguish remarkably from the blood flow
elsewhere in the vasculature. During a single cardiac cycle, coronary flow passes
through two flow pulsations, see Fig. 5.7. The exploration of the unique coronary
flow characteristics has been the subject of a number of studies [589].

The luminal diameter at the origin of the coronary arteries is approximately
4.0 to 4.5 mm and depends on many factors [131]. Given its clinical significance,
the biomechanics of the coronary artery are well explored [405]. The diseased
(atherosclerotic) coronary artery is involved in clinical events, such as angina and
heart attack. The oxygen exchange from the perfusion in the myocardium is very
high. An increase of oxygen supply is only to be achieved by an increased coronary
blood flow—a strong linear correlation between the oxygen demand of the cardiac
muscle and the coronary flow therefore exists. It underlies the importance of the
proper functioning of coronary autoregulation.

5.3.4 Iliac and Femoral Artery

The aortic bifurcation forms the left and right common iliac arteries, vessels that
supply the lower limbs, see Fig. 5.5. After approximately 5.0 cm, the common iliac
artery bifurcates and forms the external and internal iliac arteries. The internal
iliac arteries supply the pelvis, the buttock, the reproductive organs, and the medial
compartment of the thigh, whilst the external iliac arteries provide the main blood
supply to the legs. In the lower part of the abdomen, the external iliac artery
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Fig. 5.7 Coronary blood
flow during the cardiac cycle.
The majority of flow appears
at the diastolic phase, and
during a single cardiac cycle,
coronary flow passes through
two pulsations
(ECG-ElectroCardioGram;
LAD-Left Anterior
Descending coronary;
LCX-Left CircumfleX
coronary; RCA-Right
Coronary Artery)
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becomes the femoral artery. The luminal diameter of the normal iliac artery is
9.0 to 10.0 mm and correlates with age and sex [423]. As with other vessels, the axial
pre-stretch of the iliac and femoral artery decreases with age [292]. However, the
stretch over a cardiac cycle decreases with age only by approximately 1% [294]—
muscular arteries are much less effected by age-related circumferential stiffening
than elastic arteries. Both, iliac and femoral artery are vulnerable to the formation
of atherosclerosis, whilst aneurysms are mainly seen in the iliac artery.

5.4 Vascular Diseases

Biomechanical factors, such a stress and strain are related to a number of vascular
diseases. Whilst the scientific exploration of this influence is often driven by
curiosity and very different study objectives, the following four questions are of
main clinical relevance:

• What are the hemodynamic implications of a vascular pathology, and how does
it influence tissue perfusion?

• What is the likelihood of an acute cardiovascular event that may emerge from the
diseased vessel?

• How will the disease progress and what are the expected implications?
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• How does a specific treatment influence the cardiovascular system and how
durable is the treatment expected to be?

Vascular biomechanics may help to answer these questions and support clinicians
in the selection of the optimal treatment for the individual patient.

Over the past decades, the level of sophistication with which vascular biome-
chanical analysis can be made has increased dramatically and nowadays, full
patient-specific biomechanical investigations are possible. The progress of medical
imaging, together with the advances in the mechanical characterization of vessels,
led to biomechanical models that integrated more and more histological and
mechanical features. Such models meanwhile play a considerable role in the
analysis of vascular pathologies, some of which are discussed later in this chapter.

5.4.1 Diagnostic Examinations

A diagnostic examination is a test that is used to diagnose a disease or condition. In
many cases, no single test can diagnose vascular disease, it is rather the conclusion
from the outcome of a number of diagnostic tests. Whilst functional tests aim at
detecting a symptom or sign of vascular dysfunction, a diagnostic examination
may also acquire structural, anatomical, and morphological information related
to vascular diseases. Very different methods are used in the acquisition and post-
processing of diagnostic information, often based on medical imaging. Given the
importance of the heart, a number of diagnostic tests examine the heart and its
vasculature.

An ElectroCardioGram (ECG) is a simple test that records the heart’s electrical
activity and provides information regarding the beating and rhythm of the heart.
An ECG can show coronary heart disease-related signs of heart damage as well as
signs of previous or current heart attacks. ECG is often combined with a stress test,
which can highlight possible signs and symptoms of coronary heart disease, such
as shortness of breath, chest pain, and abnormal changes in the heart rhythm, blood
pressure, or the heart’s electrical activity. These would appear if plaque-narrowed
coronary arteries fail to supply enough oxygen-rich blood to meet the heart’s needs
during exercise.

Echocardiography (echo) uses sound waves to image the heart. This imaging
modality uses standard 2D, 3D, or Doppler ultrasound and provides anatomical,
morphological, and functional information. A subsequent image analysis allows
then for the determination of size and shape of the heart and how well the chambers
and valves of the heart are working. It can also show areas of poor blood flow to
the heart, areas of the heart muscle that are contracting abnormally, and injuries that
appeared previously to the heart muscle.

Ultrasound examination is routinely used to examine many large vessels in the
body, and Fig. 5.8a shows an ultrasound image of an Abdominal Aortic Aneurysm
(AAA). Intravascular Ultrasound (IVUS) is a specific echocardiography modality
that allows for a vessel to be seen from the inside-out and permitting the
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Fig. 5.8 Examples of images acquired by different vascular imaging modalities. (a) Vascu-
lar ultrasound and (b) Computed Tomography-Angiography (CT-A) of an Abdominal Aortic
Aneurysm (AAA). (c) In vitro Magnetic Resonance-Angiography (MR-A) of an atherosclerotic
carotid artery

visualization of atherosclerotic lesions. It is an invasive imaging modality, whereby
a specially designed catheter with a miniaturized ultrasound probe attached to its
distal end, moves inside the vessel.

Pulse Wave Imaging (PWI) is a non-invasive ultrasound-based imaging technique
that allows to track the propagation of pulse waves along the aorta at high spatial
and temporal resolutions. The acquired information allows to estimate the stiffness
of the vessel wall [572], a factor linked to cardiovascular diseases.

Scintigraphy, also known as a Gamma scan, provides 2D anatomical, morpho-
logical, and functional information acquired from gamma radiation that is emitted
by radioisotopes. The radioisotopes have been attached to drugs and traveled to the
tissue of interest upon administration. Thallium-201 is a commonly used radioiso-
tope, and its gamma radiation correlates with the tissue’s blood supply. The very
same physical principle is used by Single-Photon Emission Computed Tomography
(SPECT), an image modality that forms true 3D anatomical, morphological, and
functional information.

Angiography uses X-ray based techniques, such as fluoroscopy, and provides
transverse projections of the vascular lumen. It requires a radio-opaque contrast
dye to be injected into a vein, where it travels to the tissue of interest and highlights
the vessel lumen. In addition to anatomical information, angiography images also
visualize obstructed vessel segments.

Computed Tomography-Angiography (CT-A) captures X-ray images of the body
from many angles, and combines them into 2D or 3D images. Like an Angiography
study, CT-A also requires a contrast dye to be injected into a vein. The degree
of absorption of X-rays by a tissue component determines its appearance, and
thus the grey value or Hounsfield1 Unit (HU) in the image. Calcific deposits in
atherosclerotic lesions have high absorption, and are clearly visible in X-ray images.
However, the volume of calcific deposits is over-represented and quantitative studies
should always adjust for this artifact. There is an inherent difficulty in X-ray-based

1Sir Godfrey Newbold Hounsfield, English electrical engineer, 1919–2004.
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methods to discriminate between the individual components of soft tissues. The
typical resolution in X-ray based studies is of the order of half a millimeter along
each axis and total image acquisition can be performed within less than 10 s. With
ECG-gated imaging, dynamic CT-A acquisitions are possible and allow the study
of factors, such as vessel motion and myocardial function. Figure 5.8b illustrates
traverse and sagittal CT-A images of a patient with an AAA.

Magnetic Resonance-Angiography (MR-A) is a radio wave-based imaging
modality that can be performed with contrast dye to enhance the images. The
acquisition is used to image vessel anatomy and morphology, blood flow, and
vessel motion. MR-A shows better discrimination than CT-A amongst soft tissue
components, but MR-A requires more time and has less spatial resolution than
X-ray based modalities. MR-A imaging methods are reliant upon the detection of
magnetization of the nucleus of hydrogen atoms in water. They aim to create high
contrast between stationary and moving magnetic nuclear spins, using methods such
as 2D and 3D time-of-flight, phase contrast MR-A, contrast-enhanced MR-A, and
black blood MR-A [334]. Figure 5.8c illustrates a MR-A image acquired through in
vitro acquisition of the carotid artery.

Whilst the aforementioned modalities are commonly used in the clinical exami-
nation of vascular diseases, many more modalities and post-processing approaches
are available for vascular imaging, see [517, 531]. Recently also methods based
on Machine Learning (ML) found their way into the processing of clinical images
[145].

5.4.2 Atherosclerosis

Atherosclerosis is a slowly progressing disease of the intima that leads to the
formation of intimal plaques—the accumulation of material within the intima that
contain lipid, SMCs, inflammatory cells, connective tissue, and calcification. It
should be distinguished from arteriosclerosis, which concerns age-related changes
of the vessel wall and therefore represents a more general term including also other
arteriopathies. Excellent reviews of atherosclerosis are available in the literature
[54, 525] and numerous pathological studies investigated the morphologic charac-
teristics of plaques, including features of vulnerable lesions that are prone to plaque
rupture and atherothrombosis [298, 578].

Atherosclerosis may be seen as an ongoing inflammation in response to local
endothelial dysfunction, a process that continuously weakens the vessel wall. The
initiation and progression of atherosclerosis is strongly influenced by the local
interaction of biochemical and biomechanical factors. In addition to flow-induced
WSS and biomechanical stress of plaque tissue, atherosclerosis is determined by
factors such as infection, oxidative stress, chronic hypertension, and most notably,
elevated Low-Density Lipoprotein (LDL) levels. At the dysfunctional endothelium,
LDL is allowed to pass into the vessel wall, where it is oxidized by reactive
oxygen species, see Fig. 5.9b. The reactive oxygen species are present naturally,
yet are observed in increased concentrations when the patient is exposed to one or
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Fig. 5.9 Stages of atherosclerotic plaque formation. (a) Normal vessel: Intimal, medial, and
adventitial layers form the wall. The intima is encapsulated by the Internal Elastic Lamina
(IEL) and Endothelial Cells (EC). (b) Low-Density Lipoprotein (LDL) deposition: Dysfunctional
endothelium allows inflammatory cells and apoB-containing (oxidized) LDL to accumulate in the
vessel wall. (c) Early atheroma: Oxidized LDL and inflammatory cells continue to move into the
vessel wall. Smooth Muscle Cells (SMC) are recruited and monocytes are activated to macrophages
that phagocytize oxidized LDL. Following extensive phagocytic activity, the swollen macrophages
are then termed foam cells. They accumulate and form together with other cellular and extracellular
debris an atheromatous plaque. (d) Atheroma: SMC proliferate and recruit towards the formation
of a SMC-rich fibrous cap that overlays the lipid and macrophage-rich plaque components. (e)
Clinical event: Superficial plaque erosion and rupture of the weakened SMC-rich fibrotic cap
causes plaque-associated thrombosis, culminating in a clinical event

more atherosclerosis risk factors. An inflammatory response to the oxidized LDL is
mounted, and monocytes are recruited from the blood locally through the expression
of inflammatory mediators and specific adhesion factors on the endothelium. Inside
the intima, monocytes are activated to macrophages that engulf oxidized LDL. After
extensive phagocytic activity, the swollen macrophages take on a foamy appearance
and are termed foam cells, see Fig. 5.9c. It is the accumulation of foam cells, other
inflammatory cells and SMCs together with collagen, elastin, fibrin, extracellular
cholesterol, cellular debris, and eventually calcifications that forms an atheromatous
plaque.

The earliest macro-scale manifestation of atherosclerosis is the presence of fatty
streaks, which are caused by the accumulation of lipid-laden macrophages and T-
lymphocytes under the intimal endothelium [335]. Whilst the atherosclerotic vessel
still has the passive mechanical properties of the normal vessel, its active response
may already have been compromised at this stage of the disease. As atherosclerosis
progresses, the arterial wall adopts a structure that is quite different from a normal
artery. The mechanical properties of the diseased vessel then clearly reflect such
differences.
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Earlier in the progression of a plaque, as foam cells accumulate in the intima,
the vessel wall remodels and expands outward to preserve the patent lumen area,
a process called outward remodeling [213], see Fig. 5.9b, c. The outer vessel wall
then adopts a swollen appearance focally around the plaque, and little or no luminal
narrowing is present during an angiographic study, a modality that images the
vessel lumen. Given coronary arteries, this process continues until approximately
40% diameter stenosis is reached [213], beyond which inward remodeling and
the narrowing of the lumen determines the development of atherosclerosis, see
Fig. 5.9d, e.

As the inflammatory response continues, SMCs are signaled to proliferate and
recruit from the media towards the intima, see Fig. 5.9d. These SMCs together
with fibrous ECM components, then overlay the lipid and macrophage-rich plaque
components and form the SMC-rich fibrous cap. In some atherosclerotic lesions,
the fibrous cap is challenged—it weakens and erodes over time. It is the rup-
ture or ulceration of such a fibrous cap that then exposes highly thrombogenic
plaque contents to the flowing blood, see Fig. 5.9e, and eventually causes acute
thrombo-embolic events, such as myocardial infarction and stroke. Smaller calcium
hydroxyapatite deposits, so-called micro calcifications, may also play a critical role
in the rupture or ulceration of the fibrous cap [68, 300].

Not every plaque disruption causes a thrombo-embolic event, but many of them
heal with the reformation of the fibrous cap. A series of ruptures and repairs can
eventually lead to a large plaque that grows inward into the vessel lumen. The plaque
then determines a high-degree arterial stenosis with hemodynamic significance.
These plaques have a more irregular appearance and structure. The fibrous cap is
of non-uniform thickness, the lipid-rich necrotic core has very irregular shapes, and
the plaque often contains bulk and micro calcifications.

A thickened intima contributes remarkable to the mechanical properties of the
atherosclerotic vessel. The individual morphology and biomechanical properties of
the plaque components then dominate the vessel wall properties of highly stenotic
vessels.

5.4.3 Biomechanical Factors in Atherosclerosis

The atherosclerotic artery wall is very different from the normal artery in both,
composition and mechanical properties. A coarse view of the atherosclerotic
vessel would recognize the fibrous intima, SMC-rich fibrous cap, lipid-rich and
macrophage-rich necrotic core, media, and the adventitia as distinct structural
components of individual mechanical properties. Of course, at the histological scale,
each one of these components has a highly heterogeneous microstructure of its
own. Aside from the histological complexities of an atherosclerotic lesion, there are
numerous ongoing biochemical processes that affect their mechanical properties. A
host of MMPs present in the lesion is capable of degrading structural ECM proteins.
The MMPs are largely inflammatory mediated, and the inflammatory state of the
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lesion and its macrophage/monocyte population influences then the stiffness and
strength of the SMC-rich fibrous cap.

5.4.3.1 Atherosclerosis Development
The presence of atherosclerosis has been correlated with local hemodynamic
complexity. Regions of the vessel wall experiencing low WSS below of approx-
imately 0.2 Pa, secondary flow, and oscillatory WSS are more likely to develop
atherosclerotic lesions [176,315,612]. In addition to plaque burden, low WSS is also
a predictor of progressive plaque enlargement and lumen narrowing of atheromatous
vessel segments [530].

Low mean WSS and oscillatory WSS appear at areas of flow recirculation or
flow oscillation, and therefore at locations with elevated residence times for blood
particles. Low WSS also alters the gene expression of the ECs and supports a pro-
inflammatory state [394], see Sect. 7.3.2. It presumably increases the permeability
of the endothelium [169, 461, 529], which together with the increase in residence
time enhances the mass transport of LDL and inflammatory cells into the vessel
wall [315]. In contrary to low WSS, the exposure of ECs to constantly normal WSS
levels of above of approximately 1.0 Pa causes the expression of genes that then
protect the wall and creates resistance to atherosclerosis.

In addition to the aforementioned factors, local wall stiffness could also play a
role in the initiation of atherosclerotic lesions. It collocates with coronary plaques
in patients with minimal coronary disease [406].

5.4.3.2 Plaque Stress and Strain
A number of biomechanical studies explored idealized geometries in the biome-
chanical study of atheromatous vessel segments. It eases the investigation of the
mechanisms by which plaque stresses and strains are related to morphological
features, such as fibrous cap thickness, lipid pool volume, calcification level, lumen
eccentricity, and the remodeling index.

An earlier study [348] used a 2D model of an atherosclerotic coronary artery
and found that fibrous cap thickness, and not stenosis severity alone, influenced the
stress in the plaque cap. The thickness of the fibrous cap that covers a necrotic core
may therefore be an important factor in plaque rupture. A fibrous cap that is thinner
than 60 to 100μm results in a peak stress that exceeds 300 kPa [280], a stress that
may already appear at a diameter stenosis of as low as 10% [340]. Whilst the size
of the lipid pool has no effect on the peak stress in the cap, bulk calcifications may
reduce the stress [280] and stabilize the plaque [298]. These results have somewhat
been confirmed by 3D [90] and Fluid Structure Interaction (FSI) [541] models.

Another study [404] concluded that the cap thickness alone was not able to
discriminate between stable and instable coronary plaques, and factors, such as
the remodeling index and the relative necrotic core thickness would be similarly
important risk factor. The remodeling index represents the ratio between the area
that is enclosed by the EEL at the most stenotic cross-section and a normal vessel
cross-section, respectively.
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Plaque tissue is highly heterogeneous, and stiff inclusions in a soft body are
known to cause local stress peaks. Micro calcifications of approximately 10μm
in size that are closely spaced have therefore the potential to elevate cap stress by
a factor of at least two [300]. It may explain the association of micro calcifications
with more unstable and vulnerable lesions [390]. The compliance mismatch between
a stiff stent and the much softer vessel wall also leads to local stress concen-
trations. It explains the development of peristrut micro-hemorrhages, cholesterol
accumulation, and oxidation in coronary arteries, factors that may trigger in-stent
neoatherosclerosis [544].

Whilst high WSS protects the vessel wall from the formation of atherosclerosis,
plaque ruptures have been reported at locations of high WSS [560]. It may desta-
bilize the structural integrity of the plaque cap [181, 227] and therefore contribute
to plaque rupture at later stages of the disease. Given the correlation between WSS
and tissue strain [212], it remains unclear whether WSS may be regarded as an
independent rupture risk marker.

5.4.3.3 Clinical Relevance of Atherosclerosis
Atherosclerosis favored some larger arteries, but not all. Whilst arteries, such as the
aorta, carotids, coronaries, and iliacs frequently show atherosclerosis, the disease
spares arteries in the upper limbs, such as the mesenteric, renal, and internal
mammary. Atherosclerosis has multiple clinical implications and may influence
arterial blood flow and hemodynamics by at least six different factors [394].

• Gradual stenosis formation. Successive inward remodeling gradually creates
a localized stenosis, which in turn limits the flow of oxygen-rich blood to
downstream tissue.

• Instant stenosis formation. Enzymatic degradation of ECM components con-
stantly weakens the fibrous cap. Over time, the cap erodes or even ruptures at
a certain time point. Both events may form a thrombus in the lumen that creates
a localized stenosis and/or entirely occludes the vessel. The thrombotic event
then suddenly limits the flow of oxygen-rich blood to the downstream tissue.

• Embolization. Fibrous cap erosion or rupture may lead to the embolization of
atheromatous material or the associated thrombus to smaller peripheral arteries.
This occludes peripheral arteries and limits the flow of oxygen-rich blood to the
downstream tissue.

• Aneurysm formation. Enzymatic degradation of ECM components diminishes the
structural integrity of the vessel wall. Atherosclerotic plaque-based ulcerations
can lead to dissections or the formation of an aneurysm in some vessels.

• Systematic implication. Atherosclerosis increases the stiffness of the vessel wall,
and if wide spread, this decreases the capacity of the vascular system, a factor
that augments left ventricular load. It may cause related cardiac complications,
such as cardiomyopathy.

• Endothelial dysfunction. The endothelium plays a crucial role in the control of
SMC tonus, platelet function, and fibrinolysis. Endothelial function in atheroscle-
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rotic vessels is abnormal, which in turn may lead to abnormal vasoconstriction
and limits the potential of a thrombus in the healing process.

Table 5.1 lists risk factors for arteriosclerosis and their potential disease mecha-
nisms. Whilst some of the risk factors are well established, others are suspected and
lack statistical evidence at the present.

5.4.4 Carotid Artery Disease

Carotid artery disease is a disease in which plaque builds up inside the carotid
arteries. It commonly develops where the carotid divides into the internal and
external carotid arteries, and thus at a location of complex blood flow. Both internal
carotids feed the circle of Willis,2 which then distributes blood to the brain. The
formation of a stenosis in one of the carotids is therefore not of major concern to the
delivery of oxygen-rich blood to the brain. However, the plaque in the carotid artery
may erode or rupture and cause an acute thrombo-embolic event. The clot, or plaque

Table 5.1 Major risk factors for arteriosclerosis and the related disease mechanism

Diabetes Insulin production and usage is impaired, which elevates the body’s
sugar level. Diabetes increases the prevalence for atherosclerosis by a
factor of four

Genetic predisposition Family history of atherosclerosis

Hypertension High blood pressure leads to high mechanical stress in the vessel
wall. This can damage the vessel tissue and enhance the development
of atherosclerosis

Lack of physical activity The lack of aerobic activity can worsen other risk factors relating to
atherosclerosis disease, such as unhealthy blood cholesterol levels,
high blood pressure, diabetes, and obesity

Smoking Smoking leads to unhealthy cholesterol levels. It raises the blood
pressure as a consequence of multiple proatherogenic mediators
present in tobacco and cigarette smoke. This damages the vessel wall
and hastens the development of atherosclerosis

Unhealthy cholesterol Disturbed levels of blood lipids trigger endothelial
injury/dysfunction, vessel wall inflammation, and promote
atherosclerosis in all stages. This includes high Low-Density
Lipoprotein (LDL) and low High-Density lipoprotein (HDL)
cholesterol

Metabolic syndrome The five metabolic risk factors are a large waistline (abdominal
obesity), a high triglyceride level (a type of fat found in the blood), a
low HDL cholesterol level, high blood pressure, and high blood
sugar. Metabolic syndrome is diagnosed if three of the said metabolic
risk factors are given

(continued)

2Thomas Willis, English physician, 1621–1675.
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Table 5.1 (continued)

Older age The risk for atherosclerosis increases in men starting at age 45, and in
women at age 55

Unhealthy diet Foods that are high in saturated and trans fats, cholesterol, sodium,
and sugar can worsen other risk factors for atherosclerosis

Inflammationa High levels of C-reactive protein in the blood is a sign of
inflammation in the body and may raise the risk of atherosclerosis.
Damage to the inner arterial wall segments may trigger inflammation
and support the development of plaque

Sleep apneaa Untreated sleep apnea can increase the risk for high blood pressure,
diabetes, and even a heart attack or stroke

Mental stressa Stress is a commonly reported “trigger” for a heart attack. It is an
emotionally upsetting event, especially one involving anger

aSuspected risk factor

particles that have been broken away, then travels through the bloodstream and
eventually occludes vital brain arteries [461]. Carotid artery disease has therefore
the risk of causing an ischemic stroke. Given the brain tissue is not supplied by
oxygen for more than a few minutes, the brain cells start to die. It then causes lasting
brain damage with consequences, such as vision or speech problems, paralysis,
and death. Carotid artery disease is a major cause of stroke in many industrialized
countries, and 10 to 20% of all strokes emerge from carotid plaques [420].

An acute thrombo-embolic event may also appear in form of a transient ischemic
attack and symptoms that usually disappear within 24 h. It is a serious clinical sign
of carotid artery disease and patients need urgent clinical consideration to prevent
them from a stroke and the associated consequences. Patients who experienced a
stroke need immediate treatment to optimize the chances of full recovery.

Given the important clinical role of the diseased carotid artery, its biomechanics
are well investigated and reported in the literature [405]. Table 5.2 summarizes a
number of such studies, and Fig. 5.10 illustrates the elastic tensile properties of
diseased carotid artery tissue.

5.4.5 Coronary Heart Disease

Coronary heart disease is a pathology where plaque builds up inside the coronary
arteries. It narrows their lumen and forms a stenosis that gradually reduces the flow
of oxygen-rich blood to the heart. An acute thrombo-embolic event can emerge from
the coronaries, eventually resulting in heart attack, angina, or arrhythmia.

A heart attack occurs if the flow of oxygen-rich blood to a section of the heart
muscle is cut off. Fluids then build up in the body causing shortness of breath,
swelling in the ankles, feet, legs, stomach, and veins in the neck. Angina is chest
pain or discomfort that may spread to the shoulders, arms, neck, jaw, or back, which
disappears within a few minutes and with rest. Some symptoms of angina can be
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Table 5.2 Constitutive properties of diseased carotid artery tissue acquired by in vitro tissue
characterization. The constitutive models are further discussed in Sect. 5.5

Constitutive model Constitutive parameters [kPa] Reference

neoHookean (5.9) Fibrous cap: c = 500.0 [403]

Lipid core: c = 5.0

Normal vessel: c = 150.0

Yeoh model (5.8) with N = 3 Hard: c1 = 302.1; c2 = −228.0; c3 = 261.0 [333]

Mixed: c1 = 23.5; c2 = 126.0; c3 = 112.0

Soft: c1 = 29.6; c2 = −33.2; c3 = 128.0

Orthotropic linear-elastic Er = 50.0; Eθ = 1000.0 [80]

Compressible neoHookean 2c = 7.0 to 100.0; E = 6c [27]

Orthotropic linear-elastic Normal vessel: Er = 10.0; Eθ = Ez = 100.0; [404]

νrθ = 0.1a; νθz = 0.27a; Grθ = 52.0

Fibrosis: Er = 115.6; Eθ = Ez = 2312;

νrθ = 0.07a; νθz = 0.27a; Grθ = 1175.0

Necrotic core: E = 1.0; ν = 0.49a

adimensionless parameter
r, θ, z denote the radial, circumferential, and axial vessel direction
E,G, ν denote Young’s modulus, shear modulus, and Poisson’s ratio
ci denotes material parameters used by the individual constitutive model

Fig. 5.10 Elastic properties
of the diseased carotid wall at
simple tension. The
grey-shaded area reflects data
reported in the literature and
illustrates the high variability,
whilst the curves characterize
the properties of the soft,
mixed, and hard carotid wall
as reported elsewhere [333]
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similar to the symptoms of a heart attack. In contrary, an arrhythmia is a problem
with the rate or rhythm of the heartbeat. It bears the risk of sudden cardiac arrest,
the heart then suddenly stops beating.

Given the blood supply to the cardiac tissue is cut off for more than a few minutes,
the heart cells start to die, and normal heart tissue is replaced with scar tissue. Whilst
the related heart damage may not be obvious to the patient, it can cause severe and
long-lasting problems—over time, it can weaken the heart muscle leading to heart
failure and arrhythmias.
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5.4.6 AneurysmDisease

An aneurysm is a local, slowly growing dilatation of an artery, typically defined by at
least 1.5 times of its normal diameter. Although every artery can become aneurys-
matic, the infrarenal abdominal aorta seems to be most vulnerable to this disease
and frequently develops an AAA. The formation of AAAs is promoted by factors
such as smoking, older age, male gender, unhealthy cholesterol, and high MAP;
it is also over-represented in persons with a family history of AAA, patients with
coronary heart disease and Chronic Obstructive Pulmonary Disease (COPD) [486],
and aortic aneurysms are often seen in patients with rare genetic diseases, such as
Ehlers–Danlos syndrome type IV, Marfan syndrome, Loeys–Dietz syndrome, and
fibromuscular dysplasia. Whilst aneurysm disease and atherosclerosis have many
common risk factors, both diseases have distinct gene expressions [49]. Given the
clinical importance, AAA studies are well reported in the literature, concerning
many different aspects of the disease [109, 343, 486].

If left untreated, aneurysms progress until the wall stress eventually exceeds the
failure strength of the degenerated aortic wall—the artery ruptures. AAA rupture
often leads to massive internal bleeding, and approximately 75% of patients die
from such an event. AAA prevalence is much higher in males, whist rupture appears
relatively more frequently in females, see Fig. 5.11.

In addition to the risk of internal bleedings and the drop of blood pressure, the
rupture of a cerebral aneurysm may also lead to a hemorrhagic stroke. Blood then
leaks into the brain causing cells to die from the increasing intracranial pressure.

5.4.6.1 Aneurysm Pathophysiology
An aneurysm is the end-result of irreversible pathological remodeling of the vessel
wall [86,112], and larger aneurysms show distinct pathological features [11,86,299,
373, 467], such as

• Degradation and fragmentation of elastin fibers
• Apoptosis of vascular SMC
• Increased collagen content and collagen synthesis
• Excessive inflammatory response

Fig. 5.11 Abdominal Aortic
Aneurysm (AAA) rupture
rate per year for men and
females. Data represents
estimates of the RESCAN
study [459]
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• Increased oxidative stress

Whilst the loss of elastin (and possibly increased SMC apoptosis) triggers the initial
dilatation, it is the collagen turnover that determines the enlargement and local
weakening of the wall, a mechanism that then eventually leads to the rupture [86].

Given its high clinical relevance, the aneurysmatic infrarenal aorta has been
extensively studied and a number of pathophysiological processes have been
proposed towards the understanding of AAA disease. Figure 5.12 summarizes some
of them, ultimately resulting in the destruction of the well-defined organization
of the normal vessel wall as it is illustrated in Fig. 5.1. The AAA wall exhibits
a degraded media with few SMCs and fragmented elastin structures, and an
inflammatory and/or fibrotic adventitia that can be thicker than normal. Mast cells
in the adventitia trigger degranulation and release different vasoactive factors linked
to neovascularization [364]. The “perforation” by the dense vasa vasorum may then
diminishe the strength of the vessel wall [581]. It is often challenging to distinguish
between medial and adventitial layers in large AAAs—the entire wall resembles a
fibrous collagenous tissue that is similar to the adventitia in the normal aorta [195].

Almost all AAAs of clinically relevant size contain an Intra-Luminal Thrombus
(ILT) [243], a pseudo-tissue that develops from coagulated blood. It has solid-like
mechanical properties [196, 569] and its formation may be promoted by disturbed
blood flow [42,43]. The ILT is composed of a fibrin mesh, traversed by a continuous
network of interconnected canaliculi and contains blood particles, such as erythro-
cytes, neutrophils, aggregated platelets, blood proteins, and cellular debris [5, 205],

Fig. 5.12 Intra-luminal Thrombus (ILT) and vessel wall of an Abdominal Aortic Aneurysm
(AAA). The ILT promotes proteolytic and oxidative activities and facilitates breakdown of the
ExtraCellular Matrix (ECM), apoptosis of vascular Smooth Muscle Cells (SMCs), and activation
of immune responses. This process also activates MMPs, such as MMP 8 and MMP 9, which
together with other substances is transported into the vessel wall. The AAA wall shows depletion
of SMC, fragmentation of elastic fibers, numerous inflammatory responses, and mast cells in the
adventitia that promote neovascularization
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see Fig. 5.12. The ILT creates an environment for increased proteolytic and oxidative
activity [168, 533], possibly linked to the weakening [581] and thinning [299] of
the vessel wall. The reaction products are convected towards and into the wall,
where they contribute to ECM degradation and the adventitial immune response.
Proteolysis that is catalyzed by protases can degrade fibrillar ECM and intermediate
adhesive proteins. It then provokes SMC detachment and apoptosis [486], such that
neither EC nor SMCs can spread and proliferate in close contact with the ILT. It
may explain the absence of an endothelium layer of the ILT-covered AAA wall.

5.4.6.2 The Elastic Properties of the Infrarenal Aorta
The normal and aneurismatic aorta has been characterized by uniaxial and biaxial
in vitro tissue characterization studies, and Table 5.3 reports some data of the vessel
wall and the ILT. The AAA wall is remarkably stiffer than the aged, but normal
infrarenal aorta, see Fig. 5.13a. As compared to the wall, the ILT is much softer and
shows linear Cauchy stress-stretch properties, see Fig. 5.13b.

5.4.6.3 Strength of Aorta Tissue
As already indicated by the AAA wall’s inhomogeneous patho-histology [143],
AAA wall strength changes significantly within and across patients [458]. Whilst
some of the strength-influencing factors have been identified [171, 172, 352,
357, 504], many are still unknown. Given this unknown, the acquired data is
commonly highly dispersed. Table 5.4a summarizes some of the reported AAA
strength and thickness measurements. In average the AAA wall withstands
865 (SD 390) kPa stress, and it is 1.6 (SD 0.6) mm thick. The aneurysmatic aorta

Table 5.3 Constitutive properties of (a) the wall and (b) the Intra-Luminal Thrombus (ILT) of
Abdominal Aortic Aneurysm (AAA). Data has been acquired by in vitro tissue characterization,
and the constitutive models are further discussed in Sect. 5.5

Constitutive description Constitutive parameters [kPa] Reference

(a) AAA wall

Yeoh model (5.8) with N = 2 c1 = 177.0; c2 = 1881.0 [449]

Yeoh model (5.8) with N = 5 c1 = 5.0; c2 = c3 = 0.0; c4 = 2.2 · 103; [436]

c5 = 13.741 · 103

Orthotropic hyperelastic (5.30)b c0 = 0.14; c1 = 477.0a; [568]

c2 = 416.4a; c3 = 408.3a

(b) ILT

Yeoh model (5.8) with N = 2 Luminal layer: c1 = 7.98; c2 = 8.71 [569]

Reduced Ogden model (5.11) Luminal layer: c0 = 2.62 [196]

Medial layer: c0 = 1.98

Abluminal layer: c0 = 1.73

ci denotes material parameters used by the individual constitutive model
aDimensionless parameter
bLimited to the description of a membrane problem
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Fig. 5.13 Elastic properties of the infrarenal aortic tissue at equi-biaxial tension. (a) Aged, but
normal abdominal aorta as compared to the Abdominal Aortic Aneurysm (AAA) wall. Properties
are based on in vitro experimental tissue characterization [568]. (b) Intra-Luminal Thrombus (ILT)
of the AAA. Data has been acquired from in vitro experimental tissue characterization of the
luminal and abluminal ILT sections [196]

is therefore weaker than the normal infrarenal aorta, reported to have a strength of
1210 (SD 330) kPa [582] or even 1710 (SD 140) kPa [583].

Given the reported strength of 1950 (SD 600) kPa [4] and 1470 (SD 910) kPa
[380], the normal thoracic aorta is slightly stronger than the normal infrarenal aorta.
Less experimental data has been acquired from the Thoracic Aortic Aneurysm
(TAA) wall, some of which is listed in Table 5.4(b).

As with ILT’s elastic properties, its tensile strength changes with respect to the
radial position, and luminal and abluminal ILT tissue fails at 156.5 (SD 57.9) kPa
and 47.7 (SD 22.9) kPa, respectively [196].

Table 5.4a indicates the strong negative correlation of AAA strength and wall
thickness, a property also reported previously [172, 458]. Given this correlation, a
thinner wall is relatively stronger, and wall tension (wall stress multiplied with wall
thickness) may be a more robust rupture risk predictor [451]. The inverse correlation
also somewhat justifies a uniform wall thickness to be used in FEM models of the
AAA.

Whilst the aorta wall is biaxially loaded in the body, most strength data, with
very few exceptions [476], has been characterized by uniaxial tensile testing. The
acquired data may therefore not adequately represent the threshold of the aorta
against wall rupture in the body.



Table 5.4 Strength and thickness of the aneurysmatic aorta acquired from in vitro testing. (a)
Abdominal Aortic Aneurysm (AAA) wall. (b) Thoracic Aortic Aneurysm (TAA) wall

Sample specification Thickness [mm] Strength [MPa] Reference

(a) AAA wall

N = 31; fibrous 1.2 1.2 [412]

N = 38; partly calcified 1.5 0.87

N = 28 1.18 – [411]

N = 83 – 0.81 [570]

N = 26 1.32 – [568]

N = 25; d < 55 mm 1.53 0.77 [381]

N = 65; d > 55 mm 1.58 1.03

N = 76 – Female: 0.68 [566]

Male: 0.88

N = 163 1.57 1.42 [458]

N = 374/48 1.48 1.26 [448]

N = 14 1.5 to 1.9 Long.: 0.93 [605]

Circ.: 1.15

N = 16 2.06 0.57 [171]

Anterior: N = 29 2.73 Long.: 0.38 [550]

Circ.: 0.52

Lateral: N = 9 2.52 Long.: 0.51

Circ.: 0.73

Posterior: N = 9 2.09 Long.: 0.47

Circ.: 0.45

Intact AAA: N = 26 2.5 0.82 [122]

Ruptured AAA: N = 13 3.6 0.54

Intact: N = 278/56 1.5 0.98 [451]

Ruptured: N = 141/21 1.7 0.95

Long.: N = 45 – 0.86 [450]

Circ.: N = 19 – 1.02

Long.: N = 49 1.57 0.715 [437]

Circ.: N = 41 1.58 1.1

h > 4 mm: N = 7 – 1.38 [581]

h < 4 mm: N = 7 – 2.16

(b) TAA wall

N = 163 – TAV: Long.: 0.54 [428]

– Circ.: 0.961

– BAV: Long.: 0.698

– Circ.: 1.656

N = 27 1.99 TAV: 0.878 [172]

1.7 BAV: 1.310

N = 26 2.0 TAV: Long.: 0.88 [188]

2.0 Circ.: 1.19

1.9 BAV: Long.: 0.84

1.9 Circ.: 1.23

N - Number of samples; d- Aorta diameter at site of wall sample excision; h- Thickness of the
Intra-luminal Thrombus (ILT) layer underneath the wall sample; Circ.- circumferential; Long.-
longitudinal; ILT- Intra-Luminal Thrombus; TAV- Aorta with a Tricuspid Aortic Valve; BAV- Aorta
with a Bicuspid Aortic Valve
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5.5 Constitutive Descriptions

Constitutive modeling of vascular tissue is well documented in the literature, and
numerous descriptions with application to blood vessels have been reported [408].
Whilst purely phenomenological approaches can successfully fit experimental data,
they show limited robustness of predictions beyond the strain range within which
the model parameters have been identified. In contrary, structural constitutive
descriptions overcome such limitations and integrate histological and mechanical
information of the vessel wall. Aside from being more robust, such modeling fosters
our understanding concerning the load-carrying mechanisms in vascular tissue.

This section addresses the basic biomechanical properties of the passive vessel
wall upon its description as homogenized single phase incompressible solid. Whilst
much more complex frameworks are reported in the literature, it is the Intended
Model Application (IMA) that determines the level of complexity. Examples show
that even the highly porous ILT may be described as a single phase incompressible
solid towards the prediction of the stress in the AAA wall [433].

5.5.1 Capacity of a Vessel Segment

The capacity, or volume compliance of a vessel segment is a property used by
lumped parameter models, see Sect. 2.3.2. We approximate the vessel by a thin-
walled tube at plane stress that is inflated at the blood pressure pi. Given static
equilibrium, σθ = pid/(2h) and σz = σθ/2 describe the circumferential and
respective axial stress in the vessel wall. A linear-elastic material with the Young’s
modulus E and the Poisson’s ratio ν = 0.5 may be used in the description of
the vessel wall’s elastic properties. At plane stress, Hooke’s law (3.49) yields the
circumferential strain εθ = �d/d = 3σθ/(4E), and with the aforementioned
circumferential stress, results in the pressure increment �pi = 8hE�d/(3d2), a
function of the diameter increment �d. The vessel’s capacity therefore reads

C = �V

�pi
= 3d3πl

16hE
[m3 Pa−1] , (5.1)

where the volume increment �V = dπl�d/2 has been used, and l denotes the
length of the vessel segment. The capacity (5.1) is constant and thus independent of
the blood pressure pi.

Whilst the vessel capacity model (5.1) is often used, it is know that the vessel
wall’s stress–strain properties are non-linear, and Hooke’s law reflects therefore a
very coarse approximation. The description of the vessel’s capacity (5.1) should
for many applications then be modified towards the description of non-linear vessel
wall properties. Let us consider a general non-linear material, where Dθθ and Dθz
are the coefficients of the (non-constant) compliance matrix. The increment of the
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circumferential wall strain then reads �εθ = �d/d = Dθθ�σθ + Dθz�σz, and
with σz = σθ/2 we may express the strain increment �εθ = (Dθθ + Dθz/2)�σθ
as a function of the stress increment �σθ . Given the stress increment �σθ =
�pid/(2h) from the static equilibrium, we may express the pressure increment
�pi = 2h�d/(d2α) as a function of the diameter increment�d and the constitutive
factor α = Dθθ +Dθz/2, respectively. The vessel’s capacity then reads

C = �V

�pi
= d3πlα

4h
, (5.2)

where the volume increment �V = dπl�d/2 has been used. For a non-linear
stress–strain law, the coefficient α depends on the strain. The capacity (5.2) is
therefore not constant, but a function of the blood pressure pi.

5.5.2 Hyperelasticity for Incompressible Solids

The vessel wall’s stress–strain properties may be described within the framework
of hyperelasticity for incompressible solids. The volume ratio J = 1 then holds,
and Coleman and Noll’s procedure for incompressible materials (3.131) allows us
to derive the second Piola–Kirchhoff stress

S = 2
∂�(C)
∂C

− κC−1 (5.3)

from any given strain energy �(C) [J m−3] per unit (reference) tissue volume, see
Sect. 3.6.4. Here, C = FTF denotes the right Cauchy–Green strain, and F is the
deformation gradient. The pressure κ , to be distinguished from the hydrostatic
pressure p, acts at the inverse right Cauchy–Green strain C−1 and serves as a
Lagrange parameter to enforce incompressibility. It is determined by the boundary
conditions of the solid mechanics problem, whilst all constitutive information is
captured by the particular form of the strain energy density—specific functions will
be discussed later in this chapter.

The second Piola transform (3.32) allows us to compute the Cauchy stress

σ = 2F
∂�(C)
∂C

FT − κI , (5.4)

where the Lagrange pressure κ contributes to the hydrostatic stress and acts at the
identity I. Given the strain energy � and the deformation gradient F, the stress is
determined up to the Lagrange parameter κ .
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5.5.2.1 Stress and Strain Analysis in Principal Directions
We may consider the right Cauchy–Green strain C =∑ndim

i=1 λ
2
i N̂i ⊗ N̂i in principal

directions N̂i , where ndim and λi denote the number of spatial dimensions and the
principal stretches, respectively. Given an incompressible and isotropic material, the
expression (5.3) then yields the principal second Piola–Kirchhoff stresses

Si = 1

λi

∂�(C)
∂λi

− κ

λ2
i

(no sumation) , (5.5)

where κ denotes the Lagrange parameter and the relation ∂λi/∂Cii = (2λi)−1 (no
summation) has been used. It follows directly from the aforementioned eigenvalue
representation of the right Cauchy–Green strain.

Given an isotropic material, the principal stress directions coincide with the
principal strain directions, and (5.5) may always be used. In contrary, for an
anisotropic material, the principal stress and strain directions are in general not
equal, and (5.5) is therefore not generally valid. However, given the principal strain
directions coincide with the material’s principal directions, said directions are then
also the principal stress directions. We may then use (5.5) even in the description of
an anisotropic material. The material’s principal directions are the directions along
which the material exhibits extremal properties—it is stiffest or softest along them.

The first Piola transform of an incompressible material Pi = λiSi (no summa-
tion) and (5.5), then yields the first Piola–Kirchhoff stresses

Pi = ∂�(C)
∂λi

− κ/λi, (5.6)

whilst the second Piola transform σi = λ2
i Si determines the respective principal

Cauchy stresses

σi = λi
∂�(C)
∂λi

− κ, (5.7)

where the boundary conditions of the solid mechanics problem determine the
Lagrange parameter κ .

5.5.3 Purely Phenomenological Descriptions of the Vessel Wall

A constitutive description aims at the design of a strain energy function � that is
able to capture the vessel wall’s mechanical properties. Following a purely phe-
nomenological approach, � is a mathematical function that lacks any information
regarding the vessel wall’s histology or the load-carrying mechanisms within the
wall. Given no such “constraints,” the function � may be very “flexible” in the
representation of experimental data, a property that makes it also unreliable in
predictions beyond the range, within which its parameters have been calibrated.
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5.5.3.1 Isotropic Models
Vascular tissue and rubber share some common mechanical properties, and models
that originally have been proposed for rubber, are also frequently used to describe
the vessel wall. One of them is the Yeoh strain energy function [608]

�(C) =
N∑

i=1

ci(I1 − 3)i , (5.8)

where I1 = trC denotes the first strain invariant, whilst ci; i = 1, . . . , N [Pa]
are stiffness-related material parameters of the N polynomial terms in the strain
energy. Given vascular applications, most often two polynomial terms are used, as
in the description of the aorta reported elsewhere [449, 450, 458, 569]. In addition,
a three-term Yeoh model has been used to describe hard, mixed, and soft carotid
plaques [333], whilst five terms have been proposed to capture the highly non-linear
stress–strain properties of the aneurysmatic aortic wall [436].

Given the case N = 1, the Yeoh model reduces to the neoHookean model

�(C) = c(I1 − 3) , (5.9)

and G = 2c [Pa] then denotes the small-strain shear modulus. It is frequently used
in the description of atherosclerotic plaque components, such as the fibrous cap, the
lipid core, and calcifications [403, 407].

The Ogden strain energy

�(C) = �(λ1, λ2, λ3) =
N∑

i=1

ci

ki

(
λ
ki
1 + λki2 + λki3 − 3

)
(5.10)

is another model to describe the 3D properties of vascular tissue, where λ1, λ2, λ3
are the principal stretches. The material parameters are denoted by ci [Pa] and
ki , where c0 = (

∑N
i ciki)/2 [Pa] then determines the tissue’s small-strain shear

modulus. Whilst the model is frequently used with N = 2 terms, as in the
description of normal and diseased carotid arteries [341], a reduced Ogden model

� = c0(λ
4
1 + λ4

2 + λ4
3 − 3) (5.11)

captured the properties of ILT tissue with the single material parameter c0 [Pa] [196].
In addition to models proposed for rubber, constitutive descriptions have also

been developed to represent vascular tissues in particular. The Demiray strain
energy [118]

�(C) = c1 exp[c2(I1 − 3)− 1] , (5.12)

where c1 [Pa] and c2 denote material parameters, considers an exponential term
to describe the progressive strain-stiffening of vascular tissue. The model has
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been calibrated to aortic wall tissue [436, 465], and used to analyze the carotid
bifurcation [117].

Example 5.1 (Vessel Segment Characterization). We consider a femoral artery
segment that is mounted in an experimental testing rig towards the characterization
of its biomechanical properties. The vessel segment may be represented by the
three-element lumped parameter model in Fig. 5.14. The vessel is perfused with a
Newtonian fluid of the viscosity η = 4.0 mPa s and the density ρ = 1025.0 kg m−3,
properties that mimics blood. The vessel segment may be regarded as a thin-walled
membrane, and the diameter D = 6.1 mm and the wall thickness H = 0.7 mm
describe its load-free configuration. The vessel length of l = 42 cm remains constant
during the test cycle.

Fig. 5.14 Schematic representation of a three-element lumped parameter model of a vessel
segment. The flows qin(t), qout(t) and the pressures pin(t), pout = 0 describe the inlet and outlet
conditions. The vessel’s biomechanical properties are expressed by its capacity C, resistance R,
and inductance L, respectively

(a) Compute the capacity C, the resistance R, and inductance L of the femoral
artery segment. Given this task, small deformations may be assumed, and the
vessel wall is described by a linear-elastic material with the Young’s modulus
E = 300.0 kPa and the Poisson’s ration ν = 0.5.

(b) In a refined analysis finite deformations should be considered, and the respective
vessel’s properties R, C, and L are to be computed at the Mean Arterial
Pressure (MAP) of 100.0 mmHg. Given this task, non-linear wall properties are
represented by the strain energy �(C) = c(I1 − 3)2 per unit tissue volume,
where c = 125.0 kPa is a stiffness-related parameter, whilst I1 = trC denotes
the first invariant of the right Cauchy–Green strain C. Incompressibility may be
assumed.

(c) Explore the response of the three-element lumped parameter model shown in
Fig. 5.14 at the prescribed pressures of pin = P exp(iωt) and pout = 0. Here, P
denotes the complex pressure amplitude, and i = √−1 is the imaginary unit. At
these boundary conditions, the flow q(t) establishes in the femoral artery. Given
R, C, and L through Tasks (a) and (b), compute the impedance module |Z| and
phase shift arg(Z) as a function of the signal frequency f = ω/(2π). �
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5.5.4 Inflated and Axially Stretched Two-Layered Vessel

For a number of applications, a thin-walled cylinder of then media and adven-
titia may be used in the description of a normal, and thus non-diseased vessel.
Figure 5.16 shows such a model, where �0 m and �0 a denote the stress-free refer-
ence configurations of the media and adventitia, respectively. Given the dimensions
Dm = 12 mm, Lm = 23 mm, Hm = 0.7 mm and Da = 14 mm, La = 27 mm,
Ha = 0.5 mm, the model aims at representing an infrarenal aorta. The strain
energies

�m(C) = cm(I1 m − 3) ; �a(C) = ca{exp[b(I1 a − 3)] − 1} (5.19)

describe the elastic properties of medial and adventitial tissue, where I1 m = trC
and I1 a = trC denote the first invariants of the right Cauchy–Green strain C in the
respective layers. The constitutive parameters cm = 18.5 kPa, ca = 3.6 kPa, and
b = 3.7 have been identified from tissue characterization experiments.

We put together the two tissue layers, which then determines the vessel’s load-
free configuration �0 ma, a configuration that is free from external loading. The
individual configurations �0 m and �0 a will in general have different dimensions,
which then leads to residual stresses in the load-free configuration �0 ma.

Fig. 5.16 Configurations of
the two-layered vessel model.
The motions χa and χm map
the stress-free reference
configurations of the
adventitia and media to the
vessel’s load-free
configuration. The motion χ

maps the vessel to its loaded
configuration, whilst the
motion χpre deforms the
adventitia to fit the geometry
of the media
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Towards the computation of the stress in the individual vessel layers, we
start with the description of their deformations. Given the principal stretches
λθ i, λz i, λr i in the media, i = m, and the adventitia, i = a, along the
circumferential θ , axial z, and radial r vessel directions, Fi = Grad(χ(χ i )) =
diag[λθ i, λz i, λr i] expresses the respective deformation gradient. The first invariant
of the right Cauchy–Green strain C then reads I1 i = λ2

θ i + λ2
z i + λ2

r i; i = m, a,
and the strain energy functions (5.19) together with the relation (5.7) allow us to
compute the circumferential and axial Cauchy stresses

σθ i = ξi(λ
2
θ i − λ2

r i) ; σz i = ξi(λ
2
z i − λ2

r i ) ; i = m, a (no summation) ,

where the membrane condition σr a = σr m = 0 has been used. The abbreviations
ξa = 2bca exp[b(λ2

θ a + λ2
r a + λ2

z a − 3)] and ξm = 2cm have also been introduced.
The kinematic compatibility between the media and adventitia may now be

addressed. We therefore introduce the pre-stretches

λθ pre = Dm/Da ; λz pre = Lm/La (5.20)

that deform the adventitia to fit the load-free media�0 m, see Fig. 5.16. The stretches
in the adventitia may then be expressed through

λθ a = λθ mλθ pre ; λz a = λzmλz pre .

The definition (5.20)1 used infinitesimally thin vessel wall layers, and alternatively
the circumferential pre-stretch may also be defined by λθ pre = (Dm−Hm/2)/(Da+
Ha/2). It then considers finite wall thicknesses of the respective layers, a refinement
that is not further considered in this example. The kinematics description is then
closed by the incompressibility of the vascular tissue. It allows us to express the
radial stretches by λr a = (λθ aλz a)

−1 and λr m = (λθ mλzm)
−1, respectively.

In the last step, we introduce the external loading to the problem, and consider
the inflation pressure pi and the axial stress resultantNz to act at the vessel segment.
The static equilibrium then reads

pid = 2(σθ aha + σθ mhm) ; Nz = (σθ aha + σθ mhm)dπ ,

where hm = Hmλr m and ha = Haλr a are the deformed thicknesses of the medial
and adventitial layers, whilst d = Dmλθ m = Daλθ a denotes the deformed diameter
of the vessel. Given the geometrical and constitutive data of the problem, these
equations read
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Fig. 5.17 Characteristics of the two-layered thin-walled composite tube during inflation at the
fixed axial stretches λzm of the media. (a) Inflation pressure pi versus the deformed vessel diameter
d. (b) Reduced axial force F versus the deformed vessel diameter d
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(5.21)

with ζ = 102 exp[2.718λ2
θ m + 6.94(λθ mλzm)

−2 + 2.685λ2
zm]. In addition to

the influence on the circumferential stress, the pressure pi also acts in the axial
direction—an inflation experiment that characterizes the vessel does not measure
Nz, but the reduced axial force F = Nz − pid

2π/4.
Figure 5.17 shows the vessel’s biomechanical characteristics as predicted

by (5.21). It is in qualitative agreement with the experimental observations and
illustrates the non-linearity of the inflation pressure pi and the reduced axial force F .

Aside from being a function of the circumferential and axial stretches, the stress
in the vessel wall is also different in the medial and adventitial layers. Figure 5.18a
shows the circumferential stress in both layers during the inflation at the fixed axial
stretch λzm = 1.3. The progressive increase of the stress in the adventitia at higher
deformations is characteristic for blood vessels, a mechanism towards protecting the
media and intima from overstretching. The stress in the vessel wall is biaxial, and

the von Mises stress σMises =
√
σ 2
θ − σθσz + σ 2

z may be used to express the stress
state. Figure 5.18b shows it in both layers during inflation at λzm = 1.3, a response
that is very similar to the circumferential stress versus diameter properties.

Towards the computation of the residual stress in the vessel’s load-free configu-
ration, we point out that neither pressure nor axial force act at �0 ma. The solution
of the governing equations (5.21) at pi = Fz = 0 therefore determines the residual
stress in�0 ma. It results in a system of two equations, which solution is given by the
stretches λθ m = 1.0836 and λzm = 1.0863 of the medial layer. It determines the
diameter D = Dmλθ m = 13.003 mm, the length L = Lmλzm = 24.985 mm, and
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Fig. 5.18 Development of the stress in the medial and adventitial layers during inflation at the
fixed axial stretches λzm = 1.3. (a) Circumferential stress and (b) von Mises stress versus the
deformed vessel diameter d

the wall thickness H = Haλr a + Hmλr a = 1.176 mm of the vessel at its load-free
configuration �0 ma.

5.5.5 Inflated and Axially Stretched Thick-Walled Vessel

The thickness of the normal vessel wall is approximately 10% of its diameter, and a
thick-walled cylindrical tube could be a more accurate biomechanical representation
as compared to the afore-described membrane model. We therefore consider the
aorta segment shown in Fig. 5.19. It occupies the stress-free reference configuration
�0, where Ri = 10 mm, L = 23.0 mm, and H = 2.0 mm denote the inner radius,
length, and wall thickness, respectively. At its in vivo configuration, the vessel is
inflated at the pressure pi, and stretched by λz = l/L along its axial direction, such
that ri, l, and h determine the vessel’s spatial configuration �.

The incompressible elastic deformation of the aorta wall may be described by the
Yeoh strain energy density

�(C) = c1(I1 − 3)+ c4(I1 − 3)4 , (5.22)

where I1 = trC denotes the first invariant of the right Cauchy–Green strain tensor
C, whilst c1 = 12.7 kPa and c4 = 1.4 kPa are constitutive parameters.

Towards the description of the kinematics of this problem, we introduce the outer
radius Ro = Ri + H of the stress-free vessel and look at the ring segment that is
formed between the inner radiusRi and the radiusR < Ro. Given incompressibility,
and thus volume-preserving deformation, L(R2 − R2

i ) = l(r2 − r2
i ) holds, and

r =
√
r2

i + (R2 − R2
i )/λz (5.23)

then describes the radial position of a material particle in the deformed vessel wall.
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Fig. 5.19 Reference (left)
and spatial (right)
configurations of the
thick-walled vessel model

The strain energy function (5.22), together with relation (5.7) allows the deter-
mination of the principal Cauchy stresses σi = σ i − κ; i = θ, z, r along the
circumferential θ , axial z, and radial r vessel directions. The tissue deformation
determines the stress σ i = 2λ2

i [c1 + 4c4(I1 − 3)3], and the boundary conditions set
the Lagrange pressure κ .

Cauchy’s momentum equation (3.107) in cylindrical coordinates {eθ , ez, er }
determines the static equilibrium of the vessel wall. Given the axisymmetric
problem, the only non-trivial component of Cauchy’s momentum equation is the
equilibrium along the radial directions er and reads rdσr/dr = σθ − σr . Its
integration at the boundary conditions σr(ri) = −pi and σr(ro) = 0, then yields
the relation

pi =
ro∫

ri

σθ − σ r
r

dr , (5.24)

where the identity σθ − σr = σθ − σ r has been used, and ro = ri + h denotes the
outer radius of the deformed vessel.

With the kinematics relation (5.23), we may express the circumferential stretch

by λθ (ri, λz, R) = r/R =
√
r2

i /R
2 + (1 − R2

i /R
2)/λz, and the incompressibility

allows the substitution λr(ri, λz, R) = λ−1
z λ

−1
θ of the radial stretch. The stresses

σθ and σ r may therefore be written as functions of ri, λz, and R, and the
equilibrium (5.24) then reads

pi =
Ro∫

Ri

σθ (ri, λz, R)− σ r(ri, λz, R)
R

dR ,

where r = λrR and dr = λrdR have been used. At prescribed axial stretch λz and
inner radius ri, this expression can be integrated—at least numerically. Figure 5.20a
shows the inflation pressure pi versus the deformed inner radius ri at a fixed axial
stretch λz.
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Fig. 5.20 Characteristics of the inflated thick-walled tube at fixed axial stretches λz. (a) Inflation
pressure pi versus the deformed inner radius ri. (b) Reduced axial force F versus the deformed
inner radius ri

In addition to the stretching along the circumference, the vessel is loaded in the
axial direction, where N = 2π

∫ ro
ri
(σ z − κ)rdr denotes the axial stress resultant.

Given the relation κ(ξ) = σ r(ξ)− σr(ξ) for the Lagrange contribution at the radial
position ξ , and the substitution σr(ξ) = −pi−

∫ ξ
ri
(σ θ−σ r)/rdr = ∫ ξ

ro
(σ θ−σ r)/rdr

of the radial stress, we may express the axial stress resultant by

N = 2π

ro∫

ri

⎛

⎝σz − σ r +
ξ∫

ro

σθ − σ r
r

dr

⎞

⎠ ξdξ

= 2π

ro∫

ri

(σ z − σ r)rdr + 2π

ro∫

ri

ξ∫

ro

σθ − σ r
r

drξdξ.

The reversion of the order of integration of the second integral then yields

N = 2π

ro∫

ri

(σ z − σ r)rdr + 2π

ro∫

ri

σ θ − σ r
r

r∫

ri

ξdξdr

= 2π

ro∫

ri

(σ z − σ r)rdr − 2π

ro∫

ri

σ θ − σ r
r

(
r2

2
− r2

i

2

)
dr

= π

ro∫

ri

(2σz − σ r − σθ )rdr + πr2
i

ro∫

ri

σθ − σ r
r

dr

︸ ︷︷ ︸
0+pi

,
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and

F = N − pir
2
i π = π

ro∫

ri

(2σz − σ r − σθ ) rdr (5.25)

expresses the reduced axial force. It is a function of the stresses σz, σ r , σ θ and
independent of the Lagrange pressure κ .

As with the inflation pressure pi, the reduced axial force (5.25) may be expressed
as a function of ri, λz, and R. It then reads

F = π

Ro∫

Ri

[2σz(ri, λz, R)− σ r(ri, λz, R)− σθ (ri, λz, R)]Rλ2
r (ri, R)dR ,

where r = λrR and dr = λrdR have been used. At prescribed axial stretch λz
and inner radius ri, it can be integrated. Figure 5.20b shows the development of the
reduced axial force F during vessel inflation at fixed λz.

Whilst the presented approach supports the computation of the vessels diameter
and the reduced axial force, the Lagrange pressure κ remains unknown and permits
from the computation of the stress in the inflated vessel. A discretization method,
such as the one used in Sect. 7.6.4 or the FEM model discussed in Chap. 4, is needed
to compute the stress across the vessel wall.

5.5.5.1 Anisotropic Models
The vascular wall is anisotropic, a property that can be captured by anisotropic
hyperelastic models. Said models are often formulated with respect to the principal
material directions, and thus within the circumferential eθ , the axial ez, and the
radial er direction of the vessel’s reference configuration �0. The Fung-type
model [89] is such a description and expresses the strain energy

�(E, eθ , ez, er ) = c0[exp(Q)− 1] , (5.26)

as a function of the Green–Lagrange strain E = (C − I)/2, where

Q = c1E
2
θθ + c2E

2
zz + c3E

2
rr + c4EθθEzz + c5EzzErr (5.27)

+ c6ErrEθθ + c7E
2
θz + c8E

2
rz + c9E

2
rθ , (5.28)

denotes a strain-dependent scalar. It is a function of the components of the Green–
Lagrange strain Eij = ei · (Eej ); i, j = θ, z, r with respect to the vessel’s
circumferential θ , axial z, and radial r directions, respectively. The model uses the
material parameters c0 [Pa] and ci; i = 1, . . . , 9, and is widely used in vascular
biomechanics, such as for the description of the aorta [620]. Towards the definition
of a strictly convex strain energy, the material parameter c0 has to be positive and
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the parameters ci; i = 1, . . . , 9 cannot be independent from each other [151], see
Sect. 5.6.2.2.

A class of models expresses the strain energy in terms of the in-plane strain
components Eθθ , Ezz, and Eθz. Whilst such models may be used for a membrane
analysis of the vessel wall, they do not support a general 3D stress analysis, see
Section 4.2.1 in [261]. The Hayashi-type model [536] is such a description and uses
the strain energy

�(E, eθ , ez) = c0[ln(1 −Q)] , (5.29)

where the scalar Q = c1E
2
θθ /2 + c2E

2
zz/2 + c3EθθEzz is a function of the in-

plane strain components. The model uses the material parameters c0 [Pa] and ci; i =
1, 2, 3 and has been used for applications, such as the description of the dog carotid
artery [536].

Another model [85] limited to a membrane analysis of the vessel wall, uses the
strain energy

�(E, eθ , ez) = c0

[
exp[c1E

2
θθ ] + exp(c2E

2
zz)+ exp(c3EθθEzz)− 3

]
, (5.30)

with the material parameters c0 [Pa] and ci; i = 1, 2, 3. It has been calibrated to
vessels, such as the normal and aneurysmatic aorta [568].

The models discussed in this sections are all characterized by a high degree of
phenomenology; they are essentially ad hoc proposals of mathematical functions.
Many more such models have been proposed towards capturing the properties of
the vessel wall, see amongst others [184, 263, 319, 408, 559].

5.5.6 Histo-mechanical Descriptions

The passive properties of the vessel wall may be seen as the superposition of
the mechanical responses from collagen and elastin [261, 273, 409, 515]. This
assumption is supported by results from selective digestion of these structural
proteins [129,468], experiments that also suggest that elastin and collagen are major
independent determinants of the wall’s mechanical properties at small and respective
large deformations. Collagen and elastin may therefore be represented by separate
terms in the strain energy function �.

Given the fibrous structure of the vessel wall, a number of modeling concepts
follow the description of a fiber-reinforced composite. Fibers are arranged in N
families that are embedded in an otherwise isotropic matrix material. The fibers
within the i-th family are parallel to each other, and their orientation in the vessel’s
reference configuration is determined by the unit direction vector a0 i . One example
is the HGO model [260] and materialized by the strain energy
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�(C, a0 i ) = c0(I1 − 3)+
N∑

i=1

c1 i{exp[c2 i (I4 i − 1)2] − 1} , (5.31)

where the neoHookean parameter c0 [Pa] reflects the properties of the matrix
material, whilst c1 i [Pa] and c2 i; i = 1, . . . , N are parameters related to the
i-th family of fibers. The matrix deformation is captured by the first invariant
I1 = trC, whilst the fiber stretch is introduced through the fourth invariant I4 =
C : Ai = λ2

a , where Ai = a0 i ⊗ a0 i denotes the structural tensor and represents
the organization of the i-th family of fibers. The model has been frequently used in
the description of vessels, such as the normal and aneurysmatic aorta, modeled with
N = 2 [523, 614, 620] and N = 4 [20, 156] families of fibers, respectively. Another
application to the aorta and a number of other arteries also used N = 4 families of
fibers [293, 472].

The HGO model introduces the exponential function towards the phenomenolog-
ical description of the successive engagement of collagen fibers at increasing tissue
stretch—it captures the progressive stiffening of the vessel wall. A modified version
of the model used a 6-th order polynomial term [28], and proposed the strain energy

�(C, a0 i ) = c0(I1 − 3)+
2∑

i=1

c1(I4 i − 1)6 , (5.32)

where c0, c1 [Pa] are material parameters that are related to the matrix and fibers,
respectively. It has been calibrated to describe the biomechanical properties of the
aorta [28, 568].

Another modification of the HGO model replaced the neoHookean-based
description of the matrix with an exponential function [465]. The strain energy
then reads

�(C, a0 i ) = c0{exp[c1(I1 − 3)] − 1} + c2{exp[c3(I4 − 1)] − 1} , (5.33)

where c0, c2 [Pa] and c1, c3 are material parameters. It has been used to describe the
mechanics of vessels, such as the aorta [465].

Yet another model proposed the strain energy [475]

�(C, a0 i ) = c0(I1 − 3)+
2∑

i=1

c1[exp(Q)− 1] , (5.34)

withQ = c2[c3(I4 i − c4)
2 + (1 − c3)(I1 − 3)2]. The model introduced the material

parameters c0, c1 [Pa] and ci; i = 2, . . . , 4 and has also been used to describe the
aorta [474, 475, 568].

The orientation of collagen fibers in the vessel wall, and especially in the
adventitia, is dispersed [434, 496, 551], see for example data acquired from the
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normal [160] and the aneurysmatic [195] aorta. The basic assumption of two (or
more) families of parallelly aligned collagen fibers seems therefore unrealistic [434]
and led to the development of the GOH model. It represents an efficient way to
include the dispersion of fiber orientations in the description of the strain energy
function [202]. Given a fiber-reinforced composite with N families of (dispersed)
fibers, the GOH model proposes the strain energy

�(C, a0 i , κi) = c0(I1 − 3)+
N∑

i=1

c1[exp(c2E
2
i )− 1] , (5.35)

where the neoHookean parameter c0 [Pa] describes the matrix, whilst c1 [Pa] and c2
are related to the properties of the collagen fibers. The model considers all collagen
fibers within the i-th (dispersed) family of fibers to be homogenously deformed at
the strain Ei = Hi : C − 1, where Hi = κiI + (1 − 3κi)(a0 i ⊗ a0 i ) denotes
a general structural tensor. It describes the structure of the i-th family of fibers,
which orientation is transverse-isotropically dispersed. The i-th family of collagen
fibers is then captured by its mean orientation a0 i and its dispersion κi , a parameter
that determines how much the fibers are dispersed around the mean orientation a0 i .
The model is frequently used, such as in the description of the aorta [397] and the
non-diseased parts of carotid plaques [407].

Fibers, such as collagen fibers can only contribute to the wall stress if they are
at tension, and the contribution of fibers that are at axial compression should be
excluded. Given the aforementioned constitutive description of dispersed fibers, the
exclusion of individual fibers is challenging and different criteria [202, 367] have
been proposed to neglect axially compressed fibers.

Given the Probability Density Function (PDF) ρ(M) of the fiber orientation, the
general structural tensor may be computed by the integration [202]

H = 1

2π

∫ π
2

− π
2

∫ π
2

− π
2

ρ(M)M ⊗ M cosφdθdφ (5.36)

over the hemisphere, which then allows the application of the model (5.35) to
any fiber orientation distribution ρ(M). The factor 1/(2π) in (5.36) normalizes H
over the hemisphere, and M = [cosφ cos θ cosφ sin θ sinφ] denotes an arbitrary
orientation in the reference configuration�0, expressed through the azimuthal θ and
elevation φ angles, respectively.

The collagen in the vessel wall is continuously synthesized and degraded. The
assumption of homogenously deformed fibers within the i-th family of fibers, as
made by the GOH model, therefore appropriately reflects in vivo (physiological)
vessel wall conditions, whilst for many other load cases the collagen fibers may not
be homogeneously deformed.
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5.5.7 General Theory of Fibrous Connective Tissue

The properties of the vessel wall may also be expressed by the general theory of
fibrous connective tissue [325], an approach that results in an angular integration
model. The stress in the wall is then the superposition of non-interacting fibers
which orientations are captured by ρ(M), a PDF that determines their orientation
within the vessel wall. The vessel wall’s Cauchy stress therefore reads

σ = 1

2π

∫ π/2

φ=−π/2

∫ π/2

θ=−π/2
ρ(M)σ (λ)dev(m ⊗ m) cosφdφdθ − pI , (5.37)

where m = FM denotes the push-forward of the referential fiber direction M with
|M| = 1, and dev(•) = (•) − tr(•)I/3 is the spatial deviator operator. Here, σ(λ)
expresses the Cauchy stress in a fiber as a function of the fiber stretch λ. It is a 1D
constitutive model and therefore eases the description of the detailed load-carrying
mechanisms at the fiber level. The hydrostatic pressure p acts at the identity I and
serves as a Lagrange parameter to enforce incompressibility.

5.5.7.1 Collagen Fiber Models
The collagen fibers in the unloaded vessel wall are undulated and then gradually
engage (recruit) upon loading, a mechanism that determines the strong stiffening
of vascular tissue at increasing strain. Whilst the aforementioned strain energy
functions implemented a phenomenological description of said mechanism, we may
also explicitly model the statistics of the engagement of collagen fibers.

Almost 40 years ago, a tissue model based on wavy collagen fibers that engage
during loading has been reported [116]. The model expressed the tissue stress by

σ(ε) = c0

∫ ε

−∞
(ε − x)ρ(x)dx , (5.38)

where c0 [Pa] denotes the stiffness of the individual collagen fibers. The engagement
PDF ρ(ε) determines the amount of collagen fibers that mechanically engages at ε,
the normal strain component of the tissue strain in direction of the fiber.

Different engagement PDFs ρ(x) have been used to model the mechanics of the
vessel wall according to (5.38). The Cauchy–Lorentz3 PDF

ρ(x) = c1

{2π [c2
1/4 + (x − c2)2]}

was proposed to describe the collagen fiber engagement in the aorta [604], whilst
the log-logistic PDF

3Hendrik Antoon Lorentz, Dutch physicist, 1853–1928.
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ρ(x) =

⎧
⎪⎨

⎪⎩

c1(x − c3/c2)
c1−1

c2[1 + (x − c3/c2)c2]2 ; x ≤ c3 ,

0 ; x > c3 ,

has been applied to the carotid artery wall [620]. Given these PDFs, c1, c2, c3
are dimensionless parameters that describe the engagement of collagen fibers. In
addition, a triangular engagement PDF

ρ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 ; 0 < x ≤ c1 ,

2(x−c1)
(c2−c1)[(c1+c2)/2−c1] ; c1 ≤ x ≤ c2+c1

2 ,

2(c2−x)
(c2−c1)[c2−(c1+c2)/2] ; c2+c1

2 ≤ x ≤ c2 ,

0 ; c2 < x < ∞ ,

(5.39)

has been reported, where c1 and c2 denote the onset and offset of the triangular
PDF [360]. In addition to the symmetric triangular distribution (5.39), the general
and thus unsymmetrical triangular distribution has also been used to more closely
represent experimental data [373].

Most collagen fiber-engagement models assume the fibers to follow an affine
transformation. The tissue stretch

√
C : (M ⊗ M) along M matches then the fiber

stretch λ. Here, C is the right Cauchy–Green strain, and M denotes the unit direction
vector of the fiber in the reference configuration �0. Given the PDF ρ(x), the
Cumulative Density Function (CDF) ϒ(λ) = ∫ λ

−∞ ρ(x)dx determines the amount
of collagen fibers that are engaged at λ, and therefore all fibers that carry load. We
may decompose the total stretch λ = λeλs of a collagen fiber into the part λs that
straightens the fiber and defines its intermediate configuration, and the part λe that
elastically deforms it with respect to the intermediate configuration, see Fig. 5.21.

In addition to the kinematics, a constitutive model of the fibers is needed to close
the system of equations. The description of the first Piola–Kirchhoff stress in the
fiber’s intermediate configuration is the most convenient approach to formulate
such a model [242]. We demand the model to be independent from the fibers’
intermediate configurations—it then avoids keeping track of the infinite large
number of intermediate configurations. Given this access, the first Piola–Kirchhoff

Reference configuration

Intermediate configuration

Spatial configuration

Fig. 5.21 Different configurations during the stretching of an undulated fiber. In the reference
configuration, the fiber has the length L, whilst ls denotes the straightened out but still unstressed
fiber
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stress T = c0 log λe is the only possible function to describe the fiber [242], where
c0 [Pa] denotes the fiber stiffness. With the kinematics relation λ = λeλs, the model
yields the differential

dT

dλ
= c0

λs

dλs

dλ
= c0

λ
(5.40)

that is indeed independent from the fiber’s intermediate configuration, and thus from
the stretch λs. The expression

P(λ) = c0

∫ λ

−∞
ϒ(x)

x
dx (5.41)

then determines the first Piola–Kirchhoff stress, and thus the sum from all fibers that
are engaged, where ϒ(x) denotes the CDF of ρ(x).

The expression (5.41) may be integrated, and the application of the first Piola
transform for incompressible solids σ = λP then determines the closed-form
solution of the Cauchy stress

σ(λ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 ; λ ≤ c1 ,

2c0(λ−c1)
3

3(c2−c1)
2 ; c1 < λ ≤ c2+c1

2 ,

c0(λ−c1)(c
2
1−3c2

2−2c1λ+6c2λ−2λ2)

3λ(c2−c1)
2 ; c2+c1

2 < λ ≤ c2 ,

c0(λ− c1) ; c2 < λ ≤ ∞ ,

(5.42)

where c0 [Pa] and c1, c2 are parameters. Slightly different assumptions have been
used elsewhere [360], and the model has been calibrated to aortic wall tissue [195,
360, 374, 434].

During the cardiac cycle, the artery wall deforms differently along its circumfer-
ential and axial directions, respectively. The collagen fibers that are aligned along
these direction are then exposed to different stretches and may develop towards
different homeostatic targets. Another model [195] therefore considered orientation-
dependent collagen fiber properties and proposed the stress–stretch law

σ(λ) =
⎧
⎨

⎩
0 ; λ ≤ 1 ,

2c0λ(1 + c1 sin θ)(λ2 − 1) exp[c2(λ
2 − 1)] ; 1 < λ ≤ ∞ ,

(5.43)

where c0 [Pa] and c1, c2 are material parameters. The angle between the fiber
orientation and the vessel’s circumferential direction is denoted by θ , and the model
has been calibrated to capture the aneurysmatic aorta [195].

Yet another model [551] considered the stress
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σ(λ) =
{

0 ; λ ≤ c0 ,

c1(λ− c0) ; c0 < λ ≤ ∞
(5.44)

in a collagen fiber that is stretched at λ. The material parameters are denoted by
c0 [Pa] and c1, and the model has been calibrated to the aortic wall [378,623]. Many
more models to describe the load-bearing of collagen have been proposed, including
also the complex time-dependent properties of this structure [374].

5.5.7.2 Description of Collagen Fiber Orientations
The orientation of the collagen fibers in the vessel wall, and especially in the
adventitia, is dispersed. A structural property that has a remarkable effect on
the macroscopic mechanical properties of the vessel wall [202]. The dispersion
of collagen fibers may be described by an orientation PDF ρ(M(φ, θ)), where
cosφdθdφ determines the normalized amount of collagen fibers that are aligned
within the infinitesimal small sector {[φ, φ + dφ], [θ, θ + dθ ]}, see Fig. 5.22. The
elevation and azimuthal angles are denoted by φ and respectively θ , and given the
orientation PDF is normalized, the integral over all possible directions M(φ, θ) then
yields the surface of the unit hemisphere,

∫ π/2

−π/2

∫ π/2

−π/2
ρ(M) cosφdθdφ = 2π . (5.45)

The orientation PDF ρ(M) allows us to compute the general structural tensor
H (5.36) of the GOH model (5.35), or it may be included directly in the stress

Circumferential 
vessel direction

Tangential 
vessel plane

eθ

ez

er

M

dθ

dφ

θ

φ

Fig. 5.22 Fiber orientation in the vessel wall. The Cartesian base vector eθ , ez, er denote the
circumferential, axial, and radial vessel wall directions, respectively. The tangential plane is
formed by the vessel’s circumferential eθ and axial ez directions. Elevation φ and azimuthal
θ angles determine the fiber direction M in the vessel wall. The infinitesimal small sector
{[φ, φ + dφ], [θ, θ + dθ]} is used to define the orientation Probability Density Function (PDF)
ρ(M) of fibers
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computations according to the general theory of fibrous tissues (5.37). Whilst ρ(M)
could basically be interpolated between experimental data points [428, 551], such
data are often noisy and sparse. The orientation data of the collagen is therefore
commonly represented by a statistical (analytical) PDF that is then calibrated to the
experimental data points.

Given the orientations of collagen fibers are transverse-isotropically dispersed
around the circumferential direction eθ , the orientation PDF

ρ(M) = ρ(θ) = c exp[c0 cos(2θ)] (5.46)

describes the tissue structure, where c0 denotes a dimensionless distribution param-
eter, whilst c is the dimensionless normalization parameter that ensures the condi-
tion (5.45). The transverse isotropic distribution of collagen fibers in the vessel wall
is justified by earlier experimental data [160], and the PDF (5.46) has been used to
describe the collagen distribution in the aorta [496].

More recent experimental data [195, 496] suggests a more complex orientation
distribution of collagen fibers in the vessel wall. Collagen fibers exhibit a higher
dispersion within the tangential plane than perpendicular to it—the dispersion of
the azimuthal angle θ is then higher than the dispersion of the elevation angle φ.
This structure cannot be captured by the transverse isotropic PDF (5.46) and the
Bingham PDF [47]

ρ(M) = ρ(φ, θ) = c exp[c0(cosφ cos θ)2 + c1(cosφ sin θ)2] (5.47)

may be used instead, where c0, c1 denote dimensionless distribution parameters,
whilst c ensures the condition (5.45). The Bingham PDF has been calibrated to
collagen orientations of the carotid artery wall [483], and the aneurysmatic aortic
wall [195].

Regardless collagen orientation is 3D, for some applications a planar distribution
may be used. The von Mises PDF

ρ(M) = ρ(θ) = c exp[c0 cos(2θ)] (5.48)

has therefore also been proposed to describe the collagen in the aortic wall [434].
The parameter c0 then determines the shape of the PDF, and the 2D normalization
condition

∫ π/2

−π/2
ρ(M)dθ = π (5.49)

determines the normalization parameter c.
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5.5.8 Residual Stress and Load-Free Configuration

The vessel’s load-free configuration is not stress-free, and we cannot always directly
use the aforementioned constitutive models—they are formulated with respect to
the vessel wall’s stress-free reference configuration. Some of these models have
therefore been combined with techniques to estimate the residual strain field from
the uniform stress hypothesis [431], through the back-calculation of the load-free
configuration from the vessel’s inflated geometry [114, 209, 465], or the use of a
modified updated Lagrangian formulation [209].

The residual stress is multi-dimensional, and the dissection of a vessel into stress-
free segments is in general not possible. However, a vessel may always been cut
open which then results in the opened-up configuration �0 shown in Fig. 5.23. The
opened-up configuration is often regarded stress-free and then used as the reference
configuration �0 for stress and strain calculations. Whilst this approach is widely
used, it neglects the existence of axial residual stresses and does not address the
multi-dimensionality of the residual deformation in the vessel wall.

Example 5.2 (Residual Stresses of a Thick-Walled Artery). The load-free config-
uration � of an artery segment has the dimensions ri, l, h, see Fig. 5.23. At this
configuration the vessel contains residual stresses, and cutting it open then results
in its opened-up configuration �0 of the dimensions Ri = 10 mm, L = 23.0 mm,
H = 2.0 mm, and α = π/2. Given this example, �0 may be regarded as the stress-
free configuration. The vessel tissue is incompressible and its constitutive properties
may be modeled by the neoHookean strain energy

�(C) = c1(I1 − 3) , (5.50)

per unit volume vessel wall tissue. Given incompressibility, we do not need to
distinguish between unit volume of deformed or undeformed volume. The stiffens-
related parameter c1 = 12.7 kPa has been identified from mechanical tissue
characterization, and I1 = trC denotes the first invariant of the right Cauchy–Green
strain C.

Fig. 5.23 Opened-up and
stress-free configuration �0
as well as load-free
configuration � of a vessel
segment. The stress-free
configuration �0 serves as
reference configuration in the
description of stress and
strains

(a) Describe the deformation kinematics of this problem, and derive the Cauchy
stress as a function of the principal stretches.
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(b) Derive the equilibrium equation in the radial direction that follows from
Cauchy’s equation of motion divσ = 0.

(c) Provide the relation of the axial force N , and thus the stress resultant in the
vessel’s axial direction.

(d) Show that the configuration � with ri = 7.26 mm, l = 23 mm, h = 2.0 mm
satisfies the balance equations of Tasks (b) and (c).

(e) Plot the distribution of the Cauchy stress differences σθ −σr and σθ −σz across
the wall thickness.

(f) Compute the circumferential Cauchy stress σθ at the inside and outside of the
artery. �

5.5.9 Visco-hyperelastic Descriptions

Vascular tissue shows non-linear viscoelastic properties [2, 182]. In addition to the
time-dependent properties of cells and ECM constituents themselves, the motion
of fluids within the tissue also contributes to the over-all time-dependent tissue
properties. We may generalize the linear viscoelastic models discussed in Sect. 3.5.4
towards the description of soft biological tissues, an approach known as quasi-linear
viscoelasticity. It is widely applied in the descriptions of vascular tissue, such as the
coronary artery [262], carotic artery [248], and ventricular tissue [194]. As with the
series approximation of a non-linear function, the superposition of a finite number
of linear viscoelastic models results in non-linear viscoelastic properties.

We may describe the vascular wall with the generalized Maxwell rheological
model shown in Fig. 5.25, a model that could also be called generalized Standard
Solid model. Its elastic properties are represented by the Helmholtz free energy
�(C,CM 1,CM 2, . . . ,CMN) per unit vessel tissue, where C denotes the right
Cauchy–Green strain, whilst CM i is the right Cauchy–Green strain of the i-th
Maxwell body (spring) and serves as hidden internal variable. The elastic energy

�iso = �iso E(C)+
N∑

i=1

�iso M i (CM i ) (5.54)

Fig. 5.25 Generalized
Maxwell rheological element
with �iso E and
�iso M i; i = 1, . . . , N
representing the strain
energies stored in the
respective hyperelastic
springs

...
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then represents the tissue, where �iso E(C) and �iso M i (CM i ) denote the strain
energies stored in the elastic body (mainspring) as well as in the spring of the
i-th Maxwell body, respectively. Coleman and Noll’s procedure for incompressible
materials (3.131) yields therefore the second Piola–Kirchhoff stress

S = 2
∂�iso E(C)

∂C︸ ︷︷ ︸
SE

+ 2
N∑

i=1

∂�iso M i (CM i )

∂CM i

: ∂CM i

∂C
︸ ︷︷ ︸

SM

−κC−1 , (5.55)

where SE is the elastic stress, whilst SM = ∑N
i=1 SM i denotes the over stress, a

stress that appears as long as the material has not yet reached its thermodynamic
equilibrium. As with an incompressible elastic description, the Lagrange pressure κ
contributes to the hydrostatic pressure p and enforces the incompressibility.

The term ∂CM i/∂C in (5.55) establishes the relation between the strain incre-
ment�CM i of the i-th Maxwell body and the total strain increment�C, a kinematic
relation determined through rate equations, see Sect. 3.5.4.7. We may also implicitly
specify this relation through the development of the over stresses SM i , and introduce
the linear rate equations

ṠM i + 1

τi
SM i = βi ṠE (no summation) , (5.56)

where βi and τi [s−1] are the properties of the i-th Maxwell body. Whilst the scalar
βi relates the stiffness of the i-th Maxwell body to the stiffness of the elastic body,
τi defines the relaxation time of the i-th Maxwell body. The over stress may then be
expressed by the convolution integral

SM(t) =
N∑

i=1

SM i =
N∑

i=1

⎧
⎨

⎩βi
t∫

0

exp[−(t − x)/τi]ṠEdx

⎫
⎬

⎭ , (5.57)

the closed-form solution of the governing equation (5.56). The outlined viscoelastic
model leads to an extremely efficient FEM implementation [222, 291, 506], and the
observation that the algorithmic tangent C = 2∂S/∂C exhibits major symmetry,
verifies that a Helmholtz free energy function �iso indeed exists.

5.5.10 Cyclic Deformation of the Visco-hyperelastic Thin-Walled
Tube

We may describe the wall of the common iliac artery by the generalized Maxwell
model shown in Fig. 5.25 with N = 2 Maxwell bodies (devices). Given its
stress-free reference configuration �0, the artery may be regarded as a cylindrical
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membrane of the diameter D = 9.0 mm and the wall thickness H = 0.8 mm. The
vessel tissue is incompressible, and the Yeoh strain energy

�(C) = c3(I1 − 3)3 (5.58)

describes its elastic properties per unit volume, where I1 = trC and c3 = 50.0 kPa
denotes the first invariant of the right Cauchy–Green strain and the stiffens-related
parameter, respectively. The over stresses SM i; i = 1, 2 in the vessel wall are
determined by the linear rate equations (5.56), where the properties β1 = 0.3,
β2 = 0.2 and τ1 = 0.2 s−1, τ2 = 0.7 s−1 describe the respective Maxwell bodies.

With the strain energy (5.58) and the relation (5.5), the principal second Piola–
Kirchhoff stresses SE i = 6c3(I1 − 3)2 − κ/λ2

i determine the vessel wall’s elastic
properties, where κ is the Lagrange contribution to the hydrostatic pressure, and
i = θ, z, r denotes the circumferential, axial, and radial directions, respectively.
Towards the computation of the over stress (5.57), we determine the isochoric elastic
second Piola–Kirchhoff stress SE = DevSE = SE − (C : SE)C−1/3, which then
reads

SE = 2c3(I1 − 3)2diag

[
2 − λ2

r + λ2
z

λ2
θ

, 2 − λ2
θ + λ2

r

λ2
z

, 2 − λ2
θ + λ2

z

λ2
r

]
,

where the right Cauchy–Green strain C = FTF = diag[λ2
θ , λ

2
z, λ

2
r ] has been used.

The computation of the over stress requires the rate of the isochoric elastic stress

ṠE, which itself is a function of the rate of stretches. Whilst these rates derive in
general from the solution of the equilibrium, in the present example we directly
prescribe them, and

λθ = 1.4 + 0.1 sin(2πt) ; λz = 1.2 ; λr = (λθλz)
−1

determines the development of the stretches over time. We may now solve the
convolution integral (5.57) and compute the over stresses SM, an exercise that
in general requires a numerical schema [507], see Example 5.3. The equilibrium
in the radial direction SE r + SM r − p/λ2

r = 0 allows us then to express the
hydrostatic pressure p (to be distinguished from the above introduced κ) and closes
the description of the second Piola–Kirchhoff stress S = SE + SM − pC−1.

The equilibrium of the inflated thin-walled tube determines the inflation pressure
pi = 2σθh/d and the reduced axial force F = σzdπh−pd2π/4, where σθ = Sθλ

2
θ

and σz = Szλ
2
z denote the circumferential and axial Cauchy stresses, respectively.

The substitution of the deformed diameter d = Dλθ and the deformed wall
thickness h = Hλr = H(λθλz)

−1 then yields

pi = 2SθH

λzD
; F = SzλzDHπ − pi

D2λ2
θπ

4
.
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Fig. 5.26 Properties of the inflated visco-hyperelastic thin-walled tube (blue) at the prescribed
circumferential and axial stretches of λθ = 1.4 + 0.1 sin(2πt) and λz = 1.2, respectively. (a)
Inflation pressure pi versus the deformed diameter d of the tube. (b) Reduced axial force F versus
the deformed diameter d of the tube. The dot denotes the time point t = 0 and the curves cover the
time interval 0 < t < 3.0 s. For comparison, the hyperelastic solution is shown in red

Figure 5.26 illustrates the inflation pressure and the reduced axial force over the
time interval 0 < t < 3.0 s, where the aforementioned properties of the iliac artery
have been used. Aside from a hysteresis, the graph shows that the visco-hyperelastic
tube is stiffer than the hyperelastic solution. Given cyclic periodic conditions, D =
2π
∮
pirdr determines the dissipation per cycle, where r = d/2 denotes the radius

of the deformed vessel.

Example 5.3 (Discretization of the Convolution Integral). The viscoelastic proper-
ties of a vessel wall may be described by a generalized Maxwell model, and the
convolution integral (5.57) then determines the over stress.

(a) Use the mid-point integration rule and discretize the convolution integral (5.57)
at the time tn+1. The elastic stress and the over stress at the previous time point
tn are available in a history vector.

(b) Use the iteration rule of Task (a), compute the stress, and replicate the example
discussed in Sect. 5.5.10. Investigate the influence of the time step �t upon the
accuracy of the results.

(c) Imagine a Finite Element Method (FEM) implementation of the model and

provide the algorithmic tangent C
algo
M n+1 that follows from the linearization of

the over stress, �SM = 2C
algo
M n+1 : �C, where C denotes the right Cauchy–

Green strain. �

5.5.11 Damage and Failure Descriptions

The mechanical stress throughout the different histological tissue constituents is
inhomogeneous and results in local stress concentrations within the vascular wall.
At high stress levels, micro-defects, such as the pull-out and breakage of collagen
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fibers, develop and then irreversibly rearrange the tissue’s microstructure. Healthy
vascular tissue at physiological stress levels continuously repairs such defects and
maintains the structural integrity of the vessel wall. At supra-physiological stress
levels or in diseased vascular tissue, healing cannot match up with the development
of micro-defects and the tissue continues to accumulate weak links. Given the
number of micro-defects per tissue volume exceeds a certain threshold, micro-
defects coalesce towards the formation of macro-defects. A single macro-defect then
eventually propagates and fractures the vessel wall.

The study of a number of problems in vascular biomechanics requires the consti-
tutive description of vessel wall injury, and damage-related effects [141, 142, 410]
as well as plasticity-related effects [410, 489] have been proposed. It stimulated
the development of models that account for damage [24, 64, 258, 356, 397, 580],
plasticity [197,539], and fracture [154,170,200,201,281] of the vascular wall. Most
commonly a single-scale macroscopic framework has been proposed, which, how-
ever, fails to describe the experimentally reported localized irreversible deformation
of individual collagen fibers [308, 441].

There is still no clear definition of what constitutes vascular tissue injury, and
conventional mechanical indicators such as visible failure and loss of stiffness may
not adequately identify the tissue’s tolerance level. A more complete definition
of mechanical injury is therefore needed to adequately describe mechanical and
physiological changes that then result in anatomical and functional damage [577].

5.5.11.1 Modeling Irreversible Properties of Collagen Fibers
At large deformations, collagen is the main load-carrying protein in the vessel wall,
and its failure properties are therefore sensitive to the modeling of vessel wall
damage and failure. A number of constitutive approaches have been proposed to
describe the damage of collagen fibers, some of them are discussed in the following.

Continuum Damage Mechanics (CDM) Description A collagen fiber may be
regarded as a 1D robe-like structure, and the first Piola–Kirchhoff stress is the most
natural stress measure to specify the constitutive properties of such a fiber [242].
Given a Kachanov-like [290] damage variable 0 ≤ d ≤ 1 that defines the state of
damage or weakening of a collagen fiber,

P(λ, d) = (1 − d)P̃ (λ) (5.60)

then determines the first Piola–Kirchhoff stress. Here, λ denotes the stretch, whilst
P̃ (λ) determines the properties of the undamaged collagen fiber, a function that
may be captured by the descriptions discussed in Sect. 5.5.7.1. In addition to (5.60),
a governing equation determines the evolution of the state of damage d and closes
the constitutive description. Whilst such a damage-based approach is widely used in
the description of vascular tissue [24,65,356], it is characterized by a high degree of
phenomenology and cannot provide detailed structural insights into microstructural
failure of vascular tissue.
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Fig. 5.28 Schematic load-carrying mechanisms of a collagen fiber that is assembled by undulated
collagen fibrils. Collagen fibrils of different undulations, gradually engage until they eventually
rupture. (a) Deformation of an individual fibril. The engagement stretch λs defines the fibril’s
intermediate configuration, a deformation at which the fibril mechanically engages and starts
carrying load. The application of the failure stretch λf relative to the intermediate configuration
defines the deformation at which the fibril ruptures. (b) The collagen fibrils’ configurations
are described by a triangular Probability Density Function (PDF). It describes the mechanical
engagement (top), and “stretching” the PDF by λf, describes the rupture of collagen fibrils
(bottom). The grey-shaded triangle denotes the portion of fibrils that has been ruptured at the
stretch λ

Statistics-Based Description A collagen fiber may be seen as the arrangement of
a bundle of undulated collagen fibrils of negligible bending stiffness, see Fig. 5.28.
An engagement PDF ρs(λ) then determines the portion of the mechanically engaged
collagen fibrils [360,604,620]. Given an individual fibril, λs defines its intermediate
configuration, a state at which the fibril is straitened out but still stress-free. At
stretches beyond λs, the collagen fibril is elastically stretched until it eventually fails
at the failure stretch λf. The stretch λf is measured relative to the fibril’s intermediate
configuration, see Fig. 5.28a.

The portion of ruptured fibrils may be described by ρf(λ), a PDF that results from
“stretching” the engagement PDF ρs(λ) by λf [243], see Fig. 5.28b. The portion of
ruptured fibrils at the stretch λ is then directly given by ϒf(λ) = ∫ λ

λfλ1
ρf(x)dx, the

CDF of ρf(λ). It may also be illustrated in the graph of the engagement PDF ρs(λ),
where it covers the domain λ1 < x ≤ (λ/λf), and thus the grey-shaded triangle in
Fig. 5.28b. The triangular PDF [242] and the normal PDF [277] have been used in
the statistics-based description of collagen fibril rupture.

Example 5.4 (Progressive Engagement and Rupture of Collagen Fibrils). The
mechanical properties of a patch dissected from the media of the vascular wall may
be modeled as a collagen fiber-reinforced composite. All collagen fibrils are aligned
in the circumferential direction, and they are undulated in the tissue’s unloaded
reference configuration. The triangular Probability Density Function (PDF)
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ρs(λ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 ; 0 < λ ≤ λ1 ,

2(λ−λ1)
(λ2−λ1)(λ3−λ1)

; λ1 ≤ λ ≤ λ3 ,

2(λ2−λ)
(λ2−λ1)(λ2−λ3)

; λ3 ≤ λ ≤ λ2 ,

0 ; λ2 < λ < ∞

describes the engagement of fibrils upon loading, where λ1 = 1.05 and λ2 = 1.8
denote the respective onset and offset of the triangular PDF, whilst λ3 = 1.3 is the
stretch at the peak probability. The tissue is incompressible, and Pf = k(λe−1)with
k = 3.8 MPa determines the first Piola–Kirchhoff stress versus stretch properties
of an individual collagen fibril. The stretch λe is measured relative to the fibril’s
intermediate configuration.

(a) Consider simple tension along the circumferential direction and compute the
Cauchy stress versus stretch properties of the tissue.

(b) Consider the failure stretch λf = 1.28, a stretch measured relative to the fibril’s
intermediate configuration and at which a fibril ruptures. Given this assumption,
compute the Cauchy stress that develops upon continuous elongation along its
circumferential direction. Incompressibility may be assumed. �

Plastic-Like Description Collagen fibrils are interconnected by PG bridges as
shown in Fig. 5.30, cross-linking that allows to a certain extent the sliding of
adjacent collagen fibrils relative to each other. Let us assume the deformation of
the PG-bridge defines four distinct mechanisms [191, 499]:

• Elastic—the PG-bridge instantaneously changes its configuration upon loading
• Viscoelastic—the sliding between the glycan chains develops over time, but the

original PG-bridge configuration is fully recovered upon unloading
• Plastic sliding—the proteoglycan protein slides along the collagen fibril, and a

permanent deformation remains even at complete unloading
• Damage—the glycan chains or proteoglycan protein have slid apart and the

mechanical linkage is broken

These mechanisms motivate a “stretch-based” constitutive concept, where irre-
versible (plastic) sliding of the collagen fibrils not only defines the fiber’s irre-
versible elongation but also its state of damage d. The damage variable d reflects the
loss of fiber stiffness from non-functional (broken) PG bridges, and an exponential
function d = 1 − exp(−aε2

pl) may be used to relate it to the plastic strain εpl of
the collagen fiber, see [191]. Small and large values of the parameter a then define
ductile and brittle failure properties, respectively. Full details, including the model’s
numerical implementation, are reported elsewhere [191].
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Proteoglycan (PG) bridge

P

Aonic glycosamino-
glycan duplex

Collagen fibril

P

Fig. 5.30 Schematic load-carrying mechanisms of a collagen fiber assembled by a number of
collagen fibrils. The model considers straight collagen fibrils, where Proteoglycan (PG) bridges
support load transition between collagen fibrils. Antiparallel anionic glycosaminoglycan duplex
binds non-covalently to the collagen fibrils at the proteoglycan protein (P)

5.5.11.2 Failure Represented by Cohesive ZoneModels
The aforementioned injury models can be directly used in simulations, as long
as the determinant of the material’s stiffness tensor remains positive definite for
all possible deformations, and thus detC > 0 holds [402]. Beyond this limit,
a regularization is needed to avoid non-physical results [32]. Aside from the
integration of an internal length-scale in the constitutive description that specifies
the size of (collagen) failure, a number of other methods have also been proposed to
describe the development of failure in a continuum, see Sect. 3.8.

Vascular tissue failure has also been modeled by a cohesive zone, see
Sect. 3.8.4.2. The resistance of a crack against (further) opening is then described by
the cohesive potentialsψ = ψ(ud⊗ud, ζ ), where ud and ζ denote the crack opening
displacement and the damage variable, respectively. The theory of invariants [520]
allows us to express the potential by ψ = ψ(i1, i2, i3, ζ ), where i1, i2, i3 denote the
invariants of the symmetric second-order tensor ud ⊗ ud [198]. Given a formulation
that considers only the first invariant i1 = ud · ud, a particular cohesive potential
reads

ψ(i1, ζ ) = t0

2ζ
exp(−aδb)i1 ,

where t0 [Pa] denotes the cohesive tensile strength, whilst the non-negative parame-
ters a and b capture the softening response, and thus the decay of cohesive traction
with increasing crack opening displacement |ud|. The constitutive description is
closed with the definition of the damage surface φ(ud, δ) = |ud| − ζ = 0 and

the evolution of the damage variable ζ̇ = ˙|ud| for φ > 0. Coleman and Noll’s
procedure (3.156) allows us then to express the cohesive traction

T = cud ; c = t0 exp(−aζ b)/ζ ; γ = c(1 + abζ b)/ζ ,
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where ∂i1/∂ud = 2ud has been used. A proof of non-negativeness of the dissipation,
and thus Dint ≥ 0, is given elsewhere [198]

Given a FEM model, cohesive zones may either be embedded within the finite
elements, or simply added to the faces of the finite elements. The former approach
leads to the Partition of Unity FEM (PUFEM) [198, 594], also known as eXtended
FEM (XFEM), a concept that also requires a crack-tracking algorithm [199] to
handle the propagation of the failure. Attaching cohesive zones to the faces of the
finite elements requires a priori knowledge of the failure surface and makes the
generation of the FEM mesh more challenging. It also requires the prescription of
an artificial elastic stiffness with eventually considerable impact upon the physics
of the problem.

5.6 Identification of Constitutive Parameters

Vascular tissue models, such as the ones listed in Sect. 5.5, need constitutive
parameters to be identified from experimental data. The parameters may either be
intuitively adjusted and the model predictions then compared to the experimental
data, or the parameters may be identified in a more consistent way through the use
of optimization methods.

To exemplify optimization-based parameter identification, we consider the exper-
imental data from planar biaxial testing of the infrarenal porcine aorta shown in
Appendix F. Planar biaxial testing is a well-established laboratory exercise and
allows the application of loads that are close to the vessel’s in vivo conditions.
A square-shaped vessel wall sample is fully immersed in physiological saline
solution at 37 degrees Celsius, and two actuators apply the displacements uθ and
uz along the vessel wall’s circumferential θ and axial z directions, see Fig. 5.31.
At the same time, two load cells measure the corresponding forces Fθ and Fz.
Given the acquisition of the data reported in Appendix F, a displacement-controlled
loading protocol was used that materialized the three different combinations of
displacements uθ/uz = 2/1 ; 1/1 ; 1/2.

Fig. 5.31 Infrarenal porcine
aorta wall sample mounted in
a planar biaxial testing
machine. Sample is immersed
in saline solution and the
vessel’s circumferential θ and
axial z directions are
illustrated
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At its undeformed configuration, the vessel wall sample had the thickness H =
1.9 mm and the edge length L = 9.7 mm, whilst Li = 6 mm specified the square
inside the gripping points. Edge effects of specimen mounting (pinching) may,
for simplicity, been neglected. The prescribed displacements then directly yield
the ratios εθ/εz = 2/1 ; 1/1 ; 1/2 amongst the circumferential strain εθ = uθ/Li
and the axial strain εz = uz/Li, respectively. Given the sample dimensions, the
experimentally recorded data can be translated into four-dimensional data points of
the format (λe

θ , λ
e
z, P

e
θ , P

e
z ), see Tables F.1. Here, λe

θ = 1 + εθ and λe
z = 1 + εz

are the stretches along the circumferential and axial vessel directions, whilst P e
θ =

Fθ/(HLi) and P e
z = Fz/(HLi) are the corresponding first Piola–Kirchhoff stresses,

respectively. This assumptions represent a severe simplification of the complex
inhomogeneous stress field of planar biaxial testing, see the FEM analysis of the
case study in Sect. 4.9. Towards the acquisition of reproducible experimental data,
the vessel wall sample has been preconditioned during four loading cycles. The data
from the fifth’s cycle is reported in Tables F.1, as well as shown in Fig. 5.32. The
data illustrates finite deformation, non-linearity, and anisotropy of the vessel wall
sample.

5.6.1 Analytical Vessel Wall Models

Given (5.5) and (3.33), the first Piola–Kirchhoff stress reads Pi = ∂�(C)/∂λi −
κ/λi , where κ denotes the Lagrange pressure that can be identified from the
equilibrium along the radial direction, Pr = ∂�(C)/∂λr − κ/λr = 0. The two
principal first Piola–Kirchhoff stresses then read

Pθ = ∂�(C)
∂λθ

− λr

λθ

∂�(C)
∂λr

; Pz = ∂ψ(C)
∂λz

− λr

λz

∂�(C)
∂λr

(5.63)

with �(C) denoting the vessel wall’s Helmholtz free energy per unit volume.

5.6.1.1 YeohModel
Given the two-parameter Yeoh model �(C) = c1(I1 − 3)+ c2(I1 − 3)2, the stress
relations (5.63) explicitly read

Pθ(λθ , λz) = α(λθ − λ−3
θ λ

−2
z ) ; Pz(λθ , λz) = α(λz − λ−3

z λ
−2
θ ) , (5.64)

where the definition of the first invariant I1 = λ2
θ + λ2

z + λ2
r and the parameter

α = 2c1 + 4c2(I1 − 3) have been used. The Yeoh model is isotropic, and the stress
relations (5.64) are therefore symmetric with respect to the stretches λθ and λz.

5.6.1.2 FungModel
Planar biaxial testing along the vessel wall’s principal directions suppresses shear
deformations, and the off-diagonal components of the Green–Lagrange strain E are
zero. The strain energy�(E, eθ , ez, er ) = c0[exp(Q)−1] of Fung’s model involves
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Circumferential stretch

Circumferential stretch

Circumferential stretch

Circumferential stretch

Axial stretch

Axial stretch

Axial stretch

Axial stretch

Fig. 5.32 Vessel wall properties at planar biaxial tension for the three different loading protocols
εθ /εz = 2/1 ; 1/1 ; 1/2. (Left column) Circumferential first Piola–Kirchhoff stress Pθ versus
the circumferential stretch λθ = 1 + εθ . (Right column) Axial first Piola–Kirchhoff stress Pz
versus the axial stretch λz = 1 + εz. Solid curves are model-based predictions, whilst the dots
denote experimental acquisitions. (a, b) Predictions using the Yeoh strain energy (5.8) and least-
square optimized parameters ci; i = 1, 2. (c, d) Predictions using the Fung strain energy (5.26)
and least-square optimized parameters ci; i = 0, . . . , 6. (e, f) Predictions using the Fung strain
energy (5.26) and least-square optimized parameters ci; i = 0, . . . , 6 under the constraint of
a convex strain energy. (g, h) Predictions using the GOH strain energy (5.35) and least-square
optimized parameters c0, c1 m, c2 m, c3 m, c4 m. PK–Piola–Kirchhoff
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then the scalarQ = c1E
2
θθ + c2E

2
zz + c3E

2
rr + c4EθθEzz + c5EzzErr + c6ErrEθθ ,

where ci; i = 0, . . . , 6 are the material parameters. The first Piola–Kirchhoff
stresses derives then from the relations (5.63), where the lengthly expressions are
not explicitly shown here.

5.6.1.3 GOHModel
The GOH strain energy (5.35) considers the collagen fibers’ orientation in the
vessel wall. Whilst the collagen in the media is coherently aligned along the
circumferential direction, its orientation in the adventitia is highly dispersed. We
therefore describe the collagen alignment by ρm(φ, θ) and ρa(φ, θ), Bingham
PDFs (5.47) that are shown in Fig. 5.33, where the parameters c0 m = 15.0, c1 m =
0.0 and c0 a = 10.0, c1 a = 10.0 represent the media and adventitia, respectively.
The medial collagen is concentrated along the circumferential direction and thus
grouped around at the azimuthal angle φ = 0 and the elevation angle θ = 0,
respectively. The adventitial collagen is isotropic in the tangential plane (along
φ = 0), whilst it has a moderate dispersion in radial direction. Aside from the
parameters that determine the shape of the Bingham distribution, cm = 1.769 ·10−5

and ca = 3.24 · 10−5 have been used to normalize the distributions according
to (5.45).

The definition (5.36) allows us now to express the generalized structural tensors
by

Hi = 1

2π

∫ π
2

− π
2

∫ π
2

− π
2

ρ(φ, θ)M(φ, θ)⊗ M(φ, θ) cosφdθdφ ; i = m, a , (5.65)

where the orientation M = [cosφ cos θ cosφ sin θ sinφ]T has been expressed by
the azimuthal and the elevation angles φ and θ , respectively.

Given (5.65) and the densities ρm(φ, θ) and ρa(φ, θ), the general structural
tensors Hm = diag[0.9306, 0.0347, 0.0347] and Ha = diag[0.475, 0.475, 0.05]

Fig. 5.33 Collagen orientation Probability Density Function (PDF) in the media (a) and the
adventitia (b). Distributions are represented by the Bingham PDF (5.47). (a) Collagen in the media
is transverse isotropic and coherently aligned with the circumferential direction. (b) Collagen in
the adventitia is isotropic in the tangential plane, and moderately dispersion in radial direction
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represent the collagen in the medial and adventitial layers, respectively. We note
the condition trHm = trHa = 1, a direct consequence of the normalization (5.45).

The description of the media and the adventitia by the GOH model (5.35) and
the use of membrane kinematics, then results in the strain energy

�(C,Hm,Ha) = c0(I1 − 3)+
∑

i=m,a

c1 i[exp(c2 iE
2
i )− 1] , (5.66)

where Em = Hm : C − 1 and Ea = Ha : C − 1 represent the strain of medial and
adventitial collagen, respectively. Whilst the material parameter c0 describes the
mechanics of the matrix (everything else but collagen), the parameters c1 m, c2 m,
and c1 a, c2 a capture the properties of medial and adventitial collagen, respectively.
We may then compute the first Piola–Kirchhoff stresses from the relations (5.63),
where the lengthly expressions are not explicitly shown here.

5.6.2 Optimization Problem

A least-square method may be used to identify the model parameters cj from the
experimental measurement points (λe

z i , λ
e
θ i , P

e
z i , P

e
θ i); i = 1, . . . , n. The objective

function

� =
n∑

i=1

[(
Pθ(λ

e
θ i , λ

e
z i)− P e

θ i

)2 + (Pz(λe
θ i , λ

e
z i)− P e

z i

)2] (5.67)

is therefore introduced, and its minimization � → MIN identifies the unknown
material parameters cj .

The definition (5.67) equally weights the stress differences Pθ−P e
θ i and Pz−P e

z i

and therefore leads to parameters cj that provide an optimized model representation
over the stretch domain that is covered by all experimental data points. The use of
application-specific weight functions wk(λθ , λz); k = θ, z that are then multiplied
with the stress differences Pk−P e

k i; k = θ, z in (5.67) allows for an improved model
representation within a predefined stretch domain, however, at the cost of a worse
representation outside this domain.

5.6.2.1 YeohModel
The objective function � of the two-parameter Yeoh model leads to a second-order
polynomial. It is illustrated in Fig. 5.34 for the experimental data listed in Table F.1.
The objective function � has a single local minimum (∂�/∂c1 = ∂�/∂c2 = 0),
which then is also the function’s global minimum. It is at c1 = 1.054 kPa and
c2 = 7.068 kPa, and Fig. 5.32a, b shows the predicted model response on top of
the experimental data points.
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Fig. 5.34 Objective function
�(c1, c2) with the global
minimum defining the
least-square optimized
material parameters c1 and c2
of the two-parameter Yeoh
constitutive model

Parameter       [kPa] Paramete
r   

    [
kPa]

5.6.2.2 FungModel
With the Fung model, � is a complex seven-dimensional function that has multiple
local minima. A numerical minimization algorithm identified the global minimum
at c0 = 22.329 kPa, c1 = 0.3684, c2 = 0.3394, c3 = −0.482, c4 = −0.02877,
c5 = −0.1473, and c6 = −1.7678. Figure 5.32c, d shows the model’s response for
these parameters together with the experimental data.

Towards the investigation of the convexity of Fung’s strain energy (5.26), we note
that � is strictly convex as long as the scalar Q remains positive for all possible
combinations of the principal strain components Eθθ , Ezz, Err . The scalar may also
been written as

Q = [Eθθ Ezz Err
]
⎡

⎣
c1 c4/2 c6/2
c4/2 c2 c5/2
c6/2 c5/2 c3

⎤

⎦

︸ ︷︷ ︸
c

⎡

⎣
Eθθ

Ezz

Err

⎤

⎦ , (5.68)

and the positive definiteness detc > 0 then ensures a strictly convex strain energy
� [151]. With the afore-estimated parameters cj ; j = 1, . . . , 6, the determinant
reads detc = −0.329, and � is therefore not convex. A non-convex strain
energy may result in the prediction of non-physical stress states, and the constraint
detc > 0 should therefore be added to the minimization problem. Given the present
example, the constraint optimization led to the identification of the parameters
c0 = 31.682 kPa, c1 = 0.4825, c2 = 0.3271, c3 = 0.3292, c4 = 0.1666,
c5 = 0.2922, and c6 = −0.6235, see Fig. 5.32e, f. Whilst these parameters
yield very similar results as compared to the unconstraint Fung’s model shown in
Fig. 5.32c, d, they ensure the convexity of the vessel wall model.

Towards supporting the identification of “plausible” material parameters, it is
always recommended to add any available information to the minimization problem.
Aside from the convexity constraint, the uniform stress hypothesis [183] and other
plausible assumptions [593] have been used to constrain the parameter estimation
towards improving the reliability of the estimated model parameters [447, 522, 535,
536].
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Fig. 5.35 Contributions of the media and the adventitia to the mechanical vessel wall properties at
three different loading protocols εθ /εz = 2/1 ; 1/1 ; 1/2. (a) Circumferential first Piola–Kirchhoff
stress Pθ versus the circumferential stretch λθ = 1 + εθ . (b) Axial first Piola–Kirchhoff stress Pz
versus the axial stretch λz = 1 + εz. Solid curves denote the two-layered analytical model, where
each layer is modeled by the GOH strain energy (5.35). The model parameters have been estimated
by least-square optimization from the experimental data listed in Table F.1. PK–Piola–Kirchhoff

5.6.2.3 GOHModel
With the GOH model, the objective function � is a complex five-dimensional
function with multiple local minima. A numerical minimization algorithm identified
the global minimum at c0 = 2.8973 kPa, c1 m = 25.538 kPa, c2 m = 0.20206,
c3 m = 12.357 kPa, and c4 m = 0.39602, and Fig. 5.32e, f illustrates the model in
relation to the experimental data. This model considered a two-layered vessel wall
description, and Fig. 5.35 shows the individual stress contributions of the media and
adventitia, respectively.

5.6.2.4 Influence of Noise in the Experimental Data
Experimental data is always noisy, a factor that may influence the estimation of
material parameters. Let us add random noise to the data listed in Tables F.1 towards
the exploration of this effect. The randomly perturbed stretches and stresses then
read

λ� e
θ = λe

θ + αwλθ (λe
θ − 1) ; λ� e

z = λe
z + αwλz(λe

z − 1) ;
P � e
θ = P e

θ + αwPθ P e
θ ; P � e

z = P e
z + αwPzP e

z ,

⎫
⎬

⎭ (5.69)

where α denotes the noise level, and −mean[(•)] < w(•) < mean[(•)] with
(•) = {λθ }, {λz}, {Pθ }, {Pz} are Gaussian-distributed pseudo-random numbers that
are scaled by the magnitude of the experimental data.

Given the perturbed input data and Yeoh’s as well as Fung’s constitutive models,
Table 5.6 reports the respective least-square identified material parameters. Whilst
the models yield the best possible representation of the (noisy) experimental data,
different nose levels resulted in very different model parameters. The graphical
illustration of the objective function � in Fig. 5.34 of Yeoh’s model helps us to
understand this observation. The graph already indicates that� is more challenging
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Table 5.6 Influence of noise in the identification of material parameters

Noise level α 0.0 0.05 0.1 0.15 0.2

(a) Yeoh model

c1 [kPa] 1.05424 1.42133 0.701512 1.68206 1.93777

c2 [kPa] 7.06777 6.93361 7.06531 6.82147 6.75673

(b) Fung model

c0 [kPa] 31.6821 26.515 51.7766 41.0168 53.576

c1 0.482481 0.5047 0.428366 0.406477 0.428047

c2 0.327107 0.331239 0.211366 0.306464 0.172561

c3 0.329228 0.380465 0.0618468 0.313789 0.0290524

c4 0.166558 0.114796 0.149742 0.147198 0.104941

c5 0.292222 0.162037 0.115555 0.335757 −0.0446757

c6 −0.623488 −0.816747 −0.231142 −0.506722 −0.221245

Circumferential stretch 

C
irc

um
fe

re
nt

ia
l f

ir
st

 
PK

 st
re

ss
   

   
[k

Pa
]

Axial stretch 

Ax
ia

l f
ir

st
 P

K
 st

re
ss

   
   

 [k
Pa

]

Fig. 5.36 Estimation of material parameters from noisy experimental data. Ten individual results
are shown and the corresponding sets of parameter have been identified from randomly perturbed
input data at the noise level of α = 0.1. The identifications used Fung’s model (5.26) that has been
constraint to a strictly convex strain energy

to minimize for c1 than for c2—the curvature of � along c1 is much smaller than
along c2. The inclusion of noise in the experimental data results then in a higher
variability of c1 than c2, see the Yeoh model in Table 5.6.

Noise in the experimental data influences the estimation of material parameters,
and the identified parameters are therefore no longer deterministic but probabilistic,
a set of parameters has a certain probability of appearance. Given the noise level
of α = 0.1 and Fung’s model, the identification results in the parameters c0 =
28.36 (SD 4.319) kPa, c1 = 0.49 (SD 0.01978), c2 = 0.3484 (SD 0.0571),
c3 = 0.4381 (SD 0.2032), c4 = 0.1437 (SD 0.05207), c5 = 0.2901 (SD 0.177),
c6 = −0.7498 (SD 0.1849). These parameters are given by their mean and Standard
Deviation (SD), information that has been identified through ten independent
minimizations of the objective function � with the randomly perturbed input data
according to (5.69). Whilst the individually estimated sets of parameters vary
substantially, each set very nicely captures the experimental data, see Fig. 5.36.
The examination of model parameter variations is therefore not conclusive in the
assessment of a non-linear model.
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Example 5.5 (Simple Shear Testing in Vessel Tissue Characterization). The exper-
imental set-up shown in Fig. 5.37 is used to characterize the material properties
of a batch of the vascular wall. The tissue sample is exposed to a simple shear
deformation between two rigid plates.

Fig. 5.37 Schematic illustration of simple shear testing of a sample of the vascular wall. The
actuator prescribes the displacement u, whilst the force P is measured by a load cell

(a) Derive the motion χ(X) that maps the undeformed configuration �0 into the
deformed configuration � of the tissue batch.

(b) Derive the relation of the right Cauchy–Green strain C and the left Cauchy–
Green strain b.

(c) Provide the eigenvalue representation of C and b.
(d) Derive the relation of the force P as a function of the displacement u. The

vascular tissue may be regarded as an incompressible material with the strain
energy

� = c1(I1 − 3)+ c2(I1 − 3)2 , (5.70)

where I1 = trC denotes the first invariant of the right Cauchy–Green strain
C = FTF, and c1, c2 are material parameters.

(e) Consider the dimensions l = 17 mm, w = 25 mm, h = 1.5 mm, and use
a least-square method to estimate the material parameters c1 and c2 from
the experimentally recorded set {(0.5,0.3), (1.0,0.5), (1.5,1.2), (2.0,2.3)} of
measurement points, stored in the format (u [mm], P [N]). �

Example 5.6 (Pressure Inflation in Vessel Tissue Characterization). An in vitro
inflation test is used to characterize the material properties of a coronary artery
segment. The vessel segment of the referential diameter D = 4.0 mm, the length
L = 70.0 mm, and the wall thickness H = 1.0 mm is mounted in a customized
tensile testing system, see Fig. 5.41. The vessel is fixed at its deformed length l, and
then slowly (quasi-statically) inflated up to the pressure pi. A camera records the
deformed vessel diameter d, and a load cell measures the reduced axial force Fz,
and thus the reaction force that is conveyed from the vessel to the left clamp. The
vessel wall may be regarded as an incompressible material that is characterized by
the strain energy density

� = c(I1 − 3)2 , (5.75)
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where I1 = trC denotes the first invariant of the Cauchy–Green strain C. Membrane
theory may be used in the analysis of this inflation experiment.

Load cell

Vessel segment

Camera           Manometer

d
Fig. 5.41 Schematic illustration of an in vitro vessel inflation test. The vessel segment is kept at
fixed axial length l and the inflation pressure pi is measured by the manometer. The camera takes
images to measure the vessel diameter d, and the load cell records the reduced axial force Fz

(a) Derive the relations of the circumferential σθ and the axial σz Cauchy stresses
as a function of the circumferential λθ and the axial λz stretches.

(b) Use the equilibrium relation to express the inflation pressure pi and the reduced
axial force Fz as a function of the deformed vessel diameter d, the length l, and
the wall thickness h, as well as the constitutive parameter c.

(c) Consider the set {(4.6, 73.5, 5.2, 21), (5.1, 73.5, 15.0, 3)} of experimental
measurement points and perform a least-square optimization to identify the
constitutive parameter c. A measurement point is stored in the format (d [mm],
l [mm], pi [kPa], Fz [mN]). Consider the estimated parameter c, and plot the
inflation pressure pi and the reduced axial force Fz as a function of the deformed
diameter d at the fixed vessel length of l = 73.5 mm. �

The parameter estimation approaches outlined in this section required the
formulation of an analytical model that describes the mechanical properties of
the test sample. Such a description is usually limited to deformations that are
homogenous throughout the sample. However, constraints in sample size and shape
often not support said assumption, and more generally applicable inverse parameter
estimation approaches have been proposed [27, 33, 136, 248].

5.7 Case Study: Structural Analysis of the Aneurysmatic
Infrarenal Aorta

Given the clinical relevance of an AAA, its biomechanical exploration is of
enormous scientific and medical interest. Wall stress is known to be a marker for
AAA rupture risk, see Sect. 1.6, and in this case study we therefore demonstrate
all steps towards the computation of said wall stress. Whilst our case of 4.5 cm
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maximum transversal diameter is well below the clinical indication to perform AAA
repair, significant peaks of wall stress may already have been developed.

5.7.1 Modeling Assumptions

The wall of the infrarenal aorta was reconstructed from clinically recorded CT-
A images (A4clinics Research Edition, VASCOPS GmbH) and then saved in
STereoLithography (STL) file format, see Fig. 5.43. CT-A scanning of the abdomen
requires a few seconds, time during which the aorta pulsates between diastolic and
systolic phases. Most protocols aim for the acquisition at the diastolic phase, and
Fig. 5.43a shows such a CT-A recording. Given the AAA wall is much stiffer than
the normal aorta, its deformation has been neglected and the diastolic geometry
represented the stress-free reference configuration �0 of our FEM model. In
addition, the AAA wall thickness depends on a number of factors [299, 458] and
CT-A images do not allow for its robust reconstruction. The model therefore used
a predefined wall thickness between 1.13 mm and 1.5 mm, a value that depends on
the thickness of the underlying ILT-layer [193].

The AAA wall has been modeled as an isotropic non-linear continuum at finite
deformations. The contributions from the different vessel wall layers have therefore
been homogenized and described by the Yeoh model (5.8) with the constitutive
parameters c1 = 177.0 kPa and c2 = 1881.0 kPa, information that has been
identified from in vitro 1D tensile testing of the AAA wall [449]. Whilst our
case contained an ILT, the structural implications of this pseudo-tissue have been
neglected in the FEM model.

Fig. 5.43 (a) Computed Tomography-Angiography (CT-A) images to reconstruct the vascular
geometry of an Abdominal Aortic Aneurysms (AAA). The yellow curve encapsulates the lumen,
the domain between the yellow and green lines represents the Intra-luminal Thrombus (ILT),
whilst the green and blue lines encapsulate the vessel wall. (b) Reconstructed vessel wall in
STereoLithography (STL) file format
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Given the individual systolic/diastolic blood pressure of 140/90 mmHg, the MAP
pi = 14.2 kPa was prescribed as a Neumann boundary condition at the inside of
the vessel wall. The abdominal pressure was set to zero, and the outer vessel wall
was therefore free of traction. In addition to the inflation by the arterial pressure,
the aorta is stretched in axial direction. Whilst the axial in vivo stretch reaches
approximately 40% in the young aorta, it decreases rapidly with age [264], and
probably also with the development of aneurysm disease. The axial pre-stretch has
therefore been neglected in our AAA model.

The aorta is anchored in the body, and assumptions regarding this boundary
condition have to be made. Two locations seem to play an important role: the level of
the renal arteries and the level of the aortic bifurcation, sites where the aorta is firmly
connected to the surrounding tissues. All displacements at these positions have
therefore been locked, and the prescription of this Dirichlet conditions concludes the
description of the FEM model. We may now generate the FEM mesh and compute
the stress in the AAA wall from the solution of the quasi-static equilibrium.

5.7.2 Results and Interpretation of the ComputedWall Stress

The FEM model used quadratic tetrahedral finite elements of approximately 100k
degrees of freedom to approximate the structural problem. Figure 5.44 illustrates the
distribution of the von Mises stress. Given the stress in the wall of inflated tube-like
structures is determined by the local curvature, the stress is complexly distributed
over the aneurysm wall. It reaches up to approximately 200 kPa and is therefore
already much higher than the von Mises stress

Fig. 5.44 Loading of the wall of an Abdominal Aortic Aneurysms (AAA) at the blood pressure
of pi = 14.2 kPa. The von Mises stress all over the AAA (a) and at a selective cross-section (b) is
shown.
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σM =
√
σ 2
θ − 2σθσz + σ 2

z =
√

3

4
σθ = 86.1 kPa (5.77)

in the normal infrarenal aorta. In the derivation of this result, we used the membrane
assumption and considered the vessel diameter d = 21.0 mm and the wall thickness
h = 1.5 mm, figures that result in the circumferential stress σθ = pid/(2h) =
99.4 kPa and the axial stress σz = σθ/2 = 49.7 kPa in the vessel wall.

The highest stress appears in the aortic bifurcation, see Fig. 5.44b, at a site that,
however, needs to be excluded from the analysis. At branching regions vascular
tissue adapts towards a tendon-like collagenous tissue that is very different from the
normal vessel wall [161]. The modeling assumptions concerning the wall thickness
and the tissue properties are therefore not valid in the bifurcation. In addition, the
assumption of a homogeneous continuum that represents the vessel wall permits
from drawing conclusions regarding the local stress inside the wall. We may
therefore only assess the stress in average across the wall. Our analysis did also not
consider residual stress in the load-free configuration �0, which otherwise would
have decreased the stress gradient across the wall.

5.8 Summary and Conclusion

The biomechanical properties of conduit vessels are critical to the proper function-
ing of the cardiovascular system. In addition to the exploration of physiological
mechanisms, the interaction of biomechanical, biochemical and clinical factors is
of key importance to further our understanding of vascular pathologies [204].

The vessel wall’s biomechanical macroscopic properties result from the complex
3D arrangement and interaction of microstructural constituents. Numerous consti-
tutive descriptions have been proposed in the literature, and the complex vessel
wall properties generally result in a large number of structural and mechanical
model parameters. They need to be identified from appropriate experimental
information. The in vitro characterization allows to load the vessel wall at well-
defined conditions, and then supports the acquisition of rich data for the inverse
identification of material parameters. However, the vessel needs to be dissected,
an intervention that potentially changes its mechanical properties. In contrary, the in
vivo characterization keeps the vessel intact, it tests it within its natural environment,
but often acquires too less information for a robust parameter identification.

Despite encouraging progress in vascular tissue biomechanics, the variability of
biomechanical predictions from the uncertainty of the input information remains a
challenging limitation. Key input information, such as detailed vessel morphology
and local biomechanical properties of vascular wall tissue often remains unknown,
or their robust identification is difficult. It is also difficult to draw a clear border
between distinct vessel components. Even if possible, the mechanical interaction
across these borders remains unclear. The description of boundary conditions is
another challenging task, and there exists very limited understanding of factors,
such as the perivascular support [155], the mechanisms by which the adventitia
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is anchored to surrounding tissues. Owing to this lack of input information,
homogeneous mean population input information is often used, and the extent to
which this simplification influences model predictions remains to be explored for
each individual application. Probabilistic approaches seem in this respect to be a
promising way to deal with input uncertainty of vascular biomechanics [44, 45, 61,
432].

There usually exists a large intra-patient and inter-patient variation in material
properties of vessel tissues. Currently no non-invasive technique is known that
would be able to acquire individual biomechanical properties of vascular tissues
that fully facilitate their biomechanical analysis. Even under well-defined laboratory
conditions, the in vitro experimental characterization of vascular wall properties
shows huge variability and the estimated tissue properties usually vary at least by
one order of magnitude. Whilst the detailed causes of this variability remain largely
unknown, several influential factors have already been identified. Chronic Kidney
Disease (CKD) [458], COPD [171], bicuspid aortic valve anatomy [172, 504],
Marfan syndrome [357], diabetes mellitus [352], results from blood tests and tissue
metabolic activity [458], tobacco use [292] as well as the administration of drugs,
such as beta blocker and Angiotensin-Converting-Enzyme (ACE) inhibitors [352],
have shown to alter the biomechanical vessel wall properties. A better understanding
of how such, and currently unknown, factors influence the mechanics of vascular
tissue, would be of key importance to improve the reliability of biomechanical
simulations. These factors often interact, which complicates the exploration of their
isolated influence in biomechanics. Given sufficient experimental data, the appli-
cation of Machine Learning-based (ML-based) approaches has been successfully
demonstrated [61, 344] and may help to close this knowledge gap.



6Hemodynamics

This chapter addresses the flow of blood in conduit vessels. We review the
composition of blood, a suspension of different-sized particles in plasma, and
investigate the forces that act upon said particles. It results in the description of
the rheological properties of blood, where single-phasic and bi-phasic models are
covered. We then explore blood damage mechanisms with focus on hemolysis
and abnormal thrombocyte activation. A key section of this chapter concerns the
description of incompressible flows by solving the Navier-Stokes equations for
a number of 1D flows. It results in the description of steady-state and steady-
periodic flows through circular tubes —the Poiseuille and respective Womersley
flows. The exploration of the flow in elastic tubes reveals the expression of the
wave speed, an important biomechanical property linked to the condition of the
vascular system. Multidimensional flow phenomena, the characteristics of boundary
layer flow and the difference between laminar, transitional and turbulent flow are
then specified. Wall Shear Stress-related (WSS-related) and transport-related flow
parameters, values used in the quantitative description of blood flows, are then
addressed. A case study uses the Finite Element Method (FEM) to predict the blood
flow in the aneurysmatic aorta, and concluding remarks summarize the chapter.

6.1 Introduction

Blood is a suspension that continuously delivers nutrients, oxygen, and other factors
to the cells. At the same time, it transports away metabolic waste products. Besides
these primary objectives, blood contributes also to factors, such immune response,
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wound healing, transportation of information through hormones, regulation of
tissue temperature, and Potential of Hydrogen (pH) levels. All these tasks are
accomplished by approximately five liters of blood in adults. The flow dynamics
of blood changes remarkably along the vasculature. Whilst the blood velocity is
strongly oscillatory in the larger arteries and shows in addition to forward flow
also phases of backward flow, it develops towards unidirectional flow in smaller
vessels and the veins. Blood flow is able to influence vascular biology through
mechanical factors [11], such as WSS [78], blood pressure [498], and Vortical
Structure (VS) dynamics [42]. They guide the adaptation of the normal vasculature
towards homeostasis and allow the system to cope with environmental alterations.
However, the very same mechanical factors are also involved in the development of
cardiovascular pathologies.

6.2 Blood Composition

Blood is a suspension of cells and macromolecules in plasma. Erythrocytes, leuko-
cytes, and thrombocytes are the most prominent cells, whilst globulin, albumin,
fibrinogen, vitamins, and fatty acids are noticeable macromolecules in the blood.
The mechanical, electrical, and molecular interactions amongst these particles
define the macroscopic biomechanical properties of blood and determine blood flow
characteristics.

6.2.1 Erythrocyte

The principle particles in blood are erythrocytes (or red blood cells) and their prin-
cipal mean is the delivery of oxygen. One microliter blood contains approximately
5 million erythrocytes and their percentage by volume is called hematocrit. In
males, the hematocrit ranges normally from 41% to 52%, whilst values from 36%
to 48% are seen in females. Given their high volume fractions, erythrocytes are
the main determinant of blood viscosity. Erythrocytes are highly deformable, and
they have no nucleus. At rest or low shear rates, they appear as bi-concave-shaped
discs, measuring approximately 6 to 8μm in diameter and 2 to 4μm in height, see
Fig. 6.1a, b. Erythrocyte size and shape are remarkably similar across all mammals.

Erythrocytes carry oxygen from the lungs to the cells. They contain a special
protein called hemoglobin that allows for the reversible binding of oxygen. A
portion of 98% of the oxygen in blood binds to hemoglobin and only 2% remains
unattached. Hemoglobin that is fully saturated with oxygen is called oxyhemoglobin
and appears red. Hemoglobin that is free of oxygen is in contrast called de-
oxyhemoglobin and appears purplish blue. In the lungs, where the partial oxygen
pressure is high, oxygen binds to the hemoglobin of erythrocytes, and it is then
transported away by the bloodstream. Given sites of tissue at low oxygen conditions,
the partial oxygen pressure is low, and oxygen is then released from hemoglobin
of nearby erythrocytes into the vessel lumen. The oxygen then travels further into
tissue cells. Normal erythrocytes are highly deformable and their cytoskeleton
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Fig. 6.1 Erythrocytes (or red blood cells) shape and dimensions. (a) Biconcave shape of a single
erythrocyte at rest. (b) Erythrocytes in blood flow of low shear rate. (c) Erythrocytes appear at
bullet-like shapes to pass through a microvessel

Fig. 6.2 Shape and
dimensions of some
leucocytes (or white blood
cells), cells of the immune
system that protect the body
from infectious disease and
foreign invaders

supports shape changes without destruction. They can easily adapt into bullet-
liked shapes, a mechanism that allows them to pass micro-vessels much smaller
in diameter than erythrocytes at rest, see Fig. 6.1c.

Erythrocytes have a lifespan of approximately 120 days, and the body continu-
ously replaces old erythrocytes with newly formed ones—a process that appears in
bone marrow and that is called erythropoiesis.

6.2.2 Leukocyte

Leukocytes (or white blood cells) are cells of the immune system and occupy
approximately 0.7% of the blood volume. They reach a size of up to 30μm in
diameter and represent a family of cells with some of them illustrated in Fig. 6.2.
Each leucocyte has a different role in protecting the body against infectious disease
and foreign invaders. Neutrophils ingest and digest bacteria and fungi. Eosinophils
and basophils attack larger parasites and are involved in allergy response. Monocytes
are carried by blood to tissues and then transform into macrophages that destruct
harmful organisms and activate other immune cells, such as T cells. Lymphocytes
attack invading bacteria and viruses and help to destroy diseased or infected cells.

An increased volume fraction of leucocytes is the normal response to infections,
whilst an abnormal increase relates to diseases such a leukemia. A decreased volume
of leukocytes in contrast may indicate diseases that are linked to the impaired
function of the immune system.

6.2.3 Thrombocyte

Thrombocytes (or platelets) are fragments of much larger cells called megakary-
ocytes and occupy approximately 0.3% of blood volume. Together with coagulation
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Fig. 6.3 Thrombocyte (or
platelet) in its non-activated
(a) and activated (b) states.
Activated thrombocytes are
able to form a thrombus, the
first step in wound healing

factors they stop bleeding through the formation of a blood clot, a process that
appears within seconds to minutes. Thrombocytes have no nucleus, and may appear
in non-activated and activated states, respectively. The majority of thrombocytes
are non-activated. They then have a compact plate-like shape (hence they are named
platelets) and are approximately 2 to 3μm large, see Fig. 6.3a. On activation,
platelets turn into (sticky) octopus-like shapes with multiple arms and legs, see
Fig. 6.3b. This transformation is important in enabling activated thrombocytes to
clump together and form blood clots. At a site of endothelial damage, the contact
with collagen activates thrombocytes and then allows them to stick to the collagen.
This process seals-off the damaged area and initializes the subsequent repair
steps [561]. High shear stress is also able to activate thrombocytes through the
stretching of von Willebrands1 Factor (vWF), a blood-borne adhesive protein. Given
enough time, vWF then binds to platelets and activates them [177, 479, 480].

Thrombocyte has a lifespan of approximately 8 to 10 days and a number of
hematological diseases prime the responsiveness of platelet populations [19]. A
low volume fraction of thrombocyte relates to a number of diseases and results
in impaired clotting ability and the risk of life-threatening blood loss from small
wounds. In contrary, high levels of thrombocytes increase the risk of thrombosis
and subsequent cardiovascular events, such as stroke and heart attack.

6.2.4 Plasma

Plasma is a straw-colored fluid that consists of 90% water, 9% various molecules,
and 1% electrolytes. Electrolyte concentration is important in the regulation of the
fluid content within cells, whilst molecules determine immune response and control
Colloid Osmotic Pressure (COP) as well as blood clotting.

The majority of molecules are proteins, such as globulin that plays a central role
in immune response, albumin that controls COP (see Sect. 2.1.6.2), and fibrinogen, a
key factor in blood clotting. Molecules in transit comprise, vitamins, carbon dioxide,
and oxygen, as well as waste products, such as urea and ammonia. Plasma also
contains a number of digestion products, such as fatty acids, amino acids, and
peptides. Low-Density Lipoprotein (LDL) and High-Density Lipoprotein (HDL)
are prominent fatty acids that have been related to atherosclerosis, see Sect. 5.4.2.

1Erik Adolf von Willebrand, Finish internist, 1870–1949.
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A low volume fraction of plasma is caused by dehydration, salt depletion, or
blood loss, whilst high plasma volume can occur as a result of inadequate salt
excretion eventually linked to factors, such as kidney disease.

6.3 Forces Acting at Blood Particles

Blood particles in plasma are under the effect of mechanical, electrical, and
molecular forces. Whilst they directly determine the transport of the particles in
plasma, they also influence the macroscopic biomechanical properties of blood,
and therefore the blood flow characteristics. We may relate the forces to drag
effects, to gravitation and inertia effects, to inhomogeneous pressure and velocity
fields, to collisions, and to chemical and electrical effects. Whilst the drag force
moves particles along streamlines, the other forces may direct particles to cross the
streamlines.

6.3.1 Drag Force

The drag force tends to carry immersed particles along streamlines, and thus
along the direction of the flow velocity, see Fig. 6.4a. The drag force therefore
pushes particles to move together with the fluid, a transport phenomenon known
as advection. How closely a particle of diameter d follows the streamlines is
determined by the Stokes2 number

St = T |v|
d
, (6.1)

where v denotes the velocity of the fluid, whilst T is the relaxation time of the
particle. Let us imagine a resting particle is put into a moving fluid. The relaxation
time T then denotes the time the particle needs to approach 63% of the flow velocity.
A small St number determines a particle that closely follows streamlines, whilst
the path of a particle with a high St number may substantially divert from the
streamlines. At normal conditions, the St number is low in the vasculature and
Stokes drag therefore applies—large particles related to thrombo-embolic events
would be an exception. For creep or Stokes flow, the St number is the inverse of the
Reynolds (Re) number, St = Re−1.

2Sir George Gabriel Stokes, Irish physicist and mathematician, 1819–1903.
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Fig. 6.4 Forces acting at blood particles in plasma. Plasma velocity, shear stress, and pressure
are denoted by v, τ , and p, respectively. (a) Drag force acting at a particle of the velocity vp. (b)
Impact forces from collision with other particles in the vicinity of the wall. (c) Gravitational or
inertia force. (d) Hydrostatic force from an in-homogenous pressure p. (e) Inertia lift force, and
(f) inertia wall lift force due to inertia effects of fluid rotating around a spinning particle. (g) Lift
due to the loss of particle symmetry. (h) Lift due to tank-treading. (i) Electrostatic repulsion of
similarly charged particles. (j) Molecular binding force. (k) Impacts with macromolecule results
in erratic Brownian motion

6.3.2 Gravitational and Inertia Forces

Given the acceleration field a, the inertia force Fi = ma acts at the particle
of the mass m, see Fig. 6.4c. With the density of 1125 kg m−3, erythrocytes are
slightly heavier than plasma of the density 1025 kg m−3, and the inertia force
allows therefore the separation of erythrocytes from plasma in a centrifuge. The
gravitational force is a special case of the inertia force and relates to the acceleration
of |a| = 9.81 m s−2.

6.3.3 Forces Related to Fluid Pressure

The hydrostatic force Fh = − ∫
∂�
pnds acts on a particle that is immersed in fluid

of the pressure p, where n denotes the outward normal vector to the particle surface,
whilst ds is the area element. The integration is taken over the entire surface ∂� of
the particle. Given an inhomogeneous pressure, this integral results in a hydrostatic
force acting at the particle, see Fig. 6.4d.
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6.3.4 Forces Related to Fluid Velocity and Shear Stress

A velocity field that represents a shear stress gradient results in rotating particles.
Given a flow with a high Re number, the inertia effects of the fluid dominate the
forces—the inertia of the fluid that surrounds the rotating circular particle then
results in the inertia lift force [208], see Fig. 6.4e. The inertia lift force directs
particles in the free flow towards the region of higher shear [255]. A number of
inertia forces act on particles that are close to a wall, or even touch a wall. They are
collectively called inertia wall lift forces and always direct away from the wall, see
Fig. 6.4f. Lift forces result in particle migration, an effect that is already observable
in laminar tube flow. Particles that are uniformly distributed at the inlet of a tube
tend to locate in a ring of approximately 60% of the tube’s diameter [501], an effect
known as tubular pinch effect or Segré–Silberberg effect, see Fig. 6.5a.

In addition to the aforementioned inertia-dominated effects, viscous forces
determine the migration of particles at low Re numbers. Erythrocytes are highly
deformable and close to the wall they deform into asymmetric shapes. The forces
acting on such particles direct them away from the wall [67], see Fig. 6.4g. Elastic
particles close to the wall may also show tank-treading and move visually similar
to tank treads, see Fig. 6.4h. It also leads to migration forces pointing away from the
wall.

Given the high temporal and spatial resolution needed, the direct experimental
observation of the aforementioned phenomena is challenging and simulations
provided detailed insight into the motion and transport of blood particles in
suspension [6, 152, 419, 455, 537].

Fig. 6.5 Distribution of blood particles in laminar tube flow. Data stems from the flow in glass
tubes of 3 mm in diameter and at the Wall Shear Stress (WSS) of approximately 1000 s−1 [1].
(a) Thrombocytes in saline solution show the Segré–Silberberg effect and group in a ring of
approximately 60% of the tube’s diameter [501]. (b) Erythrocyte ghosts and thrombocytes in saline
solution. Erythrocyte ghosts are concentrated in the center, whilst thrombocytes are concentrated
at the wall
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6.3.5 Forces from Collisions

Random variations in the number of plasma molecules that collide with particles
determine small random forces. The blood particles suspended in plasma therefore
show random erratic movements known as Brownian3 motion, see Fig. 6.4k.

With the increase in particle fraction, the collision between the particles them-
selves also increases, an effect that eventually dominates the distribution of blood
particles and determines the local viscosity of the suspension. Given rigid spherical
particles, the viscosity approaches infinity at a volume ratio of approximately
64% [219]. The particles are then no longer able to pass each other—the fluid
stops flowing. With deformable particles, no such limit exists and erythrocytes
suspensions of volume fractions as high as 80% still flow [217].

With the shear rate increasing, more particles have to pass each other, which
then also results in more collisions. The collision rate of particles is therefore
proportional to the shear rate in the fluid. The particles try to avoid collisions
and migrate towards regions of lower collision rates, and thus towards lower
shear rates, see Fig. 6.4b. The shear-induced migration of particles reduces the
concentration of erythrocytes (or the hematocrit level) at the wall in vessels of small
diameters [1], known as the Fåhræus4 effect [146]. It also has a strong impact
on the viscosity of blood and explains the decreased viscosity in small vessels,
known as the Fåhræus–Lindqvist effect [147]. Both effects are observed in vessels
of diameters below of approximately 0.2 mm, and thus vessels that are small enough
that the thickness of the erythrocytes-depleted boundary plays an important role, see
Fig. 6.6. Constitutive descriptions, such as the Phillips’ model [427] allows for the
quantitative description of shear-induced migration of particles.

Fig. 6.6 Fåhræus effect. Shear induces migration of erythrocytes towards the center of the tube
leading to a lower average hematocrit level in small vessels when compared to large vessels. It may
be concluded from the number of erythrocytes within the two same-sized transparent squares in
the figure

3Robert Brown, Scottish botanist and palaeobotanist, 1773–1858.
4Robert Fåhræus, Swedish clinical professor and pathologist, 1888–1968.
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6.3.6 Chemical and Electrical Forces

Chemical and electrical forces operate at close range and appear through the
interaction among blood particles rather than through the plasma. Electrically
charged particles attract particles of the opposite charge and repel similarly charged
particles, see Fig. 6.4i. Erythrocytes, leukocytes, and thrombocytes, all of them
are negatively charged, which protects them from colliding and helps to prevent
thrombus formation in the normal circulation. Electrostatic forces are also able to
establish from electrical charges in the vessel wall and blood particles.

If two particles touch each other, molecular bindings may overcome electrostatic
repulsion—the particles adhere, see Fig. 6.4j. Rouleaux formation [587], leukocyte
adhesion, thrombocyte aggregation and adhesion, are prominent adhesion phenom-
ena in blood.

Rouleaux formation appears at low shear rates, allowing erythrocytes to clump
together face-to-face, see Fig. 6.7. The aggregation of erythrocytes is caused by
a reversible aggregation–dissociation mechanism and requires the presence of
albumin, fibrinogen, and globulin. Fibrinogen plays the most important role [29]
and the aggregation first increases with the polymer concentration, reaches a
maximum, and then decreases [165]. At very low shear rates, the rouleaux even
align themselves in an end-to-end and side-to-end fashion, forming a secondary
structure of 3D aggregates. At this configuration, blood shows solid-like properties.

Leukocyte adhesion establishes if a leukocyte comes close to the endothelium,
and leukocyte ligands bind to selectin molecules on the endothelium cell. The
leukocyte can then migrate into the vessel wall and deliver immune response.

Thrombocyte aggregation and adhesion develop through the binding of activated
thrombocytes to each other via plasma macromolecules, such as fibrinogen and
vWF [480]. In addition to self-adhesion, thrombocytes bind to a number of
substances that are exposed to the bloodstream. Thrombocyte aggregation and
adhesion is an important factor in the formation of a thrombus and therefore a
critical step in wound healing.

Fig. 6.7 Rouleaux
formation. Erythrocytes
clump together face-to-face, a
mechanism that appears at
low shear rates in blood
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6.3.7 Segregation of Blood Particles

The smaller blood particles prevent in general the larger ones from contact—
macromolecules, such as albumin hinders particles, such as erythrocytes from
colliding with themselves. Blood contains many different-sized particles, and their
interactions in plasma lead to a number of segregation effects. Already in bimodal
suspensions, the distribution of particle evolves very differently from unimodal
suspensions. This has been illustrated by in vitro experiments in glass tubes that used
erythrocyte ghosts (erythrocytes made transparent by removing their hemoglobin)
and thrombocytes in saline solution [1]. The larger particles (erythrocyte ghosts)
are then concentrated in the center, whilst the smaller particles (thrombocytes)
are concentrated at the wall, see Fig. 6.5b. Particle segregation is always hindered
by mixing, a phenomenon that is inherent to all complex flows, such as swirl,
translational, and turbulent flow.

6.4 Blood RheologyModeling

The rheological properties of blood are critical to proper tissue perfusion. Knowl-
edge concerning the alterations in blood properties and their consequences for
the cardiovascular system is therefore important clinical information. Pathologies
with hematological origin, such as leukemia, hemolytic anemia, sickle-cell disease,
conditions associated with the risk for thrombosis and other cardiovascular events,
all relate to the disturbance of local homeostasis. In addition to experimental studies,
versatile mathematical descriptions of blood rheology may help to explore and
understand said circulatory implications [148, 469].

The rheological properties of a fluid are measured by a rheometer, where the
Couette5 rheometer, the cone-and-plate rheometer, and the capillary rheometer are
the most commonly used experimental devices. They apply very different principles
to establish shear rates, which then also limits the cross-comparison of the acquired
experimental data. In addition to the experimental technique, vascular control
mechanisms such as metabolic autoregulation and/or modulation of endothelial
function are also able to modify blood rheology. It may explain that blood seems
to be less viscous at in vivo than in vitro conditions, see [365].

6.4.1 Shear Rate-Dependent Changes of BloodMicrostructure

The high content of erythrocytes results in significant non-Newtonian effects [83],
and blood’s viscosity is not constant. Given very low shear rates, erythrocyte
rouleaux join each other and form secondary structures of aggregates, see Fig. 6.8.
At this state, blood has solid-like properties with theoretically infinite viscosity.

5Maurice Marie Alfred Couette, French physicist, 1858–1943.
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Fig. 6.8 Dependence of the
viscosity of whole blood on
the shear rate and the
hematocrit level. Inlets show
the shape and distribution of
erythrocytes at different shear
rates
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Exceeding the yields stress, solid-like blood breaks up into a network of aggregates.
This process is time-dependent but reversible, and it is still unclear whether the
yield stress may be regarded as a material property of blood. The aggregates then
move independently within blood and their size reduces with increasing shear rates,
a process that continues until all aggregates are broken down and the erythrocytes
can move independently. Large solid-like obstacles severely increase the viscosity
of a fluid, and breaking them down into smaller pieces therefore leads to the fast
drop of blood viscosity already at low shear rates, see Fig. 6.8. At high shear rates,
erythrocytes deform into ellipsoidal shapes that are aligned with the bloodstream, a
mechanism that further reduces blood’s flow resistance, see Fig. 6.8. At shear rates
beyond of approximately 100 to 200 s−1, blood viscosity becomes finally insensitive
to the shear rate, and the Newtonian assumption of a constant viscosity is then
justified.

The break-down and the formation of blood microstructure is time-dependent,
and blood’s rheological properties are thixotropic. Let us consider blood at a
constant and high shear rate until its microstructure is equilibrated, and the blood
established the viscosity ηhigh. Following a sudden drop to a lower and again
constant shear rate, some time is required until blood’s microstructure is again
equilibrated, and the viscosity ηlow establishes. The viscosity therefore lags always
behind the shear rate, a property called thixotropy, which in some sense is similar to
viscoelasticity in solids, see Sect. 3.5.4. The half-life time for aggregate formation
is in the range of 3 to 5 s [495]—it may be shorter for pathological blood.

6.4.2 Modeling Generalized Newtonian Fluids

We consider an incompressible and isotropic fluid at the velocity v, and l = gradv
denotes the spatial velocity gradient. The Cauchy stress may then be expressed by
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σ = τ (d)− κI , (6.2)

where d = (l + lT)/2 denotes the rate of deformation tensor, whilst κ is a
Lagrange contribution to the hydrostatic stress that enforces the incompressibility.
One possible particularization of the constitutive model (6.2) reads

σ = 2η(d)d − pI , (6.3)

where the fluid’s dynamic viscosity η(d) [Pa s] is a function of the rate of defor-
mation d. The Newtonian fluid is a special case with a constant viscosity η. Given
an incompressible fluid, the continuity reads trd = 0, and p in (6.3) then denotes
the hydrostatic pressure. This statement follows directly from the trace of (6.3),
trσ = −ndimp, where ndim denotes the number of spatial dimensions.

As with any function of a symmetric second-order tensor, the viscosity may be
expressed by η = η(d) = η(Id 1, Id 2, Id 3), where

Id 1 = trd ; Id 2 = [(trd)2 − trd2]/2 ; Id 3 = detd (6.4)

are the three invariants of the rate of deformation tensor d. Given the continuity
trd = 0 = Id 1, the first invariant contributes no information to the fluid’s
constitutive description. In addition, viscosity models almost always consider only
the second invariant Id 2 = (trd2)/2, which is then substituted by the scalar shear
rate

γ̇ =
√

2trd2 [s−1] . (6.5)

It leads to a non-constant viscosity model of the form η(γ̇ ), called a generalized
Newtonian model. A number of such models will be discussed in the following
sections, and the description of blood viscosity is generally more important in
smaller vessel, where the viscous forces dominate over the inertia forces in the
momentum equation (3.107).

6.4.3 Single-Phase Viscosity Models for Blood

6.4.3.1 Power LawModel
The Power Law model expresses the fluid viscosity through

η(γ̇ ) = η0(λγ̇ )
n−1, (6.6)

where η0 [Pa s] denotes the viscosity at γ̇ = 1/λ, and n is the power law constant.
Blood is a shear-thinning fluid and captured by n < 1. Given a shear-thickening
fluid n > 1, whilst n = 1 describes a Newtonian fluid. The time constant λ [s] may
be regarded as a model parameter and identified together with the other parameters
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from experimental data. However, it is commonly set at λ = 1.0 s and therefore
only used to correct for dimensions in (6.6). The Power Law model approaches the
non-physical viscosity η = 0 at the limit γ̇ → ∞.

6.4.3.2 Carreau–YasudaModel
The Carreau–Yasuda model [429] expresses the fluid viscosity through

η(γ̇ ) = η∞ + (η0 − η∞)(1 + λγ̇ α)(n−1)/α, (6.7)

where λ [s] is a time constant, η0 and η∞ [Pa s] are fluid viscosity levels at low
and high shear rates, respectively, whilst n denotes the power law constant. The
parameter α determines the transition from the low to high viscosity levels. The
low viscosity limit η0 has only theoretical meaning, and it is unclear whether or not
such limit would exist. Given the parameter α = 2, the model is often referred to as
Carreau model.

6.4.3.3 CassonModel
The Casson model [73] expresses the fluid viscosity through

η(γ̇ ) = η∞

[
1 +

(
τ0

η∞γ̇

)1/2
]2

, (6.8)

where η∞ [Pa s] is the fluid viscosity level at high shear rates, whilst τ0 [Pa] denotes
the yield stress above which no erythrocytes rouleaux formation appears [95]. Such
a limit is difficult to set, and may not even exist, such that τ0 is more or less a
phenomenological model parameter.

Figure 6.9 illustrates a comparison of different blood viscosity models. The
model predictions are shown in relation to experimental data of canine blood at
37 ◦C [83] as well as human erythrocytes in homologous Acid Citrate Dextrose-

Fig. 6.9 Comparison of
blood viscosity models in
relation to experimental data
of canine blood at 37 ◦C (©)
and human Red Blood Cells
(RBC) in homologous
ACD-plasma at 25 ◦C and
48% hematocrit (�). Model
predictions use the Power
Law model (6.6), the
Carreau–Yasuda model (6.7),
the Casson model (6.8), and
the parameters listed in
Table 6.1
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Table 6.1 Parameters used in the rheological description of blood

Power law model (6.6) η0 = 31.9 mPa s ; n = 0.5.

Carreau–Yasuda model (6.7) η0 = 200 mPa s ; η∞ = 3.5 mPa s ; λ = 8.2 s ;
n = 0.2128 ; α = 0.7.

Carreau model (6.7) η0 = 200 mPa s ; η∞ = 3.5 mPa s ; λ = 1800 s ;
n = 0.28 ; α = 2.0.

Casson model (6.8) η∞ = 3.5 mPa s ; τ0 = 10.86 mPa.

Krieger-based model (6.11) ηp = 1.2 mPa s ; φmax = 0.98 ; λ = 95 s ;
b = 6.1 ; c = 2.3 ; β = 8.23 ; ν = 1.34.

plasma (ACD-plasma) at 25 ◦C and 48% hematocrit. Model predictions are based
on the parameters listed in Table 6.1.

6.4.4 Composition-Based Viscosity Models for Blood

A truly versatile model for blood viscosity includes the functional dependence of the
interacting factors, such as shear rate, hematocrit, temperature, and plasma proteins.
Whilst such descriptions often start with rational concepts and physical phenomena,
empirical relations are then introduced to match experimental blood properties.

6.4.4.1 Walburn–SchneckModel
The Power Law viscosity model (6.6) may be generalized towards parameters that
depend on the hematocrit level 0 < φ < 1, the volume density of erythrocytes.
This generalization is then known as the Walburn–Schneck model [588] and uses
the empirical relations

η0 = c1 exp(c2φ) ; n = 1 − c3φ , (6.9)

where c1 [Pa s] and c2, c3 are model parameters to be identified from experimental
data.

6.4.4.2 QuemadaModel
The Quemada model [440] considers blood to be a concentrated dispersion of
erythrocytes in plasma. It uses a semi-phenomenological approach that results in
the viscosity

η = ηp

[
1 −

(
k0 + k∞√

γ̇ /γ̇c
)

2
(
1 + √

γ̇ /γ̇c
) φ

]−2

, (6.10)

where ηp [Pa s] is the viscosity of blood plasma, whilst 0 < φ < 1 denotes the
hematocrit level. The model parameters
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k0 = exp

(
3∑

i=0

aiφ
i

)
; k∞ = exp

(
3∑

i=0

biφ
i

)
; γ̇c = exp

(
3∑

i=0

ciφ
i

)

depend on the hematocrit level φ, where ai, bi , and ci [ln(s−1)] are constants. The
Quemada model shows discontinuities when covering a large range of hematocrit
levels φ [276], limit points that, however, do not concern hematocrit levels of most
applications.

6.4.4.3 Krieger-BasedModel
The Krieger model [312] is based on Eyring’s6 theory of rate processes applied to
the suspension of solid spheres. In the description of blood, the framework has been
empirically modified to cope with the deformation of erythrocytes [276, 416]. It
yields the viscosity

η = ηp

(
1 − φ

φmax

)−n
, (6.11)

where φmax is the maximum possible hematocrit, and thus the hematocrit at
which the suspension ceases to flow. Blood with normal erythrocytes flows up
to hematocrit levels of 98% [624], and probably above. The maximum possible
hematocrit is therefore set to φc = 0.98 [276]—for pathologically stiffened
erythrocytes, φc would be significantly lower.

Whilst for rigid spherical particles, the Krieger exponent n = 1.66, erythrocyte
deformability alters this theoretical value, and n is no longer a constant but depends
on the shear rate. The empirical relation

n = a + b exp(−cφ)+
{

0 ; φ ≤ 0.2
nst ; φ > 0.2

(6.12)

has therefore been proposed [276], where a, b, and c are model parameters. Shear
thinning of blood is experimentally only seen above a certain hematocrit level, and
the contribution nst is only added to the Krieger exponent for hematocrit levels φ >
0.2. The shear-thinning contribution itself is determined by

nst = β
[
1 + (λγ̇ )2

]−ν
, (6.13)

an empirical relation that aims at capturing effects from erythrocyte aggregation at
low shear rates together with their elongation at high shear rates. Here, λ [s] and β
are constants, whilst γ̇ denotes the shear rate.

6Henry Eyring, Mexican-born American theoretical chemist, 1901–1981.
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Fig. 6.10 Viscosity of a
suspension of human Red
Blood Cells (RBC) in
homologous ACD-plasma at
25 ◦C for 35.9% (�), 48%
(©), and 58.9% (
)
hematocrit levels. Model
predictions (solid lines) using
the Krieger model (6.11)
based on the parameters listed
in Table 6.1

Figure 6.10 illustrates the model’s ability to capture the experimentally mea-
sured viscosity of human erythrocyte suspensions in homologous ACD-plasma at
25 ◦C [60]. The applied model parameters are listed in Table 6.1. The Krieger-
based viscosity model can be further generalized to account for effects, such as
temperature and plasma protein concentrations [276].

Example 6.1 (Walburn–Schneck Viscosity Model). Table 6.2 lists the viscosity η of
erythrocytes (red blood cells) in Acid Citrate Dextrose-plasma (ACD-plasma), data
that has been measured at three different hematocrit levels φi, i = 1, 2, 3. It shows
typical shear thinning at increasing strain rate γ̇ . The measured viscosity should be
captured by the Walburn–Schneck viscosity model

ηWS(γ̇ , φ) = η0(λγ̇ )
n−1 , (6.14)

where the expression (6.9) defines the parameter η0.

Table 6.2 Viscosity η in
relation to the shear rate γ̇ of
a suspension of human
erythrocytes in homologous
Acid Citrate Dextrose-plasma
(ACD-plasma) at 25 ◦C [60].
The hematocrit is denoted by
the three levels φ1 = 0.359,
φ2 = 0.48, and φ3 = 0.589,
respectively

η [mPa s]

γ̇ [s−1] φ1 φ2 φ3

0.15 30 62 –

0.41 20 42 71

0.6 17 34 59

1 13 28 48

1.8 11 22 36

3 9 19 29

5 8 15 23

10 7 11 15

20 6.5 10 12

η [mPa s]

γ̇ [s−1] φ1 φ2 φ3

30 6 9 10.5

40 5 8.5 9.5

60 5 7.5 9

100 4 7 8.5

170 4 6 8

300 4 5 7.5

400 4 4.9 7.5

550 4 4.7 7.5

700 4 4.5 7.5

(a) Use least-square optimization to identify the three Walburn–Schneck model
parameters c1, c2, and c3 from the experimental data listed in Table 6.2.
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(b) Plot the predicted viscosity ηWS as a function of the strain rate γ̇ and on top
of the experimentally measured viscosities. Use a logarithmic scale of the shear
rate γ̇ . �

The Intended Model Application (IMA) of the individual simulation guides the
selection of the blood’s constitutive description. Different models will generally
show different results, and the investigator has to decide upon the flow features of
interest for a specific study. Figure 6.12 illustrates such differences in the computed
blood flow in the aneurysmatic aorta using the Newtonian and the Carreau–
Yasuda blood viscosity models, with otherwise identical modeling assumptions. The
predicted WSS is almost identical between both models, whilst VS as well as the
scalar shear rate γ̇ differ remarkably in the core flow. As with the VS, also the
secondary flow is strongly influenced by the blood’s shear-thinning properties [82].
Given complex flows, blood flow indicators that are commonly used to explore the

Fig. 6.12 Comparison
between Computational Fluid
Dynamics (CFD) predictions
based on the Newtonian (left
column) and the
Carreau–Yasuda (right
column) blood viscosity
models. The simulation
represents blood flow in the
aneurysmatic aorta at late
systole in the cardiac cycle.
(a) Wall Shear Stress (WSS).
(b) Vortical Structure (VS).
(c) Scalar shear rate γ̇ at a
single transversal plane
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vasculature may change by 50% to 200% between Newtonian and non-Newtonian
fluids, respectively [564, 565].

6.5 Blood Damage

Medical devices, such as ventricular assisting devices and artificial heart valves,
introduce non-physiological aspects to the circulation and may result in shear stress-
induced blood damage. Its minimization is one of the most important objectives in
the development of medical devices. The minimization of blood damage allows to
reduce the dose of anti-coagulants in patients with implanted medical devices, which
then also greatly reduces the side effects of such drug therapy.

High mechanical shear stress can result in a number of blood-damage mech-
anisms, out of which hemolysis and (non-physiological) thrombocyte activation
(also regarded as thrombocyte damage) are the most widely studied phenomena.
Whilst blood damage is a major cause of failure of medical devices, the underlying
damage mechanisms are poorly understood and current biomechanical models of
blood damage are characterized by a very high degree of phenomenology.

6.5.1 Hemolysis

Mechanical shear stress is able to rupture or damage the membrane of erythrocytes,
a blood-damage mechanism called hemolysis. It results in the release of hemoglobin
into the blood plasma, and the ratio between the plasma-free hemoglobin and the
total hemoglobin in the blood, a parameter called Hemolysis Index (HI), quantifies
the severity of this type of blood damage. In the normal (non-damaged) blood
approximately 2% of hemoglobin appears freely in plasma, and higher levels would
indicate erythrocyte damage. Experiments with erythrocytes indicate that damage-
related release of hemoglobin appears only above a certain shear stress level—the
literature reports thresholds in the range from τ = 100 to 250 Pa [320]. In addition
to the stress level, the exposure time to stress influences hemolysis. Given the
viscoelasticity of erythrocytes, time is needed to turn the stress level into cell
membrane deformation, which then eventually results in hemolysis. Whilst the shear
stress increases with increasing flow rate of the blood through a medical device,
the residence time of the erythrocytes, and thus the time they are exposed to non-
physiological aspects, decreases. The particular design of the medical device is then
an important factor in HI minimization, see for example the analysis of different
rotary continuous flow ventricular assisting devices [174].
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Table 6.3 Parameters of the Power Law model (6.15) towards the description of hemolysis as a
function of the shear stress τ [Pa] and the exposure time t [s]

C [Pa−α s−β ] α β Blood source Reference

3.63 · 10−7 2.416 0.785 Human [211, 603]

1.8 · 10−8 1.991 0.765 Porcine [251]

1.228 · 10−7 1.9918 0.6606 Ovine [125]

6.701 · 10−6 1.0981 0.2778 Porcine [125]

3.458 · 10−8 2.0639 0.2777 Human [125]

9.772 · 10−7 1.4445 0.2076 Bovine [125]

Let us consider the damage-related release of hemoglobin, where �Hb denotes
the amount of hemoglobin that is released into the bloodstream, whilst Hb is the
total hemoglobin. We may then express the ratio between both values by the Power
Law model

H(τ, t) = �Hb

Hb
=
{
Cταtβ for τ ≥ τ ,

0 for τ < τ ,
(6.15)

where C [Pa−α s−β ] and α, β are constants to be identified from experimental data.
A number of studies identified these parameters from shear flow experiments,
and Table 6.3 lists parameters that have been reported in the literature. The
generalization of the hemolysis model (6.15) towards multi-dimensional flows
requires the introduction of a scalar shear stress τ , a scalar that represents the shear
stress tensor τ . It should adequately capture the loading of erythrocytes and could
be any function of the invariants of τ . As compared to the model parametersC, α, β,
the definition of τ has a minor influence on the prediction of H [610]. Given this
access, the von Mises stress

τ =
√

3(τ 2
12 + τ 2

23 + τ 2
13) = √−3Iτ 2

has often been used in the study of hemolysis, where Iτ 2 = [(trτ )2−trτ 2]/2 denotes
the second invariant of the shear stress tensor. The derivation used the property
trτ = 0 that follows directly from the structure of the fluid stress tensor σ = τ −pI,
where p denotes the hydrostatic pressure.

In addition to the Power Law model (6.15), many other approaches have been
proposed to predict blood damage. A review of models together with a cross-
comparison of their predictions has been reported elsewhere [610], and recently
hemolysis has also been related to the energy dissipation rate [602]. The damage
of blood components other than erythrocytes may also be modeled similarly to
hemolysis. The same models, but different model constants, are then used.
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The Power Law model (6.15) may be implemented in a Computational Fluid
Dynamics (CFD) analysis using the Eulerian approach or the Lagrangian approach.
Given the Eulerian approach, the model is rewritten in a standard transport equation,
whilst in the Lagrangian approach it is integrated along pathlines.

6.5.1.1 Eulerian Implementation of the Hemolysis Power LawModel
The transformation HL = H 1/β maps the Power Law model (6.15) into HL =
C1/βτα/β t , an equation that is linear in the time t . Given the material time derivative
DHL/Dt = C1/βτα/β , (6.15) then leads to the transport equation

∂HL

∂t
+ v · gradHL = C1/βτα/β(1 −HL) , (6.16)

where the term (1−HL) serves as regularization term and prevents from unphysical
solutions, such as HL > 1, see [610]. The transport equation (6.16) is much more
practical than the original model (6.15) and can be directly implemented in a CFD
analysis.

6.5.1.2 Lagrangian Implementation of the Hemolysis Power LawModel
We may integrate the Power Law model (6.15) along pathlines, and

H(τ, t) = H0 +
∫ t

0
Cταtβdt (6.17)

then represents the damage of erythrocytes that accumulates over the time t , where
H0 = H(τ, 0) denotes the initial erythrocyte damage. The simple approximation
H(τ, t) ≈ H0 +∑n

i=1 Cτ
α
i t
β
i �ti of (6.17), where n denotes a number of discrete

points in time, delivers a poor hemolysis prediction, and more advanced methods
have therefore been proposed [221].

A pathline depends on its origin in space and time, and the accurate represen-
tation of the blood’s damage potential relies on the adequate coverage of pathlines
throughout the entire fluid domain. Whilst this is typically not difficult to attain for
simple flow topologies without noticeable recirculation regions, it is challenging for
more complex geometries with large stable VS. Pathlines seeded at the vessel inlet
may not cover the entire flow domain, a factor that impacts hemolysis predictions
negatively. The random seeding of pathlines all over the flow domain improves
the situation, but it is seldom sufficient to fully resolve said issue—areas of high
potential damage, such as recirculation zones and boundary layers, could again not
have been passed by any pathline.

6.5.2 Thrombocyte Activation

In addition to chemical agonists, such as Adenosine DiphosPhate (ADP), thrombin,
thromboxane A2, and serotonin, mechanical shear stress is also able to activate
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Fig. 6.13 Thresholds of
shear stress τ and exposure
time t to activate
thrombocytes (platelets). Data
points are taken from
experimental studies reported
elsewhere
[96, 249, 452, 487, 603, 615].
Least-square optimization
leads to the regression
line (6.18) that is shown in
blue Exposure time [s]

Sh
ea

r s
tr
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Conditions for thrombocyte
(platelet) activation

thrombocytes (platelets). Whilst this is a needed first step in wound healing, the
activation of a large number of thrombocytes of blood that passes through medical
devices, increases the risk for device failure. Clotted blood can occlude the device,
or blood clots released in the bloodstream may occlude distal vessels and eventually
lead to acute thrombo-embolic events. The activation of thrombocytes is influenced
by the exposure time and the level of shear stress. Given a number of experimental
observations [96, 249, 452, 487, 603, 615], the empirical expression

τ = 29.598 t−0.377 (6.18)

determines conditions of shear stresses τ [Pa] and exposure times t [s] that results
in the activation of thrombocytes, see Fig. 6.13.

6.6 Description of Incompressible Flows

6.6.1 Energy Conservation

For some applications, blood may be regarded as an ideal fluid without viscosity.
Any dissipation of the blood flow is then neglected, and the flow may be studied
entirely by the principle of energy conservation. At any point in a flow system,
the sum of the specific potential energy gh + p/ρ [J kg−1] and the specific kinetic
energy v2/2 [J kg−1] remains then constant, where v and p denote the velocity and
pressure, whilst ρ is the density of the fluid. In addition, g = 9.81 m s−2 denotes the
gravitation, and h is the height coordinate relative to a reference point of the flow
system. The energy conservation then reads

v2

2
+ gh+ p

ρ
= C , (6.19)
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Fig. 6.14 Blood flow
through a vessel segment,
where the flow path falls by
�h from the inlet A to the
outlet B. The gravitation is
denoted by g

A

B

an expression known as Bernoulli7 equation and used for a first estimation of the
average blood pressures that develops in the vascular system. In addition, the blood
flow velocities follow directly from the continuity of the blood volume.

6.6.1.1 Blood Flow Under the Action of Gravitation
The blood flow in the body is influenced by gravitation, and Fig. 6.14 shows an
arterial segment that allows us to investigate said mechanism. The vessel has circular
cross-sections, where dA = 1.9 cm and dB = 1.5 cm denote the diameter at the
inlet A and the outlet B, respectively. At the inlet the blood has the velocity vA =
12.4 cm s−1 and the pressure pA = 98 mm Hg, it then drops by the height �h =
38.6 cm and leaves the system through B. The blood then has the velocity vB and
the pressure pB, state variables to be determined hereinafter.

The continuity of a steady-state incompressible flow requires the inflow rate
qA = vAd

2
Aπ/4 to match the outflow rate qB = vBd

2
Bπ/4, a relation that allows

us to compute the outflow velocity

vB = vA(dA/dB)
2 = 19.9 cm s−1 .

The outlet velocity vB is therefore uniquely determined by the vessel’s diameters
and independent from the gravitation as well as the drop in height �h.

Given this example, blood may be regarded as an ideal (in-viscous) fluid with the
density ρ = 1060 kg m−3. Bernoulli’s equation (6.19)

v2
A/2 + ghA + pA/ρ = v2

B/2 + ghB + pB/ρ

then allows us to express the outflow pressure

pB = pA + ρ(v2
A − v2

B)/2 + ρg�h = 17.067 kPa = 128.0 mm Hg , (6.20)

where ρ(v2
A−v2

B)/2 and ρg�h denote kinetic energy and respective potential energy
contributions to the pressure. The potential energy contribution may be seen as
the gravitation’s effect on blood flow. It often dominates over the kinetic energy

7Daniel Bernoulli, Swiss mathematician and physicist, 1700–1782.
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contribution, and the vasculature actively reacts to gravitational effects through
nervous system-controlled blood pressure compensation, see Sect. 2.1.7.2.

Given the special case �h = 0, the gravitational effect in (6.20) vanishes and
Bernoulli’s equation (6.20) then results in the pressure difference

�p = pB − pA = ρ(v2
A − v2

B)/2 = −12.8 Pa = −0.096 mm Hg .

The increase in the flow velocity of 7.5 cm s−1 from the larger vessel diameter dA
towards the smaller vessel diameter dB is then compensated by the decrease in
pressure of 0.096 mm Hg. This is a counterintuitive result, and one could mistakenly
think that blood at higher velocity would also have a higher pressure.

Example 6.2 (Collapse of a Constricted Vessel Segment). Figure 6.15 shows the
blood flow through a constricted circular vessel, where di and dc denote the
diameters at the inlet and constriction, respectively. The blood has the density
ρ = 1060 kg m−3 and may be regarded as an ideal (in-viscous) fluid with the
velocity vi = 23.2 cm s−1 and the pressure pi = 75 mm Hg at the vessel’s inlet.
The vessel wall may be regarded as a membrane that has no bending stiffness, and
p0 = 12.0 mm Hg determines the ambient pressure outside the vessel.

Fig. 6.15 Blood flow
through a vessel constriction

(a) Consider incompressible blood and express the flow velocity vc in the constric-
tion.

(b) Use Bernoulli’s equation (6.19) and express the pressure pi in the constriction.
(c) Specify the relative diameter stenosis Sdiameter = (di − dc)/di as well as the

relative area stenosis Sarea = (Ai −Ac)/Ai, at which the vessel would collapse.
Here, Ai and Ac denote the cross-sectional areas at the inlet and constriction,
respectively. �

6.6.2 Linear Momentum Conservation

A 1D flow is a flow, which velocity v depends only on the time t and one spatial
dimension. As with any other flow, it has to satisfy the linear momentum (3.107)
ρ(Dv/Dt) = divσ + bf, where σ and bf denote the Cauchy stress and the body
force per unit spatial volume, respectively. The material time derivative Dv/Dt =
∂v/∂t + v · gradv specifies the acceleration that is felt by the fluid particle, and
ρ denotes fluid density per (spatial) unit volume. The continuity (3.104) of an
incompressible fluid divv = 0 is also part of the blood flow’s mathematical
description. The continuity and linear moment can then be combined into a single
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Fig. 6.16 1D flows in (a)
Cartesian and (b) cylindrical
coordinates. The vectors
denote the flow velocity
v(x3, t) and v(r, t) in
Cartesian and cylindrical
coordinates, respectively

governing equation for incompressible 1D flows, a relation that looks differently in
different coordinate systems.

6.6.2.1 Governing Equation for 1D Flows in Cartesian Coordinates
Without loss of generality, we may consider a fluid that flows along the x1 coordinate
direction, as it is illustrated in Fig. 6.16a. The velocity v = v(x3, t) then has the
individual components v1(x3, t) and v2 = v3 = 0, and the flow continuity

divv = ∇ · v = ∂v1

∂x1
+ ∂v2

∂x2
+ ∂v3

∂x3
= 0

is a priori satisfied. The velocity gradient of the 1D flow reads

gradv =

⎡

⎢⎢⎣

∂v1/∂x1 ∂v1/∂x2 ∂v1/∂x3

∂v2/∂x1 ∂v2/∂x2 ∂v2/∂x3

∂v3/∂x1 ∂v3/∂x2 ∂v3/∂x3

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0 0 ∂v1/∂x3

0 0 0

0 0 0

⎤

⎥⎥⎦ ,

and leads to the rate of deformation

d = 1

2

(
gradv + gradTv

)
= 1

2

⎡

⎢⎢⎣

0 0 ∂v1/∂x3

0 0 0

∂v1/∂x3 0 0

⎤

⎥⎥⎦ .

The only non-vanishing shear stress component that acts at the fluid particle
reads τ13 = 2ηd13 = η(∂v1/∂x3), where η [Pa s] denotes the dynamic viscosity.
Whilst η is constant for a Newtonian fluid, it depends on the shear rate for a general
Newtonian fluid, see Sect. 6.4.2.

Given the decoupled stress representation σ = τ − pI with the shear stress
τ = 2ηd and the pressure p, the linear momentum ρ(Dv/Dt) = divσ + bf of the
1D incompressible flow reads
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ρ

⎛

⎜⎜⎜⎝

⎡

⎢⎢⎢⎣

∂v1/∂t

0

0

⎤

⎥⎥⎥⎦+

⎡

⎢⎢⎢⎣

0 0 ∂v1/∂x3

0 0 0

0 0 0

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

v1

0

0

⎤

⎥⎥⎥⎦

⎞

⎟⎟⎟⎠ =

⎡

⎢⎢⎢⎣

∂τ13/∂x3 − ∂p/∂x1

−∂p/∂x2

−∂p/∂x3

⎤

⎥⎥⎥⎦+

⎡

⎢⎢⎢⎣

bf 1

bf 2

bf 3

⎤

⎥⎥⎥⎦ ,

where the material time derivative Dv/Dt = ∂v/∂t + v · gradv and the stress
divergence (A.18) in Cartesian coordinates have been used. Note that the advective
acceleration vanishes, and v · gradv = 0 holds for the Cartesian 1D flow.

The shear stress may be expressed by τ13 = η(∂v1/∂x3), and the 1D fluid flow
problem is then governed by the set

ρ
∂v1

∂t
= ∂

∂x3

(
η
∂v1

∂x3

)
− ∂p

∂x1
+ bf 1; ∂p

∂x2
= bf 2; ∂p

∂x3
= bf 3 (6.22)

of equations, where p = p(x1, x2, x3) and bf(x1, x2, x3) express the fluid pressure
and body force as a function of the Cartesian coordinates.

6.6.2.2 Fluid Flow Down the Inclined Plane
Whilst Cartesian 1D flow has limited applications in the vasculature, it is instru-
mental for the mechanical understanding of flow problems. One such example is
shown in Fig. 6.17. A Newtonian fluid of viscosity η = 37.0 mPa s and the density
ρ = 1.12 kg dm−3 flows down a plane that is inclined by the angle α = π/6. The
fluid is surrounded by air of negligible density, the flow is laminar, fully developed,
and entrance effects may be neglected.

Let us start with the specification of the governing equations of this 1D steady-
state problem. Given the angle β = π/2 − α, the body force bf = ρg[cosβ −
sinβ 0]T acts, and the governing equations (6.22) then read

∂τ

∂y
− ∂p

∂x
+ ρg cosβ = 0 ; −∂p

∂y
− ρg sinβ = 0 , (6.23)

Fig. 6.17 Fluid flowing
down a plane that is tilted by
the angle α. The fluid layer
has the thickness H , and the
gravitation is denoted by g
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where g = 9.81 m s−2 denotes the gravitation. These equations determine the
velocity profile v that establishes within the fluid layer.

The integration of (6.23)2 yields the pressure

p = ρg sinβ(H − y) ,

where the boundary condition p(H) = 0 has been used. Given the flow is fully
developed, ∂p/∂x = 0, and the governing equation (6.23)1 then reads

η
d2v

dy2 + ρg cosβ = 0 ,

where a Newtonian fluid τ = η(dv/dy) has been used. The one-dimensionality
of the problem allowed us to substitute the partial derivative with the ordinary
derivative. Twice integration of this relation yields

v = −ρg cosβ

2η
y2 + C1y + C2 ,

where the integration constants C1 = ρg cosβH/η and C2 = 0 can been identified
from the no-slip condition at the wall v(0) = 0, as well as the no-shear condition
at the free surface τ(H) = 0. Given these conditions, the velocity of the fluid layer
then reads

v = ρg cosβ

2η

(
2yH − y2

)
. (6.24)

It is emphasized that the no-shear condition at the free surface τ(H) = 0 implies
dv/dy = 0 at y = H , and the velocity gradient vanishes at the free surface.

Let us consider 2.3 l of fluid flowing down per second and meter width of the
inclined plane, information that allows us to identify the height H of the fluid layer.
The integration of the velocity (6.24) over the layer thickness then yields the flow
rate q = ∫ H

y=0 vdy = ρg cosβH 3/(3η) = 49491.9H 3 m2 s−1 and results in the
height H = 3.595 mm of the fluid layer. Given the height of the fluid layer, we are
able to compute the shear stress τ(0) = ρg cosβH = 19.751 Pa that acts at the
wall, where the Newtonian fluid τ = η(dv/dy) and the velocity profile (6.24) have
been used. This result follows also directly from the static equilibrium of the fluid
layer. The gravitational force G = ρgH acts at the fluid layer per square meter of
the inclined plane, and the tangential component of this force then determines the
WSS τ = G cosβ.

6.6.2.3 Fluid Layer at Oscillating Pressure Load
The contraction of the heart muscle exposes the arterial system to pulsatile pressure
and flow. It leads to the dynamic exchange between the potential and kinetic
energies of the blood and strongly influences the flow in large conduit arteries. The
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Fig. 6.18 Fluid layer exposed to oscillating pressure. (a) Problem definition. (b) Fluid velocity
profiles v(y, t) at a number of time points t

interaction of pressure and flow may already been studied by the 1D Cartesian flow
problem shown in Fig. 6.18a. A fluid channel of the widthH = 2.0 cm is filled with
a Newtonian fluid of the density ρ = 1025.0 kg m−3 and the dynamic viscosity
η = 4.0 mPa s. Over the time t , the fluid layer is exposed to the pressure P0 sin(ωt),
where P0 and ω denote the pressure amplitude and the angular velocity, respectively.

At steady-periodic conditions, the fluid velocity may be expressed by v(y, t) =
V (y) sin(ωt), where V (y) denotes the amplitude of the velocity as a function of the
channel depth coordinate y. Given (6.22) and the pressure P0 sin(ωt), the governing
equation of this transient 1D flow problem then reads

∂2V (y)

∂y2 − ρωV (y)

η tan(ωt)
= P0 ,

and its integration yields the velocity amplitude

V (y) = C1 exp(αy)+ C2 exp(−αy)− P0

α2 with α =
√
ρω

η
cot(ωt) . (6.25)

The two integration constants C1 and C2 may be identified from the two no-slip
boundary conditions V (0) = V (H) = 0 and read

C2(t) = P0/α
2 − C1(t) ; C1(t) = P0

α2[1 + exp(αH)] .

The substitution of C1 and C2 in (6.25) then yields the velocity amplitude across the
fluid layer

V (y) = [1 − exp(−αy)][− exp(αH)+ exp(αy)]P0

α2[1 + exp(αH)] ,

which may also be expressed by
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V (y) = P0

α2 [cosh(αy)− sinh(αy) tanh(αH/2)− 1] sin(ωt)

and completes the description of the flow velocity v(y, t) = V (y) sin(ωt).
Fig. 6.18b shows the velocity profile at the time points t = 1.16 ; 2.33 ; 3.49 ; 4.65 s.
The plot considers an angular velocity ω = 0.6 s−1 together with the pressure
amplitude P0 = 10.0 kPa.

Example 6.3 (Oscillating Plate on Top of a Fluid Layer). Figure 6.19 shows a rigid
plate that moves at the velocity V0 sin(ωt) on top of a fluid layer of the thickness
H = 1.0 cm, where t denotes the time. The velocity amplitude V0 = 1.0 cm s−1

and the angular velocity ω = 0.6 s−1 are given. Initial effects have already been
fully dissipated, and the fluid layer moves at steady-state periodic conditions. The
fluid has the density ρ = 1025.0 kg m−3 and the constant dynamic viscosity η =
4.0 mPa s.

Fig. 6.19 Rigid plate that
oscillates on top of a fluid
layer of the thickness H

(a) Provide the governing equation for this transient 1D fluid problem. Assume
the fluid velocity of the form v(y, t) = V (y) sin(ωt) together with a constant
pressure in the fluid layer. Integrate the governing equation, identify the
integration constants, and express the flow velocity v(y, t).

(b) Plot the fluid velocity profile v(y, t) versus the fluid layer depth coordinate y at
the time points t = 1 ; 2 ; 3 ; 4 s. �

6.6.2.4 Governing Equation for 1D Flows in Cylindrical Coordinates
We consider fluid flow in a cylindrical coordinate system, and without loss of
generality, along the z coordinate direction, see Fig. 6.16b. The velocity v = v(r, t)
then has the individual components vz(r, t) and vr = vθ = 0, and flow continuity in
cylindrical coordinates

divv = ∇ · v = 1

r

∂(rvr)

∂r
+ 1

r

∂vθ

∂θ
+ ∂vz

∂z
= 0

is a priori satisfied. In addition, the velocity gradient in cylindrical coordinates reads

gradv =

⎡

⎢⎢⎣

∂vr/∂r (∂vr/∂θ)/r − vθ/r ∂vr/∂z
∂vθ/∂r (∂vθ/∂θ)/r + vr/r ∂vθ/∂z
∂vz/∂r (∂vz/∂θ)/r ∂vz/∂z

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0 0 0

0 0 0

∂vz/∂r 0 0

⎤

⎥⎥⎦ , (6.26)



6.6 Description of Incompressible Flows 333

where we considered rotational symmetry, and thus the condition ∂(•)/∂θ = 0,
in the derivation of this relation. The velocity gradient (6.26) yields the rate of
deformation

d = 1

2

(
gradv + gradTv

)
= 1

2

⎡

⎢⎢⎣

0 0 ∂vz/∂r

0 0 0

∂vz/∂r 0 0

⎤

⎥⎥⎦ , (6.27)

and τrz = 2ηdrz = η∂vz/∂r is then the only non-vanishing shear stress component
that acts at the fluid particle.

Given the decoupled stress representation σ = τ − pI with the shear stress
τ = 2ηd and the pressure p, the linear momentum ρ(Dv/Dt) = divσ + bf of the
1D incompressible flow in cylindrical coordinates reads

ρ

⎛

⎜⎜⎝

⎡

⎢⎢⎣

0

0
∂vz
∂t

⎤

⎥⎥⎦+

⎡

⎢⎢⎣

0 0 0

0 0 0
∂vz
∂r

0 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

0

0

vz

⎤

⎥⎥⎦

⎞

⎟⎟⎠ =

⎡

⎢⎢⎣

∂τrz
∂z

− ∂p
∂r

0
∂τrz
∂r

+ τrz
r

− ∂p
∂z

⎤

⎥⎥⎦+

⎡

⎢⎢⎣

bf r

0

bf z

⎤

⎥⎥⎦ , (6.28)

where the material time derivative Dv/Dt = ∂v/∂t + v · gradv has been used,
and bf = [bf r 0 bf z]T denotes the rotational symmetric body force vector per unit
(spatial) volume. In addition,

divσ =

⎡

⎢⎢⎣

∂σrr/∂r + (σrr − σθθ ) /r + ∂σrz/∂z
0

∂σrz/∂r + σrz/r + ∂σzz/∂z

⎤

⎥⎥⎦

expresses the stress divergence in cylindrical coordinates (A.19) at rotational
symmetry, a condition upon which σrθ = σθz = 0 and ∂(•)/∂θ = 0 hold.

Given a fully developed flow, ∂τrz/∂z = 0 holds, and

ρ
∂vz

∂t
= ∂

∂r

(
η
∂vz

∂r

)
+ η

r

∂vz

∂r
− ∂p

∂z
+ bf z; ∂p

∂r
= bf r (6.29)

governs the 1D flow problem. In the derivation of this result, the only non-vanishing
shear stress component has been expressed by τrz = η(∂vz/∂r).

With a Newtonian fluid, the viscosity η is constant, and

ρ
∂vz

∂t
= η

r

∂

∂r

(
r
∂vz

∂r

)
− ∂p

∂z
+ bf z; ∂p

∂r
= bf r (6.30)

then governs the incompressible 1D fluid flow problem.
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6.6.2.5 Steady-State Flow of a Newtonian Fluid Through
a Circular Tube

Regardless the vessel changes its diameter over the cardiac cycle, for many
applications the flow through a rigid cylindrical tube is an accurate model of blood
flow. The flow through a straight circular tube is therefore a classical blood flow
model and instrumental to the understanding of the vasculature.

Let us consider a fully developed steady-state flow at a flow rate that is high
enough for blood to be modeled as a Newtonian fluid of the viscosity η. The
conservation of linear momentum (6.28) then reads

⎡

⎣
0
0
0

⎤

⎦ =

⎡

⎢⎢⎣

∂τrz/dz− ∂p/∂r
0

∂τrz/∂r + τrz/r − ∂p/∂z

⎤

⎥⎥⎦ ,

where the steady-state condition ∂(•)/∂t = 0 has been used in the derivation of this
expression. For a fully developed flow, ∂τrz/∂z = 0 holds, and the set

∂p

∂z
= 1

r

∂(rτrz)

∂r
; ∂p
∂r

= 0 (6.31)

governs the tube flow problem, where τrz = η(∂vz/∂r) is the only non-vanishing
shear stress component that acts at the fluid particle.

Equation (6.31)2 results in a constant pressure over a particular cross-section,
p(r, z) = p(z), and

dp

dz
= 1

r

d(rτrz)

dr
(6.32)

remains the only no-trivial governing equation of the tube flow problem. The
pressure and the shear stress are functions of single arguments, p(z) and τrz(r),
respectively—the partial derivatives have therefore been replaced by the ordinary
derivatives.

The integration of (6.32) yields

dp

dz

r2

2
= rτrz + C , (6.33)

where the integration constant C = 0 results from the symmetry condition τrz(r =
0) = 0. The pressure gradient dp/dz in (6.33) is a constant that “drives” the
flow along the z-direction. We may express the shear stress by the Newtonian fluid
model τrz = η(dvz/dr) and use the no-slip boundary condition vz(ro) = 0 in the
integration of (6.33) over r . It results in the quadratic velocity profile
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vz(r) = vmax

[
1 − (r/ro)2

]
with vmax = −dp

dz

r2
o

4η
, (6.34)

of the tube flow problem, where ro is the tube radius, whilst vmax denotes the
velocity in the center—the highest fluid velocity in the tube. It is emphasized
that a negative pressure gradient leads to a velocity in the positive z-direction.
The velocity profile (6.34) is known as Poiseuille flow profile. Whilst it presents
a good description of the blood flow in small arteries and veins, in large arteries said
velocity profile only appears during the systolic phase of the cardiac cycle.

The integrating of (6.34) over the cross-section determines the flow rate

q = 2π
∫ ro

r=0
vzrdr = πr4

o

8η

(
−dp

dz

)
(6.35)

and provides the relation between the pressure gradient and the flow through the
vessel. Given (6.33), the shear stress that is felt by the fluid particle then reads

τrz = r

2

dp

dz
= −4ηqr

πr4
o
, (6.36)

which at the wall r = ro, then results in the WSS of τrz = 4ηq/(πr3
o ). The WSS is

the stress that is felt by the endothelium, not by the blood particle, and we therefore
changed the sign.

Example 6.4 (Steady-State Flow in a Vessel Segment). Let us consider Poiseuille
flow in the description of systolic blood flow through the iliac artery. The vessel has
the diameter d = 4.2 mm, and blood of the viscosity η = 4.0 mPa s flows at the rate
of q = 3.8 ml s−1.

(a) Compute the fluid velocity v(r) that establishes in the iliac artery, where r
denotes the radial coordinate.

(b) Compute the shear stress τ(r) that acts at the fluid particles.
(c) Compute the drop of pressure �p that appears over a length of l = 10.0 cm of

the iliac artery. �

Example 6.5 (Power Law Fluid at Steady-State Tube Flow). The viscosity of blood
is not constant, a factor that influences the evolution of the flow velocity. Given this
example, blood is represented by the Power Law model (6.6) and the flow through
a rigid circular tube is exemplified.
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(a) Derive the governing equation and express the scalar shear rate γ̇ for steady-
state tube flow.

(b) Integrate the governing equation towards the derivation of the flow velocity.
Hint: Identify integration constants as early as possible to simplify the subse-
quent integration.

(c) Given the power law constants n = 5.0 ; 1.0 ; 0.5 ; 0.2, plot the normalized
velocity vz/vzmax as a function of the normalized radius r/ro, where vzmax and
ro denote the maximum flow velocity and the tube radius, respectively.

(d) Compute the flow rate q that establishes in a tube of the diameter ro = 2.0 mm.
The pressure gradient dp/dz = −7.0 mmHg m−1 as well as the Power Law
model parameters η0 = 5 mPa s and n = 0.8 may be used. �

6.6.2.6 Resistance of a Vessel Segment
A vessel segment of radius ro and length l presents the resistance R [Pa m−3 s] to
the flow of the rate q [m3 s−1]. Given Poiseuille flow, the resistance R of the vessel
segment reads

R = �p

q
= 8ηl

πr4
o
, (6.42)

where η denotes the blood’s viscosity, and �p = pinlet − poutlet = −(dp/dz)l
is the pressure drop between the inlet and outlet of the vessel segment. This
relation is known as the law of Hagen–Poiseuille and directly follows from the
expression (6.36).

Figure 6.22 illustrates the normalized resistance R/(ηl) of a vessel segment. It
tends to infinity for ro → 0, and the plot indicates that only the small vessels,
the so-called resistance vessels, are able to build up resistance in the circulation.
The peripheral resistance then determines the Mean Arterial Pressure (MAP) of the
vascular system.

Fig. 6.22 Resistance of a
circular tube to the flow of a
Newtonian fluid. The graph
shows the relation between
the normalized flow
resistance R/(ηl) and the
radius ro of the tube
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Example 6.6 (Stented Vessel). The development of atherosclerosis correlates with
locations of low Wall Shear Stress (WSS), an observation that led to a number of
non-conventional vascular stent designs. Figure 6.23 shows such a design, a stent
that aims at increasing the WSS in a stenotic vessel segment. We consider a steady-
state flow q = 3.8 l min−1 through a vessel of the diameter dv = 4.9 mm and blood
as a Newtonian fluid of the viscosity η = 4.0 mPa s. The flow is fully developed, and
the stent of the length l = 5.6 cm is long enough to neglect inlet and outlet effects.
Given these assumptions, the hemodynamic effect of the stent should be assessed.

Fig. 6.23 Schematic
illustration of a stent design
that increases the Wall Shear
Stress (WSS) in
atherosclerotic lesions

(a) Consider the native vessel, the vessel without the stent, and compute the blood
flow velocity v as well as the WSS.

(b) Given the hub diameter ds = 0.7 mm, compute the blood flow velocity v and
WSS of the stented vessel.

(c) Compute the resistance R of the stent to blood flow. �

6.6.2.7 Pulsatile Newtonian Fluid Flow Through a Circular Tube
The rhythmic contraction of the heart muscle maintains the cyclic pulsatile flow
in the arterial system, and the flow continuously exchanges potential and kinetic
energies. The cyclic flow of a Newtonian fluid of viscosity η and density ρ in
a circular and straight tube aims at modeling such conditions. At steady-periodic
conditions, the pressure gradient may be expressed by dp/dz = P exp(iωt), where
i = √−1 denotes the imaginary unit, whilst ω and P are the angular velocity and
the pressure amplitude, respectively. In response to the cyclic pressure gradient, the
cyclic flow velocity v(r, t) = V (r) exp(iωt) establishes, where the amplitude V (r)
is a function of the radius r . In a rigid tube, no phase lag between velocity and
pressure can develop.



338 6 Hemodynamics

Given said forms of the velocity and pressure, the governing equation of 1D flows
in cylindrical coordinates (6.30) yields the Bessel8 differential equation

d2V

dr2 + 1

r

dV

dr
− iω

ν
V = P

νρ
,

where ν = η/ρ [m2 s−1] denotes the kinematic viscosity of blood. The differential
equation has the general solution

V (r) = −P
iρω

+ C1J0

(
i3/2
√
ω/ν r

)
+ C2Y0

(
i3/2
√
ω/ν r

)
,

where J0(x) and Y0(x) denote first-order Bessel functions of first and second kinds,
respectively.

We notice Y0(0) = −∞, and C2 = 0 is then required to bound the velocity
amplitude V in the center of the vessel. The no-slip boundary condition at the wall
V (r = ro) = 0 allows us to identify the remaining integration constant

C1 = −iP
ρωJ0

(
i3/2

√
ω/ν r

) .

The velocity then reads

v(r, t) = iP exp(iωt)

ρω

[
1 − J0

(
i3/2Wo r/ro

)

J0
(
i3/2Wo

)
]
, (6.46)

where Wo = ro
√
ω/ν denotes the Womersley9 number. It may also be seen as

Wo =
√

transient inertial force

viscouse force
, (6.47)

and the Womersley number therefore represents the relative impact of transient and
viscous effects on the flow.

Example 6.7 (Pulsatile Blood Flow in a Vessel Segment). We consider a steady-
state pulsatile blood flow in an artery of the diameter d = 6.0 mm. The flow is
the response of blood to the pressure gradient dp/dz = P exp(iωt), where P =
10.0 kPa m−1 and ω = 2.0π denote the pressure amplitude and the angular velocity,
respectively. The imaginary unit is denoted by i = √−1, and blood may be regarded
as a Newtonian fluid with the dynamic viscosity η = 3.5 mPa s and the density
ρ = 1.06 kg dm−3.

8Friedrich Wilhelm Bessel, German astronomer, mathematician, physicist, and geodesist, 1784–
1846.
9John Ronald Womersley, British mathematician and computer scientist, 1907–1958.
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(a) Compute the Womersley number that characterizes the blood flow.
(b) Compute velocity profiles that establish in the vessel at the time points t =

0.0; 0.1; . . . ; 0.5 s over the cardiac cycle. �

6.6.3 Flow in the Elastic Tube

Blood flow is influenced by waves that propagate and reflect along the vascular tree.
The flow of an incompressible and inviscid fluid in an elastic tube of circular cross-
section is considered a first model system to study the propagation of such waves.
The vessel is formed by a thin elastic wall and its diameter d is small as compared to
the length of the tube. The wave length is also much longer than the tube diameter,
and leads to a small disturbance �d of the diameter. It results in the small, but
important radial velocity vr on top of the axial velocity vz—the flow can therefore
no longer been considered 1D. Given the time t and the axial position z, the vessel
wall expands at the velocity (∂d/∂t)/2, see Fig. 6.25. The fluid follows the motion
of the vessel wall, and

vr = ∂d

∂t

r

d

determines the radial velocity as a function of the radial coordinate r . The continuity
divv = 0 of the incompressible flow in cylindrical coordinates then reads

divv = 1

r

∂(rvr)

∂r
+ ∂vz

∂z
= 2

d

∂d

∂t
+ ∂vz

∂z
= 0 , (6.48)

where rotational symmetry vθ = 0 and ∂(•)/∂θ = 0 has been used.
With the diameter stiffness α [m Pa −1] of the vessel wall, the incremental

constitutive model

α�pi = �d (6.49)

describes the elastic properties of the vessel wall. It relates the diameter d to the
pressure pi in the vessel, and allows us to substitute the rate of diameter change
∂d/∂t in (6.48). The expression

Fig. 6.25 Velocity
components vr and vz in the
radial and respective axial
directions of a flow in an
elastic circular tube of the
diameter d. The vessel wall
moves in the radial direction
at the velocity (∂d/∂t)/2
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α
∂pi

∂t
+ d

2

∂vz

∂z
= 0 (6.50)

then relates the change of pressure and the axial velocity gradient.
The balance of linear momentum closes the description, an expression that

requires the velocity gradient in cylindrical coordinates

gradv =

⎡

⎢⎢⎣

∂vr/∂r (∂vr/∂θ)/r − vθ/r ∂vr/∂z
∂vθ/∂r (∂vθ/∂θ)/r + vr/r ∂vθ/∂z
∂vz/∂r (∂vz/∂θ)/r ∂vz/∂z

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0 0 0

0 0 0

∂vz/∂r 0 0

⎤

⎥⎥⎦

to be computed. It used the long-wave approximation ∂(•)/∂z ≈ 0 that implies the
condition vr � vz and results in the velocity gradient (6.26) already known from
the 1D flow.

The inviscid fluid is always at hydrostatic stress σ = −pI, and the linear
momentum ρ(Dv/Dt) = −divpI of the 1D incompressible flow in cylindrical
coordinates then reads

ρ

⎛

⎜⎜⎝

⎡

⎢⎢⎣

0

0

∂vz/∂t

⎤

⎥⎥⎦+

⎡

⎢⎢⎣

0 0 0

0 0 0

∂vz/∂r 0 0

⎤

⎥⎥⎦

⎡

⎢⎢⎣

vr

0

vz

⎤

⎥⎥⎦

⎞

⎟⎟⎠ =

⎡

⎢⎢⎣

−∂p/∂r
0

−∂p/∂z

⎤

⎥⎥⎦ , (6.51)

where the material time derivative Dv/Dt = ∂v/∂t+v ·gradv has been used, whilst
body forces have been neglected. Given vr � vz, the linear momentum yields the
only non-trial equation

ρ
∂vz

∂t
= −∂p

∂z
(6.52)

that then governs the flow problem.
We may now derive (6.50) with respect to the time t , and (6.52) with respect to

the axial coordinate z, manipulations that allow us to substitute the axial velocity
vz. The flow in the elastic tube is then governed by the wave equation

∂2pi

∂t2
− c2 ∂

2pi

∂z2
= 0 ,

and the wave speed c [m s−1] reads

c =
√

d

2ρα
. (6.53)
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Instead of the diameter stiffness α, the area distensibility D = (dA/dp)/A =
2α/d [Pa−1] is frequently used to describe the propagation of waves, where A
denotes the vessel’s cross-section. The wave speed (6.53) then reads c = 1/

√
ρD,

an expression previously introduced in Sect. 2.2.1. Another version of the wave
equation reads

c =
√

A

ρ(dA/dp)

and is referred to as Frank/Bramwell10–Hill11 equation.
The vessel wall has non-linear stress–strain properties and is at biaxial stress

in the body. However, in a very first approximation we may describe it by an
incremental linear-elastic material at uniaxial circumferential stress. The diameter
stiffness then reads α = d2/(2Eh), where E and h denote the incremental Young’s
modulus and the (constant) wall thickness, respectively. The wave speed then reads

c =
√
Eh

ρd
, (6.54)

an expression known as the Moens12–Korteweg13 equation [379] and widely used
in the extraction of the vessel’s stiffness from pulse wave velocity measurements.

6.7 Blood Flow Phenomena

The blood flow in the vasculature is influenced by factors, such as the geometry
of the vessel segment, the flow rate, and the boundary conditions. Whilst the
aforementioned analytical expressions are able to provide some basic insights,
they are not general enough to explore a number of flow mechanisms. Already at
steady-state, blood flow is complex and CFD simulations or direct experimental
measurements such as Particle Image Velocimetry (PIV) are needed to acquire a
comprehensive picture of blood flow phenomena.

6.7.1 Laminar, Transitional, and Turbulent Flow

Fluid flow in parallel layers without disruptions between said layers determines
laminar flow. The adjacent fluid layers then slide past one another like “playing

10John Crighton Bramwell, British cardiologist, 1889–1976.
11Archibald Vivian Hill, British physiologist, 1886–1977.
12Adriaan Isebree Moens, Dutch physiologist, 1846–1891.
13Diederik Johannes Korteweg, Dutch mathematician, 1848–1941.
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cards”. There are neither cross-currents perpendicular to the direction of flow, nor
eddies (vortices) or swirls that span over several small length-scales.

Laminar flow establishes if the fluid’s viscosity is sufficient to dissipate the flow’s
kinetic energy without breaking-up into smaller flow structures. Otherwise the flow
becomes turbulent and causes the formation of eddies (vortices) at many different
length-scales—flow regimes show then chaotic particle velocities. By an essentially
inviscid mechanism, large-scale structures of high turbulent kinetic energy transmit
their energy to smaller and even smaller structures [438]. It produces a cascade of
eddies (vortices) along which energy is transmitted all the way down to the smallest
possible length-scale, the so-called Kolmogorov14 length-scale, where viscosity
dominates and the (remaining) kinetic energy is finally dissipated [309]. In a CFD
problem, the computational mesh may be refined towards resolving the Kolmogorov
length-scale, an approach that results in a Direct Numerical Simulation (DNS). The
Kolmogorov length-scale is problem-specific, and of the order of 100μm in the
ventricle, for example [84].

Given the length-scale of the computational mesh is larger than the Kolmogorov
length-scale, the Reynolds decomposition is used. The governing equations are then
split into time-averaged and fluctuating quantities, and Reynolds-averaged Navier–
Stokes equations (RANS equations) describe the fluid problem. The apparent stress
that represents the fluctuating velocity field is referred to as the Reynolds stress. It is
described by turbulence models and captures the chaotic nature of turbulent flows.
They are based on statistical methods, and up to date no model is generally accepted
in the description of turbulent blood flow.

The chaotic nature of turbulent flows strongly promotes the mixing of fluid
particles and hinders their segregation. At physiological conditions, transitional and
turbulent flows are rare in the cardiovascular system. Such conditions appear during
the filling of the ventricle, at diastole in the first aortic segment [84] or determine
small portions of the blood flow in the ascending as well as the descending
aorta [521]. Transitional flow and turbulence are more pronounced in the diseased
vasculature and easily establish in stenotic vessel segments or artificial heart valves,
for example.

6.7.2 Boundary Layer Flow

A boundary layer flow represents the fluid flow in the immediate vicinity of a
bounding surface. Due to the high shear rates in the boundary layer, viscous
effects dominate over inertia effects and determine the motion of fluid particles. The
boundary layer can separate into a broader wake and trigger the formation of a VS.
It appears as soon as the flow in the layer closest to the bounding surface reverses
its direction. The WSS is then zero and the boundary layer suddenly increases its
thickness.

14Andrey Nikolaevich Kolmogorov, Russian mathematician, 1903–1987.
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In blood vessels, the near-wall region is occupied by a cell-depleted plasma layer
of the thickness of the size of the erythrocytes. The erythrocytes migrate away
from the wall (see Sect. 6.3) and the cell-depleted layer contains only small and
rheologically irrelevant particles, such as thrombocytes and macromolecules. The
shear rate at the vessel wall is therefore a function of plasma viscosity [234], whilst
erythrocytes strongly influence the shear rate in the bulk flow.

6.7.3 Blood Flow Through Circular Tubes

Vascular segments may be approximated by cylindrical tubes, a flow model of
fundamental vascular biomechanical interest. Given the diameter distensibility is
small and the vessel segment length is much larger than its diameter, a 1D flow with
the aforementioned velocity profiles establishes, see Sects. 6.6.2.5 and 6.6.2.7.

For some applications blood may be described as a steady-state Newtonian fluid,
and the quadratic velocity profile (6.34) of a Poiseuille flow builds-up, see the solid
line in Fig. 6.26a. The velocity is then directly proportional to the negative pressure
gradient −dp/dz, and thus how fast the pressure decreases along the flow path.
Given laminar flow, the pressure gradient may be substituted by the flow rate q
according to (6.36), which then leads to the law of Hagen–Poiseuille (6.42). It nicely
illustrates that only in the resistance vessels of the vascular bed a significant pressure
drop�p = (dp/dz)l over the vessel length l, is able to establish. The physiological
relevance of this mechanism has been discussed in Chap. 2. Given a plug profile
at the entrance and a flow of the Reynolds number Re, the hydrodynamic entrance
length of 0.1roRe is needed to approximate a Poiseuille flow, conditions that are
challenging to meet in the vasculature.

Given a non-Newtonian fluid, the viscosity η depends on the shear rate γ̇ , a
dependence that influences the velocity profile and the WSS. Blood is a shear-
thinning fluid, and the linear momentum (6.28) then results in a more plug-like
velocity profile as compared to Poiseuille flow, see the dashed line in Fig. 6.26a.

Fig. 6.26 Velocity profiles that establish within a circular tube at laminar flow. (a) Steady-state
flows. The Newtonian fluid determines a quadratic velocity profile (Poiseuille flow), whilst a shear-
thinning fluid leads to a more plug-like profile. (b) Pulsatile flows. Flow profiles at different times
ti during one cardiac cycle are shown, where Wo denotes the Womersley number
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The blood flow in the larger arteries is not steady-state but pulsatile—it develops
in response to inertia and viscous forces. Phases of forward and backward flow
characterize then the blood motion, and the Womersley numberWo [600] determines
the shape of the velocity profile, see Sect. 6.6.2.7. Womersley numbers of the base
excitation angular velocity of ω = 2π , range from approximately 2 to 20 in large
arteries, and Fig. 6.26b illustrates typical velocity profiles.

6.7.4 Multi-dimensional Flow Phenomena

The analysis of multi-dimensional flow phenomena by analytical methods is
challenging. CFD is often a more convenient approach, and the flow problems
discussed in this section have been analyzed with the FEM, as discussed in Chap. 4.

6.7.4.1 Secondary Flow
The flow velocity in straight tubes changes across the tube’s cross-section, and given
such a non-uniform flow is forced to turn, the moment equation (3.107) predicts the
development of rotational or swirl velocity components [115, 350, 389, 424, 512,
563]. Right-handed helical flow is a feature that is observed during late systole in
most normal upper aortic arches, and retrograde flow along inner wall curvatures
appears at end systole [306]. In addition to bends, many other conditions, such as
jets can result in secondary flows.

Secondary flow significantly influences the blood flow [71] in large vessels—
the WSS then decreases at the inside and increases at the outside of the bend,
see Fig. 6.27. A detailed analysis of shape effects of steady-state and pulsatile
flows in geometries, such as branches, anastomoses, and stenosis is reported
elsewhere [132].

6.7.4.2 Vortex Flow and Vortex Structures
A VS is a region, within which blood is essentially at swirling or rotating
motion, information that is also used in the clinical assessment of cardiovascular

Fig. 6.27 Flow through a bent circular tube. (a) Wall Shear Stress (WSS) distribution with two
characteristic velocity profiles. (b) Magnitude of the blood flow velocity at two cross-sections with
arrows denoting the secondary flow
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pathologies [303]. Rapid turning of the flow direction (see Fig. 6.27), or flow
separation are two mechanisms that are able to trigger the formation of a VS—a
number of other flow conditions have also been reported [318]. VSs are able to
move, develop, and interact with each other [278], and then result in complex, but
still laminar 3D flows. A VS may appear relatively weak in comparison to the mean
flow and is therefore not always easy to detect.

A VS encapsulates blood and prevents it from the mixing with surrounding
blood. Inside the VS, conditions that favor chemical reactions, such as thrombocyte
activation and thrombin formation [42, 43, 51, 178] may establish. A VS has the
potential to transport pockets of blood over long distances, until the VS finally
breaks up and the entrapped blood mixes again with surrounding blood.

6.7.4.3 Jet Flow
A jet flow is a fast stream of fluid that develops in flow constrictions, such as stenotic
vessels and pathological heart valves. The jet has a high momentum, which allows it
to travel long distances without significant energy dissipation. Some distance away
from the constriction, the break-up of (hairpin) VS may lead to transition from
laminar to turbulent flow. A jet leads to highly inhomogeneous WSS. Whilst in
the constriction the WSS exceeds upstream levels by several folds, it is very low in
the flow separation zones immediately downstream the constriction [573, 574]. At
the point of flow separation, the WSS is per definition zero.

6.7.4.4 Creep Flow
Given the advective inertia forces are small in comparison to the other forces in the
fluid, its motion is described by a creep or Stokes flow. The Re number is then low,
conditions that appear in the small blood vessels, where fluid velocities are low and
the length-scales are small. Creep flow is described by the linearization

ρ
∂v
∂t

= divσ + bf (6.55)

of the momentum equation (3.107), where σ denotes the Cauchy stress, whilst ρ
and bf are the density and the body force per unit (spatial) volume, respectively.
Given the small velocity v, the material time derivative Dv/Dt = ∂v/∂t + v · gradv
has been approximated by the partial derivative ∂v/∂t . In many applications even
∂v/∂t is negligible, and the linear momentum divσ + bf = 0 then describes a creep
or Stokes flow.

6.7.4.5 Inviscid Flow
Given the viscous forces are small in comparison to the inertia forces, the fluid
motion is described by an inviscid flow. The Re number is high, and the fluid
behaves like an ideal fluid. The stress σ = −pI is then purely hydrostatic, and
the momentum equation (3.107) reads
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ρ
Dv
Dt

= −gradp + bf , (6.56)

where p denotes the pressure, whilst ρ and bf are the density and the body force per
unit (spatial) volume, respectively. In many applications even bf is negligible, and
the linear momentum ρDv/Dt = −gradp then describes an inviscid flow.

Given inertia effects are small, the momentum equation (6.56) reads gradp = bf
and describes the hydrostatic equilibrium.

6.8 Description of Blood Flow Properties

Hemodynamics is tightly linked to the biochemical activity of the vasculature, and a
number of flow parameters have been introduced to study the implications of blood
flow in vascular physiology and pathology. Aside from WSS-related mechanisms,
blood flow brings reactive species into close vicinity and influences chemical
reactions through transport-related mechanisms. Both principles determined the
introduction of a number of parameters, some of which are discussed hereinafter.

6.8.1 Wall Shear Stress-Based Parameters

Let us consider the vessel wall and denote the normal vector that points into the
vessel lumen by n. The endothelium is then exposed to the shear stress vector

τw(t) = σ (t)n − (n · σ (t)n)n ,

where σ (t) denotes the Cauchy stress of the fluid particle adjacent to the endothe-
lium. We used Cauchy stress theorem (3.20), vector summation, and the equilibrium
at the interface between fluid and endothelium in the derivation of this expression.
The vector τw depends on the spatial position and the time t , and permits the
derivation of a number of scalar blood flow parameters.

The maximum shear stress or the time-averaged shear stress

WSSmax = max(|τw(t)|) ; WSSmean = 1

T

∫ T

0
|τw(t)|dt

over the cardiac cycle 0 < t < T , as well as the Oscillatory Shear Index

OSI = 1

2

(
1 − |WSSmean|

WSSmean

)
with WSSmean = 1

T

∫ T

0
τw(t)dt

have been extensively used in the literature to express the implications of blood flow
on the vessel wall. A sensitive endothelium is however a basic requirement to link
said parameters to biology.
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Given steady-state unidirectional flow, |WSSmean| = WSSmean and results in
OSI = 0, whilst a purely oscillating flow with |WSSmean| = 0 leads toOSI = 0.5.
TheOSI is also linked to the particle residence time. AtOSI = 0.5, blood particles
close to the wall move back and forth at the same position, which in turn provides
time for chemical reactions between blood particles and the endothelium. Given
the viscosity η, the Relative Residence Time RRT = η/[(1 − 2OSI)WSSmean] is
another parameter to express the time a particle spends close to a spatial position at
the wall [187].

In an attempt to localize regions of the wall exposed to both, high OSI and low
WSSmean, the ratio

ECAP = OSI

WSSmean

has also been proposed and referred to as the Endothelial Cell Activation Potential
(ECAP) [121].

Whilst the aforementioned parameters addressed the interaction between blood
and the endothelium, shear stress also plays a critical role in mechanisms, such
as platelet activation, rouleaux formation, and erythrocyte damage—processes that
may appear within the bloodstream and not necessarily at the wall. The maximum
shear stress and the time-averaged shear stress

SSmax = max

(
σmax(t)− σmin(t)

2

)
; SSmean = 1

T

∫ T

0

σmax(t)− σmin(t)

2
dt

over the cardiac cycle 0 < t < T are then reasonable metrics to study the
implications of blood flow, where σmax and σmin are the largest and smallest
principal Cauchy stresses, respectively.

Given a Newtonian fluid, the shear stress is proportional to the shear rate γ̇ (t) =√
2trd2, where d denotes the rate of deformation tensor. The maximum scalar shear

rate

γ̇max = max (γ̇ (t)) ,

presents then as surrogate measure of the shear force that acts at blood particles.
Blood in the vasculature is exposed to highly inhomogeneous shear stress, and

blood particles have already experienced shear stress when arriving at the time t
at the position x of the flow domain. A local analysis of the flow at the position x
therefore misses the history of the blood particle and may not adequately reflect its
potential for chemical reactions. In addition to the shear stress level, the exposure
time to shear stress may then also be an important factor. Given small particles,
and thus problems of low St numbers (6.1), the particles closely follow streamlines,
resulting in problem formulations discussed in Sect. 6.5.1. Large particles may not
follow the flow and their inertia allow them to cross streamlines. We then have to
solve the equation of motion of an individual particle to track its movement. Whilst
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in a number of applications the problem is one-way coupled and the particles do not
influence the flow, very large particles, such a thrombi occupying a considerable part
of the lumen, however influence the flow—the problem is then two-way-coupled.

6.8.2 Transport-Based Parameters

A chemical reaction can only appear if the reactive partners are in close proximity,
and mixing a flow therefore enhances the probability for chemical reactions to
appear. A high vorticity determines a mixing flow and a large value of |w| then
relates to high chemical reactivity of blood. Here, w = (l − lT)/2 denotes the spin
tensor, the skew-symmetric part of the spatial velocity gradient l = gradv.

VS encapsulate pockets of mixing flow that may outlast much longer than the
cardiac cycle. VS therefore provide ideal conditions for chemical reactions, and VS
visualization methods [286] have been used towards the qualitative study of the
reactivity of blood flow [42].

6.9 Case Study: Blood Flow in the Aneurysmatic Infrarenal
Aorta

Given the clinical relevance of an Abdominal Aortic Aneurysm (AAA), its hemody-
namics have been intensively explored, a factor also to be investigated in this case
study. We continue the analysis of the AAA discussed in Sect. 5.7, which lumen
has been reconstructed from clinically recorded CT-A images (A4clinics Research
Edition, VASCOPS GmbH) and then processed to allow for the computation of the
blood flow velocity (COMSOL Multiphysics, COMSOL AB).

6.9.1 Modeling Assumptions

The AAA wall is known to be very stiff [542], a property that allowed us to use a
rigid-wall FEM model in the computation of the blood flow over the cardiac cycle.
Dirichlet boundaries were used to prescribe the no-slip condition at the blood–
wall interface as well as to model the pulsatile inflow condition. The distribution
of the flow velocity over the cross-section of the infrarenal aorta is unknown
and influenced by many factors, see Sect. 6.7.3. Whilst methods, such as Doppler
ultrasound imaging supports the acquisition of such information, it is not part of the
regular patient examination. We therefore prescribe the velocity vin(t) = q(t)/A

homogenously over the inlet of the cross-section A = 3.8 cm2, where the flow rate
q(t) represents the average infrarenal flow in AAA patients [336], see Fig. 6.28.
Given our case study, we considered the cardiac cycle time T = 0.8 s and solved
the transient flow equations over three cardiac cycles.
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Fig. 6.28 Blood flow rate over the cardiac cycle to prescribe Abdominal Aortic Aneurysms
(AAA) inflow. The data reflects the average infrarenal aortic flow in 36 patients with small
(d < 50 mm) AAA, acquired through Magnetic Resonance-Angiography (MR-A) [336]

At the outlet the Neumann boundary condition of the constant pressure p =
13.3 kPa described the problem’s pressure level. Given an incompressible fluid and
a rigid vessel wall, the actual value of the outlet pressure does not influence the
predicted blood flow.

The flow in the aorta is complex, and blood is exposed to phases of high and
low shear rates over each cardiac cycle. The Carreau–Yasuda model (6.7) with the
parameters η0 = 200 mPa s, η∞ = 3.5 mPa s, λ = 1800 s, n = 0.28 and α = 2.0
(see Table 6.1, and Fig. 6.9) has been used to capture the rheological properties
of blood over such a wide spectrum of shear rates. Thixotropic properties were
neglected, and we therefore assumed that blood’s viscosity changes instantaneously
in response to the change of the shear rate.

6.9.2 Results

A tetrahedral mesh with quadratic finite elements of approximately 180k degrees
of freedom was used to solve the hemodynamic problem, and Fig. 6.29 illustrates
selective results taken from the third computed cardiac cycle. At peak systole, the
flow is well organized and shows parallel streamlines. During the deceleration at
the late-systolic phase the flow breaks up, and the blood is then strongly mixed
during the entire diastolic phase. The blood–wall interface is exposed to complex
loads, and the WSS is highly inhomogeneous in space and over the cardiac cycle. At
peak systole the scalar shear rate at the aneurysmatic wall is between approximately
γ̇min = 40 s−1 and γ̇max = 1200 s−1, see Fig. 6.29b. The Carreau–Yasuda model
predicts then the blood viscosity of ηmin = 4.42 mPa s and ηmax = 3.58 mPa s
and the wall experiences therefore WSS between τmin = ηminγ̇min = 0.18 Pa and
τmax = ηmaxγ̇max = 4.30 Pa at peak systole. These values may be compared to the
normal infrarenal aorta that reaches the peak WSS of 2.72 Pa [414]. The prescribed
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Fig. 6.29 Abdominal Aortic Aneurysm (AAA) hemodynamics at late diastole, peak systole, and
early diastole. (a) Streamlines indicate strong mixing of blood during diastole and well organized
flow at peak systole. The dotted line indicates the cross-section that is further analyzed in Fig. 6.30.
(b) Distribution of the scalar shear rate γ̇ at the blood–wall interface. The results represent the third
cardiac cycle of the computations and relate to the time of 1.6 s (late diastole), 1.76 s (peak systole),
and 2.0 s (early diastole), respectively

Fig. 6.30 Development of the velocity component vz in axial vessel direction at the cross-section
that is indicated by the dotted line in Fig. 6.29a. The plots show the velocity between the late and
early diastolic phases

inlet velocity vin(t) results in unrealistic shear rate at the inlet, and the aortic segment
close to the inlet has therefore been excluded from this analysis.

Figure 6.30 shows the development of the velocity component vz in axial vessel
direction between late diastole and early diastole. The plots correspond to the cross-
section that is indicated by the dotted line in Fig. 6.29a and illustrate phases and
domains of forward and backward flows, respectively. The hemodynamics at this
cross-section is similar to blood flow in the normal aorta, whilst the aneurysm-
related pathological flow develops further downstream.
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6.10 Summary and Conclusion

Blood is a suspension with particles covering approximately 50% of its volume. Fol-
lowing continuum mechanics, blood properties are averaged over the Representative
Volume Element (RVE), a domain that contains a sufficiently large number of blood
particles. The largest blood particles reach the size of 30μm, and the consistent
application of continuum mechanics is therefore limited to the analysis of blood
flow in vessels that are larger than approximately half a millimeter in diameter.

A number of vascular studies assumed Poiseuille flow. Whilst it provides insights
in vascular function, such a model cannot be rigorously applied to the circulation. It
requires a steady-state flow of a Newtonian fluid in rigid, long, and straight tubes to
establish a Poiseuille flow. The simplification of a rigid wall may be acceptable in
a number of arteries, but veins particularly depart from this assumption and change
their diameter remarkably with the pressure—some of them even collapse during
the cardiac cycle. In addition, the flow in large arteries is strongly influenced by
inertia effects, and the blood flow velocity develops towards a Womersley profile.
As with the Poiseuille flow, also the Womersley flow is based on a Newtonian fluid
that flows in rigid, long, and straight tubes. These conditions barely apply to the
circulation, and already in the normal vasculature the motion of blood is influenced
by factors, such as a non-Newtonian viscosity, vessel curvature, vessel bifurcations,
and edge effects.

Erythrocytes represent by far the largest proportion of blood particles and dom-
inate its shear-thinning rheological behavior, a property that is not only important
to describe the flow in small vessels, but also in vessels as large as the aorta—core
flow dynamics differ remarkably between Newtonian and non-Newtonian fluids, see
Fig. 6.12. Whilst many models are available to capture the rheological properties
of blood, the identification of model parameters may be challenging for some of
them [186].

Non-physiological aspects to the circulation may result in shear stress-induced
blood damage, with hemolysis and thrombocyte activation being of most concern
to medical device developers. The acquisition of experimental data led to a number
of purely phenomenological blood-damage models, and an uncertainty assessment
should always be considered [178] in the deployment of such models.

Mixing counteracts the segregation of blood particles and contributes to the
chemical reactivity of blood. A VS represents an isolated pocket of blood at high
vorticity and may therefore play a significant role in the biology of the blood flow. In
addition to transport-related effects, also shear stress has well-known implications
on vascular physiology and pathology. Both mechanisms led to the introduction of
a number of blood flow parameters and post-processing techniques to assess the
biological impact of blood flow on the vasculature.

Whilst the study of blood flow in the normal vasculature already revealed many
physiological mechanisms, it is the investigation of diseased vessels that is of
much more clinical relevance. The computation of the 3D blood flow within such
vessel segments almost always requires CFD methods, sometimes even the access
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to High Performance Computing (HPC) facilities. The results of CFD simulations
are sensitive to factors, such as geometry, boundary conditions, loading, and blood
rheology. Even under well-defined laboratory conditions, the acquisition of input
information is challenging and limits the applicability of CFD simulations. An
uncertainty analysis may therefore be foreseen to assess the robustness of CFD-
based results [164, 453]. As with many biomechanical models, the uncertainty of
(clinically) acquired input information is almost always the limiting factor and
determines the robustness of the results. Modern image modalities provide detailed
anatomical information of the vasculature, but it is the boundary conditions that
influence CFD results most [36,56,179,466]—model personalization requires more
than anatomical personalization [265].
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This chapter addresses the active properties of blood vessels with a focus on
vasoreactivity and arteriogenesis. We review the structure and function of Smooth
Muscle Cells (SMC) and their interaction with Endothelium Cells (EC) in the
control of blood vessels. The discussion of collagen and elastin synthesis then
aims at providing a fundamental understanding of arteriogenesis. A key section
of this chapter concerns the constitutive description of vasoreactivity, where phe-
nomenological, structural-based, and calcium concentration-based descriptions are
addressed. We also provide a chemo-mechanical description of SMC and discuss
the related thermodynamical aspects. Another key section concerns the modeling of
arteriogenesis within the framework of open-system thermodynamics. Kinematics-
based and continuous turnover-based growth descriptions are introduced—and
showcased through simple tension and tube inflation examples. We illustrate the
spatial distribution of the synthesized mass with respect to the growth descriptions
and investigate the prescription of a homeostatic target toward which the vessel
adapts. A review of multiphasic and miscellaneous vessel descriptions follows, and
concluding remarks summarize the chapter.

7.1 Introduction

The vessel is a dynamic structure, and a number of mechanisms allow vascular
tissue to adapt to environmental changes in an effort to optimize tissue perfusion.
Homeostasis directs the adaption in normal vessels and keeps target biomechan-
ical properties, such as Wall Shear Stress (WSS) [74, 236], circumferential wall
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stress [363,598], and axial stretch [215,283] relatively constant over time [275,586].
The failure to reach homeostasis may however result in vascular pathologies. Given
an aneurysm for example, the diminished biological activity of the aneurysmatic
vessel wall [362, 391] then leads to its continuous expansion in size and the
development of life-threatening high levels of wall stress. Tissue adaptation occurs
through a wide range of mechanisms, including SMC activation/relaxation, cell
proliferation, apoptosis, pattern formation and synthesis and/or degradation of
ExtraCellular Matrix (ECM).

Vascular cell function is tightly linked to mechanics, and ECM synthesis, cell
proliferation, and vasoreactivity have been correlated with the onset of pressure in
the embryonic circulation. Through chemo-mechanotransduction, external stimuli
influence cell function at the level of gene expression and thereby contribute to
the overall control of the structure and function of vascular tissues. A number of
cell complexes are able to convert mechanical signals into chemical responses, and
therefore activate intercellular signaling pathways. We may distinguish four major
families of sensors:

• Molecules in the nuclear envelope, such as nuclear pores
• Molecules in the cell membrane, such as ion channels, receptors, adhesion

molecules, and the glycocalyx
• Membrane micro-domains, such as the primary cilia and the caveola
• Cell-supporting structures, such as the cytoskeleton and the lipid bilayer plasma

membrane

These sensors constantly monitor the mechanical state of the cells, information in
response to which the vessel wall then undergoes many changes during normal
development, aging, and in response to disease or implanted devices. At the local
tissue level, it results in

• Contractility—the change of muscle tonus
• Remodeling—the change of macroscopic mechanical tissue properties
• Growth or atrophy—the change of tissue mass

The interaction of these factors then also results in the development of residual
stresses in the vessels’ load-free configuration and determines vessel morphogene-
sis, the evolution of vessel shape.

In addition to vascular cells that actively sense and respond to mechanical loads,
the ECM also plays an important role in the adaptation of the vessel wall. It transmits
the load to the cells and controls their micro-mechanical environment. The ECM
may therefore not only be seen as a passive structure that carries wall stress, but
actively contributes to vessel wall biology. Vessel wall dynamics may be classified
as vasoreactivity, arteriogenesis, and angiogenesis. Whilst the first two factors are
discussed in this chapter, the latter will only be touched upon.
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7.2 Vasoreactivity

The vascular wall is equipped with contractile cells—pericytes in the capillaries
and SMC in the other vessels. It allows the vessel to control its caliber and to meet
demands within seconds, a property called vasoreactivity. In the microvasculature,
vasoreactivity allows to divert the blood flow and to control the Mean Arterial
Pressure (MAP), see Chap. 2. In contrary, in medium and large vessel, it mainly
influences pulse wave velocity through the alteration of the elasticity of the vessel
wall.

The physiology and function of general SMC [153, 592] and vascular SMC [52]
are well explored, but less is known from pericytes. Whilst their involvement in
processes, such as blood vessel formation (arteriogenesis) and maintenance [38]
has been reported, the contractile function of pericytes remains still somewhat
debated [241, 253].

7.2.1 SMC Phenotypic Modulation

A unique feature of SMCs is their ability to switch the phenotype between
contractile or differentiated and synthetic or dedifferentiated states—nuclei, cell
shape, and the expression of contractile markers, all is linked to SMC phenotype.
The switch is reversible and appears in response to mechanical forces and chemical
factors. The change between the two phenotypes equips vascular SMC with a
wide range of functions. At the synthetic phenotype, the cell synthesizes/secretes
ECM constituents, proliferates and migrates. At the contractile phenotype, the SMC
is able to contract and shows neither proliferation nor migration. SMC in the
(elastic) thoracic aorta appears at both, synthetic and contractile phenotypes [426],
whilst muscular arteries contain mainly contractile SMC. The switching among
phenotypes is not an instant event, but involves several stages [52], and recently
it has also been suggested that SMC can also appear in a degradative phenotype,
accomplishing tasks similar to macrophages [339].

To maintain the right balance between the two phenotypes, SMCs communicate
with each other and with ECs to acquire environmental information. SMC pheno-
type composition is known to change in response to mechanical factors. In addition
to forces directly applied to the SMC, also WSS at the endothelium modulates the
phenotype of neighboring SMCs [439]. The ECs release Nitric Oxide (NO), which
together with Reactive Oxygen Species (ROS) results in phenotypic modulation.
ROS is a strong modulator of NO concentration, and an increase in ROS causes a
decrease in NO concentration and then promotes SMCs to switch into their synthetic
phenotype. Breakdown of NO is also a key mechanism of endothelium-dependent
vasorelaxation, see Sect. 7.2.2.1.

With age the concentration of ROS in the vessel wall increases, and aging is
therefore linked to a progressive shift from contractile to synthetic phenotypes. The
synthetic phenotype promotes the production of ECM (especially collagen) and may
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therefore explain vessel wall stiffening in the elderly. In addition, SMCs in the aged
vessel wall are smaller, and they often show senescence and/or apoptosis.

7.2.2 Structure and ContractionMachinery of Contractile SMC

SMCs are elongated spindle-shaped cells that are integrated in the vessel wall. They
are 2 to 10µm in diameter, 50 to 400µm long, and organized in Medial Lamellar
Unit (MLU). SMCs are aligned with the circumferential direction and at a radial
tilt of approximately 20 degrees [180, 400]. They have a centrally located nucleus
and filaments that are arranged in branching bundles, see Fig. 7.1. Myofilament are
formed by the interaction of actin (thin filament) and myosin (thick filament), whilst
intermediate filaments consist largely of vimentin and desmin. Filaments branch
at dense bodies and dense plaques, parts of the cell that appear darker under an
electron microscope, they are “electron-dense”. Dense bodies are found inside the
SMC, whilst dense plaques, also called focal adhesions, are integrated in the cell
membrane. They connect cells with each other or anchor them to ECM constituents,
see Fig. 7.1a. Focal adhesions are macromolecular protein complexes able to
transmit and sense the forces entering the SMC. These mechanosensors translate
mechanical load into biochemical signals, which then results in gene-expression
patterns and influence factors, such as SMC phenotype, myofilament contraction,
and ECM synthesis. Whilst myofilaments actively contract, intermediate filaments
and microtubules are passively integrated in the SMC contraction kinematics. In
addition to the mechanical coupling, gap junctions allow for electrical and chemical
communication between neighboring SMCs.

In contrast to skeleton muscle, SMCs do not appear striated under light
microscopy, and the contractile proteins are not arranged in myofibrils. Actin
is cross-linked to myosin and contracts through an antiparallel cross-bridge
mechanism, see Fig. 7.1c. The actin filament of a muscle fiber connects to dense
bodies or dense plaques, and therefore transmits the contraction to the cell body.

7.2.2.1 Contraction and Relaxation
SMC contraction is regulated predominantly through the concentration of cytosolic
(intracellular) free Ca2+. The exchange between the cell and the extracellular
space, and thus the transport through the cell membrane, as well as the exchange
with the sarcoplasmic reticulum (an intracellular storage of Ca2+) influences the
concentration of free Ca2+. At resting levels the concentration of free Ca2+ is
approximately 80 to 140 nmol l−1, a level that changes in response to a number
of pro-contractive agonists, some of which are shown in Fig. 7.3 and will be further
discussed in Sect. 7.2.2.2. An agonist is a chemical that binds to a receptor and
activates the receptor to produce a biological response.

Given the activation concentration of 500 to 700 nmol l−1, Ca2+ binds to
a molecule, called calmodulin, and forms a calcium-calmodulin complex. It is
this complex that then binds to the Myosin Light Chain Kinase (MLCK) and
activates it. Upon activation the regulatory Myosin Light Chain (MLC), a complex
located on the myosin motor is phosphorylated, and allows the chain of reactions
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Fig. 7.1 Contraction mechanism of Smooth Muscle Cells (SMC). (a) Bundles of myofilaments
(actin stress fibers) and intermediate filaments connect at dense bodies and dense plaques. Dense
plaques connect across SMCs and to ExtraCellular Matrix (ECM) constituents. (b) On activation
the myofilaments shorten, and the SMC shrinks predominantly along its longitudinal direction.
(c) An antiparallel cross-bridge mechanism moves two adjacent filaments relative to each other. It
shortens myofilaments and reduces the distance between two dense bodies/plaques

towards contraction. The actin and myosin then interact and the cross-bridge cycles
establish—the myofilament contracts, and the SMC shortens. The energy for the
cross-bridge cycle stroke is provided by Adenosine Triphosphate (ATP), which
splits into Adenosine Diphosphate (ADP) and a Phosphate ion (Pi), a reaction that
produces a molecular conformational change in the neck domain of the myosin
heavy chain. The myosin head tilts and drags along the actin filament a small
distance of approximately 10 to 12 nm.

In contrary to contraction, the Myosin Light Chain Phosphatase (MLCP) cat-
alyzes the dephosphorylation of the MLC, which then prevents from the formation
of new actin–myosin cross-bridges—the SMC relaxes. Figure 7.2 summarizes the
individual steps of SMC activation and relaxation, and the regulatory pathways of
MLCK and MLCP activation and deactivation are well documented [386], see also
Fig. 7.3.

7.2.2.2 Regulation of SMC Contraction and Relaxation
SMC contraction and relaxation is regulated through the phosphorylation and
respective dephosphorylation of the regulatory MLC. MLC phosphorylation is a
requirement for the interaction of myosin and actin. It allows cross-bridge cycles
to establish and the SMC to contract and/or to generate stress. The state of MLC
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Fig. 7.2 Smooth Muscle Cell (SMC) contraction: Ca2+ activates the Myosin Light Chain Kinase
(MLCK) and phosphorates the regulatory Myosin Light Chain (MLC). It then allows for the
formation of cross-bridge cycles. SMC relaxation: Myosin Light Chain Phosphatase (MLCP)
results in the dephosphorylation of the MLC, and then prevents from the formation of cross-bridge
cycles

phosphorylation results from the balance between MLCK and MLCP activities and
is regulated by a number of pathways.

Vasculature endothelium plays a central role in the regulation of SMC contraction
and relaxation. Through the degradation, conversion, or uptake of vasoactive sig-
naling molecules, the EC is able to passively regulate the contractile state of nearby
SMCs. The EC can also actively regulate SMC through the formation and release
of endothelium-1, NO, prostacyclin, and endothelium-derived hyperpolarization
factors. The latter are collectively called vasoactive autacoids.

Endothelium-1 is an amino acid with well-known vasoconstrictor properties.
The different regional receptor expressions of endothelium-1 support selective
responses in different blood vessels [616]. The thoracic aorta therefore responds
weakly to endothelium-1, whilst it is a powerful constrictor in the abdominal aorta.
Endothelium-1 activates an enzyme that liberates Inositol TriPhosphate (IP3) and
DiAcylGlycerol (DAG) from a membrane lipid, see Fig. 7.3a. Whilst IP3 activates
Receptor-Operated Calcium Channels (ROCC) and increases the release of Ca2+
from sarcoplasmic reticulum, DAG stimulates Protein Kinase C (PKC), which depo-
larizes the cell and allows Ca2+ entry over Voltage-Gated Ca2+ Channels (VGCC).
Both factors increase the concentration of cytosolic free Ca2+, and activates MLCK.
It phosphorates the regulatory MLC and leads to cross-bridge cycling. In addition
to endothelin-1, a variety of other agonists, such as norepinephrine, histamine,
leukotrienes, and thromboxane A2 activate SMC contraction through the very same
pathways.

Another pathway of SMC contraction is through rho kinase, see Fig. 7.3c.
Several agonists, some of which are EC-derived, activate the small monomeric
G-protein RhoA through binding receptors in the cell membrane. It activates rho
kinase and inhibits MLCP. The phosphorylation of the regulatory MLC is then
preserved and maintains force development, even in the absence of a sustained
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Fig. 7.3 Regulation of contraction (left panel) and relaxation (right panel) of Smooth Muscle
Cells (SMC). (a) Endothelin-1 activates the release of Inositol TriPhosphate (IP3) and DiAcyl-
Glycerol (DAG) from the membrane. IP3 upregulates Ca2+ release from sarcoplasmic reticulum
through Receptor-Operated Calcium Channels (ROCC). DAG stimulates Protein Kinase C (PKC)
and upregulates intercellular Ca2+ flux through Voltage-Gated Calcium Channels (VGCC).
(b) Cytosolic free Ca2+ binds to calmodulin and activates the Myosin Light Chain Kinase
(MLCK). It phosphorates the regulatory Myosin Light Chain (MLC), such that actin and myosin
cross-bridges establish, and the SMC contracts. (c) Agonists bind to receptors in the cell membrane
and activate rho kinase. It inhibits Myosin Light Chain Phosphatase (MLCP) and preserves the
phosphorylation of the regulatory MLC and maintains SMC contraction. (d) Nitric Oxide (NO)
diffuses into cell membrane and activates soluble guanylate cyclase. This increases cytosolic cyclic
Guanylyl MonophosPhate (cGMP) and activates Protein Kinase G (PKG). PKG activates MLCP
and prevents from MLC phosphorylation. It also upregulates Ca2+ transport into the sarcoplasmic
reticulum through Sarco/Endoplasmic Reticulum Ca2+- ATPase (SERCA) calcium pumps, and
downregulates Ca2+ entry over voltage-gated Ca2+ channels in the surface membrane by the use
of Na+- Ca2+ eXchanger (NCX) and Plasma Membrane Ca2+ ATPase (PMCA)

Ca2+ concentration. Overall MLCP inhibition increases the sensitivity of MLCK
to the Ca2+ concentration, and SMC contraction therefore becomes more sensitive
to changes in Ca2+, a property called calcium sensitization.

In contrary to the aforementioned vasoconstrictors, NO is the most important
vasodilator produced by the endothelium. The formation of NO is catalyzed by the
endothelial NO synthase (eNOS); it is continuously expressed by numerous factors
and affects the level of eNOS expression and activity. In addition to mechanical
forces, neurotransmitters, hormones, autacoids, and coagulation factors modulate
eNOS expression and activity [163]. The endothelium-based NO diffuses into the
SMC, where it activates soluble guanylate cyclase and increases cytosolic cyclic
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guanylyl monophosphate (cGMP), see Fig. 7.3d. This activates Protein Kinase G
(PKG) and promotes the transport of Ca2+ into the sarcoplasmic reticulum, as
well as its outflux through the cell membrane. The concentration of cytosolic free
Ca2+ therefore reduces, and the SMC relaxes. PKG also activates MLCP, and thus
prevents from MLC phosphorylation and the establishment of actin–myosin cross-
bridges.

The transport of Ca2+ into the sarcoplasmic reticulum is facilitated through
sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) calcium pumps, where two
Ca2+ are transported per hydrolyzed ATP. ATPases are a class of enzymes that
catalyze the decomposition of ATP into ADP and a free Pi, and the respective
inverse reaction. This dephosphorylation reaction releases energy, which in most
cases activates other chemical reactions. In contrary, Ca2+ outflux across the cell
membrane is mediated by Na+ - Ca2+ exchanger (NCX), which exchanges three
Na+ for one Ca2+, and Plasma Membrane Ca2+ ATPase (PMCA), which transports
one Ca2+ out of the cell per ATP molecule hydrolyzed. NO also leads to SMC
hyperpolarization, and thus inhibits Ca2+ entry over voltage-gated Ca2+ channels
(VGCC) in the surface membrane.

The aforementioned pathways are differently active in elastic, muscular, and
resistance arteries [386], and endothelial dysfunction leads to the imbalance result-
ing in pathologies, such as hypertension. A detailed knowledge of these pathways
is also important in the in vitro experimental characterization of active vessel wall
properties.

7.2.3 SMC Tone and Vessel Wall Properties

The level of SMC activation or vascular tone is determined by factors, such as neu-
rotransmitters released from autonomic nerves, circulating vasoactive compounds,
tissue metabolites, and endothelium-derived autacoids. They change in response to
biomechanical stimuli, such as flow [111] or pressure [282, 498], hormonal stimuli,
neural stimuli, and drugs. SMC’s contractile apparatus is also activated through
stretch, leading to an autonomous contraction known as myogenic response. The
level of SMC activation depends not only on the circumferential stretch [282], but
also on the axial stretch [75, 621].

SMCs are organized in MLU and predominantly aligned in the circumferential
direction. SMC contraction therefore adds up to the circumferential wall stress and
has very minor influence on the other stress components. In arteries, the activation
of SMC is able to reduce the vessel diameter by 20 to 50% [25, 104, 130, 385].
The stress from SMC contraction is maximal at the physiological blood pressure,
and thus at the vessel’s in vivo diameter (see Fig. 7.4a) with the SMC being at the
homeostatic length [387].

The activation of SMCs influences the stiffness of the vessel wall, and an
increase [103] as well as a decrease [223] in stiffness upon vessel activation has
been reported. The related experimental conditions may explain this contradiction,
see Fig. 7.4. It illustrates data from in vitro inflation experiments of rat carotid
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Fig. 7.4 Mechanical vessel properties with (activated vessel) and without (passive vessel) the con-
tribution of Smooth Muscle Cells (SMC). The data represents the properties from in vitro testing
of rat carotid arteries [622], where the gray-shaded area indicates the vessel’s in vivo deformation.
(a) Pressure p versus diameter d properties of the activated (red) and passive (blue) vessel, respec-
tively. The dashed curve illustrates the SMC-related contribution and represents the difference
between the pressure-diameter response of activated and passive vessels. (b) Diameter stiffness
�p/�d of the activated (red) and passive (blue) vessel

arteries [622], where p denotes the transmural pressure. The vessel’s diameter
stiffness �p/�d is clearly a function of the vessel diameter d. Whilst at smaller
diameters the stiffness of the activated vessel is higher than of the passive vessel,
the opposite is valid at larger diameters, see Fig. 7.4b.

Given sufficient cytosolic free Ca2+, the shortening velocity of SMC correlates
well with the level of the MLC phosphorylation. Within a few minutes upon
contraction initiation the Ca2+ level markedly decreases, such that MLC phospho-
rylation, and therefore energy utilization, decreases. Whilst this function is similar
to skeletal muscle, SMC is in addition able to sustain contraction and maintain
force for a prolonged time even at low levels of Ca2+. SMC is then very economic
and maintains the contraction force at minimal energy utilization and low rates
of ATP hydrolysis. This sustained phase has been attributed to specific myosin
cross-bridges, termed latch bridges. They are dephosphorylated but still attached
cross-bridges [124]. Regardless the unknown molecular basis, latch bridges show
very slow and Ca2+ level-independent MLC dephosphorylation. It results in slow
cycling rates of latch bridges and the maintenance of force at low energy cost. In
SMC, normalized force and shortening velocities are therefore regulated functions
of cross-bridge phosphorylation [384], which is in clear contrast to skeletal muscle.
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Fig. 7.5 Diameter versus pressure of activated (red) and passive (blue) arteries. Data represent
results from in vitro cyclic inflation at in vivo length of canine arteries and used potassium (K) as
vasoconstrictor agent [105]

Another factor that determines the amount of active wall stress relates to whether
the SMCs contract at isometric or isotonic conditions. The stretch or respectively
the stress in the vessel wall is then kept constant upon activation. As with skeleton
muscle, SMC also generates the maximal contraction force at isometric conditions.

According to their physiological function, an artery may be classified as an
elastic vessel that contributes to the capacity of the vascular system, or as a muscular
vessel that is able to contract and divert the blood flow. Vasoconstriction alters
the pressure-diameter properties much more in muscular than elastic arteries, see
Fig. 7.5. This figure shows the pressure-diameter properties of activated vessel
relative to their passive response for a number of canine arteries [105]. The data was
acquired by in vitro cyclic inflation at the vessels’ in vivo lengths and potassium (K)
in physiological salt solution was the vasoconstrictor agent. Whilst the coronaries
are commonly regarded as muscular arteries, the data shows minimal SMC-related
contribution to its pressure-diameter properties and underlines the exceptional
properties of the coronaries.

In addition to the modification of the vessel’s pressure-diameter properties, the
SMC stress may also contribute to the reduction of the transmural stress gradient at
physiological loading [274, 446].
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7.3 Arteriogenesis

Whilst vasoreactivity allows the vessel to react within seconds to environmental
cues through the modulation of contractile cells in the wall, arteriogenesis operates
at the timescale of days and weeks through the ability to add or remove vessel wall
tissue. It relies on a delicate (coupled) balance between degradation and synthesis
of vessel wall proteins, collectively called tissue turnover. Vascular cells, such
as macrophages, SMCs, and fibroblasts not only synthesize ECM and contractile
proteins, but secrete also Matrix MetalloProteinases (MMPs) that then constantly
degrades ECM. It allows the vessel wall to undergo many changes during normal
development and in response to disease. Whilst vasoactivity is the first functional
response of the vessel to the tissue’s sudden demand of oxygen and nutrient,
vasoreactivity may be seen as the continuation of such response.

Mechanical forces play a central role in arteriogenesis and effect both, the
synthesis and the degradation of vessel wall tissue. Vascular cells are anchored to
ECM proteins, mechanical communications that allow the cells to sense forces and
to adjust the synthesis of ECM proteins, MMPs, and other compounds [41, 50, 207,
228, 388, 502, 553]. The forces may have very different origins, referring to the
WSS from the blood flowing over the endothelium, cyclic wall stress, and the stress
induced by the transmural interstitial flow through the vessel wall, for example. The
transmural interstitial flow also advects a number of mediators towards the cells that
are able to influence cell function [375]. As with the synthesis, also the degradation
of ECM proteins is linked to mechanical factors. Given a laboratory experiment, it
is therefore often challenging to attribute a mechanical factor either to the synthesis
or the degradation of ECM compounds.

The reaction kinetics, and thus the rates at which individual ECM proteins are
synthesized or degraded, are very different and introduce very different time scales
in the maintenance of the vessel wall. In the homeostatic and mature vascular wall,
the collagen has a half-life time of approximately two months [395]. Elastin in
contrary is extremely insoluble and stable—it has half-life times in the order of tens
of years [7]. Elastin may, however, been degraded by selective MMPs, a process that
is important for physiological processes, such as elastogenesis and repair [585].

7.3.1 Interplay of Endothelium Cells and SmoothMuscle Cells

The involvement of mechanical factors in arteriogenesis has been known for
a long time: cyclic stretching of vascular SMCs increases their MMP produc-
tion [228], which then enhances collagen degradation and therefore results in
the upregulation of collagen turnover [337]. In addition to such direct cellular
response to mechanical factors, SMC function is also indirectly controlled through
the endothelium. ECs are constantly exposed to WSS, loading that has been
associated with changes in gene-expression patterns through positive and negative
WSS-responsive elements in their promoter regions [79]. WSS sensing has been
attributed to different mechanosensors, including G protein-coupled receptors,
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glycocalyx, primary cilium, ion channels, and the endothelial-specific junctional
complex comprising Platelet Endothelial Cell Adhesion Molecule-1 (PECAM1),
Vascular Endothelial cadherin (VE-cadherin), and Vascular Endothelial Growth
Factors (VEGFs) [22,238]. It is known for a long time that alterations of the flow rate
result in proportional vessel diameter changes, an effort to restore the initial WSS
level [295,296,324,549,554,556]. These observations suggested that ECs modulate
arteriogenesis to maintain WSS. Given homeostatic WSS levels, pathways that
promote blood vessel stabilization are activated, whilst arteriogenesis-characteristic
pathways are triggered away from homeostasis [22] and modulate MMP in the
vessel wall [99, 237, 372].

7.3.2 WSS Profile and Inflammation

Blood flow changes remarkably along the vascular tree and is especially complex
at vessel segments, such as bifurcations, constrictions, and dilations. All these
complexity is sensed and processed by the endothelium. EC’s mechanosensors are
able to decode subsecond-frequency characteristics. The exposure of ECs to WSS of
different frequency spectra yields very different Nuclear Factor kappa-light-chain-
enhancer of activated B cells (NF-κB) expression [150], see Fig. 7.6. NF-κB is
a protein complex that controls transcription of DeoxyriboNucleic Acid (DNA),
cytokine production, and cell survival. It is found in almost all animal cell types, and
it is an important regulator of inflammation. Given inflammation plays a central role
in atherosclerosis (see Sect. 5.4.2), NF-κB expression has been extensively studied
in atherosclerotic vessels.

The implication of blood flow on the endothelium might roughly be classified as
static WSS, pulsatile WSS, and oscillatory WSS. Static WSS is constant in time,
pulsatile WSS changes over the cardiac cycle but points always into the same
direction, whilst oscillatory WSS changes its direction with phases of forward and

Fig. 7.6 In vitro expression
of Nuclear Factor
kappa-light-chain-enhancer
of activated B cells (NF-κB)
of Endothelial Cells (ECs) in
response to Wall Shear Stress
(WSS) [150]. Data marked by
the star represent the
mechanical in vivo
environment of carotid artery
segments that are protective
(red) and prone (green) to the
formation of atherosclerosis,
respectively
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backward flows. Vascular EC responds very differently to such WSS characteristics,
see Fig. 7.6. The stars in the plots denote carotid artery segments that are protective
(red curve; pulsatile WSS) and prone (green curve; oscillatory WSS) to the
formation of atherosclerosis. A high expression of NF-κB appears in EC that is
exposed to the oscillatory WSS profile seen in the internal carotid artery. This
vessel segment is known to be very prone to atherosclerosis. Atherosclerosis is an
inherently inflammatory disease, and the data in Fig. 7.6 correlates well with the key
role played by NF-κB in the control of many genes involved in inflammation.

7.3.3 Collagen Synthesis

In addition to synthetic SMC, most synthesis of collagen appears through fibrob-
lasts, a cell type that is specialized for collagen synthesis. Figure 7.7 illustrates the
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Fig. 7.7 Collagen synthesis. Transcription and translation lead to pre-procollagen, which is then
modified into a procollagen α chain. Three such chains form a procollagen molecule and then
moved to the extravascular space. Removing both ends from procollagen forms tropocollagen. A
stack of tropocollagen molecules finally forms a collagen fibril. mRNA–messenger RiboNucleic
Acid; HO–hydroxyl group; Gal–galactose; Glc–glucose
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pathway of collagen synthesis, involving intracellular and extracellular processes.
Collagen synthesis starts in the cell nucleus and ends in the extracellular space.

7.3.3.1 Intracellular Processes
In the cell nucleus the first step of DNA-based gene expression, the transcription of
messenger RiboNucleic Acid (mRNA), takes place. The mRNA moves then into
the cytoplasm and interacts with free ribosomes for translation. The compound
is now called pre-procollagen and travels further into the endoplasmic reticulum
for post-translational modification, steps resulting in a procollagen α chain. The
modifications include the removal of the signal peptide on the N-terminal, adding
hydroxyl groups (OH), and glycosylation of the selected hydroxyl groups with
galactose (Gal) and glucose (Glc). The N-terminal refers to NH2, a free amine group
located at one end of a protein, whilst the C-terminal, a free carboxyl group COOH,
forms the other end. The translation of a protein from mRNA starts with the N-
terminal and ends with the C-terminal. Three procollagen α chains then form a
procollagen molecule and mark the last step of intracellular collagen synthesis. The
molecule is then moved to the Golgi apparatus, where it is assembled into secretory
vesicles and transported through the cell membrane into the extracellular space, a
process called exocytosis.

7.3.3.2 Extracellular Processes
Entering the extracellular space, propeptide cleavage forms tropocollagen. Here,
both ends (N-terminal and C-terminal) of the procollagen molecule are removed, by
enzymes known as collagen peptidases. Lysyl oxidase, a copper-dependent enzyme
then acts on lysine and hydroxylysines, and covalent bonding between tropocollagen
molecules results in a collagen fibril. Collagen fibrils may be regarded as the basic
structural unit of collagenous tissues—a large number of supra-fibril structures
emerge from it. In blood vessels, collagen fibrils form collagen fibers, rope-like
bundles of fibrils that reinforce the vessel wall, see Sect. 5.2.1.

7.3.4 Elastin Synthesis

In the mature and normal vessel, elastin synthesis is often negligible. However,
proteolytic degradation and repair of elastin are important factors in growth, wound
healing, pregnancy, and tissue remodeling, all of which require upregulated elastin
syntheses. As with collagen, also elastin is a remarkable hierarchical structure, and
a number of small tropoelastin protein molecules form the finally very stable elastin
complex. The tropoelastin molecules are cross-linked via their lysine residues with
desmosine and isodesmosine cross-linking molecules. Lysyl oxidase establishes the
cross-linking and results in a very stable structure.
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7.4 Angiogenesis

Angiogenesis is another vascular process towards the optimization of tissue per-
fusion. It leads to the formation of new capillaries sprouting from the pre-
existing vessels. Whilst arteriogenesis alters existing collateral vessels, angiogenesis
expands the vascular tree to secure tissue perfusion. Hypoxia is the primary cue.
Angiogenesis is therefore ischemia-driven and new capillaries form in response to
the lack of oxygen in the surrounding tissue.

In addition to the normal development, angiogenesis is also a key step in tumor
growth and stimulated by proteins, such as integrins and prostaglandins as well as
growth factors, such as VEGF. The discussion of mechanical factors in angiogenesis
is beyond the scope of this book, and the reader is referred to the literature [505].

7.5 Modeling Vasoreactivity

Vasoreactivity appears at time scales that are too short for the exchange of tissue
mass, and the classical closed system governing laws therefore apply, see Sect. 3.6.
Within this framework, a number of mathematical descriptions have been proposed
towards modeling the stress contribution from contractile cells in the vessel wall—
some of them are discussed hereafter.

7.5.1 Hill’s Three-Parameter Muscle Model

Hill’s three-parameter model for tetanized muscle contraction expresses the tension
P as a function of the contraction velocity v. It follows from the energy balance and
results in the hyperbolic relation

P = P0(1 − v/v0)

1 − (P0/a)(v/v0)
, (7.1)

where P0 [N] and v0 [m s−1] denote the maximum isometric tension and the
maximum contraction velocity of the muscle, respectively. The shape of the force-
velocity curve is described by the parameter a. The muscle generates the maximum
force P0 at v0 = 0, and the maximum contraction velocity is reached at P0 = 0.
Hill’s model (7.1) predicts a decreasing force (stress) at increasing contraction
velocity (strain rate). It is therefore in direct contrast to viscoelasticity, where the
force (stress) increases at increasing strain rate. Whilst the model (7.1) has been
widely applied in the description of skeletal muscles, it is barely used for SMC.
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Table 7.1 Data points in the format (λθ , F [N]) that characterize the active and passive vessel
wall, respectively

Active wall (1, 0.08) (1.3, 0.6) (1.6, 0.8) (1.9, 0.95)

Passive wall (1, 0.01) (1.3, 0.17) (1.6, 0.3) (1.9, 0.89)

7.5.2 Phenomenological Descriptions

The total stress in the active vessel wall results from the superposition of the ECM-
based passive stress and the cell-based active stress. Whilst many external factors are
able to activate contractile cells in the wall, the description of the myogenic response
attracted most biomechanical attention. The cells are then activated through the
stretch in the vessel wall.

Let us consider an example of a purely phenomenological description of
vasoreactivity. A flat vessel wall sample of stress-free length L = 54.0 mm, width
W = 5.4 mm, and thickness H = 2.2 mm is mounted in a tensile testing machine
and stretched in the circumferential direction. The testing protocol foresees two
acquisition cycles—in the first cycle the SMC in the vessel wall are active, whilst
a drug suppresses their contractility in the second cycle. Table 7.1 reports the wall
properties after preconditioning from both acquisition cycles. The data refers to the
properties with and without SMC contribution, respectively. In the table λθ and F
denote the stretch and force recorded from tensile testing.

The vessel wall’s passive response represents ECM properties and is expressed
by the first Piola–Kirchhoff stress

PECM = cECM(λθ − 1) exp[(λθ − 1)2] ,

where λθ denotes the tissue stretch in circumferential direction, whilst cECM [Pa] is
a stiffens-related material parameter. We may identify cECM from the minimization
of the objective function

� =
4∑

k=1

[
PECM(λθ k)WH − F exp

ECM k

]2
, (7.2)

where WH [m2] denotes the referential cross-section of the vessel wall specimen,
and F exp

ECM k is the force that has been recorded at the k-th measurement point. The
data refer to the properties of the passive wall, as listed in second row of Table 7.1.
The minimization� → MIN of (7.2) then yields the parameter cECM = 36.025 kPa,
and the passive force versus stretch properties are plotted in Fig. 7.8.

Following a purely phenomenological modeling, we describe the contribution
from SMC contraction by the first Piola–Kirchhoff stress
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Fig. 7.8 Force versus stretch properties of the passive (blue) and respective active (red) vessel
wall. Model parameters have been identified from the illustrated measurement points. Dashed
arrows represent isotonic and isometric contractions, respectively. The shaded area illustrates the
specific mechanical work done by isotonic contraction against 0.6 N

PSMC = cSMC exp

[
− (λθ − λm)

2

2λd

]
(7.3)

with cSMC [Pa] and λm, λd denoting material parameters to be identified from the
experimental recordings of the activated vessel wall. Given the sparse experimental
data, the simultaneous identification of these parameters was not possible, and we
therefore fixed the dispersion parameter at λd = 0.05. It then results in a well-posed
minimization problem � → MIN and the objective function

� =
4∑

k=1

{[PECM(λθ k)+ PSMC(λθ k)]WH − F exp
active k

}2
,

identified the parameter cSMC = 47.141 kPa and λm = 1.4422, where PECM+PSMC
and F exp

active k denote the analytical stress and the experimental force measurements,
respectively. Figure 7.8 illustrates the force-stretch properties of the active vessel
wall.

We may now explore the external mechanical work done by SMC, and consider
the two limit cases of isotonic and isometric contractions, respectively. Given
isotonic contraction, SMC contracts against a constant force, whilst at isometric
contraction the SMC stretch remains constant upon contraction. The path lines of
both contractions are shown in Fig. 7.8, and the area under the path line represents
the product of force and stretch. It is therefore the specific external work W/L per
unit reference length L of the tissue sample. Whilst an isotonic contraction exhibits
external work, this is not the case for an isometric contraction. Given the isotonic
contraction against the force of F = 0.6 N, it results in the work

Wisotonic = 0.6WHL(λθ passive − λθ active) = 3.02237 · 10−7 J ,



370 7 The Vascular Wall, an Active Entity

where the stretches λθ passive = 1.7722 and λθ active = 1.3011 have been identified
from

PECM(λθ passive)WH = 0.6 ;
(PECM(λθ active)+ PSMC(λθ active))WH = 0.6 .

We may further refine the description of the active vessel wall and introduce a
scalar 0 ≤ α ≤ 1 that represents the level of SMC contractile activity, a property
known as muscle tonus [446]. The first Piola–Kirchhoff stress then reads PSMC =
αP �SMC, where P �SMC expresses the stretch-tension relationship of the fully activated
SMC.

Example 7.1 (Biaxially Loaded Vessel Wall Patch). A batch of aortic wall tissue
is mounted in a planar biaxial testing machine to explore the change of stress upon
Smooth Muscle Cell (SMC) activation. For this experiment, the spatial configuration
� is fixed and determined by the edge length a = 2.3 cm and the thickness
h = 1.7 mm of the tissue specimen, see Fig. 7.9. Incompressibility of the vessel
wall may be assumed, and the SMC fibers are aligned along the direction a =
[√3/2 1/2 0]T.

Fig. 7.9 Vessel wall
specimen mounted in a planar
biaxial testing machine. The
specimen covers the spatial
domain �, and the unit
direction vector a determines
the alignment of Smooth
Muscle Cell (SMC) fibers.

(a) Given the passive wall specimen is at equi-biaxial tension T = 1.2 N, compute
the corresponding deformation and the elastic energy that is stored in the tissue
sample. The ExtraCellular Matrix (ECM) may be described by a neoHookean
strain energy ψECM = cECM(I1 − 1)/2, where cECM = 35.38 kPa denotes its
referential stiffness, and I1 = trC is the first invariant of the right Cauchy–Green
strain tensor C.

(b) Compute the first Piola–Kirchhoff stress of the fully activated vessel wall
sample. The activated SMC fibers may be described by expression (7.3), where
the material parameters cSMC = 28.15 kPa, λm = 1.15, and λd = 0.01 model
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the myogenic response. The stretch λ along the SMC fiber is taken with respect
to specimen’s stress-free configuration �0. �

7.5.3 Structural-Based Descriptions

SMCs are predominately aligned along the circumferential direction and may be
regarded as active stress fibers that carry load in parallel to the vessel wall’s ECM.
The rheology model in Fig. 7.10 represents such a structural view. It is known
as Hill’s three-element model (to be distinguished from Hill’s three-parameter
model [252]) and has originally been proposed to model skeleton muscle. In this
section, Hill’s model is generalized to hyperelasticity and towards modeling the
nonlinear properties of the vessel wall.

We represent the vessel wall’s circumferential stretch by λθ = √
C : (eθ ⊗ eθ ),

where eθ is the unit direction vector along the vessel’s circumference, and C =
FTF is the right Cauchy–Green strain with respect to the vessel wall’s stress-free
reference configuration �0. SMC fibers are aligned along the circumference and
stretched at

λSMC = λθλpre ,

an expression that uses finite strain kinematics, where λpre denotes the pre-stretch
of SMC relative to the vessel wall’s reference configuration, see Fig. 7.10.

We regard the vessel wall as a mixture of ECM and SMC, and to be characterized
by the Helmholtz free energy functions�ECM and�SMC, respectively. SMC appears
at different activation levels, and the here introduced�SMC denotes the strain energy
upon maximum activation. SMC activation level, or tonus is expressed by the scalar
0 ≤ α ≤ 1, and

�(C) = �ECM(C)+ α(C)�SMC(λSMC) (7.5)

then describes the elastic energy stored in the vessel wall per unit (reference) tissue
volume. With the intention to describe the myogenic response, the deformation C is

Fig. 7.10 Hill’s three-element rheological model, where �iso ECM and �iso SMC represent the
strain energies stored in the ExtraCellular Matrix (ECM) and the Smooth Muscle Cells (SMCs),
respectively. SMC is pre-stretched at λpre, relative to the vessel wall’s reference configuration



372 7 The Vascular Wall, an Active Entity

the most important argument to be considered in the tonus function α. In addition,
any model from Sect. 5.5.2 may be used to describe the ECM contribution �ECM
in (7.5).

A linear stress strain law has been proposed to model vascular SMC [622], and
the strain energy

�SMC(λSMC) = cSMC[λSMC − ln(λSMC)− 1] (7.6)

then captures its elastic properties, where cSMC [Pa] denotes the stiffness of the SMC
tissue in the vessel wall.

To close the description of the vessel wall, the tonus α is specified as a function of
the deformation C. SMC is only able to contract in the range λθ min < λθ < λθ max,
where λθ = λSMC/λpre denotes the circumferential stretch of the vessel wall. Given
λθ > λθ max, the actin–myosin overlap is too short for myofilaments to contract,
whilst at λθ < λθ min, myofilaments are too long and the relative motion between
actin and myosin is not able to generate tension. The stretch limits of λθ min = 0.68
and λθ max = 1.505 have been proposed for the rat carotid artery, for example [622].

Given the normal vessel wall and deformations in the range of λθ min < λθ <

λθ max,

α(C) = αbasal + 1 − αbasal

2
exp

[
− (Q−Qm)

2

2Qd

]
(7.7)

may be used to express SMC tonus. Here, Q(C) is a scalar that describes the
deformation, and αbasal denotes the basal tone contraction, a tonus that is present
even in the absence of any tissue deformation. In addition, the parameters Qm and
Qd determine the median and variance of the tonus distribution. The aforementioned
model is able to predict myogenic contraction in response to local stretch, and
further details are reported elsewhere [622].

Example 7.2 (Ring Test to Characterize a Vessel Segment). The mechanical prop-
erties of a vessel segment of the dimensions D, L, and H are to be investigated by
ring testing, see Fig. 7.11. Two steel pins are placed inside the vessel ring and then
pulled apart in an effort to identify the segment’s force F versus displacement δ
properties. The experiment is conducted with active and passive vessel wall rings.
A single-layer membrane model may be used in the analysis of the ring test, and
the limit cases of simple tension and pure shear kinematics should be investigated.
Friction-less contact between the sample and the steel pins, as well as the sample
dimensions L/D << 1 would result in simple tension kinematics, whilst pure shear
kinematics establishes for L/D >> 1 and stick contact.
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Fig. 7.11 Schematic
illustration of ring testing to
characterize the mechanical
properties of a vessel segment

Steel
pins

Stress-free
configuration

Deformed
configuration

Vessel ring

(a) Derive the Cauchy stress contributions of the passive vessel wall at simple
tension and pure shear deformation kinematics. The vessel wall’s ECM may be
described by a neoHookean strain energy function�ECM(C) = cECM(I1 −3)/2,
where I1 = trC denotes the first invariant of the right Cauchy–Green strain
tensor C.

(b) Derive the Cauchy stress contributions that follow from SMC contraction,
where simple tension as well as pure shear is assumed to determine the
deformation kinematics. SMCs are aligned along the circumferential direction,
their elasticity may be described by the strain energy (7.6), and

α(C) = exp

[
− (λSMC − λm)

2

2λd

]
, (7.8)

expresses their tonus, where λm and λd are material parameters. As compared
to the model (7.7), this description uses the simplifications Q = λSMC and
αbasal = 0.

(c) Consider ring tests with active and passive vessel rings and quantify the factor
r = Fst/Fps, where Fst and Fps denote the forces upon simple tension and pure
shear deformation kinematics, respectively. �

7.5.4 Calcium Concentration-Based Descriptions

SMC contraction is determined by β = [Ca2+] [mol m−3], the concentration of
cytosolic (intracellular) free calcium—it is modulated by the flux across the cell
membrane as well as the transport in and out of the sarcoplasmic reticulum. Electro-
chemical models, such as the Hodgkin–Huxley-type electrical equivalent [256] of
cell membranes, may be used to describe the cytosolic calcium concentration. They
explicitly express Ca2+ fluxes through VGCC, NCX, and PMCA (see Fig. 7.3) and
other channels, and they have also been used to describe vascular SMC [607].

In addition to the cytosolic calcium concentration, we need to describe the actin–
myosin interactions and therefore introduce four different states of myosin [240]:

α1 free unphosphorylated myosin,
α2 phosphorylated myosin,
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Fig. 7.13 Schematic representation of the four myosin functional states α1, α2, α3, and α4
of a Smooth Muscle Cell (SMC) [240]. Gray-shaded states are “force-generating” states. The
different states are connected through the kinetic rates k1, . . . , k7, where k1 and k6 depend on the
concentration β = [Ca2+] of cytosolic (intracellular) free calcium, whilst the others are constant

α3 phosphorylated cross-bridges attached to actin,
α4 dephosphorylated cross-bridges attached to actin.

The two functional states α3 and α4 refer to “force-generating” states and link
the functional myosin state to the mechanical SMC description. The α4 state
corresponds to the latch bridges, which existence has been postulated [240] to
capture the very slow MLC dephosphorylation, thereby maintaining the force at
low energy costs.

The four different functional myosin states are connected through seven rates
k1, . . . , k7, see Fig. 7.13. The constants k1 and k6 represent the rates for the
phosphorylation of myosin, whilst k2 and k5 define the dephosphorylation of
myosin. The rates k3 and k4 relate to the attachment and detachment of the (fast)
cycling cross-bridges, and k7 is the rate constant for latch bridge detachment. Given
these seven constants, the coupled system

d

dt

⎡

⎢⎢⎢⎢⎢⎣

α1

α2

α3

α4

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

−k1(β) k2 0 k7

k1(β) −k2 − k3 k4 0

0 k3 −k4 − k5 k6(β)

0 0 k5 −k6(β)− k7

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

α1

α2

α3

α4

⎤

⎥⎥⎥⎥⎥⎦
(7.11)

of first-order differential equations then connects the four myosin states and thus
functional SMC states. The sum of all fractions remains one, α1 +α2 +α3 +α4 = 1,
which implies d(α1+α2+α3+α4)/dt = 0, a property that is fulfilled by the kinetics
relation (7.11).

The free Ca2+ concentration has different implications on the SMC kinetics;
most noticeably it binds to calmodulin, activates the MLCK, and phosphorates
the MLC. It therefore determines the proportions of phosphorylated and unphos-
phorylated myosin, and thus the rates k1 and k6. All the other rates are assumed
to be constant. The reaction α3 → α4 from phosphorylated cross-bridges to
dephosphorylated cross-bridges is irreversible, and myosin cannot attach to actin
and form “force-generating” states unless it has first been phosphorylated. It is also
worth mentioning that a revised SMC kinetics model [239] extends the originally
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Table 7.2 Typical coefficients k1, . . . , k7 [s−1] that govern the functional myosin state α =
[α1 α2 α3 α4]T through the first-order differential equations (7.11). Here, sg(β) denotes the
sigmoid function (7.12) and β = [Ca2+] [nmol l−1] is the cytosolic (intracellular) free calcium
concentration

k1 k2 k3 k4 k5 k6 k7

0.3sg(β) 0.5 0.4 0.1 0.5 0.3sg(β) 0.01

proposed four states and adds an ultra-slow cross-bridge cycle. It suggest that
thin-filament-based regulatory proteins may modulate actomyosin ATPase activity,
which would then allow a SMC to have two discrete cross-bridge cycles.

Typical values of the coefficients k1, . . . , k7 are listed in Table 7.2, where the
sigmoid function

sg(β) = exp
[(
β − β) /γ ]

exp
[(
β − β) /γ ]+ 1

(7.12)

has been used to describe k1 and k6, respectively. Here, β [mol l−1] denotes the
threshold of calcium concentration that activates the MLCK and then phosphorates
the MLC, whilst γ specifies the sensitivity with respect to β of said activation.

Given the fractions α3 and α4, the related “force-generating” contributions may
be modeled through individual constitutive descriptions. Several such descriptions
have been reported in the literature [387, 503, 607].

Example 7.3 (Calcium Determines the Functional Myosin States). The cell
membrane of Smooth Muscle Cells (SMC) is at the holding potential of −60.0 mV.
A 1.6 s long step-depolarization to 0.0 mV leads then to the concentration
β =[Ca2+] [nmol l−1] of free calcium given by

β =
{

150 ; t < 0 ,
630 exp(−t/9.0)+ 150 ; t ≥ 0 .

(7.13)

The functional myosin states α = [α1 α2 α3 α4]T are governed by the first-order
differential equations (7.11) with the coefficients in Table 7.2. The concentration
threshold β = 400 nmol l−1 and the sensation parameter γ = 100 may be used.

(a) Compute the functional myosin state α that is reached at steady state upon the
holding potential.

(b) Use a forward-Euler discretization of the first-order differential equations (7.11)
and compute iteratively the transient change of α that is determined by the
calcium concentration profile (7.13). Consider the functional myosin state
derived at Task (a) as initial condition. �
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7.5.5 Thermodynamics of SMC Contraction

Given a tissue at homogenous temperature θ �= θ(X), the heat flux disappears,
qh = 0, and the first law of thermodynamics (3.121) yields the balance equation

u̇− rh − σ : d = 0 . (7.19)

Here, u denotes the internal energy per unit volume, rh is a heat source, and the
term σ : d expresses the stress power with σ and d denoting the Cauchy stress
and the rate of deformation, respectively. These energies have been introduced
with respect to unit volume of the deformed tissue. Let us consider a chemo-
mechanical description, where the SMC changes said internal energy u through
β = [Ca2+] [mol m−3], the calcium concentration per unit volume. The rate of
the internal energy may then been expressed by

u̇ = bβ̇︸︷︷︸
Chemical power

+ cvθ̇︸︷︷︸
Thermal power

,

where b [J mol−1 m−3] is work-conjugate to the calcium concentration β. It
represents the energy that is needed to change the Ca2+ concentration by one mole
per unit SMC volume. In addition, cv [J K−1 m−3] denotes the heat capacity at
constant volume of the unit volume SMC.

The energy balance (7.19) then reads bβ̇ + cvθ̇ − rh − σ : d = 0, and Piola
transform (3.31) allows us to express it by

Bβ̇ + c0 vθ̇ − Rh − P : Ḟ = 0 , (7.20)

where P and F denote the first Piola–Kirchhoff stress and the deformation gradient,
respectively. The term B = Jb expresses the energy needed to change the calcium
concentration per unit undeformed SMC volume, whilst J = detF denotes the
volume ratio. The heat capacity and the heat source per unit undeformed SMC
volume are denoted by c0 v = Jcv and Rh = J rh, respectively.

In addition to the energy balance (7.20), an admissible thermodynamic process
has to obey the second law of thermodynamics. Without the heat flux term, the
Clausius–Duhem inequality (3.125) reads

−�̇ − Sθ̇ + P : Ḟ ≥ 0 , (7.21)

where S denotes the entropy per undeformed SMC volume.
The standard deformation gradient F together with the active deformation

gradient Fa, a deformation that reflects the sliding between the actin and myosin
filaments, describe the tissue deformation. Given the functional myosin/cross-bridge
state α (see Sect. 7.5.4), these gradients define the thermodynamical state of SMC.
We note that the free calcium concentration β is implicitly considered through the
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myosin-actin configurations α. The Helmholtz free energy then reads �(F,Fa,α),
and the Clausius–Duhem inequality (7.21)

(
P − ∂�

∂F

)
: Ḟ − ∂�

∂Fa
: Ḟa − Sθ̇ − ∂�

∂α
· α̇ ≥ 0

describes the thermodynamical admissible process. It holds for any arbitrary process
and implies the constitutive law

P = ∂�

∂F
, (7.22)

which together with the inequality

− ∂�
∂Fa

: Ḟa − Sθ̇ − ∂�

∂α
· α̇ ≥ 0

determine an admissible thermodynamical process.
At physiological conditions, the SMC may be described by an incompressible

deformation. The constitutive relation (7.22) is then to be substituted by

P = ∂�

∂F
− κF−1 , (7.23)

where the Lagrange contribution κ has been introduced—it contributes to the
hydrostatic pressure and enforces the incompressibility, see Sect. 3.6.4.

SMC are elongated cells, and for many applications they may be modeled as 1D
active fibers in the vascular wall. Fibers are not able to build up stress perpendicular
to the fiber direction, and κ = 0 therefore holds. The relation

Bβ̇ + c0 vθ̇ − Rh − P λ̇ = 0 ,

then expresses the conservation of energy, whilst

P = ∂�

∂λ
; − ∂�

∂λa
λ̇a − Sθ̇ − ∂�

∂α
· α̇ ≥ 0 , (7.24)

determine the constitutive law and the respective dissipation inequality. Here, λ is
the total SMC stretch, and λa expresses the active stretch, the kinematics of the
sliding between actin and myosin filaments.

7.5.6 A Chemo-mechanical Description of SMC

Figure 7.15 shows a rheological model of a chemo-mechanical SMC description. It
proposes two parallel elements, and the total first Piola–Kirchhoff stress then reads
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Cycling bridges 
Latch bridges

Fig. 7.15 Schematic representation of a chemo-mechanical description of Smooth Muscle Cells
(SMC). The chemical potential �β determines the concentration β of free Ca2+, and thus the
development of functional SMC states. The two “force-generating” functional states α3 and α4
are then linked to the amount of latch bridges and respective cycling cross-bridges. The individual
mechanical structures are expressed by the energy �nMF and �MFp from passive deformation as
well as �MFa from active deformation, respectively

P = PnMF + PMF , (7.25)

where PnMF denotes the stress from structures other than myofilaments, whilst the
stress PMF relates to the myofilaments. Cross-bridges transfer the myofilament stress
across actin and myosin filaments, and PMF = Pcb + Plb holds, where Pcb and Plb
denote the stress from cyclic cross-bridges and latch bridges, respectively. SMCs
are slender fiber-like structures, and the condition P = max(0, P ) complements the
model—SMC fibers are therefore not able to carry any compressive load.

The individual stress contributions may be modeled directly at the micro-
structural level, as demonstrated elsewhere [607]. Given the thermodynamics
framework in Sect. 7.5.5, we may derive the stress from the Helmholtz free energy

�(λ, λa, β, α3, α4) = �nMF(λ)+�MFp(λ, λa, α3, α4)+�MFa(λa, α3, α4) ,

where �nMF denotes elastic energy that is stored in structures other than myofila-
ments. In addition, �MFp is the elastic energy stored upon passive deformation of
the cross-bridges, whilst �MFa denotes the work done by (active) sliding of myosin
against actin.

The reported progressive increase of SMC stress at increasing strain is attributed
to structures other than the myofilaments. It is captured by the strain energy

�nMF(λ) = ka

2kb

{
exp

[
kb (λ− 1)2

]
− 1
}
, (7.26)
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where ka [Pa] and kb are material parameters. The potential (7.26) follows directly
from a proposal made elsewhere [607].

Given myofilaments at tension, the cross-bridges are passively deformed and
store elastic strain energy. It may be expressed by

�MFp(λ, λa, α3, α4) = kcbα3 + klbα4

2
λa (λ/λa − 1)2 ρ(λa) , (7.27)

where kcb, klb [Pa] denote the stiffness of cycling bridges and latch bridges,
respectively. They are multiplied by the corresponding portions of phosphorylated
cross-bridges α3 and dephosphorylated cross-bridges α4, the portions of functional
myosin states that are related to cycling bridges and latch bridges, respectively.

In (7.27) multiplicative kinematics λb = λ/λa has been used, and the passive
stretch λb of the cross-bridges has been substituted by the total stretch λ and the
respective active stretch λa. The active stretch λa represents the motion between
actin and myosin filaments and is taken in average over all actin–myosin overlaps
of the cell. SMC contraction and relaxation correspond then to λ̇a = dλa/dt < 0
and λ̇a > 0, respectively.

A SMC hosts a large number myofibrils, and expression (7.27) therefore
introduced the Probability Density Function (PDF) ρ(λa) in the description of the
actin–myosin overlap. The normal distribution (A.2) may be used [607], where the
median corresponds to the optimal SMC length. It denotes the stretch λa at which the
maximum overlap between myosin and actin filaments appears, the configuration at
which the SMC develops the maximum tension.

We may assume only cycling cross-bridges, and thus phosphorylated cross-
bridges, are able to produce active translational motion between actin and myosin
filaments. The sliding appears at the stretch rate λ̇c, a material parameter that
specifies how fast cyclic cross-bridges contract an unloaded SMC in the absence
of latch bridges, α4 = 0. The expression u̇c = Lλ̇c [m s−1] relates it to the cycling
velocity u̇c and specifies how fast cycling bridges slide against actin filaments in a
SMC of the referential length L. In contrary to cycling bridges, latch bridges cannot
contract the cell, but they are still able to generate resistance (force) against the
sliding between actin and myosin filaments.

Given this access, the potential

�MFa(λa, α3, α4) = [rcbα3(λ̇c − λ̇a)+ rlbα4λ̇a
]
ϒ(λa) , (7.28)

captures the active SMC properties. The second term in the brackets describes the
latch bridges, where α4 denotes the portions of dephosphorylated cross-bridges.
Latch bridges provide resistance against sliding, and rlb [Pa s] may be seen as the
frictional constant against actin–myosin filament sliding.

The first term in the bracket of (7.28) describes the contribution from cycling
bridges, where α3 denotes the portions of phosphorylated cross-bridges, and

rcb = b(λ̇c − bλ̇a/a)
−1 [Pa s] (7.29)
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describes the friction of cycling bridges against actin–myosin filament sliding.
The friction is somewhat motivated by Hill’s three-parameter model (7.1) and
determined by λ̇c [s−1] and a, b [Pa]. In (7.28), ϒ(λa) = ∫ λa

−∞ ρ(X)dX denotes
the Cumulative Density Function (CDF) of ρ(X) and accounts for the non-constant
actin–myosin overlap. At steady-state condition λ̇a = 0, the term in the brackets
of (7.28) then reduces to P0 = bα3.

Our formulation has also to satisfy the internal force compatibility relation

PMF = ∂�MFa

∂λa︸ ︷︷ ︸
PMFa

= ∂�MFp

∂λ︸ ︷︷ ︸
PMFp

(7.30)

to ensure the equilibrium among active PMFa and passive PMFp stress of the
myofilament, a condition that then closes the constitutive SMC description.

Figure 7.16 illustrates the response of a micro vessel to a square wave of Ca2+
concentration using said modeling concept. The Ca2+ concentration determines the
portions α3 and α4 of “force-generating” functional myosin states and results in the
contractile stress PMF of the myofilaments in the vessel wall. The diameter d of the
vessel then responds accordingly, see also Example 7.4.

7.5.6.1 Stress Versus Stretch Properties
We consider an isometric experiment with SMC contracting at a fixed stretch λ =
λaλb, where λa denotes the stretch from the actin–myosin overlap, and λb reflects
the deformation of the cross-bridges. Upon contraction, the actin–myosin overlap
λa changes until it reaches the steady-state condition λ̇a = 0, a state at which the
SMC generates the stress P .

For simplicity, we neglect the stress from all non-myofibril-related structures in
the present analysis. Coleman and Noll’s procedure (7.24)1 applied to the Helmholtz
free-energies (7.27) and (7.28) then yields the first Piola–Kirchhoff stresses

PMFp = ∂�MFp/∂λ = (α3kcb + α4klb)(λb − 1)ρ(λa) ; (7.31)

PMFa = ∂�MFa/∂λa = α3bρ(λa) . (7.32)

In the derivation of expression (7.31)2 the steady-state condition λ̇a = 0 and
the kinematics relation λ = λaλb have been used, together with the relation
∂(dX/dt)/∂X = d(∂X/∂X)/dt = 0 and the definition of the CDF ϒ(X) =∫
ρ(X)dX.
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Fig. 7.16 Development of
the vessel diameter in
response to a square wave of
Ca2+ concentration. (a) Ca2+
concentration wave. (b) The
two “force-generating”
functional myosin states α3
and α4. (c) Vessel diameter
versus time response with
contraction and relaxation
starting at the time t = 60 s
and t = 240 s, respectively.
Given the high amount of
latch bridges α4, the vessel
relaxes slightly slower than it
contracts. The simulation
uses the parameters reported
in Example 7.4

The internal equilibrium PMF = PMFp = PMFa allows us to compute the cross-
bridge stretch

λb = (α3kcb + α4klb + α3b)/(α3kcb + α4klb) , (7.33)

and the myofilament stress PMF can then be expressed as a function of the
total stretch λ. Figure 7.17a shows the normalized stress PMF/P0, where P0 =
α3b/(

√
2πσa) denotes the maximum first Piola–Kirchhoff stress. The computation

used the properties listed in Table 7.4.
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Fig. 7.17 (a) Normalized first Piola–Kirchhoff stress PMF/P0 at isometric contraction at the
stretch λ. (b) Normalized first Piola–Kirchhoff stress PMF/P0 versus stretch rate λ̇ at isotonic
contraction. The maximum contraction stress is denoted by P0 and the model parameters are
reported in Table 7.4

7.5.6.2 Stress versus Stretch Rate Properties
A Quick-Release experiment that releases the vessel wall from the maximum
contraction may be used to explore the stress versus stretch rate properties. The
SMC is fixed at the stretch λ that results in λa = λa, and the maximum contractile
stress is then reached. At the end of the isometric contraction, the tissue is
instantaneously released and contracts against a constant stress P . The SMC follows
then an isotonic contraction at the stretch rate λ̇. Myosin kinetics cannot follow the
temporal changes at the point of release and allows us to assume a constant myosin
state across the switch from isometric to isotonic conditions.

In addition to PMFp according to (7.31), the Helmholtz free energy (7.28) yields
the active first Piola–Kirchhoff stress

P = PMF = ∂�MFa

∂λa
=
[
α3b(λ̇c − λ̇a)

λ̇c − (b/a)λ̇a
+ rlbα4λ̇a

] (√
2πσa

)−1
(7.34)

of the muscle contraction, where ρ(λa) = (
√

2πσa)
−1 has been used.

The internal equilibrium PMF = PMFp = PMFa allows us then to express the
cross-bridge stretch

λb = bλ̇a[α3kcb + α4(klb + λ̇arlb)] + a[α3bλ̇a − α3(b + kcb)λ̇c − α4λ̇c(klb + λ̇arlb)]
(α3kcb + α4klb)(bλ̇a − aλ̇c)

,

a property that is constant during isotonic contraction. Given λ̇a and the parameters
listed in Table 7.4, the normalized stress PMF/P0 versus the stretch rate λ̇ =
λ̇aλb may then be plotted, see Fig. 7.17b. Here, P0 = α3b/(

√
2πσa) denotes

the maximum first Piola–Kirchhoff stress, the stress at which the tissue has been
released in the quick-release experiment. As shown in Fig. 7.17b, the increase of the
latch bridge friction rlb changes the contraction properties from hyperbolic towards
linear PMF/P0 versus λ̇ properties.
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Table 7.4 Algorithm to
compute the stretch λ of a
vessel wall specimen during a
Quick-Release experiment

(1) Set time discretization and problem parameters

�t = 0.01 s ; tmax = 60 s ; n = tmax/�t

ka = 67 kPa ; kb = 3 kPa ; klb = 10 kPa ; kcb = 28 kPa

rlb = 300 kPa s ; a = −1 kPa ; b = 30 kPa ; λ̇c = −0.7

λa = 0.8 ; σa = 0.22 ; α3 = 0.5 ; α4 = 0.3

(2) Set initial conditions

i = 0 ; λ = 1.0 ; λa = λa ; λ̇a = 0

Do While i ≤ n

tn = i�t

(3) Compute stress contributions

ρ = exp[−(λa − λa)
2/(2σ 2

a )]/(
√

2πσa)

PnMF = ka(λ− 1) exp[kb(λ− 1)2]
PMFp = (α3kcb + α4klb)(λ/λa − 1)ρ

PMFa =
[
α3b(λ̇c−λ̇a)

λ̇c−(b/a)λ̇a
+ rlbα4λ̇a

]
ρ

(4) Set stress level

P0 = α3b/(
√

2πσa)

If[ti > 20, P = 0.2/0.5/0.8P0, P = P0]
(5) Solve internal and external equilibrium

j = 0 ; f1 = 1 ; f2 = 1

Do While (f 2
1 + f 2

2 > 10−12)

f1 = PMFa − PMFp ; f2 = PMFp − P
[
�λ̇a

�λ

]
=
⎡

⎣
∂f1/∂λ̇a ∂f1/∂λ

∂f2/∂λ̇a ∂f2/∂λ

⎤

⎦
−1 [

f1

f2

]

λ̇a ← λ̇a −�λ̇a ; λ ← λ−�λ ; j ← j + 1

If j = 15, solution not found: terminate

End Do

Store λi for plotting

λa ← λa + λ̇a�t ; i ← i + 1

End Do

7.5.6.3 Quick-Release Experiment
A Quick-Release experiment begins with a phase of isometric contraction that is
then followed by isotonic contraction. The vessel wall specimen contracts over
several seconds, and the computation of the deformation characteristics requires
a discretization method.

We used the forward-Euler method to discretize the governing equations of
the Quick-Release experiment, and Table 7.4 lists the applied iterative algorithm.
Given the specification and initialization of parameters, the wall stress contributions
PnMF, PMFp, and PMFa may be computed. The stress level P is then set, and
the rate λ̇a of actin–myosin stretch, as well as the total circumferential stretch
λ are computed by a Newton–Raphson fixpoint iteration. It solves the internal
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Fig. 7.18 Development of
the stretch λ during a
quick-release experiment.
The dashed lines indicate the
stretch rate at the beginning
of the isotonic contraction.
The algorithm that has been
used to compute the results is
given in Table 7.4

St
re

ct
h

Time [s]

f1 = PMFa − PMFp = 0 and external f2 = PMFp − P = 0 equilibrium. Figure 7.18
illustrates the evolution of the sample stretch λ over the time t with the sample
being released from the stress levels of P/P0 = 0.2 ; 0.5 ; 0.8. At the point of stress
release, the stretch λ instantaneously drops due to elastic unloading, and the SMC
then contracts at individual stretch rates, see the dashed lines in Fig. 7.18. For the
release from P/P0 = 0.2, the SMC model predicts also a small amount of stress
recovery—the stress first drops and then recovers by a small amount.

Example 7.4 (Active Micro Vessel). We consider an arteriole segment of the stress-
free reference diameter D = 1.0 mm and the wall thickness H = 0.08 mm. The
vessel is inflated at the pressure pi and fixed in axial direction. The vessel wall
is incompressible and entirely formed by Smooth Muscle Cell (SMC), all at the
contractile phenotype. We may use the chemo-mechanical description of Sect. 7.5.6
to model the arteriole.

(a) Consider the fully relaxed vessel, a state at which the strain energy (7.26) with
ka = 67.0 kPa and kb = 3.0 describes the wall. Use membrane theory and
compute the inflation pressure pi that results in the diameter d that is 50% larger
than the vessel’s reference diameter D.

(b) The vessel wall is now inflated at the fixed circumferential stretch λ = 1.2, and
the states α1 = 0.549207, α2 = 0.0168519, α3 = 0.0266816, and α4 = 0.40726
determine the equilibrated myosin in response to the Ca2+ concentration of β =
150 nmol. The parameters kcb = 28.0 kPa and klb = 10.0 kPa describe cycling
bridges and latch bridges, respectively, whilst λa = 0.9 determines the actin–
myosin stretch. The overlap between actin and myosin may be modeled with the
normal Probability Density Function (PDF)

ρ(λa) = exp
[−(λa − λa)

2/(2σ 2)
]

√
2πσ

, (7.35)



7.6 Modeling Arteriogenesis 385

where λa = 0.8 and σ = 0.22 denote the median and the Standard Deviation
(SD), respectively. Use membrane theory and compute the inflation pressure pi
that relates to this state of the arteriole.

(c) Given the state described in Task (b), compute the rate of active stretch λ̇a =
dλa/dt . The parameters a = −1.0 kPa, b = 30.0 kPa together with the cycling
stretch rate λ̇c = −0.7 s−1 describe the cycling bridges, whilst the latch bridges
are determined by the frictional coefficient rlb = 2.1 MPa s.

(d) Use a forward-Euler discretization of the problem’s governing equation and
compute the vessel diameter versus time response. The square profile

β =
⎧
⎨

⎩

150 ; 0 ≤ t < 60 s
600 ; 60 ≤ t < 240 s
150 ; 240 ≤ t ≤ 600 s

(7.36)

describes the concentration β = [Ca2+] [nmol l−1] over the time t [s], and the
functional myosin states αi from Task (b) may be used as initial conditions. In
addition, λ = 1.27743, λa = 1.09549, and λ̇a = 0 describe the problem.

(e) Express the change of the vessel wall’s temperature θ̇ that is required to keep
the entropy S at a constant level. �

7.6 Modeling Arteriogenesis

The vessel wall is at continuous mass turnover, conditions that result in growth
and remodeling at a local tissue level. Whilst growth changes the tissue’s stress-
free configuration, remodeling modifies the tissue’s internal structure and therefore
changes its mechanical properties. Both mechanisms are interlinked and result in
vascular morphogenesis, the change of the in vivo vessel geometry.

Arteriogenesis is determined by the synthesis and removal of tissue mass, and in
contrary to vasoreactivity, an open system governing framework is to be used in its
mathematical description. Arteriogenesis is also determined by volume growth, not
surface growth or tip growth, mechanisms commonly linked to plant growth [220].
Mass turn-over and its implications may either be modeled at the macroscopic
length-scale of the tissue, or at the length-scale of its constituents, such as collagen,
elastin, and SMC.

Growth is a fundamental property of all soft biological tissues, and its mathe-
matical description is well documented [10, 101, 220, 271, 275, 316, 369]. Given the
clinical relevance of vascular diseases, much of the work relates to aneurysms [210,
314,331,361,383,580,590,597,613], carotid disease [430], and coronary atheroscle-
rosis [167].
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7.6.1 Open SystemGoverning Laws

We follow a Lagrange approach in the description of the growing continuum and
adapt the description of Chap. 3. An open system describes then the material point
and allows material to enter and to leave the system. The exchange of material has
its own time scale τ , and given vascular tissue, it is in the range of days and weeks. It
is much longer than the time scale t of elastic loading by the cardiac cycle. The slow
growth assumption then applies, and the two time scales t and τ may be separated
in the description of the growing vascular tissue.

7.6.1.1 Mass Balance
Given an open system, the right-hand side of the mass balance (3.102) does not
disappear but describes the change in mass of the material point. It may either appear
through a mass source or a mass flux across the boundaries of the open system.
Whilst a flux of mass, such as the migration of SMC appears in vascular tissue, for
many applications the flux term may be neglected over the source term. The open
system mass balance then reads

∂ρ

∂t
+ ρdivv = ρςv , (7.41)

where v is the velocity, and ρ denotes the spatial density of the tissue. In addition,
ςv(x, τ ) [s−1] is a volume source field that expresses the rate of volume change.
The term ∂(dm)/∂t = ρςvdv then describes the mass that is added to material point
of the volume dv per unit time. With the transformation of the volume element
dv = JdV, it may also be expressed by ∂(dm)/∂t = ρ0ςvdV , where ρ0 = Jρ

denotes the tissue’s density in the reference configuration.

7.6.1.2 Balance of Linear and Angular Momentum
The growing vascular tissue has to follow Newton’s second law of mechanics. Given
the slow growth assumption, tissue growth can neither influence linear nor angular
momentum. Cauchy’s momentum equations (3.108) and (3.19),

ρ
∂v
∂t

= divσ + bf ; σ = σT , (7.42)

therefore hold without modifications, where bf denotes body forces per unit spatial
volume, see Sect. 3.6.2. The non-growth-related tissue deformation then allows us
to compute the stress σ , where the concepts, such as hyperelasticity, general theory
of fibrous connective tissue, and visco-hyperelasticity may be used, see Sect. 5.5.

7.6.1.3 The First Law of Thermodynamics
The growth-related exchange of mass results in heat exchange across the boundary
of the open system. Let us consider a material point at the internal energy u and the
kinetic energy ρ|v2|/2. The exchange of material at the same energy, and thus the
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exchange of compatible heat, does not change the system energy per unit volume—
the energy balance (3.121) holds. However, the exchange of non-compatible heat
gradually changes the tissue’s energy and requires us to revise the balance towards

∂u

∂t
+ divqh − rh − σ : d = ςh , (7.43)

where ςh(x, τ ) denotes the non-compatible heat source per unit spatial volume. It is
linked to the time scale τ of tissue mass exchange. In (7.43), qh and rh denote the
spatial heat flux and the spatial source term, whilst d is the rate of deformation, see
Sect. 3.6.3.1.

7.6.1.4 The Second Law of Thermodynamics
Given the exchange of compatible entropy s, the Clausius–Duhem inequal-
ity (3.124) holds also for the open system. However, the exchange of
non-compatible entropy gradually changes the tissue’s entropy, and the inequality
then reads

γ θ = −∂ψ
∂t

− s ∂θ
∂t

+ σ : d − qh · gradθ

θ
+ ςs ≥ 0 , (7.44)

where ςs(x, τ ) denotes the source of non-compatible entropy per spatial unit
volume. It enters the system through tissue growth at the time scale τ . The synthesis
of tissue fibers at an undulation that is different to the undulation of existing fibers in
the material point is an example of a non-compatible entropy source. See Sect. 3.6.3
for a detailed description of the other parameters used in (7.44).

7.6.2 Kinematics-Based Growth Description

Whilst growth-related and non-growth-related motions appear together in the
adaptation of vascular tissue, both are very different in nature. The mathematical
description therefore separates both motions through the introduction of the inter-
mediate reference configuration �0, see Fig. 7.20. It is stress-free and serves as the
reference configuration of the non-growth-related motion χ(X, t), whilst χg(X̃, τ )
describes the growth-related motion relative to the initial reference configuration
�̃0, a purely hypothetical entity. The decomposition of the motion shown in
Fig. 7.20 reflects the slow growth assumption and separates the growth-related
time scale τ from the non-growth-related time scale t . The referential gradients
G(X̃, τ ) = ∂χg(X̃, τ )/∂X̃ and F(X, t) = ∂χ(X, t)/∂X then represent growth-
related and non-growth-related deformations, respectively.

Regardless the kinematics framework introduced in Fig. 7.20, growth physically
appears always in the spatial configuration �, the tissue’s natural configuration.
As a consequence, the stress-free intermediate reference configuration �0 is
incompatible—it can in general not be stress-free and compatible at the same time.
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Fig. 7.20 Multiplicative
kinematics of a growing
tissue. The incompatible and
stress-free intermediate
reference configuration �0
separates the growth-related
and non-growth-related
motions χg(X̃, τ ) and
χ(X, t), respectively

Each material point X therefore has its own reference configuration, independent
from the reference configurations of the neighboring points [510]. Figure 7.20
aims at illustrating the incompatibility of �0. The put-together of a compatible
intermediate configuration (not shown in Fig. 7.20) requires tissue deformation, and
even in the absence of external loading t and bf, it cannot be stress-free but contains
residual stresses.

Given the kinematics framework introduced by Fig. 7.20, the deformation gradi-
ent of the total motion χ tot(X̃, τ, t) is multiplicatively decomposed and reads

Ftot(X̃, τ, t) = ∂χ tot(X̃, τ, t)/∂X̃ = F(X, t)G(X̃, τ ) . (7.45)

The deformation gradient G(X̃, τ ) specifies the growth with respect to �̃0, and
the deformation gradient F(X, t) records the non-growth-related deformation with
respect to�0. Multiplicative decomposition of the deformation gradient through the
introduction of a non-compatible intermediate configuration is a well-established
concept in the description of problems, such as elasto-plasticity [313], polymer
swelling [166], thermoelasticity [528], and soft biological tissue growth [473, 511].
A detailed discussion of this conception and its limitations in the context of growth
modeling is given elsewhere [10, 220].

Example 7.5 (Evolution of Residual Stresses Through Vessel Growth). Figure 7.21
shows a 2D axisymmetric vessel segment, which spatial configuration � is inflated
at the pressure pi. The initial reference configuration �̃0 is stress-free, and
R̃i = 3.0 mm and R̃o = 4.0 mm denote the corresponding inner and outer radii,
respectively. The growth deformation G(R̃) describes vessel wall growth relative
to �̃0. It is applied to infinitesimally thin vessel rings, and the mapping results in
an infinite number of non-connected rings that form the stress-free intermediate
reference configuration�0. Figure 7.21 shows only one of these rings. An individual
elastic deformation F(R) is then applied to each said stress-free rings and rejoins
them into the spatial configuration �.
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The vessel wall is at plane strain and described by an incompressible neoHookean
material with the strain energy density �(C) = c(trC− 3)/2, where c = 120 kPa is
the referential stiffness, and C denotes the right Cauchy–Green strain tensor.

Fig. 7.21 Multiplicative
kinematics of a growing
thick-walled vessel in 2D.
The growth deformation
G(R̃) maps an infinitesimally
thin ring into the respective
intermediate ring. All such
stress-free rings form the
intermediate reference
configuration �0. It separates
the growth deformation G(R̃)
from the elastic deformation
F(R)

Spatial
configuration

Initial reference
configuration

Intermediate reference
configuration

(a) Given the principal components of the growth deformation

Gθ(R̃) = 1.2 − 0.4(R̃ − R̃i)/(R̃o − R̃i) ; GR = 1.0 , (7.46)

express the radius r as a function of the radius R̃ and the inner radius ri.
(b) Solve the equilibrium of the thick-walled cylindrical tube problem and deter-

mine the relation between the pressure pi and the radius ri. Compute pi for a
number of radii ri.

(c) Show that the pressure-free vessel, and thus the spatial configuration � at pi =
0, contains residual strains. �

7.6.3 Spatial Distribution of Volume Growth

To close the description of the growth kinematics, the volume rate ςvdV introduced
in Sect. 7.6.1.1 is to be linked to the growth-related deformation G. We therefore
consider the time scale τ , represented by the mapping between the initial reference
configuration �̃0 and the reference configuration �0. The mass balance (7.41) then
reads

∂ρ0

∂τ
+ ρ0divvg = ρ0ςv ,

where vg is the growth-related velocity of the material particle, and ρ0 = Jρ

denotes its density in the reference configuration �0. With the kinematics relation
I : ĠG−1 = divvg (see the equivalent expression (3.38) with the deformation
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gradient F), the mass balance may be expressed by

∂ρ0

∂τ
+ ρ0tr

(
ĠG−1

)
= ρ0ςv . (7.49)

Given the rate of volume change ςv and the density ρ0 in �0, it is a scalar equation
in the nine unknowns Gij in 3D—the identification of G therefore needs further
kinematics assumptions to be made.

7.6.3.1 Constant-Volume Growth
Let us consider the exchange of mass across the boundary of the open system
without net change in tissue volume. The condition Ġ = 0 then holds, and the
mass balance (7.49) reduces to

∂ρ0

∂τ
= ρ0ςv .

Whilst the vascular tissue then maintains its reference shape, the mechanical
properties may change through the change of tissue density—the tissue remodels.

7.6.3.2 Constant-Density Growth
Given the exchange of mass across the boundary of the open system without the
change in tissue density, ρ̇0 = 0 holds. The mass balance (7.49) then reduces to

tr
(
ĠG−1

)
= ςv , (7.50)

and additional kinematics assumptions are needed to specify G upon the growth rate
ςv.

Tissue growth may be isotropic and therefore equally fast along all directions.
The growth tensor G = αI is then the scaled spherical tensor I, and in 3D the
mass balance (7.50) reads α̇ = αςv/3. The forward-Euler integration over the time
increment �τ then determines the growth tensor increment �G = (α/3)ςv�τ I,
and the iteration G ← G +�G defines the growth kinematics.

Vascular tissue growth is often anisotropic, and a more general kinematics
description is therefore needed. Let us consider the eigenvalue representation

G = G1(E1 ⊗ Ẽ1)+G2(E2 ⊗ Ẽ2)+G3(E3 ⊗ Ẽ3)

in 3D, where Gi; i = 1, 2, 3 denotes the eigenvalues of G, the growth-related
stretches along the principal growth directions. Given G is a two-point tensor, Ei
and Ẽi are eigenvectors in the reference configuration �0 and the initial reference
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configuration �̃0, respectively. The balance (7.50) then yields the governing
equation

Ġ1G
−1
1 + Ġ2G

−1
2 + Ġ3G

−1
3 = ςv,

which integration

lnG1 + lnG2 + lnG3 =
∫ τ

τ0

ςv(τ )dτ

links the rate of volume change and the growth along the principal directions. Here,
the initial conditions G1 = G2 = G3 = 1 at τ = 0 have been used.

Biological tissue growth is known to be sensitive to chemical cues, such as
concentrations of nutrient, hormone, and growth factors, as well as to mechanical
cues, such as strain and stress. The tissue’s histology also influences the growth kine-
matics. Experimental observations from cardiac dilatations, for example, indicate a
clear difference between fiber and cross-fiber components of tissue growth [216].
A widely used approach [316] therefore considers the growth along predefined
(anatomical) tissue directions, whilst chemical and/or mechanical cues determine
the rate of growth and therefore the eigenvalues Gi .

7.6.3.3 Homeostatic Growth
Homeostasis is a common concept in the description of vascular adaption models.
The rate equations are then formulated in a way that allows the field variables to
approach homeostatic levels [443, 447, 534]. Whilst most of the models implement
homeostasis at a local level, non-local targets may also be used. It allows for
the homogenization of the stress across the vessel wall [436] according to the
homogeneous stress hypothesis.

Example 7.6 (Growth that Maintains a Homeostatic Wall Stress Level). Let us
consider a membrane model of a cylindrical vessel segment of the diameter d and
the length l. The vessel is at the axial stretch λz, inflated at the pressure pi, and its
wall thickness h grows in an effort to maintain the circumferential stress σθ at a
homeostatic (constant) level. In addition, constant-density volumetric growth may
be assumed.

(a) Consider the growth tensor G within the principal coordinate system {θ, z, r}
and express its eigenvalues Gθ,Gz,Gr as a function of the rate of volume
change ςv.

(b) Consider isotropic growth and compute ςv that is required to maintain home-
ostasis in response to the rate λ̇θ of the circumferential stretch. �
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7.6.4 The Thick-Walled Elastic Tube at Homeostatic Growth

We consider a 2D axisymmetric vessel segment which spatial configuration � is
inflated at the pressure pi = 13.33 kPa, see Fig. 7.21. At the time τ = 0 the vessel
occupies its initial (and stress-free) reference configuration �̃0, where R̃i and R̃o
denote the inner and outer radii, respectively. The (incompatible) isotropic growth
deformation G = αI is applied to �̃0 and then followed by the elastic deformation
F(R), mappings that then result in the spatial configuration �.

The ring of radius R̃ and thickness dR̃ in �̃0 maps into the ring of radius r and

thickness dr in �, and allows us to express 2πrdr = 2πR̃detG(R̃)detF(R(R̃))dR̃.
With the incompressibility of the elastic deformation detF = 1, the integration
yields

r2 − r2
i = 2

∫ R̃

R̃i

xdetG(x)dx ,

and the spatial radius then reads r =
√
r2

i α
2(R̃2 − R̃2

i ), where detG(x) = α2 has

been used. Given the mapping R = αR̃, the elastic circumferential stretch

λθ (R̃) = 2πr

2πR
=
√
r2

i α
2(R̃2 − R̃2

i )

αR̃
, (7.53)

may be computed. Note that the intermediate reference configuration �0 is incom-
patible and therefore λr �= r/R.

We consider the vessel wall at plane strain and to be an incompressible
neoHookean material. The strain energy density �(C) = c(trC − 3)/2 per
unit (undeformed) material then represents the vascular tissue, where C(R) =
FT(R)F(R) denotes the right Cauchy–Green strain tensor. For this problem, we
assume constant-density growth, and

ςv = ζ(λθ − λθ ) (7.54)

describes the rate of volume change. Here, ζ [s−1] denotes a time constant, and λθ is
a homeostatic target value for the circumferential stretch λθ . The exchange of mass
scales then with the “deviation” from homeostasis.

With isotropic growth, G(R̃) = α(R̃)I, the forward-Euler integration of (7.50)
over the time increment �τ then defines the increment of the growth-related
stretches

�Gθ = �Gr = �α(R̃) = αςv(R̃)�τ/2 = αζ
[
λθ (R̃)− λθ

]
�τ/2 , (7.55)

where the elastic stretch λθ (R̃) follows from the solution of the structural equilib-
rium.
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Given an axisymmetric problem in cylindrical coordinates, the only non-trivial
equilibrium relation reads

rdσr/dr = σθ − σr = σθ − σ r , (7.56)

where the principal Cauchy stresses σi = σ i − κ; i = θ, r in circumferential and
respective radial directions have been used. The stresses σ i = λi∂�/∂λi = λ2

i c are
determined by the strain energy, and κ denotes the Lagrange pressure that enforces
the elastic incompressibility. The integration of (7.56) between the boundaries
σr(ri) = −pi and σr(ro) = 0 then results in

pi =
ro∫

ri

σθ − σ r
r

dr =
R̃o∫

R̃i

σθ − σ r
R̃

dR̃ , (7.57)

where the kinematics relation r = αλrR̃ has been used with αλr denoting the total
radial stretch relative to �̃0.

We may use a spatial discretization of the vessel withm layers to approximate the
integral in Eq. (7.57). A fixpoint iteration can then be applied to identify the discrete
circumferential stretches λθ j from the equilibrium

pi = c

m∑

j=1

λ2
θ j − λ−2

θ j

R̃j
�R̃ ,

where �R̃ = (R̃o − R̃i)/m denotes the thickness of the discrete vessel layers, and
the elastic incompressibility λr j = λ−1

θ j has been used. Given λθ j , the balance
relation (7.55) defines �αj and allows us to update the growth parameters αj ←
αj + �αj across all discretization layers j . The full iterative schema is listed in
Table 7.6.

Figure 7.23a shows the development of the inner radius ri over time, where
λθ = 1/m

∑m
j=1 λθ j determined the target stretch. It represents a non-local target

towards which the vessel adapts. Given this problem, the homeostatic circumferen-
tial stretch approached λθ = 1.10072, constantly distributed throughout the vessel
wall. The growth-related stretch changed then from α = 1.03046 at the inside
towards α = 0.968924 at the outside of the vessel wall. The vessel’s radius and wall
thickness changed insignificantly. Whilst the growth towards the aforementioned
target stretch stabilized the system after approximately 40 weeks, the prescription
of a predefined and constant target stretch λθ led to an overly constraint problem.
The vessel kept then either expanding or shrinking, dependent on the value set for
λθ , see Fig. 7.23b. Stress and strain are linked through the constitutive model of the
vessel wall. Given the inflation pressure pi, the structural equilibrium determines
the wall stress and results in a unique circumferential strain field. Setting λθ as the
growth target then results in the non-plausible system response shown in Fig. 7.23b.
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Table 7.6 Algorithm to
solve the thick-walled elastic
tube at isotropic growth over
a time increment of �τ

(1) Specify parameters

R̃i = 3.0 mm; R̃o = 4.0 mm; m = 30

c = 120 kPa; ζ = 0.25 weeks−1; pi = 13.33 kPa

(2) Set spatial discretization

�R̃ = (R̃o − R̃i)/m

R̃j = R̃i + (j − 0.5)�R̃ for j = 1, . . . , m

(3) Solve equilibrium

ri = 1.2R̃i; ri n = R̃i; pn = 0; k = 1; kmax = 10

Do While k < kmax

p = 0

Do j = 1, . . . , m

λθ j =
√
r2
i +α2

j (R̃
2
j−R̃2

i )

αj R̃j

p ← p + c λ
2
θ j−λ−2

θ j

R̃j
�R̃

End Do

ri ← ri − β(p − pi) with β = ri−ri n
p−pn

ri n = ri; pn = p

If |p − pi| < 10−6, k = kmax + 1

If k = kmax, solution not found: terminate

k ← k + 1

End Do

(4) Update growth parameter

λθ = 1/m
∑m
j=1 λθ j or λθ = const

Do j = 1, . . . , m

αj ← αj + αj ζ(λθ j − λθ )�τ/2
End Do

Fig. 7.23 Development of the inner radius ri over time τ of the thick-walled tube with isotropic
growth towards a stretch-based homeostatic target λθ . (a) The average circumferential stretch
across the entire wall sets the homeostatic target. (b) A constant circumferential stretch is the
homeostatic target. Table 7.6 lists the parameters that have been used for the computations
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Fig. 7.24 Description of
tissue turnover through the
continuous addition of dm+
and removal of dm− of tissue
mass. It leads to the
development of natural
configurations over time
0 < ξ < τ , and the
corresponding deformation
gradients

Time 

Time 0 

Time  

7.6.5 Continuous Turnover-Based Growth Description

Regardless the kinematics-based growth description shows physically reasonable
results, it is not based on the representation of the continuous production and degra-
dation of vascular tissue constituents. Vascular cells produce tissue constituents that
are then integrated in the vessel wall, whilst chemicals, mostly MMPs, constantly
degrade them. A process that results in the tissue turnover as illustrated in Fig. 7.24.
At the time τ = ξ , the tissue “package” of mass

dm+ = ρς+
v dv = ρ0ς

+
v dV = ς+

m dv = ς+
MdV

is produced during the time interval dτ , pre-stressed by the deformation gradient
Fpre, and finally integrated in the continuum body �. The superscript “+” symbol-
izes influx into the system, and “−” denotes outflux. The rate of volume change is
denoted by ςv and given by the mass balance equation (7.41), whilst ςm and ςM are
the rates of mass density per unit spatial and referenial volume, respectively.

We may also introduce the survival function S(τ − τ0) that quantifies the portion
that remains at the time τ from a tissue “package” that has been deposited at the time
τ , and has not yet been degraded by MMPs. The survival function S(x) is defined
for x ≥ 0 and satisfies the conditions S(0) = 1 and dS/dx < 0. The rate of mass
density and the survival function depend on the time, but also on factors, such as
strain, stress, and chemical concentrations.

The referential mass density at the time τ from the continuous tissue turnover is
then described by

ρ0(τ ) = ρ0(0)S(τ )+
τ∫

ξ=0

ς+
M(ξ)S(τ − ξ)dξ , (7.58)

an expression that involves the solution of a time convolution similar to linear
viscoelasticity, see Sect. 3.5.4.2.
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Given a hyperelastic description, the vascular tissue “package” of the mass dm+
that is deformed by F stores the strain energy density �(F)/ρ0, where � denotes
the strain energy density per unit reference volume. The strain energy

�(τ) = ρ0(0)S(τ )

ρ0(τ )
�(F(τ, 0))+

τ∫

ξ=0

ς+
M(ξ)S(τ − ξ)
ρ0(ξ)

�(F(τ, ξ))dξ (7.59)

then expresses the energy that is elastically stored in the tissue at the time τ .
Here, F(τ, ξ) denotes the deformation gradient at the time τ , applied to the tissue
“package” that has been deposited at the time ξ and thus

F(τ, ξ) = Ftot(τ )F−1
tot (ξ)Fpre(ξ) , (7.60)

see Fig. 7.24.
As with the spatial distribution of tissue volume to the components of the growth

tensor G discussed in Sect. 7.6.3, the continuous turnover-based growth description
has also to specify how the mass dm+ is deformed upon integration into the body
and thus to specify the components of Fpre(ξ).

The continuous turnover-based growth description has been combined with the
mixture representation of vascular tissue [273], where tissue components follow an
affine transformation. The deformation of the tissue constituents is then constraint,
and the description therefore called constrained mixture model. Up to date, several
versions and applications of this idea have been reported in the literature [21, 214,
272, 314, 331, 383]. The mixture model has been linked to the theory of volumetric
growth [8], the microstructural description of collagen remodeling [351], and SMC
basal tone variation [210]. Recently, also a homogenized constrained mixture model
has been proposed towards the reduction of computational costs whilst preserving
the key features of the theory [107, 329, 330]. Given the i-th tissue constituent, the
growth deformation may be decomposed in the remodeling part Fr and the growth
part Fg. The change of the tissue’s reference configuration is then described by
G = FrFg, where isotropic and anisotropic growth has been investigated [57].

7.6.6 Tissue at Simple Tension and ContinuousMass Turnover

We consider a tissue batch that is characterized by the neoHookean strain energy
density �(C) = c(trC − 3)/2 per unit (undeformed) material, where C denotes the
right Cauchy–Green strain tensor and c = 120 kPa defines the tissue’s referential
shear modulus. At the time τ = 0 the tissue occupies its initial (and stress-free)
reference configuration �0, with respect to which it is loaded at simple tension.
The stretch λtot = 1 + kτ determines the tissue’s deformation over the time τ ,
where k = 10 week−1 is a constant. The tissue is at continuous deposition and
removal, and the added tissue pre-stretched at λpre = 1.5 relative to its unloaded
configuration.
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The initial referential density ρ0 = 0.6 kg dm−3 defines the mass density of the
mechanically relevant structural proteins in the wall, and the constant rate of mass
production ς+

M = 0.1 kg dm−3 week−1 together with the survival function S(τ) =
exp(−τ/ζ ) characterize the kinetics of the turnover process. Here, ζ = 2 weeks
denotes a time constant. The mass density (7.58) may be integrated, and

ρ0(τ ) = ρ0(0) exp(−τ/ζ )+ ς+
Mζ [1 − exp(−τ/ζ )] (7.61)

then yields an analytic expression of the mass density per unit reference volume
at the time τ , see Fig. 7.25a. In addition, the survival function S(τ) defines the
removal of tissue mass dm−, a portion of tissue that has, however, no influence
on the mechanics of the vessel and is therefore not further considered.

Given the free energy density (7.59), Coleman and Noll’s procedure for incom-
pressible materials (3.131) together with the second Piola transform yields the
i = 1, 2, 3 principal Cauchy stresses

σi(τ ) = ρ0(0)S(τ )

ρ0(τ )
λi(τ )

∂�(F(τ, 0))
∂λi(τ )

+
τ∫

ξ=0

ς+
MS(τ − ξ)
ρ0(ξ)

λi(τ, ξ)
∂�(F(τ, ξ))
∂λi(τ, ξ)

dξ − κ , (7.62)

where κ denotes a Lagrange contribution to the hydrostatic stress that enforces the
incompressibility.

The principal stretches of the incompressible material at simple tension read

λ1 = λtot(τ )

λtot(ξ)
λpre , λ2 = λ3 = √λ1 , (7.63)

where the multiplicative kinematics of the turnover-based growth description have
been used, see Fig. 7.24. The substitution of said principal stretches in (7.62) and
the result ∂�/∂λi = cλi , then yields the Cauchy stress in tensile direction

σ1 = c

⎧
⎨

⎩
ρ0(0) exp

(−τ
ζ

)

ρ0(τ )

(
λ2

pre − λ−1
pre

)

+
τ∫

ξ=0

ς+
M exp

(
ξ−τ
ζ

)

ρ0(ξ)

[(
λtot(τ )λpre

λtot(ξ)

)2

− λtot(ξ)

λtot(τ )λpre

]
dξ

⎫
⎪⎬

⎪⎭
, (7.64)

where the equilibrium σ2 = σ3 = 0 in cross-tension direction identified κ . The
convolution integral in (7.64) can be numerically solved, and the model’s stress
versus time response is shown in Fig. 7.25b. Following an excessive stress deviation
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Fig. 7.25 Continuous turnover-based description of tissue at simple tension. Evolution of the
density per unit reference volume (a) and the tensile Cauchy stress (b) over the time τ are shown

at approximately 5 weeks, a constant stress in the continuously elongating batch is
predicted beyond the time of approximately 40 weeks.

Example 7.7 (The Thin-Walled Vessel at Tissue Turnover). Let us consider a vessel
of diameter D = 10.0 mm and wall thickness H = 1.0 mm at its stress-free
reference configuration �0. At the time τ = 0, the undeformed structural vessel
wall proteins are described by the mass density ρ0 = 0.6 kg dm−3. The vessel is
incompressible and modeled with the neoHookean strain energy density �(C) =
c(trC − 3)/2 per unit undeformed material, where C denotes the right Cauchy–
Green strain tensor and c = 120 kPa. The vessel is inflated by the pressure pi
and does not deform along the axial direction. The vessel wall is at continuous
deposition and removal of tissue, where λpre = 1.17 defines the pre-stretch of
added tissue. The kinetics are determined by the constant rate of mass production
ς+

M = 0.1 kg dm−3 week−1 together with the survival function S(τ) = exp(−τ/ζ ),
where ζ = 2 weeks denotes a time constant.

(a) Provide the analytical expression of the referential mass density.
(b) Derive the expression of the circumferential Cauchy stress σ from the strain

energy (7.59).
(c) Split the time domain into n constant intervals�τ and derive a time-discretized

representation of the circumferential Cauchy stress in the vessel wall.
(d) Use the equilibrium of the inflated tube to compute the inflation pressure pi over

time. Investigate the limit case λtot = λpre and show that the model approaches
the inflation pressure pi that is predicted by the thin-walled tube of neoHookean
material. �



7.6 Modeling Arteriogenesis 399

Example 7.8 (Vessel Wall Growth Through Tissue Turnover). We consider a 2D
axisymmetric vessel segment, where � denotes its spatial configuration that is
inflated at the pressure pi = 13.33 kPa, see Fig. 7.27. At the time τ = 0 the vessel
occupies its initial (and stress-free) reference configuration �0, where the inner and
outer radii are denoted by Ri = 3.0 mm and Ro = 4.0 mm, respectively. The vessel
wall tissue is at continuous tissue turnover, and Eq. (7.59) describes the vessel wall’s
strain energy �(τ) per unit reference volume in �0. We consider the vessel wall at
plane strain and to be described by an incompressible neoHooken material of the
strain energy density �(C) = c(trC − 3)/2 per unit undeformed material. Here,
C is the right Cauchy–Green strain tensor, and c = 120 kPa denotes the referential
shear modulus. The constant rate of mass production ς+

M = 0.1 kg dm−3 week−1

together with the survival function S(τ) = exp(−τ/ζ ) define the kinetics of the
turnover process, where ζ = 6 weeks is a time constant.

Fig. 7.27 Continuous
turnover-based growth
description of a growing
thick-walled vessel in 2D

Initial reference
configuration Spatial confi-

guration

Time

Time 0

Time

(a) Derive the Cauchy stress σ from the strain energy (7.59).
(b) Express the principal stretches and derive the principal Cauchy stresses. Dis-

cretize the time interval 0 < t < τ by n equidistant increments �τ and derive
the time-discretized representation of the principal stresses.

(c) Consider the equilibrium of the thick-walled tube problem and discretize the
governing equation in time and space.

(d) Adapt the algorithm shown in Table 7.6, and compute the development of the
spatial configuration over time for different numbers n of time increments. �

7.6.7 Multiphasic andMiscellaneous Descriptions

The vascular wall may be regarded as a mixture of solid components, such as
elastin, collagen, and SMCs, that are immersed in fluid. Whilst the convection
of fluid within the tissues is essential for a number of physiological processes,
in the description of many vascular biomechanical problems the wall may be
regarded as an incompressible homogenized solid. The Cauchy stress then reads σ =
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∑n
i=1�idev(σ i ) − pI. The deviatoric stress is averaged over the deviatoric stress

contributions dev(σ i ) of the n constituents and weighted by their volume fractions
�i , whilst the hydrostatic pressure p enforces the incompressibility and links to
pore-fluid flow. In addition to the affine deformation of their structural constituents,
most mixture models also assume newly formed constituents to be deposited
(integrated) at a predefined stress or strain into the existing structure. Vascular cells
therefore not only sense and respond to stress or strain, but they would also have
the ability to pre-stretch the secreted and newly integrated tissue constituents. The
deposition stretch differs across tissues [137,245], and it is reasonable to assume that
newly formed material deposits at the homeostatic stretch [139]. Aging, and thus
shrinking of the deposited tissue components would be an alternative explanation
for the development of the pre-stretch.

A specific mixture model [591] introduced separate variables in the description
of the density and the respective undulation of collagen fibers. Both variables
are governed by strain-mediated rate equations and then linked to the (passive)
histology-based HGO model [261]. Several variations and applications of this
approach have been reported [494, 590], and recently [13] the model has also been
coupled to signaling pathways of collagen synthesis and degradation [108]. The
change in normalized tissue densities, determines the volumetric growth and links
to the theory of volumetric growth [473]. As with single phase models, the change
of tissue volume is to be translated into the growth rate Ġ (see Sect. 7.6.3), and the
related modeling assumption strongly influences vessel wall growth over time [229].

Another modeling approach [203, 361] follows the general theory of fibrous
connective tissue, see Sect. 5.5.7. It links the multi-structural description of col-
lagen (5.39) to a stretch-based rate equation, and the newly-synthesized collagen
fibrils are integrated at a predefined and triangularly-distributed deposition stretch.

Yet another model [326] is based on a microstructural theory of soft tissue
adaptation and considers elastin, collagen, and cells to be immersed in fluid. The
model uses a strain-based stimulus and describes the constituents’ turnover at a
fixed fiber-matrix volume fraction. The deformation-dependent fiber degradation
is lowest at the tissue’s homeostatic stretch, and the model assumes a normally
distributed deposition stretch of the tissue fibers.

Yet another model [345,346] addresses cell-mediated tissue compaction in com-
bination with collagen fiber remodeling. In addition to many of the aforementioned
mechanisms and concepts, it also introduces active stress fibers to cope with tissue
compaction, an important aspect in tissue engineering. The cell’s phenotype and the
strain at the tissue level is assumed to influence the stress exerted by the stress fibers.

Some aspects of vascular wall adaptation can also be captured by the evolution
of material constants used in constitutive formulations that have originally been
developed to describe the passive vessel wall. Aside from ad hoc assumptions,
the evolution of model parameters may consider factors, such as the mechanical
stress or strain, and the concentration or flux of chemicals. This idea has been
materialized as a bounded elastic strain energy [580], use of internal thermodynamic



7.7 Summary and Conclusion 401

variables [368], through Continuum Damage Mechanics (CDM) [98], or the
remodeling of collagen fibers [133, 134, 244].

7.7 Summary and Conclusion

The vascular wall is equipped with mechanisms to cope with environmental changes
and to evolve towards optimal mechanical performance. Whilst the ECM determines
the strain level of the individual cells, it is the cells themselves that sense and
respond to mechanical load. Situated at the interface between tissue and blood, the
endothelium plays a central role in this feed-back loop and links vessel wall biology
to hemodynamic forces.

This chapter focused on the description of vasoreactivity, a mechanism that con-
trols the vessel caliber, as well as arteriogenesis, the delicate balance between degra-
dation and synthesis of vascular tissue constituents. The biochemical mechanisms
that explain said vessel properties have been detailed, and modeling frameworks
at different levels of complexity, including thermodynamics arguments, have been
discussed. The kinematics-based and the continuous turnover-based descriptions of
growth are two fundamentally different frameworks to model arteriogenesis. Whilst
the latter one closely addresses tissue turn-over, it is computationally extremely
demanding. Recent developments therefore combined elements of the kinematics-
based and the continuous turnover-based descriptions [57, 107, 192, 210, 230, 314,
329, 361, 383, 580, 591]. One open issue concerns the relation between tissue mass
and the actual growth kinematics. Different assumptions result in very different
simulation outcomes [230]. Up to date no general conclusions can be made, and
recent analytical insights suggest growth-related stretch to appear mainly in the
direction(s) of lowest stiffness [58]. Ongoing research is expected to enlighten these
aspects of vessel wall biomechanics.

The adaptation of the vascular wall has to obey a number of physical principles,
and even within these constraints, very different approaches have been proposed.
Given the scarcity of experiment data, the biological “forces” that govern the
adaptation of the vascular wall are largely unknown. Models have to make a number
of ad hoc assumptions that may or may not be appropriate. The thorough validation
of these assumptions with respect to clearly specified Intended Model Applications
(IMA) would be critically important to increase confidence in vascular adaptation
models, a fundamental requirement towards their rigorous application. In addition
to tailored in vitro experiments, modern image modalities allow the acquisition of
functional and biological information of the vessel wall, data that could directly be
used in the development and validation of adaption models. Regardless the current
premature levels, the better understanding and modeling of vascular adaptation will
have fundamental implications in vascular biomechanics.
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AMathematical Preliminaries

A.1 Statistics

A.1.1 Definitions and Terminology

Correlation coefficient Quantifies the correlation (dependence) between two
sets of data.

Coefficient of determination Quantifies the predictability of data.
Confidence Interval (CI) Measure of the degree of uncertainty associated with

a sample statistic.
Degrees of freedom The number of independent observations in a sample

minus the number of population parameters that
must be estimated from sample data.

False positive Mistakenly predicted positive outcome.
False negative Mistakenly predicted negative outcome.
Independence Two events are independent when the occurrence of

one does not affect the probability of the occurrence
of the other.

Interquartile Range (IQR) A measure of variability, based on dividing a data set
into quartiles. Alternatively: The difference between
the largest and smallest values in the middle 50% of
a set of data.

Interval scale Numeric scales with order and exact differences
between the values.

Mean The arithmetic average of all values in an observa-
tion.

Median The middle value of observations. If there is an even
number of observations, the median is the average of
the two middle values.

Nominal scale Scale used for the labeling variables.
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One-tailed significance test Significance test involving one tail of the probability
distribution.

Ordinal scale Scale that has an order but no specifical numerical
value to it.

Outlier An extreme value that differs greatly from other
values of observations.

Population The total set of observations that can be made.
Probability A measure of occurrence of an observation.
Probability distribution A rule that links each outcome of a statistical exper-

iment with its probability of occurrence.
Quantile Quantiles divide a rank-ordered data set into a num-

ber of equal parts.
Quartile Quartiles divide a rank-ordered data set into four

equal parts. The values that divide each part are
called the firstQ1, secondQ2 (or median), and third
Q3 quartile.

Ratio scale Numeric scales that can take any value.
Sample Observations drawn from a population.
Significance level The probability of committing a Type I error.
Size The number of observations in a set.
Set A well-defined collection of objects.
Standard error A measure of the variability of a statistic.
Standard Deviation (SD) A numerical value used to indicate how widely

individuals in a group vary.
Statistic Characteristic of a sample. Generally, a statistic is

used to estimate the value of a population parameter.
Two-tailed significance test Significance test involving both tails of the probabil-

ity distribution.
Type I error Error that occurs when the Null Hypothesis is

wrongly rejected, and thus a false positive is
predicted. The probability of committing a Type I
error is called the significance level.

Type II error Error that occurs when the Null Hypothesis fails
to reject a negative observation, and thus a false
negative is predicted. The probability of committing
a Type II error is called the power.

Variance A measure of the variability of a statistic.

A.1.2 Probability Distributions

The Probability Density Function (PDF) ρ(X) is used to specify the distribution
of a random variable X. Such a random variable may represent observations of a
sample or a population. Variables describing samples are denoted by lower case
letters (such as x), whilst upper case letters (such as X) describe observations of a
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population. The probability 0 ≤ p ≤ 1 that such a random variable falls into the
interval X1 ≤ X ≤ X2 reads

p =
∫ X2

X1

ρ(X)dX . (A.1)

The integration ϒ(X) = ∫ X
−∞ ρ(ξ)dξ yields the Cumulative Density Function

(CDF) with the properties ϒ(−∞) = 0 and ϒ(∞) = 1. Fig. A.1a, b shows ρ
and ϒ of a normal distribution.

A random variable may be visualized by a box-and-whisker plot, see Fig. A.1c.
The box is formed by the InterQuartile Range (IQR), and thus the range between
the third quartile Q3 and the first quartile Q1, within which 50% of data falls. A
box-and-whisker plot also shows the sample medium (or the second quartile Q2)
together with a bar covering 75% of the data—the whisker.

The quartiles (Q1, median, Q3) split the data into four equal portions, whilst
splitting it into m equal portions, defines the m− 1 data quantiles.

Variables representing observations in samples or populations may follow differ-
ent PDFs. The PDF of the normal (or Gaussian) distribution reads

ρn(X) = exp[−(X −X)2/(2σ 2)]√
2πσ 2

, (A.2)

Fig. A.1 Representations of
the random variable X that
describes observations in a
population. (a) Probability
Density Function (PDF)
ρ(X), (b) Cumulative
Density Function (CDF)
ϒ(X), and (c)
box-and-whisker plot of X.
The example shows a normal
distribution of zero median
and the standard deviation σ .
In total 25% of data falls
below the first quartile Q1,
50% below the median, and
75% below the third quartile
Q3. The InterQuartile Range
(IQR) is between Q1 and Q3
and covers 50% of the data
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where X is the median, and σ 2 denotes the variance. It is the square of the distribu-
tion’s Standard Deviation (SD) σ . Figure A.1 shows such a normal distribution.

The distribution of a sample of size n taken from a normal distributed population
will not follow a normal distribution but a student t-distribution instead. The
difference between both distributions diminishes with increasing sample size n.
The sample size n also defines the degrees of freedom ν = n − 1 of the student
t-distribution. The student t-distribution’s PDF reads

ρt(x) = �(ν+1
2 )√

νπ �(ν2 )

(
1 + x2

ν

)− ν+1
2

, (A.3)

where � is the gamma function, and x denotes the sample variable. Figure A.2a
shows student t-distributions of ν = 3 and ν = ∞ degrees of freedom, respectively.
The difference of the tails between the normal distribution and the student t-
distribution is especially emphasized, see Fig. A.2a. The student t-distribution
appears often in hypothesis testing, see Sect. 1.4.3.

Some PDFs capture bounded data, where the random variable is zero beyond
some bounds. The beta-distribution is such an example. It is bounded at 0 and 1,
and its PDF reads

ρβ(x) = Xα−1(1 − x)β−1�(α)�(β)

�(α + β) , (A.4)

where the parameters α and β determine the shape of the PDF. Figure A.2b
illustrates the beta-distribution for some parameter combinations.

Fig. A.2 Different Probability Density Functions (PDF) that represent the random variable x. (a)
Student t-distribution for different degrees of freedom ν. The case ν = ∞ represents the normal
distribution. (b) Beta-distribution for different shape parameters α and β
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Fig. A.3 Graphical methods to determine whether a data set is well-modeled by a normal
distribution. (a) Histogram plot. (b) Quantile-Quantile plot (QQ-plot)

A.1.3 Data Distribution Testing

Statistical analysis methods often demand a particular distribution of the data within
a sample or population. Normally distributed data is the most relevant case. One of
the first steps in data analysis is therefore the assessment of how well a normal PDF
resembles the histogram of the data set, see Fig. A.3a. Given a low number of data
points, a Quantile-Quantile plot (QQ-plot) may be used. A QQ-plot represents the
data quantiles versus the quantiles of the normal distribution. Normality therefore
holds if the data points fall around the diagonal of the QQ-plot, see Fig. A.3b. Any
distribution other than a normal distribution, may be tested by a QQ-plot.

The distribution of the data within a set may also be tested against the hypothesis
(see Sect. 1.4.3) that it follows a certain distribution. Such tests are called frequentist
inference tests, and draw conclusions from sample data by emphasizing the
frequency or proportion of the data.

A.1.4 Confidence Interval

Confidence Intervals (CI) describe the amount of uncertainty associated with a
sample estimate of a population parameter. The estimation of the population mean
μ from a sample is such an example; different samples will naturally yield different
population means. Let us consider a sample that has been drawn from a normal
distributed population, and sample mean x and SD s would be

x =
∑n
i=1 xi

n
; s =

√∑n
i=1(xi − x)2
n− 1

,

where xi and n denote the observations in the sample and the sample size,
respectively.

We may specify the confidence level c, the percentage we expect from the
population mean μ to fall within the CI μmin ≤ μmax. Given the confidence level,
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the critical probability p� = (1 + c/100)/2 follows, and the interval 1 − p� ≤
p ≤ p� covers the probability of the confidence level c. We now use the student
t-distribution of ν = n − 1 degrees of freedom to describe the sample. The
corresponding statistic t� follows then from the solution of the equation p� = ϒ(t�),
where ϒ(x) denotes the CDF of the student t-distribution. The expressions μmin =
x − t�es and μmax = x + t�es define then the CI of the population mean, where
es = s/

√
n denotes the standard error of the sample. Given the population’s SD

would also be known, a more accurate estimation of the CI would be possible.

Example A.1 (Population Mean of the Vessel Wall Strength). Let us consider an in
vitro tissue characterization study that uses tensile testing to measure the strength
x of the vessel wall. The experiment acquired data from vessel wall specimens of,
in total, n = 19 animals; Table A.1 lists the recordings. Given this information,
conclusions regarding the population mean μ of the vessel wall strength should be
drawn.

Table A.1 Tensile strength x of vessel wall samples acquired from n = 19 animals

Specimen Strength [kPa]

1 1140.5

2 759.2

3 465.2

4 855.1

5 1646.4

6 1090.7

7 578.3

Specimen Strength [kPa]

8 764.8

9 1221.9

10 886.6

11 1289.3

12 1205.4

13 976.0

14 376.0

Specimen Strength [kPa]

15 1691.3

16 1089.8

17 1361.0

18 1023.5

19 641.2

(a) Investigate wether or not the sample is normal distributed.
(b) Compute the sample mean x, the sample Standard Deviation (SD) s, and the

sample standard error es.
(c) Given the confidence levels of 90% and 95%, compute the respective Confi-

dence Intervals (CI) of the population mean μ. �

A.2 Complex Numbers

A complex number may be expressed by c = a+bi, where a and b are real numbers,
whilst i = √−1 denotes the imaginary unit. A complex number can be formally
represented by a vector c = aeR+beI in the complex plane, also known as Argand’s
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Fig. A.4 The complex
number a + bi represented by
the vector c in the complex
plane

diagram, see Fig. A.4. The complex plane is defined by the one-dimensional base
vectors eR = 1 and eI = i pointing into the real and the imaginary directions,
respectively.

In polar coordinates {r, φ}, the vector has the coordinates a = r cosφ and b =
r sinφ, and the complex number then reads c = r cosφ eR + r sinφ eI = r(cosφ+
i sinφ). Here, r = |c| = √

a2 + b2 and

φ = arg c =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

arctan(b/a) if a > 0
arctan(b/a)+ π if a < 0 and b ≥ 0
arctan(b/a)− π if a < 0 and b < 0
π/2 if a = 0 and b > 0
−π/2 if a = 0 and b < 0
indeterminate if a = 0 and b = 0

(A.5)

denotes its norm and argument, respectively. Given Euler’s formula

exp(iφ) =
∞∑

k=0

(iφ)k

k!

=
(

1 − φ2

2! + φ4

4! − · · ·
)

+ i
(
φ − φ3

3! + φ5

5! − · · ·
)

= cosφ + i sinφ ,

the complex number may be expressed by c = |c| exp(iφ). All algebraic manipula-
tions known of the exponential functions are then applicable.

Given a steady-state periodic problem, the vector representing the complex
number rotates around the pole at the angular velocity ω. It then reads c exp(iωt) =
|c| exp(iφ) exp(iωt) = |c| exp[i(ωt + φ)], where t denotes the time, whilst φ =
arg[c]t=0 is the angle between the real axis and c at the time t = 0.
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A.3 Fourier Series Approximation

Any signal s(t) that is integrable and periodic over a period p may be approximated
by

s̃(t) =
N∑

k=−N
ck exp (iωkt) ; ck = 1

p

p∫

t=0

s(t) exp (iωkt) dt (A.6)

with ωk = 2πk/p. Here, ck are the Fourier coefficients and the approximation (A.6)
converges towards the exact representation of s(t) atN → ∞. The expression (A.6)
is then a Fourier series representation of s(t).

A.4 Laplace and Fourier Transforms

The Laplace transform x̂(s) and the Fourier transform x̃(s) of a time function x(t)
read

x̂(s) =
∞∫

0

x(t) exp(−st)dt; x̃(ω) =
∞∫

−∞
x(t) exp(−iωt)dt. (A.7)

Both are linear operators and some of their properties are listed below:

• A convolution I (t) = ∫∞
−∞ x(τ)y(t − τ)dτ of the functions x(t) and y(t) in the

time domain is equivalent to the product Î (s) = x̂(s)ŷ(s) in the Laplace domain,
or the product Ĩ (ω) = x̃(ω)ỹ(ω) in the Fourier domain.

• In the Laplace domain, the time derivative of the continuous function x(t) reads
̂̇x(s) = sx̂(s)−x(0), where x(0) denotes the value of x(t) at t = 0. In the Fourier
domain the time derivative reads ˜̇x(ω) = iωx̃(ω).

• Given the function x(t) has the Laplace transform x̂(s), the Laplace transform of
the function tnx(t) ; n = 1, 2, 3 . . . then reads t̂ nx(t) = (−1)n(dnx̂(s)/dsn).

• Given the function x(t) has the Fourier transform x̃(ω), the Fourier transform of

the function tnx(t) ; n = 1, 2, 3 . . . then reads t̃ nx(t) = in(dnx̃(ω)/dωn).

A.5 Matrix Algebra

A matrix of the dimension m× n

A = Aij =

⎡

⎢⎢⎢⎣

A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
. . .

...

Am1 Am2 . . . Amn

⎤

⎥⎥⎥⎦
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stores information, such as the components of a second-order tensor. Given n = m,
it is a square matrix and said matrix could also be symmetric A = AT ; Aij = Aji
or skew-symmetric A = −AT ; Aij = −Aji . A matrix A may be multiplied by a
scalar α, resulting in the scaled matrix C = αA ; Cij = αAij ; i = 1, . . . , m; j =
1, . . . , n.

The matrix A of dimension m × n may be multiplied by the matrix B of
dimension n × o, which then reads C = AB ; Cij = ∑n

k=1AikBkj . Following
Einstein’s summation convention, the summation symbol is not explicitly written.
The multiplication then reads Cij = AikBkj , where k denotes the summation (or
dummy) index, whilst i and j are the free indices, respectively.

A.5.1 Trace of a Matrix

The sum over the diagonal terms of a square matrix forms its trace trA = I : A =
δklAkl = Akk , where

δij =
{

1 if i = j,

0 if i �= j

denotes the Kronecker delta.

A.5.2 Identity Matrix

The identity matrix

I = δij =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

is a particular square matrix, and its trace trI = I : I = δklδkl = δkk = n is equal to
its dimension n.

A.5.3 Determinant of a Matrix

Given a square matrix of dimension n = 3, its determinant reads

detA = 1

6
eijkelmnAilAjmAkn,

where the alternating symbol
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eijk =
⎧
⎨

⎩

1 if (i, j, k) is an even permutation, i.e. e123 = e231 = e312 = 1 ,
−1 if (i, j, k) is an odd permutation, i.e. e321 = e213 = e132 = −1 ,
0 if any of i, j, k are equal, i.e. e122 = e222 = e323 = 0 ,

(A.8)
has been introduced. The determinant then reads

det

⎡

⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤

⎦ = − A12A22A31 + A12A23A31 + A13A21A32

− A11A23A32 − A12A21A33 + A11A22A33 .

The determinant of matrices of dimensions other than n = 3 dimensions may be
similarly defined.

Example A.2 (Trace and Determinant of a Matrix). Given the matrix

A =
⎡

⎣
1 −2 3
4 5 −6

−7 8 9

⎤

⎦ ,

compute its trace and determinant.
�

A.5.4 Inverse and Orthogonal Matrix

Given detA �= 0, the square matrix A can be inverted towards A−1, such that
A−1A = AA−1 = I holds.

The orthogonal matrix R, is a particulary interesting matrix that satisfies R−1 =
RT and detR = ±1. Given detR = +1, R is a proper orthogonal matrix and
represents a rigid body rotation.

A.5.5 Linear Vector Transform

The linear vector transform b = Aa ; bi = Aijaj defines the multiplication of the
matrix A with the vector a. It maps the vector a into another vector b. Using the
inverse A−1, the transformation is performed in the “opposite direction”, and thus
a = A−1b. The orthogonal transformations b = Ra ; a = RTb is a particular case
of a linear vector transform.

Example A.3 (Linear Vector Transform). Given the vector a = [1 2 3]T and the
matrix
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A =
⎡

⎣
7 2 −1
4 3 4
5 6 9

⎤

⎦ ,

compute the linear vector transform b = Aa. �

A.5.6 Eigenvalue Problem

The linear vector transformation Ax that maintains the direction of the vector x and
scales it by a factor λ appears frequently in engineering mechanics. It is called the
eigenvalue problem and reads

Ax = λx or alternatively (A − λI)x = 0. (A.9)

Its non-trivial solution satisfies det(A − λI) = 0, and in 3D, it leads to the
characteristic equation

λ3 − I1λ2 + I2λ− I3 = 0 ,

where I1 = trA, I2 = 1/2[(trA)2 − trA2], and I3 = detA are coefficients known as
invariants.

Given A = AT, (A.9) defines a symmetric eigenvalue problem. Its solution has
n real eigenvalues λi ; i = 1, . . . , n, and the corresponding eigenvectors xi are
perpendicular to each other, and thus xi · xj = δij for i, j = 1, . . . , n.

The eigenvectors form the proper orthogonal matrix RT = [x1, . . . .xn] that
rotates the matrix A into its diagonal form. In 3D

RART =
⎡

⎢⎣
xT

1

xT
2

xT
3

⎤

⎥⎦ [Ax1 Ax2 Ax3]︸ ︷︷ ︸
[λ1x1 λ2x2 λ3x3]

=

⎡

⎢⎢⎣

λ1 0 0

0 λ2 0

0 0 λ3

⎤

⎥⎥⎦ (A.10)

then holds, where the eigenvalues λi ; i = 1, . . . , 3 appear along the diagonal.

Example A.4 (Eigenvalue Problem). Given the matrix

A =
[

0.8 0.3
0.2 0.7

]
,

compute the eigenvalues λi and the respective eigenvectors xi . �
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A.5.7 Relation Between the Trace and the Eigenvalues of a Matrix

With the property RRT = I of the rotation matrix, the relation tr(RART) =
RikAklRil = δklAkl = Akk = trA may be derived, which together with
tr(RART) = λ1 + λ2 + λ3 from (A.10) then leads to the relation

trA = λ1 + λ2 + λ3 (A.11)

between the eigenvalues λi and the trace of A. In addition, the relations

trA2 = λ2
1 + λ2

2 + λ2
3 and trA3 = λ3

1 + λ3
2 + λ2

3 (A.12)

may be derived using the same arguments.

A.5.8 Cayley–Hamilton Theorem

The Cayley1–Hamilton2 theorem states that every square matrix satisfies its own
characteristic equation, and thus

A3 − I1A2 + I2A − I3I = 0 (A.13)

holds, where the definitions of the invariants I1 = trA, I2 = [(trA)2 − trA2]/2,
I3 = detA have been used. The computation of the trace of (A.13) together with the
use of (A.11) and (A.12) allows the derivation of (A.13).

A.6 Vector Algebra

A vector is a mathematical object that has a magnitude and a direction. Given
the Cartesian coordinate system {e1, . . . , en} of n orthonormal base vectors ei , the
vector a is expressed by

a = aiei ; i = 1, . . . , n ,

where ai are the vector components. In 3D, it reads a = a1e1 + a2e2 + a3e3, and
Fig. A.5 illustrates the vector a and its components ai; i = 1, 2, 3.

1Arthur Cayley, British mathematician, 1821–1895.
2Sir William Rowan Hamilton, Irish physicist, astronomer, and mathematician, 1805–1865.
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Fig. A.5 Illustration of the
vector a with the components
a1, a2, a3 within the 3D
Cartesian coordinate system
{e1, e2, e3}

A.6.1 Basic Vector Operations

The magnitude of a n-dimensional vector is given by its Euclidian3 norm |a| =√
a · a = √

aiai; i = 1, . . . , n. Two vectors may be added, and c = a + b ; ci =
ai + bi then denotes the sum of the n-dimensional vectors a and b. A vector a may
also be multiplied by a scalar α, which then yields the scaled vector b = αa ; bi =
αai .

The dot (or inner) product c = a·b = |a||b| cos θ ; c = aibi of the vectors a and
b results in the scalar c, where θ is the angle between both vectors, see Fig. A.6a.
The dot product of a vector with itself yields the square of its norm a · a = |a|2.

The cross (or outer) product of the 3D vectors a and b maps them into a 3D
(pseudo) vector c. It reads

c = a × b = eijkaj bkei ,

where eijk denotes the alternating symbol, see Sect. A.5.3. The norm |c| = |a×b| is
the area that is formed by the two vectors a and b, see Fig. A.6b. The cross product
may formally also been written as

c = det

⎡

⎢⎣
e1 e2 e3

a1 a2 a3

b1 b2 b3

⎤

⎥⎦ =
⎡

⎢⎣
−a3 b2 + a2 b3

a3 b1 − a1 b3

−a2 b1 + a1 b2

⎤

⎥⎦ . (A.14)

Another vector product that is formed by the 3D vectors a,b, and c is called the
triple scalar product. It reads

d = (a × b) · c = det

⎡

⎣
a1 a2 a3

b1 b2 b3

c1 c2 c3

⎤

⎦ = eijkaibj ck ,

3Euclid of Alexandria, Greek mathematician, 300 BCE.
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Fig. A.6 Definition of (a) the dot product a ·b, (b) the cross product a×b, and (c) the triple scalar
product (a × b) · c

where eijk denotes the alternating symbol. The scalar d represents the volume of the
parallelepiped that is formed by the three vectors a,b, and c, see Fig. A.6c. Given
the definition of the alternating symbol eijk , the triple scalar product explicitly reads

d = det

⎡

⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤

⎦ = −A13A22A31 + A12A23A31

+A13A21A32 − A11A23A32 − A12A21A33 + A11A22A33.

Another vector product is called the dyadic product. Given the n-dimensional
vectors a and b, the dyadic product maps them into the n-dimensional second-order
tensor

A = a ⊗ b = aibj ei ⊗ ej ; i, j = 1, . . . , n,

where the components of A may be presented by a n-dimensional matrix. In 3D,
such a matrix reads

A =

⎡

⎢⎢⎣

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

⎤

⎥⎥⎦ .

The dyadic product is a linear, but non-commutative operation, and the expressions

a ⊗ b �= b ⊗ a ,

(αa)⊗ b = a ⊗ (αb) = α(a ⊗ b) ,

a ⊗ (b + c) = a ⊗ b + a ⊗ c ,

(a ⊗ b) · c = a(b · c)

illustrate some properties of the dyadic product.
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Example A.5 (Norm of a Vector and Vector Products). Consider the vectors a =
[1 2 3]T and b = [4 5 − 6]T and compute their norms. In addition, compute the dot
product, the cross product, and the dyadic product of a and b, as well as the triple
scalar product (a × b) · c, where c = [−7 8 9]T. �

A.6.2 Coordinate Transformation

Whilst a vector a = aiei = ãĩei ; i = 1, . . . , n is independent of the coordinate
system, its components ai, ãi depend on the particular coordinate system. Let us
consider a proper orthogonal transformation R that maps the Cartesian coordinate
system {e1, . . . , en} into another Cartesian coordinate system {̃e1, . . . , ẽn}, a trans-
formation shown in Fig. A.7. The proper orthogonal matrix

R = ei · ẽj ; i = 1, . . . , n ,

connects both Cartesian coordinate systems, and the linear transform ẽi = Rei
determines the transformation amongst their base vectors. The coefficients of Rij =
ei · ẽj are the direction cosines, and thus the cosines of the angle between the base
vectors ej and ẽi , respectively. Given a 3D problem, the coefficients of R therefore
read

R =

⎡

⎢⎢⎣

e1 · ẽ1 e1 · ẽ2 e1 · ẽ3

e2 · ẽ1 e2 · ẽ2 e2 · ẽ3

e3 · ẽ1 e3 · ẽ2 e3 · ẽ3

⎤

⎥⎥⎦ .

The base vectors ei have usually the components ei j = δij , and the components of
the rotated base vectors ẽi then read ẽi j = Rji .

A.6.2.1 Vector Components undergoing Coordinate Transformation
We consider the transformed coordinate system {̃e1, . . . , ẽn}, within which

ãi = a · ẽi = a · (Rei ) = RTa · ei i = 1, . . . , n

are the components of the vector a. Given the components ei j = δij of the base
vectors ei of the non-transformed coordinate system, the vector components in

Fig. A.7 The rotation matrix
R determines the mapping
between the Cartesian
coordinate systems
{e1, e2, e3} and {̃e1, ẽ2, ẽ3},
respectively
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{̃e1, . . . , ẽn} then read ãi = Raiaa . Consequently, the matrix relation

⎡

⎣
ã1

ã2

ã3

⎤

⎦ =
[
RT
]
⎡

⎣
a1

a2

a3

⎤

⎦

describes the change of the coefficients of the vector a in response to the rotation of
the coordinate system in 3D.

Example A.6 (Coordinate Transformation). Figure A.8 illustrates the rotation
between the coordinate systems {e1, e2, e3} and {̃e1, ẽ2, ẽ3}, where e1 = [1 0 0]T,
e2 = [0 1 0]T, e3 = [0 0 1]T and ẽ1 = [−1/

√
2 1/

√
2 0]T, ẽ2 = [1/√2 1/

√
2 0]T,

ẽ3 = [0 0 − 1]T denote the respective base vectors. Prove that both systems are
Cartesian coordinate systems, and compute the rotation matrix R that determines the
transformation between them. Provide a graphical sketch towards the geometrical
interpretation of the coefficients of R.

Fig. A.8 Transformation between the Cartesian coordinate systems {e1, e2, e3} and {̃e1, ẽ2, ẽ3},
respectively �

Example A.7 (Vector Components in Different Coordinate Systems). The compo-
nents of the vector a = [1 1]T are given with respect to the 2D Cartesian coordinate
system of the base vectors e1 = [1 0]T and e2 = [0 1]T, respectively. The system
{e1, e2} is then rotated by the angle α = π/6 and thereby transformed into another
Cartesian coordinate system {̃e1, ẽ2}, see Fig. A.9. Derive the rotation matrix R that
rotates the system {e1, e2} into the system {̃e1, ẽ2}, and compute the components of
the vector a within the Cartesian coordinate system {̃e1, ẽ2}.

Fig. A.9 The vector a is described with respect to the two Cartesian coordinate systems {e1, e2}
and {̃e1, ẽ2}, respectively. The systems are rotated to each other by the angle α = π/6 �
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Example A.8 (Objectivity of Vectors). Given a Cartesian coordinate system of base
vectors e1 = [1 0 0]T, e2 = [0 1 0]T, and e3 = [0 0 1]T, it should be verified that
the identity aiei = ãĩei holds upon coordinate system rotation. Here, a denotes a
vector, whilst ẽi are the base vectors of the rotated Cartesian coordinate system. �

A.7 Tensor Algebra

Given the Cartesian coordinate system {e1, . . . , en} of base vectors ei , a second-
order tensor A may be defined by the dyadic product A = Aij ei ⊗ ej ; i, j =
1, . . . , n. Here,Aij and ei⊗ej denotes the tensor components and the corresponding
second-order tensor base, respectively. As with vectors, tensors are invariant with
respect to rotations of the coordinate system, and thus

A = Aij ei ⊗ ej = Ãij ẽi ⊗ ẽj = ÃijRei ⊗ Rej (A.15)

holds, where ẽi = Rei denotes the rotated i-th base vector. The transforma-
tion (A.15) reads Aij ei kej l = ÃijRikei kRjlej l in index notation, and Aij =
ÃijRikRjl transforms therefore the tensor components among the two Cartesian
coordinate systems {e1, . . . , en} and {̃e1, . . . , ẽn}, respectively. Given the matrix
representations A = [Aij ] and Ã = [Ãij ] of the tensor components, the symbolic
relations

A = RTÃR or Ã = RÃRT (A.16)

express the coordinate transformation. The base ei ⊗ ej of a second-order tensor
is formed by two base vectors, and the coordinate transformation of a second-order
tensor requires therefore two multiplications with R.

Similarly to the definition of a second-order tensor, a tensor

A = Aab...l︸ ︷︷ ︸
m indices

ea ⊗ eb ⊗ . . .⊗ el︸ ︷︷ ︸
m base vectors

of m-th order may be defined through the dyadic vector product. Given n spatial
dimensions, a tensor of m-th order has nm components, and

Ãpq...t = RpaRqb . . . Aab...l

determines the coordinate transformation of the tensor components. Consistent with
the introduced concept of tensors, a vector may be seen as a first-order tensor.

A.7.1 Spherical Tensor

The Kronecker delta δij forms the components of the spherical tensor I = δij ei⊗ej ,
also called isotropic tensor or identity tensor. Its components remain unchanged
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upon coordinate transformation, and thus δ̃ij = RiaδabRjb = RibRjb = δij , where
the transforation (A.16) has been used.

A.7.2 Tensor Operations

The summation C = A + B is defined for tensors A and B of the same order and
dimension. Given second-order tensors, this operation readsCij = Aij+Bij ; i, j =
1, . . . , n, where n denotes the spatial dimension.

As with vectors, different tensor products may be defined. The multiplication
B = αA ; Bij = αAij ; i, j = 1, . . . , n of a tensor A by the scalar α, scales
each of the tensor components by α. The outer tensor product C = a ⊗ A =
aiAjkei ⊗ ej ⊗ ek of the second-order tensor A and the vector a forms the third-
order tensor C with the components Cijk = aiAjk . The outer tensor product C =
A ⊗ B = AijAklei ⊗ ej ⊗ ek ⊗ el of the two second-order tensors A and B forms
the fourth-order tensor C with the components Cijkl = AijAkl . The contraction
c = aA = ATa = akAkiei of the second-order tensor A and the vector a forms
the vector c with the components ci = akAki . The single contraction C = AB =
BTAT = AikAkj ei ⊗ ej of the two second-order tensors A and B forms the second-
order tensor C with the components Cij = AikAkj . Finally, the double contraction
c = A : B = tr(ABT) = AklBkl of the two second-order tensors A and B forms
the scalar c. All above-mentioned operations require tensors and vectors of the same
dimension.

Table A.2 list some multiplications of tensors, vectors, and scalars. Each line
in the table shows identical expressions in symbolic, index, and matrix notations,
respectively. The aforementioned operations may also be generalized to higher-
order tensors.

Table A.2 Some
multiplications with
second-order tensors, vectors,
and scalars. Each line
presents identical expressions
in symbolic, index, and
matrix notations, respectively

Symbolic notation Index notation Matrix notation

c = a · b c = aibi [c] = [a]T[b]
A = a ⊗ b Aij = aibj [A] = [a][b]T

b = Aa bi = Aikak [b] = [A][a]
b = aA bi = akAki [b]T = [a]T[A]
c = aAb c = akAklbl [c] = [a]T[A][b]
C = AB Cij = AikBkl [C] = [A][B]
C = ABT Cij = AikBlk [C] = [A][B]T

c = A : B c = AklBkl [c] = tr
([A][B]T

)

c = tr(AB) c = AklBlk [c] = tr ([A][B])
D = ABC Dij = AikBklClj [D] = [A][B][C]
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A.7.3 Invariants of Second-Order Tensors

Whilst tensor components depend on the coordinate system, some combinations
amongst them define invariants that are independent from the coordinate system. In
3D, the scalars trA, trA2, trA3, and any combination amongst them, are independent
from the coordinate system. In engineering mechanics, the linear combinations

I1 = trA ; I2 = 1/2[(trA)2 − trA2] ; I3 = detA , (A.17)

are commonly used as the invariants of a second-order tensor.

Example A.9 (Objectivity of Tensors). Show that the invariants I1, I2, and I3 of a
symmetric second-order tensor A = a ⊗ a are invariant. The definition (A.17)
of invariants may be used, and the coordinate transformation is determined by the
rotation tensor R. �

A.8 Vector and Tensor Calculus

A.8.1 Local Changes of Field Variables

A.8.1.1 Gradient
The gradient gradφ of the scalar function φ(x) is a measure of how fast φ changes
along the directions of the coordinate system’s base vectors ei ; i = 1, . . . , n.
Figure A.10 provides a geometrical interpretation of the gradient in 2D. The gradient
gradφ is a n-dimensional vector and in Cartesian coordinates it reads

a = gradφ = ∂φ

∂xi
ei ; i = 1, . . . , n ,

where ∂φ/∂xi denotes the respective vector components. The components of the
gradient depend on the coordinate system, and

[ar aθ az]
T =

[
∂φ

∂r

1

r

∂φ

∂θ

∂φ

∂z

]T

expresses the gradient in the cylindrical coordinate system {er , eθ , ez}, where r, θ, z
denote the radial, circumferential and axial coordinate, respectively.
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Fig. A.10 Geometrical
interpretation of the gradient
gradφ of the scalar function
φ(x) in 2D

The gradient grada of the n-dimensional vector function a(x) = ai(x)ei; i =
1, . . . , n is a n-dimensional second-order tensor and reads

A = grada = ∂ai

∂xj
ei ⊗ ej .

In 3D Cartesian coordinates, they read

⎡

⎢⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤

⎥⎦ =

⎡

⎢⎢⎢⎣

∂a1
∂x1

∂a1
∂x2

∂a1
∂x3

∂a2
∂x1

∂a2
∂x2

∂a2
∂x3

∂a3
∂x1

∂a3
∂x2

∂a3
∂x3

⎤

⎥⎥⎥⎦ .

Given the cylindrical coordinate system {er , eθ , ez}, the gradient grada of the
vector function ai(r, θ, z)ei; i = r, θ, z has the components

⎡

⎢⎣
Arr Arθ Arz

Aθr Aθθ Aθz

Azr Azθ Azz

⎤

⎥⎦ =

⎡

⎢⎢⎢⎣

∂ar
∂r

1
r
∂ar
∂θ

− aθ
r

∂ar
∂z

∂aθ
∂r

1
r
∂aθ
∂θ

+ ar
r

∂aθ
∂z

∂az
∂r

1
r
∂az
∂θ

∂az
∂z

⎤

⎥⎥⎥⎦ .

A.8.1.2 Divergence
The divergence of the n-dimensional vector function a(x) = ai(x)ei; i = 1, . . . , n
is a scalar and reads

a = diva = ∂ai

∂xi
.

The divergence materializes differently in different coordinate systems. Given
3D Cartesian coordinates {e1, e2, e3}, it reads diva = ∂a1/∂x1 + ∂a2/∂x2 +
∂a3/∂x3, whilst in cylindrical coordinates {er , eθ , ez}, it reads diva = [∂(rar)/∂r+
∂aθ/∂θ ]/r + ∂az/∂z.
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The divergence of the n-dimensional second-order tensor function A(x) =
Aij (x)ei ⊗ ej ; i, j = 1, . . . , n results in a n-dimensional vector and reads

a = divA = ∂Aik

∂xk
ei .

It has the components

⎡

⎢⎣
a1

a2

a3

⎤

⎥⎦ =

⎡

⎢⎢⎢⎣

∂A11
∂x1

+ ∂A12
∂x2

+ ∂A13
∂x3

∂A21
∂x1

+ ∂A22
∂x2

+ ∂A23
∂x3

∂A31
∂x1

+ ∂A32
∂x2

+ ∂A33
∂x3

⎤

⎥⎥⎥⎦ (A.18)

with respect to the 3D Cartesian coordinate system {e1, e2, e3}. Given cylindrical
coordinates {er , eθ , ez},

⎡

⎢⎣
ar

aθ

az

⎤

⎥⎦ =

⎡

⎢⎢⎢⎣

∂Arr
∂r

+ 1
r
∂Arθ
∂θ

+ ∂Arz
∂z

+ Arr−Aθθ
r

∂Arθ
∂r

+ 1
r
∂Aθθ
∂θ

+ ∂Aθz
∂z

+ 2Arθ
r

∂Arz
∂r

+ 1
r
∂Aθz
∂θ

+ ∂Azz
∂z

+ Arz
r

⎤

⎥⎥⎥⎦ (A.19)

are the components of the divergence a = divA of the second-order tensor function
Aij (r, θ, z)ei ⊗ ej ; i, j = r, θ, z.

A.8.2 Divergence Theorem

The divergence theorem, or Gauss theorem, links the integral over a domain � to
the integral over its surface ∂�. Given the divergence diva of a vector function
a(x) = ai(x)ei; i = 1, . . . , n, the divergence theorem reads

∫

�

divadv =
∫

∂�

a · nds ,

where n(x) denotes the outward unit normal vector onto the surface ∂�, whilst

∫

�

divAdv =
∫

∂�

Ands

express the divergence theorem applied to the divergence of the second-order tensor
function A(x) = Aij (x)ei ⊗ ej , i, j = 1, . . . , n.
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B.1 Laplace Transforms

Dirac Delta Function δ(t)

Using the definition (A.7)1, the Laplace transform of the Dirac delta function δ(t)
reads

δ̂(s) =
∞∫

0

δ(t) exp(−st)dt = [H(t)]∞0 = 1 .

Here, the property

∫
f (t)δ(t)dt = [f (t)]t=0

∫
δ(t)dt = [f (t)]t=0H(t) (B.1)

has been used, with f (t) denoting an arbitrary function of t .

Heaviside FunctionH(t)

Using the definition (A.7)1 and the property δ(t) = dH(t)/dt , integration by parts
together with the property (B.1), yields

Ĥ(s) =
∞∫

0

H(t) exp(−st)dt = −1

s

[H(t) exp(−st)]∞0 + 1

s

∞∫

0

δ(t) exp(−st)dt
︸ ︷︷ ︸

[H(t)]∞0

= 1

s

{[
1 − exp(−st)]H(t)}∞0 = 1

s

for the Laplace transform of the Heaviside function H(t)
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The Function tH(t)

Using the property t̂ nx(t) = (−1)n(dnx̂(s)/dsn) ; n = 1, 2, 3, . . . of the Laplace
transform together with the Laplace transform of the Heaviside function Ĥ(s) =
s−1, yields

t̂H(s) = −ds−1

ds
= 1

s2

for the Laplace transform of the function tH(t).

The Function sin(at)H(t)

Using the properties
∫

sin(at) exp(−st)dt = − exp(−st)[a cos(at)+s sin(at)]/(a2+
s2) and δ(t) = dH(t)/dt , integration by parts together with the property (B.1) yields

̂sin(at)H(s) =
∞∫

0

sin(at)H(t) exp(−st)dt

= 1

a2 + s2
{−H(t) exp(−st)[a cos(at)+ s sin(at)]}∞0︸ ︷︷ ︸

0

+ 1

a2 + s2

∞∫

0

δ(t) exp(−st)[a cos(at)+ s sin(at)]dt
︸ ︷︷ ︸

a[H(t)]∞0

= a

a2 + s2

for the Laplace transform of the function sin(at)H(t).

The Function cos(at)H(t)

Using the properties
∫

cos(at) exp(−st)dt = exp(−st)[−s cos(at)+a sin(at)]/(a2+
s2) and δ(t) = dH(t)/dt , integration by parts together with the property (B.1) yields

̂cos(at)H(s) =
∞∫

0

cos(at)H(t) exp(−st)dt

= 1

a2 + s2
{H(t) exp(−st)[−s cos(at)+ a sin(at)]}∞0︸ ︷︷ ︸

0
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− 1

a2 + s2

∞∫

0

δ(t) exp(−st)[−s cos(at)+ a sin(at)]dt
︸ ︷︷ ︸

−s[H(t)]∞0

= s

a2 + s2

for the Laplace transform of the function cos(at)H(t).

B.2 Fourier Transforms

Dirac Delta Function δ(t)

Using the definition (A.7)2 together with the property (B.1), the Fourier transform
of the Dirac delta function δ(t) reads

δ̃(ω) =
∞∫

−∞
δ(t) exp[(iω − a)t]dt = 1

iω − a [H(t) exp[(iω − a)t]]∞−∞

− 1

iω − a
∞∫

−∞
δ(t) exp[(iω − a)t]dt

︸ ︷︷ ︸
[H(t)]∞−∞

= 1

a − iω .

The Function exp(−at)H(t)

Using the definition (A.7)2 together with the property (B.1), the Fourier transform
of the function exp(−at)H(t) reads

δ̃(ω) =
∞∫

−∞
H(t) exp(−iωt)dt = [H(t)]∞−∞ = 1 .

The Function sin(at)H(t)

Using the properties
∫

sin(at) exp(iωt)dt = exp(iωt)[a cos(at)−iω sin(at)]/(a2−
ω2) and δ(t) = dH(t)/dt , integration by parts together with the property (B.1)
yields
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˜sin(at)H(ω) =
∞∫

−∞
sin(at)H(t) exp(iωt)dt

= 1

a2 − ω2
{−H(t) exp(iωt)[a cos(at)− iω sin(at)]}∞−∞︸ ︷︷ ︸

0

+ 1

a2 − ω2

∞∫

−∞
δ(t) exp(iωt)[a cos(at)− iω sin(at)]dt

︸ ︷︷ ︸
a[H(t)]∞−∞

= a

a2 − ω2

for the Fourier transform of the function sin(at)H(t). Here, the symmetry of the
cosinus function cos(α) − cos(−α) = 0 and the skew-symmetry of sinus function
sin(α)+ sin(−α) = 0 have been used.

The Function cos(at)H(t)

Using the properties
∫

cos(at) exp(iωt)dt = i exp(iωt)[ω cos(at)−ia sin(at)]/(a2−
ω2) and δ(t) = dH(t)/dt , integration by parts together with the property (B.1)
yields

˜cos(at)H(ω) =
∞∫

−∞
cos(at)H(t) exp(iωt)dt

= i

a2 − ω2
{H(t) exp(iωt)[ω cos(at)− ia sin(at)]}∞−∞︸ ︷︷ ︸

0

− i

a2 − ω2

∞∫

−∞
δ(t) exp(iωt)[ω cos(at)− ia sin(at)]dt

︸ ︷︷ ︸
ω[H(t)]∞−∞

= iω

a2 − ω2

for the Fourier transform of the function cos(at)H(t). Here, the symmetry of the
cosine function cos(α) − cos(−α) = 0 and the skew-symmetry of sine function
sin(α)+ sin(−α) = 0 have been used.
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The Identity (∂C/∂F) : F−1 = 2I

Using the definition C = FTF of the right Cauchy–Green strain and the product
rule, the relation (∂C/∂F) : F−1 reads

∂(FaIFaJ /∂FkL)F
−1
kL = (δakδILFaJ + FaI δakδJL)F−1

kL

= (δILFkJ + FkI δJL)F−1
kL

= δILδLJ + δLI δJL
= 2δIJ .

The Time Derivative ofC−1

The relation CC−1 = I together with the product rule yields ĊC−1 + C ˙C−1 = 0,

such that
˙C−1 = −C−1ĊC−1 holds.

The Identity ∂J/∂C = JC−1/2
Using the definition of the volume ratio detC = det(FTF) = J 2 together with
Jacobi’s formula ∂detA/∂A = detAA−T of the second-order tensor A, the identity

∂J

∂C
= ∂

√
detC
∂C

= J

2
C−1

holds.
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The Identity ∂I1/∂C = I
Using the definition of the first strain invariant I1 = trC = I : C, the relation
∂I1/∂C = I derives.

The Identity ∂I2/∂C = I1I − C
Using the definition of the second strain invariant I2 = (I 2

1 − trC2)/2, together with
the definition of the first strain invariant I1 = trC, the relation ∂I2/∂C = I1I − C
derives.

The Identity ∂I3/∂C = J 2C−1

Using the definition of the third strain invariant I3 = detC, together with Jacobi’s
formula ∂detA/∂A = detAA−T, the property ∂I3/∂C = J 2C−1 with J = detF
denoting the volume ratio, holds.

The Identity ∂C/∂C = J−2/3[I − (C ⊗ C−1)/3]
With the definition of the isochoric right Cauchy–Green strain C = J−2/3C, the
product rule yields

∂C
∂C

= J−2/3 ∂C

∂C
+ C ⊗ −2J−5/3

3

∂J

∂C
,

which gives

∂C
∂C

= J−2/3
(
I − 1

3
C ⊗ C−1

)
,

where the relation ∂J/∂C = JC−1/2 has been used. Here, I denotes the fourth-
order symmetric identity tensor with the components Iijkl = (δikδjl + δilδjk)/2.

The IdentityC−1 : Ė = trd
Using the definitions of the right Cauchy–Green strain C = FTF and the Green–
Lagrange strain E = (FTF − I)/2, the term C−1 : Ė may be expressed by

C−1 : Ė = tr(C−1Ė) = tr[F−1F−T(ḞTF + FTḞ)/2]
= [tr(F−1F−TḞTF)+ tr(F−1F−TFTḞ)]/2
= [tr(F−TḞT)+ tr(F−1Ḟ)]/2
= [tr(ḞF−1)T + tr(ḞF−1)]/2 = (trlT + trl)/2 = trd ,

where d = (l + lT)/2 denotes the rate of deformation tensor. Here, the property
tr(ABC) = tr(BCA) of the trace operator has been used.
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The Identity dev[FAFT] = F {Dev[A]}FT

This identity derives from the definitions of the spatial deviator operator dev(•) =
(•)− [(•) : I] I/3 and the material deviator operator Dev(•) = (•)− [C : (•)]C−1

according to

F {Dev[A]}FT = FAFT − 1

3
(A : C)FC−1FT

= FAFT − 1

3

[
I : (FAFT)

]
I = dev[FAFT] ,

where the right Cauchy–Green strain C = FTF and its inverse C−1 = F−1F−T have
been used.



DSomeUseful Variations and Directional
Derivatives

The RelationsDuF = Gradu and δF = Gradδu

Given the deformation gradient F = I + Grad(u), its directional derivative DuF =
Grad(u +�u)− Grad(u) = Grad�u directly follows. The same arguments lead to
the variation of the deformation gradient δF = Grad δu.

The RelationsDuE = sym(FT Gradu) and δE = sym(FT Gradδu)

Given the Green–Lagrange strain E = (FTF − I)/2, its directional derivative reads
DuE = (DuFTF + FTDuF)/2, which with the property DuF = Grad�u yields
DuE = (GradT�u F + FT Grad�u)/2. The same arguments lead to the variation
of the Green–Lagrange strain δE = (GradTδu F + FT Gradδu)/2.

The RelationDuδE = sym(GradTu Gradδu)

Given the variation δE = (GradTδu F + FT Gradδu)/2 of the Green–Lagrange
strain and the directional derivative DuF = Grad�u of the deformation gradient,
the directional derivative of δE then reads DuδE = (GradTδu Grad�u +
GradT�u Gradδu)/2.

The RelationsDue = gradsu and δe = gradsδu

Given the Euler–Almansi strain as the push-forward of the Green–Lagrange
strain e = (I − b−1)/2 = F−TEF−1, its directional derivative yields Due =
F−TDuE F−1 = grads�u, where DuE = (DuFT F + FTDuF)/2 denotes
the directional derivative of the Green–Lagrange strain, and the properties

© Springer Nature Switzerland AG 2021
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grads�u = Grads�uF−1 andDuF = Grad�u have been used. The same arguments
lead to the variation of the Euler–Almansi strain δe = F−TδEF−1 = gradsδu.

The RelationsDuF−1 = −F−1gradu and δF−1 = −F−1grad δu

The directional derivative of the relation FF−1 = I yieldsDu(FF−1) = DuF F−1 +
FDuF−1 = 0. With DuF = Grad�u, the directional derivative of the inverse defor-
mation gradient F−1 then reads DuF−1 = −F−1Grad�u F−1 = −F−1grad�u.
The same arguments lead to the variation of the inverse deformation gradient
δF−1 = −F−1grad δu.

The RelationsDugradδu = −gradδu gradu

Given the property gradδu = Gradδu F−1, the directional derivative of the spatial
gradient of the displacement variation reads

Dugradδu = DuGradδu F−1 + Gradδu DuF−1

= −Gradδu F−1grad�u = −gradδu grad�u ,

where the properties DuGradδu = 0 and DuF−1 = −F−1grad�u have been used.

The RelationsDuJ = Jdivu and δJ = Jdivδu

Given the definition J = detF of the volume ratio, the chain rule together with
Jacobi’s formula ∂detA/∂A = detAA−T for the second-order tensor A yields
DuJ = (∂detF/∂F) : DuF = JF−T : DuF. The property div(•) = tr(grad(•))
and the directional derivative of the deformation gradient DuF = Grad�u then
yieldDuJ = Jdiv�u. The same arguments lead to the variation of the volume ratio
δJ = Jdivδu.
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E.1 Basic Circuit Elements

E.1.1 Resistor Element

Given the flow at the rate q(t) [m3 s−1] that passes a resistor of the resistance
R [Pa s m−3], the pressure p(t) [Pa] decreases, and Ohm’s1 law

p(t) = Rq(t) (E.1)

provides the relation between these quantities. Figure E.1a shows the representation
of the resistor in an electrical network chart together with the flow vector q and the
pressure vector p in the complex plane. Passing a resistor, the flow and pressure stay
in phase, and thus the phase angle φ = 0 establishes between p and q.

E.1.2 Capacitor Element

Given the pressure p(t) [Pa] that acts on a capacitor of the capacity C [m3 Pa−1],
the flow at the rate q(t) [m3 s−1] establishes, and

q(t) = C
dp(t)

dt
(E.2)

provides the relation between these quantities. Figure E.1b shows the representation
of the capacitor in an electrical network chart together with the flow vector q and the
pressure vector p in the complex plane. Passing a capacitor, the flow is π/2 ahead
the pressure, and thus the phase angle φ = π/2 establishes between p and q.

1Georg Simon Ohm, German physicist and mathematician (1789–1854).
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Fig. E.1 Basic circuit elements used to analyze vascular flow systems. Top row: representation
used in electrical network charts. Bottom row: flow vector q and pressure vector p in the complex
plane

E.1.3 Inductor Element

Given the flow at the rate q(t) [m3 s−1] that passes through an inductor of the
inductance L [Pa s2 m−3], the pressure p(t) [Pa] establishes, and

p(t) = L
dq(t)

dt
(E.3)

provides the relation between these quantities. Figure E.1c shows the representation
of the inductance in an electrical network chart together with the flow vector q and
the pressure vector p in the complex plane. Passing an inductor, the flow is π/2
behind the pressure, and thus the phase angle φ = −π/2 establishes between p
and q.

E.2 Transport Mechanisms

E.2.1 Diffusion

Diffusion is the movement of a solute (substance) from a region of high con-
centration towards a region of low concentration relative to any motion of the
bulk material. Given the molal solute concentration c [mol m−3], Fick’s2 laws of
diffusion [158]

Js = −D gradc (E.4)

2Adolf Eugen Fick, German-born physician and physiologist, 1829–1901.
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expresses the molar diffusion flux Js [mol s−1m−2] that establishes in the system,
where gradc and D [s−1m−1] denote the gradient of the substance concentration
and the diffusion constant, respectively. The diffusion flux Js expresses how many
moles of solute per second diffuse through the unit area perpendicular to the unit
direction vector n = Js/|Js|.

Equation (E.4) describes isotropic bulk materials, and thus materials with-
out preferential directions for solute diffusion. Given anisotropic materials, the
diffusion constant is a symmetric second-order tensor. It can also depend on
the deformation of the bulk material. Fick’s law is a purely phenomenological
description of diffusion, and more detailed approaches use statistical descriptions
of the diffusing particles.

E.2.2 Flow Through Porous Media

In analogy to Fick’s law, the flow rate qf [m s−1] of fluid through the unit area of a
porous medium is described by Darcy’s law

qf = −k
η

gradp . (E.5)

It states that qf is proportional to the negative pressure gradient −gradp [Pa m−1]
and the intrinsic permeability k [m2], whilst it is indirectly proportional to the
viscosity η [Pa s] of the fluid. Equation (E.5) relates to an isotropic porous medium,
and for an anisotropic material the permeability is a symmetric second-order tensor.
Darcy’s law may also be derived from the homogenization of the Navier–Stokes
equations.

Given the flow through a porous wall of the thicknessL [m], the pressure gradient
is expressed by gradp = (�p/L)n, where n denotes the unit normal vector to the
wall and �p [Pa] is the pressure difference between the both sides of the wall.
Darcy’s law (E.5) then reads

qf = −Lp�pn , (E.6)

where Lp = k/(ηL) [m Pa−1s−1] denotes the hydraulic conductivity of the wall. At
finite deformations, the intrinsic permeability k and the hydraulic conductivity Lp
depend on the deformation of the porous medium.

E.2.3 Advection

Advection is the movement of a solute (substance) by bulk motion, such as the
transport of proteins together with blood plasma. Given the bulk velocity v [m s−1]
and the molal solute concentration c [mol m−3], the transport equation
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Js = cv (E.7)

expresses the molar advection flux Js [mol s−1m−2]. It describes how many moles
of solute per second advect in the direction of the bulk motion, and thus through the
unit area perpendicular to the flow direction n = v/|v|.

Advection is sometimes confused with the more encompassing process of
convection, which is the combination of advective transport and diffusive transport.

E.3 Osmosis

Osmosis is the spontaneous net movement of fluid (solvent) through a semiperme-
able membrane into a region of higher solute concentration. The flow points into
the direction that tends to equalize the solute concentrations on the two sides, see
Fig. E.2. Osmosis is a vital process and governs the exchange of water (solvent) and
solutes in the vascular microcirculation.

E.3.1 Osmotic Pressure

The osmotic pressure is defined as the external pressure that would be required
to prevent from any net movement of fluid (solvent) across a semipermeable

Fig. E.2 Development of
osmotic pressure difference
�� across a semipermeable
membrane by fluid (solvent)
motion at the velocity (or
flux) vf from low solute
concentration clow to high
solute concentration chigh
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membrane, see Fig. E.2. The osmotic pressure� [Pa] is related to the solute’s molar
concentration c [mol m−3] through Hoff’s law

� = φRθc , (E.8)

where R = 8.3145 J K−1mol−1 and θ [K] denotes the ideal gas constant and the
temperature, respectively. The osmotic coefficient φ adjusts the relation to non-
idealized conditions, such as high solute concentration.

Most solutes are partially permeable and leak across a semipermeable membrane;
they advect with the fluid (solvent) or diffuse across the membrane. The theoretically
possible osmotic pressure difference ��max can then not be reached and the lower
�� is measured. Solutions are often classified as effective or ineffective osmoles
on the basis of their ability to generate osmotic pressure.

Staverman used linear irreversible thermodynamics to investigate the permeabil-
ity in such “leaky” membranes [526] and introduced a reflection coefficient

σ = ��

��max
(E.9)

that relates both osmotic pressure differences. Staverman’s osmotic reflection
coefficient σ ranges from zero to one towards the description of free movement
and full reflection of the solute by the membrane, respectively. Given σ = 1,
no solute leaks across the membrane and the maximum theoretically possible
osmotic pressure difference ��max develops, whilst at σ = 0 the solutes can
freely move across the membrane and the solution fails to produce any osmotic
pressure difference and thus �� = 0. The establishment of osmotic fluid flux
or pressure requires therefore (i) a solute concentration difference �c, and (ii) a
sizeable reflection coefficient σ > 0.

Solutions that contain several solutes exert an osmotic pressure that is the sum
of the osmotic pressures by all solutes, � = ∑

�j . The osmotic pressure in
the vasculature is exerted by proteins (noticeable by albumin) and called oncotic
pressure, or Colloid Osmotic Pressure (COP). The COP is simply osmotic pressure
with protein colloids as effective osmoles and small solutes as ineffective osmoles.
Charged proteins generate COP not only as dissolved molecules but also through
electrostatic attraction of oppositely charged small counter-ions known as Gibbs3–
Donnan4 effect.

3Josiah Willard Gibbs, American mathematical physicist, 1839–1903.
4Frederick George Donnan, Irish physical chemist, 1870–1956.
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E.3.2 Transport Across Semipermeable Membranes

The properties of the permeable membrane together with the ones of the solute
particles determine the value of Staverman’s osmotic reflection coefficient σ . It
describes the selectivity of the membrane to a specific solute and may also been
seen as the ratio σ = Lp f/Lp s of the membrane’s hydraulic conductivities Lp f and
Lp s for fluid (solvent) and solute, respectively. Given the pressure gradient gradp,
fluid moves at the velocity (or the flux) qf = −Lp fgradp across the semipermeable
membrane. In contrary, the solute moves at the velocity vs = −Lp sgradp across the
membrane, and

vs = (1 − σ)qf (E.10)

therefore relates both velocities (or fluxes), see also Sect. E.2.2.
The sum of diffusive and adventive transports governs the solute flux

Js = −Dgradc + (1 − σ)qfc (E.11)

of non-charged solutes across a semipermeable membrane, where qf denotes the
fluid (solvent) flux, see Sects. E.2.1 and E.2.3. Here, gradc = (chigh − clow)/h is the
gradient of the molal solute concentration, whilst c = (chigh + clow)/2 denotes the
average molal solute concentration within the membrane of the thickness h.
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F.1 Tissue Harvesting and Sample Preparation

An intact porcine aorta is harvested in the slaughterhouse, put into physiological
saline solution (0.9% NaCl), and cooled during the transportation to the laboratory
facilities. Figure F.1a shows the thoracic aortic segment with the surrounding
connective tissue having already been carefully dissected. The aorta is opened along
the intercostal arteries to acquire a tissue patch that allows for the preparation of
homogenous rectangular wall patches. The residual stresses in the vessel contribute
to the flattening of the tissue patch and ease the cutting-out of test specimens.
Given this study, a quadratic-shaped tensile specimen is cut-out using a 18×18 mm
large plexiglas template, see Fig. F.1b. The specimen is aligned with the vessel’s
circumferential and axial directions, and then marked and labeled in order to

(a) Facilitate strain measurements with a video extensiometer by tracking the
motion of four dots (optical markers) in the center of the specimen,

(b) Assist the mounting of the specimen in the testing machine, and
(c) Uniquely identify the specimen’s history and the alignment within the testing

machine.

Whilst the specimen’s edge length has already been set by the plexiglas template,
we now measure its thickness. The specimen is placed between two glass plates,
such as microscope slides, and with a caliper we measure the thickness of the
three layers together. Given the thickness of the glass plates, the average thickness
H of the vessel wall specimen may be calculated. It is crucial that the tissue is
continuously moisturized and prevented from drying-out at any point during the
specimen preparation.

© Springer Nature Switzerland AG 2021
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Fig. F.1 Tissue specimen preparation for the mechanical characterization of the porcine aortic
wall. A ruler shows the dimensions in millimeters. (a) Thoracic aorta dissected from surrounding
connective tissue. (b) Square-shaped wall specimen for planar biaxial tissue testing. The vertical
direction in the image represents the axial vessel direction

F.2 Test Protocol Definition and Data Recording

A Biotester BT-50MM-01 (World Precision Instruments Ltd., UK) with electro-
mechanical actuators is used to acquire the mechanical properties of the aortic
wall, see Fig. 5.31. A displacement-controlled experiment is performed, and the
displacement uθ and uz along the circumferential and respective axial vessel
direction are prescribed by the machine’s actuators. The displacements are applied
symmetrically with respect to the specimen center, and the corresponding loads Fθ
and Fz in axial and circumferential directions are then measured by load cells.

The vessel wall sample is biaxially stretched at three different displacement
combinations. The targets for the prescribed displacements are set as follows:

• Protocol (a): uθ = uz = 6.5 mm
• Protocol (b): uθ = 3.25 mm and uz = 6.5 mm
• Protocol (c): uθ = 6.5 mm and uz = 3.25 mm

We also have to specify the displacement rates, and thus the time to reach said
targets. The present study aims at exploring the quasi-static properties of the vessel
wall, an objective that determines the displacement rates. Given the specimen size,
displacement rates in the range of 1 to 5 mm min−1 would result in the acquisition
of quasi-static mechanical properties. Preliminary mechanical tests at different
displacement rates may be used to validate this setting.

The vessel wall sample is tested in physiological saline solution at 37 ◦C to mimic
thermal in vivo conditions. The zero-load level Fθ = Fz = 0 is set, the specimen
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then mounted to the actuators, and the displacement-controlled test sequence
activated. The acquisition of reproducible results requires tissue preconditioning,
and each of the loading protocols (a), (b), and (c) is therefore applied five times
in a row, respectively. Whilst the fifth cycle is used to characterize the tissue (see
Sect. 5.6), the others precondition the test specimen.

F.3 Acquired Test Data

Planar biaxial testing results in a complex distributions of stress and strain over
the tensile specimen, see the result from a Finite Element Method (FEM) analysis
in Fig. 4.27. Regardless this complexity, we use a simplified analysis and assume
a homogeneous biaxial deformation to be present inside the gripping hooks, see
Fig. F.2. The domain Li × Li = 12.0 × 12.0 mm is then thought to be exposed
to homogenous biaxial deformation. The aforementioned testing protocols result
therefore in averaged target stretches of (a) λθ = λz = 1.54, (b) λθ = 1.27 and λz =
1.54, as well as (c) λθ = 1.54 and λz = 1.27, respectively. The applied forces are
also homogeneously distributed over the domain Li × Li, and Pθ = Fθ/(LiH) and
Pz = Fz/(LiH) characterizes the first Piola–Kirchhoff stress in the circumferential
and axial directions, respectively.

At each time point, a biaxial test acquires the two displacements uθ , uz (or uθ , uz
of the optical markers if the video extensiometer option is used) and the two forces
Fθ , Fz. Given the test specimen’s dimensions Li,H , we may therefore compute the
four-dimensional data points

{λθ = 1 + uθ/Li; λz = 1 + uz/Li;Pθ = Fθ/(LiH);Pz = Fz/(LiH)} ,

where λθ and λz denote the average circumferential and axial stretches, whilst
Pθ and Pz are the corresponding first Piola–Kirchhoff stresses, respectively. Given
video extensiometer measurements are used, uθ , uz is to be replaced by uθ , uz.

Fig. F.2 Tissue specimen
mounted in the tensile testing
machine and immersed in
physiological saline solution.
The dimension Lo denotes
the outer sample dimension,
whilst Li is measured inside
the gripping hooks. The
vertical direction in the image
represents the axial vessel
direction
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Figure F.3 illustrates the first Piola–Kirchhoff stress versus stretch properties of
the loading protocols (a), (b), and (c). The data represents the experimental test
data after preconditioning, and thus the recordings of the last loading–unloading
cycle. The data show non-linear stretch–stress properties of the vessel wall and some
degree of viscoelastic dissipation during the cycles, see Sect. 5.3. The experiment
covers the transition from the elastin-dominated soft response at low strains, towards
the collagen-dominated stiff response at larger strains, respectively. In addition,
Table F.1 lists the acquired data, input information that has been used to identify
model parameters of constitutive models in Sect. 5.6.
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Fig. F.3 First Piola–Kirchhoff (PK) stress versus stretch properties of the porcine aorta after
preconditioning. The data has been acquired through planar biaxial tension at the three different
loading protocols (a), (b), and (c), see Sect. F.2
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GDefinitions of Symbols, Functions, and
Operators

Frequently used symbols

a0 Unit direction vector in the reference configuration

b Left Cauchy–Green strains

B Gradient interpolation matrix

Bf,bf Body force per reference and spatial volume

c Molar concentration; wave speed

C Right Cauchy–Green strains; damping matrix

C Capacity of a flow circuit

C,b Isochoric right and left Cauchy–Green strains

C,C Elasticity tensor in reference and spatial configuration

D Distensibility; diameter

dS, ds Area element in reference and spatial configuration

dS, ds Area vector in reference and spatial configuration

d Damage parameter; diameter

dV, dv Volume element in reference and spatial configuration

dL, dl Line element in reference and spatial configuration

d Rate of deformation tensor; Damping-related nodal forces

D Damping matrix

Ei , ei Cartesian base vector in reference and spatial configuration

E Young’s modulus

E, e Green–Lagrange and Euler–Almansi strains

F Reduced axial force

f Frequency

F Deformation gradient

g Gravitation

g Internal nodal force vector

(continued)
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448 G Definitions of Symbols, Functions, and Operators

f Finite element external nodal force vector

G Shear modulus

Gi Principal components of the growth-related deformation

G Divergence interpolation matrix; growth-related deformation

H General structural tensor

H Hemolysis factor

H0, Ha Null hypothesis, alternative hypothesis

h, ḣ, ˙̇h Essential variable vector

Ii Tensor invariant

I i Invariant of an isochoric tensor

I, I Second-order and fourth-order identity tensor

J Jacobian transformation matrix

J Volume ratio

Js, Js Molar substance flux

K Bulk modulus

k Permeability

K Stiffness matrix

Kf Stiffness matrix from external forces

l Velocity gradient tensor

lp Conductivity

L Inertance of a flow circuit

M Mass matrix

m Inertia nodal forces

Ni Shape functions

N,n Unit normal vector in reference and spatial configuration; interpolation matrix

ndim Number of spatial dimensions

ndof Number of degrees of freedom

ne Number of elements

nnpe Number of nodes per element

ns Number of independent stress or strain components

N̂i , n̂i Eigenvector

p Pressure; hydrostatic pressure; p-value

psyst, pdias, pmean Diastolic, systolic and mean pressure

p Complex pressure

P First Piola–Kirchhoff stresses

q Flow

qf Filtration flux

q Complex flow; essential variable vector

Q Complex flow amplitude; proper orthogonal rotation tensor

Qh,qh Heat flux per reference and spatial area

R Resistance of a flow circuit

r Pearson product-moment correlation coefficient

r Residuum

(continued)



G Definitions of Symbols, Functions, and Operators 449

rs Spearman rank correlation coefficient

R Ideal gas constant

r Residuum vector

R Proper orthogonal rotation tensor

Rh, rh Heat source per reference and spatial volume

R2 Coefficient of determination

S, s Entropy per reference and spatial volume

S Second Piola–Kirchhoff stresses

t Time

T Time of a cardiac cycle

T, t Traction vector in reference and spatial configuration

U, u Internal energies per reference and spatial volume

u, u̇, ü Displacement, velocity, and acceleration

U Right stretch tensor

v Linear velocity

v Left stretch tensor

v Velocity vector

V Volume

w Spin tensor

X, x Reference and spatial positions of a material particle

Z Impedance of a flow circuit

Z Complex Impedance

β =[Ca2+] Calcium concentration

ε Engineering strain

δW Virtual work

η Viscosity

κ Lagrange pressure to enforce incompressibility

θ Absolute temperature

λi Eigenvalue

λ Load factor

λa Stretch along the direction a0

μ Mean

ν Poisson’s ratio; kinematic fluid viscosity

ω Angular velocity

ω Angular velocity vector

�0, � Reference and spatial configuration of a body

∂�0, ∂� Reference and spatial boundary of a body

Π Osmotic pressure; Colloid Osmotic Pressure (COP); energy potential

(continued)
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ρ, ρ0 Probability Density Function (PDF); Density in the spatial and reference
configuration

σ Cauchy stress

σ Cauchy stress; Standard Deviation (SD); Staverman’s osmotic reflection
coefficient

τ Time related to tissue growth and remodeling

τw Wall shear stress vector

φ Phase angle; Hematocrit level

� Objective function

χ Motion or deformation function

�,ψ Helmholtz free energies per reference and spatial volume

Υ Cumulative Density Function (CDF)

ςv Rate of volume change

ςh Non-compatible heat source

ςs Non-compatible entropy source
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Mathematical operators and functions

arccos(x) Inverse cosinus of x

arcsin(x) Inverse sinus of x

cos(x) Cosinus of x

cot(x) Cotangents of x

d(•)/dt Total time derivative

D(•)/Dt Material time derivative

Dev(•), dev(•) Deviator in material and spatial description

det(•) Determinant

diag[•] Short-hand notation of a diagonal second-order tensor

div[grad(•)] Laplace operator

Div(•), div(•) Divergence in the reference and spatial configuration

exp(x) Exponential function of x

grads(•) Symmetric gradient in the spatial configuration

Grad(•), grad(•) Gradient in the reference and spatial configuration

ln(x) Natural logarithm of x

min(x) Minimum of x

n! Factorial of n

P(A) Probability that event A will occur

P(A|B) Probability that event A occurs, given that event B has occurred

rg(•) Rank

Re[(•)], Im[(•)] Real and imaginary parts

sg(x) Sigmoid function of x

sign(x) Sign of x

sin(x) Sinus of x

tan(x) Tangents of x

Tr(•), tr(•) Trace in reference and spatial configuration

Var(X) Variance of X

Var(Y |X) Variance of Y due to variability of X

x(SD y) Sample with mean x and Standard Deviation (SD) y

δ(•) Virtual variation; iteration increment

�(•) Increment

∂(•)/∂t Partial time derivative

Du(•) Directional derivative along the increment �u(
n
k

)
Binomial coefficient n!/[k!(n− k)!]∫

(•)dx Integral over (•)∫ b
a
(•)dx Definite integral over (•) between a and b

|(•)| Norm

(•) Mean value



Solutions

Example 1.1 (Sensitivity of the Resistance of a Blood Vessel).

(a) The sensitivity vector

s = ∂R

∂x
= R

[
l−1 − 4d−1 η−1

]T

determines the local sensitivity of the Hagen–Poiseuille law.
(b) Given the sensitivity vector and the expression (1.1), the absolute and relative

resistance errors read �R = s · �x = R (�l/l − 4�d/d +�η/η) and
�R/R = �l/l − 4�d/d +�η/η, respectively.

Let us consider the variation of one parameter at the time. The domains

|�l/l| ≤ 10.0% ; |�d/d| ≤ 2.5% ; |�η/η| ≤ 10.0% ,

would then ensure that the resistance error remains below ±10%. The relative
resistance error �R/R of the Hagen–Poiseuille law is constant and does
therefore not depend on the model parameter vector x.

(c) The worst-case scenario results in the relative error�R/R = 10% + 4 · 2.5% +
10% = 30%. �

Example 1.2 (Global Versus Local Sensitivity Measures).

(a) The minimization of the objective function

�(a0, a1, a2, b1, b2, c1, c2, c3, c4) =
48∑

i=1

[r(hi, si)− ri]2 → MIN

yields the set

a0 = 0.3776 , a1 = 0.08583 , a2 = −0.045 , b1 = 0.00125 ,

b2 = 3.8954 · 10−7 , c1 = 0 , c2 = 0 , c3 = 0 , c4 = 6.6667 · 10−8

© Springer Nature Switzerland AG 2021
T. C. Gasser, Vascular Biomechanics, https://doi.org/10.1007/978-3-030-70966-2
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of surrogate model parameters. Here, ri denotes the risk indices in Table 1.1,
whilst the function r(hi, si) represents the surrogate model (1.3) at the data
points hi, si .

(b) Partial derivation of the model (1.3) yields the local sensitivity

∂r/∂h = a1 + 2a2h+ c1s + 2c3hs + c2s
2 + 2c4hs

2 ,

∂r/∂s = b1 + c1h+ c3h
2 + 2b2s + 2c2hs + 2c4h

2s .

Given the identified parameters ai, bj , ck , the sensitivity vector then reads

[
∂r/∂h

∂r/∂s

]
=
[

0.1218 mm−1

2.43134 · 10−3 kPa−1

]

at the point of question in the parameter space. Therefore, changing the wall
thickness by 0.6 mm alters the risk index by 0.0731, and changing the tissue
stiffness by 250.0 kPa alters the risk index by 0.6078, and thus almost an order
of magnitude more.

(c) The provided probabilities of h and s yield the bi-normal probability distribution
shown in Fig. 1.4a. Monte Carlo simulation has been used to sample the
parameter domain 0.0 < h < 4.0 mm and 0.0 < s < 1600.0 kPa, using
in total 10,000 points. Figure 1.4b illustrates the risk index predictions by
the parameterized surrogate model, a sample that may be expressed by r =
2.0633(SD 0.6268).

Fig. 1.4 (a) Bi-normal probability distribution to sample the parameter domain. (b) Distribu-
tion of the risk index computed by Monte Carlo simulation and the parameterized surrogate
model �

Example 1.3 (Sobol’s Variance-Based Sensitivity Analysis).

(a) Given an ANOVA-representation, the functions fh, fs, fhs are orthogonal and
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∫ 1

0
fhdh =

∫ 1

0
fsds =

∫ 1

0
fhsdh =

∫ 1

0
fhsds = 0 (1.7)

holds, conditions that are satisfied by the model (1.6).
(b) The ANOVA-representation yields the decomposed variance expression

V = Var(r) =
∫ 1

0
r2dhds − f 2

0

=
∫ 1

0
f 2
h dh

︸ ︷︷ ︸
Vh=Var(r|h)

+
∫ 1

0
f 2
s ds

︸ ︷︷ ︸
Vs=Var(r|s)

+
∫ 1

0
f 2
hsdhds

︸ ︷︷ ︸
Vhs=Var(r|h,s)−Vh−Vs

.

Given V = 6.01 · 10−3, Vh = 0.732 · 10−3, Vs = 5.21 · 10−3, and Vhs =
0.0694 · 10−3, Sobol’s sensitivity indices are

Sh = Vh

V
= 0.122 , Ss = Vs

V
= 0.867 , Shs = Vhs

V
= 0.0116 .

Here, Sh and Ss are the first-order sensitivities, whilst Shs represents a second-
order sensitivity, or mixed effect. The different sensitivities are illustrated in
Fig. 1.5, and the model output is by far most sensitive to the tissue strength.

(c) The variance of the wall thickness Var(h) = 0.2 results in the output variance
Var(r|h) = 0.2Sh = 0.0244, and the variance of the tissue strength of Var(h) =
0.1 in the output variance of Var(r|s) = 0.1Ss = 0.0867, respectively.

Fig. 1.5 Sensitivity of the
risk factor r with respect to
the input information. The
indices Sh and Ss denote the
first-order sensitivities of wall
thickness and tissue strength,
whilst Shs is the mixed effect
from thickness and strength,
respectively � Re
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Example 1.4 (Correlation of Vessel Wall Stiffness and Strength).

(a) We start with the assumption of a linear correlation amongst the stiffness
parameter x and the strength y. A linear regression model reads

yi = b0 + b1xi + ei ; i = 1, . . . , 20 , (1.14)
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where ei denotes the residuum. The coefficients b0 and b1 are identified through
least-square optimization,

n∑

i=1

e2
i =

n∑

i=1

(yi − b0 − b1xi)
2 → MIN .

Given the data listed in Table 1.2, the minimization problem yields b0 =
747.526 kPa and b1 = 4.86802, and with (1.14) we may compute the residuum
ei = yi − b0 − b1xi .

To support the assumption of a linear correlation, ei must be normal dis-
tributed. A Quantile-Quantile plot (QQ-plot) is used to investigate the normality
of ei . The QQ-plot shown in Fig. 1.9a illustrates that ei falls around the diagonal,
which fully supports the assumption of a linear correlation between x and y.
Figure 1.9b shows the regression model.

Fig. 1.9 Correlation between the vessel wall stiffness parameter and the vessel wall strength. (a)
Quantile-Quantile plot (QQ-plot) illustrating normal distribution of the residuum ei . (b) Linear
regression with the Pearson’s correlation coefficient r , the coefficient of determination R2, and the
significance p of the regression

(b) Given the means x = (
∑20
i=1 xi)/20 = 255.1 kPa and y = (

∑20
i=1 yi)/20 =

1989.3 kPa, the Pearson’s product-moment correlation coefficient (1.8) reads

r =
∑20
i=1(xi − 255.1)(yi − 1989.3)

√∑20
i=1(xi − 255.1)2

∑n
i=1(yi − 1989.3)2

= 0.65 .

The Pearson’s correlation coefficient adequately quantifies a linear correlation,
and r = 0.65 suggests a moderate and positive correlation between the stiffness
parameter x and the strength y.
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Given the Pearson’s correlation coefficient, the expression (1.11) yields the
coefficient of determination

R2 = [r(n− 1)/n]2 = (0.6519/20)2 = 0.392 , (1.15)

which indicates rather poor predictability of the vessel wall strength.
(c) In order to test the significance of the regression, the Null Hypothesis that xi

and yi are uncorrelated, is explored. With b1 denoting the slope of the linear
regression, a suitable Null Hypothesis reads H0 : b1 = 0. Given (1.13), the
statistic reads

t = 0.65
√

18√
1 − 0.652

= 4.27836 , (1.16)

and rejecting H0 has the probability of p = 2
∫∞
t
ρt(x)dx = 0.000242. Here,

ρt(x) denotes the PDF of the student t-distribution (A.3) of n = 18 degrees of
freedom of the regression problem. The probability of 0.0242% is well below
the significance level of 5%, and the regression can therefore be considered to
be statistically significant. �

Example 1.5 (Testing for Clairvoyance).

(a) The Null Hypothesis H0 assumes the person is simply guessing, and under
the Alternative Hypothesis Ha, the person would be a clairvoyant. Given the
probability p = 1/4 of guessing a suit correctly, said hypotheses read

H0 : p = 1/4 ; Ha : p > 1/4 .

(b) The tree diagram shown in Fig. 1.11 illustrates the development of the probabil-
ity of the test up to n = 3 trials. Given the answers would always be correct,
we follow the most right path in Fig. 1.11. Rejecting H0 for each of the n = 25
cards yields then the false positive probability of

P(rejectH0|H0 is valid) = P(x = 25|p = 1/4) = (1/4)25 < 10−15.

Here, x denotes the number of correct answers, and this extremely low
probability reflects answering by chance correctly 25 times in a row. Hence,
out of 1015 persons, not a single one would have been associated mistakenly by
a Type I error.
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Fig. 1.11 Development of the probability for clairvoyant testing. The solid line denotes the
probability p = 1/4 of answering correctly, and the dashed line the probability p = 3/4 of
answering wrongly

(c) Looking at Fig. 1.11, the probability of giving at least two correct answers after
three trials reads

P(x ≥ 2|p = 1/4) = 2

(
3

4

)1 (1

4

)2

+
(

3

4

)1 (1

4

)2

+
(

3

4

)0 (1

4

)3

,

a result that may be generalized towards

P(x ≥ a|p = 1/4) =
n∑

k=a

(
n

k

)(
3

4

)n−k (1

4

)k
,

where at least a correct answers after n trials have been given. The probability
of rejecting H0 for a = 9 cards then leads to

P(rejectH0|H0 is valid) =
25∑

k=9

(
25

k

)(
3

4

)25−k (1

4

)k
= 0.149438

of false positives, i.e. roughly 15% of persons would have been associated
mistakenly by a Type I error.

(d) The probability of rejecting H0 for m correct answers reads

P(x ≥ m|p = 1/4) =
25∑

k=m

(
25

k

)(
3

4

)25−k (1

4

)k
< 0.05 ,

an expression that allows us to determinem = 11. The related significance level
would then be 2.97%. �
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Example 1.6 (Conclusions from Vessel Wall Stiffness Data).

(a) Figure 1.12 illustrated the data by Quantile-Quantile plots (QQ-plots). The data
are populated around the diagonals, and therefore normal distributed.

Fig. 1.12 Quantile-Quantile plots (QQ-plots) illustrating the normal distribution of the data
listed in Table 1.3. (a, b) Stiffness data prior medication acquired by experimentalist A and
experimentalist B, respectively. (c, d) Stiffness data post medication acquired by experimentalist
A and experimentalist B, respectively

(b) We perform a mean difference test to test whether or not the data is influenced
by the operator. As the data has been acquired from different rats, we may
assume independence among the sample acquired by experimentalist A and
experimentalist B. However, we do not know whether the medication influences
the data and therefore test the baseline stiffness interdependently from the
hypertensive stiffness.

Two-Sample t-test of the Baseline Stiffness The baseline stiffnesses, xA =
778.3 kPa and xB = 839.7 kPa denote the means of the data acquired by
experimentalists A and B, respectively. The respective Standard Deviations
(SDs) are sA = 222.3 kPa and sB = 414.4 kPa, and the combined distribution’s

standard error yields s =
√
s2

A/nA + s2
B/nB = 99.7 kPa. The statistic t =

(xA − xB)/s = −0.615 then determines this problem, and the degrees of
freedom of the student t-distribution is ν = 35, given by the nearest integer
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of the expression

(s2
A/nA + s2

B/nB)
2/

[
(s2

A/nA)
2

nA − 1
+ (s2

B/nB)
2

nB − 1

]
.

The probability that the samples acquired by the two experimentalists A and B
would describe the same population is then p = 2

∫ t
−∞ ρt(x)dx = 0.542, where

ρt(x) denotes the PDF of the student t-distribution (A.3). The Null Hypothesis
that both samples describe the same population can therefore not be rejected.

Two-Sample t-test of the Hypertensive Stiffness The same analysis of the
hypertensive stiffness data results in the statistic t = −0.08705 and the
probability p = 0.931 that the samples acquired by the two experimentalists
would describe different populations. It provides again counter-evidence that
they would describe different populations.

(c) We test whether or not the difference �x of the stiffness before and after
medication would be statistically significant. A one-sample t-test is used, and we
pool all samples together, an approach that is justified by the conclusion drawn
from Task (b). The sample has the size n = 43, the mean �x = 157.1 kPa, and
the SD �s = 378.2 kPa, respectively. Its statistic reads

t = �x − μ0

s/
√
n

= 2.724 , (1.21)

and rejecting the Null Hypothesis, i.e. the stiffness would not change by
medication, has the probability of p = 2

∫ t
−∞ ρt(x)dx = 0.009, where

ρt(x) denotes the PDF of the student t-distribution (A.3). It is below the
predefined significance level of 0.05, and the influence of medication is therefore
statistically significant. Figure A.13 shows a box-and-whiskers plot of the
difference in aorta stiffness through medication.

Fig. A.13 Box-and-whiskers
plot illustrating the influence
of medication on the wall
stiffness. Statistical
significance is denoted
by p �
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Example 1.7 (Training an Artificial Neural Network).

(a) We introduce the least-square error � = (y − ỹ)2, and substitute y by the
expression (1.22). The minimization of

� =
⎧
⎨

⎩

[
1 + exp

(
−

2∑

i=1

xiwi

)]−1

− ỹ
⎫
⎬

⎭

2

→ MIN (1.23)

then expresses the “learning” of the ANN. In the context of Artificial Intelli-
gence (AI), � is commonly called loss function—only in the case � = 0 we do
not lose any information by the minimization.

(b) Given the data in Table 1.4, the minimization problem (1.23) yields w1 =
1.1848 and w2 = −0.0813323, and � = 0.00386171 expresses the amount
of information that has been lost. �

Example 2.1 (Upstream Pressure Wave Propagation).

(a) Given c >> v, the control volume moves at the wave speed c in upstream
direction, such that the mass flow rate ρcA passes through it.

(b) The hydrostatic force F = −A�p acts at the control volume, where�p denotes
the pressure difference between its right and left borders, respectively. When
the pressure wave passes, the blood of the mass m in the control volume is
accelerated by a. Given the inertia ma = ρcA�v, Newton’s second law then
yields F = ma = −A�p = ρcA�v. The relation

�p = −ρc�v , (2.2)

known as the water hammer equation, expresses then the change in pressure�p
as a function of the blood density ρ, the wave speed c, and the velocity change
�v, respectively.

(c) Given the relation (2.1), a wave propagates in the vessel at c = (ρD)−1/2 =
5.6 m s−1.

(d) The water hammer equation (2.2) results in the velocity change of �v =
−�p/(ρc) = −3.88 cm s−1 in response to the pressure wave. �

Example 2.2 (Two-Element WindKessel Model Predictions).

(a) The cardiac cycle is split into k equidistant time increments �t = ti − ti−1 =
T/k, and the backward-Euler discretization

dp(t)

dt
≈ pi − pi−1

�t
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approximates the time derivative of the pressure, where pi and pi−1 denote the
pressure at the times ti and ti−1, respectively. Given the flow qi at the time ti ,
the discretized governing equation (2.6) reads

qi = pi

R
+ Cpi − pi−1

�t

and provides the explicit expression

pi = αpi−1 + Rqi
1 + α with α = CR/�t (2.8)

for the pressure pi at the time ti .
(b) With the initial pressure p0 = 0, the recursive application of Eq. (2.8) yields the

pressure pi at the discrete time points ti . After a sufficient number of cardiac
cycles, the steady-state periodic pressure response shown in Fig. 2.16 is reached.
The figure also illustrates the convergence towards the exact solution for k =
10; 50; 1000 time increments over the cardiac cycle.

Fig. 2.16 Numerically
predicted pressure over the
cardiac cycle. Three different
time discretizations k
illustrate the convergence
towards the exact solution.
The simulation used p0 = 0
as initial condition and the
plot illustrates the pressure at
the 10-th cardiac cycle � Pr
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Example 2.3 (Systemic Implication of EVAR Treatment).

(a) Given the assumption the stent-graft’s radial stiffness is much larger than the
radial stiffness of the normal thoracic aorta, the capacity CEVAR = 0.3Cn +
0.7[αCsg + (1 − α)Cn] determines the systemic capacity of the treated patient.
The stent-graft’s radial stiffness ksg determines it capacity

Csg = �V

�p
= 1

2
πdsglsgksg = 0.165α [cm3kPa−1],

such that

CEVAR = 9.7 − 6.79α + 0.1155α2 [cm3kPa−1]

characterizes the treated patient.
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(b) The governing equation of the two-element WK model reads

ṗ(t)+ ap(t) = b(t) with a = (RCEVAR)
−1 and b = Q sin(ωt)2/CEVAR,

where ω = π . It is a linear first-order differential equation with the closed-form
solution p(t) = (

∫
μbdt +A)/μ, where μ = exp

(∫
adt
) = exp [t/(RCEVAR)]

denotes the integrating factor, and A is an integration constant. The pressure is
therefore given by

p(t) =
Q

CEVAR

∫
exp[a t] sin(ωt)2dt + A

exp[a t] ,

and has the closed-form solution

p(t) = A exp[−a x] + QR

2
− QR[cos(2ωt)+ 2CEVARRω sin(2ωt)]

2 + 8C2
EVARR

2ω2
.

The identification of the integration constantA from the initial condition p(0) =
p0, then yields

p(t) = 13.5 − 0.08875 exp(−0.5727t)− 0.1112 cos(2πx)− 1.22 sin(2πx) ;
p(t) = 13.5 + 0.8623 exp(−1.836t)− 1.062 cos(2πt)− 3.635 sin(2πt)

for the parameters α = 0 and α = 1, respectively. Figure 2.18 illustrates these
solutions, and shows the pressure in the normal (α = 0) and fully stent-graft-
covered (α = 1) thoracic aorta.

Fig. 2.18 Pressure that is
predicted by the two-element
WK model in the normal
(α = 0) and fully
stent-graft-covered (α = 1)
thoracic aorta �
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Example 2.4 (Impedance of the Vascular System).

(a) The cardiac cycle T = 0.375 s may be split into N = 30 (number of data points
minus one) equidistant time intervals�t = T/N . Given the trapezial integration
rule, the Fourier coefficients

cj k = 1

T

T∫

t=0

sj (t) exp (−iωkt) dt

≈ 1

T

N∑

k=1

sj (k)+ sj (k + 1)

2
exp

[
i2πk(k − 0.5)

�t

p

]
; k = 1, . . . ,M

can be computed from the experimental data. Here, the index j = q and j = p
relate to the flow and pressure, whilst k denotes the number of the individual
Fourier series term, also known as the harmonics or modes. Table 2.3 lists
harmonics of the flow and pressure waves, respectively.

Table 2.3 Fourier coefficients cq k and cp k approximating flow q(t) and pressure p(t) waves,
respectively

Mode k Angular velocity ωk cq k [mls−1] cp k [mmHg]

10 −167.552 0.0136667 − 0.00144338i 2.41288 · 10−14 − 0.0721688i

9 −150.796 0.00722562 − 0.0347752i −0.0813342 − 0.200008i

8 −134.041 −0.0593984 − 0.0217432i −0.339697 + 0.0694108i

7 −117.286 −0.0233298 + 0.0691505i −0.0208851 + 0.408154i

6 −100.531 0.0250477 + 0.0231058i 0.18498 + 0.136162i

5 −83.7758 0.0369504 + 0.0725i 0.259808 + 0.125i

4 −67.0206 0.216635 − 0.0557698i 0.981977 − 0.312774i

3 −50.2655 −0.0896779 − 0.408525i −0.716424 − 1.97084i

2 −33.5103 −0.555816 + 0.112961i −1.76808 + 0.691707i

1 −16.7552 0.0276938 + 0.646413i −2.12634 + 1.60786i

0 0 0.786333 85.25

1 16.7552 0.0276938 − 0.646413i −2.12634 − 1.60786i

2 33.5103 −0.555816 − 0.112961i −1.76808 − 0.691707i

3 50.2655 −0.0896779 + 0.408525i −0.716424 + 1.97084i

4 67.0206 0.216635 + 0.0557698i 0.981977 + 0.312774i

5 83.7758 0.0369504 − 0.0725i 0.259808 − 0.125i

6 100.531 0.0250477 − 0.0231058i 0.18498 − 0.136162i

7 117.286 −0.0233298 − 0.0691505i −0.0208851 − 0.408154i

8 134.041 −0.0593984 + 0.0217432i −0.339697 − 0.0694108i

9 150.796 0.00722562 + 0.0347752i −0.0813342 + 0.200008i

10 167.552 0.0136667 + 0.00144338i 2.41288 · 10−14 + 0.0721688i
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The Fourier-approximated signal then reads

s̃j (t) = Re

[
M∑

k=−M
cj k exp (iωkt)

]
; j = q, p (2.13)

with ωk = 2πk/T denoting the angular velocity of the complex vector. The
flow and pressure waves are shown in Fig. 2.21a, b.

Fig. 2.21 Fourier series approximation (solid line) of (a) q(t) and (b) p(t) on top of the
experimentally measured points (dots). (c) Impedance modulus Zk and (d) impedance angle φk
as a function of signal frequency fk .

(b) With the complex Fourier coefficients cj k = aj k + ibj k; k = 1 . . . ,M and
j = q, p of the flow and pressure waves, the impedance modulus |Zk| =
Zk = |cp k|/|cq k| and impedance angle φk = arg cp k − arg cq k are defined.
Figure 2.21c, d plots these data versus the frequency fk = k/T . �

Example 2.5 (Decay Method to Estimate the Vascular Resistance).

(a) Figure 2.23 shows the lumped parameter model that represents the experimental
set-up. Given qm = 0, the equation qin(t) = 0 = pin(t)/R + Cṗin(t) governs
the problem, and the relation ln(p1/p0) = −(t1 − t0)/(RC) then determines the
vascular bed resistance



466 Solutions

R = − t1 − t0
C ln(p1/p0)

= 166.247 mmHg s ml−1 ,

where the two pressure measurements p1 and p2 have been used.

Fig. 2.23 Electrical representations of the two-element lumped parameter model that captures the
experimental set-up. The flow q(t) and the pressure p(t) describe the system state, and R and C
denote the organ’s vascular bed resistance and arterial capacity, respectively

(b) Given the inflow qin into the manometer, the problem’s governing equation reads
qin(t) = −ξ ṗin(t) = pin(t)/R+Cṗin(t), and ln(p1/p0) = −(t1 − t0)/[R(C +
ξ)] allows to compute the vascular bed resistance

R = − t1 − t0
(C + ξ) ln(p1/p0)

= 1.9946

0.012 + ξ [mmHg s ml−1] . (2.16)

Figure 2.24 illustrates the development of the relative error e as a function of
the device parameter ξ .

Fig. 2.24 Relative error
100(R − Rexact)/Rexact as a
function of the device-
dependent parameter ξ of the
manometer
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(c) With A and h denoting the cross-section and height of the water column in the
uptake tube, the relations qm = A(dh/dt) and pin = ρgh specify the inflow

qm(t) = ξ
dpin

dt
= ξρg

dh

dt
= d2

i π

4

dh

dt
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into the uptake tube. The device-dependent parameter

ξ = d2
i π

4ρg
= 8.0061 · 10−11m3 Pa−1 = 0.0106745 ml mmHg−1,

then determines with (2.16) the resistance R = 87.98 mmHg s ml−1 of the
organ in question. �

Example 2.6 (Two-Element Versus Three-Element WK Models).

(a) The peripheral resistance R is given by the relation

R = pmean

qmean
=
∫ T

0 p(t)dt∫ T
0 q(t)dt

≈

N∑
k=1
(pk + pk+1)

N∑
k=1
(qk + qk+1)

= 108.42 mmHg s ml−1,

where the integration over the cardiac cycle of T = 0.375 s has been
approximated by the trapezial rule over N = 30 (number of data points minus
one) time intervals. It represents the resistance of the two-element WK model,
whilst R needs to be adjusted for the three-element WK model, see Task (c).

(b) At the late diastolic phase the flow q(t) = 0 and the system is governed by
p(t)/R + Cdp(t)/dt = 0. It determines the capacity

C = t1 − t0
R ln

(
p0
p1

) = 1.1808 · 10−2 ml mmHg−1 ,

where the two late diastolic time points t0 = 0.25 s and t1 = 0.375 s together
with the corresponding pressures p(t0) = 86 mmHg and p(t1) = 78 mmHg
have been used.

(c) Given the aortic cross-section A = d2π/4 = 3.801 mm2, the aorta’s
characteristic impedance reads Za = vpwρ/A = 2.36186 · 108 Pa s m−3 or
1.7714 mmHg s ml−1. For the three-element WK model, Za influence the total
system resistance, and

R = pmean

qmean
− Za = 108.42 − 1.7714 = 106.66 mmHg

determines its peripheral resistance.
(d) The predicted pressure profiles of the two-element and three-element WK

models are shown in Fig. 2.26b. These results use the prescribed flow wave
shown in Fig. 2.26a together with the parameters estimated by Tasks (a) to (c).
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Fig. 2.26 (a) Prescribed flow profile. (b) Predicted pressure using two-element and three-element
WindKessel (WK) models on top of the experimental data �

Example 2.7 (Impedance-Based Estimation of WK Parameters).

(a) The objective function

�(R,C;ω) =
N∑

k=1

α
[
Z(R,C;ωk)− Zexp k

]2 + [φ(R,C;ωk)− φexp k
]2
,

of the two-element WK model and

�(R,C,Za;ω)=
N∑

k=1

α
[
Z(R,C,Za;ωk)−Zexp k

]2+[φ(R,C,Za;ωk)−φexp k
]2

of the respective three-element WK model may be introduced. Here, Zexp k and
φexp k denote the N = 5 impedance moduli and angles reported in Table 2.4,
whilst the relations (2.12) and (2.23) determine the analytical expressions
for Z and φ of the two-element and three-element WK models, respectively.
The analytical expressions are evaluated at ωk = 2πfk , where fk denotes
the frequencies listed in Table 2.4. For simplicity we set α = 1, and the
minimization of the objective functions then yields the following least-square
optimized parameters:

• Two-element WK model: peripheral resistance R = 108.41 mmHg s ml−1

and arterial capacity C = 9.8143 · 10−3 ml mmHg−1

• Three-element WK model: peripheral resistance R = 104.04 mmHg s ml−1,
arterial capacity C = 84.787 · 10−3 ml mmHg−1, and aortic characteristic
impedance Za = 4.37 mmHg s ml−1

Remark The use of α = 0.01 scales the two contributions in the objective
function more adequately and then results in a better approximation of the
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experimental data. The attended electronic Mathematica script allows the reader
to recalculate the problem with said scaling parameter.

(b) Figure 2.27a, b shows the impedance modulus Z and the impedance angle φ
predicted by the respective WK model.

Fig. 2.27 (a, b) WindKessel (WK) model-predicted versus the measured impedance modulus Z
and impedance angle φ of the system. (c) Flow wave q(t) represented by the Fourier coefficients
in Table 2.5. (d) WK model-predicted pressure waves p(t) of a steady-state periodic analysis

(c) The Fourier coefficients cq k = cq −k given in Table 2.5 determine the flow
profile

q =
N∑

k=−N
cq k exp (iωkt) ,

where ωk = 2πk/T denotes the angular velocity of the complex vector.
Figure 2.27c shows the real component q(t) = Re[q].

Given the Fourier coefficient of the flow cq k , the transformation (2.12) of
the two-element WK model, and (2.23) of the three-element WK model, then
determine the corresponding Fourier coefficients cp k of the pressure waves

|cp k| = Z(ωk)|cq k| ; αk = φ(ωk)+ arg(cq k) . (2.24)

The superposition of all Fourier coefficients yields then the pressure wave
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p =
N∑

k=−N
|cp k| exp [i(ωkt + αk)] , (2.25)

and Fig. 2.27d shows the real component p(t) = Re[p].
The numerical solution of the governing equation of the two-element WK

model (2.6) as well as the three-element WK model (2.20) at the initial
condition p(t = 0) = 80 mmHg, determine the pressure cycles shown in
Fig. 2.28a, c. At the sixth cycle the solution is practically periodic, and the
pressure cycle compares very well to the result of the steady-state analysis—
compare Figs. 2.27d and 2.28b, d.

The Fourier coefficients cq k have been determined from the flow reported
elsewhere [62], and Fig. 2.29 compares the WK model-predicted and the
respective measured pressure waves. For further details see Example 2.4.

Fig. 2.28 Pressure pulse wave p(t) predicted by the two-element WK model (top row) and the
three-element WK model (bottom row). The waves are based on the numerical solution of the
governing equations. The results over the first six cycles (a, c) and the sixth cycle (b, d) are shown
separately
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Fig. 2.29 WindKessel (WK)
model-predicted pressure
wave p(t) on top of the
measured pressure wave
reported elsewhere [62] �
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Example 2.8 (Renal Artery Adaptation to Partial Nephrectomy).

(a) Upon the pressure difference �p between the renal artery and the renal vein,
the mean flow q = �p/R passes the kidney, where R denotes its vascular bed
resistance. The augmented resistance αR then yields the mean flow q(α) =
�p/(αR).

(b) We consider Poiseuille flow, and thus a fully established steady-state laminar
flow of a Newtonian fluid of viscosity η in a cylindrical tube of radius r . The
blood flow velocity

vz = − r
2

4η

dp

dz

[
1 −

(
ξ

r

)2
]

(2.34)

appears then at a parabolic profile, where 0 ≤ ξ ≤ r and dp/dz denote the
radial coordinate and the pressure gradient along the tube’s axial direction z,
respectively. A detailed derivation of this expression is given in Chapter 6. The
profile (2.34) determines the flow q = 2π

∫ r
0 vzrdr = −πr4(dp/dz)/(8η) and

results in the WSS τw = η(dvz/dξ)ξ=r = r(dp/dz)/(2η). The elimination of
the pressure gradient dp/dz from these two relations then yields

q = −r3πτw/(4η) , (2.35)

an expression that relates the WSS to the flow in the renal artery.
(c) Given a thin-walled tube of wall thickness h that is inflated at the pressure p,

the equilibrium in the circumferential direction 2σθh = 2pr yields the law of
Laplace

σθ = pr/h (2.36)

and expresses the circumferential Cauchy stress σθ in the wall of the renal artery.
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(d) According to Task (a), the flow q is inversely proportional to the augmentation
factor α. The expression q/q0 = 1/α and (2.35) at constant τw, then results in
the homeostatic vessel radius r = r0/

3
√
α.

Given (2.36) at constant σθ and p, the change from r0 towards r results in
the wall thickness h = h0r/r0. Figure 2.33 illustrates the relative change of
the radius r/r0 (or the wall thickness h/h0) in response to the augmentation
factor α.

Fig. 2.33 Relative change of
renal artery radius r/r0 (or
the wall thickness h/h0) as a
function of the augmentation
factor α �

Augmentation factor

Example 2.9 (Two-Element Vessel Segment Model).

(a) The relations pin − Rqin = pout and qin − qc = qout yield the system

[
pout

qout

]
=
[

1 −R
0 1

] [
pin

qin

]
+
[

0 0
−C RC

] [
ṗin

q̇in

]
(2.44)

of governing equations, where the definition qc = Cṗout of the capacitor has
been used.

(b) With (2.31) and (2.32), the vessel segment’s resistance and capacity read

R = 128ηl

πd4 = 2.83081 · 106 Pa s m−3 ,

C = 3πd3l

16Eh
= 6.18751 · 10−10 m3 Pa−1 ,

where the data in Fig. 2.25 has been used.
(c) The first equation of the system (2.44) directly allows us to compute the inlet

pressure

pin = pout + Rqin

= 12.5 exp[i(ωt + π/6)] + 2.83081 · 4.3 exp[iωt]
= |pin| exp[i(ωt + α)]

with the amplitude |pin| = 23.83 Pa and the phase angle α = 0.2653 rad.
Figure 2.35a illustrates pin in the complex plane.
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The second equation of the system (2.44) yields the outlet flow

qout = qin − C(dpout/dt)

= 4.3 · 10−6 exp[iωt]−6.18751 · 12.5 · ω · 10−10 exp[i(ωt+π/6+π/2)]
= |qout| exp[i(ωt + β)].

Given ω = 73π , the flow qout has the amplitude |qout| = 5.41 ml s−1 and the
phase angle β = −0.2879 rad, respectively. Figure 2.35b illustrates qout in the
complex plane.

Fig. 2.35 Argand’s diagrams
to illustrate (a) the pressure
pin at the inlet and (b) the
flow qout at the outlet �

Example 2.10 (Three-Element Vessel Segment Model).

(a) The relations pin −�pR −�pL = pout and qin − qc = qout lead to the set

[
pout

qout

]
=
[

1 −R
0 1

] [
pin

qin

]
+
[

0 −L
−C RC

] [
ṗin

q̇in

]
+
[
LC −RCL
0 0

] [
p̈in

q̈in

]

(2.45)

of governing equations, where the expressions �pR = Rqin, �pL = Lq̇out and
qC = CṗC with pC = pin − �pR describe the properties of resistor, inductor,
and capacitor, respectively.

(b) Given the steady-state periodic inflow qin = |qin| exp[iωt], we may introduce
the complex inflow pressure pin = |pin| exp[i(ωt + α)], and (2.45)1 then yields
the complex outlet pressure

pout = pin − Rqin − Lq̇in + LCp̈in − RCLq̈in

= −7.89445 − 167.094i + 0.826159|pin| exp(iα) .

The implementation of the outlet pressure boundary condition Re[pout] =
1000.0 Pa and Im[pout] = 0 determines then the inlet pressure at the magnitude
|pin| = 1236.63 Pa and phase angle α = 0.16429, respectively. Figure 2.37a
illustrates the construction of pout in the complex plane.

Given (2.45)2, the complex outflow vector reads

qout = qin − Cṗin + RCq̇in

= 5.20481 · 10−6 − i5.415 · 10−6 .
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It has the amplitude |qout| = 7.51081 ml s−1 and the phase angle argqout =
−0.805188 rad. Figure 2.37b illustrates the construction of qout in the complex
plane.

Fig. 2.37 Argand’s diagrams illustrate the construction of (a) the outlet pressure pout and (b) the
outlet flow qout of the three-element lumped parameter model �

Example 2.11 (Connected Vessel Segments).

(a) Table 2.7 reports the resistance, capacity, and inductance of the vessel segments,
where the relations (2.31), (2.32), and (2.33) have been used to compute these
figures.

Table 2.7 Resistance R, capacity C, and inductance L of vessel segments

Vessel 1 Vessel 2 Vessel 3

Resistance R [Pa s m−3] 7.84316 · 109 1.84119 · 1010 1.3369 · 1011

Capacity C [m3 s−1] 3.23977 · 10−12 7.15812 · 10−13 3.01593 · 10−13

Inductance L [Pa s2 m−3] 7.42299 · 107 8.5385 · 107 2.02445 · 108

(b) Given the pressure drops �pR = Rqout and �pL = Lq̇out over the resistance R
and the inductance L, the relation

pin − pout = Rqout + Lq̇out

may be derived. The flow continuity

qin − qout = qC

with the capacitor relation qC = Cṗin closes the mathematical description, and
the system
[
pout

qout

]
=
[

1 −R
0 1

] [
pin

qin

]
+
[
RC −L
−C 0

] [
ṗin

q̇in

]
+
[
LC 0
0 0

] [
p̈in

q̈in

]
(2.46)
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of differential equations then governs the three-element vessel model.
(c) The substitution of the time derivatives in (2.46) through the backward-Euler

discretization (2.41) allows us to derive the algebraic set

[
pout

qout

]
=
⎡

⎣
1 + RC

�t
+ LC
�t2

−R − L
�t

− C
�t

1

⎤

⎦
[
pin

qin

]
+ H (2.47)

of equations, where

H =
⎡

⎣
−RC
�t

− LC
�t2

L
�t

C
�t

0

⎤

⎦
[
pin n

qin n

]
−
[
LC
�t

0

0 0

][
ṗin n

q̇in n

]

denotes a history vector, and thus information from the previous time step.
For the i-th vascular segment, dout i = Kidin i + Hi expresses the governing
equation (2.47) in symbolic notation.

(d,e) Figure 2.39 shows the development of the system variables over the first three
seconds, results that have been computed with the algorithm in Table 2.8.

Fig. 2.39 Development of system variables over time. (a) Inlet pressure pin 1. (b) Outlet flows
qout 2 and qout 3. (c) Flow split factor ξ
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Table 2.8 Algorithm for the iterative solution of three connected vessel segments

(1) Initialize pressure and flow
pin 1 0 = (p2 + p3)/2 as well as qin i 0 = q0 and ṗin i 0 = q̇in i 0 = 0 for i = 1, 2, 3

(2) Set the number of iterations n = 300 and the time step size �t = 0.01 s

(3) Do For k = 1, . . . , n
(a) Compute the history vectors Hi; i = 1, 2, 3
(b) Prescribe the inflow pin 1 = p0[1 + sin(ωk�t)]
(c) Compute outflow conditions dout 1 = K1din 1 + H1 of the first vessel, where the inlet

pressure pin 1 in the vector dout 1 is unknown
(d) Specify the compatibility conditions at the bifurcation

pin 2 = pin 3 = pout 1; qin 2 = ξqout 1; qin 2 = (1 − ξ)qout 1

(e) Compute outflow conditions dout 2 = K2din 2 + H2 of the second vessel, where the inlet
pressure pin 1 and the flow split factor ξ in dout 2 are unknown

(f) Compute outflow conditions dout 3 = K2din 3 + H3 of the third vessel, where the inlet
pressure pin 1 and the flow split factor ξ in dout 3 are unknown

(g) Use the prescribed outlet pressures pout 2(pin 1, ξ) = p2 and pout 3(pin 1, ξ) = p3 to solve
for pin 1 and ξ from these two equations
End Do

�

Example 2.12 (LDL Transport Through a Micro-channel).

(a) We may substitute the expression v = qf(1 − σ) in (2.49) and

Js = cbqf(1 − σ)− qf(1 − σ)(cw − cb)

exp(P e L/d)− 1

expresses then the LDL flux.
(b) Figure 2.41 illustrates Js as a function of the normalized channel length L/d.

A small Péclet number results in diffusion-dominated transport, whilst a large
one determines an advection-dominated process. The transport is then entirely
determined by the velocity v.

Example 2.13 (Transport Across the Ascending Vasa Recta wall).

(a) According to the law of Hagen–Poiseuille, the pressure gradient of

�p/l = 128qη/(πd4) = 117.6 kPa m−1 (2.52)

develops in the capillary, and pv = pv art − (�p/l)x = 1.04 − 117.6x [kPa]
describes the hydrostatic pressure along the AVR segment. Here, x [m] denotes
the axial coordinate measured from the inlet. The hydrostatic pressure changes



Solutions 477

Fig. 2.41 Low-Density
Lipoprotein (LDL) flux J
through a micro-channel as a
function of the normalized
channel length L/d .
Pe = vd/D denotes the
Péclet number �

Normalized channel length
LD

L 
flu

x

Pe = 0.01
Pe = 0.1
Pe = 1.0 

then linearly from 1.04 kPa at the AVR’s arterial end towards 0.9 kPa at its
venous end.

(b) Given �part = pv art − pi = 0.24 kPa and �pven = pv ven − pi = 0.1 kPa,
the relation �p = 0.24 − 117.6x [kPa] describes the transcapillary hydrostatic
pressure, where x [m] denotes the axial coordinate along the AVR segment.
In addition, �� = 2.97 − 1033.3x [kPa] describes the transcapillary COP
along the AVR segment. Figure 2.44a shows these transcapillary pressures, and
Starling’s filtration law (2.51) then predicts the filtration flux qf = −23.4 +
7744.4x [nm s−1]. Along the entire vessel an inward flux is therefore predicted
(see Fig. 2.44b), and the fluid from the medullary interstitium is continuously
absorbed into the AVR.

Fig. 2.44 Properties along the Ascending Vasa Recta (AVR). (a) Transcapillary hydrostatic
pressure �p and transcapillary Colloid Osmotic Pressures (COP) ��. (b) Filtration flux across
the AVR wall �

Example 2.14 (Glycocalyx-Cleft Model).

(a) Given �part = pv art − pi = 1.387 kPa and �pven = pv ven − pi = 1.026 kPa,
the transcapillary hydrostatic pressure reads �p = 1.387 − 102.86x [kPa],
where x [m] denotes the axial vessel position. In addition, �� = 1.613 −
72.381x [kPa] describes the transcapillary COP along the capillary segment.
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Starling’s model (2.51) predicts then the filtration flux

qf = Lp (�p − σ��) = 1.656 − 775.429x [nm s−1] ,

resulting in influx along the venous side, see Fig. 2.47 (case α = 1.0).
(b) The filtration flux reads

qf = Lp
(
�p − σ��gc

)
, (2.56)

where ��gc = �v − �gc denotes the COP difference between the vascular
space and the position underneath the glycocalyx layer. It determines the effec-
tive transcapillary COP of the glycocalyx-cleft model. Hoff’s relation allows us
to translate the molar concentration into COP, and thus�gc = (1−α)�v +α�i
holds. The effective transcapillary COP then reads ��gc = �v − �gc =
α(1.613 − 72.381x) [kPa] and the glycocalyx-cleft model (2.56) predicts the
filtration flux qf = 23.92 + α(−22.264 + 998.857x) − 1774.29x [nm s−1],
where the transcapillary hydrostatic pressure �p = 1.387 − 1.0286x [kPa] has
been used. Figure 2.47 illustrates the filtration flux along the vessel and as a
function of the factor α.

Axial vessel position      [mm]

Fi
ltr

at
io

n 
 fl

ux
   

   
[n

m
/s

]

Fig. 2.47 Filtration flux across the capillary wall predicted by the glycocalyx-cleft model. The
parameter α relates the Colloid Osmotic Pressure (COP) underneath the glycocalyx layer to
the COP levels in the interstitium and the vascular lumen, respectively. Starling’s filtration
model (2.51) corresponds to α = 1.0 �
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Example 3.1 (Deformation of Line, Volume, and Area Elements).

(a) The embedded fibers determine the structural tensor

A = a0 ⊗ a0 =
[
a0 1a0 1 a0 1a0 2

a0 2a0 1 a0 2a0 2

]
=
[

0.9127 0.2823

0.2823 0.0873

]
(3.7)

that characterizes the material in the reference configuration �0. The deforma-
tion of the continuum is described by the right Cauchy–Green strain

C = FTF =
[

3 0
1 1.3

] [
3 1
0 1.3

]
=
[

9 3
3 2.69

]
, (3.8)

and yields the fourth invariant I4 = λ2
a = A : C = AklCkl = 10.142, where

the structural tensor (3.7) has been used. The stretch in the fibers is then λa =√
I4 = 3.185.

(b) Given (3.6), the area ratio, and thus the equivalence to the volume ratio in 3D,
reads

J = detF = 3.9 .

The deformed body � occupies then the area a = JA = 7.8 m2.
(c) The inverse deformation gradient reads

F−1 =
[

0.3333 −0.2564

0 0.7692

]
,

and Nanson’s formula then yields the normal vector, and thus the equivalence to
the area vector in 3D,

ds = JF−TdS = 3.9

[
0.333333 0

−0.25641 0.769231

][
0.7 dx1

3.2 dx2

]

=
[

0.91 dx1

−0.7 dx1 + 9.6 dx2

]
[m] ,

where |ds|[m] denotes the length of the line element in �. �
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Example 3.2 (Non-linear Deformation and Strain Measures).

(a) The motion χ(X, t) determines the deformation gradient

F = Gradx = Gradχ(X, t) =
⎡

⎣
∂x1
∂X1

∂x1
∂X2

∂x2
∂X1

∂x2
∂X2

⎤

⎦ =
[

3X1t t

0 1.3t

]
, (3.14)

where (3.1) has been used. The determinant then reads detF = 3.9X1t
2, and

given the constraint detF(X, t) > 0 upon the deformation gradient, the motion
χ(X, t) is only valid for X1 > 0 and t �= 0.

(b) For X1 �= 0 and t �= 0, the deformation gradient may be inverted. The inverse
reads

F−1 =
[

0.333333
X1t

− 0.25641
X1t

0 0.769231
t

]
,

and, given the deformation gradient’s material time derivative

Ḟ =
[

3X1 1
0 1.3

]
[s−1] ,

the velocity gradient yields

l = ḞF−1 =
[

3X1 1

0 1.3

]⎡

⎣
0.333333
X1t

− 0.25641
X1t

0 0.769231
t

⎤

⎦ =
[

1
t

0

0 1
t

]
[s−1] .

It is defined for the time t �= 0.
(c) With the deformation gradient (3.14), the right and left Cauchy–Green strain

tensors read

C = FTF =
[

3X1t 0

t 1.3t

][
3X1t t

0 1.3t

]
=
[

9X2
1t

2 3X1t
2

3X1t
2 2.69t2;

]
= CT ;

b = FFT =
[

3X1t t

0 1.3t

][
3X1t 0

t 1.3t

]
=
[
t2 + 9X2

1t
2 1.3t2

1.3t2 1.69t2

]
= bT ,
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where the definitions (3.10) and (3.11) have been used. Given the defini-
tion (3.12), the Green–Lagrange strain tensor reads

E = 1

2
(C − I) =

[−0.5 + 4.5X2
1t

2 1.5X1t
2

1.5X1t
2 −0.5 + 1.345t2

]
= ET .

We may invert the left Cauchy–Green strain tensor

b−1 =
[
t2 + 9X2

1t
2 1.3t2

1.3t2 1.69t2

]
,

which then allows us to compute the Euler–Almansi strain tensor

e = 1

2
(I − b−1) =

⎡

⎢⎣
0.5 − 0.0556

X2
1 t

2
0.0427
X2

1 t
2

0.0427
X2

1 t
2 0.5 − 0.2959

t2
− 0.0329

X2
1 t

2

⎤

⎥⎦ = eT ,

where the definition (3.13) has been used. �

Example 3.3 (Linear Versus Non-linear Strain Measures).

(a) The displacement vector reads

u = x − X = RX − X = (R − I)X =
[

cosα − 1 − sinα
sinα cosα − 1

] [
X1

X2

]

and determines the engineering strain

ε = 1

2

[
∂u
∂X

+
(
∂u
∂X

)T
]

= 1

2
(R + RT)− I =

[
cosα − 1 0

0 cosα − 1

]
,

where the definition (3.9) has been used. Rigid body rotation does not introduce
any deformation in the body, and given the engineering strain is a linear strain
measure, it yields the correct result ε = 0 only at small rigid body rotations
α → 0.

(b) The right Cauchy–Green strain (3.10) reads C = FTF = RTR = I, where
the deformation gradient F has been substituted by the rigid body rotation
R. It allows us then to compute the Green–Lagrange strain (3.12), which is
a geometrically exact strain measure and therefore yields the correct result of
E = (C − I)/2 = 0. �
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Example 3.4 (Independence of Strain Measures from Rigid Body Rotation).

(a) The use of the right F = RU and left F = vQ polar decompositions of the
deformation gradient allows us to express the right and left Cauchy–Green strain
tensors through

C = FTF = (RU)TRU = UTU = UUT ; b = FFT = vQ(vQ)T = vvT = vTv .

The right U and left v stretch tensors are independent of rigid body rotations
upon �. The right and left Cauchy–Green strain tensors are then also indepen-
dent from such rigid body rotation.

(b) The right C = UTU and left b = vvT Cauchy–Green strains determine the
expressions

E = (C − I)/2 = (UTU − I)/2 and e = (I − b−1)/2 = (I − v−T v−1)/2

of the Green–Lagrange and Euler–Almansi strains, respectively. The tensors U
and v are independent from rigid body rotations and so are E and e. �

Example 3.5 (Simple and Pure Shear Deformation Kinematics).

(a) Given the principal stretches λ1 = λ and λ3 = 1, the incompressibility condition
λ1λ2λ3 = 1 allows us to define the remaining principal stretch by λ2 = λ−1.
With respect to the coordinate system {̂e1, ê2, ê3}, pure shear kinematics are
therefore determined by the motion

χ̂ps 1 = λX1 ; χ̂ps 2 = X2/λ ; χ̂ps 3 = X3 . (3.15)

The deformation gradient then reads

F̂ps = Gradχ̂ps =
⎡

⎣
λ 0 0
0 λ−1 0
0 0 1

⎤

⎦

and reflects the property det̂Fps = 1.
(b) Deducing from Fig. 3.7c, the motion

χss 1 = X1 + γX2 ; χss 2 = X2 ; χss 3 = X3

expresses simple shear with respect to the coordinate system {e1, e2, e3}. The
deformation gradient then reads



Solutions 483

Fss = Gradχ ss =
⎡

⎣
1 γ 0
0 1 0
0 0 1

⎤

⎦ (3.16)

with the property detFss = 1.
(c) The rotation tensor

R =

⎡

⎢⎢⎣

ê1 · e1 ê1 · e2 ê1 · e3

ê2 · e1 ê2 · e2 ê2 · e3

ê3 · e1 ê3 · e2 ê3 · e3

⎤

⎥⎥⎦ =
⎡

⎢⎣
1/

√
2 1/

√
2 0

−1/
√

2 1/
√

2 0
0 0 1

⎤

⎥⎦

allows us to rotate the coordinate system {̂e1, ê2, ê3} into {e1, e2, e3}. The
description of the pure shear motion χps(X) within the rotated coordinate
system {e1, e2, e3} requires the rotation of the argument as well as the function
itself, χps(X) = RTχ̂ps(RX). These operations may be interpreted as follows:
The position X is first rotated to X̂ = RX, where the function χ̂ps(X̂) is
evaluated within the principal stretch coordinates system {̂e1, ê2, ê3}, and the
result is then rotated back to the coordinate system {e1, e2, e3}, χps = RTχ̂ps.

The components of X̂ = RX then read
X̂1 = (X1 +X2)/

√
2 ; X̂2 = (X2 −X1)/

√
2 ; X̂3 = X3 , (3.17)

and the kinematics (3.15) together with the rotation χps = RTχ̂ps yield

χps 1 = X1 −X2 + (X1 +X2)λ
2

2λ
; χps 2 = X2 −X1 + (X1 +X2)λ

2

2λ
; χps 3 = X3 ,

of pure shear with respect to {e1, e2, e3}. The deformation gradient then reads

Fps = Gradχps = 1

2λ

⎡

⎢⎢⎣

1 + λ2 λ2 − 1 0

λ2 − 1 1 + λ2 0

0 0 1

⎤

⎥⎥⎦ (3.18)

and has the property detFps = 1.
(d) With the deformation gradients (3.16) and (3.18), the right Cauchy–Green

strains

Css = FT
ssFss =

⎡

⎢⎢⎣

1 γ 0

γ 1 + γ 2 0

0 0 1

⎤

⎥⎥⎦ ; Cps = FT
psFps = 1

2λ2

⎡

⎢⎢⎣

1 + λ4 λ4 − 1 0

λ4 − 1 1 + λ4 0

0 0 1

⎤

⎥⎥⎦

express simple shear and pure shear kinematics, respectively. The linear expan-
sion of these expressions (for simple shear at γ = 0, and for pure shear at λ = 1)
yields for both cases the right Cauchy–Green strain
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Css lin = Cps lin =
⎡

⎣
1 γ 0
γ 1 0
0 0 1

⎤

⎦ ,

where λ = 1 + γ /2 has been used to substitute the pure shear parameter λ.
(e) The right polar decomposition theorem allows us to express the deformation

gradient of pure shear through Fps = RpsUps, where Ups and Rps denote the
right stretch tensor and rigid body rotation, respectively. In addition, we use
the eigenvalue representation Ups = λ̂ps iN̂ps i ⊗ N̂ps i; i = 1, 2, 3 of the right
stretch tensor, where λ̂2

ps i and N̂ps i denote the eigenvalues and eigenvectors of

the right Cauchy–Green strain Cps = FT
psFps = UT

psUps, respectively. Here, the
eigenvalues

λ̂ps 1 = 1 ; λ̂ps 2 = 1/λ2 ; λ̂ps 3 = λ2

and eigenvectors

N̂ps 1 = ê3 =
⎡

⎣
0
0
1

⎤

⎦ ; N̂ps 2 = ê1 =
⎡

⎣
−1/

√
2

1/
√

2
0

⎤

⎦ ; N̂ps 3 = ê2 =
⎡

⎣
1/

√
2

1/
√

2
0

⎤

⎦ ,

are the principal stretches and principal stretch directions that have been used to
express χ̂ps in Task (a). The right stretch tensor and its inverse then read

Ups = 1

2

⎡

⎣
1/λ+ λ λ2 − 1/λ 0
λ− 1/λ 1/λ+ λ 0

0 0 2

⎤

⎦ ; U−1
ps = 1

2λ

⎡

⎣
1 + λ2 λ2 − 1 0
λ2 − 1 1 + λ2 0

0 0 2λ

⎤

⎦ ,

and allow us to prove that pure shear kinematics is free of rigid body rotation.
Given the deformation gradient (3.18), the property Rps = FpsU−1

ps = I holds,
which in turn also explains the nomenclature “pure shear.”

Given simple shear kinematics, Rss = FssU−1
ss expresses the rigid body

rotation. The corresponding matrix operations lead to a very long expression,
which is not shown here. We consider instead the particular case of γ = 0.3 that
leads to the rotation

Rss =
⎡

⎣
0.988936 0.14834 0
−0.14834 0.988936 0

0 0 1

⎤

⎦ ,

where the deformation gradient (3.16) has been used. The rotation Rss differs
from the identity tensor, and simple shear kinematics therefore leads to super-
imposed rigid body rotation on top of the shear deformation. �
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Example 3.6 (Symmetry of the Cauchy Stress Tensor).

(a) The sum of all forces in the e1 direction and the e2 direction read (σ11 −
σ11)dx1 and (σ22 − σ22)dx2, respectively. Both expressions are zero, and linear
equilibrium therefore holds.

(b) Angular equilibrium requires the sum of all moments to disappear. The moments
taken around the left bottom corner of the material particle (shown by the dot in
Fig. 3.9) read

−σ21dx1dx2 + σ12dx1dx2 + (σ11 − σ11)dx2dx1

2
+ (σ22 − σ22)dx2dx1

2
,

an expression that is zero for σ21 = σ12. The Cauchy stress has therefore to be
symmetric, σ = σT. �

Example 3.7 (Cauchy Stress State in 2D).

(a) The stress components σ11, σ22, σ12 with respect to the coordinate system
{e1, e2} are shown in Fig. 3.14a.

(b) Given the pairs (−5, 3) [MPa] and (10, 3) [MPa] of normal and shear stresses,
Mohr’s stress circle can be drawn, see Fig. 3.14b. It has the center

c = σ11 + σ22

2
= −5 + 10

2
= 2.5 MPa ,

and the radius

r =
√
(σ22 − c)2 + σ 2

12 =
√
(10 − 2.5)2 + 32 = 8.078 MPa .

Thus,

σmax = σ1 = c + r = 2.5 + 8.078 = 10.578 MPa ,

σmin = σ2 = c − r = 2.5 − 8.078 = −5.578 MPa ,

are the extremal normal stresses, whilst

τmax = +R = 8.078 MPa ;
τmin = −R = −8.078 MPa

are the extremal shear stresses, respectively. As seen by Mohr’s stress circle, at
the extremal normal stresses σmax, σmin the shear stress is zero, and therefore
said stresses are the principal stresses, σ1 = σmax; σ2 = σmin.
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Fig. 3.14 2D stress state. (a)
Stress components acting at
the faces of the material
particle with respect to the
coordinate system {e1, e2}.
(b) Mohr’s stress circle that
corresponds to the stress state
shown in (a). (c) Rotation of
the base vector e1 into the
first principal stress direction
n̂1 in the stress space (left)
and physical space (right)

The coordinate base vector e1 may be rotated into the principal stress
direction n̂1 according to Fig. 3.14(c). Given the physical space, the coordinate
axes rotate by half the angle and in the opposite direction, as compared to the
rotation in the stress space. The condition

2α1 = arctan
σ12

c − σ11
= arctan

3

7.5
= 0.381

follows from Mohr’s stress diagram, and the first principal stress direction n̂1
appears rotated at α1 = 0.190 rad against the first coordinate base vector e1, see
in Fig. 3.14c. In Mohr’s diagram, the second principal stress direction n̂2 appears
π [rad] rotated against n̂1, and in the physical space n̂2 is then perpendicular to
n̂1.

(c) The principal stresses σi; i = 1, 2 are the solutions of the real and symmetric
eigenvalue problem (σ − σ I)̂n = 0. They are the roots of the characteristic
equation

det[σ − σ I] = det

[−5 − σ 3
3 10 − σ

]
= σ 2 − 5σ − 59 = 0 ,

and thus

σ1 = 5/2 +
√
(5/2)2 + 59 = 10.578 MPa ;

σ2 = 5/2 −
√
(5/2)2 + 59 = −5.578 MPa .

The substitution of said roots in the eigenvalue problem (σ −σ I)̂n = 0 yields
the two linear systems
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[−15.578 3
3 0.578

] [
n̂11

n̂12

]
=
[

0
0

]
;
[

0.578 3
3 15.578

] [
n̂21

n̂22

]
=
[

0
0

]

of equations that determine the corresponding principal stress directions

n̂1 =
[

0.982
−0.189

]
; n̂2 =

[
0.189
0.982

]
. (3.26)

(d) The rotation matrix

R = [̂n1 n̂2]T =
[
n̂1 · e1 n̂1 · e2

n̂2 · e1 n̂2 · e2

]
=
[

cosα sinα
− sinα cosα

]
=
[

0.982 −0.189
0.189 0.982

]

links the coordinate systems {e1, e2} and {̂n1, n̂2}; it represents a rotation by the
angle

α = arcsin(−0.189) = −0.190 rad .

Figure 3.15 illustrates this rotation, and further details regarding the construction
of R are given in the Sect. A.5.6.

Fig. 3.15 Rotation of the coordinate system {e1, e2} into the principal stress coordinate system
{̂n1, n̂2}. The rotation matrix R(α) specifies the transformation between the two Cartesian
coordinate systems

(e) Whilst the stress state σ remains unchanged by a change of the coordinate
system, the stress components σij appear differently in different coordinate
systems. Given the present example, the two matrices

[−5 3
3 10

]
[MPa] and

[−5.578 0
0 10.578

]
[MPa]

represented the same stress, but with respect to the two coordinate systems
{e1, e2} and {̂n1, n̂2}. �

Example 3.8 (Octahedral Stress and von Mises Stress).

(a) Given the stress σ , its first and second invariants read
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I1 = trσ = σ11 + σ22 + σ33 = 10 + 25 − 14 = 21 MPa ;

I2 = 1

2

[
(trσ )2 − trσ 2

]

= σ11σ22 + σ11σ33 + σ22σ33 − σ 2
12 − σ 2

13 − σ 2
23

= 10 · 25 − 10 · 14 − 25 · 14 − 52 − 02 − 52 = −290 MPa2 ,

and allow us to compute the second invariant

J2 = −I1/3 + I2 = −21/3 − 290 = −297 MPa2

of the deviatoric stress σ = devσ .
(b) Given the invariants I1 and J2,

σoct = I1/3 = 7.0 MPa ; τoct =
√

−2

3
J2 =

√
2

3
297 = 14.07 MPa

are the octahedral normal and shear stresses, whilst

σM = √−3J2 = √
3 · 297 = 29.85 MPa

expresses the material particle’s von Mises stress. �

Example 3.9 (Octahedral and von Mises Stresses of Basic Stress States).

(a) The Cauchy stresses of uniaxial tension σ ut, equi-biaxial tension σ bt, and simple
shear σ ss read

σ ut =
⎡

⎣
σ 0 0
0 0 0
0 0 0

⎤

⎦ ; σ bt =
⎡

⎣
σ 0 0
0 σ 0
0 0 0

⎤

⎦ ; σ ss =
⎡

⎣
0 τ 0
τ 0 0
0 0 0

⎤

⎦ , (3.29)

where σ and τ are the respective normal and shear stress components that
parameterize the stress states.

(b) With the von Mises stress definition (3.28)2, the states (3.29) yield σM ut = σ ,
σM bt = σ , and σM ss = √

3τ for uniaxial tension, equi-biaxial tension, and
simple shear, respectively. The corresponding octahedral stresses are τoct ut =√

2σ/3, τoct bt = √
2σ/3, and τoct ss = √

6τ/3. �

Example 3.10 (Stress Measures at Finite Deformations).

(a) The motion χ(X) defines the deformation gradient F, volume ration J , and
inverse deformation gradient F−1 according to
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F = Gradχ(X) =
[

3 1
0 1.3

]
; J = detF=3.9 ; F−1=

[
0.33333 −0.25641

0 0.76923

]
.

(b) The first Piola transform (3.31) then yields the expression

P = JσF−T

= 3.9

[
1 5
5 −10

] [
0.33333 0

−0.25641 0.76923

]
=
[−3.7 15

16.5 −30

]
[MPa]

for the first Piola–Kirchhoff stress. It is second-order two-point tensor.
The second Piola transform (3.32) yields the expression

S = JF−1σF−T = F−1P

=
[

0.33333 −0.25641
0 0.76923

] [−3.7 15
16.5 −30

]
=
[−5.4641 12.6923

12.6923 −23.0769

]
[MPa]

for the second Piola–Kirchhoff stress. It is a second-order one-point tensor that
is symmetric S = ST. �

Example 3.11 (The Physical Meaning of the Rate of Deformation Tensor).

(a) The simple shear motion (3.39) defines the deformation gradient F, its inverse
F−1, and its material time derivative Ḟ according to

F = Gradχ =
[

1 γ t
0 1

]
; F−1 =

[
1 −γ t
0 1

]
; Ḟ = ∂χ

∂t
=
[

0 γ
0 0

]
.

The velocity gradient (3.34) then reads

l = ḞF−1 =
[

0 γ
0 0

]
,

and the symmetric and skew-symmetric parts of l define the rate of deformation
tensor d = (l+ lT)/2 and the spin tensor w = (l− lT)/2, respectively. They read

d =
[

0 γ /2
γ /2 0

]
[s−1] ; w =

[
0 γ /2

−γ /2 0

]
[s−1]

and are functions of the amount of shear γ . Given simple shear, the spin tensor
does not disappear, w �= 0, and the motion (3.39) is therefore not free of rigid
body rotation R.

(b) With the linear transforms m = Fm0 and n = Fn0, the expression
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d(m · n)
dt

= m0 · Ċn0 = 2m0 · Ėn0 = 2m ·
(
F−TĖF−1

)
n = 2m · dn

follows, where m0,n0 with |m0| = |n0| = 1 are convective vectors in their
reference configurations, whilst C = FTF and E = (C − I)/2 denote the
right Cauchy–Green and the Green–Lagrange strains, respectively. Given no
stretch would appear along the m and n directions, |m| = |n| = 1, the rate
of deformation d then determines how fast the angle between the two vectors m
and n changes—it describes the rate of shearing.

Let us now consider the term m · m. Its time derivative reads d(m · m)/dt =
2m · dm = 2λ2

mm/|m| · dm/|m|, where the stretch λm = |m| has been used.
With d(m · m)/dt = dλ2

m/dt = 2λmdλm/dt = 2λ2
md(ln λm)/dt it leads to

m
|m| · d m

|m| = d(ln λm)

dt
,

and the rate of deformation d therefore determines the change of logarithmic
stretch along the direction m.

(c) Given the pair (m0 = [1 0]T,n0 = [0 1]T) of convective vectors in�0, the term

2m · dn = 2Fm0 · dFn0 = 2

[
1 γ t
0 1

] [
1
0

]
·
[

0 γ /2
γ /2 0

] [
1 γ t
0 1

] [
0
1

]
= γ

shows that the material shears at the shear rate γ , see Fig. 3.20a. From m ·dm =
Fm0 · dFm0 = 0 we conclude that no stretch appears along m, whilst

n · dn = 2λn(dλn/dt) = Fn0 · dFn0 = γ 2t

characterizes the development of stretch along n. Using the initial condition
λn = 1 at t = 0, we may integrate this expression, which then yields the stretch
λn = √1 + γ 2t2/2 as a function of γ and t .

Given the pair (m0 = [√2
√

2]T,n0 = [−√
2

√
2]T) of convective vectors in

�0, the expression 2m·dn = 2Fm0·dFn0 = 4γ 2t demonstrates that the material
is exposed to a shear deformation at the shear rate of 4γ 2t , see Fig. 3.20b. In
addition, the terms

m · dm = 2λm(dλm/dt) = 2γ (γ t+1) ; n · dn = 2λn(dλn/dt) = 2γ (γ t−1)

indicate stretching along the m and n directions, respectively. Their integration
gives the stretches λm = 1 + γ t and λn = 1 − γ t , where the initial conditions
λm = λn = 1 at t = 0 have been used.

In conclusion, simple shear deformation exposes the material to a combina-
tion of shearing and stretching—only at the limit t = 0, the stretching tends to
zero and the material is then at a pure shear deformation. �
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Example 3.12 (Coupling Between Material Parameters).

(a) The trigonometric relation tan(π/4 + γ ) = (1 + ε)/(1 − νε) follows directly
from Fig. 3.23b, and the small-strain assumption allows us to approximate the
left side by

tan(π/4 + γ ) = sin(π/4 + γ )
cos(π/4 + γ ) ≈ 1 + γ

1 − γ .

It then leads to (1 + γ )(1 − νε) = (1 − γ )(1 + ε), and

2γ = (1 + ν)ε (3.48)

determines the relation between ε, γ , and ν, where the second-order small term
εγ has been neglected.

(b) Simple tension yields the relation σ = Eε between the normal stress σ and
the normal strain ε. The corresponding deformation is shown in Fig. 3.23c. We
may also rotate the material particle by π/4, and derive the relation τ = 2Gγ
between the shear stress τ and the shear strain γ , see Fig. 3.23d. At simple
tension, τ = σ/2 determines the relation between the normal and shear stresses,
a condition revealed by, for example, Mohr’s stress circle. The substitution of
these results in (3.48) then yields

E = 2G(1 + ν)

and describes the relation amongst Young’s modulus E, shear modulus G, and
Poisson ratio ν of the linear-elastic material. �

Example 3.13 (Hooke Material at Specific Load Cases).

(a) Given simple tension in the e1 direction, σ11 is the only non-vanishing stress
component, and σ22 = σ33 = σ12 = σ23 = σ13 = 0 holds. Hooke’s law (3.49)
then reads

ε11 = σ11

E
; ε22 = −ν σ11

E
; ε33 = −ν σ11

E
(3.52)

and expresses the normal strains of a material particle at simple tension.
(b) Given simple shear in the plane that is formed by the e1 and e2 directions, σ12 is

the only non-vanishing stress component and σ11 = σ22 = σ33 = σ23 = σ13 =
0 holds. Hooke’s law (3.49) together with relation (3.46) then yields

ε12 = σ12

2G
(3.53)

and expresses the shear strain of a material particle at simple shear.
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(c) Given plane stress conditions, the out-of-plane stress components are zero,
whilst the out-of-plane strain can freely develop. Let us assume e3 is the out-of-
plane direction, such that σ33 = σ23 = σ13 = 0 holds, and Hooke’s law (3.49)
reads

⎡

⎢⎢⎣

ε11

ε22

ε33

ε12

⎤

⎥⎥⎦ = 1

E

⎡

⎢⎢⎣

1 −ν 0
−ν 1 0
−ν −ν 0
0 0 1 + ν

⎤

⎥⎥⎦

︸ ︷︷ ︸
Compliance matrix

⎡

⎣
σ11

σ22

σ12

⎤

⎦ .

Whilst the out-of-plane stress disappears, σ33 = 0, the Poison’s effect results in
an out-of-plane strain ε33 �= 0. We may remove the line that corresponds to ε33
from the system, and invert it. The system

⎡

⎣
σ11

σ22

σ12

⎤

⎦ = E

1 − ν2

⎡

⎣
1 ν 0
ν 1 0
0 0 1 − ν

⎤

⎦

︸ ︷︷ ︸
Stiffness matrix

⎡

⎣
ε11

ε22

ε12

⎤

⎦

of equations then expresses the stress as function of the strain.
(d) Given plane strain, the out-of-plane strain components are zero, a constraint that

in turn leads to out-of-plane stress components. Let us assume e3 is the out-of-
plane direction, such that ε33 = ε23 = ε13 = 0 holds, and Hooke’s law (3.49)
reads

⎡

⎢⎢⎣

σ11

σ22

σ33

σ12

⎤

⎥⎥⎦ = E

(1 + ν)(1 − 2ν)

⎡

⎢⎢⎣

1 − ν ν 0
ν 1 − ν 0
ν ν 0
0 0 1 − 2ν

⎤

⎥⎥⎦

︸ ︷︷ ︸
Stiffness matrix

⎡

⎣
ε11

ε22

ε12

⎤

⎦ .

We may remove the line that corresponds to the out-of-plane stress σ33 from the
system, and invert it. The system

⎡

⎣
ε11

ε22

ε12

⎤

⎦ = 1

E

⎡

⎣
1 − ν2 −ν(1 + ν) 0

−ν(1 + ν) 1 − ν2 0
0 0 1 + ν

⎤

⎦

︸ ︷︷ ︸
Compliance matrix

⎡

⎣
σ11

σ22

σ12

⎤

⎦

of equations then expresses the strain as function of the stress. �
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Example 3.14 (Linear Viscoelasticity: Kelvin–Voigt Element).

(a) The governing equation of the Kelvin–Voigt element may be multiplied with the
integrating factor g(t) = exp[∫ (1/τ)dt] = exp(t/τ ), resulting in

dε

dt
exp(t/τ )+ ε

τ
exp(t/τ ) = d

dt

[
ε exp(t/τ )

] = σ

τ
exp(t/τ ) .

We may now integrate this expression, and

ε(t) = σ

E
+ C exp(−t/τ ) (3.70)

then determines the development of the strain of the Kelvin–Voigt element.
(b) Given a creep test, the stress increment �σ is applied at the infinitesimally

short time period 0 < t < 0+. The dashpot then “locks” and the Kelvin–
Voigt element does not develop any strain, see Fig. 3.25b. The initial condition
ε(t = 0+) = 0 holds, and the integration constant C = −�σ/E can be
identified from (3.70). The expression

ε(t) = �σ/E[1 − exp(−t/τ )] (3.71)

then describes the evolution of strain of the creep test. Figure 3.28 illustrates
this response of the Kelvin–Voigt element, where the normalized strain ε(t)/�ε
and the normalized logarithmic strain log[1 − ε(t)/�ε] are shown. The figure
also illustrates the physical meaning of the retardation time τ .

Fig. 3.28 Creep predicted by the Kelvin–Voigt rheology element. (a) Normalized strain ε(t)/�ε
and (b) logarithmic normalized strain log[1 − ε(t)/�ε] as a function of the time. The retardation
time is denoted by τ , and its physical meaning illustrated in the diagrams

(c) The linearity of the Kelvin–Voigt element allows the superposition of strain
responses. Given a discrete stress spectrum, the resulting strain therefore reads
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ε(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 ; t < t0 ,

�ε0[1 − exp(−(t − t0)/τ )] ; t+0 ≤ t < t1 ,

�ε0[1 − exp(−(t − t0)/τ )] +�ε1[1 − exp(−(t − t1)/τ )] ; t+1 ≤ t < t2 ,

· · ·

a series that approximates the convolution integral

ε(t) = 1

E

∫ t

ξ=−∞
{1 − exp[−(t − ξ)/τ ]}σ̇dξ (3.72)

at the infinitesimally small “strain steps” dε = σ̇dt/E. The comparison of
Eqs. (3.72) and (3.62) reveals that J (x) = [1 − exp(−x/τ)]/E expresses the
creep function of the Kelvin–Voigt element.

(d) At the time interval 0 ≤ t ≤ 1 s the stress rate σ̇ (t) = k holds, and
relation (3.72) then yields the strain

ε(t) = k

E

∫ t

ξ=0
{1 − exp[−(t − ξ)/τ ]}dξ = k

E
{ξ − τ exp[−(t − ξ)/τ ]}tξ=0

= k

E
{t − τ [1 − exp(−t/τ )]} for 0 ≤ t ≤ 1 , (3.73)

where the initial condition ε(0) = 0 has been used. At t > 1 the stress rate
σ̇ (t) = 0 holds, and (3.72) then yields the strain

ε(t) = k

E

∫ 1

ξ=0
{1 − exp[−(t − ξ)/τ ]}dξ = k

E
{ξ − τ exp[−(t − ξ)/τ ]}1

ξ=0

= kτ

E
{1 − τ exp(−t/τ )[exp(−1/τ)− 1]} for 1 < t < ∞ .

Figure 3.29 plots the normalized strain response of the Kelvin–Voigt rheology
element for different retardation times τ .

Fig. 3.29 Development of
the normalized strain ε(t)
according to the Kelvin–Voigt
rheology element, where E
and τ denote the elastic
stiffness and the retardation
time, respectively. At the time
0 < t < 1.0 s, the constant
stress rate k is prescribed,
whilst the stress is constant
for t > 1.0 s
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(e) At the limits τ � t and τ  t the relation (3.73) reads

ε(t) =
{
kt/E = σ/E for τ � t ,

kt2/η = σ/ηt for τ  t ,

where the series approximation exp(x) = 1 + x + x2/2! + · · · has been used in
the derivation of this expression. Given a very slow process τ � t , the Kelvin–
Voigt element therefore responds like an elastic spring, whilst for a very fast
process τ  t , it responds like a viscous fluid. Such properties may also have
been deduced from the underlying rheological model, see Fig. 3.25b or the plots
in Fig. 3.29 �

Example 3.15 (Strain-Based Viscoelastic Generalization of the Incompressible
neoHookean Material).

(a) At the thermodynamic limit, the viscous contribution to the free energy dis-
appears, and �iso(C,CM = I) = G(I1 − 3)/2 describes the material, where
I1 = trC denotes the first invariant of C. Coleman and Noll’s relation of an
incompressible material (3.131) allows us then to compute the second Piola–
Kirchhoff stress

SE = 2
∂�iso(C)
∂C

− κC−1 , (3.80)

where C = FTF denotes the right Cauchy–Green strain, and the pressure κ
serves as Lagrange multiplier to enforce the incompressibility. With the free
energy �iso, the relation ∂�iso/∂C = G/2[∂(I1 − 3)/∂I1](∂I1/∂C) = GI/2
holds, and the second Piola–Kirchhoff stress contribution from the elastic
body in Fig. 3.30 reads SE = GI − κC−1. The second Piola transform of
incompressible materials allows us then to compute the Cauchy stress

σE = FSEFT = Gb − κI , (3.81)

where b = FFT denotes the left Cauchy–Green strain.
Given simple tension of an incompressible material, the deformation gradient

F = Gradχ(X) = diag
[
λ, λ−1/2, λ−1/2

]
results in the left Cauchy–Green

strain b = FFT = diag
[
λ2, λ−1, λ−1

]
. The Cauchy stress (3.81) then reads

σ = diag
[
Gλ2 − κ,Gλ−1 − κ,Gλ−1 − κ], and the Lagrange pressure κ may

be identified from the stress σ22 = σ33 = Gλ−1 − κ = 0 perpendicular to
the tensile direction. The only non-trivial Cauchy stress component then reads
σ11 = G(λ2 − λ−1).
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(b) The governing equation (3.79) has the closed-form solution

EM =
∫ t

−∞
exp[−(t − ξ)/τ ]Ėdξ , (3.82)

which allows us to compute the Green–Lagrange strain of the Maxwell spring.
Given E11 by (3.79) and the definition (3.12),

E = diag
[
kt, (2kt + 1)−1/2 − 1, (2kt + 1)−1/2 − 1

]
(3.83)

denotes the Green–Lagrange strain at 0 ≤ t ≤ 1, whilst

E = diag
[
k, (2k + 1)−1/2 − 1, (2k + 1)−1/2 − 1

]
(3.84)

is the strain at t > 1. The corresponding strain rates then read

Ė = k diag
[
1,−(2kt + 1)−3/2,−(2kt + 1)−3/2

]
; Ė = 0 , (3.85)

and (3.82) therefore yields the Green–Lagrange strain

EM =
∫ t

0
exp[−(t − ξ)/τ ]Ėdξ = τ [1 − exp(−t/τ )]Ė ,

of the Maxwell body at 0 ≤ t ≤ 1 s, and

EM =
∫ 1

0
exp[−(t − ξ)/τ ]Ėdξ +

∫ t

1
exp[−(t − ξ)/τ ]Ėdξ

= k−1τ exp(−t/τ )[−1 + exp(1/τ)]Ė

at t > 1 s. Figure 3.31a illustrates the development of the Maxwell spring’s
normalized Green–Lagrange strain component EM 11/k at different relaxation
times τ .
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Fig. 3.31 Viscoelastic generalization of the incompressible neoHookean material at simple
tension. (a) Development of the normalized Green–Lagrange strain component EM 11/k for
different relaxation times τ . (b) Development of the normalized Cauchy stress component σ11/G

for the parameter k = 1, β = 0.6, and at different relaxation times τ

(c) Coleman and Noll’s relation of incompressible materials (3.131) determines the
second Piola–Kirchhoff stress

S = 2
∂�iso(C,CM)

∂C
+ 2

∂�iso(C,CM)

∂CM
: ∂CM

∂C
− κC−1

= G

(
I + βI : ∂CM

∂C

)
− κC−1 , (3.86)

where the Maxwell body’s Green–Lagrange strain EM yields the right Cauchy–
Green strain CM = 2EM + I. Given the identity ∂CM/∂C = ∂EM/∂E and
relation (3.82), the factor ∂CM/∂C in (3.86) may be expressed by

∂CM

∂C
=
∫ t

−∞
exp[−(t − ξ)/τ ]∂Ė

∂E
dξ , (3.87)

such that

S = G

(
I + βI :

∫ t

−∞
exp[−(t − ξ)/τ ]∂Ė

∂E
dξ

)
− κC−1 (3.88)

expresses the second Piola–Kirchhoff stress. The Lagrange pressure κ may then
be computed from the equilibrium perpendicular to the tensile direction, S22 =
S33 = 0, and the expressions (3.83) to (3.85) provide the relation between the
Green–Lagrange strain E and its rate Ė. At 0 ≤ t ≤ 1, it reads

Ė11 = E11

t
; Ė22 = kE22

(1 + 2kt)(
√

1 + 2kt − 1)
; Ė33 = kE33

(1 + 2kt)(
√

1 + 2kt − 1)
,

and
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∂Ė11

∂E11
= 1

t
; ∂Ė22

∂E22
= ∂Ė33

∂E33
= k

(1 + 2kt)(
√

1 + 2kt − 1)

may therefore be used in the computation of (3.88). At t > 1, the strain is
constant and ∂Ė11/∂E11 = ∂Ė22/∂E22 = ∂Ė33/∂E33 = 0 determines the
computation of (3.88).

Given this access, we can evaluate the integral (3.87), compute the second
Piola–Kirchhoff stress (3.86), and identify the Lagrange pressure κ from the
equation

S22 = S33 = 0 = G

{
1 + kβτα

(1 + 2kt)(
√

1 + 2kt − 1)

}
+ κ

1 − 2/
√

1 + 2kt
,

where α = 1 − exp(−t/τ ) at 0 ≤ t ≤ 1, and α = exp(−t/τ )[exp(1/τ)− 1] at
t > 1. Given κ , (3.86) and (3.87) may then be used to compute the stress S11 in
the tensile direction.

The second Piola transform for incompressible materials defines the Cauchy
stress

σ11 = S11(1 + 2kt) = G(1 + 2kt)(1 + βτα/t)− κ

in the tensile direction. Figure 3.31b shows the normalized Cauchy stress in
tensile direction σ11/G for a number of relaxation times τ . �

Example 3.16 (Stress-Based Viscoelastic Generalization of the Incompressible
neoHookean Material).

(a) Coleman and Noll’s relation (3.131) and the isochoric-volumetric split of the
deformation discussed in Sect. 3.5.3.2 yield the elastic second Piola–Kirchhoff
stress

SE = 2J−2/3Dev

(
∂�iso(C)
∂C

)

︸ ︷︷ ︸
SE

−pC−1
︸ ︷︷ ︸
SE vol

, (3.93)

where C is the right Cauchy–Green strain, and Dev(•) = (•)− [C : (•)]C−1/3
denotes the referential deviator operator. The negative hydrostatic pressure p is
a Lagrange parameter that enforces the incompressibility.

The neoHookean potential (3.91) determines the relation ∂�iso E/∂C =
G/2[∂(I1 − 3)/∂I1](∂I1/∂C) = GI/2, where the definition I1 = trC of the
strain invariant has been used. The elastic second Piola–Kirchhoff stress then
reads

SE = SE + SE vol = GDev(I)− pC−1 , (3.94)
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and the second Piola transform (3.32) for incompressible materials determines
the elastic Cauchy stress

σE = FSEFT = Gdev(b)︸ ︷︷ ︸
σ E

−pI︸︷︷︸
σ E vol

, (3.95)

where b = FFT is the (isochoric) left Cauchy–Green strain, and dev(•) = (•)−
[I : (•)]I/3 denotes the spatial deviator operator.

Given simple tension of an incompressible material, the deformation gradient
F = Gradχ(X) = diag

[
λ, λ−1/2, λ−1/2

]
defines the left Cauchy–Green strain

b = FFT = diag
[
λ2, λ−1, λ−1

]
with I1 = λ2 + 2λ−1. The Cauchy stress (3.95)

then reads

σ E = G/3 diag
[
2(λ2 − λ−1), (λ−1 − λ2), (λ−1 − λ2)

]
− p diag [1, 1, 1] .

The hydrostatic pressure p may be identified from σE 22 = σE 33 = G(λ−1 −
λ2)/3 − p = 0, and the only non-trivial stress component then reads σE 11 =
G(λ2 − λ−1).

(b) Given simple tension at the prescribed stretch (3.92), the right Cauchy–Green
strain C = FTF reads

C = diag
[
(1 + ζ )2, (1 + ζ )−1, (1 + ζ )−1

]

with ζ = kt and ζ = k at the time intervals 0 ≤ t ≤ 1 and t > 1, respectively.
The elastic second Piola–Kirchhoff stress (3.94) then reads

SE =G/3 diag
[
2[1 − (1 + ζ )−3],−ζ [3 + ζ(3 + ζ )],−ζ [3 + ζ(3 + ζ )]

]

− p diag
[
(1 + ζ )−2, (1 + ζ ), (1 + ζ )

]
. (3.96)

The equilibrium perpendicular to the loading direction, SE 22 = SE 22 +
SE vol 22 = 0, determines the hydrostatic pressure

p = −Gζ(3 + 3ζ + ζ 2)

3(1 + ζ ) , (3.97)

and (3.96) then yields explicit stress expressions.
Towards the derivation of the viscoelastic contribution (3.90), we use the

material time derivative of the elastic isochoric second Piola–Kirchhoff stress.
Given the corresponding term of (3.96), it reads

ṠE =Gk diag
[
2(1 + ζ )−4,−(1 + ζ )2,−(1 + ζ )2

]
and ṠE = 0
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at 0 ≤ t ≤ 1 and t > 1, respectively. With these stress rates, the convolution
integral (3.90) yields the over stress component in tensile direction of

SM 11(t) = 2Gkβτα

(1 + kt)4 ,

where α = 1 − exp(−t/τ ) at 0 ≤ t ≤ 1, and α = exp(−t/τ )[exp(1/τ)− 1] at
t > 1.

Figure 3.32a shows the development of the normalized over stress SM 11/G

for a number of relaxation times τ . Given this problem, the governing equa-
tion (3.90) determines a decreasing over stress SM 11/G even during the phase
of the extension.

The application of the second Piola transform σ = FSFT = F(SE +
SM)FT−pI for incompressible materials allows us to compute the Cauchy stress
component

σ11 = Gk{t (1 + kt)[3 + kt (3 + kt)] + 6[1 − τβ exp(−t/τ )]}
3(1 + kt)2

at the time 0 ≤ t ≤ 1, and

σ11 = Gk

3(1 + k)
{

3 + 3k + k2 + 6τβ exp(−t/τ )[exp(1/τ)− 1](1 + k)3
(1 + kt)4

}

at the time t > 1. Figure 3.32b shows σ11/G for a number of relaxation times
τ .

Fig. 3.32 Viscoelastic generalization of the incompressible neoHookean material at simple
tension. (a) Development of the over stress in terms of the normalized second Piola–Kirchhoff
component SM 11/G. (b) Development of the normalized Cauchy stress component σ11/G. The
computations used the parameter k = 1 s−1, β = 0.6, and different relaxation times τ �
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Example 3.17 (Continuity of the Incompressible Flow).

(a) The conservation of mass requires the inflow to match the outflow and thus

v1�x2 + v2�x1 =
(
v1 + ∂v1

∂x1
�x1

)
�x2 +

(
v2 + ∂v2

∂x2
�x2

)
�x1

holds. This relation may be divided by �x1�x2 and then yields

∂v1

∂x1
+ ∂v2

∂x2
= 0 . (3.105)

The comparison with the definition of the divergence in Sect. A.8.1.2 verifies
that (3.105) represents the index notation of the flow continuity (3.104) in 2D
Cartesian coordinates.

(b) The conservation of mass requires the inflow to match the outflow and thus

vrr�θ + vθ�r =
(
r + ∂vr

∂r
�r

)
(r +�r)�θ +

(
vθ + ∂vθ

∂θ
�θ

)
�r

holds. This relation may be divided by �r�θ , resulting in

∂vr

∂r
+ vr

r
+ 1

r

∂vθ

∂θ
= 1

r

(
∂(rvr)

∂r
+ ∂vθ

∂θ

)
= 0 , (3.106)

where the term of the order O(�r) has been neglected. The comparison with
the definition of the divergence in Sect. A.8.1.2 verifies that (3.106) represents
the index notation of the flow continuity (3.104) in cylindrical coordinates. �

Example 3.18 (Equilibrium of the Material Particle in 2D).

(a) Figure 3.36a illustrates the Cauchy stress components, where the linear expan-
sion σ (x +�x) = σ (x)+ gradσ (x) : �x has been used.

Fig. 3.36 Stresses acting at the material particle in (a) Cartesian 2D coordinates {e1, e2} and (b)
cylindrical coordinates {er , eθ } at rotational symmetry
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(b) The multiplication of the stress components with the respective edge lengths of
the material particle, and the introduction of the inertial force ρ�x1�x2v̇, yields
the equilibrium

∂σ11

∂x1
�x1�x2 + ∂σ12

∂x2
�x2�x1 − ρ�x1�x2v̇1 = 0 ,

along the e1 direction, as well as the equilibrium

∂σ22

∂x2
�x2�x1 + ∂σ12

∂x1
�x1�x2 − ρ�x1�x2v̇2 = 0 ,

along the e2 direction. These expressions may be divided by �x1�x2, and the
partial differential equations

∂σ11

∂x1
+ ∂σ12

∂x2
− ρv̇1 = 0 ; ∂σ22

∂x2
+ ∂σ12

∂x1
− ρv̇2 = 0 (3.109)

then determine the balance of linear momentum in 2D Cartesian coordinates.
The comparison with the definition of the divergence in Sect. A.8.1.2 ver-

ifies that (3.109) represents the index notation of Cauchy’s momentum equa-
tion (3.107) in 2D Cartesian coordinates.

(c) At rotational symmetry, the derivatives along the circumferential direction θ ,
together with the shear stress and strain in the r − θ plane disappear. The
conditions ∂(•)/∂θ = 0 and σrθ = εrθ = 0 therefore hold. Figure 3.36b
shows the components of the rotational symmetric stress that act at the material
particle, where linear expansions of the stress components have been used.

(d) The multiplication of the stress components with the respective edge lengths of
the material particle, and the introduction of the inertial force ρr�θ�r v̇, yields
the equilibrium

−σrr r�θ +
(
σrr + dσrr

dr
�r

)
(r +�R)�θ − 2σθθ

�θ

2
�r − ρr�θ�rv̇r = 0

along the er direction. It is the only non-trivial equilibrium relation of the
rotational symmetric problem. We may divide this equation by r�θ�r , and
the differential equation

dσrr
dr

− σθθ − σrr
r

− ρv̇r = 0 (3.110)

then holds at the limit �θ,�r → 0. It expresses the balance of linear
momentum in cylindrical coordinates.

Given cylindrical coordinates, Cauchy’s equation of motion (3.107) reads
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[
∂σrr
∂r

+ 1
r
∂σrθ
∂θ

+ σrr−σθθ
r

∂σrθ
∂r

+ 1
r
∂σθθ
∂θ

+ 2σrθ
r

]
− ρ

[
v̇r

v̇θ

]
=
[

0
0

]
,

which, at rotational symmetry ∂(•)/∂θ = 0 and σrθ = uθ = 0, results in the
only non-trivial differential equation (3.110). �

Example 3.19 (Inflated Thick-Walled Linear-Elastic Cylinder).

(a) Given plane stress σrz = σθz = σzz = 0, rotational symmetry ∂(•)/∂θ =
0, and the definition of the divergence in cylindrical coordinates (A.19),
Cauchy’s momentum equation (3.107) then yields the only non-trivial ordinary
differential equation

dσr
dr

+ σr − σθ
r

= 0 . (3.113)

The substitution of the stresses σr and σθ through the fundamental solu-
tion (3.111) then yields

−2a0/r
3 + 2c0/r + [2a0/r

2 + c0(1 + 2 log r)− c0(3 + 2 log r)]/r = 0 ,

and proves that (3.111) satisfies Cauchy’s momentum equation (3.107).
(b) Given Hooke’s law at plane stress, we may substitute the strains εr = (σr −

νσθ )/E and εθ = (σθ − νσr)/E in the strain compatibility (3.112), which then
yields the expression

∂(rσθ − rνσr)
∂r

− σr + νσθ = 0 .

The substitution of the stresses σr and σθ by (3.111), then yields c = 0, a
condition that always holds for a linear-elastic material at plane stress and
rotational symmetry.

Towards the identification of the remaining constants a0 and b0, we use the
boundary conditions σr(ri) = −pi at the inside, and σr(ro) = 0 at the outside
of the vessel. Given (3.111) and c = 0, these conditions yield −pi = b0 +
a0/r

2
i and 0 = b0 + a0/r

2
o , and results in a0 = pi(riro)

2/(r2
i − r2

o ) and 2b0 =
pir

2
i /(r

2
o − r2

i ). The stress in the vessel wall then reads

σr = r2
i (r

2
o − r2)

r2(r2
i − r2

o )
pi ; σθ = r2

i (r
2 + r2

o )

r2(r2
o − r2

i )
pi , (3.114)

a state independent from the material parameters E and ν. Figure 3.38 plots the
stresses (3.114) at diastolic pi d and systolic pi s blood pressures, respectively.
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Fig. 3.38 Circumferential
σθ and radial σr stress in the
vessel wall at diastolic
pi d = 75 mmHg and systolic
pi s = 120 mmHg blood
pressures

Radial coordinate    [mm]
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] 

(c) At the outer surface, r = ro, the stress state is uniaxial, σr o = 0 and σθ o =
2r2

i pi/(r
2
o − r2

i ) = 8pi/5. Hooke’s law then yields the circumferential strain
εθ o = σθ o/E, and �ro = εθ oro expresses the radial change at the vessel’s
outside. Between diastolic pi d and systolic pi s blood pressures, the radius then
pulsates by �r = 0.046 mm.

At the inner surface, r = ri, the stress state is biaxial, σr i = −pi and σθ i =
pi(r

2
o + r2

i )/(r
2
o − r2

i ) = 13pi/5. Hooke’s law at plane stress

[
εr i

εθ i

]
= pi

E

[
1 −ν

−ν 1

] [ −1
13/5

]

then yields the circumferential strain εθ i = (ν + 13/5)pi/E, and �ri = εθ iri
expresses the radial change at the vessel’s inside. The radial pulsatility is then
�r = 0.059 mm between diastolic pi d and systolic pi s inflations. �

Example 3.20 (Conservation of Energy in Material Description).

(a) With the internal energy U , the term d
(∫
�s 0

UdV
)
/dt expresses the change

of the subdomain’s system energy, where dV and �s 0 denotes the referential
volume element and the subdomain’s reference configuration, respectively.

(b) With the heat flux Qh and the heat source Rh, the subdomain’s heat input reads

∫

�s 0

HinputdV =
∫

�s 0

RhdV −
∫

∂�s 0

Qh · NdS =
∫

�s 0

(Rh − DivQh)dV ,

where N denotes the outward normal vector to ∂�s 0, whilst dS is the referential
area element. We used the divergence theorem to derive this expression, and
DivQh denotes the divergence of the heat flux with respect to �0. Given
Cartesian coordinates, it reads ∂Qh I /∂XI , where X denotes the referential
position of the material particle.

(c) Given the definitions of the spatial volume element dv = JdV , we may pull-
back the last integral in (3.119) to the subdomain’s reference configuration�s 0,
and the power input then reads
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∫

∂�s 0

pinputdV =
∫

�s 0

P : ḞdV ,

where P and F denote the first Piola–Kirchhoff stress and the deformation
gradient, respectively. To derive this expression, the first Piola transform (3.31),
the definition of the velocity gradient (3.34), and the symmetry of the Cauchy
stress have been used.

(d) With the results from Tasks (a) (b) (c), the conservation of energy of the
subdomain �s 0 reads

∫

�s 0

(
dU

dt
+ DivQh − Rh − P : Ḟ

)
dV = 0 ,

an expression that holds for an arbitrary subdomain �s 0. Localization therefore
results in the strong condition dU/dt + DivQh −Rh − P : Ḟ = 0 that expresses
the first law of thermodynamics at the material particle level within the body’s
reference configuration �0. �

Example 3.21 (The Incompressible neoHookean Material).

(a) Coleman and Noll’s relation of an incompressible material (3.133)

σ = 2F
∂�iso(C)
∂C

FT − κI

provides the relation between the Cauchy stress σ and the free energy �iso per
unit (reference) volume. The Lagrange pressure κ enforces the incompress-
ibility, and F and C = FTF denote the deformation gradient and the right
Cauchy–Green strain, respectively.

Given the strain invariant I1 = trC and the neoHookean free energy �iso =
G(I1 − 3)/2, the relation ∂�iso/∂C = G/2[∂(I1 − 3)/∂I1](∂I1/∂C) = GI/2
holds, and

σ = Gb − κI (3.139)

expresses the Cauchy stress of the incompressible neoHookean material. Here,
b = FFT denotes the left Cauchy–Green strain and represents the deformation
kinematics.

Given simple tension, F = Gradχ st(X) = diag[λ, λ−1/2, λ−1/2] describes
the deformation gradient, and b = FFT = diag[λ2, λ−1, λ−1] expresses
then the left Cauchy–Green strain. The Cauchy stress (3.139) therefore reads
σ = diag[Gλ2 − κ,Gλ−1 − κ,Gλ−1 − κ]. The Lagrange pressure κ may be
identified from the stress σ22 = σ33 = Gλ−1 − κ = 0 perpendicular to the
tensile direction, and σ11 = G(λ2 − λ−1) then yields the only non-trivial stress
component, see Fig. 3.41a.



506 Solutions

Fig. 3.41 Cauchy stress predictions of the incompressible neoHookean material upon a number
of elementary deformation cases. (a) Simple tension and equi-biaxial tension. (b) Simple shear and
pure shear. Given pure shear, the principal stretch λ = 1 + γ /2 has been substituted by the amount
of shear γ

(b) Given equi-biaxial tension, F = Gradχet(X) = diag[λ, λ, λ−2] and b =
diag[λ2, λ2, λ−4] denote the deformation gradient and the left Cauchy–Green
strain, respectively. The Cauchy stress (3.139) then reads σ = diag[Gλ2 −
κ,Gλ2 − κ,Gλ−4 − κ], and the identification of κ = Gλ−4 from σ33 = 0 then
yields the two stress components σ11 = σ22 = G(λ2 − λ−4), see Fig. 3.41a

(c) Given simple shear,

F =
⎡

⎣
1 γ 0
0 1 0
0 0 1

⎤

⎦ ; b =
⎡

⎣
1 + γ 2 γ 0
γ 1 0
0 0 1

⎤

⎦

expresses the deformation gradient F = Gradχ ss(X) and the left Cauchy–Green
strain b, respectively. The Cauchy stress (3.139) then reads

σ = G

⎡

⎣
γ 2 γ 0
γ 0 0
0 0 0

⎤

⎦ ,

where the normal stress σ33 = G − κ = 0 has been used to substitute the
Lagrange pressure κ = G, see Fig. 3.41b.

(d) Given pure shear,

F = 1

2λ

⎡

⎣
1 + λ2 λ2 − 1 0
λ2 − 1 1 + λ2 0

0 0 2λ

⎤

⎦ ; b = 1

2λ2

⎡

⎣
1 + λ4 λ4 − 1 0
λ4 − 1 1 + λ4 0

0 0 2λ2

⎤

⎦

expresses the deformation gradient F = Gradχps(X) and the left Cauchy–Green
strain b, respectively. The Cauchy stress (3.139) then reads
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σ = G

2λ2

⎡

⎣
(λ2 − 1)2 λ4 − 1 0
λ4 − 1 (λ2 − 1)2 0

0 0 0

⎤

⎦ ,

where the normal stress σ33 = G − κ = 0 has been used to substitute the
Lagrange pressure κ = G, see Fig. 3.41b. �

Example 3.22 (Equilibrium in Material Description).

(a) The linear momentum equilibrium of the subdomain �s reads
∫
∂�s

tds +∫
�s

bfdv = 0, where t denotes the traction vector per unit spatial surface. We
may use Cauchy’s stress theorem t = σn to substitute the traction vector, which
then yields

∫

∂�s

σnds +
∫

�s

bfdv = 0 . (3.142)

With the divergence theorem (A.8.2), the two integrals may be combined, and∫
�s
(divσ + bf)dv = 0 expresses the linear momentum equilibrium of the

subdomain. Localization then yields

divσ + bf = 0 ,

in accordance to Cauchy’s static momentum equation (3.107).
(b) Given Nanson’s formula (3.5) and the first Piola transform (3.31), the equilib-

rium relation (3.142) reads

∫

∂�s 0

PNdS +
∫

�s 0

BfdV = 0 , (3.143)

where dV = J−1dv denotes the reference volume element, whilst Bf =
Jbf expresses the body force per unit reference volume. The divergence
theorem (A.8.2) allows us to express the equilibrium of the subdomain through∫
�s 0
(DivP + Bf)dV = 0, and localization then yields

DivP + Bf = 0

in accordance to Cauchy’s momentum equation (3.142) with respect to
the reference configuration. Here, DivP denotes the divergence of the first
Piola–Kirchhoff stress with respect to �0. Given Cartesian coordinates, it
reads ∂PIJ /∂XJ , where X denotes the referential position of the material
particle. �

3.142


508 Solutions

Example 3.23 (The Inflated Thin-Walled Linear-Elastic Circular Tube).

(a) The vessel may be sectioned longitudinally to free the circumferential stress σθ ,
as shown in Fig. 3.44a, and transversally to free the axial stress σz, as shown
in Fig. 3.44b. The equilibrium along circumferential and axial directions then
reads 2σθh = pid and dπhσz = pid

2π/4, respectively. In the derivation of
these expressions, we assumed that blood pressure also translates in axial vessel
wall stress, which applies to many practical applications. The biaxial stress state
of the vessel wall therefore reads

σθ = pid

2h
; σz = pid

4h
= σθ/2 .

The results σθ d = 62.5 kPa and σθ s = 100.0 kPa then determine the
circumferential stresses in the wall at diastolic and systolic blood pressures,
whilst σz d = 31.3 kPa and σz s = 50.0 kPa are the respective axial stresses.

Fig. 3.44 Sectioning of the
inflated thin-walled tube
towards the illustration of (a)
circumferential stress σθ and
(b) axial stress σz in the wall

(b) The vessel wall of the inflated thin-walled tube represents a classical plane
stress problem, where the circumferential and axial directions are the respective
principal stress directions. Hooke’s law (3.49) then reads

⎡

⎣
εθ

εz

εr

⎤

⎦ = 1

E

⎡

⎣
1 −ν

−ν 1
−ν −ν

⎤

⎦
[
σθ

σz

]
, (3.145)

where εθ , εz, εr denote the principal engineering strains in circumferential θ ,
axial z, and radial r directions, respectively.

Given relation (3.145), the vessel wall strain at diastolic and systolic blood
pressures reads

⎡

⎣
εθ d

εz d

εr d

⎤

⎦ = 1

625

⎡

⎣
1 −0.49

−0.49 1
−0.49 −0.49

⎤

⎦
[

62.5
31.3

]
=
⎡

⎣
0.0755
0.001

−0.0735

⎤

⎦ ,
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⎡

⎣
εθ s

εz s

εr s

⎤

⎦ = 1

625

⎡

⎣
1 −0.49

−0.49 1
−0.49 −0.49

⎤

⎦
[

100.0
50.0

]
=
⎡

⎣
0.1208
0.0016

−0.1176

⎤

⎦ .

The vessel’s diameter pulsates then at�d = (εθ s−εθ d)D = 0.223 mm between
the diastolic and systolic blood pressures. We also note that the axial strains are
approximately two orders of magnitude smaller than the circumferential strains.

(c) Given the expression (2.32), the capacity of the elastic vessel segment is C =
3D3πL/(16HE) = 235.62 mm3Pa−1 = 3.1416 mm3 mmHg−1. �

Example 3.24 (Applications of the Principle of Virtual Work).

(a) We may introduce the arbitrary virtual displacement δu that moves the rigid
body in space. Given “frozen” Pi , the external virtual work reads Wext =∑n
i=1 Pi · δu. A rigid body does not deform, and therefore no internal virtual

work appears, δWint = 0.
Given any arbitrary virtual displacement δu, the PVW δWext − δWint =

δWext = 0 then yields
∑n
i=1 Pi = 0 and resembles the classical balance of

linear momentum.
(b) Let us introduce the force F = ku that acts at the spring, where u denotes

the elongation with respect to its load-free length. On top of the loaded
configuration, we introduce the arbitrary virtual displacement δu. The force F
is “frozen” upon this perturbation, and the corresponding external and internal
virtual works then read δWext = −Gδu and δWint = −Fδu = −kuδu,
respectively.

Given an arbitrary δu, the PVW δWext − δWint = −Gδu + kuδu = 0 then
leads to −G+ ku = 0 and resembles the classical balance of linear momentum.

(c) The shear stress τ = ηγ̇ acts within the fluid layer, where γ̇ = V/H denotes
the shear rate. At “frozen” stresses τ and τ0, the flow is perturbed by the virtual
velocity δv = δVy/H , a field that satisfies the essential boundary condition
δv = 0 at y = 0, also known as the no-slip condition.

The perturbation of the flow contributes to the external and internal virtual
works per unit time, and thus to the external virtual power δẆext as well as the
internal virtual power δẆint. The external virtual power reads δẆext = τ0AδV ,
and the virtual shear rate δγ̇ = δV/H allows us to compute the internal virtual
power δẆint = ∫

y
τAδγ̇ dy = ηAV/H

∫
y
δγ̇ dy = ηAV δV/H .

Given arbitrary δV , the PVW δWext − δWint = τ0AδV − ηAV δV/H = 0
then leads to τ0 − ηV/H = τ0 − τ = 0 and resembles the classical balance of
linear momentum. �
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Example 3.25 (Strain Localization in a Rod at Tension).

(a) Let us consider the rod at State (III). The strain in the n−1 elastically deformed
sections reads ε = σ/E, whilst ε∗ = Y/E + (Y − σ)/H expresses the strain in
the localized section, where σ denotes the stress. The averaged (smeared) strain
then reads

ε̄ = u/L = 1

n
[(n− 1)ε + ε∗] = 1

n

[
(n− 1)σ + Y

E
+ Y − σ

H

]
.

This relation may be inverted, and

σ = ε̄HEn− Y (H + E)
H(n− 1)− E (3.153)

then expresses the stress as a function of the problem parameters. The depen-
dence on the number of sections n is shown in Fig. 3.51a.

(b) The work
∫
σdε per unit volume enters the mechanical system, energy that has

been entirely dissipated upon State (IV). Given the average strain ε̄1 = Y (H +
E)/(HEn) at State (IV), the dissipation per unit volume reads D = ∫ ε̄1

0 σdε.
We may split the integral at ε̄0 = Y/E, the strain at the elastic limit Y , such
that σ = Eε̄ and (3.153) determine the stress at 0 ≤ ε̄ < ε̄0 and ε̄0 < ε̄ ≤ ε̄1,
respectively. The integration then yields the dissipation

D = Y 2

2E
+

ε̄1∫

ε̄0

σdε̄ = Y 2

2n

(
1

H
+ 1

E

)
. (3.154)

Given all dissipation appears in the section of the strain localization, we may
also derive this expression through the dissipation of the localized section
Dloc = Y 2(1/H + 1/E)/2 weighted by the factor 1/n.

As with the stress (3.153), the dissipation (3.154) depends on the number
of sections n, and D even disappears for n → ∞; the continuum solution of
the problem. Figure 3.51a indicates this result—loading and unloading follow
then the same path. This obviously non-physical result is a direct consequence
of the non-polar continuum. The material volume, within which the localization
develops, tends to zero and the dissipation D then disappears.
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Fig. 3.51 Stress σ versus averaged strain ε̄ response of a rod at simple tension that is discretized
by n sections. (a) Non-regularized response. (b) Regularized response by using the “section size-
dependent” softening modulus Hreg = H/n

(c) The substitution of H by Hreg = H/n in Eqs. (3.153) and (3.154) regularizes
the problem, and then yields

ε̄reg = 1

n

[
(n− 1)σ + Y

E
+ Y − σ
H/n

]
; Dreg = Y 2

2n

(
1

H/n
+ 1

E

)
.

It implicitly introduced a failure length-scale and therefore prevents from the
development of the localization within an infinitesimal small volume of the
material. The spurious dependence on n disappears, and the response converges
towards n → ∞, see Fig. 3.51b. The regularized dissipation of the continuum
problem yields then the physically correct result of Dreg n→∞ = Y 2/(2H). �

Example 4.1 (Transformation of the Quadrilateral Finite Element).

(a) Given the shape functions (4.5), the spatial interpolation reads

x = (η−ξ−x1 + η−ξ+x2 + η+ξ+x3 + η+ξ−x4
)
/4 ;

y = (η−ξ−y1 + η−ξ+y2 + η+ξ+y3 + η+ξ−y4
)
/4 ,

where the notation ξ+ = 1 + ξ , ξ− = 1 − ξ , η+ = 1 + η, and η− = 1 − η has
been used. The interpolation then reads

x = 1.5 − 0.25η + 1.75ξ ; y = 1.3 + (1.05 − 0.15ξ)η + 0.1ξ

where the specific nodal coordinates x have been used.
(b) The spatial gradient, and thus the Jacobian of the transformation reads

J = ∂x
∂ξ

=
[
∂x/∂ξ ∂x/∂η

∂y/∂ξ ∂y/∂η

]
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= 1

4

[−η−x1 + η−x2 + η+x3 − η+x4 −ξ−x1 − ξ+x2 + ξ+x3 + ξ−x4

−η−y1 + η−y2 + η+y3 − η+y4 −ξ−y1 − ξ+y2 + ξ+y3 + ξ−y4

]
,

then results in

J =
[

1.75 −0.25
0.1 − 0.15η 1.05 − 0.15ξ

]
,

where the specific nodal coordinates x have been used.
(c) The determinant of the Jacobian transformation reads

detJ = 1.8625 − 0.0375η − 0.2625ξ ,

a linear function with respect to the parent domain coordinates.
The area of the finite element in the physical space reads A = (|a×b|+ |b×

c|)/2 = 7.45 cm2, where a = [x2 y2 0]−[x1 y1 0]T, b = [x3 y3 0]−[x1 y1 0]T,
and c = [x4 y4 0]−[x1 y1 0]T represent vectors that are determined by the nodal
coordinates. We used a 3D vector representation to allow for the use of the cross
product.

The comparison of this result with the determinant of the Jacobian trans-
formation in the center of the element reveals that A = 4detJ(ξ = 0) =
4 · 1.8625 = 7.45 cm2 holds. �

Example 4.2 (Displacement and Strain Interpolation).

(a) The shape interpolation matrix of a quadrilateral element reads

N =
[
N1 0 N2 0 N3 0 N4 0
0 N1 0 N2 0 N3 0 N4

]
.

(b) With the definition of the linear strain, the strain interpolation matrix reads

B =

⎡

⎢⎢⎢⎣

∂N1
∂x

0 ∂N2
∂x

0 ∂N3
∂x

0 ∂N4
∂x

0

0 ∂N1
∂y

0 ∂N2
∂y

0 ∂N3
∂y

0 ∂N4
∂y

1
2
∂N1
∂y

1
2
∂N1
∂x

1
2
∂N2
∂y

1
2
∂N2
∂x

1
2
∂N3
∂y

1
2
∂N3
∂x

1
2
∂N4
∂y

1
2
∂N4
∂x

⎤

⎥⎥⎥⎦ ,

and, given the Jacobian transformation J = ∂x/∂ξ , we may compute the spatial
gradient

∂Ni

∂x
= ∂Ni

∂ξ
: ∂ξ
∂x

= ∂Ni

∂ξ
: J−1 ; i = 1, . . . , 4 ,

of the shape functions Ni .
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(c) Given the parent domain position, the displacement interpolation matrix reads

N =
[

0.1925 0.0 0.3575 0.0 0.2925 0.0 0.1575 0.0

0.0 0.1925 0.0 0.3575 0.0 0.2925 0.0 0.1575

]
,

and with the inverse Jacobian matrix

J−1 =
[

0.562238 0.13986
−0.0643357 0.979021

]
,

we can then compute the strain interpolation matrix

B =

⎡

⎢⎢⎣

−0.1433 0.0 0.1755 0.0 0.1056 0.0 −0.1378 0.0

0.0 −0.2098 0.0 −0.2797 0.0 0.3497 0.0 0.1399

−0.1049 −0.0717 −0.1399 0.0878 0.1748 0.0528 0.0699 −0.0689

⎤

⎥⎥⎦ .

�

Example 4.3 (Heat Conduction Problem).

(a) Given the admissible variation of the temperature δθ with δθ = 0 at ∂�θ , the
partial differential equation (4.12), multiplied with δθ and then integrated over
�, yields

∫

�

δθ

(
∂qi

∂xi
− r + ρcθ̇

)
dv = 0 . (4.13)

(b) The integration by parts
∫
�
(∂qi/∂xi)δθdv = ∫

�
∂(qiδθ)/∂xidv −∫

�
qi(∂δθ/∂xi)dv and the use of the divergence theorem

∫
�
∂(qiδθ)/∂xidv =∫

∂�
qiδθnids, allows us to express (4.13) through

∫

∂�

δθqinids +
∫

�

δθ
(
ρcθ̇ − r) dv −

∫

�

∂δθ

∂xi
qidv = 0 ,

where ni denotes the components of the outward normal vector to the boundary
∂�. Embedding the Dirichlet boundary condition δθ = 0 at ∂�θ then results in
the weak form

∫

∂�q

δθqinids +
∫

�

δθ
(
ρcθ̇ − r) dv +

∫

�

∂δθ

∂xi
k
∂θ

∂xi
dv = 0 (4.14)

of the transient heat conduction problem, where Fourier’s law together with
∂�q ∪ ∂�θ = ∂� has been used. �
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Example 4.4 (Linearization of a Spatial Variational Statement).

(a) The directional derivative of the relation (4.18)2 reads

Du

∫

�0

δE : S dV =
∫

�0

Du(S : δE)dV =
∫

�0

(DuE : C : δE + S : DuδE) dV ,

where the chain rule has been used, and C = ∂S/∂E denotes the
material’s stiffness in the reference configuration. Given the expressions
DuE = sym(FTGrad�u), δE = sym(FT Gradδu), and DuδE =
sym(GradT�u Gradδu) derived in Appendix D, the linearization then reads

Du

∫

�0

δE : SdV =
∫

�0

[
(FT Grad�u) : C : (FT Gradδu)

+S : (GradT�u Gradδu)
]

dV , (4.22)

where the symmetry of C and S has been used.
(b) With the second Piola transform S = JF−1σF−T and the relation CIJKL =

JcijklF
−1
iI F

−1
jJ F

−1
kK F

−1
lL between the stiffness in the reference and spatial

configurations, the linearization (4.22) reads

Duδ�int =
∫

�

(
gradsδu : C : grads�u + gradsδu : grads�uσ

)
dv , (4.23)

where the kinematics relations grad(•) = Grad(•)F−1 and dv = JdV have
been used. �

Example 4.5 (The 1D Advection–Diffusion Finite Element).

(a) Given the shape functions N1, N2 together with the definitions K, D, and f
according to (4.28), we get

K = v

∫ h

0

⎡

⎣
N1

dN1
dx N1

dN2
dx

N2
dN1
dx N2

dN2
dx

⎤

⎦ dx = v

2

[−1 1
−1 1

]
,

D = ν

∫ h

0

⎡

⎣
dN1
dx

dN1
dx

dN1
dx

dN2
dx

dN2
dx

dN1
dx

dN2
dx

dN2
dx

⎤

⎦ dx = ν

h

[
1 −1

−1 1

]
,

and

f = ξ

∫ h

0

[
N1

N2

]
dx = αh

2

[
1
1

]
,

where the natural coordinate ξ = 2x/h− 1 has been used.
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(b) Given the shape functions N1, N2 and S1, S2, the interpolations c = Nihi and
δc = Siδhi express the concentration c and the test function δc. Consequently,
the expressions

K = v

∫ h

0

[
S1

dN1
dx S1

dN2
dx

S2
dN1
dx S2

dN2
dx

]
dx = v

2

[−1 1
−1 1

]
+ β v

2

[
1 −1

−1 1

]
,

D = ν

∫ h

0

[ dS1
dx

dN1
dx

dS1
dx

dN2
dx

dS2
dx

dN1
dx

dS2
dx

dN2
dx

]
dx = ν

h

[
1 −1

−1 1

]
,

and

f = ξ

∫ h

0

[
S1

S2

]
dx = αh

2

[
1
1

]
+ β αh

2

[−1
1

]

define the Petrov–Galerkin 1D AD finite element, where the natural coordinate
ξ = 2x/h− 1 has been used. �

Example 4.6 (Vessel Segment at Quasi-static Tension).

(a) The force P acts as an external force at node 2, which together with the stiffness
matrix K of the linear truss element (4.35) then yields the system

EA

l

[
1 −1

−1 1

] [
u1

u2

]
=
[
R

P

]

of algebraic equations, where the (in general unknown) reaction force R at
node 1 has been introduced. Given detK = 0, this system is singular and cannot
be solved.

(b) The Dirichlet boundary condition u1 = 0 at node 1 removes the first column
and row from the system. The remaining equation EAu2/l = 342.3u2 = P

then yields the nodal displacement u2 = 0.876 mm, where the cross-section
A = (d2

o − d2
i )π/4 = 18.38 mm2 has been used. With the linear interpolation,

the displacement along the vessel’s axial direction reads u = 73.04 x [mm],
where x is given in meters. �
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Example 4.7 (Nodal Forces and Stiffness of a Quadrilateral Finite Element).

(a) Given the shape functions (4.5) and the definition (4.7) together with the nodal
coordinates, the strain interpolation matrix in the center ξ = η = 0 reads

B =
⎡

⎣
−0.1598 0 0.1031 0 0.1598 0 −0.1031 0

0 −0.1804 0 −0.2062 0 0.1804 0 0.2062
−0.09021 −0.0799 −0.1031 0.05155 0.09021 0.0799 0.1031 −0.05155

⎤

⎦ ,

a result that used the inverse Jacobian transformation

J−1 =
[

0.525773 −0.0515464
0.113402 0.773196

]

in the computation of the spatial gradients ∂Ni/∂x; i = 1, . . . , 4.
(b) The integration order 2n− 1 determines the Gauss–Legendre quadrature, where

n denotes the number of integration points along a coordinate direction. The
definitions (4.30) of f and K together with the quadrature rules (4.46) and (4.47)
allow us to identify the number of integrations points needed for an exact inte-
gration. The traction t i and the stiffness Cij are constant, the strain interpolation
Bij includes linear terms, the spatial interpolationNij as well as the determinate
of the Jacobian transformation detJ include quadratic terms. The determination
of f and K then represents the integration over fourth-order and respectively
second-order polynomial expressions. The exact integration therefore needs a
minimum of n = 3 and n = 2 × 2 = 4 integration points, respectively.

(c) Tables 4.2 and 4.3 illustrate the algorithms that have been used to compute f and
K. With the provided data, the force vector reads

f = [0.7275 1.2125 0.7275 1.2125 0.0 0.0 0.0 0.0]T [N] ,

whilst the stiffness matrix results in

K =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

584755. 275405. −357462. 181732.
275405. 763267. −72970. 240848.

−357462. −72970. 547409. −177679.
181732. 240848. −177679. 1197860

−348424. −259113. −23801.2 −208017.
−259113. −349337. 46685.5 −908624.
121131. 56677.2 −166146. 203963.

−198025. −654778. 203963. −530088.
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−348424. −259113. 121131. −198025.
−259113. −349337. 56677.2 −654778.
−23801.2 46685.5 −166146. 203963.
−208017. −908624. 203963. −530088.
618703. 277746. −246478. 189384.
277746. 822726. −65318.7 435235.

−246478. −65318.7 291493. −195322.
189384. 435235. −195322. 749631.

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[N mm−1] .

Table 4.2 Algorithm to compute the nodal force vector f with Gauss–Legendre quadrature

(1) Parent domain location and weights for n = 3 integration points

g =
⎡

⎢⎣
−0.774597 −1.0 0.555556

0.0 −1.0 0.888889

0.774597 −1.0 0.555556

⎤

⎥⎦

(2) Summation over the integration points

fi = 0; i = 1, . . . , 8

Do l = 1, . . . , 3

Compute Jacobian J and displacement interpolation matrix Nij at ξ = gl1 and η = gl2

Add integration point contribution to the nodal force

fi ← fi +Nai tahw detJ with w = gl3

End Do

Table 4.3 Algorithm to compute the element stiffness matrix K with Gauss–Legendre quadra-
ture

(1) Parent domain location and weights for n = 2 × 2 = 4 integration points

g =

⎡

⎢⎢⎢⎣

−0.57735 −0.57735 1.0

0.57735 −0.57735 1.0

0.57735 0.57735 1.0

−0.57735 0.57735 1.0

⎤

⎥⎥⎥⎦

(2) Summation over the integration points

kij = 0; i, j = 1, . . . , 8

Do l = 1, . . . , 4

Compute Jacobian J and shape function gradients gradNi at ξ = gl1 and η = gl2

Invert J and compute the strain interpolation matrix Bij at ξ = gl1 and η = gl2

Add integration point contribution to the element stiffness

Kij ← Kij + BaiCabBbjhw detJ with w = gl3

End Do
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The set

{2.827 · 106, 1.001 · 106, 7.506 · 105, 6.358 · 105,

3.61 · 105, 3.993 · 10−10,−2.085 · 10−10,−1.197 · 10−10} ,

then represents the eight eigenvalues of K, out of which three are (approxi-
mately) zero. Given no boundary conditions have been prescribed, these three
eigenvalues correspond to two rigid body translations and one rigid body
rotation, respectively.

(d) The one-point Gauss–Legendre quadrature (ξ = 0, η = 0, w = 4) results in the
element stiffness matrix

K =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

474508. 267805. −179604. 193994.
267805. 570171. −60708.4 552362.

−179604. −60708.4 260479. −197460.
193994. 552362. −197460. 695311.

−474508. −267805. 179604. −193994.
−267805. −570171. 60708.4 −552362.
179604. 60708.4 −260479. 197460.

−193994. −552362. 197460. −695311.

−474508. −267805. 179604. −193994.
−267805. −570171. 60708.4 −552362.
179604. 60708.4 −260479. 197460.

−193994. −552362. 197460. −695311.
474508. 267805. −179604. 193994.
267805. 570171. −60708.4 552362.

−179604. −60708.4 260479. −197460.
193994. 552362. −197460. 695311.

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[N mm−1] .

The set

{2.731 · 106, 8.015 · 105, 4.681 · 105, 4.472 · 10−10,

−2.3 · 10−10, 9.153 · 10−11,−8.256 · 10−11, 3.7 · 10−12}
represents the eigenvalues of K, out of which five are (approximately) zero.
They correspond to two rigid body translations, one rigid body rotation, and
two hourglass modes of the finite element. The one-point integration therefore
leads to an under-integrated finite element stiffness, and one expects spurious
deformation modes from the application of such a finite element. �
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Example 4.8 (Hu-Washizu Variational Principles).

(a) The Hu-Washizu variational potential leads to the three variational statements

δu�HW(u, p, θ) =
∫

�

σ (u) : gradsδu dv +
∫

�

pJ(u)divδu dv − δu�ext = 0 ;

δp�HW(u, p, θ) =
∫

�

(J (u)− θ)δp dv − δp�ext = 0 ;

δθ�HW(u, p, θ) =
∫

�

(dU/dθ − p)δθ dv − δθ�ext = 0 ,

where δuJ (u) = J (u)divδu expressed the variation of the volume ratio.
(b) The variations of the augmented Hu-Washizu potential L(u, p, θ, λ) leads to the

four variational statements

δuL(u, p, θ, λ) = δu�HW(u, p, θ) ; δpL(u, p, θ, λ) = δp�HW(u, p, θ) ;

δλL(u, p, θ, λ) =
∫

�0

h(θ)δλ dV − δθ�ext = 0 ;

δθL(u, p, θ, λ) =
∫

�0

(dU/dθ + λdh/dθ − p)δθ dV − δλ�ext = 0 . �

Example 4.9 (SUPG-Stabilized 1D Advection–Diffusion Problem).

(a) Given the shape functions N1, N2, the artificial diffusivity ν� and

P(δc) = vdδc/dx ; R(c) = vdc/dx − νd2c/dx2 + α
of the SUPG-stabilization, the expression (4.65) results in

δhi

[∫

�

NivBj dv +
∫

�

BiνBj dv +
∫

�

Bi
βh

2
(vBj + α) dv

]
hj

= −δhi
∫

�

Niαdv . (4.66)

The second derivative d2c/dx2 disappeared in this expression as a consequence
of the linear shape functions. We rearrange the expressions towards

∫

�

[
v

(
Ni + βh

2
Bi

)
Bj + BiνBj

]
dv hj = −

∫

�

α

(
Ni + βh

2
Bi

)
dv ,

(4.67)
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such that

Ke = v

∫ h

0

[
S1B1 S1B2

S2B1 S2B2

]
dx = v

2

([−1 1
−1 1

]
+ β

[
1 −1

−1 1

])

and

De = ν

∫ h

0

[
B1B1 B1B2

B2B1 B2B2

]
dx = ν

h

[
1 −1

−1 1

]

denote the advection and the respective diffusion matrices, whilst

fe = α

∫ h

0

[
S1

S2

]
dx = ξh

2

[
1 − β
1 + β

]

represents the right-hand-side vector. Here, the shape functions Si = Ni +
βhBi/2; i = 1, 2 interpolates the test function δc, whilstBi = dNi/dx; i = 1, 2
interpolates the gradient of c. Given β = 1, the finite element expressions are
identical to the 1D full upwind stabilization (4.61).

(b) Given the definition Si = Ni + βhBi/2 together with the property dBi/dx =
0 of the linear finite element, we conclude that dSi/dx = Bi holds. The
expression (4.67) therefore derives from the interpolations δc = Siδhi and
c = Nihi , and represents a consistent Petrov–Galerkin approach.

(c) Given the expressions Ke,De, and fe at the finite element level, the global
system (K + D)h = f may be assembled. Implementing the Dirichlet boundary
conditions h1 = h11 = 0, the system can be solved. Figure 4.16 illustrates the
SUPG result at β = 0.3 in relation to the exact solution to this AD problem.

Fig. 4.16 SUPG-stabilized
1D Advection–Diffusion
(AD) problem. The finite
element solution has been
stabilized with β = 0.3 �

Exact
SUPG FEM

Va
ri

ab
le

 

1      2        3       4        5        6       7        8       9      10     11
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Example 4.10 (Solving a Linear System of Equations).

(a) The LU factorization of K reads

L =

⎡

⎢⎢⎣

1 0 0 0
2 1 0 0
0 −3 1 0
8 38 −57

5 1

⎤

⎥⎥⎦ ; U =

⎡

⎢⎢⎣

1 5 12 2
0 −1 19 −1
0 0 −55 3
0 0 0 281

5

⎤

⎥⎥⎦ ; IP =

⎡

⎢⎢⎣

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

⎤

⎥⎥⎦ ,

where L and U are lower and upper triangular matrices, whilst IP denotes the
permutation matrix. Given the pivoted nodal forces f = Ipf = [1 0 2 0]T, the
intermediate vector y = [1 −2 −4 112/5]T derives from the forward reduction
of Ly = f, which then allows us to compute the solution h = [113/3091 −
598/3091 292/3091 112/281]T from the back substitution of y = Uh.

(b) Given the initialization h0 = 0, the iteration

Ahn+1 = yn with yn = Ahn + f − Khn (4.71)

may be used to iteratively solve the system. Here, A is a matrix that “lumps”
the individual elements of the stiffness matrix K to the diagonal and reads A =
diag[11, 19, 20, 11].

The iteration (4.71) then yields the convergence shown in Fig. 4.17, where
the relative logarithmic error ε = log(|hn|/|hexact|) quantifies the error of the
iterative solution at the n-th iteration.

Fig. 4.17 Convergence of
the iterative solution. Relative
logarithmic error ε with
respect to the number of
iterations �
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Example 4.11 (Stability of the Euler Integration).

(a) Given the differential equation (4.72), the time-marching iteration reads yn+1 =
yn+φ�t , where φ = −yntn and φ = −yn+1tn+1 describe the forward-Euler and
backward-Euler integrations, respectively. After some algebraic manipulations,
the iterations

yn+1 = yn(1 − tn�t) and yn+1 = yn/(1 + tn+1�t)

express the forward-Euler and backward-Euler integration.
(b) Figure 4.19 illustrates the numerical integrations, superimposed on the exact

solution y = exp(−at2/2). With the step size �t = 9/10, the forward-Euler
integration is unstable, whilst backward-Euler converges to the exact result
y(t → ∞) = 0. At the step size �t ≤ 1, also the forward-Euler integration
is stable.

Fig. 4.19 Forward-Euler and
backward-Euler integrations.
Forward-Euler is unstable at
the given step size �

Example 4.12 (Spring Lever Structure).

(a) Given the kinematics relation u = √
a2 + b2 − (a − v)2 − b between the

displacements u and v, together with the equilibrium in the horizontal direction
Fk = ku, the governing equation

r = ku− F(b + u)
a − v = 0 (4.86)

determines the system, where the trigonometric relation F/Fk = (b+u)/(a−v)
has been used.

(b) The prescribed displacement v allows us to express the displacement-controlled
Newton–Raphson iteration by

Fn+1 = Fn − rn/Kn , (4.87)



Solutions 523

where Kn = [∂r/∂F ]n = −(b + u)/(a − v) has been used. At a prescribed v,
the stiffnessKn is a constant, and the Newton–Raphson iteration then converges
within two steps. Figure 4.24 shows the structure’s force versus displacement
properties and Table 4.7 outlines the algorithm that has been used to compute
said results.

Displacement     [mm]

Fo
rc

e 
   

   
[N

] Local load limit 

Fig. 4.24 Force versus displacement properties of the spring lever structure. A displacement-
controlled Newton–Raphson algorithm is able to compute the displacement domain of 0 < v <

80 mm. The force-controlled solution cannot solve the problem beyond v ≈ 10 mm, where the
structure shows a local load limit

Table 4.7 Algorithm to compute the force F at a prescribed displacement v of the spring lever
structure and using the Newton–Raphson iteration

(1) Set displacement increment: �v = vmax/nl

(2) Initialize displacement and force: v = 0, F = 0

(3) Loop over displacement increments

Do While v ≤ vmax

v ← v +�v
(4) Loop over Newton–Raphson iteration

r = 1

Do While |r| ≥ 10−8

r = ku− F(b + u)/(a − v) with u = √a2 + b2 − (a − v)2 − b
δF = r/K with K = −(u+ b)/(a − v)
F ← F − δF

End Do

End Do
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(c) Given the prescribed force F , the force-controlled Newton–Raphson iteration
reads

vn+1 = vn − rn/Kn ; Kn =
[
∂r

∂v

]

n

= k(a − v)− F
u+ b − F(u+ b)

(a − v)2 .
(4.88)

The stiffness Kn is a function of v, and the Newton–Raphson iteration requires
a few iterations to converge.

At the displacement v ≈ 10 mm a local limit point appears and ∂F/∂v = 0
holds, see Fig. 4.24. The force can then no longer be increased and the force-
controlled solution strategy cannot solve the problem beyond this point. �

Example 5.1 (Vessel Segment Characterization).

(a) Given the geometry of the stress-free vessel, the fluid properties and the linear-
elastic description of the vessel wall, the relations (2.31), (2.32) (or (5.1)),
and (2.33) yield

R = 128μl

πD4 = 4.94368 · 107 Pa s m−3 ;

C = 3D3πl

16HE
= 2.67406 · 10−10 m Pa−3 ;

L = 4ρl

D2π
= 1.47307 · 107 kg m−4,

expressions that determine the femoral artery’s resistance R, capacity C, and
inductance L, respectively.

(b) The right Cauchy–Green strain C = diag[λ2
θ , λ

2
z, λ

2
r ] with the first invariant

I1 = trC = λ2
θ + λ2

z + λ2
r determines the kinematics of vessel inflation,

where θ, z, r denote the circumferential, axial, and radial vessel directions,
respectively. Coleman and Noll’s relation (5.5) allows us then to compute the
circumferential second Piola–Kirchhoff stress

Sθ = 1

λθ

∂�

∂λθ
− λr

λ2
θ

∂�

∂λr
= 4c(I1 − 3)

[
1 − (λr/λθ )2

]
, (5.13)

where the membrane condition Sr = 0 has been used to express the Lagrange
pressure κ in (5.5). The Cauchy stress then reads σθ = λ2

θSθ , and pid =
2σθh expresses the static equilibrium along the circumferential vessel direction,
where pi denotes the inflation pressure. Given the stretches λθ = d/D, λz = 1,
and λr = h/H = λ−1

θ , the inflation pressure reads

pi = 2SθH/D , (5.14)
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and the substitution of Sθ by (5.13) then results in

pi = 114754.1
(λ2
θ − 1)3(1 + λ2

θ )

λ6
θ

[Pa] . (5.15)

We used the geometrical and constitutive data of the vessel in the derivation of
this non-linear relation between pi and λθ . At pi = 13333.3 Pa (100.0 mmHg),
it has one physically reasonable root, λθ = 1.24702. This deformation
corresponds to the vessel diameter d = λθD = 7.607 mm, and

R = 128μl

πd4 = 2.04437 · 107 Pa s m−3 and

L = 4ρL

d2π
= 9.47279 · 106 kg m−4

then determine the femoral artery’s resistance and inductance at said pressure.
The calculation of the vessel’s capacity C = �V/�p at said pressure, and

thus at λθ = 1.24702, requires the volume increment �V = dlπ�d/2. It
represents the increase in vessel volume in response to the pressure increment
�p. We therefore linearize (5.14),

�p = 2KθθH

D2 �d , (5.16)

where �d = D�λθ is the diameter increment, and Kθθ = ∂Sθ/∂λθ denotes
the circumferential vessel stiffness coefficient. With the constitutive law (5.13),
it reads Kθθ = 8c(1 − 2λ2

θ + λ8
θ )/λ

7
θ = 7.9704 · 105 Pa, and

C = �V

�p
= dlπ�d

2�p
= λθD

3lπ

4KθθH
= 1.6735 · 10−10 m Pa−3

then determines the capacity of the femoral artery at the pressure of
100.0 mmHg.

(c) With the substitution of the outflow qout in (2.37) by (2.38), the three-element
vessel model in Fig. 5.14 is governed by

pin − pout = R(qin − Cṗin)+ L(q̇in − Cp̈in) . (5.17)

Towards the derivation of the model’s impedance, we consider steady-state
periodic conditions and introduce the flow qin = Q exp(iωt), where Q denotes
its complex amplitude. The pressures pin = P exp(iωt) and pout = 0 may be
substituted in (5.17), and the impedance then reads

Z = P
Q

= R + iωL
1 + iωRC − ω2LC

. (5.18)
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Figure 5.15 shows the modulus |Z| and phase shift arg(Z) as predicted by the
three-element lumped parameter model.

Fig. 5.15 Impedance of the three-element lumped parameter model. (a) Modulus |Z| and (b)
phase shift arg(Z) as functions of the signal frequently. Blue and red curves correspond to the
linear (Task (a)) and the non-linear (Task (b)) descriptions of the vessel wall �

Example 5.2 (Residual Stresses of a Thick-Walled Artery).

(a) We consider the ring segment that is formed between the radii Ri and R < Ro.
Given incompressibility, the expression L(R2 − R2

i )k = l(r2 − r2
i ) with k =

2π/(2π − α) holds and yields the kinematics relation

r =
√
r2

i + (R2 − R2
i )/(kλz) , (5.51)

where λz = l/L denotes the axial stretch of the vessel segment.
The strain energy function (5.50) together with the relation (5.7) then determine
the principal Cauchy stresses σi = σ i − κ , where i = θ, z, r denotes the
circumferential, axial, and radial directions, respectively. Whilst the stretch
determines the stress σ i = 2c1λ

2
i , the Lagrange parameter κ contributes to the

hydrostatic pressure and enforces the incompressibility.
(b) The only non-trivial equilibrium relation of an axisymmetric problem in cylin-

drical coordinates reads rdσr/dr = σθ − σr . Its integration at the boundary
conditions σr(ri) = σr(ro) = 0, yields the equilibrium expression



Solutions 527

0 =
ro∫

ri

σθ − σr
r

dr (5.52)

of the thick-walled tube problem.
(c) The axial stress σz results in the axial force N = 2π

∫ ro
ri
(σ z − κ)rdr , and with

the relation κ(r) = σ r(r)− σr(r) = σ r(r)−
∫ r
ri
(σθ − σr)/ξdξ , it then reads

N = π

ro∫

ri

(2σz − σ r − σθ )rdr = 0 . (5.53)

A detailed derivation of this relation is provided in Sect. 5.5.5.
(d) Given the fixed axial stretch λz = 1 and (5.51), the radial and circumferential

stretches may be expressed as functions of the deformed inner radius ri and the
referential radius R, λθ = λθ (ri, R) and λr = λ−1

z λ
−1
θ = λr(ri, R). The stresses

σ i; i = θ, z, r are then functions of ri and R, and with the relation r = λrR

and dr = λrdR, the equilibrium expression (5.52) reads 0 = ∫ Ro
Ri
(σ θ (ri, R) −

σ r(ri, R))/RdR, an expression that holds at ri = 7.26 mm. In addition, (5.53)
then reads 0 = π

∫ Ro
Ri

[2σz(ri, R)− σ r(ri, R)− σθ (ri, R)]Rλ2
r (ri, R)dR, and

its numerical integration verifies ri = 7.26 mm is a solution.
(e) The distribution of the stress differences across the wall is shown in Fig. 5.24.
(f) At the inside and the outside of the vessel, σr = 0 holds, resulting in

the Lagrange parameter κ = σ r . It allows us to compute the respective
circumferential stress σθ = σθ − κ = σθ − σ r ; σθ (Ri) = −3.307 kPa and
σθ (Ro) = 2.871 kPa.

Fig. 5.24 Distribution of the
stress differences
σθ − σ r = σθ − σr and
σθ − σz = σθ − σz across the
wall thickness of the
load-free configuration � �

St
re

ss
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]
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Example 5.3 (Discretization of the Convolution Integral).

(a) At the time tn+1 the convolution integral (5.57) may be split into

SM(tn+1) =
N∑

i=1

⎧
⎨

⎩βi exp[−�t/τi]
tn∫

0

exp[−(tn − x)/τi]ṠEdx

+βi
tn+1∫

tn

exp[−(tn+1 − x)/τi]ṠEdx

⎫
⎬

⎭ ,

where �t = tn+1 − tn denotes the time step. Given the over stress SM n i =
βi
∫ tn

0 exp[−(tn− x)/τi]ṠEdx at the time tn, the over stress at the time tn+1 may
be discretized by

SM(tn+1) ≈ SM n+1 =
N∑

i=1

[
ξ2
i SM n i + βiξi

(
SE n+1 − SE n

)]
, (5.59)

where the abbreviation ξi = exp[−�t/(2τi)] has been introduced. The
discretization is based on the second-order accurate mid-point integration rule

tn+1∫

tn

exp

(
− tn+1 − x

τi

)
ṠEdx ≈ exp

(−tn+1 + tn+1 −�t/2
τi

)
SE n+1 − SE n

�t
�t .

(b) Table 5.5 summarizes the different steps to solve the visco-hyperelastic thin-
walled tube problem, and Fig. 5.27 presents the results that have been achieved
with n = 30 and n = 300 time steps, respectively.

(c) Given the property ∂(•)n/∂Cn+1 = 0 of all history terms (•)n, the derivative of
the over stress (5.59) with respect to the right Cauchy–Green strain C yields

C
algo
M n+1 = 2∂SM n+1/∂Cn+1 = CE n+1

N∑

i=1

βiξi ,

where CE n+1 = 2∂SE n+1/∂Cn+1 denotes the stiffness of the isochoric

elastic stress. Note that C
algo
M n+1 depends on the algorithmic parameter ξi =

exp[−�t/(2τi)]—it is therefore called the algorithmic tangent.
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Table 5.5 Algorithm to numerically solve the visco-hyperelastic thin-walled tube problem

(1) Specify geometry and constitutive parameters

D = 9.0 mm; H = 0.8 mm ; c3 = 50.0 kPa

τ1 = 0.2 s−1; τ2 = 0.7 s−1; β1 = 0.3 ; β2 = 0.2

(2) Compute initial isochoric elastic second Piola–Kirchhoff stress

λθ = 1.4; λz = 1.2; λr = (λθλz)
−2; α = 2c3(λ

2
θ + λ2

z + λ2
r − 3)2

SE θ n = α

(
2 − λ2

r+λ2
z

λ2
θ

)
; SE z n = α

(
2 − λ2

θ+λ2
r

λ2
z

)
; SE r n = α

(
2 − λ2

θ+λ2
z

λ2
r

)

(3) Set the time discretization and loop over the time increments

te = 3.0 s ; n = 300 ; �t = te/n ; t = 0.0

Do i = 1, . . . , n

t = t +�t
λθ = 1.4 + 0.1 sin(2πt); λz = 1.2; λr = (λθλz)

−2; α = 2c3(λ
2
θ + λ2

z + λ2
r − 3)2

SE θ = α

(
2 − λ2

r+λ2
z

λ2
θ

)
; SE z = α

(
2 − λ2

θ+λ2
r

λ2
z

)
; SE r = α

(
2 − λ2

θ+λ2
z

λ2
r

)

(4) Integrate the convolution integral (5.57) over the time increment

ξj = exp( �t2τj
); SM k j = ξ2

j SM k j n + βj ξj (SE k − SE k n); k = θ, z, r; j = 1, 2

(5) Express the hydrostatic pressure and compute the total second Piola–Kirchhoff stress

p = λ2
r

(∑
j=1,2 SM r j + SE r

)

Sk = SE k +∑j=1,2 SM k j − pλ−2
k ; k = θ, z

(6) Compute the inflation pressure and the reduced axial force

pi = 2Sθ/(Dλz); F = λzSzDHπ − piπ/(4D2λ2
θ )

(7) Update the history variables

SM k j n ← SM k j ; k = θ, z; j = 1, 2

SE k n ← SE k; k = θ, z

End Do

Fig. 5.27 Numerical results of the inflated visco-hyperelastic thin-walled tube at the prescribed
circumferential and axial stretches of λθ = 1.4 + 0.1 sin(2πt) and λz = 1.2, respectively. (a)
Inflation pressure pi versus the deformed diameter d of the tube. (b) Reduced axial force F versus
the deformed diameter d of the tube. The curves cover the time interval 0 < t < 3 s and results are
presented for n = 30 and n = 300 time steps, respectively �
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Example 5.4 (Progressive Engagement and Rupture of Collagen Fibrils).

(a) Let us consider the deformation of a single undulated fibril, where λ denotes the
stretch of the tissue. It may be split into two parts, λ = λsλe, where λs defines
the fibril’s intermediate configuration, whilst the stretch λe elastically deforms
the fibril relative to its intermediate configuration.
The first Piola–Kirchhoff stress of the vascular wall tissue may then be
expressed by the integral

P = k

∫ λ

0
ϒs(x)dx , (5.61)

where ϒs(λ) = ∫ λ
−∞ ρs(x)dx denotes the Cumulative Density Function (CDF).

It determines the portion of collagen fibrils that are engaged at the stretch λ.
The integration of (5.61) yields the piece-wise polynomial expressions

Pe(λ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ; 0 < λ ≤ λ1 ,

k(λ−λ1)
3

3(λ1−λ2)(λ1−λ3)
; λ1 ≤ λ ≤ λ3 ,

k[λ3−λ2
1(λ2−λ3)−λ1(λ2−λ3)(λ3−3λ)−λ2(λ

2
3−3λ3λ+3λ2)]

3(λ1−λ2)(λ2−λ3)
; λ3 ≤ λ ≤ λ2 ,

k(3λ−λ1−λ2−λ3)
3 ; λ2 < λ < ∞

of the first Piola–Kirchhoff stress. The first Piola transform for incompressible
materials allows us then to compute the Cauchy stress σe = λPe. Figure 5.29a
shows the tissue’s elastic properties.

(b) The ruptured fibrils do not contribute to the stress in the tissue, and we therefore
subtract their contribution from the elastic stress (5.61). We may compute the
PDF of the ruptured fibrils ρf(x) by “stretching” the engagement PDF ρs(λ) by
the factor λf. The CDF ϒf(λ) = ∫ λ

λfλ1
ρf(x)dx then determines the portion of

ruptured fibrils, where λf denotes the failure stretch. We may alternatively have
calculated the CDF by ϒf(λ) = ∫ λ/λf

λ1
ρs(x)dx, see Fig. 5.29b.

The first Piola–Kirchhoff stress to be retracted from the elastic stress then reads

Pf = k

[∫ λ/λf

λ1

ϒs(x)dx +
∫ λ

λ/λf

ϒs(λ/λf)dx

]
, (5.62)

and the lengthy piece-wise polynomial expressions from the integration of this
relation are not explicitly shown. Given the stress Pi = Pe−Pf of the irreversibly
deformed (damaged) tissue, the first Piola transform then yields the Cauchy
stress σi = λPi. Figure 5.29a illustrates the properties of the damaged tissue.
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Fig. 5.29 (a) Cauchy stress versus stretch properties of the elastic (blue curve) and inelastic (red
curve) properties of the medial tissue patch. (b) Probability Density Function (PDF) towards the
computation of ruptured fibrils �

Example 5.5 (Simple Shear Testing in Vessel Tissue Characterization).

(a) The motion

x1 = X1 + γX2 ; x2 = X2 ; x3 = X3 (5.71)

determines simple shear kinematics, where x = χ(X) = [x1 x2 x3]T and
X = [X1X2X3]T denote the spatial and referential material particle positions,
respectively. Figure 5.38 illustrates the kinematics, and the present experimental
design yields γ = u/h.

Fig. 5.38 Simple shear
kinematics relates the
reference configuration �0
and the spatial configuration
� of the material particle

(b) The motion (5.71) defines the deformation gradient

F = Gradχ(X) = ∂χ

∂X
=
⎡

⎣
1 γ 0
0 1 0
0 0 1

⎤

⎦ ,
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which then leads to the right and left Cauchy–Green strains

C = FTF =
⎡

⎣
1 γ 0
γ 1 + γ 2 0
0 0 1

⎤

⎦ ; b = FFT =
⎡

⎣
1 + γ 2 γ 0
γ 1 0
0 0 1

⎤

⎦ , (5.72)

respectively.
(c) The eigenvalue analysis of the symmetric second-order tensor (5.72)1 allows us

to express the right Cauchy–Green strain through C =∑3
i=1 λCiNi⊗Ni , where

λC1 = 1 ; λC2 = 1 +
(
γ 2 − γ

√
4 + γ 2

)
/2 ; λC3 = 1 +

(
γ 2 + γ

√
4 + γ 2

)
/2

are the eigenvalues, whilst

N1 =
⎡

⎣
0
0
1

⎤

⎦ ; N2 =

⎡

⎢⎢⎢⎣

−γ−
√

4+γ 2

2
√

1+λC2

1√
1+λC2

0

⎤

⎥⎥⎥⎦ ; N3 =

⎡

⎢⎢⎢⎣

−γ+
√

4+γ 2√
1+λC3

1√
1+λC3

0

⎤

⎥⎥⎥⎦

are the eigenvectors. The relation λCi = λ2
i holds between the eigenvectors of C

and the principal stretches λi . The eigenvectors depend on the deformation, and
Fig. 5.39a illustrates the rotation of N2 and N3 with increasing levels of shear γ .

Fig. 5.39 Rotation of the principal strain directions for simple shear kinematics and at increasing
levels of shear γ . (a) Principal strain directions N2 and N3 of the right Cauchy–Green strain C. (b)
Principal strain directions n2 and n3 of the left Cauchy–Green strain b.

The eigenvalue analysis of the matrix (5.72)2 expresses the left Cauchy–Green
strain through b = ∑3

i=1 λbini ⊗ ni , where λbi and ni denote its eigenvalues
and eigenvectors, respectively. Whilst b and C have different eigenvectors, their
eigenvalues are identical, λbi = λCi; i = 1, 2, 3. The eigenvectors of b are
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n1 =
⎡

⎣
0
0
1

⎤

⎦ ; n2 =

⎡

⎢⎢⎢⎣

γ−
√

4+γ 2

2
√

1+λb2

1√
1+λb2

0

⎤

⎥⎥⎥⎦ ; n3 =

⎡

⎢⎢⎢⎣

γ+
√

4+γ 2

2
√

1+λb3

1√
1+λb3

0

⎤

⎥⎥⎥⎦ ,

and, as with Ni , also ni rotates with increasing deformation, see Fig. 5.39b.
(d) Coleman and Noll’s relation for an incompressible solid (5.4) together with the

strain energy (5.70) yields the Cauchy stress

σ = 2αb − κI ; α = c1 + 2c2(I1 − 3) = c1 + 2c2γ
2 , (5.73)

where the first invariant I1 = trC = 3 + γ 2 follows from (5.72)1. The Lagrange
contribution κ = 2α to the hydrostatic pressure may be identified from the
equilibrium condition σ33 = 0, and the experimental test then exposes the tissue
to the shear stress σ12 = 2αγ = 2[c1 + 2c2(u/h)

2]u/h in the x1–x2 plane. The
stress is distributed over the area wl, and the force

P = 2wl

[
c1

(u
h

)
+ 2c2

(u
h

)3
]

(5.74)

is therefore measured by the simple shear experiment shown in Fig. 5.37.
(e) The objective function

�(c1, c2) =
n∑

j=1

[
P

exp
j − P(uj )

]2

expresses the least-square error between model and experiment, where n = 4
denotes the number of experimental measurement points. With the experimental
data, the objective function reads

�(c1, c2) = [3.0 − 283.333(c1 + 0.222222c2)]2

+ [5.0 − 566.667(c1 + 0.888889c2)]2

+ [12.0 − 850.0(c1 + 2.0c2)]2

+ [23.0 − 1133.33(c1 + 3.55556c2)]2 ,

and its minimum � → MIN results in the parameters c1 = 6.352 kPa and
c2 = 3.904 kPa. Figure 5.40 shows the force P as a function of the displacement
u for these parameters.
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Fig. 5.40 Force P versus
displacement u of the simple
shear experiment. The
experimental data (circles)
has been used for the
least-square optimized model
response (solid curve) � Fo

rc
e 

   
 [

N
]

Displacement     [mm]

Example 5.6 (Pressure Inflation in Vessel Tissue Characterization).

(a) The deformation gradient F = diag[λθ , λz, λr ] determines the kinematics
of the inflation experiment, where λθ , λz, and λr denote the stretches in the
circumferential, axial, and radial directions, respectively. The right Cauchy–
Green strain then reads C = diag[λ2

θ , λ
2
z, λ

2
r ] and I1 = trC = λ2

θ + λ2
z + λ2

r

is its first invariant.
Coleman and Noll’s relation for incompressible solids (5.7) defines the principal
Cauchy stresses σi = λi∂�/∂λi − κ , where the indices i = θ, z, r denote axial,
circumferential and radial vessel directions, respectively. Given the membrane
assumption, the stress in radial direction is negligible as compared to the in-
plane stresses, σr ≈ 0. It allows us to substitute the Lagrange contribution to the
hydrostatic pressure κ = λr∂�/∂λr and then leads to the circumferential and
axial stresses

σθ = λθ∂�/∂λθ − λr∂�/∂λr = α(λ2
θ − λ2

r ) ;
σz = λz∂�/∂λz − λr∂�/∂λr = α(λ2

z − λ2
r ) ,

}
(5.76)

where the strain energy density (5.75) and the factor α = 4c(I1 − 3) have been
used.

(b) The equilibrium pid = 2σθh along the circumferential direction and Fz =
σzπdh − d2πpi/4 along the axial direction, together with the stress rela-
tions (5.76), determine the expressions

pi = 2hα

d
(λ2
θ − λ2

r ) ; Fz = dhαπ

2
(2λ2

z − λ2
r − λ2

θ )

of the inflation pressure and the reduced axial force, respectively. Here, λθ =
d/D, λz = l/L and λr = DL(dl)−1 have been used to substitute the stretches.



Solutions 535

(c) The least-square error between model and experiment is expressed by the
objective function

� =
n∑

j=1

{
α
[
p

exp
i j − pi(dj , lj )

]2 +
[
F

exp
z j − Fz(dj , lj )

]2
}
,

where n = 2 denotes the number of experimental measurement points. As the
inflation pressure pi and the reduced axial force Fz cover a similar range of data,
we used the scaling parameter α = 1 in this problem. Given the experimental
data, the objective function reads

� = (5.2 − 0.1016398c)2 + (3.0 − 0.1466604c)2

+ (21.0 − 0.5217602c)2 + (15.0 − 0.3578883c)2 ,

and its minimization � → MIN determines the parameter c = 40.0173 kPa.
Figure 5.42 shows the inflation pressure pi and reduced axial force Fz as
functions of the deformed vessel diameter d, and at the constant axial stretch
λz = l/L = 1.05.

Fig. 5.42 The inflation pressure pi and the reduced axial force Fz as functions of the deformed
vessel diameter d. The vessel is inflated at the fixed deformed vessel length of l = 73.5 mm, and
the circles show the experimental data that has been used in the least-square identification of the
constitutive parameter c �

Example 6.1 (Walburn–Schneck Viscosity Model).

(a) We introduce the objective function

�(c1, c2, c3) =
n∑

i=1

(ηWS(γ̇i , φi; c1, c2, c3)− ηexpi )
2 ,
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where ηexpi denotes the viscosity measured at the i-th measurement point, whilst
ηWS(γ̇i , φi; c1, c2, c3) is the viscosity predicted by the Walburn–Schneck model
at the i-th measurement point. In addition to the model parameters, ηWS also
depends on the shear rate γ̇i and the hematocrit level φi . The minimization
�(c1, c2, c3) → MIN then yields the set

c1 = 2.971 mPa s ; c2 = 4.729 ; c3 = 0.759

of best-fit parameters, and thus the parameters of the Walburn–Schneck viscos-
ity model with the least error between the measured and predicted viscosity.

(b) Figure 6.11 illustrates the model’s ability to represent the experimental data.
Whilst the Walburn–Schneck model captures the viscosity at low shear rates,
the inherent (and non-physical) property η(γ̇ → ∞) = 0 of the Power Law
model causes significant errors at high shear rates.

Fig. 6.11 Walburn–Schneck
model prediction in relation
to the experimentally
measured viscosity. Model
parameters have been
identified by least-square
optimization, and φi
denotes hematocrit levels �
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Example 6.2 (Collapse of a Constricted Vessel Segment).

(a) At steady-state the inflow rate qi = vid
2
i π/4 matches the flow rate qc =

vcd
2
cπ/4 in the constriction. The blood then has the velocity vc = viα in the

constriction, where α = (di/dc)
2 denotes the constriction factor.

(b) Bernoulli’s equation (6.19) reads v2
i /2 + pi/ρ = v2

c/2 + pc/ρ, and

pc = pi + ρ(v2
i − v2

c )/2 = pi + ρv2
i (1 − α2)/2 , (6.21)

therefore expresses the pressure in the constriction.
(c) A vessel wall without bending stiffness buckles as soon as the pressure pc in

the constriction falls below the ambient pressure p0—the vessel segment then
collapses. Given pc = p0, the expression (6.21) determines the constriction
factor
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α =
√

1 − 2(p0 − pi)

ρv2
i

= 17.189 ,

a condition resulting in the diameter stenosis

Sdiameter = di − dc

di
= (1 − α−1/2) = 0.7588

and the area stenosis

Sarea = Ai − Ac

Ai
= (1 − α−1) = 0.9418 ,

where Ak = d2
k π/4; k = i, c denote the areas of the respective circular cross-

sections. A constriction that occupies 76% of the diameter, or 94% of the cross-
sectional area, therefore leads to the collapse of the vessel segment. �

Example 6.3 (Oscillating Plate on Top of a Fluid Layer).

(a) Given the assumptions of the velocity and pressure, the governing equation
of 1D flows in Cartesian coordinates (6.22) results in the ordinary differential
equation

d2V (y)

dy2 − ρωV (y)

η tan(ωt)
= 0 ,

and integration then yields the velocity amplitude

V (y) = C1(t) exp(αy)+ C2(t) exp(−αy) with α =
√
ρω

η
cot(ωt) .

The two no-slip boundary conditions V (0) = 0 and V (H) = V0 allow us to
identify the two integration constants

C2(t) = −C1(t) ; C1(t) = V0

exp(αH)− exp(−αH) ,

such that

v(y, t) = V0
exp(αy)− exp(−αy)

exp(αH)− exp(−αH) sin(ωt)

expresses the velocity of the fluid layer.
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(b) Given the provided parameters, the fluid profile v(y, t) is plotted in Fig. 6.20.

Fig. 6.20 Fluid flow
underneath an oscillating
plate. Fluid velocity v(y, t)
versus fluid layer depth
coordinate y at different
times t �
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Example 6.4 (Steady-State Flow in a Vessel Segment).

(a) With the relation (6.35), the pressure gradient reads

−dp

dz
= 8ηq

πr4
o

= 1990.2 Pa m−1 , (6.37)

and (6.34)2 then yields the velocity vmax = −(dp/dz)(r2
o/4η) = 0.5486 m s−1

in the center of the tube. At the radial coordinate r[m], the Poiseuille flow
velocity then reads

v(r) = vmax

[
1 − (r/ro)2

]
= 0.5486 − 1.2439 · 105r2 [m s−1] , (6.38)

where (6.34)1 has been used in the computation of this result.
(b) Given the velocity profile (6.38) and r [m], the shear stress reads

τ = η
dv

dr
= r

dp

dz
= −995.122r [kPa] ,

where (6.37) has been used.
(c) With the pressure gradient (6.37), �p = (dp/dz)l = 199.0 Pa denotes the

pressure drop over a 10.0 cm long segment of the iliac artery. �

Example 6.5 (Power Law Fluid at Steady-State Tube Flow).

(a) The flow is steady state ∂(•)/∂t = 0, fully developed ∂(•)/∂z = 0, and free of
body forces bf = 0. The linear momentum (6.28) then determines the set
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∂τrz

∂r
+ τrz

r
− ∂p

∂z
= 0 ; ∂p

∂r
= 0 (6.39)

of partial differential equations that define the flow velocity vz. The rela-
tion (6.39)2 implies p = p(z), and

1

r

d

dr
(rτrz) = dp

dz
with τrz = η(γ̇ )

dvz
dr

(6.40)

governs the problem, where the viscosity is a function of the scalar shear rate γ̇ .
The product rule has been used in the derivation of this expression. Given the
rate of deformation d of tube flow kinematics (6.27), the scalar shear rate reads
γ̇ = √

2trd2 = √
2d : d = dvz/dr .

(b) The integration of the governing equation (6.40) yields

dp

dz

r2

2
= rτrz + C ,

where the symmetry conditions τrz(0) = 0 result in the integration constant
C = 0. With the Power law model (6.6) and the definition of the shear stress
τrz = η(γ̇ )(dvz/dr), the differential equation

(
dp

dz

r

2η0λn−1

)1/n

= dvz
dr

(6.41)

determines the problem. Integration and use of the no-slip boundary condition
vz(ro) = 0, yields then the velocity profile

vz = α

[
1 −

(
r

ro

) n+1
n

]
with α = nr

(n+1)/n
o

n+ 1
n

√
−dp/dz

2η0λn−1 (6.41)

of the tube flow described by the Power Law rheology model.
(c) Figure 6.21 illustrates the normalized velocity profiles for a number of the power

law constants n.
(d) Given the provided parameters, the integration over the velocity profile (6.41)

yields the flow rate q = 2π
∫ ro

0 vzrdr = 4.06748 ml s−1.
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Fig. 6.21 Velocity profiles
of the Power Law fluid that
flows through a circular tube.
Velocity and tube radius are
normalized and profiles for
different power law constants
n are shown. The Newtonian
fluid corresponds to n = 1
and determines the Poiseuille
flow profile �
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Example 6.6 (Stented Vessel).

(a) The flow is at steady state ∂(•)/∂t = 0, fully developed ∂(•)/∂z = 0, free of
body forces bf = 0, and governed by the linear momentum (6.28). It then leads
to

dp

dz
= η

r

d

dr

(
r

dv

dr

)
,

and twice integration results in the velocity

v = 1

4η

dp

dz
r2 − C1 ln r − C2 , (6.43)

where C1 and C2 denote integration constants.
Given the native vessel, C1 = 0, a condition that keeps the velocity bounded
at r = 0. The no-slip boundary condition v(rv) = 0 identifies the second
integration constant C2 = r2

v/(4η)(dp/dz), and the Poiseuille flow profile

v = vmax

[
1 − (r/rv)2

]
with vmax = r2

v

4η

(
−dp

dz

)

then describes the velocity, where rv = dv/2 denotes the vessel radius. The
velocity vmax in the center of the vessel is determined by the flow rate q =
2π
∫ rv

0 vrdr = πr4
v/(8η)(−dp/dz), and reads vmax = 2q/(πr2

v ).
The shear stress τ(r) = ηdv/dr = −4ηqr/(πr4

v ) then results in the WSS of
−τ(rv) = 21.9 Pa.
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(b) The expression (6.43) also determines the flow through the ring formed between
the stent hub and the vessel wall, see Fig. 6.23. In this case we may identify the
two integration constants from the two no-slip conditions v(rv) = v(rs) = 0.
The identification yields

C1 = r2
s − r2

v

4η[ln(rs)− ln(rv)]
(

dp

dz

)
; C2 = r2

v ln(rs)− r2
s ln(rv)

4η[ln(rs)− ln(rv)]
(

dp

dz

)
,

and after some algebraic manipulations

v = 1

4η

[
r2 − r2

s − r2
v

ln(rs)− ln(rv)
ln(r)− r2

v ln(rs)− r2
s ln(rv)

ln(rs)− ln(rv)

](
dp

dz

)
(6.44)

determines the velocity in the stented vessel. The integration over this velocity
profile then yields the flow rate q = 2π

∫ rv
rs
vrdr , and allows us to express the

pressure gradient

dp

dz
= 8qη[ln(rs)− ln(rv)]
π(r2

s − r2
v )[−r2

s + r2
v + r2

s ln(rs)+ r2
v ln(rs)− r2

s ln(rv)− r2
v ln(rv)]

= −35353.7 Pa m−1 . (6.45)

Given the flow velocity (6.44) and the pressure gradient (6.45), the shear stress
of the 1D ring-flow problem reads

τ = η
dv

dr
=
{
r

2
− r2

s − r2
v

4r[ln(rs)− ln(rv)]

}(
dp

dz

)
= 0.0267072r−1 − 17676.8r [Pa] .

It is a function of r [m], an expression that and results in the WSS of −τ(rv) =
32.41 Pa of the stented vessel.

(c) Given the pressure gradient (6.45), the blood pressure drops by �p =
(−dp/dz)l = 1979.81 Pa over the length l of the stent. �

Example 6.7 (Pulsatile Blood Flow in a Vessel Segment).

(a) Given the vessel radius ro = d/2 and the angular velocity ω, the Womersley
number Wo = ro

√
ω/ν = 4.138 determines the flow.

(b) The relation (6.46) allows us to compute the velocity profile at different time
points, see Fig. 6.24. The graph shows the real part of the fluid velocity
Re[v(r, t)] versus the radial coordinate r . The velocity profiles deviate substan-
tially from the parabolic profile of Poiseuille flow, and we note that reversal flow
starts in the laminae near the wall.
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Fig. 6.24 Blood velocity of
pulsatile tube flow as
described by a Newtonian
fluid at the Womersley
number Wo = 4.138.
Velocity profiles are shown at
a number of time points t �
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Example 7.1 (Biaxially Loaded Vessel Wall Patch).

(a) The right Cauchy–Green strain C = diag[λ2
1, λ

2
2, λ

2
3] with the first invariant I1 =

λ2
1 + λ2

2 + λ2
3 determines the principal strain state of the passive wall specimen.

Coleman and Noll’s procedure for incompressibly materials then determines the
principal Cauchy stresses

σi = λi∂ψECM/∂λi − λ3∂ψECM/∂λ3; i = 1, 2 , (no sumation) (7.4)

where λ1 = λ2 = λ and λ3 = λ−2 are the respective principal stretches.
The expression σ = T/(ah) = 30.69 kPa defines the Cauchy stress in the
vessel wall, and the non-linear equilibrium relation σ1(λ) = σ (or alternatively
σ2(λ) = σ ) determines the stretch λ. The only physically reasonable root is
λ = 1.1778, and

F =
⎡

⎣
1.1778 0 0

0 1.1778 0
0 0 0.7209

⎤

⎦ ; PECM =
⎡

⎣
26.06 0 0

0 26.06 0
0 0 0

⎤

⎦ [kPa]

denotes the deformation gradient F and first Piola–Kirchhoff stress PECM,
respectively. At the spatial configuration�, the vessel wall specimen then stores
the elastic energy W = ψ(λ)a2h = 0.00468 J. Here, A = a/λ = 1.9528 cm
and H = hλ2 = 2.3581 mm denote the edge length and thickness of the stress-
free specimen in the reference configuration �0.

(b) Given the fixed configuration �, SMC-alignment remains unchanged upon
activation. The SMC fiber direction vector a0 in the stress-free configuration
�0, is then identical to the fiber direction vector a in �. We may regard SMC-
related stress as contributions from (active) stress fibers in the vessel wall. The
related two-point first Piola–Kirchhoff stress then reads PSMC = TSMC a ⊗ a0,
and
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Pactive = PECM + PSMC

=
⎡

⎣
26.06 0 0

0 26.06 0
0 0 0

⎤

⎦+
⎡

⎣
20.31 11.73 0
11.73 6.77 0

0 0 0

⎤

⎦ =
⎡

⎣
46.37 11.73 0
11.73 32.83 0

0 0 0

⎤

⎦ [kPa]

defines the stress state of the active vessel wall, where TSMC(λ = 1.1778) =
27.085 kPa results from (7.3). �

Example 7.2 (Ring Test to Characterize a Vessel Segment).

(a) The deformation gradient F = diag[λ1, λ2, λ3] describes the kinematics, and
Coleman and Noll’s procedure σECM i = λi∂ψECM/∂λi − κ; i = 1, 2, 3 then
yields the ECM-related principal Cauchy stresses

σECM i = cECM(λ
2
i − λ2

3); i = 1, 2 ,

where the Lagrange parameter κ has been identified from σ3 = 0.
At simple tension, the principal stretches λ1 = λθ and λ2 = λ3 = λ

−1/2
θ ,

determine the problem and σ st
ECM θ = cECM(λ

2
θ − λ−1

θ ) expresses the Cauchy
stress in the circumferential direction. At pure shear instead, λ1 = λθ , λ2 =
1, λ3 = λ−1

θ , and σ ps
ECM θ = cECM(λ

2
θ − λ−2

θ ) is the circumferential Cauchy
stress.

(b) Coleman and Noll’s procedure results in the SMC-related principal Cauchy
stresses σSMC i = λi(∂�SMC/∂λi) − κ; i = r, θ, z, where κ denotes the
Lagrange parameter. In addition, the kinematics relation λSMC = λθλpre defines
the expression

∂�SMC

∂λi
= ∂�SMC

∂λSMC

∂λSMC

∂λi
= 0 ; i = r, z , (7.9)

a consequence of SMC fibers to be aligned in the circumferential direction. The
equilibrium in radial direction σSMC r = 0 then implies κ = 0. In addition, the
relation (7.9) and κ = 0 result in σSMC z = 0, and

σSMC θ = λθ
∂�SMC(λSMC)

∂λSMC

∂λSMC

∂λθ
(7.10)

then remains the only non-vanishing SMC stress contribution. It points along
the SMC fiber direction and thus in the circumferential vessel direction. With
the description (7.8) of SMC activation level, the stress (7.10) finally reads

σSMC θ = cSMCλ
−1
d α{(λSMC − 1)[λd + λSMC(λm − λSMC)]

+ λSMC(λSMC − λm) ln(λSMC)} .
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SMC stress is identical for simple tension and pure shear kinematics, σ st
SMC θ =

σ
ps
SMC θ = σSMC θ .

(c) The first Piola transform σθ = λθPθ for incompressible materials links the
Cauchy stress σθ and first Piola–Kirchhoff stress Pθ , and with the result from
Task (a), the force ratio

rECM = F st
ECM

F
ps
ECM

= P st
ECM θ

P
ps
ECM θ

= σ st
ECM θ

σ
ps
ECM θ

= λθ (1 + λθ + λ2
θ )

(1 + λθ )(1 + λ2
θ )

expresses the relation between the ECM-related forces in simple tension and
pure shear. Consequently, rECM = 0.75 at λθ = 1 and approaches the limit
rECM = 1.0 for λθ → ∞, see Fig. 7.12.

With the SMC-related stress σactive independently from the particular defor-
mation kinematics, rSMC = F st

SMC/F
ps
SMC = 1 holds.

Fig. 7.12 Force ratio rECM
of the ring test experiment. It
expresses the ratio of forces
of simple tension and pure
shear deformation kinematics
of the ExtraCellular Matrix
(ECM) �
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Example 7.3 (Calcium Determines the Functional Myosin States).

(a) Given the cytosolic free Ca2+ concentration of β = 150 nmol l−1, the sigmoid
function (7.12) takes the value sg(150) = 0.0758582. The phosphorylation
rate k1(S) and the unphosphorylation rate k6(S) therefore yields k1 = k6 =
0.0227575 s−1. The system (7.11) then reads

⎡

⎢⎢⎣

0
0
0
0

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

−0.0227575 0.5 0 0.01
0.0227575 −0.9 0.1 0

0 0.4 −0.6 0.0227575
0 0 0.5 −0.0327575

⎤

⎥⎥⎦

⎡

⎢⎢⎣

α1

α2

α3

α4

⎤

⎥⎥⎦ , (7.14)
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where the steady-state condition dα/dt = 0 has been used. We attach the
constraint relation α1 + α2 + α3 + α4 = 1 to the linear system (7.14), and
its solution

α1 = 0.549207 ; α2 = 0.0168519 ; α3 = 0.0266816 ; α4 = 0.40726
(7.15)

then determines the functional myosin states. Consequently, 54.9% of myosin is
unphosphorylated, 1.7% is phosphorylated, 2.7% present phosphorylated cross-
bridges attached to actin, and 40.7% present dephosphorylated cross-bridges
attached to actin (latch bridges).

(b) With the time increment �t = tn+1 − tn, the forward-Euler discretization
of (7.11) reads

⎡

⎢⎢⎣

α1 n+1

α2 n+1

α3 n+1

α4 n+1

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

α1 n

α2 n

α3 n

α4 n

⎤

⎥⎥⎦+

⎡

⎢⎢⎣

−k1 n k2 0 k7

k1 n −k2 − k3 k4 0
0 k3 −k4 − k5 k6 n

0 0 k5 −k6 n − k7

⎤

⎥⎥⎦

⎡

⎢⎢⎣

α1 n

α2 n

α3 n

α4 n

⎤

⎥⎥⎦�t ,

(7.16)

where the notation (•)n and (•)n+1 denote parameters at the time tn and tn+1,
respectively. We use the expression

k1 n = k6 n = 0.3sg(βn) =
0.3 exp

(−400+βn
100

)

1 + exp
(−400+βn

100

) [s−1] (7.17)

to substitute the phosphorylation and unphosphorylation rates, respectively.
Given the initial conditions

α1 0 = 0.549207 ; α2 0 = 0.0168519 ; α3 0 = 0.0266816 ; α4 0 = 0.40726 ,
(7.18)

the prescribed Ca2+ concentration (7.13), and βn = β(tn), we iteratively solve
the system with the algorithm shown in Table 7.3. The solution is practically
converged at the time step �t = 0.1 s, and Fig. 7.14 shows the evolution of the
functional myosin states α.
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Table 7.3 Algorithm to compute the functional myosin states at a prescribed β = [Ca2+]
concentration

(1) Set time discretization

�t = 0.1 s ; tmax = 50 s ; n = tmax/�t

(2) Set initial conditions

i = 0 ; α = [0.549207 0.0168519 0.0266816 0.40726]T

(3) Solve equilibrium

Do While i ≤ n

ti = i�t

β = 630.0 exp[(−ti/9)+ 150.0 nmol l−1]

k1 = k6 = 0.3{exp[(β − 400)/100]}/{exp[(β − 400)/100] + 1} [s−1]

k2 = k5 = 0.5 s−1 ; k3 = 0.4 s−1 ; k4 = 0.1 s−1 ; k7 = 0.01 s−1

K =

⎡

⎢⎢⎢⎣

−k1 k2 0 k7

k1 −k2 − k3 k4 0

0 k3 −k4 − k5 k6

0 0 k5 −k6 − k7

⎤

⎥⎥⎥⎦

α ← α + Kα�t

i ← i + 1

End Do

Fig. 7.14 Development of the four functional myosin states α1, α2, α3, α4 following the Ca2+
concentration prescribed by (7.13). (a) Non-cross-bridged myosin states α1 and α2 . (b) “Force
generating” myosin states α3 and α4. The latch state α4 relaxes much slower than α3, the myosin
state related to cycling cross-bridges �
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Example 7.4 (Active Micro Vessel).

(a) Coleman and Noll’s procedure (7.24)1 and the use of the Piola transform, yield
the circumferential Cauchy stress σnMF = λ(∂�nMF 1/∂λ). With the strain
energy (7.26),

σnMF = ka(λ
2 − λ) exp[kb(λ− 1)2] (7.37)

then expresses the circumferential Cauchy stress.
The equilibrium of the thin-walled tube 2σnMFh = pid allows us to express

the inflation pressure through

pi = 2ka(λ
2 − λ) exp[kb(λ− 1)2]h/(λ2D) ,

where d = λD and h = λrH = H/λ denote the deformed diameter and the
deformed wall thickness, respectively. At λ = d/D = 1.5, the vessel is at the
pressure of pi = 7.56475 kPa.

(b) The strain energy (7.27) allows us to compute the stress upon cross-bridge
deformation. The Cauchy stress then reads

σMF = λ(∂�MF/∂λ) = (α3kcb + α4klb)(λ
2/λa − λ)ρ(λa) = 3.15283 kPa .

(7.38)

Given the total deformation λ, expression (7.37) yields the stress σnMF =
18.1301 kPa from the non-myofibril-related structures, a stress that adds up
to σMF and the pressure pi = 2(σnMF + σMF)H/(λ

2D) = 2.36478 kPa then
establishes in the vessel lumen.

(c) The force from the deformation of the cross-bridges and the force from the
active sliding of filaments are to be in equilibrium, PMF = PMFp = PMFa. The
first Piola–Kirchhoff stress PMF = σMF 2/λ follows from the Piola transform,
whilst the potential (7.28) and the constitutive relation (7.24) allow us to
compute the active first Piola–Kirchhoff stress PMFa. With ∂(dX/dt)/∂X =
d(∂X/∂X)/dt = 0 and the product rule, it reads

PMFa = ∂�a

∂λa
= [rlbα3λ̇a + rcbα4

(
λ̇a + λ̇c

)]
ρ(λa) , (7.39)

where the property ϒ(X) = ∫
ρ(X)dX among the CDF ϒ(X) and the PDF

ρ(X) have been used. Given the present problem, the active stress reads

PMFa = 199.809λ̇a + 1.35268/(1.0 − 42.8571λ̇a)− 0.0436349 ,
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a function that is plotted in Fig. 7.19a. The equilibrium PMFa = PMFp
determines the rate of the active stretches

λ̇a 1 = 0.00483 and λ̇a 2 = 0.03187 ,

out of which only λ̇a 1 appears to be physically reasonable, see Fig. 7.19a. The
overlap between actin and myosin filaments therefore decreases at 0.48% per
second, and the SMC relaxes accordingly.

(d) Table 7.5 shows the iterative algorithm to compute the vessel diameter d in
response to the prescribed β = [Ca2+] concentration (7.36). Given the “force
generating” myosin states α3 and α4 through the kinetic relation (7.11), the wall
stress contributions PnMF, PMFp, and PMFa may be computed. The rate λ̇a of the
actin–myosin stretch, as well as the total circumferential stretch λ are computed
by a Newton–Raphson fixpoint iteration. It solves the internal f1 = PMFa −
PMFp = 0 and external f2 = pi −p0 equilibrium, where pi denotes the inflation
pressure. Figure 7.16 shows the evolution of the calcium concentration β, the
functional myosin states α3, α4, and the deformed vessel diameter d = λD.

(e) Given the second law of thermodynamics (7.24)2, the condition

Sθ̇ ≤ − ∂�
∂λa

λ̇a − ∂�

∂α3
α̇3 − ∂�

∂α4
α̇4 (7.40)

defines a thermodynamically admissible process, where S and θ denote the
entropy per unit volume of undeformed tissue and the temperature, respectively.
Figure 7.19b shows the domain of an admissible thermodynamical process
shaded in grey.

Fig. 7.19 (a) First Piola–Kirchhoff stress PMFa that is generated by myofibrils, where the grey-

shaded area indicates the domain of non-physical solutions. (b) Admissible thermodynamical

process in response to a square wave of Ca2+ concentration. The product Sθ̇ of entropy S and

temperature rate θ̇ has to fall within the grey-shaded domain �
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Table 7.5 Algorithm to compute the diameter d in response to a prescribed β = [Ca2+]
concentration

(1) Set time discretization and problem parameters

�t = 0.1 s ; tmax = 600 s ; n = tmax/�t

p0 = 3 kPa ; ka = 67 kPa ; kb = 3 kPa ; klb = 10 kPa ; kcb = 28 kPa

rlb = 300 kPa s ; b = 30 kPa ; a = −1.0 kPa ; λ̇c = −0.7 ; λa = 0.8 ; σa = 0.22

k2 = k5 = 0.5 s−1 ; k3 = 0.4 s−1 ; k4 = 0.1 s−1 ; k7 = 0.01 s−1

(2) Set initial conditions

i = 0 ; αn = [0.549207 0.0168519 0.0266816 0.40726]T

λ = 1.2762 ; λa = 1.0365 ; λ̇a = 0

Do While i ≤ n

t = i�t

(3) Set Ca2+ concentration and compute functional myosin states

If{t > 60, If[t > 240, β = 150, β = 600], β = 150} nmol l−1

k1 = k6 = 0.3{exp[(β − 400)/100]}/{exp[(β − 400)/100] + 1} [s−1]

α ← α + Kα�t with K given by (7.11)

(4) Compute wall stress contributions

ρ = exp[−(λa − λa)
2/(2σ 2

a )]/(
√

2πσa)

PnMF = ka(λ− 1) exp[kb(λ− 1)2] ; σnMF = λPnMF

PMFp = (α3kcb + α4klb)(λ/λa − 1)ρ ; σMFp = λPMFp

PMFa =
[
α3b(λ̇c−λ̇a)

λ̇c−(b/a)λ̇a
+ rlbα4λ̇a

]
ρ

(5) Solve internal and external equilibrium

j = 0 ; f1 = 1 ; f2 = 1

Do While (f 2
1 + f 2

2 > 10−12)

f1 = PMFa − PMFp ; f2 = 2(σnMF + σMFp)HD
−1λ−2 − p0

[
�λ̇a

�λ

]
=
⎡

⎣
∂f1/∂λ̇a ∂f1/∂λ

∂f2/∂λ̇a ∂f2/∂λ

⎤

⎦
−1 ⎡

⎣
f1

f2

⎤

⎦ (�)

λ̇a ← λ̇a −�λ̇a ; λ ← λ−�λ ; j ← j + 1

If j = 15, solution not found: terminate

End Do

d = λD

λa ← λa + λ̇a�t ; i ← i + 1

End Do

(�) singular for λ̇a = 0.
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Example 7.5 (Evolution of Residual Stresses Through Vessel Growth).

(a) The ring of the radius R̃ and the thickness dR̃ in �̃ maps into the
ring of the radius r and the thickness dr in �, and thus 2πrdr =
2πR̃detG(R̃)detF(R(R̃))dR̃ holds. Given an incompressible elastic defor-
mation, detF = 1, the integration of said expression yields

r2 − r2
i = 2

∫ R̃

R̃i

xdetG(x)dx ,

and

r =
√
r2

i + 2.4R̃2 − 266.667R̃3 − 1.44 · 10−5 [m] (7.47)

expresses the radius of the deformed vessel, where detG(x) = Gθ and R [m]
have been used.

(b) We may express the principal Cauchy stresses in circumferential θ and radial
r directions of the incompressible vessel by σi = σ i − κ; i = θ, r , where
σ i = λi∂�/∂λi = λ2

i c and κ denotes the Lagrange pressure.
The only non-trivial equilibrium relation of an axisymmetric problem in

cylindrical coordinates reads rdσr/dr = σθ − σr = σθ − σ r . Its integration
between the boundaries σr(ri) = −pi and σr(ro) = 0 then results in

pi =
ro∫

ri

σθ − σ r
r

dr =
R̃o∫

R̃i

σθ − σ r
R̃

dR̃ , (7.48)

where the kinematics relation r = λtot r R̃ has been used.
With the multiplicative kinematics relation λtot θ = λθGθ , the elastic

incompressibility λθλr = detF = 1, the definition of the circumferential total
stretch λtot θ = r/R̃, and expression (7.47), we may express the integrand
of (7.48)2 as a function of R̃ and ri. Given ri, (7.48)2 can be integrated (at least
numerically), and Fig. 7.22a shows the results for a number of radii ri.

(c) Equation (7.48) may be solved with a quasi-Newton–Raphson fixpoint iteration

ri ← 1.3R̃i

Do Until |pi| < ε

pi =
∫ R̃o

R̃i

σθ − σ r
R̃

dR̃

ri ← ri − kpi

End Do ,
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where k = �ri/�pi = 0.00002817 m kPa−1 denotes a stiffness estimate.
The fixpoint iteration yields the radius ri = 2.9776 mm, and defines the
configuration of the pressure-free vessel segment. Figure 7.22b shows the
distribution of stretches in the vessel wall at the pressure-free configuration.

Fig. 7.22 (a) Inflation pressure pi as a function of the inner radius ri of a thick-walled vessel
segment. (b) Circumferential stretch λθ and radial stretch λr across the wall of the vessel segment
at its pressure-free configuration �

Example 7.6 (Growth that Maintains a Homeostatic Wall Stress Level).

(a) With the growth-related principal stretchesGθ,Gz,Gr , the growth tensor reads

G = Gθ(Eθ ⊗ Ẽθ )+Gz(Ez ⊗ Ẽz)+Gr(Er ⊗ Ẽr ),

where, Eθ ,Ez,Er and Ẽθ , Ẽz, Ẽr denote the circumferential, axial, and radial
vessel directions in the reference configuration �0 and the initial reference
configuration �̃0, respectively. Given constant-density volumetric growth, the
mass balance (7.50) allows us to derive

G−1
θ Ġθ +G−1

z Ġz +G−1
r Ġr = ςv , (7.51)

an expression that relates Gθ,Gz,Gr and the rate of volume change ςv.
(b) The equilibrium 2σθh = pid of the inflated thin-walled cylindrical tube results

in the spatial wall thickness h = kd, where k = pi/(2σθ ) is a constant, and
d = λθD. With the incompressibility of the non-growth-related deformation
λθλzλr = 1, the thickness of the vessel in �0 reads H = λθλzh. The radial
growth may then be expressed by

Gr = H/H̃ = λ2
θλzkD/H̃ , (7.52)

where H̃ is the wall thickness in the initial reference configuration �̃0.
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At isotropic growth, Gθ = Gz = Gr = G holds and (7.51) results in

ςv = 3G−1Ġ = 6λ̇θ /λθ ,

where (7.52) and λz = l/L = const has been used. It determines the rate of
volume change ςv that is needed in response to λ̇θ . �

Example 7.7 (The Thin-Walled Vessel at Tissue Turnover).

(a) The description of the mass density (7.58) may be integrated, and

ρ0(τ ) = ρ0(0) exp(−τ/ζ )+ ς+
M[ζ − ζ exp(−τ/ζ )] (7.65)

then expresses the density per unit reference volume at the time τ .
(b) Given the free energy density (7.59), Coleman and Noll’s procedure for

incompressible materials (3.131) followed by the second Piola transform yields
the i-th principal Cauchy stress

σi(τ ) = ρ0(0) exp(−τ/ζ )
ρ0(τ )

λi(τ )
∂�(F(τ, 0))
∂λi(τ )

+
τ∫

ξ=0

ς+
M exp[(ξ − τ)/ζ ]

ρ0(ξ)
λi(τ, ξ)

∂�(F(τ, ξ))
∂λi(τ, ξ)

dξ − κ , (7.66)

where κ is a Lagrange contribution to the hydrostatic stress that enforces the
elastic incompressibility.

The deformation gradient of the inflated incompressible thin-walled tube
reads

F(τ, ξ) = diag

[
λtot(τ )λpre

λtot(ξ)
, 1 ,

λtot(ξ)

λtot(τ )λpre

]
, (7.67)

where multiplicative kinematics of the turnover-based growth description have
been used, see Fig. 7.24. Given the constant λtot, the principal stretches read

λ1 = λpre , λ2 = 1 , λ3 = λ−1
pre , (7.68)

such that (7.66) finally reads

σ1(τ ) = c

⎧
⎨

⎩
ρ0(0) exp

(−τ
ζ

)

ρ0(τ )

(
λ2

pre − λ−2
pre

)



Solutions 553

+
τ∫

ξ=0

ς+
M exp

(
ξ−τ
ζ

)

ρ0(ξ)

[
λ2

pre − λ−2
pre

]
dξ

⎫
⎪⎬

⎪⎭
, (7.69)

where the equilibrium in radial direction σ3 = 0 has been used to identify κ .
(c) Splitting the time domain 0 < t < τ in n increments of the size �τ = τ/n

and using backward-Euler discretization of the integral in (7.69), allows us to
express the Cauchy stress by

σ(τ) ≈ c

⎧
⎨

⎩
ρ0(0) exp

(−τ
ζ

)

ρ0(τ )

(
λ2

pre − λ−2
pre

)

+
n∑

l=1

ς+
M exp

(
(l−n)�τ

ζ

)

ρ0(l�τ)

[
λ2

pre − λ−2
pre

]
�τ

⎫
⎬

⎭ . (7.70)

(d) The equilibrium of the thin-walled tube determines the inflation pressure

pi = 2
σh

d
= 2

σH

Dλ2
pre
, (7.71)

where λtot = λpre has been used. Given the mass density (7.65) and the stress
approximation (7.70), the inflation pressure pi can be computed for different
time discretizations, see Fig. 7.26. The convolution integral in (7.69) can also be
numerically integrated, which then yields the result labeled by “exact solution”
in Fig. 7.26.

The inflation pressure predicted by the thin-walled tube made of neoHookean
material yields pi = 2cH(1 − λ−4

pre)/D = 11.1924 kPa.

Fig. 7.26 Development of
the pressure pi in a
cylindrical tube, which wall is
described by continuous
tissue turnover. The
convergence of the numerical
solution towards the exact
solution and as a function of
the number of time
increments n, is shown � Pr
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Example 7.8 (Vessel Wall Growth Through Tissue Turnover).

(a) Given the free energy density (7.59), Coleman and Noll’s procedure for
incompressible materials (3.131) followed by the second Piola transform yields
the Cauchy stress

σ (τ ) = ρ0(0)S(τ )

ρ0(τ )
σ (Fpre)+

τ∫

ξ=0

ς+
MS(τ − ξ)
ρ0(ξ)

σ (F(τ, ξ))dξ

︸ ︷︷ ︸
σ i

−κI , (7.72)

where κ denotes a Lagrange contribution to the hydrostatic stress to enforce the
elastic incompressibility.

(b) The kinematics of the problem determine the principal stretches

λθ (τ, ξ) = λθ tot(τ )λθ pre/λθ tot(ξ) , λz = 1 , λr(τ, ξ) = λ−1
θ , (7.73)

where multiplicative kinematics as shown in Fig. 7.27 have been used. The
relation (7.72), together with the Cauchy stress σi = cλ2

i −κ of the neoHookean
model then leads to the principal Cauchy stresses

σβ(τ) = c

{
ρ0(0)

ρ0(τ )
exp

(−τ
ζ

)
λ2
β pre

+
∫ τ

ξ=0

ς+
M

ρ0(ξ)
exp

(
ξ − τ
ζ

)(
λβ tot(τ )

λβ tot(ξ)
λβ pre

)2

dξ

}
− κ ,

where β = θ, z, r denotes the circumferential, axial, and radial vessel direc-
tions, respectively. The referential mass density

ρ0(τ ) = ρ0(0) exp(−τ/ζ )+ ς+
M[ζ − ζ exp(−τ/ζ )] , (7.74)

follows from the integration of the governing equation (7.58).
The discretization of the time interval 0 < t < τ by n equidistant increments

�τ results in the approximation

σβ α = c

{
ρ0 1

ρ0α
exp

(−α�τ
ζ

)
λ2
β pre

+
α∑

k=1

ς+
M

ρ0 k
exp

[
(k − α)�τ

ζ

](
λβ totα

λβ tot k
λβ pre

)2

�τ

}
− κ (7.75)
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of the principal Cauchy stresses σβ α ;β = θ, z, r at the time τα = α�τ . Here,
the mass density ρ0α at the time τα is given by (7.74).

(c) The equilibrium of the thick-walled tube problem reads

pi =
ro∫

ri

σθ − σr
r

dr =
Ro∫

Ri

σθ − σr
R

dR , (7.76)

where the kinematics relation r = λtot rR has been used. The tube may be
discretized by m rings of the thickness �R = (Ro − Ri)/m, which then
approximates the integral (7.76) by

pi ≈
m∑

j=1

σθ j − σr j
Rj

�R .

We may use (7.75) to substitute the principal stresses, and

pi ≈
m∑

j=1

c�R

Rj

{
ρ0 1 j

ρ0 i j
exp

(−α�τ
ζ

)
(λ2
θ pre − λ−2

θ pre)

+
α∑

k=1

ς+
M

ρ0 k j
exp

[
(k − α)�τ

ζ

](
λ4
θ totα jλ

4
θ pre − λ4

θ tot k j

λ2
θ tot k j λ

2
θ totα jλ

2
θ pre

)
�τ

}
,

(7.77)

represents the equilibrium of the thick-walled vessel problem. In the derivation
of this expression, we used the elastic incompressibility λθλr = 1 to substitute
the radial stretch λr , whilst the indices k and j refer to the discretization in time
and space, respectively.

The incompressibility links the circumferential stretch of the individual
layers to the tube’s radii. At the time τα , the circumferential stretch in the j -th

layer then reads λθ α j = R−1
j

√
r2

iα + R2
j − R2

i , where riα denotes the inner

radius of the spatial configuration at the time τα .
(d) With the pressure pi and time τα , a fixpoint iteration may be used in the

solution of (7.77) towards the computation of riα . Table 7.7 reports the applied
algorithm, and Fig. 7.28 shows some results.
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Table 7.7 Algorithm to solve an inflated thick-walled vessel at continuous tissue turnover at the
time τα = α�τ

(1) Specify parameters

Ri = 3.0 mm; Ro = 4.0 mm; m = 30

c = 120 kPa; ζ = 6.0 weeks−1; pi = 13.33 kPa

ρ0 = 0.6 kg dm−3; ς+
M = 0.1 kg dm−3 week−1

(2) Set spatial discretization

�R = (Ro − Ri)/m

Rj = Ri + (j − 0.5)�R for j = 1, . . . , m

(3) Available history information

ρ0 l j ; λθ l j for l = 1, . . . , α − 1, j = 1, . . . , m

(4) Compute density

ρ0α j = ρ0 exp
[−α�τ

ζ

]
+ ς+

Mζ [1 − exp(−α�τ/ζ )] for j = 1, . . . , m

(5) Solve equilibrium

ri = 1.2Ri; ri n = Ri; pi n = 0; k = 1

Do While k < kmax

pi = 0

Do j = 1, . . . , m

λθ α j =
√
r2
i +R2

j−R2
i

R

s =
α∑
l=1

ς+
M

ρ0 l j
exp

[
(l − α)�τ

ζ

](
λ4
θ totα j λ

4
θ pre−λ4

θ tot l j

λ2
θ totα j λ

2
θ tot l j λ

2
θ pre

)
�τ

σθ − σr = c
[
ρ0 1 j
ρ0α j

(
λ2
θ pre − λ−2

θ pre

)
+ s
]

pi ← pi + σθ−σr
Rj

�R

End Do

ri ← ri − β(pi − pi) with β = ri−ri n
pi−pi n

ri n = ri; pi n = pi

If |pi − pi| < 10−6, k = kmax + 1

If k = kmax, solution not found: terminate

k ← k + 1

End Do
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Fig. 7.28 Development of
the inner radius ri over time
of the inflated thick-walled
vessel at continuous tissue
turnover. Solutions for
different time discretizations
n are shown. Even at
n = 10,000, the solution is
not converged �
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Example A.1 (Population Mean of the Vessel Wall Strength).

(a) Given the Quantile-Quantile plot (QQ-plot) shown in Fig. A.4a, the strength data
falls around the diagonal and therefore supports the assumption of a normal
distributed sample.

Fig. A.4 Quantile-Quantile
plots (QQ-plots) illustrating
normal distribution of the
vessel wall strength
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Normal distribution quantiles [kPa]

(b) The sample has the mean

x =
∑n
i=1 xi

n
= 1003.28 kPa ,

where n = 19 denotes its size. Its standard deviation s and the standard error es
read

s =
√∑n

i=1(xi − x)2
n− 1

= 362.65 kPa ; es = s√
n

= 83.2 kPa .

(c) The confidence levels c90 = 90% and c95 = 95% correspond to the probabilities
of p�90 = (1 + c90/100)/2 = 0.95 and p�95 = (1 + c95/100)/2 = 0.975,
respectively. The solution of p� = ϒ(t�) yields t�90 = 1.73406 and t�95 =
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2.10092, where ϒ(x) denotes the CDF of the student t-distribution with ν =
n− 1 = 18 degrees of freedom. Given the sample data computed by Task (b),

90%: x − t�90es ≤ μ ≤ x + t�90es ; 859.0 kPa ≤ μ ≤ 1147.6 kPa ,

95%: x − t�95es ≤ μ ≤ x + t�95es ; 828.5 kPa ≤ μ ≤ 1178.1 kPa

express the population mean and the respective CIs. �

Example A.2 (Trace and Determinant of a Matrix). The trace of A is the sum of the
diagonal matrix components, and reads

trA = 1 + 5 + 9 = 15 .

Given the alternating symbol eijk (A.8),

detA = −3 · 5 · (−7)+ (−2) · (−6) · (−7)

+ 3 · 4 · 8 − 1 · (−6) · 8 − (−2) · 4 · 9 + 1 · 5 · 9 = 282

expresses the determinant of A. �

Example A.3 (Linear Vector Transform). The operations

b = Aa =
⎡

⎣
7 2 −1
4 3 4
5 6 9

⎤

⎦

⎡

⎣
1
2
3

⎤

⎦ =
⎡

⎣
7 + 4 − 3

4 + 6 + 12
5 + 12 + 27

⎤

⎦ =
⎡

⎣
8

22
44

⎤

⎦

constitute the linear vector transform. �

Example A.4 (Eigenvalue Problem). The necessary condition

det(A − λI) = det

[
0.8 − λ 0.3

0.2 0.7 − λ
]

= 0

determines the characteristic equation

λ2 − 3

2
λ+ 1

2
= (λ− 1)(λ− 1/2) = 0 ,

and the two roots λ = 1 and λ = 1/2 are therefore the eigenvalues of A.
Given these eigenvalues, the eigenvalue problem Ax = λx yields the two linear

systems of equations:
[

0.8 0.3
0.2 0.7

] [
x1 1

x1 2

]
=
[
x1 1

x1 2

]
⇒ x1 =

[
0.6
0.4

]
,
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and

[
0.8 0.3
0.2 0.7

] [
x2 1

x2 2

]
= 1

2

[
x2 1

x2 2

]
⇒ x2 =

[
0.5

−0.5

]
,

where x1 and x2 are the eigenvectors of A. �

Example A.5 (Norm of a Vector and Vector Products). Given the definition in
Sect. A.6.1, the norms |a| = √

1 + 4 + 9 = 3.742 and |b| = √
16 + 25 + 36 =

8.775 represent the magnitudes of a and b, respectively.
The dot vector product yields

a · b =
⎡

⎣
1
2
3

⎤

⎦ ·
⎡

⎣
4
5

−6

⎤

⎦ = 1 · 4 + 2 · 5 − 3 · 6 = −4 ,

the cross vector product yields

a × b = det

⎡

⎣
e1 e2 e3

1 2 3
4 5 −6

⎤

⎦ =
⎡

⎣
−3 · 5 + 2 · (−6)
3 · 4 − 1 · (−6)
−2 · 4 + 1 · 5

⎤

⎦ =
⎡

⎣
−27
18
−3

⎤

⎦ ,

the dyadic vector product yields

a ⊗ b =
⎡

⎣
1
2
3

⎤

⎦⊗
⎡

⎣
4
5

−6

⎤

⎦ =
⎡

⎣
1 · 4 1 · 5 1 · (−6)
2 · 4 2 · 5 2 · (−6)
3 · 4 3 · 5 3 · (−6)

⎤

⎦ =
⎡

⎣
4 5 −6
8 10 −12

12 15 −18

⎤

⎦ ,

and the triple scalar product yields

(a × b) · c =det

⎡

⎣
1 2 3
4 5 −6

−7 8 9

⎤

⎦ = −3 · 5 · (−7)+ 2 · (−6) · (−7)

+ 3 · 4 · 8 − 1 · (−6) · 8 − 2 · 4 · 9 + 1 · 5 · 9 = 306 ,

where the definitions in Sect. A.6.1 have been used. �

Example A.6 (Coordinate Transformation). Both systems are Cartesian coordinate
systems, and their respective base vectors satisfy the normality condition |ei | =
|̃ei | = 1 together with the orthogonality condition ei · ej = ẽi · ẽj = δij , where δij
denotes the Kronecker delta.
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Both systems are related by the rotation matrix

R = ei · ẽj =
⎡

⎣
cos θ11 cos θ12 cos θ13

cos θ21 cos θ22 cos θ23

cos θ31 cos θ32 cos θ33

⎤

⎦ =
⎡

⎣
−1/

√
2 1/

√
2 0

1/
√

2 1/
√

2 0
0 0 −1

⎤

⎦ ,

which, given this particular case, is symmetric.
The coefficients of R represent the direction cosines, as it is illustrated in

Fig. A.10.

Fig. A.10 The coefficients
Rij = ei · ẽj of the rotation
matrix R represent the
direction cosines cos θij , and
thus the cosines of the angles
between the two base vectors
ei and ẽi , respectively �

Example A.7 (Vector Components in Different Coordinate Systems). Given the
Cartesian system {e1, e2}, the components of the base vectors ẽ1 = [√3/2 1/2]T

and ẽ2 = [−1/2
√

3/2]T can be deduced from Fig. A.9, and the rotation matrix

R =
[
e1 · ẽ1 e1 · ẽ2

e2 · ẽ1 e2 · ẽ2

]
=
[√

3/2 −1/2
1/2

√
3/2

]

with detR = 1 then specifies the mapping between {e1, e2} and {̃e1, ẽ2}, respec-
tively.

The coordinate transformation changes the vector components according to

[
ã1

ã2

]
= RT

[
a1

a2

]
=
[√

3/2 1/2
−1/2

√
3/2

] [
1
1

]
= 1

2

[√
3 + 1√
3 − 1

]
,

where the use of RT is noticed. �
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Example A.8 (Objectivity of Vectors). Given the transformation ẽi = Rei of the
base vectors, as well as ãi = RT(a · ei ) of the vector components, the relation
a = ãĩei = (RTa · ei )Rei expresses the vector a within the rotated coordinate
system {̃e1, ẽ2, ẽ3}.

The index notation ãi ẽij = RmkameikRjnein of this expression, together with
the relations eij = δij and RkiRkj = δij , yields then a = ãĩei = aiei . Aside
from the invariance of the vector a, this relation also implies that the vector
product a · b = aiei · bj ej = ãĩei · b̃j ẽj is invariant with respect to coordinate
transformation. �

Example A.9 (Objectivity of Tensors). The first invariant (A.17)1 of A = a ⊗ a
yields I1 = tr(a⊗ a) = I : (a⊗ a) = a · a. The coordinate transformation R rotates
the vector a into ã = Ra, and the first invariant then reads I1 = ã · ã = aRTRa.
Given the property RTR = I of the rotation tensor, the condition ã · ã = a · a holds,
which in turn implies that I1 remains unchanged upon coordinate transformation.

The second invariant (A.17)2 of A = a⊗a reads I2 = 1/2[I 2
1 −tr(a⊗a)2], where

the term tr(a⊗a)2 may be expressed by tr(a⊗a·a⊗a) = |a|2tr(a⊗a) = |a|2I1. The
norm |a| is invariant and therefore also I2 = 1/2(I 2

1 − |a|2I1) remains unchanged
upon coordinate transformation.

The third invariant (A.17)3 of A = a⊗a reads I3 = det(̃a⊗ ã) = det(Ra⊗aRT).
Given the property det[R(a ⊗ a)RT] = detR det(a ⊗ a) detRT of the determinate
and the condition detR = detRT = 1 of the rotation R, the third invariant I3 =
det(a ⊗ a) = det(̃a ⊗ ã) remains unchanged upon coordinate transformation. �
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remodeling index, 252
thrombo-embolic event, 251, 325

Autoregulation, 39, 51
Autotransfusion, 47

B
Backpropagation algorithm, 25
Baroreceptor, 52, 245
Basal tone, 372
Bayliss effect, 51
Bernoulli flow, see Conservation law
Biaxial tissue testing, see Experimental tissue

characterization
Biomechanical Rupture Risk Assessment

(BRRA), 28
hypothesis, 29
Intended Model Application (IMA), 29
modeling assumptions, 30
operator variability, 31
simulation pipeline, 29
validation, 31

biological vessel activity, 32
gender specificity, 32
histopathology, 33
quasi-prospective, 32
retrospective, 31

vessel wall model, 31
work flow, 29

Biot’s effective stress coefficient, 139
Blood

amount, 306
barrier, 43, 49, 50
cells, 306
clotting, 40, 41, 258, 308

prevention, 313
composition, 306
damage, 322

modeling (see Model, blood)
electrolyte, 308
flow, 42, 58, 305
hemolysis, 322
Hemolysis Index (HI), 322
macromolecules, 306
particles, 306

adhesion, 313
Brownian motion, 312
chemical force, 313
collision force, 312
drag force, 309
electrical force, 313
Fåhræus–Lindqvist effect, 312
forces, 309
gravitation force, 310
hydrostatic force, 310
inertia force, 310
inertia wall lift force, 311
migration away from the wall, 311
rouleaux formation, 313
segregation, 314
Segré–Silberberg effect, 311
shear force, 311
shear-induced migration, 312
tank-treading, 311
tubular pinch effect, 311

plasma, 308
molecules, 308

pressure, 53, 55
complex, 65, 66
control, 50–53
diastolic, 55
gradient, 55
hydrostatic, 48
long-term control, 53
mean, 55, 355
osmotic, 48
partial oxygen, 306
pulse, 55
sensor, 52
short-term control, 52
systolic, 55
systolic pressure augmentation, 56
wave, 56, 229

properties
indentification, 314
influenced by disease, 314
influenced by the shear rate, 314
non-linear viscosity, 315
non-Newtonian effects, 314
shear-thinning, 314
solid-like, 313, 314
thixotropy, 315
viscoelasticity, 315
yields stress, 315

rheology modeling (see Model, blood)
suspension, 306, 312
vessel (see Vessel)
viscosity, 312

relation with vessel diameter, 312
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Blood flow, see Flow
Body force, 155
Boltzmann

superposition integral, 128
superposition principle, 128

Bottom-up approach, 2
Boundary condition

Dirichlet, 155
Finite Element Method (FEM), 176

flux, 176
Neumann, 155

Finite Element Method (FEM), 176
no-shear boundary condition, 330
no-slip boundary condition, 330, 331, 334
symmetry boundary condition, 334

Boundary Value Problem (BVP), 155
Advection–Diffusion (AD) (see Advection–

Diffusion (AD))
diffusion (see Diffusion)
linear solid mechanics (see Linear solid

mechanics)
non-linear solid mechanics (see Non-linear

solid mechanics)
Brownian motion, see Blood, particles
Bulge inflation, 223
Bulk modulus, 123

C
Calculus of Variations, 175
Capacitor, see Circuit element
Capillary, 49

bed, 38, 41
continuous, 49
discontinuous, 50
fenestrated, 49

Cardiac arrest, 256
Cardiac output, 62
Carotid artery, 244

disease, 254
plaque, 254
wall elastic properties, 256
wall model, 281

Carotid plaque, see Carotid artery
Carotid sinus, 244
Cartesian coordinate system, 417

coordinate transformation, 417
vector components, 417

Cauchy’s momentum equation, see
Conservation law

Finite Element Method (FEM), 178
Cauchy stress, see Stress
Cauchy stress theorem, 103
Cayley–Hamilton theorem, 414

Cells, see Vascular cell
Characteristic equation, 104
Characteristic flow number

Froude number, 146
Péclet number, 82, 87
Reynolds number, 146
Stokes number, 309
Strouhal number, 146

Circle of Willis, 254
Circuit element, 435

capacitor, 435
inductor, 436
resistor, 435

Circulation, 35
pulmonary, 41
renal, 41
systemic, 41

Clausius–Duhem inequality, 148, 387
isothermal, 149
material description, 148
spatial description, 148

Coefficient of determination, 16
Cohesive zone model, 290

potential, 290
Coleman and Noll’s procedure, 124, 149, 150

incompressibility, 126, 150
volumetric-isochoric decoupled, 125

Collagen, 237
deformation models, 238
fiber dispersion, 276, 280, 294
fiber recruitment, 240

probabilistic, 277
structure, 237
turnover rate, 237
viscoelasticity, 238

Colloid Osmotic Pressure (COP), see Osmosis,
osmotic pressure

Complex numbers, 408
Complex plane, 65
Compliance matrix, 122
Computed Tomography-Angiography (CT-A),

248
Conditional Probability Table, 26
Confidence Interval (CI), 407
Confidence level, 407
Configuration, 92
Conservation law

Bernoulli flow, 325
Cauchy’s momentum equation, 143

Eulerian description, 144, 327
Lagrangian description, 143

concept of transport, 152
continuity, 142
energy conservation ideal fluid, 325
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mass balance, 140, 152
Eulerian description, 141
Lagrangian description, 141, 386
1D flow, 328

Maxwell transport, 152
momentum balance, 142, 386

poroelasticity, 139
Navier–Stokes equation, 145

dimensionless, 146
Newton’s second law of mechanics

fluids, 144
solids, 143

Constitutive description, 116
blood (see Model)
collagen fiber (see Model)
fiber-reinforced composite, 274
histomechanical, 262, 274, 277
hyperelasticity, 263
invariants-based, 275
linear elastic, 120
mixture, 274
phenomenological, 262, 264
structural, 262, 274, 277
vessel wall (see Model)

Continuity, 141
Continuum

non-polar/classical, 161
Continuum mechanics, 91, 92

balance laws, 140
open system, 386

constitutive model, 116
damage and failure, 159
energy principle, 157
Eulerian description, 140
general principles, 152
governing laws, 140

open system, 386
hyperelasticity, 123
kinematics, 92
Lagrangian description, 140
material time derivative, 112
open system, 386
open versus closed system, 141
Principle of Virtual Work (PVW), 157

finite strains, 158
small strains, 158

strain, 97
strain localization, 161
stress, 101
viscoelasticity, 127

Contractility, 40
Coordinate transformation, 417
Coronary artery, 245
Coronary flow, 245

Coronary heart disease, 255
Correlation

aneurysm and blood flow, 234
aneurysm wall strength and thickness, 260
atherosclerotic and blood flow, 234
coefficient, 13
injury and mechanical stress, 234
linear, 14
monotonic, 15
non-linear, 15
non-monotonic, 16
Pearson’s product-moment, 14
simple, 13
Spearman’s rank correlation, 15
vessel wall thickness and strength, 31
wall thickness and tension, 38

Creep function, 128
physical constraints, 128

Cross-bridge
cycle, 357
latch bridge, 378
latch bridge stiffness, 379
mechanism, 356
stiffness, 379
stress, 378

CT-A, see Computed Tomography-
Angiography (CT-A)

Cumulative Density Function (CDF), 405

D
Damage

anisotropic, 159
blood, 322
collagen, 287
effective stress, 159
endothelium (see Endothelium, damage)
isotropic, 159
Kachanov-type, 159
mechanics, 159
parameter, 160
tensor, 160
vessel wall, 242, 286, 287, 290

Data distribution, 404
frequentist inference test, 407
testing, 407

Deductive reasoning, 3
Deep learning, 25
Deformation

area element, 95
energy, 123
line element, 94
material particle, 97
particular state, 102
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pure shear, 100
rate, 112

rigid body motion, 113
rate of deformation tensor, 112, 316, 328,

333
scalar shear rate, 316
simple shear, 100
spin tensor, 112
velocity gradient, 112, 328, 332
volume element, 95
volume ratio, 95

time derivative, 113
Deformation gradient, 93, 149

eigenvalue representation, 93
multiplicative decomposition, 93
polar decomposition, 94
volumetric-isochoric split, 124

Deformation power
per unit deformed material volume, 116
per unit undeformed material volume, 115

Degrees of freedom, 17, 22, 406, 408
Dehydration, 309
Dense body, 356
Dense plaque, 356
Dentritic cell, see Vascular cell
Deviator operator, 151

material version, 151
Diacrotic notch, 57
Diameter stiffness, 339
Diffusion, see Transport
Diffusion finite element, 182
Diffusion matrix, 182, 183
Directional derivative, 179, 433
Direction cosine, 417
Direct solution of linear systems, 205
Dirichlet boundary condition, see Boundary

condition
Displacement

admissible, 157
virtual, 157

symmetric gradient, 158
Dissipation, 150

fluid, 118
Kelvin–Voigt rheology element, 132
Maxwell rheology element, 129
solid, 118
Standard Solid rheology element, 133

Dissipation inequality, see Clausius–Duhem
inequality

Divergence, 422
tensor field, 423

cylindrical coordinates, 423
vector field, 422

cylindrical coordinates, 422

Divergence theorem, 423
tensor field, 423
vector field, 423

E
Echocardiography, 247
Eigenvalue, 413

relation with the trace of a matrix, 414
Eigenvalue problem, 413

stress, 103
symmetric, 413

Eigenvector, 413
Elasticity tensor, 591

Hooke material, 123
decoupled, 123

non-positive definite, 160
positive definite, 160
symmetry, 123, 137, 284

See also Material
Elastic modulus, see Material
Elastin, 238

degradation, 238
elasticity, 239
relation to disease, 239
structure, 238
synthesis, 238

Electrocardiogram, 247
Elliptic problem, 160
Endothelium, 39, 42, 49, 51

damage, 308
Endothelium Cell (EC), 39, 239
Energy balance, see Energy conservation
Energy conservation, 146, 147, 376, 377, 386,

387
Energy dissipation

network node, 80
Energy principles, 146
Engineering approach, 2
Engineering strain, 98

virtual, 158
Engineering stress, 109
Entropy, 123

See also Thermodynamics
Error

false negative, 21
false positive, 21
regression modeling, 16
type I, 21
type II, 21

Erythrocyte, see Vascular cell
Erythropoiesis, 307
Essential boundary condition, 155
Euler–Almansi strain, see Strain
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Euler integration, 207
accuracy, 208
stability, 208

Euler’s principle
first, 102, 155
second, 102

Exchange, 47
current understanding, 86
filtration, 47, 48, 60, 84

non-linear, 87
Starling’s filtration equation, 47, 84

fluid flux, 88
nutrient, 36
oxygen, 36, 306
transcapillary, 82, 84
transcapillary flux, 82

non-linear, 87
wast products, 36

See also Transport
Experimental tissue characterization, 441
EXtended FEM (XFEM), 291
Extra Cellular Matrix (ECM), see Vessel wall
Eyring’s theory of rate process, see Model,

blood

F
Fåhræus–Lindqvist effect, see Blood, particles
Failure, 159
False negative, see Error
False positive, see Error
Femoral artery, 245
Fibrinogen, 308
FibroBlast (FB), see Vascular cell
Fick’s law, 436
Filtration, see Exchange
Finite Element Method (FEM), 167

advection matrix, 183, 189
assembling global system, 195
constrained finite element, 192
damping matrix, 184
divergence interpolation matrix, 174
embedding Dirichlet boundary conditions,

197
essential variable, 168
flow

incompressibility, 190
system of incompressible flow

equations, 218
follower load, 187
force vector, 184

algorithmic, 211
non-linear, 186

Galerkin, 181

generalized variable, 215
global system, 197
gradient interpolation, 173
gradient interpolation matrix, 173
hexahedral element, 172
hourglass-instability, 198
hybrid finite element, 174
incompressible flow finite element, 189
incremental transient system, 209
interpolation matrix, 169
isoparametric, 169
linear solid mechanics finite element, 183
mass matrix, 184, 189

lumped, 185
mixed finite element, 175
natural coordinates, 169
non-linear problem, 208
numerical stability, 198
penalty-constrained finite element, 192
Petrov–Galerkin, 181
pressure boundary finite element, 187
pressure boundary stiffness, 188
quadrilateral element, 170
shape function, 168

1D, 170
2D, 170
3D, 172
properties, 170

spatial discretization, 168
static system, 209
stiffness matrix, 184, 189

algorithmic, 211
augmented-Lagrange-constrained finite

element, 194
geometric, 187
initial stress, 187
Lagrange-constrained finite element,

194
material, 187
rank-deficiency, 198
reduced integration, 198
stability, 198

strain interpolation matrix, 173
Streamline Upwind Petrov–Galerkin

(SUPG) stabilization, 204
test function, 176
tetrahedral element, 173
time integration, 207
triangular element, 171
truss finite element, 184

force vector, 185
mass matrix, 185
stiffness matrix, 185

First law of thermodynamics, 146, 386
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First Piola–Kirchhoff stress, see Stress
Flow

aorta, 58
Bernoulli (see Conservation law)
boundary layer flow, 342
chaotic, 342
circular tube, 343
compatibility

network, 80
complex, 65, 66
creep flow, 345
dissipation, 342
diversion, 50, 51, 355
in elastic tube, 339
energy, 342
hydrostatic equilibrium, 346
ideal fluid (see Conservation law)
incompressible, 325

See also Blood, flow
inviscid, 339
inviscid flow, 345
jet flow, 345
Kolmogorov length-scale, 342
laminar flow, 341
length-scale, 342
maximum shear stress, 347
maximum Wall Shear Stress (WSS), 346
mixing, 348
multi-dimensional flow phenomena, 344
network, 226, 326
1D (see Governing equation)
Oscillatory Shear Index (OSI), 346
particle residence time, 347
particle tracking, 347
phenomena, 341
physical effects, 146
Poiseuille, 335, 343
pressure-velocity loop, 59
properties, 346
relative Residence Time, 347
Reynolds-Averaged Navier–Stokes

(RANS), 342
Reynolds decomposition, 342
Reynolds stress, 342
secondary flow, 344
shear rate, 347
Stokes, 309
time-averaged shear stress, 347
time-averaged Wall Shear Stress (WSS),

346
transitional flow, 341
turbulence model, 342
turbulent flow, 341
vascular tree, 58, 226

velocity, 42, 58
vortex flow, 344
Vortical Structure (VS), 342, 345, 348
vorticity, 348
Wall Shear Stress (WSS), 343, 346
Womersley flow, 344
Womersley number, 344

Foam cell, 250
Focal adhesion, 356
Fourier

coefficients, 65
decomposition, 410
series, 65
transform, 410

individual functions, 427
Fourth invariant, 95, 275
Fracture, 159
Frank–Starling mechanism, 58
Froude number, see Characteristic flow number

G
Gap junction, 356
Gaussian elimination, 205
Gauss–Legendre quadrature, 190

accuracy, 191
Gauss theorem, 423
Generalized viscoelastic model, 134
Geometrical stiffness, see Stiffness
Gibbs–Donnan effect, 439
Globulin, 308
Glycocalyx, 50, 89
Governing equation

1D flow
Cartesian coordinates, 328
cylindrical coordinates, 332

four-element WindKessel (WK) model, 74
Kelvin–Voigt rheology element, 132
Maxwell rheology element, 129
Standard Solid rheology element, 133
three-element vessel model, 77
three-element WindKessel (WK) model, 71
two-element WindKessel (WK) model, 62
wave propagation, 160

Gradient, 421
scalar field, 421
vector field, 422

cylindrical coordinates, 422
Green–Lagrange strain, see Strain
Growth

constant-density, 390
constant-volume, 390
continuous turnover-based, 395
homeostatic, 391
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kinematics-based, 387
Growth and Remodeling, 234

H
Haematocrit, 306
Hagen–Poiseuille law, 76, 336
Heart attack, 255
Heart disease, 255
Heat, see Thermodynamics
Helmholtz free energy, 123

additive decomposition, 124
energetic contribution, 124
entropic contribution, 124
per unit reference volume, 149
per unit spatial volume, 148
relation with the stress, 149

Hemodynamic factors, 44
Hemodynamic regulation, 51
Hemoglobin, 306, 322

level, 322
Hemolysis, 322
Hidden internal variable, 135, 149, 283

power-conjugate stress-like variables, 149
High-Density Lipoprotein (HDL), 308
Histo-mechanical vessel wall description, 274,

277
Hoff’s law, 439
Homeostasis, 38, 353
Hooke material, see Material
Hounsfield Unit (HU), 248
Hourglassing, see Finite Element Method

(FEM)
Hydraulic conductivity, 50, 84
Hydrostatic pressure, 107, 111, 126
Hyperbolic problem, 160
Hyperelasticity, 591

convexity, 124
coupled formulation, 124
incompressible, 126
invariant-based formulation, 124
volumetric-isochoric decoupled, 124

See also Continuum mechanics
Hypothesis, 19

Alternative Hypothesis, 20
Null Hypothesis, 19
rejecting, 19

I
Iliac artery, 245
Immune response, 36, 39, 40, 45, 239, 307
Impedance

modulus, 67, 72

phase, 67, 72
Incompressible flow

Boundary Value Problem (BVP)
strong form, 181
weak form, 181

See also Blood, flow
Incompressible material, see Material
Inductive reasoning, 2
Inductivity, 73
Inductor, see Circuit element
Infection, 307
Inflammation, 39
Inflated cylindrical vessel, 143, 155, 221, 267,

270, 284, 299, 384, 388, 392, 398,
399

Initial Boundary Value Problem (iBVP), 157
Integral form problem description, see Weak

form problem description
Integrin, 40
Intended Model Application (IMA), 2, 116

bioengineering, 34
Biomechanical Rupture Risk Assessment

(BRRA), 29
Intermediate filaments, 356
Internal energy, see Thermodynamics
Internal variable, see Hidden internal variable
InterQuartile Range (IQR), 405
Interstitial

flow, 45
pressure, 45, 84
volume homeostasis, 48, 60

Intima, see Vessel wall
Intra-Luminal Thrombus (ILT), 258

formation, 308, 313
von Willebrand’s factor, 308, 313

model, 265
IntraVascular UltraSound (IVUS), 247
Invariant, 290
Ischemia, 367
Isometric contraction, 369
Isotonic contraction, 369
Isotropic material, see Material
Iterative solution of linear systems, 206

preconditioning, 206

J
Jacobian transformation, 169
Jacobi’s formula, 113
Jaumann stress rate, see Stress, objective rate
J-integral, see Material
Junction

gap, 40
tight, 40, 49
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K
Kelvin–Voigt rheology element, see Material
Kidney disease, 309
Kinetic energy, see Thermodynamics
Kolmogorov length-scale, see Blood, flow

L
Lagrange multiplier, 135, 150, 263, 284
Lagrange pressure contribution, 135, 284
Laplace transform, 410

individual functions, 425
Large arteries, 233
Latch bridge, see Cross bridge
Least-square optimization, 16, 69, 291, 295
Left Cauchy–Green strain, see Strain
Length-scale, 161
Leukemia, 307
Leukocyte, see Vascular cell
Linear elastic material, see Material
Linear Fracture Mechanics (LFM), see

Material
Linear solid mechanics

Boundary Value Problem (BVP)
strong form, 178
weak form, 179

Dirichlet boundary condition
Finite Element Method (FEM), 178

Neumann boundary condition
Finite Element Method (FEM), 178

Linear transform, 103, 412
Line element, 94
Load at the material particle, 101
Low-Density Lipoprotein (LDL), 308
Lumped parameter model, 61
Lyapunov stability, 198
Lymphatic

flow, 45
organ, 45
system, 45
valve, 46
vessel, 45, 46

Lymphocyte, see Vascular cell

M
Machine Learning (ML), 23
Macrocirculation, 41
Macrophage, see Vascular cell
Magnetic Resonance-Angiography (MR-A),

249
Mass balance, see Conservation law
Material

anisotropy, 116

damage and failure, 159
elasticity tensor, 122
elastic modulus, 121
energetic elastic, 124
energy release rate, 120, 163
entropic elastic, 124
external work, 117
failure, 120
failure theory, 120
fracture, 120
fracture toughness, 120
generalized viscoelastic model, 134
Hooke, 122

decoupled representation, 123
potential, 123
tensor notation, 123
Voigt notation, 122

incompressibility, 116
isotropic linear-elastic, 120
isotropy, 116
J-integral, 164
Kelvin–Voigt rheology element, 132
Linear Fracture Mechanics (LFM), 162
linear viscoelastic, 128
Maxwell rheology element, 129
mixture theory, 138, 399
Newtonian fluid, 127
non-linear fracture mechanics, 163
Poisson’s effect, 121
Poisson’s ratio, 121
poroelasticity, 139
principal directions, 273
properties, 116
quasi-incompressible, 126
quasi-linear viscoelasticity, 134
shear modulus, 121, 123
Standard Solid rheology element, 133

relaxation time, 134
stiffness factor, 134

stiffness, 119
geometrical contribution, 180
isochoric, 120
material contribution, 180
matrix, 122
positive definiteness, 124
spring, 129, 133
tensor, 122
volumetric, 120

strain energy, 117
strength, 120
stress intensity factor, 162
strong ellipticity condition, 160
structural tensor, 95, 124

general, 276, 294
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viscoelasticity, 127
convolution integral, 137, 284
over stress, 133
rate equation, 137, 284

visco-hyperelasticity
incompressibility, 135
stress-decomposed, 137

visco-hyperelasticity for incompressible
materials, 135

viscosity, 129, 133
volumetric-isochoric decoupled, 124
yield, 120
Young’s modulus, 121

effective, 122
strain-dependent, 160

Material, strain softening, 160
Material particle, 92
Material properties, see Material
Matrix, 410

determinant, 411
identity, 411
inverse, 412
orthogonal, 412
orthogonal transformation, 417
rotation, 417
trace, 411

Matrix MetalloProteinase (MMP), 251
Maxwell rheology element, see Material
Mean, 407
Mean difference test, 21

one-sample t-test, 21
paired samples, 22
student’s t-test, 21
two-sample t-test, 22
Welch t-test, 22

Mechanosensor, 356
Media, see Vessel wall
Medial Lamellar Unit (MLU), see Vessel wall
Median, 405, 406
Medical device

failure, 322
Medical image modalities, 247
Microcirculation, 47
Microtubuli, 356
Mixture theory, see Material
Model

angular integration, 277
Artificial Neural Network (ANN), 24
Bayesian Network (BN), 26
Biomechanical Rupture Risk Assessment

(BRRA), 30
black-box, 7
blood, 314

Carreau–Yasuda, 317

Casson, 317
composition-based, 318
erythrocyte suspension in plasma, 319
generalized Newtonian fluid, 315
Intended Model Application (IMA),

321
Krieger-based, 319
power law, 316
Quemada model, 318
single phase, 316
Walburn–Schneck, 318

challenges, 4
collagen fiber, 277

deCraemer, 277
Hamedzadeh, Gasser, Federico (HGF),

279
phenomenological, 279, 280

collagen fiber orientation, 280
complexity, 33
convexity requirement, 296
decision tree, 27
definition, 5
development, 8
Eyring’s theory of rate process, 319
generalized Newtonian fluid, 316
general theory of fibrous tissue, 277
glycocalyx-cleft, 89
grey-box, 7
inflated cylindrical vessel, 267, 270
lumped parameter, 61
microcirculation, 82
parameter identification, 291
Phillips’ model, 312
power law, 323
reduction technique, 7
regression, 16
sensitivity, 8, 33

first-order sensitivity, 11
global, 9, 10
local, 9
main effect, 11
mixed effect, 11
second-order sensitivity, 11
Sobol sensitivity analysis, 10

simplification, 5
statistics-based, 13
strategy, 6
surrogate, 7
systematic error, 33
testing, 8
three-element vessel model, 75
transformation matrix, 6
two-pore model, 88
validation, 12
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variance decomposition, 11
verification, 12
vessel

capacity, 262
vessel wall, 262

biaxial tension, 292, 294
Choi and Vito, 274
demiray, 265
fibrous tissue, 277
Fung, 273
Gasser, Ogden, Holzapfel (GOH), 276
Hayashi, 274
histomechanical, 274
Holzapfel, Gasser, Ogden (HGO), 275
hyperelasticity, 263
hyperelasticity anisotropic, 273
hyperelasticity isotropic, 265
Kleinstreuner, 275
limitations, 303
neoHookean, 265
Ogden, 265
parameter estimation, 295–297
Rodriguez, 275
Yeoh, 265

white-box, 7
WindKessel (WK), 61

four-element, 73
homogeneous solution, 65, 71
three-element, 70, 229
two-element, 61

Moens-Korteweg equation, 341
Momentum balance, see Conservation law
Monte Carlo simulation, 10
Motion, 92
MR-A, see Magnetic Resonance-Angiography

(MR-A)
Multiphasic continuum theories, 138
Myofilament, 356
Myogenic regulation, 51
Myogenic response, 360, 368, 371
Myosin, 357

N
Nanson’s formula, 96
Natural boundary condition, 155
Navier–Stokes equation, see Conservation law
Neumann boundary condition, see Boundary

condition
Newton’s law, see Conservation law
Non-linear solid mechanics

Boundary Value Problem (BVP) weak
form, 179

Numerical quadrature, 190

O
One-dimensional (1D) flow

layer, 329
oscillating layer, 330
tube flow, 226, 227, 334

hydrodynamic entrance length, 228
One-tailed test, 20
Optimization, 295
Orientation density function, see Probability

Distribution Function (PDF)
Orthostasis, 52
Osmosis, 48, 438

hydrostatic pressure, 84
osmotic pressure, 48, 84, 87, 438

intraluminal, 84
Over stress, see Material, viscoelasticity
Oxygen exchange, 245
Oxygen transport, 36, 40

P
Parameter identification, 295

influence of noise, 297
minimization problem, 295
objective function, 295

weight, 295
optimization, 291
parameter variability, 304
reliability, 296
vessel wall, 291
WindKessel (WK) model, 68

Parameter sensitivity analysis, 8
Partial Differential Equations (PDE), 167
Partition of Unity FEM (PUFEM), 291
Passive vessel response, 38
Pearson’s correlation, see Correlation
Péclet number, see Characteristic flow number
Pericyte, see Vascular cell
Permeability, see Material
Piola transform

first, 110
second, 111

Pivoting, 205
Planar biaxial testing, 219, 291, 441
Plaque, see Atherosclerosis
Plasma, see Blood
Plasma cell, see Vascular cell
Platelet, see Thrombocyte
Plot

box-and-whisker, 405
histogram, 407
Quantile-Quantile (QQ), 407
scatter, 14

Poiseuille flow, see Blood, flow
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Poisson equation, 176
Poisson’s ratio, see Material
Poroelasticity, see Material
Potential

augmented-Lagrange constraint, 194
Lagrange constraint, 193
penalty constraint, 192

Power-conjugate stress and strain, 115
Preconditioning, see Tissue characterization
Pressure decay method, 68
Pressure-velocity loop, 59
Principal material direction, see Material
Principal strain, see Strain
Principal stress, see Stress
Principal stretch, 93, 94

direction, 93, 94
Principle of Virtual Work (PVW), 157

Finite Element Method (FEM), 175
finite strains, 158
material version, 159
small strains, 158
spatial version, 158

Probability, 405
Probability Density Function (PDF)

beta-distribution, 406
Bingham, 281, 294
Cauchy–Lorentz, 277
fiber engagement, 276, 277, 280
fiber orientation, 280
log-logistic, 277
normal/Gaussian, 405
student t-distribution, 406
transverse isotropy, 281
triangular, 278
von Mises, 281

Proteoglycan (PG), 237
Pulse Wave Imaging (PWI), 248
Pulse wave velocity, 70, 355
Pure shear, see Deformation, state
p-value, 20

Q
Quantile, 405
Quartile, 405

R
Rate of deformation tensor, see Deformation,

rate
Rate of volume change, 113
Red blood cell, see Erythrocyte
Reduced axial force, 269
Regression modeling, 16

linear, 16
multiple, 19
multivariant, 19
non-linear, 18
residuum, 16
significance, 17
simple, 16
stepwise regression, 19

Relaxation function, 128
Maxwell element, 131
physical constraints, 128

Remodeling, 39
Representative Volume Element (RVE), 5, 92
Resistor, see Circuit element
Reynolds number, see Characteristic flow

number
Right Cauchy–Green strain, see Strain
Rigid body motion, 93, 94
Rupture Risk Equivalent Diameter (RRED), 29

S
Sample size, 407
Scalar shear rate, see Deformation, rate
Scalar shear stress, 323
Scale separation, 92
Scintigraphy, 248
Second law of thermodynamics, 148, 150, 387
Second Piola–Kirchhoff stress, see Stress
Segré–Silberberg effect, see Blood, particles
Sensitivity index, 11
Sensitivity vector, 9
Shear modulus, see Material
Significance level, 20, 21
Simple shear, see Deformation, state
Single-Photon Emission Computed

Tomography (SPECT), 248
Smooth Muscle Cell (SMC), see Vascular cell
Sobol’s variance-based sensitivity analysis, see

Model, sensitivity
Solving sparse linear systems, 205

LDU factorization, 205
LU factorization, 205

Solving systems of equations, 204
arc-length controlled , 217
arc-length method, 215
Chorin projection method, 218, 219
continuation method, 215
Courant–Friedrichs–Lewy (CFL) criterion,

210
decoupled, 218
displacement-controlled, 214
explicit, 209
flow, 218
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force-controlled, 214
implicit, 210
load factor, 212, 215
load incrementation, 212
monolytic, 218
Newton–Raphson method, 211
non-linear, 208
pseudo-displacement control, 216
quadratic convergence, 211
time marching, 209

Spearman’s correlation, see Correlation
Spin tensor, see Deformation, rate
Standard Deviation (SD), 406, 407
Standard error, 408
Standard Solid rheology element, see Material
Starling’s filtration equation, see Exchange,

filtration
Statistical power, 21
Statistics definitions, 403
Staverman’s osmotic reflection coefficient, 83,

84, 89, 439
Stenosis, 255
Stiffness, see Material
Stokes flow, see Blood, flow
Stokes number, see Characteristic flow number
Strain

absolute, 99
analysis in principal directions, 264
compatibility, 98
Euler–Almansi strain, 99

eigenvalue representation, 99
Green–Lagrange strain, 99

eigenvalue representation, 99
principal vessel directions, 273
time derivative, 112
virtual, 159

left Cauchy–Green strain, 99
eigenvalue representation, 99

linear, 98
non-linear, 98
normal, 98
principal strain, 98

direction, 98
relative, 99
right Cauchy–Green strain, 95, 98

eigenvalue representation, 98
shear, 98

Strain energy, 117, 123
rate, 115
specific, 117

Strain localization, 161
energy dissipation, 161
volume, 161

Strength, see Material

Stress
analysis in principal directions, 264
Cauchy stress, 102

coordinate transformation, 109
effective, 159
eigenvalue representation, 104
incompressibility, 111, 126, 151
isochoric, 126
principal directions, 264
volumetric, 126
volumetric-isochoric decoupled, 151

decoupled representation, 111
deviator, 107

invariant, 107
effective, 139
equivalent stress, 120
first Piola–Kirchhoff stress, 109, 149

biaxial tension, 292
coordinate transformation, 110
eigenvalue representation, 110
principal directions, 264, 292

hydrostatic, 107
incompressible material, 111
invariant, 104, 323
isochoric, 107
normal, 101
objective rate, 114

Jaumann rate, 115
Truesdell rate, 115

octahedral, 107
particular state, 102, 106
principal stress, 104

direction, 104
state, 103

second Piola–Kirchhoff stress, 110, 150
coordinate transformation, 111
incompressibility, 111, 150
principal directions, 264
volumetric-isochoric decoupled, 125,

151
shear, 101
symmetry, 102
Tresca, 120
volumetric, 107
von Mises, 107, 108, 120, 323

Stretch tensor
eigenvalue representation, 94
left, 94
right, 94

Stroke, 255
Strong ellipticity condition, see Material
Strong form problem description, 175
Strouhal number, see Characteristic flow

number
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Structural tensor, see Material
Student t-test, 22
Study design, 12

confounded, 13, 34
Study units, 12
Elastic modulus, see Material
System energy, see Thermodynamics

T
Tensor

algebra, 419
base, 419
calculus, 421
component, 419
double contraction, 420
formed by dyadic vector product, 419
higher-order, 419

component, 419
transformation, 419

invariant, 421
operations, 420
outer product, 420
product, 420
single contraction, 420
specific relations, 429
spherical, 419
transformation, 419

Test function, see Admissible variation; Finite
Element Method (FEM)

Thermodynamics
entropy, 148

compatible, 387
non-compatible, 387
per unit reference volume, 149, 376
per unit spatial volume, 148

equilibrium
Standard Solid rheology element, 133

first law, 146, 376, 386
heat, 146

compatible, 386
flux, 146
non-compatible, 386
source, 146, 148
supply, 146

heat flux, 148, 149
internal energy, 123, 146, 376
isothermal process, 149
kinetic energy, 146
power input, 146
second law, 148, 376, 387
Smooth Muscel Cell (SMC), 376
system energy, 146

internal, 146

kinetic energy, 146
Thrombocyte, see Vascular cell
Time discretization, 78
Tissue characterization, 291

biaxial tensile test, 291
data, 292

experiment, 292
loading protocol, 291
parameter identification, see Parameter

identification; Model
preconditioning, 292

Top-down approach, 3
Traction, 155

vector, 103
Transcapillary flux, see Exchange
Transcytosis, see Transport
Transport

across semipermeable membranes, 440
advection, 47, 82, 309, 437
Advection–Diffusion (AD)

Boundary Value Problem (BVP) strong
form, 177

Boundary Value Problem (BVP) weak
form, 177

diffusion, 39, 47, 82, 436
Boundary Value Problem (BVP) strong

form, 176
Boundary Value Problem (BVP) weak

form, 177
constant, 82

flow through porous media, 437
flux, 82, 83
non-linear, 86
Stokes drag, 309
transcapillary, 60
transcytosis, 47

Transport equation, 324
Truesdell stress rate, see Stress, objective rate
Two-point tensor, 93
Two-tailed test, 20

U
Unit direction vector, 94
Unit sphere, 280

V
Variable

dependent, 12, 13, 16
extraneous, 12
independent, 12
internal (see Hidden internal variable)
Lagrange, 135, 284



Index 607

lurking, 12
random, 404

Variance, 11, 406
Variance-based sensitivity analysis, see Model,

sensitivity
Variation, 433
Vasa vasorum, 44
Vascular

adaptation, 38
bed, 38
capacity, 42, 56, 61, 68, 243
cell (see Vascular cell)
compliance, 56
distensibility, 56
elasticity, 42
flow, 58
impedance, 67
network, 39
pressure regulation, 47
resistance, 51, 53, 55, 60, 61, 68
resistance vessel, 50
system, 36
transport, 41
tree, 39, 42
wave speed, 53, 340

Vascular cell, 39, 42, 234, 239
basophils, 307
dendritic cell, 41
Endothelium Cell (EC)

endothelial NO synthase (eNOS), 359
regulation of SMC, 358

eosinophil, 307
erythrocyte, 40, 306

damage, 322
ghost, 314
rouleaux formation, 313
shape, 307

FibroBlast (FB), 40
fibrocyte, 40
leukocyte, 40, 307

adhesion, 313
shape, 307

lymphocyte, 40, 307
macrophage, 41
megakaryocytes, 307
monocyte, 307
neutrophil, 307
pericyte, 40, 355
plasma cell, 40
platelet, 41
Smooth Muscle Cell (SMC), 40, 239, 356

calcium, 356
calcium sensitization, 359
contractile, 355

contraction and relaxation, 356
contraction machinery, 357
degradative, 355
latch-bridges, 361
Myosin Light Chain (MLC)

phosphorylation, 357
Myosin Light Chain Kinase (MLCK),

356
Myosin Light Chain Phosphatase

(MLCP), 357
phenotype, 40, 355
phenotypic modulation, 355
rho kinase, 358
structure, 356, 357
synthetic, 355
tonic contraction, 44
tonus, 44, 51, 371

thrombocyte, 307
aggregation, 313
shape, 308

Vascular diagnostics, 247
Vascular diseases, 246
Vascular exchange, see Exchange
Vascular flow, see Blood, flow
Vascular pressure, see Blood, pressure
Vasoconstriction, 51
Vasoconstrictor, 51
Vasodilatation, 51
Vasodilator, 51
Vasoreactivity, 38, 355
Vector

algebra, 414
calculus, 421
cross product, 415
dot product, 415
dyadic product, 416
Euclidian norm, 415
inner product, 415
invariant, 419
magnitude, 415
multiplication, 415
operations, 415, 420
outer product, 415
triple scalar product, 415

Vein, see Vessel
Velocity gradient, see Deformation, rate
Venous return, 58
Vessel

arteriole, 41
artery, 41
capacity, 76, 262

non-constant, 262
capillary, 41
conduit, 233
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function, 42
inductance, 76
inertance, 76
large, 233
network, 80
resistance, 75, 336
structure, 42
vein, 42
venule, 42

Vessel wall
active properties, 368
adventitia, 44, 235

function, 235
anisotropy, 240
atherosclerosis, 249

vulnerable plaque, 249
axial in vivo stretch, 242
cells (see Vascular cell)
collagen, 237
collagen fiber, 288
constitutive description (see Model)
damage, 286

Continuum Damage Mechanics (CDM),
287

Kachanov, 287
plastic-like description, 289
statistics-based, 288

defect, 286
deformability, 240
elastin, 238
experimental observations, 240
Extra Cellular Matrix (ECM), 42, 234, 237

pathological remodeling, 257
failure, 286
histology, 234, 236
incompressibility, 242
inelasticity, 240
integrity, 234
intima, 42, 235

function, 42
irreversible deformation, 286
layers, 235
load-free configuration

model, 282
mechanical properties, 240

strain-rate dependency, 240
media, 43, 235

function, 235
Medial Lamellar Unit (MLU), 43, 235
metabolism, 234
model (see Model, vessel wall)

morphology, 234
nonlinearity, 240
parameter uncertainty, 303
perivascular support, 303
preconditioning, 240
properties

influencial factors, 304
residual stress, 242, 269, 282

model, 282
stiffness, 240
transmural flow, 44
viscoelasticity, 283

quasi-linear, 283
visco-hyperelasticity, 283

Virtual displacement, see Displacement, virtual
Virtual work

internal, 179
Viscoelasticity, see Material
Visco-hyperelasticity, see Material
Viscosity, see Material
Voigt notation, 122, 173
Voloreceptor, 52
Volume growth, 385
Volume ratio, see Deformation
von Willebrand’s factor, see Intra-Luminal

Thrombus (ILT), formation
Vortex flow, see Blood, flow

W
Wall Shear Stress (WSS), 38, 44

sensing, 239
Water hammer equation, 60
Wave propagation, 339
Wave Speed, 591

See also Vascular
Waves

wave speed, 339
Frank/Bramwell–Hill equation, 341
Moens–Korteweg equation, 341

Weak form problem description, 175
Welch t-test, 22
White blood cell, see Leukocyte
Windkessel (WK) model, see Model
Womersley flow, see Blood, flow
Work

external, 179

Y
Young’s modulus, see Material
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