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Preface

Cholangiocarcinoma is a generally rare yet impactful, heterogeneous, and, in many 
ways, enigmatic malignancy of the biliary tract that can occur anywhere along its 
course, from the intrahepatic radicles that line the canals of Hering on down to the 
common bile duct and hepatopancreatic ampulla. Despite all cholangiocarcinoma, 
irrespective of anatomical location, being of biliary epithelial origin (by definition), 
the disease embodies a wide epidemiological, biological, and clinical spectrum of 
subtypes. Although cholangiocarcinoma is often aggressive, screening modalities 
are lacking, and most patients are asymptomatic until advanced stages of disease. 
Insofar as it is becoming more common worldwide, cholangiocarcinoma, consider-
ing its relatively high morbidity and mortality and limited therapeutic options, poses 
a critical biomedical and public health problem.

Advances in delineating the molecular events that lead to the development and 
progression of cholangiocarcinoma have lagged in relation to other, more common 
and anatomically accessible malignancies that are typically easier to model and 
study. As such, it may come as no surprise that significant advances in treatment 
approaches, as seen for instance in breast or colorectal cancer, have correspondingly 
not been realized. However, on the heels of progress in other areas of cancer 
research, recent studies have shed light on the pathogenesis of cholangiocarcinoma, 
which not only help explain the apparent heterogeneity of this disease, but also lend 
great promise in the clinical arena. Indeed, in parallel with the enhanced under-
standing of the molecular biology of cholangiocarcinoma have come developments 
in other areas, including but not limited to clinical epidemiology, noninvasive imag-
ing, histopathology, endoscopic management, targeted chemotherapy, surgical 
oncology, disease biomarkers, surveillance, and modeling. While these develop-
ments have improved our ability to care for patients with cholangiocarcinoma, there 
is still much to be learned and accomplished, as evidenced by the ongoing diagnos-
tic challenges, limited treatment options, and relatively high morbidity and mortal-
ity which continue to be associated with this disease.

In this context, I was very pleased to learn of Springer’s interest in an authorita-
tive and up-to-date textbook (and eBook) dedicated to the topic of cholangiocarci-
noma, and together we sought to recruit a broad representation of world experts to 
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provide a global perspective on this very matter. I am delighted to say that this effort 
has produced a unique, 26-chapter compendium of work authored by an impressive 
international group of leaders in the field. The chapters, organized into three parts, 
have been curated to recount the fundamental principles, evolving trends, and latest 
insights regarding cholangiocarcinoma across the spectrum of basic, translational, 
and clinical research as well as the state of the art of multidisciplinary patient care, 
including diagnosis, staging, treatment, surveillance, and beyond. On behalf of the 
authors, I believe this book will serve as a valuable contribution to the field and an 
important, unified, and practical resource for investigators and clinicians at all levels 
of expertise as well as trainees, patients, and patient advocates aspiring to learn 
more regarding this subject. Moreover, it is my sincere hope that this book will help 
cultivate greater collaboration among clinicians, scientists, patients, and industry to 
seek new knowledge to improve care for patients with these malignancies.

Los Angeles, CA, USA James H. Tabibian 

Preface
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Chapter 1
Anatomy of the Biliary Tree: Normal, 
Anomalous, and Relationship 
to Cholangiocarcinoma

Jad Abou-Khalil

Abbreviations

CBD Common bile duct
CCA Cholangiocarcinoma
CHD Common hepatic duct
LHD Left hepatic bile duct
LLS Left lateral section
RAD Right anterior bile duct
RHD Right hepatic bile duct
RPD Right posterior bile duct

 Overview

Cholangiocarcinoma (CCA), a malignancy of the biliary epithelium, can arise any-
where within the biliary system, from the intrahepatic ducts to the hepatopancreatic 
ampulla. Understanding biliary anatomy and the breadth of its variation finds par-
ticular importance in the treatment of CCA.  This chapter will describe standard 
configurations of the left and right biliary tree, their confluence, the gallbladder, and 
common bile duct (CBD) and identify common variations on this standard anatomy 
as they relate to the treatment of CCA, especially surgical.

J. Abou-Khalil (*) 
Department of Surgery, Division of General Surgery – Hepatobiliary and Pancreatic Surgery 
Unit, The Ottawa Hospital, Ottawa, ON, Canada
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 Anatomy of the Left Biliary System

The left bile duct (LHD) is formed by the confluence of segments 2, 3, 4a, and 4b. 
Four common anatomical variants of its formation are described [1]. In the most 
common configuration, the segments 2 and 3 bile ducts join to form a left lateral 
section (LLS) [2] duct close to the umbilical fissure. 55% of individuals share this 
configuration. This confluence occurs at the umbilical fissure, medial to the fissure, 
or lateral to it 5%, 50%, and 45% of the time, respectively, joining a single segment 
4 duct to form the left hepatic duct (LHD). The second most common configura-
tion, seen 30% of the time, finds two separate ducts from 4a and 4b, respectively, 
joining the LLS duct. In the third most common variant, the segments 3 and 4 ducts 
join to the right of the umbilical fissure and are joined by the segment 2 duct closer 
to the hilum; this occurs 10% of the time. In the fourth configuration, seen in 5% 
of individuals, segments 2, 3, and 4 join together at the umbilical fissure. Of note, 
in the second and fourth configuration, the segment 4 duct can join the LHD to the 
left of the umbilical fissure, exposing this duct to a risk of injury whenever a tran-
section plane runs through the umbilical fissure, for example, during segments 2 
and 3 resection for an intrahepatic CCA in segments 2 and 3 (Fig. 1.1).

Using corrosion casting, surgical anatomists of the mid-twentieth century, from 
Rex to Couinaud, described the anatomical relationship of the biliary tree to the 
portal vein and its segmental branches [3]. The LHD always lies superiorly 

LHD

LLS

IV

III

II
a

III

II

IV
IV

c

LHD

IV
IV

III

IIb
LHD

IV III

IId

LHD

Fig. 1.1 Four common anatomical variants of the left viliary drainage system: (a) the segment 2 
and 3 bile ducts join to form a left lateral section (LLS) duct close to the umbilical fissure, joining 

a single segment 4 duct to form the left hepatic duct (LHD). (b) two separate ducts from 4a and 
4b, respectively, joining the LLS duct. (c) the segment 3 and 4 ducts join to the right of the umbili-
cal fissure and are joined by the segment 2 duct closer to the hilum. (d) segments 2,3, and 4 join 
together at the umbilical fissure

J. Abou-Khalil
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(cephalad) to the portal vein, a relationship that allows access to the left hepatic duct 
during a “Hepp-Couinaud” maneuver, wherein the hilar plate is lowered to reveal 
the left hepatic duct behind the portal vein. This universal configuration is variably 
termed epiportal or supraportal. More distally towards the segmental branches of 
the biliary tree, this relationship is mostly maintained, except for a described hypo-
portal configuration of the segment 3 branches, occurring in 3.6% and up to 8% of 
livers [3, 4]. The presence of a parenchymal or fibrous bridge over the Rex’s recess 
is a surface clue to the presence of a hypoportal segment 3 duct. This does not occur 
with segment 2 branches, due to the embryological origin of the ducts – with seg-
ments 3 and 4 arising together as an anteriomedial sector within the left lobe and 
segment 2 arising separately as a left posterior-lateral sector.

The LHD is longer than the right hepatic duct (RHD), measuring 2–5 cm, and 
courses more horizontally. The RHD, if present at all, usually measures 1 cm before 
it bifurcates into its anterior and posterior tributaries.

 Anatomy of the Right Bile Ducts and the Biliary Confluence

Similarly to the left liver, the bile ducts draining segments 5, 6, 7, and 8 in the 
right liver join together in four commonly recognizable configurations [5, 6]. 
The most common configuration finds the right anterior bile duct (RAD) drain-
ing segments 5 and 8 meeting with the right posterior bile duct (RPD) draining 
segments 6 and 7 to become the RHD.  This configuration, termed type 1, is 
found in 56% of livers (Fig. 1.2). Unlike in the left liver where the LHD is uni-
versally epiportal, the RHD can be hypoportal 20% of the time. Specifically, the 
RPD can lie in a hypoportal configuration, hooking behind the right anterior 
portal vein branch  – a configuration described by Hjortsjö and eponymously 
named Hjortsjö’s hook. The type 2 configuration (14% of livers) presents as a 
triple confluence of the LHD with the RAD and the RPD, with no distinct 
RHD. In types 3a and 3b, the RAD and RPD join the LHD, respectively, in 5% 
and 15% of livers. In types 4a and 4b, the RAD and RPD, respectively, join the 
CHD below the confluence – a pattern termed convergence etagée. The long-held 
belief that small bile ducts connect the gallbladder lumen to intrahepatic bile 
ducts, so-called ducts of Luschka, is disproven. There are nonetheless bile ducts 
lying in close proximity to the cystic plate which can be injured in the course of 
a cholecystectomy.

Every effort must be made to delineate biliary anatomy prior to embarking on a 
liver resection for the treatment of a CCA. Particular attention must be drawn to the 
anatomical variants mentioned above in planning hepatectomies for hilar CCA, as 
the anatomy determines the number and location of bile ducts that will be encoun-
tered at the planned transection line and that will need to be reconstructed. For 
example, a CCA involving the LHD may present with dilatation of both the LHD 
and the RPD if the RPD inserts into the LHD (Fig. 1.2).

Embryologically, the intrahepatic bile ducts form from the ductal plate, a thin 
layer of cells that surrounds the portal vein branches and that follow its branching 

1 Anatomy of the Biliary Tree: Normal, Anomalous, and Relationship…
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pattern within the developing liver [7]. Therefore, biliary anatomy typically tracks 
portal venous anatomy, and variants of portal venous anatomy should consequently 
raise suspicion of biliary ductal anatomical variation.

 The Caudate Ducts

The Spigelian lobe (i.e., Couinaud’s segment 1), the caudate process, and the para-
caval caudate (described by Couinaud as a 9th segment but rarely referred to as such 
in contemporary nomenclature) form the caudate lobe. Each of these portions of the 
caudate lobe is drained by at least one duct, with up to five ducts draining the cau-
date. The Spigelian lobe drains into the LHD, with the remainder of the caudate 
draining into the left-right confluence, the RHD, or the RPD. But as elsewhere in the 
liver, this drainage pattern is highly variable, and this laterality is not universal. A 
third of Spigelian lobes drain into the RHD or the RPD, especially when the RPD 
inserts into the LHD. Conversely, a third of the paracaval and caudate process ducts 
insert into the LHD [8]. This explains the oncologic benefit observed when perform-
ing a caudate resection as part of the treatment of hilar CCAs; caudate resection in 

RAD

RPD

LHD

RAD

RPD

LHD

RAD

RPD

LHD

RAD

RPD

LHDRAD

RPD

LHD

RAD

RHD

RPD

LHD

CBD

a b c

d e f

Fig. 1.2 Anatomic variation of the biliary confluence according to the Nakamura classification. 
(a) Type 1; (b) type 2; (c) type 3a; (d) type 3b; (e) type 4a; (f) type 4b. LHD, left hepatic duct; 
RAD, right anterior duct; RPD, right posterior duct. (Reproduced with permission from Elsevier. 
Source: https://doi.org/10.1016/j.suc.2018.12.005)

J. Abou-Khalil
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this context is associated with margin-negative resection and improved long-term 
survival [9]. Particular attention to dilatation of the caudate ducts in the context of 
hilar CCA can yield important clues as to their insertion in relationship to the 
obstructing tumor.

 The Gallbladder and Extrahepatic Bile Ducts

The gallbladder lies at the equator between the right and left hemiliver, an imagi-
nary line known as Cantlie’s line or the Rex-Cantlie line coursing between segments 
4b and 5, through the bed of the gallbladder towards the vena cava posteriorly. The 
gallbladder is mostly peritonealized, except for its posterior surface which lies on 
the cystic plate, a fibrous area on the underside of the liver. The proportion if its 
circumference varies, from a pedicled gallbladder with little to no contact with the 
cystic plate to a mostly intrahepatic gallbladder surrounded by liver parenchyma. 
The gallbladder carries no muscularis mucosa, no submucosa, and a discontinuous 
muscularis and only carries a serosa on the visceral peritonealized surface. These 
anatomical specificities facilitate the direct invasion of gallbladder cancer into the 
liver. This is why the surgical treatment of gallbladder cancer mandates a radical 
cholecystectomy, which includes resection of a wedge of segments 4b and 5, when 
the T stage is higher or equal to T1b [10].

From the body of the gallbladder, a conical infundibulum becomes a cystic duct 
that extends as the lower edge of the hepatocystic triangle towards the porta hepatis 
and joins with the common hepatic duct (CHD) to form the CBD. As in the rest of 
the biliary system, variation is the rule when it comes to the cystic duct confluence 
with the CHD. It can variably run parallel to it for a distance prior to inserting or 
spiral behind it and insert on its medial aspect. It can variably insert into the RHD 
or the RPD, the latter in 4% of livers and particularly when the RPD inserts into the 
CHD (i.e., below the left-right ductal confluence). This configuration is notorious 
for exposing the RPD to a risk of injury at the time of cholecystectomy. Rare varia-
tions of gallbladder anatomy, including gallbladder duplication and gallbladder 
agenesis, are also described but are rare [2, 11, 12].

The CBD courses anterolaterally within the hepatoduodenal ligament, usually 
to the right of the hepatic artery and anterolaterally to the portal vein. However, 
hepatic arterial anatomy can vary, and when an accessory or replaced hepatic 
artery is present arising from the superior mesenteric artery, the accessory or 
replaced vessel courses lateral to the CBD. In its conventional configuration, the 
right hepatic artery crosses posteriorly to the RHD as it heads towards the right 
liver, but 25% of the time it crosses anteriorly. These anatomical variants are all 
relevant to developing a sound surgical strategy to treat hilar CCA.  Of note, 
while left hepatic artery anatomy can also be quite variable, rarely does it affect 
surgical decision-making in CCA to the same degree as right hepatic artery 
anatomy.

1 Anatomy of the Biliary Tree: Normal, Anomalous, and Relationship…
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Distally, the CBD enters the head of the pancreas, joining the pancreatic duct to 
form the hepatopancreatic ampulla. Just distal to this is the sphincter of Oddi, which 
controls emptying of ampullary contents into the second portion of the duodenum. 
The treatment of CCAs of the distal, intrapancreatic portion of the bile duct involves 
a pancreaticoduodenectomy (Chap. 14, Judge et al.). When the junction of the CBD 
and the pancreatic duct occurs before the sphincter complex, reflux of pancreatic 
enzymes into the biliary tree can lead to chronic inflammatory changes and ana-
tomical distortion resulting in choledochal cysts, known risk factors for the develop-
ment of CCA (Chap. 5, Chaiteerakij).

 Arterial Supply of the Biliary Tree and Its Implications 
for Resectability of Cholangiocarcinoma 
and Bilioenteric Reconstruction

Unlike the rest of the liver parenchyma, which receives dual supply from the arterial 
and portal venous circulation, the biliary tree is exclusively alimented by the arterial 
system. The LHD and RHD are alimented respectively by the left hepatic artery and 
right hepatic artery, which can frequently display replaced, accessory, and aberrant 
origins – the left artery arising conventionally from the hepatic artery proper but 
alternatively from the left gastric artery and the right hepatic artery arising from the 
hepatic artery proper but also variably from the superior mesenteric artery. In hilar 
CCA, variable combinations of hepatic arterial anatomy and tumor location can 
either favor resectability or make a tumor unresectable. For example, a CCA involv-
ing the confluence of the right and left bile ducts might have a higher chance of 
being resectable if the right liver is alimented by a replaced right hepatic artery 
distant from the tumor than if the right hepatic artery coursed in its conventional 
location in close proximity to the hilum, where it risks being involved by tumor.

Within the hilum of the liver, a plexus of arteries connects the right and left 
hepatic arteries. Termed the “hilar epicholedochal plexus,” this vascular network 
provides collateral circulation that can maintain arterial supply to one side of the 
liver if the ipsilateral vessel is damaged [13]. The preservation of arterial blood sup-
ply to the liver remnant is crucial, particularly when creating an enterobiliary anas-
tomosis. Its absence leads to ischemic cholangiopathy and liver abscesses that can 
be difficult to treat [14].

The CBD receives arterial supply inferiorly from paired arterioles arising from 
the gastroduodenal artery and the posterior superior pancreaticoduodenal artery, the 
most important and constant arterial supply to the distal CBD. Proximally the CBD 
is alimented by paired arterioles of the right hepatic artery. These vessels, known as 
the marginal arteries, run in parallel to the CBD, laterally and medially to it. 
Denuding the CBD of this arterial supply risks stricture formation after choledocho-
enteric anastomosis.

J. Abou-Khalil
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 Conclusion

CCA can arise anywhere along the biliary tree. A thorough understanding of the 
anatomy of the bile ducts, its common variant configurations, and its relationship to 
correspondingly variable vascular anatomy is necessary to allow for the safe surgi-
cal treatment of CCA.
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Chapter 2
Anatomic and Morphologic Classifications 
of Cholangiocarcinoma

Michael A. Mederos and Mark D. Girgis

Abbreviations

AJCC American Joint Committee on Cancer
CCA Cholangiocarcinoma
dCCA Distal cholangiocarcinoma
iCCA Intrahepatic cholangiocarcinoma
IG Intraductal growing
LCSGJ The Liver Cancer Study Group of Japan
MF Mass-forming
MSKCC Memorial Sloan Kettering Cancer Center
pCCA Perihilar cholangiocarcinoma
PI Periductal infiltrating
TNM Tumor, lymph node, metastases

 Introduction

Cholangiocarcinoma (CCA) originates from the bile duct epithelium at any aspect 
of the biliary tree. Contemporary anatomic classification separates CCA into three 
entities based on the location of origin: intrahepatic, perihilar, and distal CCA 
(Figs. 2.1, and 2.2). These three categories have different and sometimes overlap-
ping risk factors, presentation, and outcomes. For example, while distal CCA often 
presents with jaundice and pruritus due to biliary obstruction, intrahepatic CCA 
might present with vague abdominal pain and sometimes jaundice often due to the 
mass effect of the tumor on other structures and ducts. Each anatomic category can 
be further subdivided by the tumor morphology and growth pattern (Fig. 2.2).
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Intrahepatic

Perihilar

Distal

Fig. 2.1 Anatomic classification of cholangiocarcinoma. (Illustration by Hannah Bryce Ely, CMI)

a

c

b

Fig. 2.2 Imaging of cholangiocarcinoma. (a) Computed tomography (CT) of mass-forming intra-
hepatic cholangiocarcinoma. The yellow arrow demonstrates the peripheral enhancement of the 
large tumor. The white arrows highlight associated biliary dilation; (b) MRI of perihilar cholangio-
carcinoma (yellow arrow); (c) CT of distal cholangiocarcinoma. The yellow arrow demonstrates 
an abrupt filling defect of the dilated common bile duct
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 Intrahepatic Cholangiocarcinoma

 Morphology

Intrahepatic CCA (iCCA) may originate anywhere from the microscopic bile 
ducts in the liver periphery to the second-order bile ducts. It is the least common 
of the three anatomic types of CCA (5–10% of all CCA) [1]; however, the inci-
dence of this anatomic subtype has steadily increased in the USA from roughly 
1200 new cases in 2004 to 3800 new cases in 2015 [2]. The Liver Cancer Study 
Group of Japan (LCSGJ) classifies iCCA into three distinct morphologic sub-
types based on gross appearance: mass forming, periductal infiltrating, and intra-
ductal growing. A 4th category includes tumors with more than one component 
of the three morphologic subtypes (e.g., mass forming + periductal infiltrating) 
(Fig. 2.3) [3]. These macroscopic growth patterns are likely associated with dif-
ferences in risk factors, cellular origin, and biological progression [4]. The rela-
tionship between the morphologic subtype and prognosis has been debatable [5]. 
Previously, the 7th edition of the American Joint Committee on Cancer (AJCC 
7) staging manual stipulated that iCCAs with a periductal-infiltrating component 
are designated as T4 lesions due to a perceived worse prognosis. This character-
ization was excluded in the 8th edition of the AJCC staging manual (AJCC 8) 
with the recommendation that morphology continues to be documented for data 
collection [6]. However, new data suggest morphologic subtype might indeed 
have long-term prognostic significance in those undergoing curative-intent 
resection [5, 7].

 Mass Forming

The purely mass-forming (MF) growth pattern is the most common morphology of 
iCCA (60%) [6]. MF iCCA appears as a mass within the hepatic parenchyma, aris-
ing from small intrahepatic bile ducts or hepatic progenitor cells with no discernible 
invasion of a major branch of the portal triad [3]. Tumors of this morphologic sub-
type can grow to large sizes and are often greater than 5 cm in those who undergo 
surgical resection [8]. The tumor cells are typically at the periphery of the lesion, 
and the center is characterized by necrosis and scarring. Because of this radial 
growth configuration, peripheral arterial enhancement is a common imaging finding 
(Fig. 2.2a). Multiple intrahepatic lesions are common in MF iCCA, but it is difficult 
to distinguish if multiple tumors represent multifocal disease (multiple primary 
tumors) or intrahepatic metastasis from an index lesion (satellite lesions) [9]. 
Nevertheless, the presence of more than three lesions is associated with signifi-
cantly worse disease-free and overall survival in those undergoing hepatic resection 
with curative intent [10].

2 Anatomic and Morphologic Classifications of Cholangiocarcinoma
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 Periductal Infiltrating

In contrast to the distinct borders of the MF subtype, periductal-infiltrating (PI) 
iCCA arises from large bile duct epithelium and peribiliary glands and is character-
ized by a diffuse longitudinal growth pattern along large intrahepatic bile ducts on 
both gross and microscopic examination [1]. This growth pattern often causes intra-
hepatic biliary dilatation due to stricture or obstruction, and there are no distinct 
borders or apparent invasion of the surrounding liver parenchyma. Often included in 
this subtype is the MF + PI mixed variant, which exhibits features of both subtypes 
(Fig. 2.3). Tumors with a PI component represent approximately 40% of iCCAs [6]. 
Compared to the mass-forming and intraductal growing subtypes, patients with PI 
or MF + PI tumors have more major vascular invasion, lymphovascular invasion, 
and perineural invasion [7].

 Intraductal Growing

The intraductal-growth (IG) subtype of iCCA is characterized by the tumor’s papil-
lary growth toward or within the bile duct lumen (Fig. 2.3) [3]. The precursor lesion 
associated with intraductal growing tumors is termed intraductal papillary neoplasm 
of the bile duct and is discussed in detail elsewhere in this book (Chap. 3, Nakanuma 
et al. and Chap. 4, Fathizadeh et al.). On computed tomography (CT) imaging, this 
growth pattern often appears as biliary ectasia due to dilation of the bile duct proxi-
mal to the lesion. Because this morphology is intraductal, it may be confused for 
hepatolithiasis. The IG subtype of iCCA has been associated with a better prognosis 
compared to the MF and PI subtypes. However, data suggest that IG more fre-
quently demonstrates adverse pathologic features, such as lymphovascular invasion, 
perineural invasion, and poor/undifferentiated tumors when compared to MF 
iCCA. Nevertheless, despite these features, the overall prognosis of the IG subtype 
appears more favorable than MF and PI iCCA [5].

 Staging

The preferred system for staging CCA is the AJCC tumor, lymph node, and metas-
tases (TNM) classification. Intrahepatic, perihilar, and distal CCA are staged inde-
pendently [11]. Staging of iCCA has been significantly modified over the past two 
decades. Prior to 2010, the AJCC staged iCCA using data derived from 
HCC. However, iCCA has since been recognized as a separate entity given the sev-
eral differences in clinical features, biology, and growth patterns, and a new staging 
system separate from HCC was developed in AJCC 7 (Table 2.1) [12]. In AJCC 7, 
the T stage focused on vascular invasion, number of tumors, and extension beyond 
the visceral peritoneum and/or penetration of other surrounding structures. Tumor 
size was initially excluded as it was not considered a significant adverse prognostic 

M. A. Mederos and M. D. Girgis
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Mass-forming

Periductal
infiltrating

Intraductal
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Mixed mass-forming and 
periductal infiltrating

Fig. 2.3 Morphologic classification of intrahepatic cholangiocarcinoma. (Illustration by Hannah 
Bryce Ely, CMI)
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Table 2.1 AJCC 7 and 8 staging of intrahepatic cholangiocarcinoma

AJCC 7th ed. AJCC 8th ed.

T Primary tumor T Primary tumor

TX Primary tumor cannot be assessed TX Primary tumor cannot be assessed
T0 No evidence of primary tumor T0 No evidence of primary tumor
Tis Carcinoma in situ (intraductal tumor) Tis Carcinoma in situ (intraductal tumor)
T1 Solitary tumor without vascular 

invasion
T1 Solitary tumor without vascular 

invasion, ≤5 cm or >5 cm
  T1a   Solitary tumor ≤5 cm without 

vascular invasion
  T1b   Solitary tumor >5 cm without 

vascular invasion
T2a Solitary tumor with vascular invasion T2 Solitary tumor with intrahepatic 

vascular invasion or multiple tumors, 
with or without vascular invasion

T2b Multiple tumors, with or without 
vascular invasion

T3 Tumor perforating the visceral 
peritoneum or involving the local 
extrahepatic structures by direct 
invasion

T3 Tumor perforating the visceral 
peritoneum

T4 Tumor with periductal invasion T4 Tumor involving local extrahepatic 
structures by direct invasion

N Regional lymph nodes N Regional lymph nodes

NX Regional lymph nodes cannot be 
assessed

NX Regional lymph nodes cannot be 
assessed

N0 No regional lymph node metastasis N0 No regional lymph node metastasis
N1 Regional lymph node metastasis present N1 Regional lymph node metastasis 

present
M Distant metastasis M Distant metastasis

M0 No distant metastasis M0 No distant metastasis
M1 Distant metastasis present M1 Distant metastasis present
Stage Stage

0 Tis, N0, M0 0 Tis, N0, M0
I T1, N0, M0 IA T1a, N0, M0

IB T1b, N0, M0
II T2a–b, N0, M0 II T2, N0, M0
III T3, N0, M0 IIIA T3, N0, M0

IIIB T4, N0, M0
Any T, N1, M0

IVA T4, N0, M0
Any T, N1, M0

IV Any T, any N, M1

IVB Any T, any N, M1

M. A. Mederos and M. D. Girgis
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indicator for iCCA [12, 13]. However, size was included in the current edition 
(AJCC 8) after several studies, and a meta-analysis demonstrated an association 
with tumor size and survival that was likely not seen in prior studies due to the lim-
ited number of patients with small tumors [8]. Additionally, tumors with a periductal- 
infiltrating growth pattern were classified at T4 lesions in AJCC 7 because this was 
thought to beget a worse prognosis. However, morphologic classification was omit-
ted in AJCC 8 because the data regarding growth type and prognosis was inconsis-
tent and no clear conclusion could be drawn [14, 15]. The AJCC 8 does recommend 
to document growth patterns for data collection.

Altogether, the T stage in AJCC 8 is now classified by tumor size, number of 
tumors, vascular invasion, extension beyond the visceral peritoneum, and invasion of 
extrahepatic structures. High-grade dysplasia that does not extend beyond the base-
ment membrane are in situ tumors (Tis). Tumors that are ≤5 cm or >5 cm without 
vascular invasion are classified as T1a and T1b, respectively. This translates to a 
5-year overall survival of 51.7% and 32.6% (P  <  0.001), respectively. T2 tumors 
include solitary tumors with vascular invasion or multiple tumors with or without 
vascular invasion. Approximately one fifth of patients with iCCA have multiple 
tumors at the time of surgery [16, 17]. T3 tumors include any iCCA that perforates the 
visceral peritoneum, and T4 tumors directly invade extrahepatic structures (Table 2.1).

Lymph node metastasis is an important prognostic indicator and is common in 
iCCA, reported as high as 40% in those who underwent resection with regional 
lymphadenectomy. For right-sided tumors, the AJCC defines regional lymph nodes 
as hilar (common bile duct, hepatic artery, portal vein, and cystic duct), periduode-
nal, and peripancreatic lymph node areas. For left-sided tumors, these lymph node 
sites include the inferior phrenic, hilar, and gastrohepatic lymph nodes. Spread to 
these regional lymph nodes is associated with a worse overall survival compared to 
those with no nodal disease (median 18.0 vs. 45.0  months, P  <  0.001) [18]. 
Anatomically, lymph node metastasis was identified in 38.4% of patients who had a 
lymphadenectomy of the hepatoduodenal ligament (lymph node station 12) com-
pared to 57.8% in those who had a lymphadenectomy beyond station 12 (P < 0.001). 
AJCC 8 classifies nodal disease as N0 (no regional lymph node metastasis) or N1 
(regional lymph node metastasis present) (Table  2.1). Spread to extra-regional 
lymph nodes (celiac, periaortic, and pericaval nodes) is considered M1 disease, 
however. M1 classification also includes extrahepatic sites, which most commonly 
includes the bone, peritoneum, lungs, and pleura.

Since the release of AJCC 8, several studies have challenged the current staging 
criteria and suggest that growth pattern should be reintroduced into the staging sys-
tem. A multi-institutional study across 14 centers analyzed 1083 patients who 
underwent curative-intent resection of iCCA and found that patients with the PI or 
mixed (MF + PI) subtypes had higher rate of invasion of adjacent organs, positive 
margins, major vascular invasion, lymphovascular invasion, and perineural inva-
sion. Overall 5-year survival in patients with a PI component was significantly 
worse, even after propensity matching for clinicopathologic variables (26.2% vs. 
35.7%, respectively; p = 0.03) [7]. Further, the timing and pattern of disease recur-
rence seem to differ between the growth types.

2 Anatomic and Morphologic Classifications of Cholangiocarcinoma



18

 Perihilar Cholangiocarcinoma

Perihilar CCA (pCCA) is the most common category among bile duct cancers 
(50–70%) [19]. In 1965, Gerald Klatskin published his series of 13 patients with 
adenocarcinoma of the hepatic duct confluence, outlining in great deal the distinc-
tive manifestation of the disease [20]. These tumors eventually became known as 
the eponymous Klatskin tumor. By definition these tumors involve the extrahepatic 
bile ducts distal to the segmental hepatic ducts and proximal to the cystic duct 
(Figs.  2.1, and 2.2b). Risk factors associated with pCCA include male gender, 
advanced age, choledochal cysts, and inflammatory conditions that result in a high 
cellular turnover (e.g., primary sclerosing cholangitis, inflammatory bowel disease, 
and gallstone disease).

Perihilar CCA tends to have a sclerosing histologic growth pattern, which 
makes these tumors characteristically fibrotic and infiltrative, particularly along 
the ducts and surrounding structures. In contrast, the papillary histologic subtype 
is usually well-differentiated and characterized by an intraductal growth pat-
tern [21].

 Staging Systems

 Bismuth-Corlette

Henri Bismuth and Marvin Corlette introduced a classification for pCCA in 1975 with 
modification in 1992 [22, 23]. The Bismuth-Corlette classification is frequently used 
to this day and focuses on the level and extension of tumor invasion along the proxi-
mal extrahepatic biliary tree (Table 2.2, Fig. 2.4). Type I lesions involve the common 
hepatic duct below the confluence of the right and left hepatic ducts, while type II 
lesions involve the confluence but does not extend to the right or left hepatic ducts. 
Type III tumors involve the confluence and extend to the right or left hepatic ducts, 
designated IIIa and IIIb, respectively. Type IV tumors involve the confluence and 
extend to both the right and left hepatic ducts. Although commonly used to classify 
pCCA tumors and help guide the surgical approach, the Bismuth-Corlette 

Table 2.2 Bismuth-Corlette classification of perihilar cholangiocarcinoma

I Tumor involves the common hepatic duct below the confluence of the right and left ducts
II Tumor involves the hepatic duct confluence but does not extend above the confluence
IIIa Tumor involves the confluence with extension to the right hepatic duct up to second-order 

ducts
IIIb Tumor involves the confluence with extension to the left hepatic duct up to second-order 

ducts
IV Tumor involves the confluence with extension to bilateral hepatic ducts up to second-order 

ducts

M. A. Mederos and M. D. Girgis
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Type IIType I

Type IV

Type IIIBType IIIA

Fig. 2.4 Bismuth-Corlette classification of perihilar cholangiocarcinoma. (Illustration by Hannah 
Bryce Ely, CMI)
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classification does not provide information on vessel involvement, lymph node or dis-
tant metastases, or liver atrophy [24]. Hepatic atrophy in the setting of pCCA is associ-
ated with locally advanced disease and likely involvement of the portal venous system.

 MSKCC Classification

Blumgart and colleagues at the Memorial Sloan Kettering Cancer Center (MSKCC) 
devised and subsequently modified a classification system that expanded on the 
Bismuth-Corlette classification by including hepatic atrophy and portal venous 
involvement (Table 2.3) [21, 25, 26]. T1 lesions involve the confluence with or with-
out unilateral extension to second-order biliary radicals; T2 lesions are T1 lesions 
with ipsilateral portal vein involvement or ipsilateral hepatic lobar atrophy; and T3 
lesions either have bilateral extension to second-order radicals, unilateral extension 
with contralateral portal vein involvement or lobar atrophy, or main or bilateral 
portal venous involvement. In this staging system, the T stage correlated with resect-
ability, attaining a margin-negative specimen, and likelihood of metastatic disease. 
However, the MSKCC staging system was less useful for predicting survival [21].

 AJCC TNM

Previously, AJCC 7 incorporated elements of the Bismuth-Corlette and MSKCC 
classification systems into T staging (Table 2.4). However, AJCC 8 eliminated any 
Bismuth-Corlette definitions; T4 lesions correlated with a Bismuth-Corlette type IV 
tumor in the previous edition. The AJCC has shifted to an emphasis on tumor inva-
sion through the bile duct wall and vascular involvement. In addition to portal vein 
involvement, as described in the MSKCC classification, AJCC 8 includes hepatic 
artery involvement but does not incorporate hepatic atrophy into T stage [19]. T1 
tumors are confined to the bile duct with extension up to the muscle layer or fibrous 

Table 2.3 Memorial Sloan Kettering Cancer Center (MSKCC) classification of perihilar 
cholangiocarcinoma [21]

I Tumor involves the biliary confluence +/− unilateral involvement up to the second-order 
biliary radicals

II Tumor involving the biliary confluence +/− unilateral duct extension to second-order biliary 
radicals and ipsilateral liver atrophy or ipsilateral portal vein involvement

III Any of the following:
  I. Tumor involving the biliary confluence with bilateral extension to second-order biliary 

radicals
  II. Tumor involving the biliary confluence + unilateral extension to second-order biliary 

radicals with contralateral portal vein involvement
  III. Tumor involving the biliary confluence + unilateral extension to second-order biliary 

radicals with contralateral hepatic lobar atrophy
  IV. Tumor involving the biliary confluence with main or bilateral portal venous 

involvement
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Table 2.4 AJCC 7 and8 staging of perihilar cholangiocarcinoma

AJCC 7th ed. AJCC 8th ed.

T Primary tumor T Primary tumor

TX Primary tumor cannot be assessed TX Primary tumor cannot be assessed
T0 No evidence of primary tumor T0 No evidence of primary tumor
Tis Carcinoma in situ Tis Carcinoma in situ/high-grade dysplasia
T1 Tumor confined to the bile duct, with 

extension up to the muscle layer or 
fibrous tissue

T1 Tumor confined to the bile duct, with 
extension up to the muscle layer or 
fibrous tissue

T2a Tumor invades beyond the wall of the 
bile duct to surrounding adipose tissue

T2a Tumor invades beyond the wall of the 
bile duct to surrounding adipose tissue

T2b Tumor invades adjacent hepatic 
parenchyma

T2b Tumor invades adjacent hepatic 
parenchyma

T3 Tumor invades unilateral branches of 
the portal vein or hepatic artery

T3 Tumor invades unilateral branches of the 
portal vein or hepatic artery

T4 Tumor invades main portal vein or its 
branches bilaterally, or the common 
hepatic artery, or the second-order 
biliary radicals bilaterally, or unilateral 
second-order biliary radicals with 
contralateral portal vein or hepatic 
artery involvement

T4 Tumor invades main portal vein or its 
branches bilaterally, or the common 
hepatic artery, or unilateral second-order 
biliary radicals with contralateral portal 
vein or hepatic artery involvement

N Regional lymph nodes N Regional lymph nodes

NX Regional lymph nodes cannot be 
assessed

NX Regional lymph nodes cannot be 
assessed

N0 No regional lymph node metastasis N0 No regional lymph node metastasis
N1 Regional lymph node metastasis 

(including nodes along the cystic duct, 
common bile duct, hepatic artery, and 
portal vein)

N1 One to three positive lymph nodes 
typically involving the hilar, cystic duct, 
common bile duct, hepatic artery, 
posterior pancreaticoduodenal, and 
portal vein lymph nodes

N2 Metastasis to periaortic, pericaval, 
superior mesenteric artery, and/or 
celiac artery lymph nodes

N2 Four or more positive lymph nodes from 
the sites described for N1

M Distant metastasis M Distant metastasis

M0 No distant metastasis M0 No distant metastasis
M1 Distant metastasis present M1 Distant metastasis present
Stage Stage

0 Tis, N0, M0 0 Tis, N0, M0
I T1, N0, M0 I T1, N0, M0
II T2a–b, N0, M0 II T2a–b, N0, M0
IIIA T3, N0, M0 IIIA T3, N0, M0
IIIB T1–3, N1, M0 IIIB T4, N0, M0

IIIC Any T, N1, M0
IVA T4, N0–1, M0 IVA Any T, N2, M0
IVB Any T, N2, M0

Any T, any N, M1
IVB Any T, any N, M1
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tissue. Tumors that invade beyond the bile duct to surrounding adipose tissue are 
T2a, and those that invade the hepatic parenchyma are T2b. Tumors that invade 
branches of the portal vein and hepatic artery unilaterally are T3. Perihilar tumors 
are T4 when there is invasion of the main portal vein and common hepatic artery or 
if there is unilateral extension to second-order biliary radicals with contralateral 
portal vein or hepatic artery involvement. In a multi-institutional study analyzing 
actual 5-year survival in patients who underwent resection with curative intent, 
none with T3 or T4 tumors were 5-year survivors [27].

pCCA frequently metastasizes to regional lymph node basins (hilar, cystic duct, 
choledochal, portal, hepatic arterial, and posterior pancreaticoduodenal lymph 
nodes) due to the extensive periductal lymphatics. Nodal metastases are as high as 
50% in some series and are directly related to T stage. Furthermore, multiple posi-
tive lymph nodes is adversely related to survival (RR 1.61; 1.01–2.56) [28]. 
Accordingly, AJCC 8 updated the N stage and incorporated the number of positive 
lymph nodes: one to three regional lymph node metastases are designated N1 and 
greater than four lymph nodes is N2. Extra-regional lymph node metastases (outside 
the hepatoduodenal ligament) are considered distant and are designated M1. Other 
common sites of metastasis include the peritoneum, liver, lung, bone, brain, and skin.

 Distal Cholangiocarcinoma

CCA that develops in common bile duct (between the ampulla of Vater and the con-
fluence of the common hepatic duct and cystic duct) is categorized as distal CCA 
(dCCA) and comprises 20–30% of bile duct cancers (Figs. 2.1 and 2.2c) [29]. The 
distal most aspect of the common bile duct (CBD) sits within the pancreatic paren-
chyma at the head of the pancreas and is the most common site of dCCA. At this 
location, dCCA frequently presents with biliary obstructive symptoms: painless 
jaundice, pruritus, and acholic stools. Pancreatic ductal dilatation and evidence of 
pancreatitis may also be encountered during the workup. Tumors at this location are 
positioned near, and frequently involve, important structures, which confers prog-
nostic significance and impacts surgical planning. Nearby organs that may be 
invaded directly include to the pancreas, stomach, duodenum, gallbladder, colon, 
and omentum. Arteries that may be involved include the superior mesenteric, celiac, 
splenic, and hepatic arteries. Veins involved include the portal, splenic, splenoportal 
confluence, and the superior mesenteric vein and its branch vessels. Differentiating 
dCCA from other periampullary tumors such as ampullary carcinoma and pancre-
atic neoplasms is often difficult to discern on imaging and endoscopic evaluation.

 Staging

Unlike pCCA, which has multiple staging systems, dCCA is only staged by the 
AJCC TNM system and is used for both clinical and pathologic staging of dCCA. For 
clinical locoregional staging, high-quality cross-sectional imaging and/or evaluation 
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via endoscopic ultrasound (EUS) is critical to delineate depth of invasion and involve-
ment of surrounding structures and to identify pathologic lymph nodes. Previously, T 
stage was stratified by histologic invasion (i.e., confined to the bile duct or extends 
beyond the wall of the bile duct) (Table  2.5). This method for T staging was 

Table 2.5 AJCC 7 and 8 staging of distal cholangiocarcinoma

AJCC 7th ed. AJCC 8th Ed.

T Primary tumor T Primary tumor

TX Primary tumor cannot be assessed TX Primary tumor cannot be 
assessed

T0 No evidence of primary tumor T0 No evidence of primary tumor
Tis Carcinoma in situ Tis Carcinoma in situ/high-grade 

dysplasia
T1 Tumor confined to the bile duct histologically T1 Tumor invades the bile duct 

wall with a depth less than 
5 mm

T2 Tumor invades beyond the wall of the bile duct T2 Tumor invades the bile duct 
wall with a depth of 5–12 mm

T3 Tumor invades the gallbladder, pancreas, 
duodenum, or other adjacent organs without 
involvement of the celiac axis or the superior 
mesenteric artery

T3 Tumor invades the bile duct 
wall with a depth greater than 
12 mm

T4 Tumor involves the celiac axis or the superior 
mesenteric artery

T4 Tumor involves the celiac axis, 
superior mesenteric artery, and/
or common hepatic artery

N Regional lymph nodes N Regional lymph nodes

NX Regional lymph nodes cannot be assessed NX Regional lymph nodes cannot 
be assessed

N0 No regional lymph node metastasis N0 No regional lymph node 
metastasis

N1 Regional lymph node metastasis N1 Metastasis in one to three 
regional lymph nodes

N2 Metastasis in four or more 
regional lymph nodes

M Distant metastasis M Distant metastasis

M0 No distant metastasis M0 No distant metastasis
M1 Distant metastasis present M1 Distant metastasis present
Stage Stage

0 Tis, N0, M0 0 Tis, N0, M0
1A T1, N0, M0 I T1, N0, M0
IB T2, N0, M0
IIA T3, N0, M0 IIA T1, N1, M0

T2, N0, M0
IIB T1–3, N1, M0 IIB T2, N1, M0

T3, N0, M0
T3, N1, M0

III T4, any N, M0 IIIA T1–3, N2, M0
IIIB T4, any N, M0

IV Any T, any N, M1 IV Any T, any N, M1
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problematic, however, because of the variable thickness along the common bile duct 
and the characteristic and marked desmoplastic reaction that often obscures the 
boundaries of the bile duct wall and the extent of tumor invasion from the basal 
lamina [30]. Further, this T-stage classification was not associated with survival out-
come. Instead, the measured depth of invasion demonstrated a better correlation with 
survival [31]. Accordingly, AJCC 8 defines T stage by a measured depth of invasion 
into the bile duct wall: T1, <5 mm; T2, 5–12 mm; and T3, >12 mm. T4 is defined by 
invasion of the celiac axis, superior mesenteric artery, or common hepatic artery 
(Table 2.5). Unfortunately, for reasons listed above, dCCA is often misclassified as 
pancreatic adenocarcinoma or ampullary carcinoma, which have different staging 
classifications, tumor biology, and patient outcomes [29, 32]. Even after resection of 
a periampullary tumor, dCCA is often misdiagnosed on pathologic evaluation [33].

Lymph node metastasis occurs in approximately 40% of patients with dCCA 
who undergo surgical resection. Regional lymph nodes include those along the 
common bile duct and hepatic artery, the posterior and anterior pancreaticoduode-
nal nodes, and the nodes along the right lateral wall of the superior mesenteric 
artery. Similar to pCCA, the number of metastatic lymph nodes in dCCA appears to 
be useful in predicting patient outcomes. One study evaluating lymph node metas-
tasis in 370 patients who underwent resection for dCCA found that patients with 4 
or more involved nodes had a significantly shorter median survival compared to 
patients with only 1 to 3 involved nodes (1.3 vs. 2.2  years; p  =  0.001) [34]. 
Accordingly, the N stage has been modified to reflect these outcomes (N1, one to 
three positive lymph nodes; N2, four or more positive nodes). Regarding distant 
metastases, the most common sites include the liver, peritoneum, and lungs [29].

 Conclusion

CCA is a malignant tumor that can arise from any part of the biliary tree, anatomi-
cally separated into three categories based on the site of origin: intrahepatic, perihi-
lar, and distal. The morphologies, risk factors, presentation, treatment, and outcomes 
for each anatomic category of CCA are often variable but sometimes overlap. The 
anatomic location of CCA is used to determine staging, as assessed by the AJCC, 
and is critical to deciding on treatment and determining prognosis for patients 
afflicted with these malignancies.
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EST Endoscopic sphincterotomy
EUS Endoscopic ultrasonography
gIPNB Gastric intraductal papillary neoplasm of the bile duct
HE staining Hematoxylin and eosin staining
iCCA Intrahepatic cholangiocarcinoma
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ICPN Intracholecystic papillary neoplasm
IDUS Intraductal ultrasonography
iIPNB Intestinal intraductal papillary neoplasm of the bile duct
IPMN Intraductal papillary mucinous neoplasm
IPNB Intraductal papillary neoplasm of bile duct
ITPN Intraductal tubulopapillary neoplasm of the bile duct
MCN Mucinous cystic neoplasm
MDCT Multidetector computed tomography
MR Magnetic resonance imaging
MRC Magnetic resonance cholangiography
MUC Mucin core protein
NBI Narrow-band imaging
oIPNB Oncocytic intraductal papillary neoplasm of the bile duct
PanIN Pancreatic intraepithelial neoplasm
pbIPNB Pancreatobiliary intraductal papillary neoplasm of the bile duct
POCS Peroral cholangioscopy
WHO World Health Organization

 Introduction

In our experience, there are generally at least two types of tumors involving the 
biliary tree. One is characterized by a nodular or sclerosing lesion affecting the bile 
duct wall and periductal tissue and the other by tumors that mainly grow in the 
intraductal lumen and usually show no or slight stromal invasion [1–3]. In the latter 
type, several diseases are included (Table  3.1), and they present unique 

Table 3.1 Intraductal tumors 
of the  biliary tract, related 
lesions, and mimickers

Primary intraductal neoplasm
  Intraductal papillary neoplasm of the bile duct
  Biliary intraepithelial neoplasm 
  Intraductal tubulopapillary neoplasm
  Pyloric gland adenoma
  Other rare benign intraductal neoplasms
    Tubular adenoma or neoplasm [142, 143]
    Tubulovillous adenoma [144]
    Villous adenoma [145]
  Undifferentiated carcinoma
  Carcinosarcoma
Related neoplasms
  Mucinous cystic neoplasm (MCN)
  Intracystic papillary neoplasm (ICPN)
Mimickers
  Conventional CCA with intraluminal lesions
  Metastatic carcinoma of the bile duct
  Hepatocellular carcinoma emboli in the bile duct
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clinicopathological features that differ from nodular sclerosing cholangiocarci-
noma (CCA) [4, 5]. Among them, intraductal papillary neoplasms of the bile duct 
(IPNBs) are a representative intraductal neoplasm. The affected bile ducts are 
dilated and filled with a grossly visible exophytic tumor and histologically neoplas-
tic biliary epithelia [2, 6–8].

IPNBs have been studied in comparison to intraductal papillary mucinous neo-
plasms (IPMNs) of the pancreas, which are also a preinvasive intraductal papillary 
neoplasm associated with invasive carcinoma and intramucosal spread of neoplastic 
epithelia [9–14].

Another well-known intraductal tumor of the biliary tract is biliary intraepithe-
lial neoplasm (BilIN) [1, 2, 8, 15–20]. This lesion is microscopically identifiable as 
a flat or micropapillary lesion. BilINs are reportedly an important precursor or pre-
invasive lesion of conventional nodular/sclerosing CCA, and  there are also other 
categories of intraductal neoplasms [8, 21–23]. Metastatic carcinoma growing in 
the bile duct lumen also shows similar gross and imaging characteristics [24].

Recently, the World Health Organization (WHO) published the Classification of 
Digestive System Tumours 5th edition (2019), in which the new term, “benign and 
precursor lesions,” was proposed based on recent progress in this field [4, 7, 10, 15, 
25]. We herein review the pathological features of benign and prcursor lesions of the 
bile duct, particularly IPNB, based on this WHO classification, with reference to the 
molecular and genetic features, imaging, diagnosis, and management. Other types 
of benign and precursor lesions of the bile duct are also briefly reviewed.

 Intraductal Papillary Neoplasms of the Bile Duct (IPNBs)

IPNB is characterized by intraductal neoplastic growth of biliary epithelia covering 
fine fibrovascular stalks that lack an ovarian-mesenchymal-type stroma, mainly 
involving the extrahepatic and intrahepatic bile ducts [7]. IPNBs are associated with 
variable intramucosal (lateral) spread of neoplastic epithelia around the main papil-
lary tumor, and multifocal occurrence is also reported [2, 3, 7, 21, 26, 27]. The cell 
of origin of a majority of IPNBs is believed to be the biliary lining cells, while some 
IPNBs might be derived from the cells in peribiliary glands, which are distributed 
along the extrahepatic and intrahepatic bile ducts [28–31]. IPNBs are thought to be 
premalignant lesions with the potential to progress invasive tumors. IPNBs may 
develop through a multistep process or sequence, eventually followed by invasion 
[27, 32]. Consequently, IPNBs, particularly those without invasion, usually prog-
ress slowly, and patients appear to have better survival in comparison to patients 
with conventional CCA [27, 33].

Since the first report of IPNBs in the English literature [6], IPNBs have been 
further studied, and data are now accumulating [12, 27]. IPNBs show variable gross 
and histopathological features, molecular and genetic features, and biological 
behavior [6, 32–42]. IPNBs are regarded as preinvasive biliary lesions that are not 
frequently associated with stromal invasion (IPNB associated with invasive 
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carcinoma) [7]. The incidence of invasion and the histological features in fact differ 
among several proposed subcategories (or several synonymous names) of IPNB 
[39, 42, 43]. This heterogeneity and complexity lead to controversy in relation to the 
clinicopathological recognition and diagnosis of IPNB, suggesting that IPNBs are 
not a homogeneous disease [44–46]. Several nomenclatures have previously been 
applied to these tumors according to the dominant feature(s) [36, 45–49]; however, 
the use of these obsolete terms is not recommended at the present time (Table 3.2) [7].

 Epidemiology and Risks

 Epidemiology

IPNBs are reported worldwide and affect typically middle-aged to elderly adults 
(50–80 years of age) and show a male predominance [7, 27, 40, 50–56]. IPNBs 
account for 9–38% of all bile duct carcinomas [33, 40, 46, 53, 57]. The highest 
incidence of IPNB is reported in Far Eastern countries [46, 50, 51, 55, 58].

The pathobiology of IPNB may present geographic variation between Asian and 
Western populations. Cordon-Weeks et al. reported that IPNBs identified in centers 
from Asia were more likely to be intrahepatic and were less frequently invasive in 
comparison to those from Western centers [27, 32, 33, 52]. IPNBs account for 
10–38% of all bile duct tumors in East Asian populations but only 7–12% of all 
bile duct tumors in Western populations [32, 33, 50, 51, 55]. The pooled prevalence 
in Asian populations was more than twice that in Western populations [27], and 
IPNBs in Western centers showed higher rates of invasive disease and were less 

Table 3.2 Proposed, accepted, and unrecommended terms for intraductal tumors and related 
lesion by WHO Classification of Tumours (2019)

WHO proposed terms (2019) WHO accepted terms WHO unrecommended terms

IPNB (intraductal papillary 
neoplasm of the bile duct)

Biliary papilloma and 
papillomatosis

Biliary adenoma
Intestinal adenoma
Papillary (villous) adenoma
Tubulopapillary (tubule- 
villous) adenoma
Noninvasive papillary 
neoplasm (carcinoma)
Papillary carcinoma
Mucin-secreting biliary tumor

MCN (mucinous cystic neoplasm) Hepatobiliary cystadenoma; 
adenocarcinoma

Low-grade BilIN (biliary 
intraepithelial neoplasm)
High-grade BilIN (biliary 
intraepithelial neoplasm)

Dysplasia
Carcinoma in situ
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frequently associated with mucus production and more frequently of the pancrea-
tobiliary subtype [7, 27, 32, 33].

 Risk Factors

Hepatolithiasis and liver fluke infection (Clonorchis sinensis in Korea or Opisthorchis 
viverrini infection in South East Asia) are believed to be major risk factors for IPNB 
[50, 51, 53–56, 59]. In addition, approximately 30% of patients have a previous his-
tory or concomitant existence of biliary stones, as shown in the reports from Far 
Eastern countries [36, 60, 61], but not from Western countries [32, 33]. IPNBs also 
reportedly develop in primary sclerosing cholangitis [62] and congenital biliary 
tract disease [63]. Interestingly, these etiologic factors are also known as major risk 
factors for nodular sclerosing perihilar/distal CCA and mass-forming and periductal 
intrahepatic cholangiocarcinoma (iCCA) [1, 4, 5], suggesting that chronic biliary 
tract irritation and inflammation may be causally related to the development of 
IPNB in addition to other types of CCA. Recently, an outbreak of IPNB was reported 
among young adult workers in the offset color proof-printing department at a print-
ing company in Japan [64]. They were chronically exposed to chlorinated organic 
solvents, including dichloromethane and 1,2-dichloropropane. Interestingly, IPNB 
or IPNB associated with invasive carcinoma was observed in various sites of the 
intrahepatic large bile ducts, perihilar bile ducts and distal bile ducts in these 
patients [65].

A significant proportion of IPNB cases are completely asymptomatic in endemic 
and non-endemic areas [27]. Imaging modalities (see below) appear to have some 
value in screening and detecting IPNB in asymptomatic patients who are at a high 
risk of developing IPNB [62, 63, 66].

 Pathology

 Gross Features

Location Along the Biliary Tree

While the locations of IPNBs have varied in several reports, the majority of IPNBs 
(67%) were located at the intrahepatic bile ducts in Asian countries, while in Western 
countries, they were more common in the extrahepatic bile ducts [8, 27, 54, 55] or 
hepatic hilum [32, 33] (Table 3.3). Some cases simultaneously involved the intrahe-
patic and extrahepatic bile ducts [27, 67, 68]. Despite these variable locations, when 
IPNB exists in the intrahepatic bile ducts, it tends to be found in the left-sided bili-
ary ductal system [27, 46, 61], for reasons which remain uncertain.
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Main Tumors and the Surrounding Bile Duct Mucosa

Generally, IPNBs present as papillary or villous, exophytic growth (range, 1–6 cm) 
(Fig. 3.1) [13, 27, 46, 69]; height, at least 5 mm from the adjacent biliary mucosa) 
in the dilated bile ducts are typical; however, some papillary neoplasms with a simi-
lar histopathology that are <5 mm but >3 mm in height are occasionally encoun-
tered [42]. These exophytic lesions are usually conglomerates of smaller or higher 
polypoid lesions but are not infrequently single or isolated.

Gross features and anatomical location The gross features of IPNBs depend on 
their anatomical location, state of excessive mucin secretion, or macro-invasion of 
the liver [7, 50, 51]. IPNBs located in the intrahepatic bile ducts tend to be larger 
inboth mass and length than those inthe extrahepatic bile ducts [13,42,70]. Some 
IPNBs, particularly those arising in the extrahepatic bile ducts, are associated with 
cylindrical or fusiform morphology with moderate dilatation of the affected bile 
ducts and appear as a cast-like structures, while other IPNBs, particularly those in 
the intrahepatic bile duct, present with marked macroscopic dilatation or unilocular 
or multilocular cystic changes [2, 3, 7, 35]. These cystic changes represent cystic 
dilatation of the bile ducts and usually show luminal communication with the adja-
cent bile duct, so they are not true cysts. However, such anatomic communication 
with the bile duct is sometimes difficult to confirm. The proportion of neoplastic 
components to mucinous fluid in these cystic IPNBs is variable in individual cases. 
The internal surfaces of the cystic lesions are smooth or finely granular, and papil-
lary mural nodules are commonly observed.

Surrounding bile duct mucosa A variable proportion of the mucosa around the 
main papillary conglomerate lesions shows visible granular or small papillary 
lesions (Fig. 3.1d), suggesting neoplastic mucosal changes that are continuous with 
the main lesion [2, 3, 7, 26]. The extent of these lesions is variable, and in some 

Table 3.3 Pathologic characteristics of intraductal papillary neoplasm of the bile duct (IPNB)

Tumor location Intrahepatic: More than half in East Asian countries
Extrahepatica: More than half in Western countries

Tumor number Single
Conglomerate
Multiple

60%
40%
Occasional

Tumor size (including height of IPNB) 1–6.6 cm (larger than 0.5 cm in almost all cases)
Mucus overproduction Present 40% (particularly in intrahepatic IPNB)

Absent 60%
Tumor grade Low grade

High grade
High grade with invasion

10%
50%
40%

Subtype Intestinal subtype
Gastric subtype
PBb subtype
Oncocytic subtype

45%
30%
15%
10%

aIncluding perihilar bile duct
bPancreatobiliary, cited from Refs. [4, 27]
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a
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d

Fig. 3.1 Gross features of intraductal papillary neoplasm of bile duct. (a) Papillary lesion in the 
distal bile duct. Two parts (*) are from a single lesion. (b) Congromelate polypoid lesions (→) in 
the perihilar bile duct. (c) Single polypoid tumor (→) in the perihilar bile duct. (d) Conglomerate 
polypoid lesions (→) and surrounding granular or rough mucosa (*) in the perihilar and distal bile 
duct. (e) Papillary lesions in the wall of cystically dilated intrahepatic bile ducts (*) and invasion (→)
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cases, the spread is wide or extensive along the biliary tree, randing extensively 
from the intrahepatic to extrahepatic bile duct; such cases deserve to be classified as 
a subtype of IPNB [55]/

Variants In addition, IPNBs that are suspected to arise in the peribiliary glands or 
in the smaller bile ducts directly branching from the hilar bile ducts show saccular 
or aneurismal dilatations attached to the hilar bile duct [28, 29, 31]. In these cases, 
the neoplastic epithelia are extending to the adjacent bile duct through communica-
tion [28]. There are also several reports of extensive bile duct dilatation filled with 
mucin and lined by superficially spreading, microscopically identifiable, noninva-
sive biliary neoplasm, but grossly visible papillary neoplasms were not identifiable 
[45, 71]. It remains to be clarified whether or not cases with an unusual presentation 
of IPNB or related lesions should be included as variants of IPNB.

Parenchymal invasion Intrahepatic IPNBs in the intrahepatic bile ducts occasion-
ally show invasion outside the bile duct and then into the surrounding parenchyma, 
occasionally presenting massive parenchymal lesions that are radiologically detectable.

Excessive mucin hypersecretion This is more frequently observed in intrahepatic 
IPNBs than in extrahepatic IPNBs [7, 69, 70]. Bile ducts with excessive mucin 
secretion located upstream and downstream from IPNBs are significantly dilated 
due to the large amount of mucin in the duct lumen. The most common radiologic 
findings in IPNB are bile duct dilatation and intraductal masses [51, 61]. Early stud-
ies classified the bile duct tumors based on their ability to produce mucin [46, 49]. 
However, excessive mucin production is not pathognomonic of IPNB and does not 
occur in all cases of IPNB [7].

Multifocal occurrence IPNBs may present separate multiple lesions of various 
stages along the biliary tree, both synchronously and dyssynchronously [27, 71]. 
Some may represent multiple occurrence of IPNB in the bile duct mucosa with a 
neoplastic predisposition, while others are due to intraluminal implantation or dis-
semination of neoplastic cells of the main papillary tumor along the biliary tree 
[72]. Recurrence of IPNB or CCA after surgical resection of IPNB may occur due 
to the implantation or cancerization of neoplastic cells [73].

e

Fig. 3.1 (continued)
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 Histological Features

Main Tumors

IPNBs are characterized by preinvasive papillary, villous, and/or tubular biliary 
neoplasms covering or associated with fine fibrovascular stalks or stroma in variably 
dilated bile ducts (Fig. 3.2). Some cases of IPNB, particularly oncocytic subtype, 

a

c d

b

Fig. 3.2 Histological features of intraductal papillary neoplasm of bile duct. (a) In the dilated bile 
duct, papillary lesions with fine fibrovascular stalks (intestinal phenotype) are seen. H&E staining. 
(b) Papillotubular neoplasm (intestinal subtype) with fibrovascular stalks in the distal bile duct 
resembling tubular neoplasm of the colorectum. H&E staining. (c) Villous/papillary epithelia of 
intraductal papillary neoplasmof bile duct are positive for mucin. PAS staining after diastase diges-
tion. (d) Villous/papillary epithelia of intraductal papillary neoplasm of bile duct are positive for 
CDX2, intestinal marker. Immunostaining for CDX2. (e) Papillary neoplasm in the bile duct (pan-
creatobiliary subtype, *) is associated with flat or micropapillary intraepithelial neoplastic lesion 
(→) in the surrounding mucosa. HE staining
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show mildly widened stroma due to edema with inflammatory cell infiltration. The 
histology of IPNB is heterogeneous and variable among cases: surface epithelia are 
single-layered or stratified, and the cytoplasm is mucinous in some cases but not in 
others. IPNBs show variable atypia of lining epithelial cells and structural altera-
tions [2, 3, 7, 38]. The histology of IPNBs can be assessed by consideration of four 
subtypes and also the degree of atypia of the lining epithelia.

Degree of Atypia of Intraepithelial Neoplasia (Dysplasia)

IPNBs are traditionally graded into low-grade and high-grade dysplasia, mainly 
based on the cellular atypia and structural changes, particularly nuclear atypia and 
alteration, as is observed in IPMN [2, 3, 7, 43]. For example, the latter shows hyper-
chromatic nuclei, nucleoli, nuclear and cellular pleomorphism, and a loss of polar-
ity, while the former does not. Some IPNBs totally belong to low-grade dysplasia, 
while others belong to high-grade dysplasia or high-grade dysplasia with foci of 
low-grade dysplasia. With respect to the four subtypes (see below), more than 90% 
of pancreatobiliary IPNBs and intestinal IPNBs belong to high-grade dysplasia, 
while approximately two-tenth of gastric IPNBs and oncocytic IPNBs belong to 
low-grade dysplasia, with the remainder belonging to high-grade dysplasia. 
Characteristically, the four subtypes show unique features of low- and high-grade 
dysplasia, individually [3].

Four Subtypes of IPNBs

IPNBs are histologically classifiable into four subtypes based on their cell lineages, 
and they are practically subtyped based on the lining epithelial cells and architec-
ture: intestinal IPNB (iIPNB), gastric IPNB (gIPNB), pancreatobiliary IPNB (pbI-
PNB), and oncocytic IPNB (oIPNB) [2, 3, 7, 38]. Main characters of four subtypes 
are shown in Tables 3.4a, 3.4b, 3.4c, 3.4d. While many cases are predominantly 
composed of an individual subtype, admixtures of foci of other subtypes and cases 

Fig. 3.2 (continued)
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Table 3.4a Characteristics of intestinal subtype of IPNB (iIPNB)

Histological features Defined by neoplastic epithelia lining the fibrovascular cores showing 
columnar cells with pseudostratified, cigar-shaped nuclei and 
basophilic or amphophilic cytoplasm with variable amounts of 
supranuclear mucin, resembling colorectal mucosal epithelia and 
neoplasms thereof and admixed with goblet-like cells in the lining 
epithelia
Presenting mainly villous structures, papillovillous, or mixed 
papillotubular or tubular patterns reminiscent of tubular or villotubular 
neoplasms of the colorectum

Immunohistochemistry Positive for CK20 and/or CDX2 in their cytoplasm. Positive for 
MUC2 in goblet cells

Table 3.4b Characteristics of gastric subtype of IPNB (gIPNB)

Histological features Composed of tall columnar lining cells with basally oriented nuclei and 
abundant pale mucinous cytoplasm, reminiscent of the gastric foveolar 
epithelium, intermingling with glandular areas reminiscent of gastric 
pyloric glands
High-grade dysplasia showing columnar epithelia with more 
complicated structures including irregular papillary or tubular or 
microcystic changes with atypical features

Immunohistochemistry Positive for MUC5AC in the foveolar areas and for MUC6 in the 
pyloric gland portions

Table 3.4c Characteristics of pancreatobiliary subtype of IPNB (pbIPNB)

Histological features Defined by ramifying fine and thin branches and papillae covered by 
cuboidal to low columnar epithelia with round, hyperchromatic nuclei, 
prominent nucleoli, and acidophilic or amphophilic or pale cytoplasm 
and by a less mucinous appearance
Including the cases with irregular papillary architecture with more 
stratified nuclei and solid or comedo-like structures with atypical 
structures and cells and nuclei

Immunohistochemistry Positive for S100P and MUC1 and negative for MUC5AC in these 
neoplastic cells

Table 3.4d Characteristics of oncocytic subtype of IPNB (oIPNB)

Histological features Defined by complex and arborizing papillae with delicate fibrotic and 
edematous stroma, lined by one to several stratified layers of cuboidal 
to columnar cells with abundant eosinophilic granular cytoplasm and 
occasional hyaline globules, with hyperchromatic, round, large, and 
fairly uniform nuclei and with intraepithelial lumina

Immunohistochemistry Positive for MUC5AC
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with controversial subtyping are sometimes observed [3, 4]. This subtyping is facili-
tated by immunohistochemistry to detect mucus core proteins and cytokeratins [2, 
7, 38]. As for the incidence, iIPNB is the most common subtype, followed by 
gIPNB, pbIPNB and oIPNB. There are no apparent differences in sex or age among 
the four subtypes of IPNB.

The Surrounding Mucosa

IPNBs consistently accompany intraepithelial neoplasia spreading in the surround-
ing bile duct mucosa around the main grossly visible papillary or polypoid lesion(s) 
(Fig.  3.1d). Histologically, almost all lesions of such surrounding intraepithelial 
neoplasia present the same phenotype as the main papillary or polypoid lesions 
(Fig.  3.2e), while the gastric neoplasm can be seen in the surrounding mucosa 
around the main papillary lesions belonging to other subtypes. Their atypia is the 
same or more atypical or milder in comparison to the main lesion. In addition, in 
some cases of IPNB, invasion predominantly develops at the site of lateral- spreading 
flat or non-papillary neoplastic areas immediately around as well as remote from the 
main IPNB tumor [3, 26]. Similar phenomena have also been reported in IPMN 
cases in which carcinoma develops in the non-papillary flat neoplastic area around 
the IPMN [11].

While this lesion is a constant and integrated component of IPNB, its signifi-
cance or mechanism remains speculative. Some may reflect intraductal spread of 
carcinoma associated with IPNBs or a preceding biliary epithelial lesion from 
which the main papillary lesion arises as multifocal tumorigenesis.

Stromal Invasion

IPNB may progress from low-grade to high-grade dysplasia and then to invasive 
adenocarcinoma (IPNB associated with invasive carcinoma) [2, 3, 7, 26, 55], as is 
observed in IPMN [11]. IPNBs are not infrequently invasive at the time of surgical 
resection [7]. Surgical series demonstrate high rates of invasive cancer arising from 
IPNB, with rates ranging from 40% to 70% [27]. The time lag between the develop-
ment of IPNB in hepatolithiasis is 6–8 years, and high-grade dysplasia can take 
1–2 years to develop into an invasive lesion [74]. Microinvasive carcinoma was the 
most common level of invasiveness in a previously reported series. Stromal invasion 
into the duct wall occurs at the main papillary or polypoid lesions and also at the 
spreading neoplastic lesion in the surrounding mucosa [2, 3, 7, 26]. Stromal inva-
sion in the surrounding spreading intraepithelial neoplastic lesion occurs in IPNB 
cases in which the main lesion(s) does not show such stromal invasion [26], 
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suggesting that in the clinical setting, physicians should be careful of such spread-
ing and invasion. Extensive sampling may be required to identify small foci of inva-
sion, particularly in tumors with extensive flat or non-papillary neoplastic spreading 
around the papillary tumors, as is observed in IPMN [9, 11]. Invasion into the fibro-
vascular stalks near the bile duct wall is also identifiable, resulting in wide fibrovas-
cular stalks. However, the incidence of invasion differs according to the anatomical 
location of IPNB. That is, approximately 30% of cases of intrahepatic IPNBs are 
invasive, while many extrahepatic IPNBs show at least focal stromal invasion at the 
time of surgical resection [3, 70], implying that intrahepatic IPNBs are less aggres-
sive than extrahepatic IPNBs.

Invasive parts of IPNBs usually show tubular adenocarcinoma with a desmoplas-
tic reaction and only occasionally show foci of colloid carcinoma with or without 
tubular adenocarcinoma components [75]. The oncocytic subtype shows invasion of 
oncocytic adenocarcinoma.

As may be expected, IPNBs with invasion show a significantly worse prognosis 
in comparison to those with no evidence of invasion. Pancreatobiliary IPNB 
expresses MUC1 and is more frequently associated with invasive disease than other 
IPNB subtypes [2, 3, 27].

 Genetic and Molecular Alterations

Recently, several molecular genetic changes have been reported in IPNB, but the 
molecular pathogenesis remains to be clarified [27, 32, 39, 43, 76–85]. Recently, 
using targeted next-generation sequencing, Yang et al. identified frequent mutations 
of KRAS (49%), GNAS (32%), RNF43 (24%), APC (24%), TP53 (24%), and 
CTNNB1 (11%) in IPNBs [39, 43]. These molecular genetic changes are evaluated 
below with respect to progression and also subtyping.

Noninvasive and Invasive IPNBs

The development of IPNB follows a sequential progression in association with the 
stepwise acquisition of molecular alterations affecting common oncogenic path-
ways [32, 78]. Progression of dysplasia and invasion is accompanied by the accu-
mulation of genetic alterations. KRAS and p16 alterations occur early and in 
tumors with low-grade dysplasia and precede the increased expression of PT53. 
SMAD-4 mutations have only been identified in tumors from patients with inva-
sion [27, 76]. The overexpression of EZH2 may be associated with malignant 
behavior [79]. The expression of IPM3 and DNMT1 is significantly increased in 
invasive IPNB [80].
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Subtyping and Type 1 and Type 2 Subclassifications

 (i) Four subtypes: In eastern Asia, GNAS mutations were detected in less than half 
of all cases of IPNB, and all cases with GNAS mutations had intestinal differen-
tiation with villous architecture and mucus hypersecretion [43, 74, 82, 83]. 
Mutations of RNF43, a tumor suppressor gene, were also frequent in the intes-
tinal IPNB [39]. When divided into the intrahepatic and extrahepatic classifica-
tions, in intestinal IPNBs arising in the intrahepatic bile ducts, GNAS and KRAS 
mutations are frequent, as is observed in intestinal IPMN [74]. As for non- 
intestinal IPNBs, mutations in APC or CTNNB1 both of which belong to the 
Wnt/β-catenin pathway, were observed in one-fourth of IPNBs and were mutu-
ally exclusive [84]. In immunohistochemistry, the aberrant cytoplasmic and/or 
nuclear expression of β-catenin was found in not only IPNBs with APC or 
CTNNB1 mutations but also IPNBs with wild-type APC and CTNNB1. 
Interestingly, APC and CTNNB1 alterations were unique to IPNB and excep-
tional in non-papillary CCA [84]. Mutations of genes, such as SMAD4, PIK3CA, 
APC, and CTNNB1, which are also seen in colorectal neoplasms [86, 87], were 
frequent in intestinal IPNBs of the extrahepatic bile ducts [74], and the pancrea-
tobiliary subtype arising in the extrahepatic bile ducts also showed CTNNB1 
mutation [39, 84]. iIPNB arising in the extrahepatic bile ducts also undergoes a 
similar pathway [74]. Thus, at present, the activation of the Wnt/β-catenin sig-
naling pathway may be relevant to the development and progression of non- 
intestinal- type IPNBs, as well as iIPNBs arising in the extrahepatic bile ducts.

 (ii) Type 1 and type 2 subclassifications: Type 1 IPNBs present frequent KRAS, 
GNAS, and RNF43 mutations, while type 2 IPNBs show frequent TP53, 
SMAD4, and KMT2C mutations but rarely show GNAS mutations [39, 43].

 New Subclassification of IPNBs

IPNBs have been studied historically in comparison to IPMNs [2, 12–14, 16, 34, 
87]. Thus, firstly, the comparisons of IPNB and IPMN are described. Then, the new 
subclassification of IPNB into types 1 and 2 is described based on this comparison 
[2, 3, 38, 41, 42].

Comparison of IPNB and Pancreatic IPMN

There are several biliary and pancreatic diseases that share many clinical and patho-
logical features and which can be regarded as a spectrum of “biliary diseases with 
pancreatic counterparts” [2, 3, 38, 70, 87]. In fact, the pathological and clinical 
similarities between IPMN and some IPNB cases have been reported [2, 6, 12, 38], 
suggesting that IPMNs and some IPNB cases can be included in this spectrum. For 
example, IPNBs are also divided into four subtypes, as is observed in IPMN [3, 7], 
and IPNBs also frequently show excessive intraductal mucin hypersecretion. In 
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addition, there have been several reports of synchronous and dyssynchronous occur-
rence of IPNB and IPMN in the same patient [26, 67, 68].

However, other IPNBs are variably different from IPMN [13, 14, 42]. The fol-
lowing are some examples of differences. IPMNs can involve the main pancreatic 
duct (main duct type), branch duct (branch duct type), or both ducts (combined 
type). The branch duct type of IPMN is usually multicystic and usually of the gas-
tric subtype. While IPNBs involving the extrahepatic bile ducts and intrahepatic 
large bile duct may correspond to the main pancreatic duct type, the counterparts of 
branch-type IPMN in the biliary tract remain speculative. Cystic micropapillary 
neoplasms in the peribiliary glands, which usually show gastric immunophenotypes 
[38, 88, 89], could be counterparts of branch-type IPMN.

While four subtypes are recognizable in IPNB and IPMN [9–11], the histology 
of the subtypes of IPNBs and IPMNs are not the same in all cases. The excessive 
mucin hypersecretion from the neoplastic epithelium into the ductal lumen is a 
highly characteristic and consistent finding in IPMN [9, 11], while mucus hyperse-
cretion is a frequent but not consistent finding in IPNB [11]. Thus, IPNB with 
excessive mucin hypersecretion may be a real counterpart of IPMN, while IPNB 
without mucin hypersecretion may be another category [14, 82, 83, 90]. Both 
IPNBs and IPMNs show various grades of dysplasia, ranging from low- to high-
grade dysplasia, while the proportion of high-grade dysplasia is high in IPNB. As 
for the gastric subtype, a majority of these IPNBs are the branch duct type with 
low-grade dysplasia and foveola type is predominant. However, the gastric subtype 
of IPNB consists of predominantly high-grade dysplasia, and pyloric type is not 
infrequent. The intestinal subtype of IPNB presents villous, papillary, and also 
tubular components, as is observed in intestinal adenoma in the intestine, while the 
intestinal subtype of IPMN shows only villous components [9, 11, 74]. Together, 
these findings suggest that some IPNBs resemble the four prototypic subtypes of 
IPMN, while the histology of others differs to varying degrees from the four proto-
typical IPMNs.

There are many anatomical, embryological, and experimental data and back-
grounds that support the occurrence of similar diseases in the biliary tract and pan-
creas [2, 3, 87, 91–95]. Interestingly, the bile ducts may show variable pancreatic 
features, including peribiliary glands containing pancreatic acini [96–98], which 
makes it plausible for diseases with similar features to develop in the pancreas as 
well as the biliary tract [2, 87]. However, embryologically, the origin and develop-
ment of the several compartments of biliary tree are thought to differ, with the bile 
ducts proximal to the right and left bile ducts derived from the ductal plates and 
remodeled bile ducts around the hepatic parenchyma, which are derived from albu-
min-positive hepatoblasts in the hepatic diverticulum, and the bile ducts distal from 
the extrahepatic bile ducts derived from the albumin-negative hepatoblasts in the 
hepatic diverticulum [87–94, 99]. These embryological and anatomic differences 
and characteristics along the biliary tree may be related to the development of 
IPNBs with different pathobiologies, some of which are similar to IPMNs. Based on 
our recent studies, approximately half of IPNBs showed similar histopathological 
features to IPMNs, while the other half did not [2, 3, 70].
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Type 1 and 2 Subclassifications

The low-grade and high-grade dysplasias are mainly graded on cellular and nuclear 
characteristics and architectural changes of the intraepithelial neoplasm. It is well- 
known that IPNBs show structural changes or alterations: some cases show regular 
papillary, villous, or tubular structures and a relatively homogeneous appearance, 
while others show irregular papillary, villous, or tubular structures and a heteroge-
neous appearance. Mainly based on these structural alterations, Japan-Korea expert 
biliary pathologists proposed a new subclassification of IPNB into types 1 and 2 
[38, 39, 41–43, 100]. Interestingly, IPNBs with low-grade dysplasia (about 10% of 
all IPNBs) belong to type 1 (Fig.  3.3a), while IPNBs with high-grade dysplasia 

a b
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Fig. 3.3 (a) Intestinal subtype showing regular villous growth with low grade dysplasia. Type 1. 
H&E staining. (b, c) Oncocytic subtype show regular papillary growth (b). Cellular and nuclear 
changes are of high grade dysplasia (c). Type 2. H&E staining. (d) Intestinal subtype showing 
irregular villous and papillary patterns with complicated histologies and high grade dysplasia. 
Arrow shows stromal invasion. Type 2. H&E staining
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(30%) also belong to type 1 (Fig. 3.3b, c), while the remaining IPNBs with high- 
grade dysplasia (60%) belong to type 2 (Fig.  3.3d). In addition, type 2 also not 
infrequently shows foci of complicated lesions, such as cribriform and solid compo-
nents, and relatively large cystic changes and foci of bizarre cells and nuclear 
changes. Coagulative necrosis is also experienced in type 2. Neuroendocrine dif-
ferentiation has been reported in type 2 IPNB [101]. However, such features are 
absent in type 1. In type 1, papillary fibrovascular stalks are generally thin (depend-
ing on the subtype), while fibrovascular stalks are variably widened at the basal side 
in some cases. Interestingly, type 1 more or less resembles or shares features of any 
of the four prototypic subtypes of IPMNs (depending on subtype), while type 2 dif-
fers variably from the prototypic subtypes of IPMNs (depending on subtype) [2, 9, 
10]. The main differential features between types 1 and 2 are shown in Table 3.5.

As for other characteristics, type 1 tends to arise in the intrahepatic bile ducts, 
while type 2 develops similarly in the extrahepatic and intrahepatic bile ducts. 
However, some cases show type 1 and 2 IPNBs synchronously and/or asynchro-
nously in different part(s) of the intrahepatic and extrahepatic bile ducts, suggesting 
that type 1 and 2 IPNBs could be part of the spectrum of IPNBs along the biliary tree.

Furthermore, according to recent studies, types 1 and 2 show other clinicopatho-
logical and molecular-genetic differences [3, 39, 42, 43, 100]: Type 1 IPNBs were 

Table 3.5 Type 1 and 2 intraductal papillary neoplasms of the bile duct (IPNB)

Type 1 IPNB Type 2 IPNB

Structures Regular villous, papillary 
or tubular structures
Homogeneous 
appearance

Irregular and complicated 
villous, papillary, or tubular 
structures
Heterogeneous appearance

Atypia of intraepithelial neoplasm Low-grade dysplasia
High-grade dysplasia 
with foci of low-grade 
dysplasia

High-grade dysplasia with 
minimal foci of low-grade 
dysplasia
High-grade dysplasia

Location at the biliary tree Usually intrahepatic bile 
duct

Intrahepatic and extrahepatic 
bile duct

Mucin overproduction Frequent Infrequent
Stromal invasion Infrequent Common
Subtypes
  Intestinal subtype Equal Equal
  Gastric subtype Frequent Infrequent
  PB subtype Equal Equal
  Oncocytic subtype Frequent Infrequent
Similarities to prototypic subtypes of 
IPMN

Similar (depending on 
subtype)

Different variably 
(depending on subtype)

Complicated lesions such as solid or 
cribriform pattern, coagulative 
necrosis, and cystic changes

Almost absent Frequent

Bizarre cellular and nuclear changes Absent Infrequent
Fibrovascular stalks Thin to slightly widened 

(depending on subtype)
Thin to widened (depending 
on subtype)
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associated with a noninvasive phenotype, gastric and oncocytic subtypes, develop-
ment in the intrahepatic bile ducts, mucin hypersecretion, a relatively good progno-
sis, and old age, while type 2 IPNBs were associated with an invasive phenotype, 
the pancreatobiliary subtype, relatively develop frequently within the extrahepatic 
bile ducts, and present a worse prognosis in comparison to type 1 IPNBs. As for 
postoperative survival, both types showed a relatively good prognosis in compari-
son to conventional CCA. However, type 1 is known to be associated with a favor-
able prognosis, and type 2 is associated with a worse prognosis [42], and recent 
studies validated the significance [43, 100].

This new subclassification could be promising in the preoperative evaluation and 
management and in assessing the prognosis. This could be applicable in preopera-
tive imaging and endoscopy, and valuable preoperative information may be obtained 
[102]. However, its application in biopsies and cytology is limited at the moment.

 Diagnosis

 Main Clinical Features and Laboratory Data

Intermittent or recurrent, right upper quadrant abdominal pain (85%) and acute 
cholangitis or jaundice are the most common clinical manifestations, but a certain 
percentage (5–29%) of patients has no symptoms at diagnosis [27, 39, 46, 50, 52, 
103–106].

Alkaline phosphatase was the most dysregulated enzyme [14, 46, 54]. CEA and 
CA19-9, tumor markers, were elevated in 42% of IPNB patients [27], though they 
are unlikely to have high sensitivity or specificity for the diagnosis of IPNB [29, 
105]. It is likely that traditional tumor markers will be of low sensitivity and speci-
ficity for the diagnosis of IPNB or its differentiation from other biliary tumors, as 
their serum levels vary widely among IPNB patients [27].

 Imaging Findings

US, CT/MRI, cholangiography, IDUS, and cholangioscopy are main imaging 
modalities. Their representative findings of IPNB are shown in Fig. 3.4.

Ultrasonography (US)

Abdominal ultrasonography (AUS) is often performed as a first-line modality in 
patients with some symptom or any hematological abnormality, as well as just 
screening, to detect both bile duct dilatation and intraductal masses [27]. Biliary 
tract dilatation is the most common finding in patients with IPNB, while intraductal 
tumors themselves are not always detected by AUS [27].
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Endoscopic ultrasonography (EUS) was used after other modalities to obtain 
tissue samples [45, 107].

Cross-Sectional Imaging

Computed tomography (CT) including multidetector CT (MDCT) and magnetic 
resonance imaging (MRI) are the most imaging modalities frequently reported to 
have been used for the diagnosis of IPNB [27, 69, 107, 108]. The most important 

a

c d

b

Fig. 3.4 Imagings of intraductal papillary neoplasmof bile duct (IPNB) (60 year-old man with 
IPNB in common hepatic duct). (a) Contrast-enhanced computed tomography (CT) showing 
enhanced papillary tumor (arrow). (b) Magnetic resonance cholangiography (MRC) showing 
irregular filling defects with dilatation of up- and downstream of biliary duct (arrow). (c) 
Endoscopic retrograde cholangiography (ERC) showing irregular filling defects (arrow). (d) 
Cholangioscopic (CHF-B260; Olympus Corporation) findings showing papillary tumor located in 
common hepatic duct (arrows)
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morphological changes are the presence of (a) bile duct dilatation, (b) intraductal 
mass(es), (c) cystic lesion(s), and (d) macro-invasion of the liver [27, 51]. The pat-
terns of bile duct dilatation are diffuse duct ectasia, localized duct dilatation, and 
cystic dilatation (Fig. 3.1). Intraductal or intracystic masses can be also detected by 
these modalities, although its sensitivity is reported to be in the range of 41.2–97% 
[48, 108, 109]. MRI reveals IPNB as isointense to hypointense masses on 
T1-weighted images and hyperintense masses on T2-weighted images [108]. On 
CT, the enhancement pattern of IPNB is isodense or hyperdense during the late arte-
rial phase and not hyperdense during the portal venous and delayed phase, in com-
parison to the normal hepatic parenchyma [109]. Other findings obtained by CT are 
infiltration of the neoplasm along the duct wall and intense rim enhancement at the 
base of the lesion [21]. Excessive mucin, even if it exists, cannot be detected on CT 
or MRI. The addition of diffusion-weighted MRI was superior for evaluating the 
invasiveness of tumors [108]. Some IPNBs may only show dilatation of the bile 
ducts without visible intraductal tumors on imaging because of their microscopic 
size [110, 111].

Cholangiography

Endoscopic retrograde cholangiography (ERC) and magnetic resonance cholangi-
ography (MRC) are useful for showing the entire bile duct to define the extent of 
IPNB [111, 112]. ERC is useful for the detection of mucobilia, which is seen in 
nearly one-third of patients with IPNB, as evidenced by diffuse dilatation of the bile 
duct with an irregular or amorphous filling defect [36, 112]. Duodenoscopy fre-
quently shows a dilated papillary orifice with mucin. However, the existence of the 
thick mucin filling the dilated biliary tree often prevents the visualization of intra-
ductal tumors [105, 111–113]. The luminal communication of IPNB with cystic 
changes with the adjacent bile duct can also be identified. Brush cytological speci-
mens and even tissue specimens are available during ERC.

MRC is also a standard, noninvasive method for demonstrating the extent of nar-
rowing or dilatation of the bile duct and multifocal intraductal tumors, but it cannot 
detect the presence of mucin overproduction in the bile duct [114]. IPNB usually 
shows a signal defect against bile juice, which shows a high signal intensity. The 
affected bile duct in IPNB does not usually demonstrate stricture or sometimes 
demonstrates localized bile duct dilatation due to the mucin production of the 
tumor [110].

Intraductal Ultrasonography (IDUS)

IDUS is reportedly useful for the evaluation of the lateral spread of CCA [120–122] 
and is a simple method for diagnosing the location of IPNB and assessing the depth 
and extent of invasion, even in the presence of thick mucin.
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Cholangioscopy

Peroral cholangioscopy (POCS) can visualize the bile duct directly and assess the 
extent of the tumor [74, 114] (Fig. 3.5). POCS was recently improved by the intro-
duction of newly developed equipment, such as high-resolution video- 
cholangiography [115], and can be performed immediately after ERC with 
endoscopic sphincterotomy (EST). After the sufficient removal of mucin [116, 117], 
POCS can approach the bile duct directly and can assess the surface and other char-
acteristics of intraductal tumors and the surrounding biliary mucosa [118]. 
Characteristic findings of IPNB by cholangioscopy include papillary projections 
with or without the surrounding fish-egg-like or granular mucosa. In the observation 
of the fine mucosal structure, narrow-band imaging (NBI) is reported to be better 
than light imaging [119–122]. NBI shows the fine mucosal structure and microves-
sels in the tumor. PCS allows for tissue and cytology samples to be obtained.

The CHF-B260 and CHF-B290 scopes are reported to have a higher capability 
with regard to making an accurate diagnosis of features such as lateral spread and 
extent [123, 124]. SpyGlass DS (SpyDS) is a newly developed peroral digital chol-
angioscope [118, 125–128]. The SpyDS shows dramatic improvements in several 
aspects, particularly the newly added injection and suction functions through a two- 
port adaptor [129].

 Pathological Diagnosis

Tissue and Cytology Sampling

ERC and cholangioscopy allow for tissue and cytology samples to be obtained 
from the intraductal tumor and the surrounding mucosa [112, 128, 129]. SpyGlass-
guided forceps biopsy is also a hopeful possibility [126], because it improves 
maneuverability.

a b c

Fig. 3.5 Cholangioscopic features of intraductal papillary neoplasm of bile duct  (IPNB). (a) 
Cholangioscopic (CHF-B260; Olympus Corporation) findings showing papillary tumor located in 
common hepatic duct (arrows). (b, c) IPNB visualized by peroral cholangioscopy. Papillary pro-
jections in the bile duct (b) with the surrounding granular mucosa (c)
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Findings in Tiny Tissue Specimens

An accurate diagnosis cannot be always made by biopsy because of the existence of 
mixed pathologic findings, including coexisting or admixing inflammatory and 
other reactive changes in the same lesion [7, 27]. In addition, the size of specimens 
is not always adequate, and contamination and other artificial changes are also 
superimposed.

Structural alterations, such as villous or papillary structures, particularly the vil-
lous pattern, and excessive mucin may be helpful in the diagnosis of IPNBs 
(Fig. 3.6). Typical cells with a cellular specimen composed of papillary groups and 
linear strips of mostly cuboidal/columnar cells with mild atypia and vacuolated 
cytoplasm may reflect the pathology of IPNB [7, 103]. However, a pathological 
diagnosis made using a preoperative biopsy specimen does not always reflect the 
maximum degree of atypia, because IPNBs are often composed of varying degrees 
of cytoarchitectural atypia (low-/high-grade dysplasia).

Cytological Findings

Prominent papillary proliferation with often broad, double-cell layered sheets of an 
atypical columnar epithelium suggests IPNB but may not be specific [7, 126, 127, 
130–132]. Fibrovascular cores are sometimes observed. Dysplastic but not frankly 
malignant nuclear features are often seen in IPNB.

a b

Fig. 3.6 Pathological findings of biopsies from intraductal papillary neoplasm of bile duct (IPNB). 
(a) Papillary cellular proliferation with oval nuclei and abundant cytoplasmic mucin, suggesting 
high grade IPNB. H&E staining. (b) Papillary cellular proliferation with hyperchromatic and strat-
ified nuclei, suggesting low grade IPNB. H&E staining
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 Preoperative Assessment, Treatment, and Prognosis

Published studies examining the management and long-term postoperative out-
comes of IPNB are still limited based on their design as retrospectively collected 
case series from single centers or due to relatively small numbers of patients from 
some multicenter studies [27, 46, 55].

 Preoperative Assessment

Patients without distant metastasis are eligible for surgical treatment. In order to 
choose an appropriate surgical procedure, an exact preoperative assessment of 
IPNB, including the tumor location, histological atypia, extension of tumor spread, 
and lymph node metastasis, is important [27, 68]. Imaging assessment plays a major 
role in not only the diagnosis but also the management strategy that is employed [69].

AUS, MDCT, MRI, and cholangiography are usually performed to assess tumor 
location [27]. However, the existence of abundant mucin often makes a precise 
diagnosis difficult, and POCS can overcome this obstacle by the removal of mucin 
[133]. Tissue and cytology specimens obtained during ERCP, POCS, and EUS pro-
vide information on the presence of neoplastic or malignant cells, the grade of 
atypia, and possibly the subtype. The depth of invasion of the tumor is usually inves-
tigated by CT, cholangiography, and IDUS [27]. Intramural extension along the bile 
duct, which is not uncommon in IPNB, can be assessed by MDCT and cholangiog-
raphy, whereas evaluating the extent of the superficial (intraepithelial) spread is 
difficult with these modalities. Instead, mucosal observation of the tumor and the 
adjacent bile duct mucosa with tissue sampling by POCS might be essential [27, 
108, 110, 133, 134], although these assessments have some limitations in sensitivity 
and specificity. Lymph node involvement is estimated by MDCT, EUS, and 
fluorodeoxyglucose- positron emission tomography.

The preoperative determination of the type 1 and type 2 subclassifications of 
IPNB is strongly weighted, and it is possible in imaging [102] but is difficult in tiny 
tissue or cytology specimens.

 Treatment

All patients with IPNB should be considered for treatment for two reasons [27, 51, 
69, 132]. First, high-grade dysplasia with minimal invasion is frequently seen in 
IPNB, and the examination of preoperative biopsy specimens shows relatively low 
sensitivity in determining the maximum degree of cytoarchitectural atypia and the 
diagnosis of invasive disease [27], as mentioned above. Second, papillary tumors 
and associated mucin often cause recurrent cholangitis and obstructive jaundice, 
even if the tumors exhibit low-grade dysplasia.
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The major treatment of IPNB is surgical resection, which—in principle—is 
performed in the same manner as surgical resection for CCA (e.g., major hepatec-
tomy with or without bile duct resection, or pancreaticoduodenectomy). Regional 
lymphadenectomy should also be performed. On the other hand, in cases of IPNB 
with low- to high-grade dysplasia and limited superficial spread, limited resection 
preserving the organ functions (e.g., extensive extrahepatic bile duct resection) 
can be selected [27, 103, 127]. In such cases, a precise preoperative diagnosis is 
essential but is often difficult. The subclassification of IPNB may be helpful for 
making the decision to perform limited resection, because type 1 IPNB usually 
shows less aggressive behavior than type 2 IPNB [38, 42, 43, 100]. Intraoperative 
frozen sections of the bile duct stump are needed to confirm a cancer-free surgi-
cal margin.

In contrast, in cases of IPNB with extensive superficial spread that may have 
positive margins, even after extensive resection, resection for the whole biliary tree 
by liver transplantation with or without pancreaticoduodenectomy is theoretically 
regarded as the only curative treatment [107, 131, 132, 135, 136]. However, the 
efficacy of this procedure remains unclear, and the indication of liver transplanta-
tion for patients with IPNB is very limited at present [137].

When major surgery is not possible, some palliative treatments such as cholan-
gioscopic electrocoagulation, iridium-192 intraluminal therapy [136], and argon 
plasma coagulation [137, 138] have been reported.

 Survival and Prognostic Factors

While the median postoperative survival of IPNB patients is favorable in compari-
son to conventional nodular/sclerosing perihilar/distal CCA or periductal/mass- 
forming iCCA [4, 27, 46, 61], few reports have demonstrated the outcomes after the 
surgical resection of IPNB.  Luvira et  al. reported that the median postoperative 
survival of 102 IPNB patients was 1728 days with 1-, 3-, and 5-year overall survival 
rates of 86.3%, 63.7%, and 44.8%, respectively [50]. Similarly, a meta-analysis 
showed pooled random effect estimates of postoperative survival to the time point 
were 96% at 1 year, 79% at 3 years, and 65% at 5 years [27], although the results 
varied dramatically among studies.

Factors that have been reported to be associated with adverse outcomes include 
high serum CA19-9, lymph node metastasis, R0 or R1/2 resection, invasive IPNB, 
tumor multiplicity, and the high expression of MUC1, a hepatobiliary marker, in the 
tumor tissue [27, 50]. The gross classification of IPNBs proposed by Luvira et al. 
also predicted survival very well [51]. According to this report, the survival of IPNB 
patients with cystic variant and micropapillary lesions was favorable, with no tumor- 
related deaths within 3 years after surgery, whereas the respective median survival 
times for IPNBs with unilateral intrahepatic duct dilatation (intrahepatic IPNB), 
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bilateral intrahepatic duct dilatation (extrahepatic IPNB), and macro-invasion were 
1888 days, 673 days, and 578 days, respectively. Intrahepatic IPNB shows a favor-
able prognosis in comparison to IPNBs arising in the extrahepatic bile ducts [139]. 
At present, the histologic subtypes are not necessarily associated with survival, and 
there have been no reports on prognostic differences between IPNBs with low-grade 
and high-grade dysplasia. With respect to the type 1 and type 2 subclassifications of 
IPNB [42], Aoki et al. reported that type 1 showed a favorable prognosis in com-
parison to type 2 [43, 100].

 Biliary Intraepithelial Neoplasms (BilINs)

BilINs are an another intraductal neoplasm of the bile duct and are found on the 
mucosa of the bile duct and gallbladder [1, 15]. They are regarded as premalig-
nant and preinvasive lesions, while their exact significance remains to be clarified 
[16–20]. While gross identification of BilINs is difficult, they may be recognized 
based on the identification of a subtle and nonspecific granular or rough bile duct 
mucosa. A histological examination shows flat or micropapillary biliary epithelial 
changes occasionally with the continuous involvement of the intramural peribili-
ary glands.

Conventional CCAs are presumed to follow BilIN; however, the exact sequence 
and progression remain to be elucidated [1, 76]. Occasionally, early invasive adeno-
carcinoma is found in the foci of BilINs. They are graded as low-grade BilIN (previ-
ously termed BilIN-1/BilIN-2) and high-grade BilIN (previously termed BilIN-3 
(Fig.  3.7). The former correspond to low-grade dysplasia and the latter to high- 
grade dysplasia (carcinoma in situ). Their main differential features are shown in 
Table  3.6 [1, 16]. High-grade BilIN usually forms a field of various extents of 
lesional spread on the biliary mucosa [1, 16]. Interestingly, some BilINs present 
with pseudopapillary- or micropapillary-like lesions (micropapillary BilINs), but 
their heights are less than 3 mm, which differentiates them from IPNB [1–3, 17, 42]. 

a b

Fig. 3.7 Pathological findings of  biliary intraepithelial neoplasm (BilIN). (a) Low-grade 
BilIN. H&E staining. (b) High-grade BilIN. H&E staining
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High-grade BilINs are constantly positive for S100P, a differential point from reac-
tive changes [18].

Three cellular phenotypes, including the pancreatobiliary, gastric, and intestinal 
subtypes, are recognized in BilIN [15]. When BilIN is associated with invasive car-
cinoma, the phenotype of BilIN does not correspond to that of carcinoma [15, 17].

Similarities to pancreatic intraepithelial neoplasm (PanIN), particularly between 
high-grade BilIN and high-grade PanIN, have been reported [16]. However, genetic 
changes could differ between the BilINs and PanIN.

 Clinical Features

BilINs are typically found incidentally in bile duct and gallbladder specimens that 
are resected for other reasons [1, 15–17].

 Risk Factors or Background Lesions

In addition to hepatolithiasis, BilINs are often encountered in the mucosa adjacent 
to conventional CCA and can also be found in patients with hepatolithiasis, PSC, 
choledochal cyst, and anomalous union of the pancreatic biliary duct [18–20].

 Pathogenesis

It has been suggested that chronic biliary inflammation may induce neoplastic 
changes of the biliary epithelia [17]. KRAS mutations occur in approximately 40% 
of BilIN cases and are identified as an early molecular event during the progression 
of BilIN, while PT53 mutation appears to be a late molecular event [76, 77, 140].

Table 3.6 Comparison between low-grade and high-grade biliary intraepithelial neoplasm (BilIN)

Characters
Low-grade BilIN (BilIN-1/
BilIN-2) High-grade BilIN (BilIN-3)

Histology Flat/pseudopapillary/
micropapillary
Hyperchromatic nuclei
Increased N/C ratio
Nuclear stratification

Flat/pseudopapillary/micropapillary
Hyperchromatic and irregular nuclei
Increased N/C ratio, pleomorphic, and 
bizarre nuclei
Disordered nuclear polarity

Involvement of biliary 
mucosa

Relatively small foci or area Relatively extensive area
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 Other Intraductal Tumors of Biliary Tract

Several intraductal biliary tumors other than IPNB and BilINs are also reported 
(Table 3.1), as follows. Some may be a precursor of CCA.

 Primary Intraductal Neoplasm of the Bile Duct

 1. Intraductal Tubulopapillary Neoplasms of the Bile Duct (ITPNs)
The most important microscopic characteristics of ITPNs are as follows [23]: 

(i) the tumor is mainly composed of tubular configurations with abortive papil-
lary components, and the tumor cells contain no cytoplasmic mucin, and (ii) 
uniform high-grade dysplasia is observed throughout the tumor, and no low-
grade areas are seen. The expression of MUC5AC is consistently negative. These 
features contrast with those of IPNBs. The histological subtyping used for IPNBs 
is not applicable to ITPNs. This may also be a biliary counterpart of pancreatic 
ITPN [22].

 2. Pyloric Gland Adenoma
Pyloric gland adenoma, which resembles a pyloric gland and expresses 

MUC6, has been reported in the bile duct [141]. 
 3. Other Benign Neoplasms

Benign intraductal epithelial neoplasms are reported under several names [8, 
16, 142–145]. They will be categorized into several types or incorporated in 
other types of intraductal neoplasm in the future.

 (a) Tubular adenoma or neoplasm of the bile duct
 (b) Tubulovillous adenoma of the bile duct
 (c) Villous adenoma of the bile duct

 4. Undifferentiated Carcinoma
Undifferentiated carcinoma is occasionally associated with osteoclastic 

giant cells.
 5. Carcinosarcomas

 Related Neoplasms

 1. Mucinous Cystic Neoplasm (MCN)
MCN shows unilocular or multilocular cystic lesions covered by biliary epi-

thelia and subepithelial ovarian-like stroma [25, 146, 147]. MCN is another type 
of intraepithelial neoplasm of the hepatobiliary system but fails to communicate 
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with the adjoining bile duct lumen; thus, it differs from IPNB with cystic changes 
[34, 35].

 2. Intracholecystic Papillary Neoplasm (ICPN)
ICPN is a grossly visible, mass-forming, noninvasive neoplasm arising in the 

mucosa [148, 149] and projecting into the lumen of the gallbladder. Some ICPNs 
arise in the Rokitansky-Aschoff sinus [150], while some grow through the cystic 
duct into the extrahepatic bile duct [151].

 Mimickers

 1. Conventional CCAs with Intraductal Growth
Conventional perihilar and distal CCAs are associated with the following find-
ings: nodular/sclerosing growth affecting the bile duct wall and periductal tissue; 
and the luminal side of the bile duct from which the CCA might have arisen is 
obliterated and erosive or shows remnants of flat/micropapillary carcinoma [1, 4, 
5]. Occasionally, conventional CCA presents with intraductal growth composed 
of invasive carcinoma with desmoplasia continuous with invasive ductal and 
periductal invasive carcinoma [1, 42]. Papillary components, usually micro-
scopic and less than 5 mm in height, have occasionally been encountered on the 
luminal surface or the mucosa adjoining these invasive conventional CCAs [1, 
15–21]. The clinical and pathologic differentiation of these nodular sclerosing 
CCAs with micropapillary components from IPNB associated with invasive car-
cinoma are occasionally controversial [152, 153]. At present, “papillary or vil-
lous components comprising >50% of the intraductal tumor and papillary growth 
typically >5 mm in height” are the proposed diagnostic criteria for IPNB, par-
ticularly type 2 IPNB associated with invasive carcinoma [42] in differentiation 
from conventional CCA.

 2. Metastasis from Colon Carcinoma
Metastatic carcinomas, particularly those from colorectal adenocarcinoma, also 
show grossly visible intraluminal growth in the bile duct [24]. They present a 
cast-like growth, and a histological examination shows colorectal 
adenocarcinoma.

 3. Hepatocellular Carcinoma Emboli in the Bile Duct

 Conclusions

In conclusion, IPNBs are characterized by grossly exophytic growth in the dilated 
bile duct and histologically fine fibrovascular stalks covered by villous, papillary, or 
tubular epithelial neoplastic epithelia. They are divided into the intestinal, gastric, 
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pancreatobiliary, and oncocytic subtypes; the intestinal subtype is the most common 
followed by other subtypes. IPNBs show low-grade dysplasia and high-grade dys-
plasia with regular structures and a homogeneous appearance and with irregular and 
complicated structures and a heterogeneous appearance. The former two are 
regarded as type 1, while the last is regarded as type 2. Type 1 IPNBs may share 
features of the prototypic subtypes of pancreatic IPMN, while type 2 variably dif-
fers from the prototypic subtypes of pancreatic IPMN. Type 1 and 2 IPNBs showed 
different clinicopathological features, including mucus overproduction and postop-
erative survival, and unique genetic alterations. Characteristic exophytic growth in 
the duct and associated ductal lesions are delineated by cross-sectional imaging and 
the observation of an intraductal tumor and mucus hypersecretion by cholangiogra-
phy and cholangioscopy. Surgical intervention is recommended for all patients with 
suspected IPNB. A further study with a large study population is required to eluci-
date the characteristics of IPNB and other intraductal neoplasms of the bile duct and 
to improve early detection and prevention of invasion in patients with these 
neoplasms.
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HCC Hepatocellular carcinoma
HCV Hepatitis C virus
IC Infiltrative class
iCAA Intrahepatic cholangiocarcinoma
ICD-O International Classification of Diseases for Oncology
ICPN Intracholecystic papillary neoplasm
IHC Immunohistochemical staining
IPNB Intraductal papillary neoplasm of the bile duct
ISH In situ hybridization
ITPNB Intraductal tubulopapillary neoplasm of the bile duct
LD Large duct
MANEC Mixed adenoneuroendocrine carcinoma
MCN Mucinous cystic neoplasm
MEN Multiple neuroendocrine neoplasia
MiNEN Mixed neuroendocrine-non-neuroendocrine neoplasm
MUC Mucin
NEC Neuroendocrine carcinoma
NEN Neuroendocrine neoplasm
NES Neuron-specific enolase
NET Neuroendocrine tumor
P Peripheral
PanIn Pancreatic intraepithelial neoplasm
PC Proliferative class
PGA-GB Pyloric gland adenoma of the gallbladder
PSC Primary sclerosing cholangitis
SCC Squamous cell carcinoma
SC-GB Sarcomatoid carcinoma of the gallbladder
SD Small duct
VHL Von Hippel-Lindau
VMC von Meyenburg complex
WHO World Health Organization
ZE Zollinger-Ellison

 Introduction

Bile duct carcinomas (BD-CAs) may occur anywhere in the biliary tract from the 
canals of Hering to the ampulla of Vater and gallbladder. There have been inconsis-
tencies in the classification and nomenclature used to describe these neoplasms, 
which to some extent have impeded their understanding from a clinical and research 
perspective. Historically, BD-CAs have been categorized on the bases of location, 
growth patterns on gross examination, and histological features. Advancements in 
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genetic, epigenetic, and molecular studies have explored individual characteristics 
of this heterogeneous group and contributed to the current World Health Organization 
(WHO) histological classification. This chapter focuses on the pathologic classifica-
tion of carcinomas of the biliary epithelium (cholangiocytes) and their precursor 
lesions.

 Overview

Anatomically, BD-CAs are categorized as small duct intrahepatic cholangiocarci-
noma (SD-iCCA), large duct intrahepatic cholangiocarcinoma (LD-iCCA), perihi-
lar (or proximal) extrahepatic bile duct carcinoma (P-EHBD-CA), distal extrahepatic 
bile duct carcinoma (D-EHBD-CA), and gallbladder adenocarcinoma (GB-AC). 
LD-iCCA, EHBD-CA, and GB-AC emerge from epithelial precursors, while no 
definite precursor lesion has been elucidated for SD-iCCA to date. Adopted from 
pancreatic counterparts, precursors of BD-CAs are divided into biliary intraepithe-
lial neoplasia (BilIN) and intraductal papillary neoplasms of the bile duct (IPNB). 
Intracholecystic papillary neoplasms (ICPN) are counterparts of IPNB in the gall-
bladder (Table 4.1).

Morphologically, the main growth patterns of BD-CA have been categorized as 
mass forming (MF), periductal/peripheral infiltrating (PI), and intraluminal growth 
(IG). The SD-iCCAs are exclusively mass forming, in contrast to the rest of BD-CAs 
which may display one or more than one growth pattern (Table  4.2). Perihilar 
tumors may also show a periductal nodular growth.

Histologically, invasive carcinomas, IPNB, and ICPN are often categorized 
based on the overall architecture of the mass and the predominant histological com-
position. The main fibrovascular/stromal architectures on which the epithelial cells 
are arranged include papillary, villous, tubular, and cystic. The epithelial composi-
tion is often a mixture of biliary and gastrointestinal differentiation with scattered 
neuroendocrine cells. The most commonly encountered epithelial phenotypes are 
biliary, gastric foveolar, intestinal, gastric pyloric gland, and oncocytic. The final 
histological classification is based on the predominant population (Fig. 4.1). In the 
histological landscape of BD-CA, a range of benign hyperplastic, metaplastic, reac-
tive, and regenerative epithelial changes are frequently present in the background, 
which adds to the complexity of histological and cytological diagnosis (Fig. 4.2).

In this chapter, we follow the most recent WHO classification of tumors, the 
AJCC staging manual, and the College of American Pathologists protocols for 
examination of tumors (Table 4.3). The histological grading of BD-CA is adopted 
from other gastrointestinal carcinomas and determined by the percentage of gland 
formation, with >95% as grade 1 or well differentiated, 50–95% as grade 2 or mod-
erately differentiated, and <50% as grade 3 or poorly differentiated. Conventionally, 
the highest degree of atypia determines the final histological grade of a precursor 
lesion. The diagnosis of “undifferentiated carcinoma” is applied to those tumors 
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without any apparent glandular, squamous, or neuroendocrine differentiation by 
morphology or immunohistochemistry (IHC). The clinical and prognostic signifi-
cance of the adjacent vital structures and the predominant growth patterns have also 
been applied to the pathological staging of these tumors (Table 4.4).

A unified classification based on the biology of these tumors is critical in the era 
of targeted therapies and individualized medicine. Prolonged inflammation appears 
to have a central role in the pathogenesis of BD-CA, although the specific etiology 
or risk factors remain unclear in many cases. The overall pathogenic events involve 

Table 4.1 General categories 
of biliary epithelial neoplasms

Benign

  Bile duct adenoma
  Adenofibroma
Noninvasive/preinvasive precursors

  Microscopic

   Biliary intraepithelial neoplasia 
(BilIN)

    Low grade
    High grade
  Macroscopic polypoid

   Intraductal papillary neoplasm of 
the bile duct (IPNB)

    Low grade
    High grade
   Intracholecystic papillary 

neoplasm (ICPN)
    Low grade
    High grade
  Macroscopic cystic

   Mucinous cystic neoplasm (MCN)
    Low grade
    High grade
Invasive carcinoma

  Intrahepatic cholangiocarcinoma 
(iCCA)

   Small duct iCCA (SD-iCCA)
   Large duct iCCA (LD-iCCA)
  Extrahepatic bile duct carcinoma 

(EHBD-CA)
   Perihilar (P-EHBD-CA)
   Distal (D-EHBD-CA)
   Gallbladder (GB-AC)
  Combined hepatocellular- 

cholangiocarcinoma (c-HCC-CCA)
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activation of inflammatory and/or proliferative pathways with progressive accumu-
lation of oncogenic alterations [1–4]. BD-CAs in the large bile ducts and gallblad-
der generally seem to involve inflammatory pathways resulting in escalating 
malignant transformation of the epithelial cells lining the bile duct lumen or peri-
ductal glands. Conversely, SD-iCCA appears to arise from hepatic progenitor cells 
in the canals of Hering or bile ductules by accumulation of proliferative genetic and 
epigenetic alterations [5–7].

The development of high-throughput molecular technologies has led to an 
increased understanding of the highly heterogeneous nature of genomic and epi-
genetic alterations in BD-CAs. This heterogeneity may be due to the different 
background in which these tumors arise and, also, partially attribute to the incon-
sistency in classifications, terminologies, and study populations. The increase in 
knowledge about the biology of biliary carcinomas in the past decade has contrib-
uted to the evolution towards molecular categorization for potential targeted thera-
pies, which hold promise, as discussed elsewhere in this book (Chap. 21, Munugala 
N et al.).

Table 4.2 Classification of BD-CA based on location, growth pattern, and precursor

Anatomical location Cell of origin Growth pattern
Precursor 
lesion

iCCA SD Peripherally 
located

Canals of 
Hering

MF Not 
well-known

LD Centrally located BE, PDG PI, MF, IG, nodular, 
cystic

BilIN, IPNB

EHBD P Hepatic ducts BE, PDG PI, MF, IG, nodular, 
cystic

BilIN, IPNB

D Common bile duct BE, PDG PI, MF, IG, cystic BilIN, IPNB
Gallbladder Gallbladder BE, PDG PI, MF, IG, cystic BilIN, ICPN

SD-iCCA presents as a MF tumor infiltrating liver parenchyma. MF pattern can be seen in con-
junction with other patterns anywhere from intrahepatic large ducts to extrahepatic biliary system. 
In PI pattern, tumor infiltrates around large bile ducts with direct invasion of the adjacent struc-
tures. A longitudinal PI extension along EHBDs can present as a biliary stricture. IG may be seen 
in the large intrahepatic bile ducts or extrahepatic biliary system. Tumors with IG pattern exhibit 
an intraluminal mass or polypoid projections
BilIN is a grossly invisible noninvasive epithelial lesion. IPNB is a noninvasive mass-forming 
polypoid intraluminal projection. ICPN is a >1  cm noninvasive sessile or pedunculated polyp 
within the gallbladder lumen. The concept and nomenclature of biliary precursors have been 
adopted from their pancreatic counterparts. BE from canals of Hering to distal EHBD varies in 
shape and function. Epithelial cells lining the small intrahepatic bile ducts are cuboidal with small 
amounts of cytoplasm. Cytoplasmic contents gradually increase towards large ducts and EHBDs. 
PDGs are the plausible origin of cystic tumors
iCCA intrahepatic cholangiocarcinoma, EHBD extrahepatic bile duct, SD small duct, LD large 
duct, P periductal/peripheral, D distal, BE biliary epithelium, PDG periductal glands, MF 
mass forming, PI periductal infiltration, IG intraductal growth, BilIN biliary intraepithelial 
neoplasia, IPNB intraductal papillary neoplasm of the bile duct, ICPN intracholecystic papil-
lary neoplasm
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Fig. 4.1 Spectrum of epithelial differentiation phenotypes. (a) Biliary differentiation: cuboidal or low 
columnar cells with round to void nuclei and small amounts of cytoplasm. (b–d) Various types of gastric 
differentiation. (b) Foveolar differentiation resembles gastric foveolar epithelium characterized by 
columnar to low columnar epithelial cells with large to moderate amounts of apical cytoplasm and 
basally located ovoid or round nuclei. (c) Pyloric gland differentiation resembles gastric pyloric gland or 
duodenal Brunner glands. (d) Gastric differentiation may demonstrate a range of morphologies with 
scattered Paneth cells (d). (e) Intestinal differentiation may show a range of columnar cells with pseu-
dostratified cigar-shaped nuclei and foci of goblet cell differentiation. A spectrum of epithelial differentia-
tion with overlap phenotypes may be present. (f) Oncocytic differentiation is rare and characterized by 
large cells with abundant granular cytoplasm and centrally located round nuclei with prominent nucleoli
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b
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Fig. 4.2 Benign, reactive, and neoplastic epithelia. (a) Normal biliary epithelium. Morphology of 
the normal biliary epithelium ranges from cuboidal in proximal intrahepatic bile ducts (upper) to 
low columnar in the large intrahepatic ducts and extrahepatic biliary system (lower). (b) Reactive 
biliary epithelium. Under inflammatory influence, the biliary epithelium may undergo hyperplastic 
(upper) or regenerative (lower) changes characterized by increased or decreased cytoplasmic 
contents. Nuclear changes are minimal in benign epithelial lesions. (c) Neoplastic biliary 
epithelium. Biliary intraepithelial neoplasia (BilIN) is microscopic noninvasive malignant 
transformation of the biliary lining ranging from low-grade (upper) to high-grade BilIN (lower). 
High-grade BilIN is characterized by large nuclei displaced towards the luminal surface (loss of 
basal polarity) and conspicuous mitotic figures

Table 4.3 Histologic classification and histologic types of bile duct carcinoma

P-EHBD, D-EHBD, and gallbladder iCCA

Adenocarcinoma Adenocarcinoma

Biliary type
Intestinal type
Mucinous adenocarcinoma
Clear cell adenocarcinoma
Signet-ring cell (poorly cohesive) carcinoma
Adenosquamous carcinoma
Mucinous cystic neoplasm with an associated invasive 
carcinoma

LD-iCCA
SD-iCCA
c-HCC-CCA
IPNB with an associated invasive 
carcinoma
MCN with an associated invasive 
carcinoma

Other carcinoma types Other carcinoma types

Squamous cell carcinoma
Undifferentiated carcinoma
Large cell neuroendocrine carcinoma
Small cell neuroendocrine carcinoma
MiNEN
Carcinoma, type cannot be determined

Undifferentiated carcinoma
Large cell neuroendocrine carcinoma
Small cell neuroendocrine carcinoma
MiNEN
Carcinoma, type cannot be determined

P-EHBD perihilar (or proximal) extrahepatic bile duct, D-EHBD distal extrahepatic bile duct, 
MiNEN mixed neuroendocrine-non-neuroendocrine neoplasm, LD-iCCA large bile duct intrahe-
patic cholangiocarcinoma, SD-iCCA small duct intrahepatic cholangiocarcinoma, c-HCC-CCA 
combined hepatocellular-cholangiocarcinoma, IPNB intraductal papillary neoplasm of the bile 
duct, MCN mucinous cystic neoplasm
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 Biliary Intraepithelial Neoplasia (BilIN)

Biliary intraepithelial neoplasia (BilIN) is a microscopic, preinvasive, flat, or micro-
papillary neoplasm of the biliary epithelium [8, 9]. BilIN is a precursor lesion of car-
cinomas of the extrahepatic, perihilar, and large hilar bile ducts. The concept and 
terminology of BilIN are adopted from pancreatic intraepithelial neoplasia (PanIN) 
and represent the noninvasive/preinvasive steps of carcinogenesis in the flat epithelium.

Table 4.4 Pathologic staging of the intrahepatic and extrahepatic bile duct carcinomas

iCCA P-EHBD-CA D-EHBD-CA GB-CA

pTis Intraductal 
tumor

High-grade dysplasia High-grade 
dysplasia

High-grade dysplasia

pT1 Solitary 
without 
vascular 
invasion
pT1a: Solitary 
<5 cm
pT1 b: Solitary 
>5 cm

Confined to the bile duct 
muscle layer or fibrous 
tissue

Infiltration of the 
bile duct wall 
without vascular 
invasion
Depth of 
infiltration 
<5 mm

Confined to the muscular 
layer
pT1a: Lamina propria
pT1b: Muscularis propria

pT2 Multifocal 
and/or 
intrahepatic 
vascular 
invasion

Beyond the bile duct 
without vascular invasion
pT2a: Adipose tissue
pT2b: Hepatic 
parenchyma

Infiltration of the 
bile duct wall 
without vascular 
invasion
Depth of 
infiltration 
5–12 mm

Invasion to perimuscular 
connective tissue
pT2a: Peritoneal side 
without serosal surface 
(visceral peritoneum) 
invasion
pT2b: Hepatic side 
without extension into the 
liver

pT3 Visceral 
peritoneal 
perforation

Invasion to unilateral 
branches of the portal 
vein or hepatic artery

Infiltration of the 
bile duct wall 
without vascular 
invasion
Depth of 
infiltration 
>12 mm

Extension beyond 
gallbladder
Serosal perforation, 
hepatic parenchyma, and/
or one other adjacent 
organ/structure such as 
extrahepatic bile ducts, 
omentum, pancreas, or 
gastrointestinal tract

pT4 Extrahepatic 
invasion

Invasion to main portal 
vein or its branches 
bilaterally, or common 
hepatic artery, or 
unilateral second-order 
biliary radicals with 
contralateral portal vein 
or hepatic artery 
involvement

Vascular invasion
Celiac axis, 
superior 
mesenteric artery, 
and/or common 
hepatic artery

Extension beyond 
gallbladder
Main portal vein, hepatic 
artery, or two or more 
extrahepatic organs/
structures

iCCA intrahepatic cholangiocarcinoma, P-EHBD-CA perihilar extrahepatic bile duct carcinoma, 
D-EHBD-CA distal extrahepatic bile duct carcinoma, GB-CA gallbladder carcinoma
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 Epidemiology and Clinical Presentation of BilIN

BilIN is an asymptomatic microscopic finding in surgical specimens removed for 
other reasons; therefore, the real incidence of these lesions has not been accurately 
determined [10]. Most data are collected in association with other conditions (cho-
lelithiasis, primary sclerosing cholangitis (PSC), cirrhosis, etc.). The overall inci-
dence of and risk factors for BilIN seem to parallel invasive carcinoma and IPNB. In 
Asian countries, BilIN is more frequently intrahepatic and associated with flukes 
and hepatolithiasis, whereas in the United States and Western countries, these 
lesions are often extrahepatic and related to PSC, cholelithiasis, choledochal 
maljunction or cysts, and chemicals such as Thorotrast [11, 12]. In regions where 
cholelithiasis is endemic, low-grade and high-grade BilINs are present in 15% and 
up to 3.5% of cholecystectomy specimens, respectively, compared to 5% and 0.1% 
as reported in other countries [8]. BilIN has been reported in hilar and extrahepatic 
biliary carcinomas (58%) and carcinomas arising in the setting of PSC (83%), hepa-
titis C (HCV) cirrhosis (92%), and alcoholic cirrhosis (95%). In one study, the inci-
dence of BilIN in the setting of PSC with and without carcinoma was 83% and 37%, 
respectively [13]. Multifocal BilIN (≥10 ducts) has been reported in most biliary 
carcinomas occurring in the setting of cirrhosis (alcoholic 91%, alcoholic + HCV 
92%, HCV 61%) [13–15].

 Macroscopy and Microscopy of BilIN

On gross examination, the mucosa may appear unremarkable, thickened, or finely 
granular. The gold standard of diagnosis and classification of BilIN rests on the 
severity of architectural and cytological atypia by routine histological examina-
tion. Ancillary studies have limited utility [9, 10]. The fifth edition of the WHO 
classification reduced the traditional three-tiered BilIN system to a two-tiered sys-
tem, where the former BilIN-1 (low-grade), BilIN-2 (intermediate-grade), and 
BilIN-3 (high-grade) categories are now simply low-grade BilIN (BilIN-1 and 
BilIN-2) and high-grade BilIN (BilIN-3). Improved diagnostic reproducibility, 
understanding of BilIN biological nature (including formation, progression, and 
behavior), and clinical management were the primary drivers of this revision [8, 
13, 16, 17].

Low-grade BilIN is typically focal with a flat or low micropapillary configura-
tion. Epithelial cells are cuboidal or low columnar with hyperchromatic round to 
ovoid nuclei and high N:C ratio. Nuclei are confined to the basal or mid-portion of 
the cytoplasm. Elongated nuclei with focal nuclear pseudostratification (formerly 
BilIN-2) are currently categorized in this group (Fig. 4.2). The proliferative index, 
highlighted by Ki67, may be mildly to moderately increased.

High-grade BilIN (carcinoma in situ) may be flat or form complex micropapil-
lary architecture. In denuded mucosa, clinging high-grade epithelium may be the 
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only microscopic finding. Epithelial cells arranged in micropapillary configuration 
contain large hyperchromatic nuclei with irregular nuclear contour and nuclear 
pleomorphism (Fig. 4.2). Loss of basal nuclear orientation with displacement to the 
luminal side of the cytoplasm, conspicuous nuclear pseudostratification, and mark-
edly increased Ki67 labeling are characteristic findings. Neoplastic changes com-
monly extend to the peribiliary glands. When mitoses are present in the BilIN, it 
suggests a high-grade lesion [8–10, 14, 16, 17]; mitoses may be seen in the reactive, 
non-dysplastic epithelium, however.

Inflammatory conditions and procedural interventions (such as stent placement) 
often result in significantly atypical, yet benign, epithelial changes. The distinction 
between low-grade BilIN and non-neoplastic atypical epithelial changes (hyper-
plastic and regenerative) is a common diagnostic challenge. Benign lesions are flat, 
low papillary, or focally low micropapillary, and the epithelial lining may be mildly 
crowded compared to the normal surrounding mucosa. Benign epithelial changes 
characteristically exhibit a gradual transition to the normal epithelium, whereas the 
transition between neoplastic and normal epithelium is abrupt. The hyperplastic 
biliary epithelium is columnar with increased apical cytoplasm and basally aligned 
small round nuclei. Regenerative atypia is characterized by attenuated epithelium, 
cytoplasmic basophilia, prominent intercellular clefts, isomorphic nuclei, smooth 
nuclear contour, and evenly dispersed fine chromatin (Fig.  4.2) [9, 10, 16]. 
Occasional mitosis with normal configuration, necrosis, and inflammatory infiltra-
tion may be present in the regenerative/reactive biliary epithelium and, in the 
absence of other neoplastic features, is not adequate for the diagnosis of intraepithe-
lial neoplasia.

In cytologic preparations, high-grade BilIN and invasive carcinoma may share 
features. The most consistent findings are a “two-cell (benign and neoplastic) popu-
lation,” three-dimensional arrangement, cellular discohesion, nuclear pleomor-
phism, high N:C ratio, irregular nuclear contour, unevenly distributed nuclear 
chromatin, and single cytoplasmic mucin vacuoles. Hypercellularity, necrosis, 
inflammation, and mitosis are not definitive cytological criteria. Low-grade BilIN 
shows milder cytological changes, often difficult to distinguish from benign epithe-
lial changes [8, 16, 18].

Ancillary studies generally have limited value in the diagnosis of BilIN.  The 
Ki67 proliferative index in the malignant neoplastic biliary epithelium is signifi-
cantly higher than in non-neoplastic reactive epithelium. Overexpression of p53 is 
present in a subset of lesions and is a late event in the high-grade and invasive stage. 
Overexpression of p53 and S100P supports neoplastic change and has not been 
described in benign epithelial changes [16, 19–21]. A recent study described CD15 
expression in neoplastic biliary epithelium with a sensitivity and specificity of 80% 
and 90%, respectively [22]. In some instances, with marked inflammation or other 
significant confounding factors, a diagnosis of “indeterminate for dysplasia” has 
been proposed.
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 Pathogenesis and Molecular Pathology of BilIN

The pathogenesis of BilIN involves prolonged inflammation followed by sequential 
accumulation of genetic and epigenetic alterations and malignant transformation of 
the biliary epithelium. KRAS and p53 mutations are the most common alterations in 
the progression of normal epithelium to BilIN and invasive carcinoma. KRAS muta-
tion is an early event detected in BilIN (30%), non-neoplastic large duct epithelium 
(41%), and periductal glands (44%). As mentioned earlier, p53 overexpression is a 
late event and is identified in invasive carcinoma of extrahepatic (38%) and large 
intrahepatic (18%) ducts [16, 23–25]. Progression of low-grade BilIN to high-grade 
BilIN and biliary-type adenocarcinoma is associated with an increased expression 
of MUC1 (EMA). Except for the intestinal phenotype, BilINs are typically negative 
for MUC2 [16, 26–28].

 Intraductal Papillary Neoplasm of the Bile Duct (IPNB)

Intraductal papillary neoplasms of the bile duct (IPNBs) are grossly visible, nonin-
vasive neoplasms of the bile duct epithelium. They grossly appear as sessile or 
pedunculated intraluminal projections. The WHO classification uses the term 
“IPNB” as a substitute for other diagnostic terminologies such as biliary papilloma, 
biliary papillomatosis, biliary adenoma, noninvasive papillary neoplasm, and 
mucin-secreting biliary tumor.

 Epidemiology and Clinical Presentation of IPNB

The incidence, risk factors, and location (i.e., distribution) of IPNB as well as the 
rate of association with invasive carcinoma vary in different regions of the world 
[29, 30]. The overall peak incidence is in the 60th and 70th decades of life, with a 
slight male predominance [31]. The prevalence of IPNB in Korea, Japan, and China 
is significantly higher than in Western countries. Furthermore, in Asian countries, 
IPNB accounts for 10–30% of bile duct tumors compared to 7–11% in Western 
countries [30, 31]. In most cases, the etiology of IPNBs is unclear. Flukes and lithia-
sis are common risk factors in Asian patients, whereas in the Western hemisphere, 
most IPNBs are associated with conditions such as PSC [31–34]. The clinical and 
radiologic features of IPNB vary in different patient populations [29, 30]. In the 
United States, most IPNBs are in the perihilar region (60%), followed by distal 
common bile duct (30%) and liver (10%). Invasive carcinoma is more frequently 

4 Pathologic Basis and Classification of Biliary Epithelial Neoplasms



80

present in IPNBs arising in distal bile ducts (93%), compared to the hilar (65%), and 
the intrahepatic (25%) lesions [30]. Abdominal pain, jaundice, weight loss, cholan-
gitis, and fever are the most common symptoms. Serum bilirubin levels and liver 
function tests are abnormal in most patients [31, 35]. Radiographic studies reveal 
biliary dilatation (>80%), intraluminal mass, and biliary stones.

IPNBs are heterogeneous neoplasms with different survival rates. Theoretically, 
complete excision of IPNBs without an invasive component is curative. However, 
recurrence (local or remote) 5 years after surgery with invasive carcinoma has been 
reported in these patients, albeit rarely [30]. Invasive carcinoma is present in 
40–80% of IPNBs at the time of diagnosis, which adversely affects disease-free 
survival; however, the overall prognosis is better than ordinary biliary adenocarci-
noma [33, 34, 36–38]. In IPNBs with invasive carcinoma, depth of invasion more 
than 0.5 cm, an invasive component of more than 10%, poorly differentiated histol-
ogy, expression of MUC1, and lymphovascular invasion are all significant prognos-
tic factors [30, 33, 39]. Radiologic appearance of IPNB as a predictor of survival 
has been investigated [36]. Based on radiologic patterns, IPNB can be categorized 
into five classes: class 1, “classic intrahepatic” IPNB with intraductal mass and 
unilateral intrahepatic duct dilatation; class 2, “classic extrahepatic” IPNB with 
intraluminal mass and bilateral intrahepatic dilatation; class 3, “cystic variant” 
characterized by a cystic lesion with visible internal papillary projections and com-
munication with the bile duct; class 4, “micropapillary” lesion without discernible 
tumor but with disproportionate bile duct dilatation; and class 5, “macroinvasive 
tumor” with grossly visible infiltrative tumor arising from IPNB. In a large series of 
Asian patients, class 1 was the most frequent (46%), followed by classes 5, 4, 2, and 
3. All patients with class 3 and class 4 patterns survived through the 3 years postop-
erative follow-up, while the median survival time was significantly shorter in class 
1 (63 months), class 2 (63 months), and class 5 (19 months) [36]. It is plausible that 
class 4 pattern represents a cystic variant of the IPNB and is regarded as develop-
ment of IPNB within the periductal gland. Many authorities consider the cystic 
IPNB as the biliary counterparts of the branching duct-type IPMN of the pancreas, 
which can explain the comparable behavior of these tumors and long-term survival 
in these patients [39, 40].

 Macroscopy and Microscopy of IPNB

Regardless of location, IPNBs present as sessile or pedunculated polyps with papil-
lary, tubulopapillary, or villous architecture. The majority of IPNBs are papillary 
(80%), followed by villous and tubulopapillary. “Biliary papillomatosis” is a rare 
condition characterized by several papillary lesions along the bile ducts [41]. The 
location and quantity of mucin secretion play essential roles in the macroscopic and 
radiologic appearance of IPNBs. Non-mucinous extrahepatic IPNBs cause dilata-
tion of the proximal bile duct lumen; in contrast, IPNBs with mucin hypersecretion 
result in a fusiform pattern due to distention of the proximal and distal ductal 
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segments. Intrahepatic IPNBs more often appear as a unilocular or multilocular cys-
tic mass, which can be confused with mucinous cystic neoplasm (MCN) of the bile 
duct [8]. Similarly, IPNBs arising from peribiliary glands may form cystic or sac-
cular lesions around large bile ducts [32, 39]. Periductal nodularity may represent 
intramural involvement. Invasive carcinoma associated with IPNBs is difficult to 
appreciate on gross examination. Thus, complete sampling and careful microscopic 
examination of the entire exophytic lesion and the grossly unremarkable adjacent 
wall are required.

IPNBs usually display a mixture of biliary (pancreaticobiliary), intestinal, 
gastric foveolar, gastric pyloric gland-like, and oncocytic phenotypes. 
Conventionally, the predominant proportion determines the histological type 
(Fig. 4.3). The most common epithelial type in the United States is the biliary 
type (70%), followed by gastric foveolar, oncocytic, and intestinal types [30]. In 
Asian countries, the intestinal type is more common. It has been suggested that 
predominant or substantial gastric- type differentiation is a prognostically favor-
able histological finding [30].

Based on their similarities to pancreatic intraductal papillary mucinous neoplasm 
(IPMN), Nakanuma et al. proposed to classify IPNBs into type 1 IPNB, with fea-
tures similar to IPMN, and type 2 IPNB, incompatible with IPMN [42]. According 
to their study, type 1 IPNBs are likely to occur in the large intrahepatic (hilar) or 
proximal extrahepatic (perihilar) hepatic ducts. Histologically, type 1 IPNBs dis-
play a regular and homogenous architecture with mild cytological atypia and rare 
complex cellular configurations (i.e., solid, cribriform, or crowded). They are typi-
cally mucin-producing and associated with stromal invasion in less than 50% of 

Fig. 4.3 Intraductal papillary neoplasm of the common bile duct showing papillary proliferation 
of dysplastic biliary-type epithelial cells (intraductal biopsy specimen). The patient presented with 
biliary obstruction. Endoscopic retrograde cholangiopancreatography showed a papillary lesion in 
the common bile duct that partially obstructed the duct lumen. Endoscopic ultrasound showed no 
evidence of infiltrative growth in the duct wall or surrounding tissue
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cases. Type 2 IPNBs are more diverse and may arise in any location, from the large 
proximal to distal extrahepatic bile ducts. Complex configurations, high-grade dys-
plasia, and stromal invasion are common in this group. Papillary and villous archi-
tecture, crowded tubules, cribriform and solid epithelial configurations, and overt 
malignant cytologic features are typically present. More than 80% of type 2 IPNBs 
are associated with stromal invasion. In addition to the location and architecture, 
Nakanuma et al. also categorized IPNBs based on their lineage of epithelial differ-
entiation into intestinal (47.8%), gastric (23.2%), biliary (15.9%), and onco-
cytic (1.6%).

Intestinal IPNBs with papillary or tubulopapillary architectures are more com-
mon in type 2 IPNBs than type 1. Histologically, the intestinal-type epithelium is 
columnar with pseudostratified cigar-shaped nuclei, variable amounts of cyto-
plasmic mucin contents, and scattered goblet cells. Intrahepatic intestinal-type 
IPNBs predominantly show villous architecture, resembling colorectal villous 
adenomas and intestinal-type IPMNs of the pancreas, and harbor GNAS and 
KRAS mutations comparable to those seen in intestinal-type IPMNs; by contrast, 
extrahepatic intestinal- type papillary and tubulopapillary IPNBs show genetic 
mutations in the SMAD4, PIK3CA, APC, and CTNNB1 genes, like colorectal neo-
plasms [42]. In gastric-type IPNBs, the epithelial lining is predominantly foveo-
lar with abundant pale apical mucinous cytoplasm and intersperses with scattered 
goblet- and pyloric gland-type epithelial cells. Biliary-type IPNBs display thin, 
branching, fibrovascular cores lined by a single layer of non-mucinous, small 
cuboidal, or low-columnar epithelial cells with scant eosinophilic or amphophilic 
cytoplasm. Oncocytic-type IPNBs exhibit a conspicuous complex architecture by 
arborizing fibrovascular core lined by one to several layers of oncocytic cells with 
abundant granular cytoplasm, centrally located large nuclei, and prominent 
nucleoli. A range of low-grade to high- grade dysplasia can be present in all histo-
logical types of IPNB. High-grade dysplasia is characterized by complex histo-
logical configurations (solid and cribriform) and marked cytological atypia, 
including anisocytosis, high N:C ratio, pleomorphic nuclei, frequent mitosis, and 
tumor cell necrosis.

Intraductal Tubulopapillary Neoplasm of the Bile Duct (ITPNB) (also known as 
intraductal tubular neoplasm of the bile duct) is a rare non-mucin-producing neo-
plasm comprised of small, back-to-back tubules with minimal intervening stroma, 
minor abortive papillae, and foci of solid growth pattern (Fig.  4.4). The tumor 
presents as an expansile “cast-like” mass in the intrahepatic (70%), perihilar (20%), 
or extrahepatic (10%) bile ducts. Neoplastic epithelial cells are cuboidal or low 
columnar with variable cytoplasmic contents. Epithelial cells with intracytoplas-
mic mucin without any intraluminal mucin secretion are commonly present. 
Scattered oncocytes, clear cells, thyroid follicle-like cells, parathyroid-like cells, 
microcalcifications and psammoma bodies (15%), and Mallory-like hyaline glob-
ules (5%) have been described in these lesions. Diffuse high-grade dysplasia, tumor 
necrosis (85%), and absence of intraluminal mucin are characteristic findings. 
Invasive carcinoma is present in 80% of cases and morphologically is indistin-
guishable from ordinary biliary adenocarcinoma. Despite the high incidence of 
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invasive carcinoma, the overall prognosis of ITPNB is favorable with a 1-, 3-, and 
5-year survival rate of 100%, 90%, and 90%, respectively [43]. The IHC profile 
and genetic alteration of ITPNB and IPNB are different. Approximately 80% of 
IPNBs are positive for MUC5AC, but ITPNBs are negative for MUC5AC and posi-
tive for MUC1 (~80%) and MUC6 (~30%). Mutation in p16 is the most common 
genetic alteration found in ITPNBs. Other common genetic alterations seen in 
IPNBs are not found in ITPNBs.

 Pathogenesis and Molecular Pathology of IPNB

Hepatolithiasis and Clonorchis infection (see Chap. 11, Waraasawapati et al.) are 
the major known risk factors of IPNB in Asia, but there is no such association con-
sistently found in Western countries [29, 30, 44]. Evidence supports the presence of 
progenitor cells in the biliary epithelium and periductal glands which may play a 
fundamental role [39, 45]. Like other precursors, it is plausible that under the influ-
ence of a given etiopathogenic insult, the progenitor cells may undergo a progres-
sive accumulation of oncogenic mutations and eventually evolve to IPNB. In the 
setting of hepatolithiasis, the development of IPNB and transformation to high-
grade dysplasia (carcinoma in situ) and invasive carcinoma may take 6–8 and 
1–2 years, respectively [46].

A common mechanism linking carcinogenesis has been described for several 
molecular pathways [38, 47]. The stepwise progression of molecular alterations 
includes mutated KRAS, loss of p16, and TP53 overexpression in low-grade lesions, 
whereas SMAD4 loss is seen in later phases of tumor development [38]. 
Overexpression of EZH2 is associated with malignant behavior in IPNB, with 
upregulated MUC1 and downregulated MUC6 expression [48]. Studies that have 

Fig. 4.4 Intraductal 
tubulopapillary neoplasm 
of the common bile duct 
showing polypoid 
proliferation of dysplastic 
biliary-type epithelial cells 
that form small back-to- 
back tubules
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been conducted on IPNB have shown some conflicting results, such as in the fre-
quency of GNAS mutations [47]. GNAS mutations have been associated with mucin 
hypersecretion and villous architecture, although some larger studies have shown no 
association between mucin secretion and GNAS mutations [48, 49]. A case series of 
tubulopapillary neoplasms were found to have CDKN2A/p16 mutations and very 
low rates or absent mutations in KRAS, PIK3CA, or SMAD4/DPC loss [43]. The 
development of carcinoma in cases with pancreaticobiliary maljunction occurs in 
association with intracholecystic tubulopapillary neoplasm. Pancreatic maljunction 
involves a supra-Oddi union of the pancreatic duct and common bile duct, dubbed 
“reflux-associated cholecystopathy” and causes a chemical inflammation- dysplasia- 
carcinoma sequence [50].

 Intracholecystic Papillary Neoplasm (ICPN)

Intracholecystic papillary neoplasms (ICPNs) are mass-forming, noninvasive neo-
plastic epithelial proliferations in the gallbladder lumen conventionally >1  cm. 
ICPNs are often solitary, but one-third of the cases can be multifocal. In the WHO 
classification, “ICPN” substitutes other terms such as adenoma, noninvasive papil-
lary neoplasm, papillomatosis, intracystic papillary neoplasm, and noninvasive pap-
illary carcinoma [51].

 Epidemiology and Clinical Features of ICPN

ICPNs are present in 0.6% of cholecystectomy specimens and comprised approxi-
mately 5% of all gallbladder polyps. Although more than half of ICPNs are associ-
ated with invasive carcinoma, only about 6% of primary adenocarcinomas of the 
gallbladder arise in ICPNs. With an overall mean age of 61 years, ICPNs have been 
reported in the third to tenth decades of life with a female-to-male ratio of 2:1 [51, 
52]. Rare cases of ICPN in pediatric patients with metachromatic leukodystrophy 
have been reported [51, 53]. Radiologic studies fail to detect approximately 10% of 
ICPNs, and in about 50% of cases, these lesions are reported as cancer. When 
symptomatic, patients mostly present with right upper quadrant pain or biliary colic 
and less frequently with obstructive jaundice and hemobilia [51, 54–56]. At the 
time of diagnosis, approximately 20% of the patients have concurrent neoplasms, 
most commonly of gastrointestinal origin. The prognosis of ICPNs with and with-
out invasion is favorable with a 3-year survival rate of 60% and 90%, respectively. 
Deaths several years after resection of ICPNs without invasive foci have been 
reported, which may be explained by the multifocal emergence of neoplastic pre-
cursors elsewhere in the biliary tract under influence of the initial risk factors [51, 
52, 57, 58].
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 Macroscopy and Microscopy of ICPN

ICPNs are intraluminal polyps ranging in size between 1 and 8 cm, with a median 
size of 2.2 cm. They often arise in the fundus, followed by the body and neck of the 
gallbladder. ICPNs can be sessile or pedunculated or rarely present as a mass 
(Fig. 4.5a). Seventy percent of ICPNs are solitary, and approximately one-third are 
multifocal with skipped non-neoplastic epithelium within the mass or in the sur-
rounding flat mucosa. Large lesions may be necrotic or hemorrhagic, and those with 
a thin pedicle often detach from the wall and float in the gallbladder lumen and may 
be mistaken as sludge [51, 57, 58].

Histologically, on low magnification, ICPNs display a papillary epithelial prolif-
eration with fibrovascular cores (Fig. 4.5b, c). Fibrosis and chronic inflammation 
can be seen in ICPN, which may be primary or secondary to an inflammatory pro-
cess in the gallbladder. The histological classification of ICPNs is based on the 
dominant (>75%) architecture and the epithelial lineage. The most common and 
largest ICPNs are papillary (43%; mean: 2.8  cm), followed by tubulopapillary 

a b

c d

Fig. 4.5 Intracholecystic papillary neoplasm. (a) Gross examination of a cholecystectomy speci-
men revealing a 4.3 cm polypoid mucosal lesion with a lobulated and villous configuration in the 
gallbladder body near the neck region. (b) Low magnification of the lesion showing pedunculated 
exophytic papillary neoplastic proliferation. (c) Sessile intracholecystic papillary neoplasm with 
invasion into the underlying wall and adipose tissue. (d) Higher magnification view showing 
biliary- type neoplastic cells that form a papillary architecture with fibrovascular cores
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(31%; mean: 2.7 cm) and tubular (26%; mean: 2.0 cm). The main histological types 
are biliary (50%), gastric pyloric gland (20%), gastric foveolar (16%), intestinal 
(8%), and oncocytic (6%). In addition to the predominant cellular population, most 
ICPNs (90%) contain secondary, unclassified, or hybrid epithelial phenotypes. 
Typically, a spectrum of neoplastic transformation ranging from normal appearing 
to highly atypical morphology can be seen in a given polyp.

High-grade dysplasia is recognized by complex architecture, such as solid sheet 
and cribriform arrangements, and cytological findings including single-cell necrosis 
or apoptotic bodies, cellular pleomorphism, markedly enlarged nuclei, anisocytosis, 
loss of basal nuclear polarity, and centrally located nuclei with clear cell features. 
Stromal invasion can be detected in overall more than half of ICPNs. The most com-
mon site of invasion is the polyp base (70%), but invasive foci in both base and 
head, head only, and invasion separate from the ICPN mass are also possible. In half 
of the cases, BilIN is present in the flat gallbladder mucosa surrounding the mass. 
An occasional extension of the epithelial proliferation into the Rokitansky-Aschoff 
sinuses is a diagnostic pitfall that may be mistaken as invasive carcinoma. 
Histological findings most frequently associated with invasive carcinoma include 
papillary architecture, extensive high-grade dysplasia, and biliary or foveolar histo-
logical type. Gastric pyloric gland-type ICPNs are mostly associated with high- 
grade dysplasia (90%) and invasive carcinoma (20%); however, they consist of 
deceptively bland-appearing large uniform epithelial cells with small amounts of 
cytoplasm, arranged in small, back-to-back glands without intervening stroma.

 Pyloric Gland Adenoma of the Gallbladder (PGA-GB)

Pyloric gland adenoma of the gallbladder (PGA-GB) is a noninvasive polyp larger 
than 1  cm in diameter comprised of epithelial cells with gastric pyloric/Brunner 
gland differentiation [8]. Some authors categorize this entity under ICPN [51]. 
Despite morphologic similarities, studies suggest that tumorigenesis of PGAs-GB is 
distinct from the gastric, duodenal, and pancreatic counterparts [59].

 Epidemiology and Clinical Presentation of PGA-GB

PGAs-GB are found in up to 0.5% of the gallbladders removed for chronic chole-
cystitis or cholelithiasis and comprise the vast majority (~80%) of gallbladder ade-
nomas. They are seen equally in both genders with a mean age of 63 years [59]. 
Gallstones are present in at least 50% of cases [60]. PGA-GB is not associated with 
multifocal biliary precursors and carries a minimal risk of carcinoma of the gall-
bladder. The incidence of high-grade dysplasia and invasive carcinoma in PGA-GB 
is 27% and 1%, respectively. Polyps with high-grade dysplasia are considered pTis 
(carcinoma in situ) and cured by cholecystectomy. Invasive carcinoma arising in 
PGA-GB is usually intestinal type with a favorable prognosis [51, 60].
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 Macroscopy and Histology of PGA-GB

PGAs-GB are sessile or pedunculated polyps and may occur in any part of the gall-
bladder. Those pedunculated polyps with thin stalk may detach from the wall and 
appear as a floating mass. A rare case of PGA-GB in the cystic duct with invasive 
carcinoma has been reported [61]. Histologically, the polyp is composed of packed 
back-to-back glands with minimal intervening stroma (Fig. 4.6). Neoplastic epithe-
lial cells have small, round, basally located nuclei and abundant foamy cytoplasmic 
mucin akin to pyloric gland and Brunner gland epithelial cells. Scattered Paneth 
cells and neuroendocrine cells are usually present. Focal cholesterolosis or squa-
mous morules can also be seen in 10–30% of the cases [59]. Complex, back-to-back 
glandular architecture is a characteristic feature of PGA-GB and not a criterion for 
high-grade dysplasia in these polyps. Pyloric metaplasia and small mucosal projec-
tions <0.5 cm with pyloric metaplasia are common in cholecystectomy specimens, 
which differ from PGA-GB. Metaplasia, like other reactive epithelial changes, is 
ill-demarcated and typically displays a gradual transition from metaplastic to nor-
mal epithelium. Mucosal projections less than 0.5 cm arising in a background of 
pyloric metaplasia are not categorized as PGA-GB. PGA-GB is strongly positive for 
MUC6 and beta-catenin and may be focally positive for MUC2, MUC5AC, and 
CDX2. An association between high nuclear beta-catenin expression, mucin-poor 
morphology, and high-grade dysplasia has been described in these lesions [60].

 Molecular Pathology of PGA-GB

The limited investigations performed on PGA-GB suggest a molecular pathogene-
sis distinct from ordinary adenocarcinoma of the gallbladder. GPA-GB is signifi-
cantly associated with mutation of CTNNB1 and nuclear expression of beta-catenin 
protein but negative for TP53, CDKN2A, and GNAs mutations and rarely positive 
for KRAS mutation [59, 61].

Fig. 4.6 Pyloric gland 
adenoma of the gallbladder 
showing packed back-to- 
back small glands 
resembling mucous glands 
of the gastric pylorus or 
Brunner glands of the 
duodenum. This example 
was a 1 cm polyp found in 
a cholecystectomy 
specimen
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 Gallbladder Carcinoma (GB-CA)

Gallbladder carcinoma (GB-CA) represents 80–95% of biliary tract carcinomas 
worldwide. According to global statistics in 2018, gallbladder carcinoma is the 
22nd most frequent cancer and the 17th cause of death from cancer worldwide [62]. 
The highest prevalence of GB-CA is seen in the South American Indians of Chile 
[63]. In the United States, American Indians and Alaska Natives have the highest 
GB-CA incidence and death rates. Overall, GB-CA is approximately twice more 
common in women. Nearly half of GB-CAs are detected incidentally at cholecys-
tectomy, and approximately 35% are diagnosed at advanced stages with lymph node 
and/or distant metastasis, with a 5-year survival of only 5% [64]. The most common 
risk factors for GB-CA include cholelithiasis, prolonged inflammatory conditions, 
family history of gallstones, older age, poor diet, obesity, and certain ethnicities 
(e.g., American Indian, Alaska Native), or abnormal anatomy of the biliary tract 
causing an abnormal flow of bile (e.g., PSC) or reflux of the pancreatic juice into the 
biliary tract [65–68]. Gallbladder adenocarcinoma (GB-AC) comprises approxi-
mately 95% of all GB-CAs and most commonly arise in the fundus (70%), followed 
by the body and neck. In a large series of GB-ACs, more than half of the tumors 
were not apparent by gross examination. Clinically unexpected tumors are often in 
the neck. Even with careful inspection, more than 30% of pT2 and 70% of pT1 
cancers may be missed on gross examination (Fig. 4.7). Diagnosis of occult early 
GB-CAs (intramucosal or intramuscular) in clinically and grossly unexpected cases 
is important, as patients are significantly younger and may develop extrahepatic 
biliary carcinoma several years after cholecystectomy, with a 5- and 10-year sur-
vival rates of approximately 90%.

Cholecystectomy specimens from patients with risk factors for biliary tract carci-
noma, and those with any suspicious finding on gross examination (e.g., hyalinizing 
cholecystitis), must be thoroughly examined and sampled with a high index of suspi-
cion [69–71]. Porcelain gallbladder (diffuse calcification) is associated with an 
increased risk of GB-CA with a clinical course at least as aggressive as regular 
GB-CA. Interestingly, partial mucosal calcifications (also known as incomplete por-
celain gallbladder or hyalinizing cholecystitis) are more likely to be associated with 
invasive carcinoma than diffuse calcification [69]. Hyalinizing cholecystitis is known 
for a deceptively smooth lumen with occult microscopic carcinoma concealed in the 
fibrotic wall, warranting microscopic examination of the entire specimen (Fig. 4.8).

 GB-AC: Biliary Type

GB-AC of biliary (pancreaticobiliary) type is the most common type, comprising 
more than 70% of all GB-CAs. “Adenocarcinoma, NOS,” and “gallbladder adeno-
carcinoma” have also been used to describe these tumors. Biological, histological, 
and IHC features of this type are analogous to the adenocarcinoma of the pancreatic 
duct [72]. Macroscopically, tumors are typically fibrotic, firm, and infiltrative, 
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based on precursor lesions, and may be flat or exophytic. Advanced tumors emerg-
ing from BilIN appear as a white, firm, infiltrative mass with or without intralumi-
nal projection. Early stage of flat tumors arising from BilIN may be inapparent on 
gross examination of the gallbladder lumen and cross sections of the wall. These 
tumors may appear as white flat or finely granular surface with ill-defined firm 
white cut surfaces which is often difficult to distinguish from the surrounding 

Mucosa

pT1b

pT1a

Muscular Layer

Adventitia pT2

Fig. 4.7 Microscopic 
anatomy of the gallbladder 
and its importance in 
pathologic staging. Unlike 
the gastrointestinal tract, 
the gallbladder wall lacks a 
distinct muscularis 
mucosa, submucosal soft 
tissue, and muscularis 
propria. Muscular tissue in 
the gallbladder wall 
consists of a single layer of 
intersecting circular, 
longitudinal, and oblique 
smooth muscle bundles 
close to the mucosal 
lamina propria and surface 
epithelium. The muscular 
layer separates the mucosa 
from adventitial connective 
tissue. p: pathologic; T: 
tumor staging. pT: 
pathologic tumor staging
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chronic cholecystitis. Invasive carcinomas arising in ICPNs in advanced stages 
show an intraluminal component and invasion of the underlying wall in an infiltrat-
ing pattern. Histologically, biliary-type adenocarcinoma shows irregular glands and 
ducts of variable size and shape, infiltrating the gallbladder wall (Fig. 4.9). Epithelial 
cells may vary from cuboidal to columnar with variable amounts of cytoplasmic 
contents. Intratumoral variations in the configuration and morphology of the epithe-
lial cells are typical. Epithelial cells in single profiles, sheets, nested patterns or in 
single cells imply poor differentiation.

 GB-AC: Papillary and Micropapillary Types

The “papillary” and “micropapillary” types are two deceptively similar terms that 
define significantly distinct entities with striking differences in morphology, biology, 
and behavior. Histologically, papillary and villous lesions are recognized by their 
fibrovascular cores, a structure not present in micropapillary architecture. In papillary 
and villous architectures, epithelial cells are attached to fibrovascular projections 

Fig. 4.8 Well- 
differentiated 
adenocarcinoma arising in 
the setting of hyalinizing 
cholecystitis. The 
gallbladder wall is 
diffusely fibrotic, and 
neoplastic glands are 
deceptively bland

ba

Fig. 4.9 (a) Intraepithelial neoplasia involving gallbladder mucosa and invasion of the underlying 
wall (b) Gallbladder wall infiltrated by adenocarcinoma
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(Fig. 4.10). Instead, in “micropapillary” tumors, one can imagine that the epithelial 
cells are aggregates or adhered along an arbitrary line without any fibrous or vascular 
component or a basement membrane [71]. Microscopically, micropapillary tumors 
infiltrating a fibrous stroma exhibit small clusters of cohesive tumor cells floating in 
lacunar spaces scattered in the fibrous stroma. A particular functional orientation of 
the epithelial cells is seen in the micropapillary tumors described as “reversed polar-
ity” or “inside-out” growth pattern. It means that the cytoplasmic membrane facing 
the stroma (lacuna wall) displays secretory properties analogous to the apical surface 
of the normal glandular epithelial cells. This feature can be highlighted by strong 
MUC1 immunostain of the stroma-facing part of the cell membrane. It has been sug-
gested that this feature, coupled with an absence of the gel-forming mucin MUC2, 
may be one of the key reasons for the distinct morphology of this tumor type by sepa-
rating the tumor cells from stroma (lacuna formation) and facilitating their spread 
and early metastasis [73]. In approximately 20% of GB-ACs, a micropapillary pat-
tern is noted and may comprise up to 10% of the tumor mass. The presence of the 
micropapillary pattern in GB-ACs is an adverse histological prognostic findings and 
an independent predictor of nodal metastasis [74, 75].

Papillary architecture is common in ICPNs and GB-ACs. Papillary GB-AC aris-
ing in papillary ICPNs is a slow-growing tumor with a favorable prognosis com-
pared to the ordinary GB-AC. The true incidence of pure papillary GB-AC is unclear 
because in most data papillary ICPNs, carcinoma arising in papillary ICPNs, and 
pure papillary GB-AC have been lumped together. Unlike ordinary GB-CAs, liver 
function tests and serum tumor markers are often unremarkable in papillary 
GB-AC. Macroscopic examination of the gallbladder shows sessile polypoid nod-
ules or cauliflower-like projections into the gallbladder lumen. Histologically, the 
intraluminal tumor and invasive glands exhibit papillary fibrovascular cores lined by 
malignant epithelial cells [76, 77]. GB-AC with an invasive papillary pattern is con-
sidered a well-differentiated histological grade. The percentage of the papillary or 
micropapillary patterns in an ordinary GB-AC is mentioned in the pathology report; 
however, the final histological classification is based on the predominant histologi-
cal type.

Fig. 4.10 Papillary 
adenocarcinoma of the 
gallbladder showing a 
papillary or villous 
configuration. A 
component of conventional 
invasive adenocarcinoma 
with a tubular morphology 
is also present (lower left)
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 GB-AC: Intestinal Type

Pure intestinal-type GB-AC is rare and usually associated with cholelithiasis and 
intestinal metaplasia in the uninvolved benign mucosa. Histologically, tumor cells 
resemble intestinal adenocarcinoma with irregular tubules and glands lined by tall 
columnar cells containing pseudostratified cigar-shaped nuclei, mixed scattered 
goblet cells, absorptive cells, and Paneth cells [76, 78]. Essentially it is much more 
common to see intestinal-type differentiation as a minor component in an ordinary 
GB-AC, than a predominantly intestinal-type GB-AC. Moreover, authorities believe 
that certain histological findings such as central necrosis, goblet cell-like intestinal 
mucin, and cellular basophilia are unusual in intestinal-type GB-AC and warrant 
exclusion of extrabiliary origin.

 Mucinous Adenocarcinoma of the Gallbladder

Mucinous carcinoma of the gallbladder (MC-GB) conventionally refers to the 
tumors with more than 50% extracellular mucin. Only 2% of GB-CAs fit for this 
diagnosis, although approximately 10% of GB-ACs contain variable amounts of 
mucin. Cholecystitis is the most common clinical presentation of the MC-GB. These 
tumors are diagnosed at a more advanced stage (87% pT3) with a significantly 
worse outcome compared to the ordinary GB-CA. On gross examination, MC-GB 
displays wall thickening and gelatinous gray-white cut surfaces. Microscopically, 
the tumor is composed of abundant extracellular mucin pools with floating clusters 
of tumor cells or with tumor cells lining the borders of mucin pools (Fig. 4.11). 
Unlike its gastrointestinal counterpart, MC-GB is microsatellite stable. Tumor cells 
are positive for MUC2 and CK7 and negative for CK20, CDX2, and MUC6, which 
distinguishes this tumor from ordinary GB-AC and other gastrointestinal mucinous 

Fig. 4.11 Mucinous 
adenocarcinoma of the 
gallbladder showing the 
presence of abundant 
mucin. Tumor cells line the 
borders of mucin pools or 
float in mucin pools
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tumors [78]. Colloid carcinoma of the gallbladder is exceedingly rare and is recog-
nized by more than 90% intramural mucin with rare scattered tumor cells confined 
to the mucin pools.

 Signet-Ring Cell (Poorly Cohesive) Carcinoma 
of the Gallbladder

The pure form of signet-ring cell GB-AC is a rare and aggressive tumor with a 
female-to-male ratio of 4:1. It is more common to see foci of signet-ring histol-
ogy in other types as a minor component. Pure forms are often found in the 
gallbladders removed for cholelithiasis. In most reported cases, the serosal sur-
face is unremarkable on gross examination. The gallbladder lumen often con-
tains gallstone and/or mucin. On gross examination, the mucosa is ulcerated in 
some cases, and in others, it may appear velvety without a discernible lesion. Cut 
surfaces of the wall are usually thickened, but the fibrotic consistency seen in 
other GB-CAs may not be present, as tumor cells only minimally provoke des-
moplastic reaction [79–82]. Characteristic microscopic feature is numerous 
poorly cohesive small epithelial cells in single or arranged in short single pro-
files or small nests, infiltrating the microscopic tissue planes (Fig.  4.12). 
Desmoplasia response, and therefore tumor fibrosis, is typically minimal to 
none. Signet-ring cells are small epithelial cells containing single cytoplasmic 
mucin vacuole displacing nucleus to the side. Nevertheless, in many instances, 
the tumor cells are mucin-poor with scant cytoplasm and no cytoplasmic vacu-
ole. Therefore, in the WHO classification, the former “signet ring” has been 
substituted by “poorly cohesive” nomenclature to incorporate both cytomorphol-
ogies in this category [8].

Fig. 4.12 Signet-ring cell 
carcinoma of the 
gallbladder showing small 
nests of poorly cohesive 
tumor cells or single 
individual tumor cells 
infiltrating the 
gallbladder wall
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 Clear Cell Adenocarcinoma of the Gallbladder

Primary clear cell (hypernephroid) adenocarcinoma of the gallbladder (CC-GB) is 
exceedingly rare and named after the histological resemblance to the clear cell renal 
cell carcinoma (Fig. 4.13). When encountered in the biliary tract, metastasis from 
the kidney must be excluded [49, 83]. The reported cases of primary CC-GB are 
more common than clear cell carcinoma (CC) of the extrahepatic bile ducts (70% vs 
30%). Patients with CC-GB are in their 30s to 40s which is 20 years younger than 
those with extrahepatic CC counterparts. In all cases, foci of adenocarcinoma (90%) 
or squamous cell carcinoma (10%) are identified to support the primary nature of 
these tumors versus renal primary.

Microscopically, clear cells are in alveolar arrangements separated by delicate 
vessels or form large sheets. Cellular configuration in small cords, trabeculae, nests, 
and papillary configurations has also been described [84]. Tumor cells exhibit well- 
defined cytoplasmic border and clear cytoplasmic contents positive for diastase- 
labile PAS-positive granules and negative for mucin [85]. They are also positive for 
MUC1, AE1/AE3, CK7, CK8, and p53 and negative for CK19 and CK20. Focal 
hepatoid differentiation, positive for AFP and canalicular CEA, has been described 
in some cases [85, 86].

 Squamous and Adenosquamous Carcinoma of the Gallbladder

Pure squamous cell carcinoma (SCC) is exclusively comprised of cells with squa-
mous differentiation without any recognizable adenocarcinomatous component 
(Fig. 4.14). BilIN may be present in the surrounding mucosa and by itself does 
not exclude the diagnosis. Most SCC patients are in their 60s with cholelithiasis 

Fig. 4.13 Clear cell 
adenocarcinoma of the 
gallbladder showing sheets 
of neoplastic cells with 
abundant clear cytoplasm 
and delicate fibrovascular 
septa, resembling clear cell 
renal cell carcinoma. Focal 
conventional gland- 
forming adenocarcinoma is 
also present (lower right)
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but without other known risk factors for biliary carcinomas. Tumors are mostly in 
the fundus (40%) and may occupy more than two-thirds of the gallbladder (30%). 
The most common clinical presentation is abdominal pain, and the overall clini-
cal presentation is mainly like ordinary GB-AC [87, 88]. Adenosquamous carci-
noma (ASC) is arbitrarily categorized as a tumor with 25–99% squamous 
differentiation [87]. Focal squamous differentiation is found in 5% of the ordi-
nary GB-AC. This finding is of uncertain biological significance and generally is 
not mentioned in pathology reports [2]. Primary SCC and ASC comprise <1% 
and up to 4% of the gallbladder carcinomas, respectively. SCC and ASC are four 
times more common in women than men and are associated with a worse progno-
sis than ordinary GB-AC. Approximately 85% of the patients are not found to 
have clinical suspicion for malignancy prior to surgery. In approximately 60% of 
cases, tumors may not be noticeable by gross examination, where tumor appears 
as a plaque-like mural thickening and an induration indistinguishable from cho-
lecystitis. When macroscopically visible, tumors appear as ulcerated hemorrhagic 
flat lesions or exophytic masses infiltrating underlying tissue with gray-white cut 
surfaces. Microscopically, a range of well to poor differentiation can be seen. 
Keratinization is more common in SCC than ASC (88% vs 65%). In ASC, distinct 
IHC phenotypes of squamous differentiation (e.g., p40, p63, CK5/6) and glandu-
lar differentiation (e.g., BerEP4, CK7, CEA) are expressed.

 Hepatoid Adenocarcinoma of the Gallbladder

Hepatoid adenocarcinoma is characterized by prominent hepatocellular differentia-
tion. Foci of adenocarcinoma mixed with hepatoid differentiation are almost always 
present and support gallbladder origin. Hepatoid adenocarcinomas described in dif-
ferent organs generally have phenotypes and behaviors analogous to hepatocellular 

Fig. 4.14 Squamous cell 
carcinoma of the 
gallbladder showing nests 
of neoplastic cells with 
keratinizing cytoplasm. 
Residual gallbladder 
mucosa is present (upper 
left)
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carcinoma (HCC) of the liver [89, 90]. Gross appearance of the tumor is solid white 
to yellow mass infiltrating the adjacent structures. The diagnosis of hepatoid adeno-
carcinoma is essentially based on the histological findings that resemble those of 
HCC in the absence of a liver lesion (Fig. 4.15). On microscopic examination, hepa-
toid cells are large polygonal cells that are arranged in trabeculae, solid sheets, or 
nests. Akin to hepatocytes, they contain abundant eosinophilic cytoplasm, intracel-
lular bile pigments, and large centrally located round nuclei with prominent nucle-
oli. The hepatoid component of the tumor is positive for Hep Par-1 and arginase-1 
and demonstrates histological and IHC phenotypes of HCC. In challenging cases, 
the presence of CK7-positive epithelial cells supports adenocarcinoma, while CD10 
and polyclonal CEA highlight canalicular structures in hepatoid component. Serum 
AFP may be elevated in tumors from both origins [91].

 Sarcomatoid Carcinoma of the Gallbladder

Sarcomatoid carcinoma of the gallbladder (SC-GB) is defined as a carcinoma with 
foci of sarcomatous differentiation. This tumor has also been described by other 
terms such as “spindle cell carcinoma,” “malignant mixed tumor,” or “carcinosar-
coma.” However, “sarcomatoid carcinoma” seems to be more applicable, as both cell 
types are thought to be from a common epithelial origin and sarcomatous cells exhibit 
a mixed epithelial and mesenchymal phenotype. SC-GB is an exceedingly rare tumor 
of elderly women in the seventh decade of life and associated with a grave outcome. 
An abdominal mass, pain, and jaundice are the most common clinical presentations. 
Most gallbladders are distended by an intraluminal mass infiltrating the adjacent 
structures. On gross examination, unlike ordinary GB-AC, these tumors are soft and 

Fig. 4.15 Hepatoid 
adenocarcinoma of the 
gallbladder showing sheets 
of polygonal tumor cells 
with abundant eosinophilic 
cytoplasm, 
morphologically 
resembling hepatocellular 
carcinoma. A liver primary 
must be ruled out in such 
cases before the diagnosis 
can be made
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fleshy without desmoplastic fibrosis [92]. Histologically, SC-GB is recognized by 
sarcomatous tumor cells mixed with adenocarcinomatous component or composed 
predominantly or entirely of sarcomatous component (Fig.  4.16). The transition 
between the two components may be subtle or distinct. The sarcomatous cells may 
display a wide range of mesenchymal differentiation from bland- appearing spindle 
cells to pleomorphic cells, giant cells, bone, cartilage, or rhabdoid cells [92]. 
Malignant cells are connected by desmosome-like junctions, positivity for pankeratin 
and vimentin, and contain cytoplasmic intermediate filaments [8, 92, 93].

 Undifferentiated Carcinoma of the Gallbladder

Undifferentiated carcinomas are malignant epithelial tumors without any glandu-
lar or squamous differentiation. The presence of undifferentiated foci in other his-
tological types changes the histological grade, but not the histological type. 
Undifferentiated carcinoma of the gallbladder is rare with approximately 100 
reported cases. This tumor is more common in women (7:1.6) with a median age 
of 57–60 years, in different series. The median survival of the patients is less than 
9 months [94]. Tumors manifest as a mass with nonspecific firm whitish cut sur-
faces. Various cellular morphologies such as large round, polygonal, multinucle-
ated, pleomorphic, and spindle-shaped cells, as well as medullary-type growth 
(syncytial growth with inflammatory cell infiltrates), have been described [95, 96]. 
All tumors are positive for MUC1, pankeratin (AE1/AE3), and CEA, supporting 
the epithelial nature of the neoplastic cells. Vimentin may be expressed in some 
tumor cells. Many tumors show foci of endocrine differentiation and IHC reaction 
to somatostatin, gastrin, serotonin, pancreatic polypeptide, and HCG [96].

Fig. 4.16 Sarcomatoid 
carcinoma of the 
gallbladder showing a 
sarcomatous component 
characterized by poorly 
cohesive short spindled or 
round epithelioid tumor 
cells. These cells are 
immunohistochemically 
positive for pankeratin
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 Pathogenesis and Molecular Pathology of GB-CA

Data about GB-CA is limited due to a paucity of cases and heterogeneity of the 
available data. The overall most frequently mutated genes in GB-CA are TP53, 
CDKN2A, ARID1A, and ERBB2 [97–99]. Zuo et al. described the importance of the 
liver X receptor (LXR)/retinoid X receptor (RXR) and farnesoid X receptor (FXR)/
RXR pathways in GB-CA. The LXR and FXR genes are important in lipid metabo-
lism and function as tumor suppressors, and their downregulation appears to be 
critical for GB-CA pathogenesis. In the series presented by this group, the key genes 
involved in these pathways were SERPINB3 and KLK. They demonstrated overex-
pression of these genes, especially in female patients, and suppression of APO1 
gene [100]. Park et al. suggested that estrogen receptor genes and other hormone- 
associated genes could play a role in the etiology of biliary tract cancers, especially 
in men [101]. Some investigators have underscored the value of epithelial growth 
factor (EGFR) in HER2-positive tumors in targeted therapies [102]. Moreover, akin 
to the colorectal cancer, the presence of KRAS mutations may preclude gallbladder 
cancer patients to respond to anti-EGFR treatment [103]. Microsatellite instability 
has also been found in up to 10% of GB-CA and the premalignant lesions and has 
been considered in targeted therapies. Inactivation of the mismatch repair genes 
early in carcinogenesis of certain GB-CAs has been demonstrated; however, it has 
not been found to be associated with survival or a clinicopathological feature [100, 
104]. Several different single nucleotide pleomorphisms (SNP) have shown to be 
associated with GB-CA, although larger validation studies are needed [105].

 Extrahepatic Bile Duct Carcinoma (EHBD-CA)

Extrahepatic bile ducts carcinomas (EHBD-CAs) comprise a heterogeneous group 
of tumors arising in the perihilar (P-EHBD) or distal biliary tract (D-EHBD). In the 
second version of the WHO’s International Classification of Diseases for Oncology 
(ICD-O-2) coding system, which was used between 1992 and 2000, perihilar tumors 
(Klatskin tumor) were classified as intrahepatic instead of extrahepatic. This clas-
sification at least partially contributed to the variation in incidence and features of 
biliary carcinomas reported in the literature [106–109]. In the third version (ICD- 
O- 3), perihilar tumors (Klatskin tumor) were classified as extrahepatic tumors. 
Perihilar tumors are defined as those involving the main lobar extrahepatic bile 
ducts distal to segmental bile ducts and proximal to the cystic duct. Tumors located 
between the junction of the cystic duct-common hepatic duct and the ampulla of 
Vater are considered distal bile duct tumors [110, 111]. The most common location 
of bile duct carcinoma is perihilar (50%), followed by distal (40%) and intrahepatic 
(10%) [111, 112]. Perihilar and distal bile duct carcinomas share common patho-
genesis and preinvasive epithelial precursors [113]. Mucin-secreting epithelial cells 
lining bile duct or periductal glands have been suggested as the possible cells of 
origin in the vast majority of EHBD-CAs [39, 45, 114–116].
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 Epidemiology and Clinical Presentation of the EHBD-CA

EHBD-CA equally affects men and women in the sixth to seventh decades of life, 
with the pyloric gland type seen in the early sixth decade. Predisposing factors of 
EHBD-CAs are analogous to BilIN and IPNB. Clinically, small tumors can cause 
biliary obstruction and present in the early stages of disease. The most common 
clinical presentations, similar to IPNB, are jaundice, abdominal pain, pruritus, nau-
sea, vomiting, anorexia, weight loss, and cholangitis. Prolonged bile duct inflamma-
tion is a common finding in most cases. Risk factors include infestation with 
Clonorchis sinensis and Opisthorchis viverrini, PSC (especially with long-standing 
ulcerative colitis) [117], choledochal cysts, Caroli disease, congenital hepatic fibro-
sis, pancreaticobiliary maljunction, and any primary or iatrogenic condition associ-
ated with prolonged deranged bile duct flow or regurgitation of the pancreatic juice 
into the biliary tract. Pancreaticobiliary maljunction with bile duct dilatation and 
PSC are risk factors for biliary tract cancer. Pancreaticobiliary maljunction, particu-
larly without bile duct dilatation, is a risk factor for gallbladder cancer. There are no 
evident risk factors for ampullary carcinoma.

 Macroscopy and Histology of the EHBD-CA

EHBD-CA may appear as intraluminal nodular or papillary, periductal infiltrative, 
or longitudinal infiltrative sclerotic lesions (Fig. 4.17a–c). Cut surfaces of the tumor 
are firm pale-gray-white with irregular ill-defined borders infiltrating the surround-
ing tissue. Fibrotic borders may not accurately correspond to the infiltrating tumor 
cells. The histological and IHC phenotypes of EHBD-CA are similar to those of 
GB-CA, LD-iCCA, and pancreatic ductal adenocarcinoma (Table  4.3). The vast 
majority of EHBD-CAs are well to moderately differentiated biliary-type adenocar-
cinomas (~77%), comprised of irregular and angulated glands or tumor nests infil-
trating a markedly fibrotic stroma with frequent perineural and lymphovascular 
invasions. Tumor cells are atypically mucin-producing but may vary in size, shape, 
and cytoplasmic contents. Conventionally, histological grade is analogous to other 
BD-CAs, and similarly signet-ring cell (poorly cohesive) adenocarcinomas are 
grade 3. Squamous cell carcinoma is rare in EHBDs and graded based on the high-
est grade present in the tumor as grade 1 (well differentiated), grade 2 (moderately 
differentiated), and grade 3 (poorly differentiated). These systems are not applicable 
to neuroendocrine tumors. Undifferentiated carcinomas are, by definition, high- 
grade tumors and lack any specific morphologic or IHC differentiation phenotype. 
The overall histomorphology of adenocarcinomas of the pancreatic duct and intra-
pancreatic common bile duct is usually similar. The primary site is determined 
based on the macroscopic and microscopic localization of the tumor origin and 
detection of epithelial precursor lesions in the corresponding anatomical structure 
(Fig.  4.18a–c). Poor histological prognostic factors include deep invasion (high 
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stage), involvement of resection margin, flat configuration, high histological grade, 
vascular invasion, and perineural invasion [111, 118–121].

A rare pyloric gland phenotype has been described in carcinomas of the hilar region 
in younger patients. This tumor consists of more than 80% well- differentiated pyloric-
type columnar cells with abundant mucin and basally located small hyperchromatic 
nuclei. Tumor cells are arranged in small- to medium-sized ducts or large dilated 
glands infiltrating fibrous stroma. Deceptively benign-appearing glands, foci of large 
complex glandular structures with micropapillae (stellar pattern), and frequent peri-
neural invasions are characteristic findings. IHC stain highlights diffuse expression of 
MUC5AC and MUC6 and negative expression of MUC2 and CDX2 [122].

Tumor staging of the perihilar carcinomas (P-EHBD-CAs) has been a subject of 
debate and controversy. These tumors are in the proximity of vital vasculature in an 
anatomically complex and surgically challenging location. Different staging sys-
tems have been proposed to guide surgical management. The Bismuth-Corlette 
classification has been the most traditionally used system, based on the involved 
segments of EHBDs without considering other factors such as extrabiliary exten-
sion and anatomical variants. Blumgart et al. from Memorial Sloan Kettering Cancer 
Center (MSKCC) proposed the MSKCC staging system according to the location of 
bile duct involvement, local extension, presence of portal vein involvement, or 

a

b c 

Fig. 4.17 Adenocarcinoma of the extrahepatic bile duct. (a) Whipple resection specimen showing 
a markedly dilated common bile duct (arrow) with a nodular mucosal surface. (b) Intrapancreatic 
common bile duct with intraluminal tumor projection and tumor cells infiltrating underlying 
stroma. (c) Extrahepatic bile duct with infiltrative tumor
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hepatic lobar atrophy, without considering the size of residual hepatic parenchyma 
[64, 123]. This system was studied on 225 patients based on the criteria of resect-
ability at MSKCC, which was later challenged by changes in the surgical methods 
and criteria for resectability [64, 123, 124]. In the eighth edition of the American 
Joint Committee on Cancer (AJCC) and the Union for International Cancer Control 
(UICC) system, EHBD-CAs are divided into “perihilar” and “distal EHBD” tumors. 
In this system, the pathological staging of perihilar tumors is based on confinement 
to the bile duct wall or extension to the extrabiliary structure, whereas for distal 
tumors, in addition to the extrabiliary extension, microscopic measurement of the 
intramural infiltration is also considered in the pathological staging (Table  4.4) 
[110]. DeOliveira et  al. proposed a new staging system with more detailed 

a b

c

Fig. 4.18 Adenocarcinoma of the intrapancreatic common bile duct. (a) Low magnification show-
ing adenocarcinoma invading the bile duct wall into the adjacent pancreatic parenchyma (arrows). 
The main bulk of the tumor is intraductal. (b) High magnification showing intraductal papillary 
neoplasm with high-grade dysplasia (right) and high-grade biliary intraepithelial neoplasia (left) as 
precursor lesions. (c) Intrapancreatic common bile duct with adenocarcinoma infiltrating sur-
roundnig parenchyma
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information about tumor location, size, vascular invasion, residual hepatic paren-
chymal volume after resection, lymph node status, and distant metastasis. The aim 
of this system is to provide a standard report with relevant information about resect-
ability, indications for liver transplantation, and prognosis [124].

 Pathogenesis and Molecular Pathology of the EHBD-CA

Molecular alterations found more frequently in EHBD-CA are PRKACA/PRKACB, 
ELF3, and ARID1B mutations [125]. EHBD-CAs also show the similar hetero-
genic molecular pattern as LD-iCCA [47]. The altered genes include KRAS, TP53, 
CDKN2A, and SMAD4 [97]. Perihilar EHBD-CA and LD-iCCA have a higher 
frequency of KRAS mutations than SD-iCCA [126]. However, MDM2 is not found 
to be amplified in distal EHBD-CA [127]. Biliary brushing cytology specimens are 
the gold standard of diagnosis of EHBD-CAs but, despite high specificity, are 
known to have low sensitivity. Molecular techniques have been developed that can 
increase the sensitivity of biliary brushings while maintaining a high specificity. 
Polysomy of CEP 3, 7, and 17 and 9p21 deletion, detected by fluorescence in situ 
hybridization (FISH) and DNA flow cytometry, can improve sensitivity in bile duct 
strictures with indeterminate cytology [128]. Techniques being developed to aid in 
the diagnosis of EHBD-CA include next-generation sequencing (NGS), the study 
of extracellular vesicles released by cells, proteomics, and liquid biopsy [129].

 Mucinous Cystic Neoplasm (MCN) of the Liver 
and Biliary System

In the WHO classification, mucinous cystic neoplasms (MCN) have “ovarian-like 
stoma” (OLS) versus intraductal papillary neoplasms of the biliary tract (IPNB), 
which lack OLS [8]. Accordingly, MCN must meet all the following criteria: female 
gender, visually visible cystic neoplasm not arising in the biliary ducts, at least par-
tial mucinous differentiation of the epithelial lining, and at least focal presence of 
the OLS. OLS is defined by spindle cells akin to the ovarian stroma aberrantly pres-
ent in the stroma of the mixed epithelial and stromal tumor of the kidney and MCNs 
of the pancreas and liver. The spindle cells present in OLS are positive for ER, PR, 
alpha-inhibin, and FOXL2 (forkhead box L2) analogous to the ovarian stroma. 
FOXL2 is expressed in the early stages of female gonadal development and granu-
losa cell differentiation and is strongly expressed in granulosa cells throughout life. 
Some investigators argue that OLS can be seen in hepatobiliary development; thus, 
it is not restricted to women. In summary, based on the current WHO classification, 
a subset of formerly called “cystadenoma” or “cystadenocarcinoma” that do not 
have OLS cannot be classified as MCN [130, 131]. Authorities propose that cystic 
tumors lacking OLS could represent IPNBs with marked cystic changes [8].
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 Epidemiology and Clinical Presentation of MCN

Hepatic MCNs are very rare accounting for less than 5% of all hepatic cysts, with 
an incidence of 1 in 20,000–100,000. Most data in the literature do not clearly sepa-
rate MCNs and cystic IPNBs. In large series of all benign and malignant “mucinous 
cysts,” 88% of the patients were white female, and the mean age of patients was 
54 years (14–83 years of age) [132]. The etiology and pathogenesis of MCN are 
unclear. Some investigators suggest that the presence of OLS and pick incidence in 
middle-aged women may indicate the role of female reproductive hormones. MCNs 
are often solitary, multilocular, and intrahepatic (80%) and often in the left lobe 
[132]. MCNs are rare in the gallbladder [133].

Abdominal pain and fullness, early satiety, jaundice, and weight loss are the most 
common symptoms; however, approximately 40% of the patients may be asymptom-
atic at the time of diagnosis [134]. Liver function tests and serum levels of CA19-9 
and CEA tumor markers are within the normal range for most patients. Nevertheless, 
elevated tumor markers in the serum are uncommon in non-neoplastic cysts. Cyst 
fluid typically shows high levels of CEA and CA19-9, and in some cases, CA19-9 
level in the cyst fluid may correlate with high-grade dysplasia and the proportion of 
invasive component [132]. Radiologic imaging reveals a multilocular cystic mass 
and biliary duct dilatation, which may mimic the radiological features of a hydatid 
cyst [135]. The overall prognosis of MCNs is excellent. Evidence supports clinico-
pathological similarities between MCNs of the liver and pancreas. Even invasive 
adenocarcinoma arising in MCN has a significantly better prognosis compared to the 
ordinary biliary adenocarcinoma. Despite its benign nature, globally, 18% of all 
benign mucinous cystic lesions of the liver (MCN and IPNB combined) recur after 
surgery. The high rate of recurrence is mainly attributed to certain interventions such 
as unroofing and fenestration and positive surgical margin. Many authors emphasize 
the importance of complete excision to prevent recurrence or malignant transforma-
tion. Some studies show invasive carcinoma to be more common in larger tumors, 
but in other large series, the size was not a predictor of malignancy. The presence of 
mural nodules, solid component, papillary projections, irregular thickening of the 
cyst wall, calcifications, hypervascularity, and enhancement after contrast has a high 
negative predictive value and a low positive predictive value. In other words, the 
absence of all these findings strongly suggests benignity, but their presence does not 
necessarily support malignancy [132]. No single predictive radiographic feature is 
identified.

 Macroscopy and Histology of MCN

Tumors are well demarcated with a fibrous band and may range in size from 5 to 
29 cm (mean size 11 cm). Benign tumors are usually larger at the time of diagno-
sis. The tumor is typically separated from the bile ducts; however, rarely polypoid 
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protrusion into the bile duct lumen can be present. Sections of the benign tumor 
reveal multilocular cystic mass filled with mucinous or hemorrhagic fluid. Cysts 
are separated by thin fibrous septa and exhibit pale gray-white smooth or slightly 
trabeculated inner surface. Irregular wall thickening, large papillary projections, 
and solid fibrotic areas warrant a thorough sampling to exclude invasive carcinoma 
[131, 132].

Histologically, the vast majority of MCNs of the liver are benign and well delin-
eated by a fibrous capsule. Cysts are lined by a single layer of flat, cuboidal, or 
columnar epithelial cells. Many MCNs display bland-appearing histology, resem-
bling benign biliary cysts, lined by cuboidal to low columnar biliary-type epithelial 
cells with round to ovoid basally oriented nuclei. Different proportions of goblet 
cell, gastric foveolar, and intestinal differentiation can be seen. By definition, at least 
a minor population of mucin-producing cells is required for diagnosis. In challeng-
ing cases with scant mucin-producing cells, mucicarmine special stain is helpful to 
highlighting cytoplasmic mucin. The OLS appears as a subepithelial hypercellular 
spindle cell stroma, while the rest of the wall shows hypocellular collagenized ordi-
nary fibrous tissue. In half of the cases, the OLS can be diffusely (>75%) dispersed 
in the fibrous tissue separating the cysts. The cyst wall and the OLS may undergo 
hemorrhagic or necrotic degeneration, dystrophic calcification, hyalinization, or 
luteinization (Fig. 4.19). Sometimes, especially in the large benign cysts, OLS is 
scant and difficult to discover [132]. At least focal OLS is required for the diagnosis 
of MCN. The OLS spindle cells are positive for alpha-inhibin, PR, ER and FLOX2 
and negative for CD10 (an endometrial stromal marker) [136, 137]. The IHC profile 
of the epithelial cells is consistent with their lineage of differentiation and does not 
play a diagnostic role. Low-grade dysplasia is a common finding. High-grade dys-
plasia is rare and depicted by cellular crowding, cribriform arrangement, solid 
sheets, marked cytological atypia, nuclear pleomorphism, and conspicuous mitosis 
and occasionally by anaplastic cells. Invasive carcinoma associated with MCN dis-
plays classic morphologic features of an ordinary biliary adenocarcinoma.

a

b

Fig. 4.19 Mucinous cystic 
neoplasm of the 
hepatobiliary system. (a) 
The cystic lesion is lined 
by a single layer of 
epithelial cells showing 
low-grade histology. 
Ovarian-type stroma is 
characterized by bland, 
relatively uniform 
short-spindled cells. (b) 
Stromal cells are positive 
for progesterone receptor 
by immunohistochemistry
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 Pathogenesis and Molecular Pathology of MCN

KRAS mutations have been found to be a major driver genetic alteration in the 
pathogenesis of MCN and may be one of the mutations that leads to high-grade 
dysplasia [138, 139]. MCN of the liver has a lower incidence of KRAS mutations, 
which may explain a lower rate of invasion compared to the extrahepatic mucinous 
cystic tumors [138]. KRAS mutations in MCN are associated with multilocular- 
cystic appearance and positivity for MUC1, MUC2, and MUC5AC [8]. All cases of 
MCN have wild-type GNAS, RNF-43, and PIK3CA, which are usually altered in 
other neoplasms of the hepatobiliary system [8].

 Intrahepatic Cholangiocarcinoma (iCCA)

Primary liver carcinomas encompass malignant neoplasms with a range of differen-
tiation from primitive progenitor cells to cholangiocytic or hepatocellular lineage. 
Tumors may be monomorphic or a mixture of different components. Classification 
of these tumors is merely based on routine histological examination. IHC studies 
play a supplemental role and should not ultimately determine the final diagnosis. 
Interpretation of IHC findings requires an in-depth understanding of specific and 
nonspecific immunophenotypes [121]. iCCA comprises a heterogeneous group of 
malignant primary liver carcinomas recognized by cholangiocytic differentiation, 
variable desmoplastic reaction, and absence of extrahepatic biliary or pancreatic 
adenocarcinoma [8].

 Epidemiology and Clinical Presentation of iCCA

iCCA is the 2nd most common primary liver cancer, after HCC, and is responsible 
for 10–20% of primary live cancers and up to 10% of all bile duct carcinomas [140, 
141]. Most patients are men in the fifth to seventh decade of life. The incidence, 
etiology, biology, and risk factors of iCCA vary worldwide. The overall prevalence 
of iCCA in East Asia is higher than that in the Western countries (71–80 vs 0.2–2 
cases per 100,000 person-year). Between 1973 and 2012, the incidence of iCCA in 
the United States raised from 0.44 to 1.18 cases per 100,000, which corresponded 
to the increased prevalence of chronic liver diseases [141, 142]. The major global 
risk factors of iCCA are biliary parasitic infestations (Clonorchis sinensis and 
Opisthorchis viverrini), hepatolithiasis, PSC, exposure to the radiopaque medium 
thorium dioxide (Thorotrast), abnormal anatomy of the biliary tract, viral hepatitis 
B and C, alcoholic liver disease, hemochromatosis, and metabolic syndrome 
(including obesity). A definitive risk factor cannot be identified in many patients 
[140, 143–152]. The most common clinical presentations of iCCA in the large bile 
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ducts include jaundice, malaise, abdominal pain, weight loss, and increased serum 
alkaline phosphatase level. Large duct iCCA with intraductal growth may present 
with complications of biliary obstruction, such as acute cholangitis. Small duct 
iCCA, however, is usually mass forming and presents at advanced sages with mass 
effect [126, 149].

 Macroscopy and Histology of iCCA

In WHO classification, iCCAs are classified into “small duct” (SD) and “large duct” 
(LD) CCA. Other terms used in the literature to describe different variants of iCCA 
(e.g., peripheral CCA, cholangiocellular carcinoma, and cholangiolocellular carci-
noma) fall into one of these two categories [8].

Large duct iCCAs (LD-iCCA) (also known as hilar CCA) arise in the large intra-
hepatic bile ducts proximal to the hepatic ducts. The precursor lesions and growth 
patterns of these tumors are similar to those for carcinomas of the extrahepatic bile 
ducts. The most common risk factors in Asian countries are liver flukes and hepato-
lithiasis, while in the Western countries, PSC and anatomical abnormalities of the 
extrahepatic biliary tract are the most reported risk factors. Precursors of LD-iCCA 
are BilIN and IPNBs, both of which may arise in the bile duct lumen or in the peri-
ductal glands [140, 144, 145, 148, 150, 152, 153]. LD-iCCAs are typically fibrotic 
whitish tumors with periductal infiltrative pattern, with or without intrahepatic 
mass-forming or intraluminal growth patterns [154, 155]. Histological features of 
LD-iCCA are identical to the perihilar EHBD-CA. Tumor cells are usually colum-
nar to low columnar, forming irregular and angulated glands, which infiltrate an 
abundant desmoplastic stroma (Fig.  4.20). Variable amounts of cytoplasmic and 
extracellular mucin are characteristic findings, a feature that typically is not seen in 
the SD-iCCA. Perineural invasion is frequently present [156–158].

Fig. 4.20 Intrahepatic 
cholangiocarcinoma, large 
duct type, showing 
irregular glandular 
structures infiltrating a 
fibrotic stroma. 
Intraluminal mucin 
production is noted
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Small duct iCCA (SD-iCCA) grows in a mass-forming pattern and appears as a 
mass in the periphery of the liver. These tumors originate from transdifferentiation 
of the hepatic progenitor cells or transformed mature hepatocytes under similar risk 
factors for HCC and c-HCC-CCA. No intraepithelial or intraductal precursor lesion 
has been described in the small bile ducts or ductules [143, 149, 151]. Rare associa-
tions with biliary adenofibroma and bile duct hamartoma (von Meyenburg complex) 
have been described [159–162]. Histologically, SD-iCCA is characterized by a 
mass-forming non-mucinous tumor infiltrating between hepatocytes at the interface 
(hepatic interface infiltrative pattern). Tumor cells are small cuboidal epithelial cells 
with scant cytoplasm, round nuclei, and fine chromatin. They form small ducts, 
tubules, or ductules with slit-like lumens or cord-like patterns. Desmoplastic 
(fibrotic) stroma is typically present.

According to the WHO classification, “cholangiolocarcinoma” and “iCCA with 
predominant ductal plate malformation (DPM) pattern” are two subtypes of 
SD-iCCA [8]. Cholangiolocarcinoma is a distinct malignant tumor, characterized 
by small cuboidal cells with more than 80% ductular configuration infiltrating a 
hyalinized fibrous stroma (Fig. 4.21). It has been suggested that this tumor arises 
from canal of Hering. IHC and molecular features of this tumor are analogous to 
well-differentiated SD-iCCA [5, 163]. Histological diagnosis of this entity is made 
based on the small and bland-appearing tumor cells arranged in anastomosing tra-
beculae, cords, or ill-formed ductules, embedded in a striking desmoplastic stroma. 
A rare spindle cell pattern has also been reported. The clinical and radiological 
features of this subtype are nonspecific. The iCCA with predominant DPM pattern 
shows desmoplastic stroma infiltrated by irregularly dilated ducts lined by a single 
layer of non-mucinous small cuboidal cells with occasional inspissated bile. This 
histological type is defined by intraluminal epithelial buddings and projections, 
resembling ductal plate malformation [164].

In summary, diagnosis and classification of the iCCA types are currently based on 
routine histological examination. Intracellular and extracellular mucin, a 

Fig. 4.21 Intrahepatic 
cholangiocarcinoma, small 
duct type, showing 
ductule-like structures 
lined by cuboidal tumor 
cells infiltrating a fibrotic 
stroma
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characteristic finding in LD-iCCA, has not been described in SD-iCCA. LD-iCCA 
has a higher rate of desmoplasia and perineural invasion, whereas infiltration between 
hepatocytes at the interface (hepatic interface infiltrative pattern) and hepatoid phe-
notype are typical features of SD-iCCA [165]. In general, iCCAs and EHBD-CAs 
are immunoreactive to CK7, CK19, and MUC1. The LD-iCCA epithelial cells are 
positive for MUC5CA and MUC6 and negative for CD56, which is opposite to the 
IHC profile seen in the SD-iCCA [165]. Histological grading of LD-iCCA and 
SD-iCCA is determined by the proportion of gland formation like EHBD-CAs.

 Pathogenesis and Molecular Pathology of iCCA

iCCAs have heterogeneous pathogeneses with diverse molecular and genetic altera-
tions. Furthermore, due to limited understanding of pathogenesis and molecular 
data, there is no unanimous fundamental pathophysiologic classification for these 
tumors. Therefore, no molecular targeted agents have been approved for these 
tumors, and surgical resection is the only hope for effective treatment to date. 
Advanced molecular technologies have recently led to an increased understanding 
of iCCA, which has shown highly heterogeneous genomic and epigenetic aberra-
tions [47]. This heterogeneity may be due to the different backgrounds in which 
iCCA arises and also partially because of inconsistencies in diagnosis and reporting 
[47]. Despite these challenges, the LD-iCCA and SD-iCCA have been found to 
have certain unique characteristic molecular features.

LD-iCCAs have KRAS and TP53 mutations and mutations of other tumor sup-
pressor genes and oncogenes while lacking the IDH1/2 mutations and FGFR2 
fusions seen in SD-iCCA [8, 47, 126]. These molecular features are similar to those 
seen in hilar EHBD-CA [126]. SMAD4 mutations are more commonly found in 
LD-iCCA versus SD-iCCA [158]. MDM2 amplification is found to be present in 
12% of LD-iCCA, which seems to be related to SMAD4 loss and has been associ-
ated with an overall shorter survival [127]. Using molecular testing to differentiate 
between SD-iCCA and LD-iCCA may be useful in difficult borderline cases and 
may soon be used for determining targeted therapy [47].

SD-iCCA has been postulated to be derived from liver progenitor cells but may 
also transdifferentiate from mature hepatocytes into biliary-like cells [163, 166, 
167]. SD-iCCA characteristically has IDH1/2 mutations and FGFR2 fusions more 
frequently than LD-iCCA and EHBD carcinomas [47, 126]. FGFR2 and IDH1/2 
mutations are mutually exclusive and mostly limited to iCCA [97]. FGFR2 muta-
tions have been found to be associated with an improved overall survival, younger 
age of onset, and female gender, while IDH1/2 mutations are not prognostic [97]. A 
lymphoepithelioma-like carcinoma, which by some authors has been described as a 
subtype of SD-iCCA, was found to be positive for Epstein-Barr virus by in situ 
hybridization in one study [126].

Similar to HCC, the risk factors of iCCA influence the genetic alterations. For 
example, COX2 and mPGES-1 were found to be highly expressed in tumors associ-
ated with PSC [168]. Liver fluke-associated iCCA has an increased rate of 
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microsatellite instability (MSI), which is associated with response to MSI blockade 
and a better prognosis [47]. Liver fluke-associated iCCA also tends to not have 
IDH1/2 or BAP1 mutations and instead has been found to be enriched in ERBB2 
amplifications and TP53 mutations [169, 170]. Liver fluke-negative iCCA was 
found to have high copy number alteration and expression of PD-1/PD-L2, or epi-
genetic abnormalities of the IDH1/2 and BAP1 genes, and FGFR/PRKA-related 
gene rearrangements, while EHBD-CA more often has PRKACB mutations [156, 
170]. BAP1 loss is more associated with SD-iCCA than adenocarcinoma of the 
EHBD or pancreas and is also associated with higher histological grade and inter-
estingly a lack of lymphatic invasion [171]. The fact that BAP1 mutations have been 
identified in iCCA, HCC, and cHCC-CCA suggests a common cell of origin for 
these malignancies [47, 172]. BAP1 mutations have been recently described in a 
genetic syndrome. This autosomal- dominant tumor predisposition syndrome shows 
heterozygous germline BAP1 mutations at 3p21 that have been found to be related 
to uveal melanoma, cutaneous melanocytic proliferations, renal cell carcinoma, 
basal cell carcinoma, and iCCA [171].

In terms of prognosis, patients with tumors harboring FGFR2 mutations had a 
longer median cancer-specific survival, whereas CDKN2A/B and ERBB2 alterations 
showed a worse prognosis [173, 174]. It has also been proposed that a subset of 
patients with KRAS mutations and increased levels of EGFR and HER2 signaling 
could benefit from dual-target tyrosine kinase inhibitors using a secondary target 
downstream of KRAS [175]. The FGFR2 fusions and IDH1/2 mutations seen in ~60% 
of cases have also been suggested as therapeutic targets [173, 176].

BRAF V600E mutation, used in targeted therapy, is rare in bile duct carcinomas, 
found in only 1% of iCCA and none of the EHBD-CA [177].

The iCCAs can be categorized based on their pathogenic pathways [8]. Sia et al. 
performed a whole-genome expression profiling, chromosomal aberration, and sig-
nal pathway activation in a cohort of 149 iCCA cases from Europe and the United 
States. They identified two main biological classes of iCCA: proliferative class (PC) 
and inflammation class (IC) comprising 62% and 38% of all their tumors, respec-
tively. Each class was further subclassified into three distinct categories. Tumors in 
the PC show genetic resemblance to the poor prognostic HCC such as cluster A, G3 
proliferation, and S1 signature, which support a common progenitor cell origin. PC 
tumors evolve from activation of oncogenic signaling pathways including RAS, 
mitogen-activated protein kinase (MAPK), and MET; mutations in KRAS and BRAF; 
and significant enrichment of the signatures related to EGFR, HER2, and MET 
without amplification of these receptors. These tumors also demonstrated chromo-
somal alterations at 11q13.2 and 14q22.1. Tumors in the IC group emerge in a 
background of prolonged humoral immune response with imbalance of cytokines 
such as interleukins (IL) and are associated with a more favorable prognosis. These 
tumors are characterized by induction of immune response-related pathways; acti-
vation of STAT3 oncogene (STAT family is a key transducer of cytokine signaling); 
overexpression of IL-4, IL-6, IL-10, and IL-17; and downregulation of TH1 cyto-
kines. The PC tumors show poor to moderate histological differentiation, poor sur-
vival, and high rate of recurrence. In contrast, the IC tumors are well differentiated 
and associated with a better survival and lower recurrence rates.
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 Combined Hepatocellular-Cholangiocarcinoma (c-HCC-CCA)

The diagnosis of cHCC-CCA is based on unequivocal histological evidence of 
mixed hepatocellular and biliary differentiation accompanied by transition zones 
with intermediate morphology. The histological variants, degree of differentiation, 
percentage of each component, and architecture of the tumor mixture are not 
included in the diagnostic criteria (Table 4.1) [121, 178]. Approximately 2% of the 
primary liver carcinomas are qualified for the diagnosis of cHCC-CCA [121].

 Epidemiology and Clinical Presentation of cHCC-CCA

cHCC-CCA is a rare tumor comprising 1–4.7% of all primary liver carcinomas 
[179]. Patients are mostly white men older than 65 years. In general, cHCC-CAA 
shows an overlap of the epidemiological, clinical, radiological, histological, and 
serological features of both HCC and iCCA [180–182]. The clinical features and 
behavior of cHCC-CCA vary in different regions of the world in a range between 
HCC and iCCA. This may be partially attributed to the variables such as ethnicity, 
risk factors, and pathogenesis. The commonly reported risk factors of cHCC-CCA 
include hepatitis B and C infection, hepatic cirrhosis, male gender, and transarterial 
chemoembolization [183]. Although prognostic factors vary in different study pop-
ulations, the most commonly reported adverse risk factors include male gender, 
African-American race, tumor size >3 cm, multifocality, lymph node metastasis, 
vascular invasion, advanced stage, resection margin <2 cm from tumor, high levels 
of CA19-9 (>37 U/L), and GGT serum level >60 U/L [184–186]. The 5-year overall 
survival in the United States with and without liver transplantation is approximately 
41% and 18%, respectively [184]. Studies on the South Korean population showed 
1- and 3-year disease-free survival rates of 38% and 25%, respectively [185]. In a 
large population of HBV-related cHCC-CCA in China, 84% of the patients were 
male with a median age of 49 years. The post-resection 2-, 5-, and 10-year disease- 
free survival rates were 22%, 15%, and 11%, respectively.

 Macroscopy and Histology of cHCC-CCA

The cHCC-CCA tumors typically present as an expansile solitary mass, which 
may grow up to 16 cm. Gross examination of the cut surfaces is nonspecific and 
is variably pale tan to green with areas of fibrosis, hemorrhage, or necrosis. 
Histologically, presence of hepatocytic, cholangiocytic, and intermediate (transi-
tional) phenotypes are necessary for diagnosis (Fig. 4.22). The HCC component 
demonstrates hepatocytic phenotypes such as bile production, Mallory bodies, 
and bile canaliculi. Malignant hepatocytes typically grow in trabecular and/or 
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pseudoglandular patterns or widened hepatic plates highlighted by reticulin stain. 
The iCCA component typically consists of mucin-producing biliary epithelium 
arranged in irregular angulated glands, trabeculae, cords, or single cells infiltrat-
ing a markedly fibrotic stroma. A range of well- to poorly differentiated morphol-
ogy of each component can be seen. Variable amounts of intermediate tumor 
component without distinct hepatocytic or cholangiocytic differentiation, scat-
tered between the well-formed HCC and iCAA components, are present. The 
intermediate tumor cells evolve from hepatic progenitor cells that are originally 
located in the canal of Hering and bile ductules. The hepatic progenitor cells are 
small epithelial cells with scant cytoplasm and positive for several stem cell IHC 
markers. The intermediate tumor cells show morphologic and IHC features of 
both cholangiocytes and hepatocytes. A range of histological patterns have been 
described in the intermediate zone. Tumor cells are often small with scant cyto-
plasm and round to ovoid nuclei arranged in trabeculae, solid nests, single pro-
files, or antler-like anastomosing patterns embedded in fibrous stroma or show 
abrupt glandular formation. A predominant spindle cells morphology has also 
been reported [187, 188]. The hepatocyte progenitor cells express progenitor 
markers such as CK7, CK19, CD56, EpCAM (BerEP4 and MOC31), and CD117 
[189–191]. All tumor cells in the intermediate zone express at least one of these 
markers [187].

Intermediate cell carcinoma is a tumor entirely comprised of monotonous malig-
nant intermediate cells with morphologic features between hepatocytes and cholan-
giocytes. Other primary liver tumors containing foci of intermediate cell carcinoma 
are not qualified for this diagnosis [192]. Tumor cells are monotonous small cuboi-
dal or oval with scant pale cytoplasm arranged in trabeculae, cords, nests, or single 
profiles infiltrating abundant fibrous background. They lack cytoplasmic mucin and 
express a dual HCC and iCAA IHC profile. Intermediate cell carcinoma shares the 
clinical behavior of both HCC and iCCA [192].

Fig. 4.22 Combined 
hepatocellular- 
cholangiocarcinoma 
showing both components 
of hepatocellular 
carcinoma (lower) and 
cholangiocarcinoma 
(upper)
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 Pathogenesis and Molecular Pathology of cHCC-CCA

The pathogenesis of cHCC-CCA involves a monoclonal liver progenitor cell ori-
gin with translineage differentiation [183, 193–195]. A recent comprehensive 
molecular study suggests subtypes of cHCC-CCA based on cells of origin: (1) 
Classical mixed subtype with intermingled typical HCC and iCCA differentia-
tion. These tumors are derived from stem cells or a more mature progenitor with 
typical HCC or iCCA mutations such as TERT promoter or TP53 mutations and 
show immunoreactivity to CK7, CK19, Hep Par-1, and glypican-3. (2) Hepatocyte 
progenitor/stem cell subtype derived from progenitor/stem cells with poorly dif-
ferentiated morphology. These tumors share activation of proliferation signatures 
such as MYC, IGF2, mTOR, and NOTCH. Most of these tumors are immunoreac-
tive to progenitor-like marker SALL4 (75%). This phenotype is not seen in the 
classical mixed type. The SALL4-positive tumors show biphenotypic gene 
expression and mutations in TP53, BRAF, and FGFR2. Approximately 25% of 
tumors with poorly differentiated morphology are comprised of SALL4-negative 
stem cells and exhibit hepatocyte-like gene expression and mutation in TRET and 
TP53 [196].

Classical cHCC-CCA and undifferentiated carcinoma are aggressive tumors 
with poor prognosis. Prognosis of cHCC-CAA is worse than HCC and better than 
iCCA.  A therapeutic biomarker has not been identified in these tumors [184, 
197, 198].

 Von Meyenburg Complex (VMC)

First described by von Meyenburg in 1918, VMCs, or bile duct microhamartomas, 
are usually subcapsular hepatic lesions resulting from ductal plate malformation 
due to incomplete involution of embryonic bile duct remnants [199]. VMCs are 
more common in men and can be seen in all ages. Uncomplicated VMCs are usually 
asymptomatic and without any effect on liver function tests. The clinical importance 
of VMC is its distinction from other lesions on imaging studies and core biopsies 
and the possibility of associated complications such as cholangitis and malignant 
transformation [159, 200–202].

On gross examination, MVCs are often multifocal, fibrotic gray-white nodules 
with irregular contours measuring <1.5 cm. Histologically, VMCs are directly adja-
cent to portal tracts and consist of numerous biliary ducts, ductules, and many irreg-
ularly dilated and branched biliary spaces, lined by bland-appearing biliary 
epithelium. Bile duct production or intraluminal eosinophilic material is typically 
present. Bile duct proliferation is embedded in conspicuous fibrocollagenous stroma 
with ill-demarcated irregular contour (Fig. 4.23).
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 Pathogenesis and Molecular Pathology of VMC

Pathogenesis of VMCs are related to ductal plate malformation and association with 
autosomal dominant polycystic kidney disease, Caroli disease, and hepatic fibrosis 
[203]. A stepwise transformation of the VMC to CCA associated with p16IK4a 
inactivation and loss of heterozygosity at foci harboring key oncogenes have been 
demonstrated [202, 204].

 Biliary Adenofibroma

Biliary adenofibroma (BAF) is an unencapsulated, non-mucinous, solid microcystic 
biliary proliferation embedded in a fibrous stroma. BAF is a very rare benign tumor, 
with approximately 30% malignant potential, reported in the third to ninth decades 
of life with a 2:1 female preponderance [205–207]. In most patients, BAF has an 
indolent growth and overall being behavior with a very long disease-free survival. 
Incomplete excision is followed by local recurrence [207]. BAF presents as a soli-
tary mass ranging between 1.5 and 16 cm, with well-circumscribed round to ovoid 
mass. Cut surfaces may show variable proportions of solid and microcystic or 
spongy appearing components. Histologically, the epithelial cells form tubular, 
acini, microcysts, and macrocysts. Occasionally larger cyst spaces contain complex 
polypoid and papillary intraluminal projections. The benign epithelial cells are 
small cuboidal to low columnar biliary epithelium with non-mucinous amphophilic 
cytoplasm, uniform small round to ovoid nuclei, and inconspicuous nuclei. The 
intervening stroma consists of fibrocollagenous tissue with occasional lymphoplas-
macytic infiltration [205–208]. BAF may undergo a spectrum of preinvasive to 

Fig. 4.23 von Meyenburg 
complex. Bile duct 
proliferation is embedded 
in conspicuous 
fibrocollagenous stroma 
with an ill-demarcated, 
irregular contour. Bile 
ducts are lined by benign 
cuboidal epithelium
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invasive malignant transformation recognized by high-grade epithelial dysplasia 
and areas of stroma invasion with or without lymphovascular invasion [205, 208]. 
Epithelial cells in BDA are positive for CEA, MUC1, CK7, CK19, CA19-9 and 
CD10. Unlike BDA and peribiliary glands, BAF is negative for IF6 and acid mucin 
[208]. Benign epithelium and stroma always show a Ki67 of less than 10% and 1%, 
respectively.

 Pathogenesis of BAF

Evidence shows that similar to von Meyenburg complex, BAF is a primary epithe-
lial neoplasm that arises from interlobular or large bile ducts with a secondarily 
induced stroma [207, 208]. Amplification of CCND1 and ERBB2 and overexpres-
sion of P53 support the malignant nature of BAF and explain the potential for 
aggressive behavior and distant metastasis in some cases [207–209].

 Bile Duct Adenoma (BDA)

Bile duct adenoma or peribiliary gland hamartoma is a bile duct tumor of unknown 
etiology, which is thought to originate from peribiliary glands with benign behavior, 
although rare malignant transformation has been reported [210, 211]. BDA is fre-
quently an incidental finding with an incidence of 1.3% and reported in 50 out of 
50,000 autopsies. In the largest series reported by Allaire et al., 103 out of 152 total 
cases were asymptomatic and detected incidentally, while 49 cases were found at 
autopsy [212]. BDA has been reported equally in both genders in a wide range of 
age from 1.5 to 99 years but mostly seen in the third to eighth decades of life (mean: 
55 years). Macroscopically, tumor often appears as a single non-encapsulated sub-
capsular nodule of less than 2  cm in diameter with white fibrotic-appearing cut 
surfaces. The mean size is 1.3  cm [213]. An exceptionally large case measuring 
9 cm in diameter has been reported [214]. Histologically, tumor is unencapsulated 
without infiltration into the adjacent hepatic parenchyma. Tumor cells are bland- 
appearing uniform small cuboidal biliary epithelial cells, similar to bile ductules, 
forming compact network of noncystic small ductal arrangements with no or small 
lumens (Fig.  4.24a–c). Non-biliary differentiation of undetermined significance 
such as clear cell, oncocytic, and signet-ring features has been described in BDA 
[215–217]. Bile duct proliferation is embedded in a fibrous stroma with hyalinized 
collagen and variable degrees of lymphoplasmacytic infiltration and possible micro-
calcification and non-necrotizing granulomatous reaction. Cytological atypia, lym-
phovascular invasion, bile productions, cystic change, and bile duct production are 
not present. The tumor cells express MUC1, CEA, CK7, CK19, CD56, and p16 in 
addition to foregut phenotype such as MUC5AC, MUC6, CD10, IF6, and TFF2 
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[210, 218, 219]. BDA is negative for AFP and p53 and shows a less than 10% (usu-
ally less than 2%) proliferative index by Ki67.

Reactive ductular proliferation, cholangiolocarcinoma, and von Meyenburg com-
plex are important histological differential diagnoses of BDA. Configuration of the 
reactive ductular reaction is not nodular or well circumscribed. Cholangiolocarcinoma 
is larger, invasive, and cytologically atypical. A Ki67 >10%, positive EZH2 and p53, 
and negative CD10, CD56, and p16 are helpful to recognize cholangiolocarcinoma 
from BDA [220]. Von Meyenburg complex shows cystic changes and bile production 
that are not seen in BDA.

 Pathogenesis

A focal reaction to physical or inflammatory stimulus and peribiliary glandular origin 
has been proposed in the pathogenesis of BDA. Analogous to the periductal glands, 
the epithelial cells in BDA co-express 1F6 and CD10, which is not seen in the bile 
ductules and interlobular bile duct epithelium [210]. BRAFp.V600E mutation has 
been demonstrated in many of BDA, suggesting neoplastic nature of these tumors [221].

c

a

d

b

Fig. 4.24 Bile duct adenoma. (a, b) Tumor cells are bland-appearing uniform small cuboidal bili-
ary epithelial cells, similar to bile ductules, forming compact network of noncystic small ductal 
arrangements with no or small lumens. (c, d) Structure of biliary proliferation and stroma high-
lighted by pankeratin immunohistochemical stain and periodic acid-Schiff (PAS) special stain
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 Neuroendocrine Neoplasms of the Gallbladder and Bile Ducts

First introduced by Oberndorfer in 1907 as karzinoide (carcinoid), neuroendocrine 
neoplasms (NENs) were initially thought to be indolent and uncommon. However, 
they were later proved to be common, potentially aggressive, and heterogeneous in 
nature. The nomenclature of neuroendocrine was changed by some authorities to 
endocrine to underscore the epithelial, and not neural crest, origin of tumor cells. 
However, since tumor cells display both epithelial and neural phenotypes, the neu-
roendocrine has been currently adopted. Another controversial term is carcinoid, 
which widely used for the low-grade NENs but is discouraged because does not 
convey the malignant behavior of these tumors. The two terms of neoplasm and 
tumor have been used interchangeably in the literature [222].

The NENs are defined as epithelial neoplasm with predominantly neuroendo-
crine differentiation. Some of the clinicopathological features of these tumors are 
characteristic of the organ of origin, yet all share the common neuroendocrine phe-
notypes regardless of location [222]. Therefore, despite the phenotypic similarities, 
NENs of different site have distinct pathogenesis, molecular alterations, and clinical 
outcomes. According to the WHO classification, the NENs of the gallbladder (GB) 
and extrahepatic bile ducts (EHBDs) are biliary epithelial neoplasms with neuroen-
docrine differentiation [8]. NENs are further subclassified to neuroendocrine tumors 
(NEN) grade 1, 2, and 3, large neuroendocrine carcinoma (LC-NEC), small neuro-
endocrine carcinoma (SC-NEC), and mixed neuroendocrine-non-neuroendocrine 
neoplasm (MiNEN) (Table 4.5).

 Epidemiology and Clinical Presentation of NENs

Approximately 0.2–2% and 0.2% of all NENs of the digestive system occur in the 
GB and EHBD, respectively [223, 224]. Most NENs of the biliary tract are in the 
GB. EHBD NENs are less common and tend to occur in the junctional zones. In GB 
and EHBD, NECs are significantly more common than NETs [225]. NENs of the 
GB and EHBD have been reported in the third to ninth decades of life (mean: sixth 
and seventh decades), with a female preponderance [225, 226]. The etiology of 
NENs of GB and EHBD remains unclear in many cases. Cholelithiasis and 

Table 4.5 Grading classifica-
tion of the neuroendocrine 
neoplasms

NEN Mitosis per 10 HPF Ki67 index

NET grade 1 <2 <2%
NET grade 2 2–20 3–20%
NEC grade 3 >20 >20%
LC-NEC >20 >20%
SC-NEC >20 >20%
MiNEN >20 >20%

NEN neuroendocrine neoplasm, LC large cell, SC 
small cell, NEC neuroendocrine carcinoma, HPF 
high-power field
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abnormal bile duct flow due to maljunction are risk factors for GB NENs [227, 228]. 
Some NENs of the biliary system are associated with von Hippel-Lindau (VHL) 
syndrome and Multiple Endocrine Neoplasia (MEN) type 1.

The nature of GB and EHBD NENs are taught to be different [225]. The most 
common clinical presentation of the EHBD NEN is biliary obstruction, while gall-
bladder NENs are usually detected. The clinical presentations of the GB NECs are 
similar to GB adenocarcinoma [229]. Rarely, patients present with Zollinger-Ellison 
syndrome (ZE), which is often sporadic, and von Recklinghausen. In MEN1- 
associated ZE, gastrinomas are multifocal in the first three portions of the duode-
num, with clinically notable and rare ectopic tumors in the EHBD [230]. Patients 
are usually women younger than under 50 years of age. Lymph node metastasis is 
noted in about 50% of cases [230, 231]. NEC of the GB and EHBD are aggressive 
tumors with a prognosis worse than adenocarcinoma, while low-grade NENs (grade 
1 and 2) have a better outcome [225].

 Macroscopy and Histology of NENs

Macroscopically, NENs of the biliary system usually appear as a solitary submuco-
sal sessile or pedunculated polypoid mass. Low-grade NENs are usually less than 
2 cm, but NECs may grow larger and invade surrounding tissues [232]. Cut surfaces 
of the tumor are with-gray or pale yellow and often firm in low-grade tumors due to 
fibrosis, while NECs may be soft [224, 226, 227, 229, 230]. Histologically, the low- 
grade NETs are comprised of monotonous cells arranged in nests (insular pattern), 
rosettes, acini, trabeculae, or sheets and embedded in a noticeable homogenous col-
lagenized fibrous stroma, which contribute to the firm consistency (Fig.  4.25a). 
Tumor cells are monomorphous round, with small amounts of eosinophilic cyto-
plasm, round smooth centrally located nuclei, and fine dispersed so-called “salt- 
and- pepper” chromatin, with rare mitosis (Fig. 4.25b). In cytologic preparations, 
low-grade NETs are loosely cohesive and display the characteristic nuclear features 
mentioned above. In general, NENs share cytological features of round blue cells 
tumors, distinction of which involves ancillary studies such as IHC or in situ hybrid-
ization. NEN tumor cells are positive for synaptophysin, neuron-specific enolase 
(NES), CD56, and chromogranin (Fig. 4.25c, d). Chromogranin is a highly specific 
marker, although lack sensitivity of synaptophysin. CD56 is sensitive but also stains 
a wide range of leukocytes and other tumors. NES is positive in many neural crest 
tumors. Histologic grading of NENs is based on mitotic count or Ki67 index in ten 
high-power microscope fields (HPF). The low-grade NENs have a <20% Ki67 
index. Analogous to the lung, NECs of the GB and EHBD are categorized as 
SC-NEC and LC-NEC. SC-NEC tumor cells are small with scant cytoplasm, hyper-
chromatic nuclei, homogenous chromatin, and characteristic nuclear molding 
(Fig.  4.25e). LC-NEC tumor cells may be monomorphous or pleomorphic with 
variable amounts of cytoplasm. Nuclei are large and contain prominent nucleoli. 
Tumor cells necrosis is typically present. In cytologic preparations, tumor cells are 

4 Pathologic Basis and Classification of Biliary Epithelial Neoplasms



118

a b

c d  

e

Fig. 4.25 Low-grade neuroendocrine tumor. (a) The tumor is comprised of monotonous cells in 
different arrangements interspersed with collagenized fibrous stroma. (b) Monomorphous tumor 
cells with round nuclei and fine dispersed so-called “salt-and-pepper” chromatin, rare mitosis, and 
small amounts of eosinophilic cytoplasm. Synaptophysin (c) and chromogranin (d) are highly 
sensitive and highly specific immunohistochemical marker for neuroendocrine differentiation, 
respectively. (e) Small cell neuroendocrine carcinoma consists of mitotically active small fragile 
calls with hyperchromatic nuclei. Nuclear molding with inconspicuous intervening cytoplasm is a 
helpful diagnostic histologic and cytologic finding
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poorly cohesive small round blue cells with very high N:C ratio, hyperchromatic 
nuclei, nuclear molding, frequent mitosis, apoptotic bodies, and tumor necrosis in 
the background. LC-NEC is recognized by large nuclei and prominent nucleoli. 
NECs express common neuroendocrine phenotype and a Ki67 index >20%. They 
are also commonly positive for p53 and may show aberrant expression of TTF1, 
which may mislead to an impression of pulmonary primary. MiNEN is defined by 
combination of neuroendocrine and non-neuroendocrine phenotypes [8].

MiNENs of the GB and EHBD are exceedingly and a composite of NEN and 
adenocarcinoma, also known as mixed adenoneuroendocrine carcinoma (MANEC). 
Intestinal metaplasia is a frequent finding and is thought to be involved in the devel-
opment of these tumors through a metaplasia-dysplasia-carcinoma sequence [233–
235]. Tumors are more common in men (3.5:1), located in the common bile duct or 
common hepatic duct and range between 1 and 5 cm [233]. Histologically, adeno-
carcinoma and NECs are mixed but separate and can be recognized clearly. 
Adenocarcinoma is usually intestinal type, mucin producing, and poorly differenti-
ated with common signet-ring-like tumor clusters. Adenocarcinoma is positive for 
CDX2, MUC2, CK19, and MUC5AC.  In all reported cases, the neuroendocrine 
cells are strongly positive for synaptophysin, while other markers are positive in 
most but not all cases [233].

 Pathogenesis and Molecular Pathology of the GB 
and EHBD NENs

Because of paucity of NEN in GB and EHBD and limited data, the pathogenesis of 
these tumors is unclear. Very small number of enterochromaffin cells in the biliary 
system is the plausible reason for very low incidence of NEN in this location. It has 
been postulated that following chronic inflammation or cholestasis biliary epithe-
lium undergoes neuroendocrine metaplastic changes to engage in a number of auto-
crine and paracrine pathways, which over time increases number of neuroendocrine 
cells and risk of malignant transformation [236–238]. A EHBD carcinoid tumor 
found to have loss of heterozygosity with opposite allelic and IHC patterns signify-
ing possibility of emergence of a new clone within the same tumor [239].

SC-NEC of the GB show large frequency of p53 and p16INK4a and low fre-
quency of SMAD4 and KRAS mutations [232]. However, KRAS, p53, p16, and 
SMAD4 do not appear to play a role in the pathogenesis or clinical course of the 
low-grade biliary NENs (carcinoids) [232, 240, 241]. Analysis of an advanced GB 
SC-NEC revealed gene enrichment associated with axon guidance, ERBB signaling 
sulfur metabolism, and calcium signaling. Somatic coding damage in HMCN1, 
CDH10, and NCAM2-SGCZ and BTG3-CCDC40 gene fusions, with multiple chro-
mosomal deletions, tandem duplications, and inversion, was also detected. This 
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tumor also showed microsatellite instability and genome-wide copy number varia-
tions [242].

An EHBD carcinoid tumor found to have loss of heterozygosity with opposite 
allelic and IHC patterns signifying possibility of emergence of a new clone within 
the same tumor [239].

 Summary

The biliary system gives rise to a heterogeneous group of epithelial neoplasms with 
different cells of origins and remarkable diversity in epidemiology, etiology, patho-
physiology, genetic signature, morphological features, location, treatment 
approaches, and prognosis. Chronic inflammation triggers the majority of these 
neoplasms through a sequential progression from reactive changes to in situ malig-
nant transformation and eventually invasive carcinoma. The pathological basis of 
neoplastic precursors and invasive lesions plays an essential role in multidisci-
plinary management of these challenging tumors. Historically, several factors have 
contributed to inconsistencies in the nomenclature used to describe these neoplasms 
and their classification. Advancements in genetic and molecular investigations have 
improved understanding of the pathophysiology and behavior of these neoplasms as 
well as their categorization. Further genetic and molecular investigations are 
required for proper categorization, early detection, effective treatment, and novel 
targeted therapy of these malignant neoplasms.
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IR Incidence ratio
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MRCP Magnetic resonance cholangiopancreatography
MRI Magnetic resonance imaging
MRP2 Multidrug resistance-associated protein 2
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MUTYH, MYH MutY homolog
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NKG2D Natural killer cell receptor group 2 member D
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SNPs Single nucleotide polymorphisms
STAT3 Signal transducer and activator of transcription 3
TNF Tumor necrosis factor
TSER Thymidylate synthase enhancer region
WHO World Health Organization
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 Introduction

Cholangiocarcinoma (CCA) is the second most common primary liver cancer after 
hepatocellular carcinoma (HCC). CCA is currently classified into three distinct sub-
types based on anatomic location: intrahepatic CCA (iCCA), perihilar CCA 
(pCCA), and distal CCA (dCCA). Each subtype has its respective risk factors, 
genetics, clinical characteristics, management, and outcomes [1]. iCCA, also known 
as peripheral CCA, arises from small intrahepatic bile ducts above the secondary 
hilar branch of the left and right hepatic ducts. pCCA, the so-called Klatskin tumor, 
is located between the secondary branches of hepatic duct and the insertion of the 
cystic duct. dCCA arises in the common bile duct, confined to the area between the 
cystic duct junction and the ampulla of Vater [2, 3]. pCCA is the most common 
subtype, accounting for 50–60% of all CCAs, followed by dCCA (20–30%) and 
iCCA (10–20%) [3, 4]. Sometimes, pCCA and dCCA are grouped together as extra-
hepatic CCA (eCCA).
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 Epidemiology

 Incidence of CCA

CCA is considered a relatively a rare cancer, with an annual incidence of 0.3–6 per 
100,000 people, globally. However, there is substantial variation in its incidence 
among different geographic regions. The incidence of CCA is much higher in some 
Asian countries (>6 per 100,000 population in Thailand, South Korea, and China) 
than in Western countries (0.35–2 per 100,000 persons) (Table 5.1) [5]. This diver-
sity of incidence is explained by variation in host genetic and environmental risk 
factors.

Table 5.1 Global incidence rates of CCA

Eastern 
countries

Age-standardized incidence 
rate per 100,000 people

Western 
countries

Age-standardized incidence 
rate per 100,000 people

Thailand – 
Northeast

85.0 Italy 3.4

Thailand – 
North

14.5 Germany 3.0

Thailand – 
Central

14.4 Austria 2.7

South Korea, 
Gwangju

8.8 United 
Kingdom

2.2

China, Shanghai 7.6 United States 1.6
China, Qidong 7.5 USA 1.6
South Korea, 
Daegu

7.3 Denmark 1.3

South Korea, 
Busan

7.1 France 1.3

Thailand – 
South

5.7 Finland 1.1

Taiwan 4.7 Poland 0.7
Japan, Osaka 3.5 Spain 0.5
Japan, 
Hiroshima

3.1 Switzerland 0.5

Hong Kong 2.3 Canada 0.4
Singapore 1.5 Puerto Rico 0.4
Philippines 1.2 Costa Rica 0.3
China, 
Guangzhou

1 Israel 0.3

Australia 0.4
New Zealand 0.4
Vietnam 0.1

Adapted from Ref. [5]
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The incidence of CCA has increased in most countries over the past few decades, 
with a substantial increase in the incidence of the iCCA subtype in particular [4, 
6–8]. For example, the overall incidence of CCA in the United States increased by 
65% from 1973 to 2012, with a higher magnitude of increase in the incidence of 
iCCA than in that of eCCA (350% vs. 20%) [4]. The reasons for the rising trends in 
CCA, particularly the iCCA subtype, remain unclear, though several have been pro-
posed; namely, the increase in the incidence of some potential risk factors globally 
(details are discussed below), the better understanding of CCA biology and sub-
types, the ability to differentiate iCCA from other cancers found in the liver that 
were previously diagnosed as cancers of unknown primary origin (CUP) [8], and 
the changes in World Health Organization (WHO) International Classification of 
Diseases (ICD) coding system may all have contributed to the increased incidence 
[3]. However, there are geoepidemiological differences in CCA incidence trends; 
e.g., the incidence decreased between 1978 and 2002 in Denmark [9] while remain-
ing stable in Burgundy, France, between 1976 and 2005 [10].

 Mortality Rate

CCA is a highly lethal cancer. Despite advances in diagnostic methods and treat-
ment modalities, survival remains poor globally [4, 10, 11]. The high mortality rate 
of CCA is due to (i) its aggressiveness; (ii) late diagnosis, as it is clinically silent in 
the early stage; and (iii) high recurrence rate after treatment. A population-based 
study in the United States reported that the mortality rate was stable between 1973 
and 2008, with a median overall survival of 7 months, and the median overall sur-
vival was 8 and 4 months for eCCA and iCCA patients, respectively [4]. Consistent 
with these findings, another nationwide study in Thailand reported a high mortality 
rate, with a 1-year mortality rate of 81.7%, which was stable from 2009 to 2013 [11].

 Risk Factors for CCA

Pathogenesis of CCA involves a complex interplay between host genetic suscepti-
bility, host factors, and environmental factors. To date, several diseases/conditions 
have been identified as risk factors for CCA. These risk factors vary geographically. 
Some factors are strongly associated with a higher risk of CCA but are less com-
monly encountered, whereas some factors are associated with a lower risk but are 
more frequently encountered in the general population. Some emerging factors 
were reported in recent epidemiologic studies and might in part explain the increas-
ing trend of CCA incidence. Of note, approximately 50–60% of CCA patients in 
Western populations do not have any identifiable risk factors [12], suggesting that 
there are other factors yet to be discovered. Risk factors for CCA are summarized in 
Table 5.2; some of these factors contribute to both iCCA and eCCA subtypes, while 
others are more specific to either iCCA or eCCA.
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 Host Factors

 Age and Sex

Older age confers risk of CCA development, with a 1.25-fold increased risk of CCA 
for every 10-year increase in age, analogous to various other malignancies [12]. 
CCA usually presents in the sixth to seventh decade of life and is more common in 
males than in females.

Table 5.2 Risk factors for intrahepatic and extrahepatic cholangiocarcinoma [12, 21, 26, 27, 32, 
46, 62, 97, 101]

Risk factor
Association with iCCA Association with eCCA
Strength OR (95%CI) Strength OR (95%CI)

Bile duct conditions

Choledochal cyst ++++ 26.71 (15.80–45.16) ++++ 34.94 (24.36–50.12)
Caroli’s disease ++++ 38.13 (14.20–102.38) ++++ 96.81 (51.02–183.68)
Primary sclerosing 
cholangitis

++++ 93.4 (27.1–322.2) ++++ 453 (104–999) and 34.0 
(3.6–323.1)a

Hepatolithiasis ++++ 50.0 (21.2–117.3) and 
6.7 (1.3–33.4)b

No association

Choledocholithiasis ++++ 10.08 (5.50–18.49) ++++ 18.58 (11.07–31.18)
Cholelithiasis +++ 3.38 (1.93–5.92) +++ 5.92 (3.09–11.32)
Liver fluke infection +++ 4.17 (2.81–6.19)c +++ 4.17 (2.81–6.19)c

Chronic liver diseases

Cirrhosis ++++ 15.32 (9.33–25.15) +++ 3.82 (2.58–5.65)
Hepatitis B infection ++++ 4.57 (3.43–6.09) ++ 2.11 (1.64–2.73)
Hepatitis C infection +++ 4.28 (2.98–6.16) ++ 1.98 (1.33–2.94)
NAFLD/NASH ++ 2.22 (1.52–3.24) + 1.55 (1.03–2.33)
Metabolic conditions

Diabetes ++ 1.73 (1.47–2.04) + 1.50 (1.31–1.71)
Obesity Inconclusive Inconclusive
Metabolic syndrome Inconclusive Inconclusive
Toxin and environmental exposure

Alcohol +++ 3.15 (2.24–4.41) Inconclusive
Smoking + 1.25 (1.05–1.49) + 1.69 (1.28–2.22)
Thorotrast ++++ 300 foldsc ++++ 300 foldsc

Asbestos +/++ IR: 1.6–4.35 No association
Organic solventsd ++ IR: 2.34 (1.45–3.57) No association
Genetic polymorphisms (see Table 5.3)

Abbreviations: IR incidence ratio, NAFLD/NASH nonalcoholic fatty liver disease/nonalcoholic 
steatohepatitis, OR (95%CI) odds ratio (95% confidence interval)
aFor pCCA and dCCA, respectively
bFor Asian and Western populations, respectively
cAvilable data did not distinguish between iCCA and eCCA
dOrganic solvents in printing industrial work, e.g., dichloromethane or 1,2-propylene dichloride
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 Bile Duct Conditions

Most chronic bile duct disorders are established risk factors for CCA. These include 
choledochal cysts, primary sclerosing cholangitis (PSC), and liver fluke infection. 
Choledochal cysts and PSC are relatively uncommon in the general population yet 
are notable in that they can predispose to CCA in young individuals, though older 
individuals may also be affected by either [13, 14].

 Choledochal Cysts and Caroli’s Disease

Choledochal cysts, or bile duct cysts, are strongly associated with a long-term risk 
of both iCCA and eCCA. Choledochal cysts are rare congenital anomalies charac-
terized by dilatation of intrahepatic and/or extrahepatic bile ducts. They are more 
commonly found in East Asian than Western populations. The prevalence of chole-
dochal cysts is estimated to be 1 in 13,000 in Japan and China and 1 in 150,000 in 
Western countries [15, 16]. Choledochal cysts are generally categorized into five 
types based on the anatomical location of bile duct dilatation (Fig. 5.1) [17]. Type I 
is the most common type, accounting for 60–80%, followed by type IV (15–30%) 
and type V or Caroli’s disease [18, 19] Caroli’s disease is characterized by 

Type I

Type II

Type III

Type IVb

Type IVa

Type V

Dilatation of extrahepatic bile duct

Supraduodenal diverticulum
of extrahepatic bile duct

Intraduodenal diverticulum
(choledochocele)

Multiple dilatations of intra-
and extrahepatic bile ducts

Multiple dilatations of
extrahepatic bile ducts

Multiple cystic dilatations of
intrahepatic bile ducts
(Calori’s disease)

Fig. 5.1 Todani 
classification of 
choledochal cyst [17]
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multifocal, segmental dilatation of large intrahepatic ducts; when associated with 
congenital hepatic fibrosis, it is called Caroli’s syndrome [20]. Both Caroli’s disease 
and Caroli’s syndrome are inherited autosomal recessive diseases and are associated 
with autosomal recessive polycystic kidney disease (ARPKD).

Approximately 80–90% of patients with choledochal cysts are females [21, 22]. 
Common presentations are jaundice, abdominal pain, and palpable right upper 
quadrant mass. An association between choledochal cysts and CCA has long been 
established. Cholangiocarcinogenesis in choledochal cysts is caused by increased 
bile acids due to bile stasis and reflux of pancreatic enzymes and chronic cholangi-
tis. These lead to hyperplasia, dysplasia, and subsequent malignant transformation 
of biliary epithelium of the dilated bile duct wall [23]. Patients with a choledochal 
cyst have a 20- to 30-fold greater risk for CCA than the general population, though 
the degree of risk depends on the type of choledochal cyst [24]. The risk increases 
with age, with a lifetime risk of 10–30% [25]. The odds ratios (95% CI) of chole-
dochal cyst were 26.71 (15.80–45.16) and 34.94 (24.36–50.12) for iCCA and 
eCCA, respectively [26]. Similarly, Caroli’s disease was associated with both iCCA 
and eCCA with ORs of 38.13 (14.20–102.38) and 96.81 (51.02–183.68), respec-
tively [27]. Individuals with choledochal cyst develop CCA at a much younger age 
than the general population, with the mean age at the time of developing CCA being 
only 32 years [25]. Of note, tumors can also arise in undilated parts of the bili-
ary tree.

Surgical excision of choledochal cyst is recommended to prevent development of 
CCA, except in type III choledochal cyst, where the benefit of surgery does not 
outweigh the risk. At the time of preventative resection, CCA has been incidentally 
found in 3–4% of resected specimens [21, 22]. Incomplete cyst excision can lead to 
recurrent disease and malignant transformation within the cyst remnant [21]. 
Approximately 3% of patients have been reported to develop CCA after resection, 
which can occur at 1–32 years post-resection [28, 29]. Lifelong close follow-up is 
therefore needed [21, 22].

 Hepatolithiasis, Cholelithiasis, and Choledocholithiasis

Hepatolithiasis is the presence of a stone in the intrahepatic bile ducts. Similar to a 
choledochal cyst, it is more prevalent in East Asia (2–25% in Taiwan, China, Hong 
Kong, South Korea, and Japan) than Western countries (0.6–1.3%) [30]. 
Hepatolithiasis is an established risk factor for iCCA and has been found to increase 
the risk of iCCA by 50-fold and seven-fold in Asian and Western populations, 
respectively [31, 32]. The overall incidence of CCA in patients with hepatolithiasis 
was reported to be 5–23% [30]. Pathogenesis of CCA in hepatolithiasis includes 
chronic proliferative cholangitis due to bile stasis, biliary stricture, recurrent chol-
angitis, and chronic bacterial infection [33, 34].

Cholelithiasis (i.e., gallstones or cholecystolithiasis) and chronic choledocholi-
thiasis (gallstones within the common bile duct) have been shown to increase the 
risk for CCA in epidemiological studies. A recent meta-analysis of 25 case-control 
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studies from 7 different countries reported associations between both conditions 
and CCA. Choledocholithiasis was more strongly associated with eCCA than with 
iCCA, with ORs (95% CI) of 18.58 (11.07–31.18) and 10.08 (5.50–18.49), respec-
tively [26]. The association between cholelithiasis and CCA is less clear; however, 
cholelithiasis is the most common risk factor of gallbladder cancer [35].

 Primary Sclerosing Cholangitis

PSC is an idiopathic biliary disorder characterized by chronic progressive inflam-
mation resulting in fibrosis and stricturing of the intrahepatic and extrahepatic bile 
ducts. The chronic inflammatory state leads to increased proliferation of biliary epi-
thelial cells. In addition, bile stasis causes increased production of endogenous 
mutagens in the bile. These and other mechanisms contribute to biliary carcinogen-
esis [36–38].

PSC is a well-established risk factor for CCA [39]. It is one of the most common 
causes of CCA in Western populations. An autopsy series reported the presence of 
CCA in 30–40% of PSC patients [40]. Those with PSC had a 5–36% lifetime risk of 
CCA, with an annual incidence of 0.6–1.5% [41]. PSC patients develop CCA at a 
younger age than the general population, typically in their fourth decade of life. The 
highest incidence of CCA occurs during the first 2 years after PSC is diagnosed 
[42]. The high rate of CCA development shortly after diagnosis of PSC is likely 
explained by occult CCA not being detected at the time of PSC diagnosis (and long- 
standing but undetected history of PSC) rather than de novo CCA occurring after 
PSC diagnosis [12]. Patients with PSC have a 400-fold to 1500-fold higher risk of 
CCA than the general population [39]. The relationship of PSC was much stronger 
in pCCA than iCCA and dCCA, as demonstrated in a large hospital-based case- 
control study of 2395 CCA cases and 4769 controls, reporting ORs (95% CI) of 453 
(104–999), 93.4 (27.1–322.2), and 34.0 (3.57–323.1), for pCCA, iCCA, and dCCA, 
respectively [12].

 Liver Fluke Infection

Liver flukes Opisthorchis viverrini and Clonorchis sinensis are well-recognized 
risk factors for CCA. Chronic infection with either fluke is classified as “carcino-
genic to human (Group 1)” by the International Agency for Research on Cancer 
(IARC) [43]. It is a common cause of CCA in East Asia (Korea, China, and 
Thailand), where liver fluke infection is endemic. It is estimated that 35 million 
and ten million individuals are infected with O. viverrini and C. sinensis world-
wide, respectively [44, 45]. A meta-analysis of 24 case-control studies showed 
that individuals with liver fluke infection had a 4.2-fold higher risk for developing 
CCA than those without the infection [46]. Humans become infected with the 
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liver fluke by ingestion of raw or undercooked fish containing metacercariae, 
which are the infective stage of liver flukes. Once ingested, the metacercaria 
excysts in the duodenum, and the young fluke enters the bile duct retrograde 
through the ampulla of Vater. It takes approximately 1 month for a young fluke to 
become an adult fluke. The adult fluke resides in the small or medium bile ducts 
in the liver and can survive for many years therein. The average lifespan of 
O. viverrini is estimated to be approximately 10 years, while C. sinensis may live 
up to 26 years [47, 48].

Liver flukes cause CCA through several mechanisms, including direct mechani-
cal damage by their movements, chronic inflammation, and the effect of their 
metabolites and antigens secreted into the bile duct. Some of these metabolites are 
potently immunogenic and induce strong host immune response causing severe 
inflammation. Some metabolites are directly toxic to the bile duct epithelium, 
resulting in epithelial desquamation and hyperplasia, followed by periductal fibrosis 
[49]. Both O. viverrini and C. sinensis excretory-secretory (ES) antigens can pro-
mote cell proliferation [50, 51]. Oxidative DNA damage is another mechanism of 
liver fluke-induced cholangiocarcinogenesis [52]. Liver fluke infection-related 
CCA is discussed in further detail in a dedicated chapter in this book (Chap. 11, 
Waraasawapati et al.).

 Chronic Liver Diseases

Chronic liver diseases, including cirrhosis and chronic viral hepatitis B (HBV) and 
C (HCV) infections, are well-recognized risk factors for HCC. Accumulating epi-
demiologic evidence has shown that these diseases also confer a risk of CCA, par-
ticularly iCCA, suggesting that both HCC and iCCA may share a common 
pathogenesis [12, 26].

 Cirrhosis

A population-based study conducted in Taiwan reported that cirrhosis was signifi-
cantly associated with CCA, with an OR of 8.0 (6.6–9.8) for iCCA and 3.9 (3.0–5.1) 
for eCCA [53]. Consistent with these findings, a subsequent study including 2395 
CCA patients and 4769 controls conducted in the United States confirmed that non- 
PSC- related cirrhosis was strongly associated with iCCA and pCCA, with ORs of 
13.8 (6.62–28.63) and 14.1 (5.87–33.7), respectively [12]. Nevertheless, the asso-
ciation between cirrhosis and dCCA remains unclear, as does biological plausibil-
ity. Cirrhosis could potentially cause CCA via the release of inflammatory cytokines, 
an increase in cell proliferation, and changes in the liver characterized (e.g., fibro-
sis) that promote tumor formation [54].
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 Viral Hepatitis B and C Infections

Similar to cirrhosis, an association of both HBV and HCV infection with CCA has 
been increasingly suggested. The magnitude of association is more pronounced for 
iCCA than for eCCA. A recent meta-analysis demonstrated that HBV infection had 
estimated ORs (95% CI) of 4.57 (3.43–6.09) and 2.11 (1.64–2.73) for iCCA and 
eCCA, respectively, while HCV infection had ORs (95% CI) of 4.28 (2.98–6.16) 
and 1.98 (1.33–2.94) for iCCA and eCCA, respectively [26]. It is important to note 
that these numbers were estimated from mixed populations of those with and with-
out cirrhosis. Thus, the real magnitude of effect of HBV and HCV infection on CCA 
risk is unrevealed.

Both HBV and HCV infections induce development of biliary intraepithelial 
neoplasia (BiLIN), a premalignant change of the bile duct. This premalignant con-
dition was found in 16% of explant livers with HBV-related cirrhosis [55]. Likewise, 
bile duct dysplasia in the intrahepatic ducts was found in 2% of explanted livers of 
patients with HCV infection [56]. A later study confirmed this finding and reported 
that BiLIN was found in 82% of cases of HCV cirrhosis [57]. These pathological 
findings support the plausible biological mechanisms by which these viruses cause 
iCCA and pCCA. As suggested above, in addition to their associations with cirrho-
sis, these viruses might have both direct and indirect effects that induce CCA. These 
viruses encode oncoproteins involved in hepatocarcinogenesis. They also cause a 
chronic inflammatory state in the liver, which induces oxidative stress and increases 
levels of reactive oxygen species, causing DNA damage and impairing DNA repair 
mechanisms, which in turn can cause genetic mutations and cell proliferation fol-
lowed by malignant transformation [58].

 Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic 
Steatohepatitis (NASH)

NAFLD is now the most common chronic liver disease in Western countries. The 
spectrum of NAFLD ranges from simple steatosis, defined as fat accumulation in 
>5% of hepatocytes, to NASH, which is characterized by steatosis with hepatic 
inflammation and can progress to liver fibrosis and cirrhosis. NAFLD/NASH has 
been shown to be associated with HCC and extrahepatic cancers [59–61]. A meta- 
analysis of seven case-control studies has suggested a possible relationship between 
NAFLD/NASH and CCA [62]. NAFLD/NASH was more strongly associated with 
iCCA than eCCA, i.e., ORs were 2.22 (95% CI: 1.52–3.24) and 1.55 (95% CI: 
1.03–2.33) for iCCA and eCCA, respectively. A more recent meta-analysis and trial 
sequential analysis, after removal of confounding factors, confirmed a positive asso-
ciation between NAFLD and iCCA but not with eCCA [63].

It is conceivable that NAFLD contributes to CCA via indirect and direct mecha-
nisms, analogous to chronic viral hepatitis. Indirectly, NAFLD induces chronic 
hepatic inflammation, leading to progression to NASH and cirrhosis, a recognized 
independent risk factor for CCA [54]. Directly, NAFLD induces expression of pro-
inflammatory cytokines, particularly interleukin-6 (IL-6) and tumor necrosis factor 
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(TNF)-alpha, which play a major role in cholangiocarcinogenesis. IL-6 promotes 
cholangiocyte proliferation [64, 65]. TNF-alpha activated inducible nitric oxide 
synthase (iNOS) leading to nitric oxide production, which subsequently promoted 
DNA damage and inhibited DNA repair mechanisms [66]. iNOS activation also 
upregulated cyclooxygenase-2 (COX-2) expression which is another important 
mechanism that increases the proliferation of cholangiocytes [67].

 Metabolic Conditions

Diabetes, obesity, and metabolic syndrome are pandemic diseases. In recent years, 
accumulating evidence has suggested that these conditions may confer a significant, 
although modest, risk of CCA development.

 Diabetes

Several meta-analyses have consistently demonstrated the association between type 
2 diabetes and CCA [26, 68]. The most recent meta-analysis, including 12 case- 
control studies of iCCA and 6 case-control studies of eCCA, showed that type 2 
diabetes was associated with both iCCA and eCCA with ORs of 1.73 (1.47–2.04) 
and 1.50 (1.31–1.71), respectively [26]. Mechanisms by which diabetes contributes 
to CCA are not well understood. One plausible mechanism is related to compensa-
tory hyperinsulinemia due to insulin resistance in diabetes. Insulin binds to insulin 
receptors on cancer cells and stimulates their growth [69]. Insulin upregulates 
insulin- like growth factor, which in turn increases proliferation and inhibits apopto-
sis of cholangiocytes [70]. Another possible mechanism may be linked to indirect 
effects secondary to other conditions related to diabetes, e.g., obesity, NAFLD, and 
cirrhosis.

 Obesity

Obesity is related to an increased level of leptin, which has been shown to promote 
tumor growth in a number of cancers [71]. Leptin receptors are mainly expressed in 
the brain but also in other tissues including normal and malignant cholangiocytes. In 
vitro data have shown that leptin increases proliferation and migration and decreases 
apoptosis of CCA cells [72]. Additionally, obesity is related to increased levels of 
proinflammatory cytokines, particularly IL-6 and TNF [34]. Although obesity has 
been linked to a number of cancers in the gastrointestinal system, including esopha-
geal, gastric, colorectal, pancreatic, gallbladder, and HCC [73], data on the associa-
tion between obesity and CCA are controversial. A meta-analysis including 11 cohort 
studies and 14 case-control studies reported an RR of 1.48 (95% CI, 1.21–1.81) for 
eCCA [74]. Likewise, data from a meta-analysis of 13 US-based prospective cohort 
studies and 3 nested case-control studies found that obesity was significantly 
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associated with iCCA with a relative risk of 1.49 (1.32–1.70) [68]. However, a more 
recent meta-analysis of 7 case-control studies of iCCA and 7 case- control studies of 
eCCA did not observe such associations with both CCA subtypes, i.e., ORs were 1.14 
(0.93–1.39) and 1.20 (0.84–1.70) for iCCA and eCCA, respectively [26]. Whether 
obesity is associated with an increased risk of CCA needs to be further studied.

 Metabolic Syndrome

Metabolic syndrome (MetS) is a group of metabolic disorders that increases the risk 
of cardiovascular diseases. These disorders include obesity, insulin resistance, 
hypertension, and dyslipidemia. MetS has been associated with several cancers, 
including HCC and colorectal cancer; however, the magnitude of association was 
only fair, with risk estimates ranging from 1.1 to 1.6. Moreover, the risk estimates 
varied by gender, populations, and definitions of MetS [75]. Regarding CCA, data 
on an association between MetS and the risk of CCA are limited and inconclusive. 
The first published evidence came from the Surveillance, Epidemiology, and End 
Results (SEER)-Medicare database including 743 iCCA cases, which demonstrated 
a potential relationship between MetS and iCCA with an OR of 1.56 (95% CI 
1.32–1.83) [76]. However, this finding was not replicated in a subsequent, large, 
hospital-based case-control study of 612 iCCA patients [77]. A more recent hospital- 
based case-control study in China showed that ORs were 2.68 (95% CI: 1.72–4.16) 
and 1.79 (95% CI: 1.15–2.79) for iCCA and eCCA, respectively [78]. Mechanisms 
by which MetS is implicated in CCA are not well understood. It may be linked to 
oxidative stress [79] or simply a surrogate marker for other general cancer risk fac-
tors, e.g., physical inactivity, high caloric intake, and low fiber intake [80, 81].

 Toxin and Environmental Exposure

 Alcohol

Heavy alcohol consumption has been shown to be associated with HCC and various 
other cancers, including oropharyngeal, esophageal, colorectal, and breast [82]. A 
relationship between alcohol consumption and iCCA has been observed in most of 
case-control studies. A meta-analysis including 10 case-control studies reported 
that alcohol exposure, defined as >80 g per day of alcohol consumption, presence of 
alcoholic liver disease, or a defined threshold for alcohol exposure, increased the 
risk of iCCA by 2.8-fold (OR 2.81, 95% CI: 1.52–5.21) [83]. Likewise, a recent 
meta-analysis of 15 case-control studies demonstrated a strong relationship between 
alcohol exposure and iCCA, with an OR of 3.15 (95% CI: 2.24–4.41) [26]. Unlike 
iCCA, the link between alcohol use and eCCA risk remains controversial. A meta- 
analysis of 6 case-control studies and 1 prospective cohort study did not report a 
positive association between alcohol consumption and eCCA risk (RR 1.09; 95% 
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CI: 0.87–1.37) [84], while another meta-analysis including 11 case-control studies 
found that alcohol exposure, defined as >80 grams per day, any history of exposure, 
>15 drinks per week, or through ICD9 codes, increased the risk of eCCA, with an 
OR of 1.75 (95% CI: 1.20–2.55) [26]. Mechanisms of alcohol-associated cancer 
involve the production of acetaldehyde (the toxic metabolite of alcohol metabolism 
that affects DNA synthesis and repair) and reactive oxygen species [85].

 Tobacco

Tobacco use is known to have a tumorigenic effect in a number of cancers, including 
CCA [86]. Cigarette smoke contains several compounds that have been shown to be 
carcinogenetic. One of them is N-nitrosodimethylamine, which has been clearly 
demonstrated to cause CCA in mice [87]. A large, hospital-based case-control study 
conducted in the United States reported that ever-smokers had a 1.29-fold greater 
risk for developing CCA than nonsmokers [12]. When classified by CCA subtypes, 
smoking was associated with all subtypes, with ORs (95% CI) of 1.21 (1.02–1.43), 
1.25 (1.03–1.52), and 1.85 (1.27–2.71) for iCCA, pCCA, and dCCA, respectively 
[12]. These findings were validated in a meta-analysis consisting of 12 case-control 
studies reporting an association between smoking and iCCA and eCCA with ORs 
of 1.25 (95% CI: 1.05–1.49) and 1.69 (95% CI 1.28–2.22), respectively [26].

 Thorotrast

Thorotrast, or radioactive thorium dioxide, was widely used as a radiologic intrave-
nous contrast agent between the 1930s and 1950s [88]. It emits alpha particles that 
have a biologic half-life of 400 years. After injection, Thorotrast accumulates in retic-
uloendothelial cells. Approximately 60–70% of Thorotrast is deposited in the liver for 
decades and induces cancer formation with a long latent period after exposure. 
Cancers induced from Thorotrast include CCA (particularly the iCCA subtype), 
malignant hemangioendothelioma, and leukemia [89]. Thorotrast exposure increased 
the risk of CCA by 300 times, with an average time of disease onset 26 years after 
exposure (range: 3 – over 40 years) [90]. Although Thorotrast has been banned since 
the 1950s and is no longer used, Thorotrast-induced CCA may still be encountered in 
those who received this agent decades earlier. The development of CCA by Thorotrast 
involves multistep carcinogenesis, including microsatellite instability and mutations 
of the RAS oncogene and the TP53 tumor suppressor gene [91, 92].

 Asbestos

Asbestos is a Group 1 human carcinogen classified by the IARC [93]. It is a well- 
recognized causative agent of mesothelioma and lung cancer (adenocarcinoma, 
squamous cell carcinoma, and small cell carcinoma) [94]. Mounting epidemiologic 
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evidence has shown a potential association between asbestos exposure and the risk 
of iCCA (but not of ECC) [95]. Occupational exposure to asbestos for over 30 years 
conferred a 4.8-fold increased risk of iCCA in one study [96]. Asbestos exposure is 
believed to be one of the causes of the rising incidence of iCCA in Western popula-
tions during recent decades. Standardized incidence ratios of CCA have been found 
to range from 1.6 to 4.35 among workers who were exposed to asbestos [97].

The presence of asbestos fibers in the liver was reported since the 1980s [98]. 
Asbestos fibers reach the liver and bile duct via inhalation and ingestion. After inha-
lation, asbestos fibers can cross the alveolar epithelial barrier to enter the pulmonary 
lymphatic system, to be further drained into the venous system and spread to other 
organs, including the liver and bile ducts. If ingested, fibers can penetrate the gas-
trointestinal mucosa and reach the liver through the portal vein. Once they enter into 
the tissue, fibers are phagocytosed by macrophages. Activated macrophages release 
proinflammatory cytokines, leading to a chronic inflammatory state. After a very 
long latency period (30–40 years) after exposure, malignant transformation of cells 
may occur through several mechanisms, including chronic inflammation, activation 
of multiple signaling pathways in cell proliferation, and survival, e.g., the epidermal 
growth factor receptor (EGFR) pathway, production of reactive oxygen species and 
reactive nitrogen species, and induction of genetic aberrations [97, 99]. Genetic 
predisposition also appears to play an important role in asbestos-induced carcino-
genesis; individuals who carry the BRCA1-associated protein 1 (BAP1) germline 
mutations are particularly susceptible to asbestos-induced cancers [97].

 Organic Solvents in Printing Industrial Work

The link between chronic exposure to organic solvents used in the printing industry, 
e.g., dichloromethane or 1,2-propylene dichloride, and CCA has been recently 
established. A cluster of CCA patients among young proof-printing workers was 
reported in Japan [100]. The patients were diagnosed with CCA 7–20 years after 
chemical exposure and developed CCA at young ages (25–45 years). Another report 
analyzing the Nordic Occupational Cancer Study (NOCCA) database found the 
increased risk of CCA among workers in the Nordic printing industry; specifically, 
typographers and printers had an increased risk of iCCA, but not eCCA, with stan-
dardized incidence ratios (SIRs) of 2.34 (95% CI: 1.45–3.57) [101].

 Genetic Polymorphisms

A number of case-control studies have demonstrated the possible role of genetic 
predisposition in CCA development. Variants of genes involved in DNA repair 
mechanisms, metabolizing enzymes, inflammation, and the immune system were 
shown to contribute to CCA risk.

Table 5.3 summarizes genetic polymorphisms previously identified as factors 
associated with CCA.  Most of these variants have yet to be validated or their 
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Table 5.3 Studies of the association between genetic variations and risk of cholangiocarcinoma

Risk factor Discovery cohort Validation cohort

Country

Number 
of cases/
controls OR (95%CI) Country ResultGenes Polymorphisms

Metabolic enzyme-related genes

GSTO1 GSTO1*A140D Thailand 
[115]

30/98 8.5 
(2.07–37.85)

United 
States 
[116]

Negative

rs4925 United 
States [116]

370/740 1.11 
(0.92–1.34)

N/A

GSTM1 Null variant with 
elevated level of 
anti-OV antibody

Thailand 
[117]

129/129 23.53 
(4.25–
130.31)

N/A

GSTT1 Null variant in 
ex-regular drinker

Thailand 
[117]

129/129 27.93 
(1.84–
424.60)

N/A

MTHFR 1298CC Thailand 
[118]

219/438 2.0 
(1.14–3.48)

N/A

MTHFR/
TSER

MTHFR 677CC with 
the TSER 2R(+) 
genotype

Korea [119] 47/204 5.38 
(1.23–23.56)

N/A

NAT1 NAT1*11 Thailand 
[120]

216/233 0.10 
(0.00–0.58)

N/A

NAT2 NAT2*13 Thailand 
[120]

216/233 0.35 
(0.16–0.77)

N/A

NAT2 NAT2*6B Thailand 
[120]

216/233 0.28 
(0.12–0.69)

N/A

NAT2 NAT2*7A Thailand 
[120]

216/233 0.33 
(0.16–0.70)

N/A

DNA repair-related genes

MYH rs3219472 China [121] 59/100 2.82 
(0.99–7.99)

N/A

rs3219476 China [121] 59/100 0.36 
(0.17–0.76)

N/A

hOGG1/ 
GSTM1

hOGG1 codon 326 
with GSTM1 
polymorphism

Thailand 
[122]

25/24 0.06 
(0.01–0.53)
0.06 
(0.01–0.54) 
and 0.14 
(0.02–1.08)a

N/A

XRCC1 rs1799782 China [123] 127/786 1.9 (1.1–3.5) N/A
Others (innate immune system, inflammation, and bile acid)
NKG2D rs2617167 Scandinavia 

[124]
49/368 2.32 

(1.47–3.66)
United 
States 
[116]

Negative

(continued)
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associations with CCA were not replicated. Collectively, these findings imply that 
genetic susceptibility is complex; it may interact with other host and environmental 
factor to affect the risk of CCA development at the individual level.

 Surveillance and Prevention

 Surveillance for CCA

Surveillance for CCA in high-risk populations, e.g., PSC patients and those living 
in areas endemic for liver fluke infection, has been shown to improve survival of 
CCA patients. For example, a recent hospital-based study was conducted in a cohort 
of 830 PSC patients. Of these, 79 patients were diagnosed with hepatobiliary can-
cer, of whom 68% (54/79) were diagnosed with CCA. Among the 79 PSC patients 
with hepatobiliary cancer, 51% (40/79) were under hepatobiliary cancer surveil-
lance with annual abdominal imaging (transabdominal ultrasound, computed 
tomography, or magnetic resonance imaging with magnetic resonance cholangio-
pancreatopgraphy) and blood tests for serum cancer biomarkers, namely, carbohy-
drate antigen 19-9 and alpha fetoprotein, every 6–12 months. The other 49% (39/79) 

Table 5.3 (continued)

Risk factor Discovery cohort Validation cohort

Country

Number 
of cases/
controls OR (95%CI) Country ResultGenes Polymorphisms

England 
[125]

Negative

NKG2D rs11053781 Scandinavia 
[124]

49/368 2.08 
(1.31–3.29)

US [116] Negative

England 
[125]

Negative

COX-2 rs689466 United 
States [116]

370/740 1.36 
(1.10–1.69)

United 
States 
[116]

Negative

COX-2 rs2143417 United 
States [116]

370/740 1.52 
(1.21–1.91)

United 
States 
[116]

Negative

MRP2/
ABCC2

rs3740066 Germany 
[126]

60/73 1.83 
(1.09–3.08)

N/A

Abbreviations: ABCC2 ATP binding cassette subfamily C member 2, COX-2 cyclooxygenase-2, 
GSTM1 glutathione S-transferase Mu 1, GSTO1 glutathione S-transferase omega-1, GSTT1 gluta-
thione S-transferase theta 1, hOGG1 human homolog of the 8-oxoguanine glycosylase 1, MRP2 
multidrug resistance-associated protein 2, MTHFR methylenetetrahydrofolate reductase, MYH 
MutY homolog, NAT1 N-acetyltransferase 1, NAT2 N-acetyltransferase 2, NKG2D natural killer 
cell receptor group 2 member D, TSER thymidylate synthase enhancer region, XRCC1 X-ray repair 
cross-complementing protein 1
aFor hOGG1 Ser/Ser and GSTM1 null, hOGG1 Ser/Cys or Cys/Cys and GSTM1 wild type, and 
hOGG1 Ser/Cys or Cys/Cys and GSTM1 null, respectively
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of patients who were diagnosed with hepatobiliary cancer were not under surveil-
lance. The study demonstrated that patients in the surveillance group had signifi-
cantly better survival than those in the no surveillance group, i.e., 5-year survival 
was 68% vs. 20% (p < 0.001) [102].

Another study was conducted in 4225 individuals in Northern Thailand, where 
O. viverrini is highly prevalent. The participants underwent abdominal ultrasound 
every 6 months for CCA surveillance. After the follow-up period of 5 years, there 
were 48 patients diagnosed with CCA. When compared to a hospital-based cohort 
of 192 CCA patients who never underwent ultrasound for surveillance, CCA 
patients in the surveillance group had a significantly better median survival (31.8 vs. 
6.7 months, p < 0.0001), and a greater number of CCA patients in the surveillance 
group were diagnosed at an operable stage (77.1% (37/48) vs. 11.5% (22/192)). 
CCA surveillance by ultrasound every 6 months improved patient survival by 59% 
(hazard ratio [HR]: 0.41, 95% CI: 0.20–0.82; p = 0.012) [103].

 CCA Prevention

Regarding CCA prevention, some medications have been shown to have a possible 
protective effect against CCA. A large hospital-based case-control study reported 
the significant inverse association between aspirin use and CCA, with an OR (95% 
CI) of 0.34 (0.30–0.39). The protective effect of aspirin was consistent for all CCA 
subtypes, i.e., ORs (95% CI) were 0.35 (0.29–0.42), 0.34 (0.27–0.42), and 0.29 
(0.19–0.44) for iCCA, pCCA, and dCCA, respectively [12]. A meta-analysis of 5 
observational studies (1 cohort study and 4 case-control study) with 9,200,653 
patients, demonstrated that aspirin use was associated with a 44% decreased risk of 
CCA (OR 0.56, 95% CI: 0.32–0.96) [104]. The mechanisms by which aspirin pre-
vents CCA development include inhibition of COX-2, which is overexpressed in 
chronic inflammatory states and induces cell proliferation [105], and inhibition of 
activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF- 
κB), a transcription factor that activates genes in inflammation and apoptosis path-
ways [106].

Another medication shown to have a chemopreventive effect against CCA is 
metformin, a widely used antidiabetic agent. Data from a case-control study found 
that diabetic patients who were treated with metformin had a significantly lower risk 
of iCCA than those not treated with metformin (OR 0.4; 95% CI: 0.2–0.9) [77]. In 
vitro studies have shown that metformin inhibits proliferation and migration of 
CCA cells via suppression of NF-κB and signal transducer and activator of tran-
scription 3 (STAT3) pathways [107, 108].

Curcumin is a natural constituent of turmeric (Curcuma longa) and has long 
been used as a traditional anti-inflammatory agent, particularly in South Asia. 
Increasing evidence from in vitro and in vivo studies have demonstrated the strong 
antioxidant and anti-inflammatory effects of curcumin for prevention of tumor, 
including CCA, formation [109]. Curcumin was shown to reduce bile canaliculi 
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alteration and periductal fibrosis in O. viverrini-infected hamsters [110, 111]. 
Curcumin reduced oxidative DNA damage and inhibited of cell proliferation by 
suppression of the activation of transcription factors NF-kB and JAK2/STAT-3 
[112]. Other mechanisms included induction of cell apoptosis, activation of tumor 
suppressor gene, and inhibition of angiogenesis [109]. Although curcumin has the 
remarkable anticarcinogenic activities and good safety profile, its clinical use 
remains currently limited due to its poor solubility, poor absorption, rapid metabo-
lism, and rapid clearance [113]. Development of novel delivery systems to improve 
solubility and bioavailability, such as nanoparticles, is now underway [114].

 Summary

CCA is a highly lethal cancer with geographic variation in its incidence. Some fac-
tors confer a strong risk of CCA but are relatively uncommon, whereas other some 
factors confer a less strong risk but are common in the general population. The high 
incidence of CCA in some Asian countries is due to the uniquely high prevalence of 
strong risk factors, in particular liver fluke infection and hepatolithiasis. In Western 
countries, the incidence of CCA is relatively low, as strong risk factors are compa-
rably less prevalent. The worldwide incidence of CCA has been increasing, partly 
due to the increasing prevalence of emerging risk factors, e.g., chronic liver diseases 
and metabolic conditions, as well as due to an improved understanding of CCA 
biology and classification. Surveillance for CCA in patients with PSC and individu-
als living in endemic areas of liver fluke infection is associated with improved clini-
cal outcomes.
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BRCA1 Breast cancer susceptibility gene I
BRCA2 Breast cancer susceptibility gene II
BSEP Bile salt export pump
CA 19-9 Carbohydrate antigen 19-9
CCA Cholangiocarcinoma
CCND1 Cyclin D1
CDC6 Cell division cycle 6
CDK6 Cyclin-dependent kinase 6
CDKN2A Cyclin-dependent kinase inhibitor 2
CEA Carcinoembryonic antigen
cfDNA Cell-free DNA
COX-2 Cyclooxygenase 2
CTC Circulating tumor cell
CYP1A2 Cytochrome P450 family 1 subfamily A member 2
dCCA Distal cholangiocarcinoma
EGFR Epidermal growth factor receptor
EpCAM Epithelial cell adhesion molecule
ERB-2 Erb-B2 receptor tyrosine kinase 2
EVs Extracellular vesicles
FBXW7 F-box and WD repeat domain containing 7
FGF19 Fibroblast growth factor 19
FGFR2 Fibroblast growth factor receptor 2
FIC1 Familial intrahepatic cholestasis type 1
FXR Farnesoid X receptor
GANP Germinal center-associated nuclear protein
GSTO1 Glutathione S-transferase omega 1
HBV Hepatitis B virus
HCC Hepatocellular carcinoma
HCV Hepatitis C virus
HOXD9 Homeobox protein Hox-D9
iCCA Intrahepatic cholangiocarcinoma
IDH1 Isocitrate dehydrogenase [ADP(+) 1]
IDH2 Isocitrate dehydrogenase [ADP(+) 2]
KEAP1 Kelch-like ECH-associated protein 1
K-RAS Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
LTO1 LTO1 maturation factor of ABCE1
mAb Monoclonal antibody
MCL1 Induced myeloid leukemia cell differentiation protein
MDM2 Mouse double minute 2 homolog
MDR3 Multidrug resistance gene 3
miR MicroRNA
MRP2 Multidrug resistance-associated protein 2
MTHFR Methylenetetrahydrofolate reductase
MVs Microvesicles
MYC v-Myc myelocytomatosis viral oncogene homolog
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NAT2 Arylamine N-acetyltransferase 2
ncRNA Noncoding RNA
NF1 Neurofibromin 1
NKG2D Natural killer cell lectin-like receptor subfamily 2D
OPCML Opioid binding protein/cell adhesion molecule-like
p14arf An alternative reading frame product of the CDKN2A locus
p16 Cyclin-dependent kinase inhibitor protein p16 (INK4a)
PBRM1 Protein polybromo-1
pCCA Perihilar cholangiocarcinoma
PD-1/PD-L2 Programmed cell death 1/programmed death ligand 2
PI3KCA Phosphoinositide 3-kinase p110
PIGR Polymeric immunoglobulin receptor
PTEN Phosphatase and tensin homolog
RAD51AP1 RAD51 associating protein-1
RASSF1A Ras association domain family 1 isoform A
ROS1 ROS proto-oncogene 1
shRNA Short hairpin RNA
SIN1 Stress-activated map kinase-interacting protein 1
Axin-1 Axis inhibition protein 1
SMAD4 Small body mothers against decapentaplegic 4
SOCS3 Suppressor of cytokine signaling 3
TGF-β Transforming growth factor-β
TP53 Tumor protein p53
TYMS Thymidylate synthetase
UNG Uracil nucleotide glycosidase
VNN1 Vanin1
XRCC1 X-ray repair cross-complementing protein 1

 Introduction

Cholangiocarcinoma (CCA) is the second most common liver malignancy world-
wide and is particularly common in Southeast Asian countries such as Thailand, 
Cambodia, and Laos. A major feature of CCA is its heterogeneity, including of its 
risk factors and causes. For example, many cases of CCA in Northeastern Thailand 
are related to liver fluke infection and presumably originate over time as a result of 
inflammatory damage by the stenosis in the bile duct(s) [1–3]. In contrast, CCAs in 
the other countries are accompanied with sporadic genetic abnormalities commonly 
detected in various malignancies (oncogenic genetic alteration) [4, 5]. This hetero-
geneity of CCA complicates many aspects of its clinical management, including 
diagnosis, prognosis, and surveillance.

Early biomarker analysis of patient sera led to the finding that carbohydrate anti-
gen 19-9 (CA19-9) and other carcinoembryonic markers are valid for the diagnosis 
and follow-up of CCA patients [6]. Genome-wide next-generation gene sequencing 
(NGS) of CCA tumor cells has facilitated the accumulation of further information 
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and formulation of a more comprehensive classification of CCAs as compared to 
earlier compendia of genetic data. Here, we show currently available standard bio-
markers in sections “Classification of CCA”, “Classical Serum Markers”, and 
“Earlier Analyses of Gene Mutation and Amplification in CCA” and propose the 
advanced biomarker/gene marker strategy by combination with the data of the 
genome alterations of the individual CCAs in sections “Challenges of Highly 
Specific Biomarkers”, and “Recent Classification of CCAs with Large-Scale 
Analysis of Multi-omics”.

 Classification of CCA

The clinical diagnosis of CCA involves tumor classification depending on tumor 
location: intrahepatic (iCCA), perihilar (pCCA), and distal (dCCA). (i) Primary 
sclerosing cholangitis (PSC) is one of the primary causes of CCA development in 
the western world. It is a chronic disease of the intrahepatic and extrahepatic bile 
ducts due to inflammation and scarring. (ii) Parasitic infestation with Opisthorchis 
viverrini and Clonorchis sinensis is the significant risk factors of CCA in Asia, par-
ticularly in Southeast Asia. Due to the food-consumption behavior of humans to eat 
raw or undercooked fish, worms can infect humans via ingestion and inhabit in the 
bile ducts, gallbladder, and pancreatic duct [7]. (iii) Hepatolithiasis is one type of 
the gallstone disease with the stones in the intrahepatic bile ducts proximal to either 
the left or right hepatic duct. Hepatolithiasis-associated CCA with a high incidence 
in East Asian countries, such as Taiwan, China, Hong Kong, South Korea, and Japan 
[8–11], may arise after the prolonged inflammation (recurrent or chronic inflamma-
tory) of bile duct epithelium [12, 13]. (iv) Hepatitis virus infections, especially with 
hepatitis B and C viruses (HBV and HCV), are the causes of hepatocellular carci-
noma (HCC). The epidemiologic evidence suggests chronic HBV and HCV infec-
tion may be involved in an increased incidence of iCCA [14–16].

 Classical Serum Markers

CCA is a “silent killer” in part due to the difficulty of being diagnosed before the 
advanced or metastatic stage. The CCA diagnosis depends on various components, 
including clinical findings, imaging techniques, biochemical data, and histological 
information. Standard serum liver tests occasionally find initial changes in CCA 
(e.g., ALP, ALT, and total bilirubin). The current serum biomarkers for CCA are CA 
19-9, carcinoembryonic antigen (CEA), mucins, and alpha-fetoprotein (AFP) and 
are reviewed herein (Table 6.1).

Carbohydrate antigen 19-9 (CA 19-9) is an epitope on the sialyl-Lewis antigens 
(Lewa and Lewb, etc.) which are produced by biliary, pancreatic, gastric, colonic, 
endometrial, and salivary epithelial cells [17]. It is a routine diagnostic marker for 
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hepatobiliary and pancreatic malignancies, while it is not applicable for the tumors 
in the Lewa- Lewb- patients [18]. CA19-9 is a CCA marker with relatively high sen-
sitivity (approx 79%) and specificity (approx 98%) when using a cutoff value of 
129 U/mL [19]. Other cutoff values have been studied (e.g., in the context of PSC), 
and performance characteristics may depend on the presence of other underlying 
disease(s). Indeed, CA19-9 level may also increase in patients with cholangitis or 
pancreatobiliary ductal obstruction; therefore, CCA prediction by serum CA 19-9 is 
only reliable if combined with and interpreted in the context of other clinical 
data [20].

Carcinoembryonic antigen (CEA) is a cell membrane-associated glycoprotein 
and shows the different expression patterns between healthy tissues and cancer 
cells. While it is a marker for colorectal and other adenocarcinomas [21, 22], CEA 
indicates approximately 53% sensitivity and 87% specificity for CCA diagnosis 
[23]. If combined with CA19-9, CEA gives valuable information on CCA predic-
tion with 63% sensitivity and 87% specificity [4]. Besides, CEA is useful to predict 
the long-term survival after resection of CCA [24], and the higher expression levels 
of CEA and CA19-9 are related to the reduced overall survival of CCA patients [23].

Mucins are the glycoproteins secreted into the extracellular space from the epithe-
lial cells. Various human malignancies show the changes in the expression levels of 
transmembrane mucins of MUC1, MUC2, MUC4, MUC5AC, MUC13, and MUC16 
[25]. MUC4 expression increased highly and significantly in the advanced CCA 
patients of the poor prognosis group. MUC4 has a sensitivity (approx 27%) and spec-
ificity (approx 93%) for CCA [26]. Another biomarker, MUC5AC, is expressed in the 
bronchial, gastric, and endocervix epithelium, but not in the normal intrahepatic bili-
ary tree. Serum MUC5AC is positive in CCA patients with a 2.5- fold higher risk of 
death [27]. The ratio of MUC5AC expression between serum and bile is useful for the 
differential diagnosis of CCAs from cholangitis and biliary stones [28].

Serum alpha-fetoprotein (AFP) is a useful marker for hepatocellular carcinoma 
(HCC) and can be also for other cancers (gastrointestinal, pancreatic, biliary, non-
seminomatous germ cell testicular, and germ cell ovarian cancers) [29]. 
Approximately 20% of CCA patients show a high AFP level (>20 ng/mL) [30]. AFP 
shows a high specificity for HCC diagnosis but low specificity (and sensitivity) for 
CCA diagnosis. However, AFP can be useful in combination with either one of the 
other markers such as CA19-9 (86.67% sensitivity and 83.33% specificity), CA125 
(80.00% sensitivity and 86.67% specificity), CEA (83.33% sensitivity and 86.67% 
specificity), and CA242 (88.90% sensitivity and 89.7% specificity) [31, 32].

 Earlier Analyses of Gene Mutation and Amplification in CCA

Analysis of gene expression and SNP microarray of CCAs demonstrated various 
alterations in oncogenic signaling pathways of CCND1 and FGF19 genes (amplifi-
cation), KRAS and BRAF genes (mutation), and activation of inflammatory signal-
ing pathways. The genetic alterations also classified CCAs into congenital 
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abnormality group and acquired mutation group (Table 6.2) [33]. The current bio-
marker study may not be directly applicable as a diagnostic tool to predict the prog-
nosis and the future severity of the disease, but may be useful when used in 
combination with the genetic study such as the number of affected genes and the 
critically impaired genes in CCAs. The five reports of clinical cases calculated 
higher-frequency gene alterations [34–38]; these included molecules of tumor sup-
pressors (SMAD4, TP53, RASSF1A), transcription regulation (ARID1A), cell 
growth (BAP1, CDKN2A), oncogene [ERB-2 (HER2), K-RAS, B-RAF], protease 
protein degradation (FBXW7), glucose metabolism (IDH1, IDH2), and signal 
transduction (PBRM1, PI3KCA). A study of circulating tumor cell (CTC) DNA 
confirmed the high degree correlation of mutational frequencies with published 
datasets of CCA in TP53 (38-8%), ARID1A (36-4%), KRAS (28-5%), IDH1 
(32-4%), BAP1 (29-1%), PBRM1 (21-1%), SMAD4 (9-4%), PIK3CA (9-3%), and 
CDKN2A (7-0%) [39].

Previous studies with smaller numbers of CCA cases attempted to identify the 
critical differences in gene alterations to account for the geographic differences in 
CCA development and prognosis. As mentioned earlier, CCAs are highly heteroge-
neous, in large part due to the etiological, environmental, anatomical, cellular, and 
genetic factors. CCAs with liver fluke infection, for example, are different than 

Table 6.2 Molecular abnormalities associated with CCA

Origin/normal function Gene (and/or protein)

I. Congenital abnormality

Transport MDR3, BSEP, MRP2, FIC1
Metabolism CYP1A2, GST01, ARY2, BAR (FXR)
DNA repair and 
modification

MTHFR, TYMS, XRCC1

Tumor surveillance NKG2D, COX-2
II. Acquired mutation

Tumor suppressor APC, BRCA1, E-CADHERIN, p16, p14arf, PTEN, RASSSF1A, 
SMAD4a, TP53a

Transcription regulation ARID1Aa, KEAP1
Apoptosis AXIN1, BCL2, BCLXL, BCLX5, MCL1
Cell growth BAP1a, CCND1, CDK6, FGFR2, ROS1, CDKN2Aa

Oncogene BRAF, B-CADHERIN, EGFR (ERB1), ERB2a (HER2), K-RASa, 
MDM2, MYC

DNA damage and repair BRCA2, RAD51AP1
Regulation of bile 
production

FGF19

Proteasomal protein 
degradation

FBXW7a

Glucose metabolism IDH1a, IDH2a

Ribosome biosynthesis LTO1
Signal transduction NF1, PBRM1a, PI3KCA, SOCS3

Ref: Peter et al. [65]
aBoldface indicates genes of high mutation frequency
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those of non-liver fluke-infected patients. Therefore, it has been difficult to discover 
the most appropriate biomarker among the conventional ones (or a novel one). 
Researchers have probably studied CCAs as different category tumors originating 
with different genetic alterations; though this may have offered some advantages, it 
may have also somewhat impeded understanding and generalization of genetic 
changes and clinical treatment of CCA.

 Challenges of Highly Specific Biomarkers

Many technologies have been applied to improve diagnostic accuracy, particu-
larly at an early stage of disease, and in order to best target therapeutic options. 
These are reviewed in the forthcoming paragraphs. Extracellular vesicles (EVs) 
are classified into microvesicles (MVs) and exosomes according to their size and 
biogenesis. MVs directly bud from the plasma membrane, and their size ranges 
between 100 and 1000 nm. Exosomes originate from multivesicular bodies; their 
size is smaller than 100 nm, and they float at a density of 1.13–1.19 g ml−1 in 
sucrose gradients [40–42]. EVs are found in blood, urine, saliva, bile, and ascites. 
They carry the disease biomarkers as specific proteins, lipids, RNA species, 
DNA, and metabolite [42, 43]. Proteomics analysis evaluated the abundance of 
oncogenic proteins in CCA cell-derived EVs and found aminopeptidase N 
(AMPN), vanin1 (VNN1), and polymeric immunoglobulin receptor (PIGR) in 
early-stage CCA to have an area under the curve (AUC) of 0.88, 0.88, and 0.84, 
respectively. The miR profiles from extracellular vesicles from human bile 
revealed miR-based panels of miR-191, miR- 486-3p, miR-1274b, miR-16, and 
miR-484 to be valuable for CCA diagnosis, with 67% sensitivity and 96% speci-
ficity, which gives similar diagnostic potential compared to CA19-9 with the 
specified cutoff value [44].

Circulating nucleic acid as cell-free DNA (cfDNA) is released in plasma and 
other body fluids from tumor cells. Investigation of cfDNA can assess the genetic 
and epigenetic alterations of individual patients, particularly those who are diag-
nosed in advanced stages of the disease and with limited therapeutic options. It can 
determine single-nucleotide mutations [45–48], aberrations in DNA methylation 
[49, 50], copy number aberrations [45, 50, 51], and gene expression alterations [52, 
53]. For example, molecular analysis of cfDNA can help screen for FGFR2 muta-
tions both in the primary tumor and metastatic lesions to examine the gain of drug 
resistance against the BFJ398 inhibitor in patients with ICC. Multiple mutations of 
the FGFR2 gene affect the FGFR2 kinase domain and create a significant oncogenic 
alteration in cancer cells that should be critically monitored for decision-making in 
clinical treatment [54]. Other epigenetic changes, including DNA methylation, also 
provide useful information, such as cfDNA hypermethylation of opioid binding 
protein/cell adhesion molecule-like (OPCML: AUC, 0.85; sensitivity, 80%; speci-
ficity, 90%; accuracy, 85%) and homeobox protein Hox-D9 (HOXD9: AUC, 0.789; 
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sensitivity, 67.5%; specificity, 90%; accuracy, 78.75%), to differentially diagnose 
CCA with a higher percentage compared to other biliary diseases [55].

Circulating noncoding RNA (ncRNA) may regulate gene transcription, tran-
script stability, and translation of protein-coding transcripts [56]. Altered expres-
sions of serum and plasma miR-21 and miR-26a in patients are useful for diagnosis 
and the prediction of patient survival [57, 58]. CCA patient serum also shows the 
downregulation of miR-150-5p expression [59, 60]. MicroRNA is aberrantly 
expressed in CCAs as well as in all types of human tumors [61].

Circulating tumor cells (CTCs) overexpress epithelial cell adhesion molecule 
(EpCAM), an indicator of having lost cell-to-cell adhesion capacity and a propen-
sity for metastasis. CCA has high-level expression of EpCAM, with a sensitivity of 
93.7%, as shown by enrichment-immunofluorescence in situ hybridization 
(SE-iFISH) [62].

 Recent Classification of CCAs with Large-Scale Analysis 
of Multi-omics

Application of NGS and omics examination for larger-scale clinical samples has 
provided a comprehensive concept in the classification of CCAs. A world coopera-
tive study of the combined datasets of a large whole-genome sequencing, whole- 
exome sequencing, copy number alterations, transcriptomes, and epigenomes 
proposed the classification of CCAs of 489 cases from 10 countries. It classified 
four types of CCA clusters based on tumor etiologies, anatomical locations, and the 
cellular origin, the tumor characteristics, and clinical features, as summarized 
below [63].

The first factor for clustering is history of liver fluke infection, and the second 
factor is genomic modification caused by increased DNA hypermethylation of 
CpG island shores and high levels of mutations in H3K27me3-associated promot-
ers. Cluster 1, liver fluke (+)/genomic modification (-), and Cluster 2, liver fluke 
(+)/genomic modification (+), show recurrent mutations of TP53, ARID1A and 
BRCA1/2, and ERBB2 amplification. These clusters show a poor prognosis. 
Cluster 3, liver fluke (-)/genomic modification (-), and Cluster 4, liver fluke (-)/
genomic modification (+), show recurrent mutations in epigenetic-related genes, 
i.e., BAP1 and IDH1/2, as well as FGFR rearrangements, and have high PD-1/
PD-L2 expression. Clusters 3 and 4 show better prognosis. The higher-rate altera-
tions of various genes in CCAs during clinical treatment are one of the causes of 
the worse prognosis.

Development of CCA is associated with metabolic syndrome, hepatolithiasis, 
congenital biliary tract malformations, bile duct cysts with the risk factors of chronic 
inflammation involving the biliary tract, several toxic and environmental factors 
such as nitrosamine-contaminated food, asbestos, dioxins, vinyl chlorides and 
thorotrast, smoking, and alcohol intake [32, 64]. Exposure to various long-term risk 
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factors results in the proliferation and genetic and epigenetic alterations of cholan-
giocytes and their malignant transformation [64, 65].

Additionally, any stimulus that causes oxidative stress can be oncogenic. Several 
CCA cell lines induce aberrant expression of activation-induced cytidine deaminase 
(AID) as an initiator of gene alteration [66]. AID initiates somatic hypermutation at 
the immunoglobulin V-region gene and class switch regions in B lymphocytes [67]. 
The cytidine deamination potentially causes the DNA injuries, resulting in mutation 
of the promoter regions and coding regions of various critical genes by the assist of 
the associated protein complex of RNA polymerase II, transcription elongation fac-
tor Spt5, UNG, and GANP [68, 69].

Current studies suggested that aberrant expression of cytidine deaminase mole-
cules resulted in altering the genome. TGF-β stimulation causes the aberrant AID 
expression in multiple cancer cells of the digestive system [70–72]. Virus infection 
may evoke the APOBEC family cytidine deaminase proteins as the endogenous 
defense molecules [68]. Typically, human APOBEC3B is involved in the develop-
ment of breast cancers [73]. These cytidine deaminase molecules enter into the 
nucleus together with the RNA exportation component GANP [69]. Aberrant 
expression of the APOBEC family cytidine deaminase protein associated with 
GANP might alter the genome randomly at the transcription-competent nucleo-
some, resulting in chromosome translocation, gene deletion, and mutations [72–74]. 
Therefore, it is difficult to predict and determine the genome alteration in individual 
CCA cells. Nevertheless, identification of novel biomarkers is an essential issue to 
monitor the gene mutations and chromosome modifications.

 Future Perspective

 Combination of Standard Cancer Biomarker Plus 
CCA-Selective Biomarkers

Diagnosis and treatment of patients with CCA needs to be guided and advanced by 
incorporation of comprehensive tools, including with conventional biomarkers as 
well as patient-specific genetic and cellular abnormalities. As an initial tool, CA19-9 
can be useful but still provides only a small piece of the overall picture and future 
clinical course. Preoperative or postoperative genetic information of tumor cells 
provides a vital avenue for better treatment. Surgical specimens provide the most 
information on genetic abnormalities of primary CCA foci. One approach to opti-
mize nonsurgical specimens is to enrich CTCs in peripheral blood or ascites fluid by 
the antibody trap method using high-affinity monoclonal antibodies against a stan-
dard biomarker that appears commonly in CCA tumors (e.g., CA19-9, Muc5a). 
Antibody trapping of CTCs from CCA patients with magnetic beads enhances the 
tumor cells that are actively mutating and metastasizing in the cancer patient. Direct 
capturing of tumor cells under the microscope also provides insight regarding 
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genetic alterations of the individual primary CCA lesion. Such tumor cells demon-
strate the genetic alterations and the critical causes of a highly malignant trait of cell 
proliferation, drug resistance, mutation, and anti-apoptotic properties. The genetic 
information includes the alterations in tumor suppressor genes such as p53, PTEN, 
p16, and CDC6 and the methylation status of CpG islands at the promoter regions 
of selected target genes; changes for CTNNB1, WNT5B, and AKT gene expression; 
somatic gene copy numbers of immune cells; mutations of BAP1 and IDH1/2; and 
the upregulation of FGFRs and PI3K signaling.

 Cancer Therapy with an Infusion of Tumor Suppressor Genes 
and shRNA Vectors

Gene transfection therapy is one of the promising procedures for targeting of spe-
cific tumors. To develop next-generation cancer treatment, we need to solve two 
kinds of complicated issues. First, authentic and precise targeting depends on the 
identification of abnormalities of individual cancer cells. This is a cost-consuming 
and probably the most challenging issue for advanced clinical treatment. Practically, 
the procedure needs to target the most common genetic alterations associated with 
oncogenesis and cell proliferation. Gene alterations of CCAs include congenital 
molecular abnormalities of various functions such as molecular transport, cell 
metabolism, DNA repair and modification, and tumor surveillance as well as 
acquired mutations of multiple genes. The target genes for this procedure are 
diverse; therefore, rapid and convenient screening of individual patients is neces-
sary. At present, however, we need to select several active target genes for the prac-
tical use.

The second issue is vector selection for gene therapy. The choices for vectors are 
many and will develop more in the future. One candidate vector is the lentivirus 
vector, which is highly effective in introducing genes into tumor cells [75]. The 
gene knockdown procedure into cancer cells is capable of targeting a cancer- specific 
abnormality with short hairpin RNA. Also, the human telomerase gene promoter 
can facilitate targeting of cancer cells [76]. One of the challenges of vector selection 
is as follows: the regular protocol of gene therapy is with drip infusion of five genes 
to the cancer patients in The Gene Osaka Clinic Inc. (http://www.g- cg.jp/) (Osaka, 
Japan). Drip infusion of five constructs (ten million virus titers/each gene at one 
time in a week) is undertaken five or six times as a single course under the informed 
consent. The patient receives the course at least twice. The clinical outcome of CCA 
patients often shows marked decrease of cancer biomarkers with p53, PTEN, p16, 
CDC6-shRNA, and Gankirin-shRNA in combination with standard cancer therapy 
[77]. In principle, gene therapy causes the adverse side effect of virus particle 
infusion- associated inflammation and possibly allergic response; this includes fever 
(~38  °C), nausea, diarrhea, vomiting, and hypotension. In some cases, transient 
increases of ALT, AST, CRP, and white blood cell count occur.

6 Biochemical Indicators of Cholangiocarcinoma
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The promise held by gene therapy against CCA will growingly contribute to the 
improvement of patient outcomes. The exchange of information, knowledge, and 
technical skills are necessary for this and other advancements in CCA treatment.

 Conclusion

A hopeful approach for better cancer treatment depends on rapid and accurate diag-
nosis and targeted therapy based on individual cancer genetic information. Strategic 
biomarkers play an important role in this regard and are a subject of continued 
research.
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Chapter 7
Imaging of Cholangiocarcinoma

Karoly Viragh, Maitraya Patel, Shaden Mohammad, Monica Deshmukh, 
and Anokh Pahwa

Abbreviations

US Ultrasound
CT Computed tomography
MRI Magnetic resonance imaging
PET Positron emission tomography
CCA Cholangiocarcinoma
iCCA Intrahepatic CCA
pCCA Perihilar CCA
dCCA Distal CCA

 Introduction

The objective of this chapter is to provide a comprehensive overview of the non- 
invasive imaging techniques employed in the diagnosis and management of cholan-
giocarcinoma (CCA).

As discussed extensively in other chapters, CCA is a malignancy arising from the 
biliary ductal epithelium. It is the most common type of biliary ductal cancer and 
the second most common liver cancer after hepatocellular carcinoma, although with 
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overall relatively low prevalence. Prompt and accurate imaging diagnosis of CCA is 
challenging due to the heterogeneous nature of this malignancy, which is reflected 
by the variability and nonspecific nature of imaging findings.

Similar to the clinicopathologic classification, the traditional imaging classifica-
tion of CCA is based on anatomic location and divides tumors into intrahepatic 
(iCCA), perihilar (pCCA), and distal (dCCA) types [1]. Regardless of location, 
CCAs are subdivided into three specific growth patterns, each with characteristic 
imaging findings: mass-forming subtype, periductal-infiltrating subtype, and intra-
ductal growth subtype [1]. In general, iCCA most commonly presents as a mass- 
forming lesion, while pCCA and dCCA more commonly present with a 
periductal-infiltrating growth pattern [2]. The classification and corresponding 
imaging features of CCA reflect the heterogeneity in genetics, pathology, and prog-
nosis of the underlying tissue (Table 7.1).

 Imaging Modalities

In general, imaging modalities can be grouped as non-invasive and invasive tech-
niques. The non-invasive techniques require, at most, the placement of an intrave-
nous (IV) line and contrast administration. On the other hand, invasive techniques 
include the placement of advanced catheters, endoscopes, needle puncture of 
organs, and sedation/anesthesia. The major non-invasive techniques include ultra-
sound (US), computed tomography (CT), magnetic resonance imaging (MRI), 
nuclear imaging such as positron emission tomography (PET), and hybrid imaging 
(such as PET/CT). These modalities are discussed in detail below (Table  7.2). 
Radiography and fluoroscopy are not specifically used for non-invasive imaging but 

Table 7.1 Major non-invasive imaging modalities for cholangiocarcinoma management and their 
advantages/disadvantages with respect to technique and clinical indication

Major non-invasive imaging modalities for cholangiocarcinoma management
Technique US CT MR FDG PET/CT

Mechanism Sound-wave 
reflection

X-ray 
attenuation

Magnetic 
relaxation

Glucose 
metabolism

Availability +++ ++ + +
Cost + ++ +++ +++
Ionizing radiation None +++ None +++
Artifact/operator 
dependence

+++ + ++ +

Bile ducts/stones ++ ++ +++ ++
Inflammation + +++ +++ +++
Local neoplasm + +++ +++ +++
Lymph node/metastatic 
disease

+ +++ +++ +++

Vascular involvement + +++ +++ ++
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only insofar as they are needed in general patient management and as guidance for 
invasive evaluations. Invasive imaging techniques such as transhepatic cholangiog-
raphy (THC), endoscopic retrograde cholangiopancreatography (ERCP), endo-
scopic ultrasound (EUS), intraductal ultrasound, choledochoscopy/cholangioscopy, 
and similar techniques will not be discussed in the present chapter.

 Role of Non-invasive Imaging

Non-invasive imaging plays three major roles in the diagnosis and manage-
ment of CCA:

 1. Diagnosis: Imaging helps localize suspicious lesions and can suggest CCA as a 
differential diagnosis based on appearance. Nevertheless, tissue sampling and 
pathological analysis remain the gold standard for diagnosis.

 2. Staging: Imaging is used to evaluate the extent of malignancy at different time 
points in the course of the disease such as initial staging, restaging after therapy, 
and surveillance after complete response to therapy. While the exact local extent 
of disease (T staging) is often difficult to accurately evaluate, lymph node status 
(N staging) and distal metastases (M staging) are best detected by imaging.

 3. Surgical planning: Surgery is the only potentially curative therapy currently 
available. Imaging provides comprehensive preoperative planning information, 
including vascular and biliary involvement with anatomic variants as well as 
measurement of liver volume. Imaging is also used to evaluate potential postop-
erative complications.

Table 7.2 Most common imaging characteristics of the different types of cholangiocarcinoma

Typical imaging characteristics of cholangiocarcinoma
Anatomic 
location

Typical growth 
pattern Typical imaging appearance

iCCA Mass-forming Primary characteristics
US: hypoechoic/targetoid (but variable)
CT/MR: irregular, peripheral arterial hyperenhancement with 
gradual centripetal delayed enhancement
FDG PET: intense FDG uptake
Secondary characteristics
Biliary ductal dilation with abrupt cutoff at stricture or mass 
with normal-caliber distal duct
Hepatic lobar atrophy
Hepatic capsular retraction
Satellite nodules
Vascular encasement without invasion

pCCA Periductal 
infiltrating

Biliary ductal dilation with abrupt cutoff at stricture or mass 
with normal-caliber distal duct

dCCA Periductal 
infiltrating

Biliary ductal dilation with abrupt cutoff at stricture or mass 
with normal-caliber distal duct
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 Approach to Imaging

Patients with CCA present with nonspecific clinical symptoms. When suspected, 
imaging workup usually begins with transabdominal US, which is closely followed 
usually by a contrast-enhanced CT of the abdomen and/or MRI with magnetic reso-
nance cholangiopancreatography (MRCP) for more comprehensive evaluation. In 
general, a contrast-enhanced MRI/MRCP examination of the abdomen provides the 
most comprehensive evaluation of the biliary tract. A complete staging examination 
may then be performed with CT of the chest, abdomen, and pelvis, or a PET/CT 
from skull base to thighs. Tissue sampling is usually obtained for diagnostic 
confirmation.

 Transabdominal Ultrasound (US) (Figs. 7.1, 7.2, and 7.3)

 Introduction

While some centers have described success in identification and staging of CCA 
with US, this technique is most commonly utilized as an initial examination in light 
of its low cost and broad availability, to assess for biliary ductal dilation in patients 
with jaundice or elevated bilirubin and alkaline phosphatase. Alternatively, it may 
be used in patients with known CCA to assess for progressive biliary dilation, 
hepatic metastasis, or abscess, and as guidance for image-guided biopsy or drain-
age. The ability of US to identify, stage, and plan for resectability is surpassed by 
MRI and CT [3].

A meta-analysis in 2012 described the performance of US in the assessment of 
ductal extent of tumor to have an accuracy of 59–82% [4]. Sensitivity and specific-
ity for identifying portal vein involvement ranged from 75% to 83% and 93% to 
100%, respectively [4]. No data were provided regarding hepatic artery involve-
ment, lymph node status, or distant metastasis. This meta-analysis was limited in 
that US was performed in only three studies included in the analysis, and these 
studies were quite old (1992–1995) [4]. In general, given its limitations, US can 
identify, characterize, and in some cases provide relevant staging informa-
tion in CCA.

 Technique

Transabdominal US evaluation of the bile ducts should be performed after fasting 
for 6 hours to minimize bowel gas and allow for gallbladder distention. Using a 
curvilinear 5–7 mHz transducer, evaluation should include grayscale images of the 
confluence of the bile ducts at the porta hepatis, longitudinal and transverse images 
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Fig. 7.1 Intrahepatic cholangiocarcinoma (iCCA) with mass-forming growth pattern (blue 
arrows), which is the most common subtype of iCCA. Grayscale (a) and color Doppler (b) US 
images obtained as initial screening, demonstrating a hypoechoic mass with hypovascularity. US 
was also used as guidance (c) for percutaneous biopsy later in the management. The echogenic 
linear foci correspond to the biopsy needle within the lesion. Multiphasic CT images with iodin-
ated contrast in the non-contrast (d), arterial (e), portal venous (f), and 3-minute delayed (g) phases 
confirmed the large hepatic mass with typical findings of peripheral arterial hyperenhancement and 
delayed progressive central enhancement. The mass is associated with capsular retraction and 
regional hepatic atrophy. Multiphasic MR images with a hepatobiliary contrast agent in the non- 
contrast (h), arterial (i), portal venous (j), and 20-minute delayed hepatobiliary phase (k) demon-
strated the hepatic mass similarly to CT. Of note, no contrast uptake is seen on the hepatobiliary 
phase in the lesion, confirming non-hepatic cellular content. The mass shows mild T2 hyperinten-
sity on the nonfat-saturated (l) and fat-saturated (m) T2 sequences, as well as marked restricted 
diffusion with DWI hyperintensity (n) and ADC hypointensity (o)
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of the right- and left-sided ducts, images of the hepatoduodenal ligament to visual-
ize the extrahepatic common bile duct, and images of the pancreatic head to assess 
the distal common bile duct [5]. In addition, Doppler ultrasound images are used to 
distinguish between bile ducts and blood vessels as well as to evaluate for blood flow.

Contrast-enhanced ultrasound (CEUS) is a newer technique approved by the 
FDA in 2016 to augment assessment of liver lesions in addition to the traditional 
grayscale and Doppler evaluation. Sonographic contrast agents are gas-filled micro-
bubbles stabilized by an albumin-, surfactant-, and phospholipid-containing shell. 
The microbubbles are smaller than 7 μm and circulate freely into capillary beds. 
They are purely microvascular agents and do not demonstrate an interstitial or equi-
librium phase, unlike conventional CT and MRI contrast agents. They are elimi-
nated by the lungs and liver within 10–15  minutes of injection and have no 
nephrotoxic effects. The only sonographic contrast agent currently FDA-approved 
in the USA for liver imaging consists of sulfur hexafluoride lipid-type A 

a b

Fig. 7.3 Extrahepatic combined perihilar/distal cholangiocarcinoma (combined pCCA/dCCA) 
with periductal infiltrating growth pattern. Color Doppler abdominal ultrasound (a) demon-
strates thickened common bile duct with tumor(blue arrow). Coronal T2-weighted MR (b) dem-
onstrates long segment thickening of the common bile duct in a periductal infiltrating pattern 
(blue arrow)

a b c

Fig. 7.2 Perihilar cholangiocarcinoma (“Klatskin tumor”) with mass-forming growth pattern. 
Coronal T2 (a), MRCP (b), and contrast-enhanced T1 FS (c) images demonstrate an indistinct T2 
mildly hyperintense lesion with delayed enhancement at the confluence of the hepatic ducts (blue 
arrows) causing marked intrahepatic biliary ductal dilation
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microspheres. This agent is well tolerated by most patients, with only rare adverse 
events. There is an FDA warning for rare cardiopulmonary events after administra-
tion of the agent. The role of CEUS is to assess dynamic phases of contrast enhance-
ment in order to differentiate between different types of focal lesions. The arterial 
phase starts within 10–20 seconds of injection and lasts for 35–40 seconds after 
injection. The portal venous phase occurs after arrival of the contrast into the portal 
system and lasts for 2 minutes after injection. The late phase (4–6 minutes after 
injection) is characterized by clearing of the microbubbles from the system [6, 7].

 Imaging

Mass-forming subtype The mass-forming subtype of CCA usually demonstrates 
a homogenous mass with an irregular but well-defined margin [5]. A hypoechoic 
halo around the tumor is present approximately 35% of the time, which may repre-
sent proliferating tumor [8]. Tumors <3 cm are generally hypoechoic or isoechoic, 
while those >3 cm tend to be hyperechoic for unclear reasons but potentially sec-
ondary to stromal properties. Four enhancement patterns of the mass-forming sub-
type of CCA have been described with CEUS on the arterial phase: peripheral 
irregular rim-like enhancement, heterogeneous hyperenhancement, homogenous 
hyperenhancement, and heterogeneous hypoenhancement, in descending frequency. 
On the portal venous and late phases, mass-forming CCA tends to be hypoechoic. 
Smaller lesions tend to be more homogenous in enhancement in the arterial phase 
than larger lesions, likely due to their higher component of tumor cells to fibrous 
tissue and necrosis. Delayed enhancement described on CT and MRI is not seen on 
CEUS, as these agents are strictly intravascular. The iCCA with mass-forming 
growth pattern is often associated with biliary ductal dilation peripheral to the lesion 
and subsequent lobar atrophy. Frequently, biliary ductal crowding secondary to 
mass effect may be the only indicator for the presence of a mass.

Periductal-infiltrating subtype The periductal-infiltrating subtype of CCA may 
present on ultrasound as a small, mass-like lesion or as diffuse bile duct thickening 
[5]. Obliteration of the bile duct lumen depends on the extent of tumor. On CEUS, 
these tumors tend to appear heterogeneously enhancing in the arterial phase, with 
hypoenhancement in portal and late phases. Dilation of intrahepatic bile ducts with 
a normal-caliber common bile duct or disconnected bile ducts at the porta hepatis is 
a nonspecific finding, but one that is commonly seen with pCCA.

Intraductal growth subtype The intraductal growth subtype of CCA may mani-
fest on ultrasound as localized or diffuse bile duct dilation with or without an echo-
genic intraductal polypoid lesion. Marked biliary dilation without a visible polypoid 
lesion can be explained by anechoic mucin production by this tumor. With CEUS, 
the polypoid component, if visible, will show arterial phase homogenous hyperen-
hancement and hypoenhancement in the portal and late phases [6, 9].

7 Imaging of Cholangiocarcinoma



186

 Additional Considerations

Staging Vascular involvement can be evaluated by color Doppler assessment of the 
portal vein, hepatic veins, and hepatic artery, but as described above, its role is limited 
in accurate staging of CCA. Similarly, when identified, porta hepatic lymphadenopa-
thy, common bile duct involvement, or metastatic disease can provide relevant informa-
tion regarding the tumor; however, ultrasound is limited in reliably assessing for these.

HCC vs. iCCA Patients with chronic fibroinflammatory liver disease are at risk for 
both HCC and iCCA. Differentiating between the two has significant implications for 
transplantation. Intrahepatic biliary dilation peripheral to a mass is seen 31% of the time 
in iCCA, compared to 2% in patients with HCC, which can be a clue in distinguishing 
between the two [5]. With CEUS, both iCCA and HCC demonstrate hyperenhancement 
in the arterial phase. iCCA tends to demonstrate earlier (<60  seconds after contrast 
injection) and a greater degree of washout compared to HCC, which has later (>60 sec-
onds after injection) and milder degrees of washout. When combined, early onset and 
marked degree of washout as a diagnostic criterion for iCCA has been reported to have 
a 78.8% sensitivity, 88% specificity, and an 84.3% diagnostic accuracy [7].

Mimickers of CCA Other entities that may mimic CCA on sonography, some of 
which coexist with CCA, include primary sclerosing cholangitis (PSC), AIDS chol-
angiopathy, recurrent pyogenic cholangitis, and Mirizzi syndrome. Finally, gall-
bladder cancer when it infiltrates into the liver may mimic an iCCA.

 Computed Tomography (CT) (Fig. 7.1)

 Introduction

Contrast-enhanced CT is a major workhorse in the imaging evaluation of CCA, 
commonly used in diagnosis, staging, and surgical planning. The advantages of CT 
include fast and robust data acquisition with relative operator independence, wide 
access and low cost compared to MRI and hybrid imaging, excellent depiction of 
vasculature, and good depiction of the hepatobiliary system with better spatial reso-
lution than MRI. The major disadvantages include ionizing radiation, less powerful 
soft tissue resolution compared to MRI, and the usage of iodinated contrast, which 
may affect renal function (“contrast-induced nephropathy”).

 Technique

CT scans are diagnostic imaging procedures that use X-rays to create cross- 
sectional images of the body based on X-ray attenuation through different tissues. 
Tissue densities are measured in Hounsfield units (HU), with water by definition 

K. Viragh et al.



187

having a density of 0 HU. Consequently, other structures have relative densities 
compared to water, including air (−1000 HU), fat (−50 to −120 HU), soft tissues 
(0–80 HU), and bone (+1000 HU). Modern CT imaging of the abdomen uses mul-
tidetector CT scanners with helical volumetric acquisitions for improved speed and 
processing [10].

Intravenous contrast is routinely used to improve lesion detection and charac-
terization. The purpose of a contrast-enhanced CT is to determine if pathology is 
present in a lesion (site of anatomic abnormality) by highlighting the contrast 
accumulation in the lesion compared to normal surrounding structures. Lesions 
can be hypoenhancing or hyperenhancing compared to surrounding tissues. 
Lesion vascularity can change depending on the timing of CT. Multiphase CT is 
performed to determine the behavior of a lesion compared to normal surrounding 
structures over time. Contrast dosage is standardized based on patient weight. 
Positive oral contrast (denser than tissue) is not routinely utilized in the imaging 
of CCA.  If there is concern for alimentary tract obstruction or other relevant 
pathology, a combination of positive oral contrast in the form of water-soluble 
agents (most commonly meglumine/diatrizoate sodium [Gastrografin]) or nega-
tive oral contrast (less dense than tissue) can be useful. At our institution, we 
routinely administer negative oral contrast (500  cc of water given to patient 
immediately prior to scanning) to better distinguish the extrahepatic bile ducts 
from the duodenum and pancreatic head.

The routine imaging protocol of a multiphasic contrast-enhanced CT in the 
evaluation of suspected CCA is the routine “liver protocol,” which consists of a 
(1) pre- contrast phase, (2) late arterial phase, (3) portal venous phase, and (4) 
delayed phase. Pre-contrast (non-contrast) imaging is useful to detect intraductal 
stones and casts and distinguish between subsequent enhancement versus intrin-
sic density or calcification. Late arterial phase imaging is performed 30–40 sec-
onds after contrast injection. The late arterial phase can determine arterial 
anatomy for pre-surgical planning and assess for peripheral tumoral enhance-
ment. Portal venous phase imaging occurs 70–80 seconds after contrast injection 
and is best for assessment of the liver parenchyma as well as the rest of the abdo-
men/pelvis for metastases and other disease processes. The delayed post-contrast 
imaging occurs from 180 to 240  seconds and up to 15  minutes after contrast 
injection, and it is used to evaluate for washout or persistent enhancement in the 
suspicious liver lesion [9].

Of note, the utilization of solely non-contrast CT for cholangiocarcinoma eval-
uation is not routinely recommended and is usually not appropriate by the 
American College of Radiology Appropriateness Criteria [11]. While a non-con-
trast CT may reveal biliary ductal dilation or an indistinct mass, the diagnostic 
performance is thought to be suboptimal for complete staging. This has not been 
specifically studied for cholangiocarcinoma but has been documented in similar 
clinical scenarios [12]. In patients with kidney disease, an MRI/MRCP may be 
more appropriate (see section “MRI/MRCP”), but consultation with the radiolo-
gist is suggested.

7 Imaging of Cholangiocarcinoma



188

 Imaging

Mass-forming subtype The mass-forming subtype of CCA is typically homoge-
nous and hypoattenuating on non-contrast images. Hepatolithiasis may be seen on 
the pre-contrast images as calcifications, heterogeneous hyperdense material, or 
less commonly hypodense foci indicating cholesterol/fat. Irregular peripheral rim- 
like hyperenhancement is common on the late arterial phase, followed by gradual 
centripetal enhancement on delay phase. Additional CT findings include hepatic 
capsular retraction, satellite nodules, vascular encasement without tumor thrombus, 
atrophy of the involved liver segment, and portal vein obliteration. Vascular encase-
ment without thrombus is a hallmark CT feature and can help distinguish CCA from 
hepatocellular carcinoma [9]. Another typical feature is delayed phase gradual cen-
tripetal enhancement, the degree of which is related to the volume of viable tumor 
in the periphery relative to central fibrosis and/or necrosis [13, 14].

Periductal-infiltrating subtype Periductal-infiltrating CCA is characterized by 
growth along a dilated or narrowed bile duct without mass formation. It manifests 
as an elongated, spiculated, or branch-like abnormality. Late arterial and portal 
venous phase CT imaging findings include diffuse periductal thickening and hyper-
enhancement without obliteration of the bile duct. The bile ducts involved may be 
narrowed or dilated depending on the degree of longitudinal tumor extent (e.g., the 
distal margin), with the bile ducts peripheral to the lesion usually being dilated. If 
intrahepatic-only, the lesions tend to be localized to one liver segment or lobe. Early 
periductal-infiltrating CCA can be difficult to differentiate from benign biliary stric-
tures. CT secondary signs such as irregular thickening of the bile ducts, asymmetric 
bile duct narrowing, regional lymph node enlargement, and an adjacent soft tissue 
lesion can help distinguish early periductal-infiltrating tumor from a benign biliary 
stricture [15]. The periductal-infiltrating subtype can be seen in combination with 
mass-forming subtype in the periphery of the liver. Of note, CT may underestimate 
the proximal longitudinal tumor extent in perihilar CCA [3].

Intraductal growth subtype Intraductal CCA can have variable imaging presen-
tation. Typical appearances include ductal dilation with or without skip lesions, a 
papillary mass, ductal ectasia without a mass, cast-like lesions, and focal stricture 
with or without biliary tumors. On pre-contrast CT, the intraductal subtype typically 
presents as a hypo- or isoattenuating mass compared with the surrounding liver. On 
post-contrast imaging intraductal tumors exhibit enhancement but show less robust 
enhancement compared to other intrahepatic subtypes and show progressive 
enhancement during the arterial and hepatic venous phase. In some cases, only 
intrahepatic bile duct dilatation, without an intraductal mass or stricture, may be 
seen. Alternatively, focal ductal dilation with intraductal mass can be seen [2]. This 
tumor frequently demonstrates extensive superficial spreading, resulting in diffuse 
involvement. The true extent of the tumor is difficult to determine on CT; therefore 
ERCP and biopsy are often utilized to determine true extent of tumor [16].
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 Additional Considerations

Dual-energy CT (DECT) is a new technique that acquires dual-energy datasets with 
two different X-ray energy spectra using two tubes operating at high and low volt-
ages with corresponding detectors mounted orthogonally. DECT generates color- 
coded iodine overlay images from a single contrast-enhanced CT acquisition. DECT 
creates more quantitatively accurate attenuation measurement. The iodine-specific 
images improve detection and characterization of lesions with slight differences in 
attenuation and of small lesions. Currently, DECT is being studied in differentiating 
intrahepatic mass-forming CCAs from small liver abscesses. Early studies are find-
ing increased accuracy of DECT for differentiating small intrahepatic mass-forming 
CCAs and liver abscesses compared to conventional CT.  This has potential for 
future imaging implications for CCA [17].

CT cholangiography is a rarely used examination of the biliary system with 
either oral or intravenous administration of special iodinated contrast agents, which 
opacify the bile ducts through hepatobiliary excretion [18–20]. This technique has 
been practically replaced by MRI/MRCP in clinical practice (discussed below) due 
to its potential contrast-related adverse effects and dependence on normal hepatic 
function and lack of high-grade biliary obstruction, which is a hallmark of CCA 
[21–24]. Nevertheless, studies have shown acceptable performance in depicting 
biliary anatomy, stones, PSC, and CCA [21], and CT cholangiography is still used 
in research and rare perioperative settings [20].

 MRI/MRCP (Figs. 7.1, 7.2, 7.3, 7.4, and 7.5)

 Introduction

The advantages of MRI include lack of ionizing radiation and superior soft tissue 
contrast resolution which aids in tumor detection, surgical planning, and poten-
tially prognosis. MRI, with appropriate protocols, can be a highly useful problem-
solving adjunct in cases of equivocal imaging on other modalities. Specifically, 
contrast- enhanced MRI with MRCP (i.e., MRI/MRCP) has been shown to be as 
accurate as contrast-enhanced CT with conventional ERCP for detecting CCA 
[25]. When combined with MRA, MRI/MRCP is a valuable preoperative tool to 
aid with lesion characterization to assess surgical resectability, tumor extent, vas-
cular involvement, and vascular mapping [26]. Furthermore, given the lack of ion-
izing radiation, MRI can safely be used for surveillance for CCA in appropriate 
high-risk populations, including those with a background of primary sclerosing 
cholangitis [27–30].

The main disadvantages of MRI are its relatively high cost, potential limitations 
to its access in some clinical settings, and potential patient safety considerations. 
Non-MRI-compatible devices, including certain pacemakers, may be disrupted in 
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strong electromagnetic fields. Additionally, the presence of ferromagnetic implants 
or foreign bodies is relative contraindication to MRI in most settings. Appropriate 
patient screening is necessary prior to any MR imaging. In some cases, even the 
presence of MRI-safe foreign bodies or implants may result in significant suscepti-
bility artifact that renders the evaluation of adjacent organ systems impossible. 
Patient tolerance for closed-bore MRI may also be a limiting factor in some cases, 
particularly given the length of an MR exam compared to CT, although the introduc-
tion of more wide-bore (open) systems and the use of anxiolytic premedication may 
mitigate these concerns. Another disadvantage is the potential side effects and com-
plications of contrast use. Historically, the development of a scleroderma-likely 
fibrotic condition called nephrogenic systemic fibrosis (NSF) was a rare, but feared, 
complication of MRI contrast. NSF is most frequently associated with older 

a b c
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Fig. 7.4 A 76-year-old man presented with diverticulitis and a liver lesion that was initially 
thought to represent abscess (blue arrows). Axial T1 FS contrastenhanced MRI (a) demonstrated 
mass-like growth concerning for cholangiocarcinoma. Contrast-enhanced ultrasound at 33 seconds 
(b and c) and 69 seconds (d and e) post-injection demonstrated a persistently hypovascular mass. 
Pathology confirmed cholangiocarcinoma

a b c

Fig. 7.5 Intrahepatic cholangiocarcinoma with mass-forming growth pattern demonstrates the 
common finding of suspicious segmental biliary ductal dilation (green arrow) with associated 
indistinct mass (blue arrow) that demonstrates hypoenhancement on the T1 FS image (a), indistinct 
mild T2 hyperintensity (b), and moderate-to-intense FDG uptake on the fused PET/CT image (c)
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contrast agents that weakly bind gadolinium to their chelate; however, uncon-
founded cases of NSF have not been observed with newer, more stable, macrocyclic 
chelates [31]. Gadolinium deposition in the brain has been recently documented, 
but the clinical significance is currently unknown [32].

The signal characteristics on T1- and T2-weighted images and dynamic con-
trast enhancement (DCE) roughly correlate with pathologic findings of CCA, 
and, in particular, the degree of tumoral fibrosis, which may be beneficial as a 
prognostic indicator. For instance, the expected central fibrosis typical of CCA 
correlates with lower central T2 signal and homogenous delayed enhancement, 
whereas depending on the degree of increased T2 signal intensity, findings may 
be indicative of desmoplastic changes with coagulative necrosis or mucinous 
CCA [33].

 Technique

MR imaging should encompass the entire liver, biliary tract, and pancreas, and pro-
tocols should include at least axial T1- and T2-weighted imaging with MRCP and 
dynamic contrast enhancement (DCE) [34]. MRCP techniques rely on heavily 
T2-weighted, and therefore fluid-sensitive, sequences that highlight fluid-filled bile 
ducts and effectively suppress background soft tissue. MRCP is an ideal non- invasive 
technique for visualizing bile ducts and for localizing biliary abnormalities, which is 
frequently performed prior to conventional ERCP.  Imaging can be performed on 
both 1.5 and 3T MR systems. Although higher field strength 3T imaging provides 
improved spatial resolution and a better signal-to-noise ratio over 1.5T, it may also 
magnify artifacts. The low field strength of most open MRI systems may limit their 
use in abdominal imaging, although robust performance data is not available.

Additional sequences that can provide useful information for lesion characteriza-
tion include in- and opposed-phase imaging, diffusion-weighted imaging (DWI), the 
use of hepatobiliary-specific contrast agents, subtraction imaging, and MR angiogra-
phy. In- and opposed-phase imaging allows for the identification of intracellular fat, 
which can aid in differential diagnosis. For example, the presence of intracellular fat 
in a tumor with an atypical enhancement pattern in a cirrhotic liver would still sug-
gest a diagnosis of hepatocellular carcinoma rather than CCA. Malignant lesions 
typically have a lower apparent diffusion coefficient and would therefore appear 
brighter on DWI. Additionally, the increased signal of malignant lesions and relative 
suppression of signal in adjacent structures on DWI can increase the conspicuity of 
small lesions adjacent to blood vessels. Using hepatobiliary contrast agents can also 
potentially increase lesion-to-liver contrast. Subtraction imaging can sometimes help 
when there is minimal or subtle contrast enhancement, particularly if there is concur-
rent tumor hemorrhage or other cause of intrinsic T1 hyperintensity. There may be a 
future role for placing MR receiver coils directly in bile ducts, which would allow for 
extremely high resolution, high contrast, and high signal-to-noise ratio imaging, 
albeit at a cost of a restricted field of view [35].
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 Imaging

Mass-forming subtype Satellite nodules are seen around the main tumor in 
10–20% of cases and commonly result from portal vein involvement [2, 35]. 
Classically, the masses are irregularly contoured, T1 hypointense, and mildly T2 
hyperintense and demonstrate an early and prominent continuous rim of peripheral 
enhancement that fills centripetally and gradually over time. The early peripheral 
enhancement is more prominent on MRI than on CT. Increasing enhancement on 
delayed phase imaging (6 minutes or later) is often seen in more densely fibrotic 
areas of tumor. There may be associated capsular retraction and distal biliary radi-
cal dilation, the latter of which can help distinguish primary CCA from metastatic 
adenocarcinoma to the liver [33]. Vascular encasement is common, while intravas-
cular tumor thrombus is rare [9]. On DWI, there is a typical “target” pattern of 
signal intensity, with centrally low signal that corresponds to areas of fibrosis and 
peripheral diffusion restriction (bright signal on DWI) in areas of highly cellular 
tumor involvement [2]. Hepatobiliary-specific contrast agents demonstrate gradu-
ally increasing enhancement of normal liver parenchyma secondary to the active 
transport of the contrast from the extracellular sinusoidal space into the hepato-
cytes via organic anion transporting polypeptides (OATP) transporters [36]. 
Malignant cells lack the appropriate receptor for transport of contrast into the 
intracellular space, and therefore do not enhance in the more delayed phases. This 
results in “pseudo- washout” of tumoral contrast in the transitional phase (beyond 
3–4 minutes) relative to the enhancing background liver, in contradistinction to the 
described delayed enhancement seen with more traditional extracellular contrast 
agents. The hepatobiliary phase (20 minutes) is characterized by relatively homog-
enous enhancement of the liver parenchyma and lack of enhancement in malignant 
tissue. Occasionally, there may be intermingled hyperintensity on a background of 
signal hypointensity in CCA during the hepatobiliary phase, which is thought to 
reflect pooling of contrast material in fibrous stroma. Further, the degree of 
enhancement in the hepatobiliary phase may relate to the degree of tumoral fibro-
sis, which in turn may be a negative prognostic indicator. A peripheral hypointense 
rim in the hepatobiliary phase corresponds to the more vascular peripheral 
tumor [2].

Periductal-infiltrating subtype Infiltrating tumor grows along a usually abnormal 
(either dilated or narrowed) bile duct without associated mass formation. Eventually, 
diffuse periductal thickening will result in obliteration of the bile duct lumen. While 
distinguishing a benign from malignant stricture can be difficult by imaging, fea-
tures that suggest malignancy include a long segment of ductal involvement (>2 cm), 
asymmetric narrowing of the duct with more significant thickening (>2 mm), abnor-
mal ring-like ductal enhancement, or an associated soft tissue mass or adenopathy 
[9, 37]. Gradual tapering of the duct does not help distinguish benign from malig-
nant strictures. Differential considerations for a malignant biliary stricture include 
primary periductal-infiltrating CCA or periportal lymphangitic metastases. 
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However, metastatic disease is more likely to involve the biliary system diffusely (as 
opposed to segmental involvement more commonly seen with CCA) and is less 
likely to result in significant biliary dilation [9].

Intraductal growth subtype Intraductal growth pattern CCA, while rare, is typi-
cally mucinous CCA and demonstrates low T1 and high T2 signal [33]. Commonly, 
biliary dilation above and below the tumor may relate to the excessive mucin pro-
duction with partial ductal obstruction. This pattern of involvement is analogous to 
pancreatic intraductal papillary mucinous neoplasm. On imaging, intraductal- 
growing tumors may present as marked duct ectasia with or without a visible papil-
lary mass, an intraductal polypoid mass with localized duct dilation, intraductal 
cast-like lesions that can be mistaken for intraductal stones, or focal stricture-like 
lesions with proximal biliary dilation [9].

 Additional Considerations

Limitations As with CT, imaging of the cirrhotic liver may present a diagnostic 
dilemma, particularly for smaller tumors which present with less typical imag-
ing features, and commonly demonstrate more homogenous arterial enhance-
ment, an enhancement pattern that can overlap greatly with hepatocellular 
carcinoma [2]. While MRCP is an ideal non-invasive technique for localizing 
biliary abnormalities, there is a limited ability to distinguish benign from malig-
nant strictures on imaging alone, and subsequent ERCP is often still needed for 
diagnosis and intervention. Moreover, reactive inflammation related to biliary 
intervention (tissue sampling) and decompression (stenting) can be difficult to 
distinguish from tumor-associated fibrosis rendering tumor identification unreli-
able and images obtained after intervention of the biliary tree oftentimes nondi-
agnostic [38].

Magnetic resonance spectroscopy (MRS) allows for the assessment of specific 
metabolites and their relative concentration in a given sample of tissue based on 
slight differences in their respective resonant frequencies. Historically, MRS has 
been used in brain imaging, although attempts have been made to apply it to 
increase the specificity of imaging in other organ systems. In liver imaging, and 
specifically when trying to assess focal hepatic lesions, its use has been limited by 
significant respiratory, cardiac, and peristalsis-related motion artifact. Elevated 
choline peaks are generally associated with malignant lesions, although the abil-
ity to distinguish benign from malignant hepatic tumors based on choline peaks 
has not been well established [39]. Additionally, MRS has been used to evaluate 
the chemical composition of bile as a potential marker for benign versus malig-
nant biliary disease, although, again, its role in clinical practice remains 
unclear [40].
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 Hybrid/Molecular (PET/CT, PET/MR, New Molecular 
Agents) (Figs. 7.5 and 7.6)

 Introduction

There is a growing armament of diagnostic and therapeutic tools that rely on hybrid 
and molecular imaging. While these are increasingly used in the imaging of biliary 
tumors, they remain usually second-line in clinical practice next to conventional 
MR and CT imaging.

Hybrid imaging refers to the fusion of an anatomy-oriented imaging examination 
(most commonly CT and MR) with a physiology-oriented imaging examination 
(most commonly PET), which results in a PET/CT or PET/MR. In practice, the two 
different imaging examinations are usually still acquired separately, although nearly 
simultaneously. The fusion of the images is accomplished at the time of post- 
acquisition data processing, when imaging data from the two studies is combined 
and displayed as a fused image. Because of the complementary nature of anatomic 
and physiologic imaging, hybrid imaging is thought to improve disease detection 
and characterization. Physiology-oriented imaging is sometimes referred to as 
molecular imaging because the injected labeled material selectively binds to mole-
cules within the living organism (such as cellular receptors). It is important to note, 
however, that even a traditionally anatomy-oriented imaging modality such as MR 
may provide functional/physiologic imaging (MR spectroscopy) and, vice versa, a 
primarily physiology-oriented imaging study may provide anatomic/morphologic 
information (such as spatial location).

a b c

Fig. 7.6 Intrahepatic cholangiocarcinoma with mass-forming growth pattern on a PET/CT stag-
ing study (blue arrows). The non-contrast CT image (a) shows the hypodense mass that has intense 
FDG uptake (SUVmax 9.2) on PET (c), compatible with aggressive malignancy, which is nicely 
illustrated on the fused PET/CT image (b). No suspicious lymph nodes or distal metastases are 
seen. (Courtesy of Dr. Martin Auerbach, MD)
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Diagnostic anatomic imaging (CT, MR) was discussed above in detail. Diagnostic 
physiologic imaging of neoplasms in clinical practice employs radiotracers 
(radioisotope- labeled contrast agents) that target features of increased metabolism 
characteristic of neoplastic growth. These include increased glucose metabolism, 
increased DNA, amino acid, or lipid synthesis, as well as the overexpression of 
certain molecular markers, receptors, and antigens.

 Technique

The best studied and most useful radiotracer in clinical practice is 
18- fluorodeoxyglucose (FDG), which targets cells with increased glucose metabo-
lism. FDG is a glucose-analog molecule labeled with fluorine-18 radionuclide, 
which decays through positron emission with a half-life of 110 minutes and pro-
vides the basis for imaging. FDG gets taken up by the cells along with regular glu-
cose through the insulin-independent GLUT-1/3 transporters and is trapped in the 
intracellular space by hexokinase. Unlike glucose, FDG cannot undergo glycolysis 
and thus remains in the cell. Its normal biodistribution includes uptake in the tissues 
with significant metabolic activity (such as the brain, heart, liver, tonsils), the uri-
nary system (since it is renally excreted), and variably other organs (such as the 
bowel). Since glucose competes with FDG in cellular uptake, normal glucose levels 
are important for imaging examinations. Proper diabetic management and overnight 
fasting are recommended for most examinations. Avoidance of exercise for 1–2 days 
is also critical to avoid increased radiotracer into the muscles.

FDG uptake and distribution in the body is imaged with PET scanners, which is 
commonly performed concomitantly with CT and occasionally with MR.  The 
injected FDG radiotracer material emits positrons which almost immediately inter-
act with nearby electrons resulting in particle annihilation and two photons of 
511 keV energy, which travel approximately 180 degrees away from the point of 
annihilation and are detected by the PET camera (coincidence detection). The PET 
images can be acquired over the whole body or occasionally over a certain region of 
interest. The images are fused with the near-simultaneously obtained CT or MR to 
obtain PET/CT and PET/MR images. The CT or MR data is also used in the pro-
cessing of PET data for attenuation correction, that is, to correct for the absorption 
and scattering related to the different organs.

Interpretation of PET is qualitative and semiquantitative. Qualitatively, the dis-
tribution and intensity of radiotracer activity is described visually in comparison to 
the liver and/or blood pool activity. Thus, radiotracer activity that appears less than, 
equal to, and greater than liver corresponds to low, moderate, and intense activity 
levels. Semiquantitatively, a standardized uptake value (SUV) can be calculated as 
a measure of FDG uptake and metabolic activity [41]. The SUV represents the 
amount of radiotracer concentration within a region of interest (tumor) relative to 
the average radiotracer concentration in the body. The SUV is often presented as a 
unitless number assuming that tissue density is 1  g/mL.  Typically, the highest 
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measured SUV level (SUVmax) is reported for best reproducibility. While SUVmax 
is often considered an “objective” measure, since it is normalized to the amount of 
contrast injected and the body size, it is still technique-dependent (hence referred to 
as semiquantitative). Therefore, absolute SUVs are not used, and comparisons 
between different studies and patients should be interpreted with caution. In gen-
eral, an SUVmax above liver level (i.e., SUVmax > 2.5) is considered suspicious for 
malignancy in the appropriate setting (the differential consideration being inflam-
mation/infection or other hypermetabolic state). This may also be quantified as the 
tumor-to-liver ratio (TLR = SUVmax of tumor/SUVmax of liver).

 Imaging

Regarding biliary tract imaging, the use of PET/CT has been studied more exten-
sively than PET/MR, but nevertheless, the overall data are much more limited than 
for CT and MR alone. In general, the different CCA subtypes are mostly distin-
guished based on their CT or MR features (described in detail above), whereas the 
PET portion provides physiologic information about metabolism to increase the 
accuracy of the examination and provide ancillary staging information.

PET/CT In PET/CT, PET imaging is fused with CT. While PET/CT is a clinical 
workhorse for the diagnosis, staging, treatment planning, and response monitoring 
of a variety of malignancies, its role in the management of biliary tract cancers 
remains debated [42, 43]. Though traditionally considered second-line to CT/MR in 
general, there is growing evidence that PET/CT can make a difference in manage-
ment in up to 20% of cases [43].

A number of small studies assessed the diagnostic performance of PET/CT in 
the evaluation of CCA and locoregional/distant metastatic disease [44–49]. The 
available data was pooled by a meta-analysis from 2019, which reanalyzed 47 
studies with a pooled total 2125 patients [43]. For primary tumor detection, the 
meta- analysis reported a pooled PET/CT sensitivity and specificity of 95.7% and 
38.1% [43]. Subgroup analysis revealed a sensitivity and specificity of 94.2% and 
68.3% for iCCA, 91.9% and 21.9% for pCCA, and 95.3% and 27.7% for dCCA 
[43]. The high sensitivity likely reflects the aggressive nature of CCAs, with asso-
ciated increased glucose metabolism. The low specificity is mostly seen in extra-
hepatic CCA types (pCCA and dCCA) likely as a result of false positives from 
concomitant cholangitis, post-procedural inflammation, and the presence of bili-
ary stents.

For the diagnosis of metastatic disease, the sensitivity and specificity were 
88.4% and 69.1% for lymph node involvement, as well as 85.4% and 89.7% for 
other distant metastases [43]. For the diagnosis of relapsed disease after a disease- 
free period, the sensitivity and specificity of 90.1% and 83.5% were reported [43]. 
Furthermore, PET/CT changed management in 15% of the cases, of which the 
majority was disease upstaging [43].
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With regard to the usage of a SUV, the meta-analysis suggested a “cutoff 
SUVmax” >3.5 [43]. The study also found that higher SUVmax at baseline was 
associated with worse prognosis [43]. In general, iCCA has more avid FDG uptake 
than eCCA (dCCA and dCCA), which is thought to be secondary to its more com-
mon mass-forming morphology and different genetics [50]. On the other hand, 
periductal-infiltrating and hilar lesions tend to have smaller tumor volume with 
increased fibrosis and decreased cellularity; hence FDG avidity is less.

Limitations include overlap between benign and malignant neoplasms, low 
uptake in indolent/low-grade tumors/mucinous tumors, insensitivity to microscopic 
disease (generally, lesions <8 mm), and false positive results secondary to inflam-
mation in the setting of biliary stenting and cholangitis.

PET/MR In PET/MR, PET imaging is fused with MRI in order to take advantage 
of the higher intrinsic soft tissue resolution provided by MR over CT [51]. Most of 
the other advantages to PET/MR are also related to the nature of MR imaging, 
including multiplanar image acquisition capability (CT can only acquire data axi-
ally), a larger variety of multiparametric MR sequences providing more extensive 
evaluation, and less radiation dose (only the PET part has ionizing radiation) [52]. 
Two available scanner designs include the sequential PET and MR scanners (near- 
simultaneous data acquisition) and the single integrated PET/MR scanners (simul-
taneous data acquisition) [52]. Needless to say, these are very expensive units and 
of limited availability.

Very few studies are available with respect to PET/MR imaging of biliary tract 
neoplasms. Of note is a retrospective multicenter study of 37 patients with newly 
diagnosed iCCA which found that PET/MR changed significantly the surgical man-
agement in 11 (30%) patients despite having other imaging with a combination of 
CT, MR, and/or PET/CT [53]. Another small retrospective study of six patients with 
CCA who underwent baseline PET/MR imaging suggested inverse correlation 
between the SUVmax measured on PET with the ADC measured on MRI [54]. 
However, robust diagnostic performance data are not available.

Thus, given cost-effectiveness concerns and the relatively widespread availabil-
ity of regular CT, MR, and PET/CT scanners, PET/MR is currently almost never 
used in clinical management outside of a few very highly specialized centers.

 Additional Considerations

Other biliary tract cancers Combined HCC/CCA is a rare primary liver tumor 
which, due to its very low prevalence, is even less well studied. In a retrospective 
cohort of 46 patients with cHCC/CCA, higher FDG uptake was associated with 
higher tumor stage, lymph node metastasis, and poorer tumor differentiation of the 
CCA component, as well as decreased overall survival [55]. Other CCA-related 
malignancies (such as gallbladder and ampullary carcinoma) will not be discussed 
in the current chapter.
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Other radiotracers Although there are a growing number of other PET radiotrac-
ers in addition to FDG, most are still within the realm of research or rarely useful. 
For example, gallium-68 FAPI, a marker of cancer-associated fibroblasts, was 
shown to have intense uptake in a group of 12 patients with CCA, suggesting cor-
relation with the characteristic desmoplastic/fibrotic reaction produced by many 
CCAs, which is promising for future use [56]. On the other hand, gallium-68 pen-
tixafor, which binds to a marker of poorly differentiated cells, and carbon-11 cho-
line, a marker of lipid metabolism, were not found to be helpful [57]. CCAs that 
have neuroendocrine features may show uptake of somatostatin receptor analogs 
(gallium-68 DOTA agents on PET or indium-111 pentetreotide/octreotide on scin-
tigraphy); however, these agents are not routinely used in the imaging of biliary 
cancers, unless a neuroendocrine tumor is suspected [58].

Older non-PET oncologic radiotracers such as gallium-67 citrate may show 
uptake in CCAs but are almost never used in current practice. Other nuclear imaging 
studies may be performed as accessory studies in the management of biliary tract 
tumors. For example, a hepatobiliary scintigraphic scan may be obtained with a 
technetium-99m-labeled hepatobiliary agent (e.g., Tc-99m HIDA) to evaluate for 
biliary obstruction or postoperative bile leaks. On a technetium-99m sulfur colloid 
scan, iCCA is a “cold spot” secondary to the lack of macrophages within the tumor.

Therapeutics For patients with locally advanced unresectable iCCA, local therapy 
with yttrium-90 microsphere transarterial radioembolization (Y-90 TARE) may be 
an option [59]. In this procedure, a percutaneously introduced microcatheter is 
selectively advanced into the hepatic arterial branch feeding the iCCA, and radioac-
tive Yttrium-90 microspheres are then administered. The therapeutic effect is from 
the emission of beta radiation. These patients may undergo a technetium-99m mac-
roaggregated albumin (MAA) scan prior to the radioembolization to assess for sig-
nificant hepato-pulmonary shunts to avoid unnecessary radiation to the lungs.

Molecular imaging also relates to the emerging field of radiogenomics, in which 
imaging appearance (imaging phenotype) is correlated with underlying specific 
genes and mutations (genotype) that can be targeted by specific therapies. A small 
study of 22 cases of iCCA found positive correlation between genes associated with 
glucose metabolism and intense FDG activity with SUVmax > 9 and corresponding 
negative correlation with the expression of tumor suppressor genes [60]. Based on 
the analysis, the study also suggested that iCCA with intense FDG activity may not 
respond well to gemcitabine or cisplatin [60].

 Conclusion

In conclusion, non-invasive imaging plays a powerful role in the diagnosis and man-
agement of CCA. Currently, US is mainly used for initial screening, while CT and MR/
MRCP are the major primary tools for imaging evaluation. While hybrid and molecular 
imaging is an active area of research with growing importance, its current clinical use 
in the evaluation of biliary malignancies is not first-line and mostly limited to PET/CT.
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 Cholangiocarcinoma Diagnosis

Definitive histologic classification and staging of cholangiocarcinoma can be 
achieved by evaluation of surgically resected material. Given the advanced presen-
tation of many patients with cholangiocarcinoma, radiologic guidance is commonly 
used to obtain small tissue samples for histologic or cytologic evaluation so that 
pathologists can reach a definitive diagnosis to guide therapy. There are many chal-
lenges to cholangiocarcinoma diagnosis on small biopsies. Noninvasive biopsy 
techniques require significant operator skill, and tumor cell yields can be low due to 
due to infiltrative tumor growth patterns, necrosis, and a relatively low tumor con-
centration compared to tumor-associated stroma. Furthermore, markedly reactive 
changes due to bile duct strictures or stenting can be difficult to distinguish from 
cancer. Nonetheless, the diagnosis can be established using morphologic criteria 
and, when indicated, immunohistochemistry, ancillary cytogenetics, and molecular- 
based techniques.

 Tissue Acquisition Techniques

The tissue acquisition technique for diagnosis of cholangiocarcinoma (CCA) 
depends on the site of disease and the clinical features of individual patients. Tissue 
acquisition for intrahepatic CCA is typically obtained by percutaneous approach 
with radiologic guidance by computed tomography or ultrasound to obtain cores of 
tissue (FNB) and/or fine needle aspirate (FNA). Rapid onsite adequacy can be used 
to improve diagnostic yield.

Extrahepatic CCA can be sampled using several methods [1]. Intraductal forceps 
biopsy or fine needle biopsy can obtained by endoscopic retrograde cholangiopan-
creatography (ERCP) utilizing standard or mini-forceps with fluoroscopic guidance 
and/or specialized forceps under cholangioscopic; when retrograde access is not 
feasible due to anatomical or other factors, the same may be performed by percuta-
neous transhepatic cholangiography (PTC). The sensitivity and specificity of biopsy 
is 62–78% and 100%, respectively [2–4]. Cells in biliary fluid can be obtained for 
cytologic examination by direct aspiration during ERCP or via percutaneous drain-
age, and cytology techniques generally have near 100% specificity. Biliary fluid 
cytology has a low sensitivity (6–32%) for detecting malignancy and is commonly 
performed in conjunction with cytologic evaluation of bile duct brushings, which 
have a higher pooled sensitivity of 45% [1, 5]. Bile duct brushing obtained by ERCP 
or PTC involves scraping cells from the superficial biliary mucosa at the level of the 
bile duct lesion. The brush, charged with cellular material, is carefully smeared 
directly on a glass slide. The slide is reserved for air drying or fixed by very rapidly 
placing it in an alcohol-based fixative; any delay between the smearing and fixation 
creates artifactual distortion that hinders diagnosis. Alternatively, the cells can be 
dislodged from the brush using agitation into a container with a fixative appropriate 
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for liquid-based cytology preparation [6]. Liquid-based media is a flexible collec-
tion technique because the cells can be applied to slide using various proprietary 
techniques such as CytoSpin™ (Thermo Fisher Scientific, Waltham, MA), 
ThinPrepR (Hologic, Inc., Marlborough, MA), or BD SurePath™ prep (Becton, 
Dickinson and Company, Franklin Lakes, NJ). Also, tissue fragments can be centri-
fuged into a cell pellet and fixed with formalin into a cell block. Cytology diagnosis, 
DNA-based testing, fluorescence in situ hybridization (FISH), and immunocyto-
chemistry, as indicated, can be performed on material placed in liquid-based fixa-
tive. As an alternative or compliment to ERCP, bile duct masses may also be sampled 
using endoscopic ultrasound (EUS)-guided FNA/FNB.  Like bile duct brushings, 
FNAs can be prepared as direct smears, liquid-based preparations, and cell blocks. 
FNA has a high sensitivity and specificity for extrahepatic CCA (82% and 87.5%) 
[7, 8]. Because of the transduodenal approach of EUS, distal bile duct lesions are 
technically easier and safer to access compared to peri-hilar lesions, although over-
all complication rates are low in experienced hands [7].

 Precursor Neoplastic Lesions

Three main precursor lesions exist: biliary intraepithelial neoplasia (BilIN), intra-
ductal papillary neoplasm of the bile ducts (IPNB), and mucinous cystic neoplasm 
(MCN) These are each discussed in the forthcoming subsections (see also Chap. 3, 
Nakanuma et al., for complementary information).

 Biliary Intraepithelial Neoplasia

Non-mass-forming dysplasia of the bile duct epithelium, termed “biliary intraepi-
thelial neoplasia,” is an incidental microscopic finding and putative precursor of 
CCA. The atypical epithelium is flat or micropapillary and confined to the lumen. 
There are two tiers in grade (low and high), and lesions are graded based on the 
highest degree of atypia [9]. Diagnosis of low grade reflects pseudostratification of 
nuclei, increased nuclear-cytoplasmic ratio, and nuclear hyperchromasia. High- 
grade BilIN lesions have increasing architectural complexity such as micropapillae, 
loss of cellular polarity, and marked nuclear atypia.

Due to the non-mass-forming nature of BilIN, it is rarely discovered prior to the 
development of carcinoma, and thus little is known about its natural history. 
However, patients with primary sclerosing cholangitis (PSC) are at markedly 
increased risk of CCA, with lifetime risk approaching 10% [10]. Retrospective stud-
ies in patients with PSC have shown strong associations between the presence of 
intestinal metaplasia, low- and high-grade BilIN, and CCA [11–13]. The 
inflammation- metaplasia-dysplasia-carcinoma model of progression in PSC is sup-
ported by the finding of increasing cytogenetic abnormalities as lesions progress 
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[14]. This model of progression in PSC is similar to that of inflammatory bowel 
disease, and there is also evidence it may be applicable to other clinical contexts, 
such as liver fluke-associated CCA [15].

 Intraductal Papillary Neoplasm of the Bile Ducts

Single or multifocal grossly exophytic proliferations of neoplastic biliary epithelium 
within the bile ducts are termed intraductal papillary neoplasms of bile ducts 
(Fig. 8.1a). These premalignant neoplasms are seen in association with an invasive 
carcinoma in 74% of resected cases [16]. In East Asian populations, there is evidence 
of association between IPNB and hepatolithiasis, but many IPNB also arise in the 
absence of a predisposing condition [17, 18]. The histology comprises villous or 
finger-like branching fibrovascular cores lined by dysplastic cuboidal to columnar 
epithelium of biliary, intestinal, oncocytic, or gastric differentiation [19] (Fig. 8.1b). 
The mucin expression profiles are similar to those of their pancreatic counterparts; 
the pancreatobiliary type expresses MUC1, the intestinal type expresses MUC2, and 
while gastric and oncocytic types express MUC5AC and MUC6 [16].

a b

c d

Fig. 8.1 (a–d) Grossly, an intraductal papillary neoplasm of the bile ducts (IPNB) is an exophytic 
and papillary lesion within the lumen of the bile duct (a). IPNB of the common bile duct fills and 
expands the duct lumen on low power histology (b). Branching and tubular architecture is typical 
of low-grade IPNB (c), while marked cytologic atypia and complex architecture are present in 
IPNB with high-grade dysplasia (d)
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IPNB are graded in two tiers: low- and high-grade based on the highest level of 
cytological atypia and cellular organization in a given lesion (Fig. 8.1c, d). Recently, 
dividing IPNB into two types has been proposed due to clinical, pathologic, and 
genetic differences [20, 21]. Type 1 is similar to pancreatic intraductal papillary 
mucinous neoplasm and mainly in the intrahepatic bile duct, whereas type 2 is more 
architecturally complex with solid and tubular components, is more often associated 
with invasive adenocarcinoma at resection, and mainly involves the extrahepatic 
bile ducts [20].

A rarer and morphologically distinct mass-forming neoplasm exists that lacks 
the mucinous characteristics of IPNB. These lesions typically show predominantly 
compact tubular-glandular architecture with minimal papillae and are usually asso-
ciated with high-grade dysplasia and invasive carcinoma (up to 80%) [22]. These 
lesions are designated “intraductal tubulopapillary neoplasm of the bile duct” and 
are also morphologically similar to their pancreatic analog [22].

 Mucinous Cystic Neoplasm of the Liver and Biliary System

CCAs may arise, albeit rarely (approximately 6%), in association with muci-
nous cystic neoplasm of the liver and biliary system, placing it in the category 
of precursor neoplastic lesion [23]. MCN is a cystic neoplasm arising without 
clear communication with the bile duct. These neoplasms are well-demarcated 
grossly and contain fluid. The defining histologic feature is the combination of 
cystic glands and ovarian-type stroma. The neoplastic glands are lined by epi-
thelial cells that are columnar (often mucinous), cuboidal (non-mucinous), or 
attenuated [23]. Invasive cholangiocarcinoma may be present in radiologically/
grossly solid components of MCNs. Although typically flat, some neoplasms 
have papillary projections. The ovarian-type stroma must be identified for diag-
nosis but may only be focal and is highlighted by immunohistochemical stains 
for ER or PR. Rarely, MCN has high- grade dysplasia; the lining is typically 
low-grade.

 Peri-hilar and Distal Extrahepatic Bile Duct Adenocarcinomas

 Gross Evaluation

Peri-hilar CCA arises from the common hepatic duct, whereas distal CCA arises 
from the common bile duct. Resection specimens are evaluated by gross assessment 
of tumor size, appearance, location, relationship to adjacent structures, distance to 
margins, and the presence of lymph nodes. Most tumors have a firm white or tan 
appearance with poorly defined infiltrative margins. For peri-hilar tumors, the 
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macroscopic involvement of the common hepatic duct and its branches is important 
to document. Extension of these neoplasms along bile ducts leading to strictures is 
common. Peri-hilar resections usually include partial hepatectomy, and thus exten-
sion into liver parenchyma, branches of the portal vein, hepatic artery, or second- 
order biliary radicals can occasionally be seen grossly, and the documentation of 
tumor involvement is an element of tumor staging. The resection margins, proximal/
distal bile ducts and soft tissue margins, are examined for the distance to tumor, 
with samples taken for microscopy.

For distal extrahepatic CCA, the resection is often a Whipple specimen. Likewise, 
the tumor is described in relation to the adjacent structures such as the pancreas, 
duodenum, and ampulla. The depth of invasion from the bile duct wall is key for 
pathologic T staging of distal CCA, which is assessed by gross measurement and 
confirmed with microscopy of the tumor at its widest invasive span. For distal CCA, 
the most important margin is often the proximal bile duct margin, but all other mar-
gins (uncinate, pancreatic neck, luminal gastrointestinal) are sampled, typically in a 
shave section, for microscopy.

 Histology

The majority of extrahepatic CCAs have a histologic appearance similar to conven-
tional pancreatic ductal adenocarcinoma. The infiltrating and irregularly angulated 
glands may appear scattered among residual biliary structures or occur within an 
obliterative desmoplastic stroma (Fig.  8.2). The cells are usually columnar and 
often contain intracellular mucin. Among the varied histologic subtypes described 
are intestinal, foveolar, mucinous, signet ring cell, clear cell, hepatoid, and micro-
papillary [24]. Rare CCA subtypes with a distinctive appearance include adeno-
squamous, sarcomatoid, and undifferentiated carcinomas. Lymphovascular invasion 
is common, which is reflected in the high proportion of resections with positive 
lymph nodes (39% to 76%) [25–27]. Perineural invasion is also common and, cou-
pled with the tumors’ tendency to extend along the existing ducts, results in high 
rates of positive resection margins (13–37%) [28–31]. Frozen section analysis with 
further resection on intraoperatively positive margins can result in improved sur-
vival [28, 29].

 Differential Diagnosis of Extrahepatic Cholangiocarcinoma 
and Distal Bile Duct Carcinoma

The differential diagnosis of extrahepatic CCAs includes reactive peri-ductal 
glands in the setting of inflammation, metastatic lesions, and direct extension from 
primary pancreatic, ampullary, or duodenal tumors. Malignant glands are 
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distinguished from reactive glands by the irregular infiltration and degree of cyto-
morphologic atypia. This can be difficult in the setting of severe inflammation. 
Immunohistochemistry for p53 (abnormal overexpression or loss of expression) 
and/or SMAD4 (loss of expression) may be of value in distinguishing between 

c d

a b

Fig. 8.2 Irregularly infiltrating glands and intra-tumoral desmoplastic stroma typify well- 
differentiated distal (a) and peri-hilar (b) CCAs. Poorly differentiated CCAs of the distal (c) and 
peri-hilar (d) bile ducts have poorly formed glands and single cell infiltration
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reactive versus neoplastic, but these stains are aberrant in only approximately half 
of extrahepatic CCAs [32, 33]. Therefore, non-aberrant staining does not exclude 
neoplasia. Another nonneoplastic mimicker is IgG4-related cholangitis, which can 
appear similar on cholangiography to PSC or cholangiocarcinoma [34]. Serum 
IgG4 is a useful ancillary test, but its sensitivity and specificity vary depending on 
the thresholds used [35]. Biopsies of IgG4 cholangitis may show lymphoplasma-
cytic inflammation and fibrosis, with significantly increased IgG4 plasma cells by 
immunohistochemistry [36].

With respect to neoplastic differential diagnoses, the extrahepatic bile ducts 
are uncommon locations for distant metastasis, but attention to the history of 
other prior malignancies is still important, particularly if the histomorphology is 
unusual. Far more commonly, the extrahepatic bile ducts may be involved by 
direct extension of adenocarcinoma from an adjacent organ. Extension of primary 
pancreatic ductal adenocarcinoma or ampullary adenocarcinoma into the bile 
duct may be morphologically and immunohistochemically indistinguishable from 
extrahepatic CCA. Therefore, the distinction is usually made based on gross and 
microscopic assessment of where the epicenter and/or bulk of the tumor is ana-
tomically located.

 Intrahepatic Cholangiocarcinoma

 Gross Evaluation

Intrahepatic CCA is an adenocarcinoma arising from the second-order bile ducts 
and smaller branches. Resections for intrahepatic CCAs are typically partial hepa-
tectomies. The macroscopic configuration can be mass forming (Fig. 8.3a), peri- 
ductal infiltrating (Fig. 8.3b), or mixed. The gross appearance is firm, white, and 
fibrous. Gross assessment of tumor size, presence of multifocality, vascular involve-
ment, capsular involvement, and extrahepatic extension are all important factors for 
pathologic T staging. There is a hepatic parenchymal margin, but distal biliary 
branches at the margin are important to evaluate due to the propensity for peri- 
ductal tumoral extension.

 Histology

There are two major histologic subtypes of intrahepatic CCA: small duct and large 
duct. Other rare subtypes include adenosquamous carcinoma, mucinous carcinoma, 
signet ring cell carcinoma, mucoepidermoid carcinoma, lymphoepithelioma-like 
carcinoma, and sarcomatous carcinoma [37].
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Fig. 8.3 (a–f) Mass-forming intrahepatic cholangiocarcinoma is well-circumscribed, firm, and 
fibrous in texture (a). A poorly circumscribed gross margin reflects peri-ductal infiltration of intra-
hepatic cholangiocarcinoma (b). Well-differentiated small duct type intrahepatic cholangiocarci-
noma has distinct tubular or anastomosing glands, such as this cholangiolar pattern (c). Marked 
glandular complexity and sheets of cells are seen in moderately differentiated (d) and poorly dif-
ferentiated (e) small duct type cholangiocarcinomas. The ductal malformation subtype of cholan-
giocarcinoma (f)

a b

c d
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 Intrahepatic Cholangiocarcinoma: Small Duct Subtype

Small duct subtype has also been called “peripheral,” “cholangiolar,” and “bile 
ductular,” since they are more likely to present away from the liver hilum and 
resemble to reactive biliary proliferations. The prevalence of this phenotype is 
regionally dependent, comprising approximately 40–90% of intrahepatic CCAs 
[38, 39]. The predominantly tubuloglandular architecture shows remarkable inter-
tumoral and intra-tumoral heterogeneity [38]. The patterns of the infiltrating 
glands include simple tubules, anastomosing tubules, confluent tubules with slit-
like lumens, and dilated and solid sheets of cells (Fig. 8.3c–e). Micropapillary 
arrangements can be seen. The cells are cuboidal, polygonal, or low columnar 
with cytoplasm that can range from pale and amphophilic to plump and eosino-
philic. The neoplastic cells may appear hepatoid but they do not express hepato-
cellular markers. Small collections of luminal mucin and intracellular mucin can 
be present in a minority of cases [38]. Many tumors have densely hyalinized 
intra-tumoral stroma. The tumor cells infiltrate and entrap hepatocytes at the 
tumor-liver interface. Some small duct type intrahepatic CCAs have architecture 
resembling ductal plate malformation or biliary adenofibroma (Fig.  8.3f) [40]. 
Very well-differentiated tumors with a uniformly anastomosing tubular pattern 
resembling the ductular reaction have been referred to as cholangiolocellular car-
cinoma, but they lack a unique genotype and may not be a distinct entity 
(Fig. 8.3c) [41].

e f

Fig. 8.3 (continued)
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 Intrahepatic Cholangiocarcinoma: Large Duct Subtype

Large duct subtype intrahepatic CCAs have had prior descriptive labels including 
“hilar type,” “peri-hilar type,” and “bile duct type,” which reflect the resemblance 
of this subtype to extrahepatic and peri-hilar CCAs. The histology consists of 
irregularly infiltrating glands with large-caliber lumens frequently containing 
mucin (Fig. 8.4a). Cells lining the glands are cuboidal to columnar and often con-
tain intracytoplasmic mucin. The intra-tumoral stroma is characteristically des-
moplastic and abundant. Higher-grade carcinomas have increasing architectural 
complexity and loss of glandular differentiation (Fig. 8.4b). Smaller infiltrating 
glands resembling the small duct subtype can be seen in variable proportion, and, 
in some instances, there is infiltration of single cells with signet ring cell appear-
ance. The large duct subtype of intrahepatic CCA frequently exhibits perineural 
invasion [38].

 Differential Diagnosis of Intrahepatic Cholangiocarcinoma

The diagnosis of intrahepatic CCA requires distinction from reactive biliary glands 
and benign biliary proliferations. Similar to extrahepatic bile ducts, IgG4-related 
cholangitis can also involve the intrahepatic ducts. Other malignancies such as 
hepatocellular carcinoma and metastasis from the lung, breast, and upper gastroin-
testinal tracts and extrahepatic pancreaticobiliary system also enter the differential. 
The Immunohistochemistry of Cholangiocarcinoma section in this chapter provides 
information on the use of stains in resolving the site of tumor origin.

Small biopsies containing well-differentiated CCA may present a challenge 
in diagnosis. Carcinoma is distinguished from bile duct adenomas and reactive 
biliary proliferations based on larger nucleus size, atypical cytological 

a b

Fig. 8.4 (a, b) Large duct type intrahepatic cholangiocarcinoma resembles extrahepatic cholan-
giocarcinoma with widely spaced large-caliber infiltrating glands (a). Higher-grade tumors have a 
higher density of infiltrating glands with more complexity (b)
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features, and irregular distribution of infiltrating glands. The Ki-67 prolifera-
tion index of adenomas is low compared to cholangiocarcinoma (average = 2% 
versus 23%) [42]. The immunohistochemical marker for p16 (CDKN2A) is 
expressed in most adenomas and bile ductular proliferations but less so in car-
cinoma [43].

Morphologic features are often sufficient for distinguishing CCA from hepato-
cellular carcinoma because CCA has tubuloglandular differentiation, mucin pro-
duction, and intra-tumoral stroma. These features are absent in hepatocellular 
carcinoma (HCC), excepting the rare scirrhous or sclerosing variant of HCC [44, 
45]. Poorly differentiated primary liver carcinomas require immunohistochemistry 
to exclude hepatocellular differentiation.

The histology of intrahepatic CCA overlaps with several extrahepatic adenocar-
cinomas. Fortunately, most well-differentiated intrahepatic CCAs have anastomos-
ing glands and sclerotic stroma; this “cholangiolar pattern” of the small duct subtype 
has been shown to be specific for intrahepatic cholangiocarcinoma, particularly 
when combined with positive albumin RNA in situ hybridization [46]. Unfortunately, 
the large duct subtype of intrahepatic CCA resembles extrahepatic bile duct and 
pancreas adenocarcinomas both histologically and immunophenotypically. In the 
event of large tumors involving the liver hilum with a large duct phenotype, it can 
be impossible on a histologic basis to distinguish the large duct subtype of intrahe-
patic CCA from a peri-hilar CCA. Clinical and radiologic correlation plays a key 
role in these scenarios.

 Combined Hepatocellular-Cholangiocarcinoma

Carcinomas containing areas with both hepatocellular and cholangiocytic dif-
ferentiation are classified as combined hepatocellular-cholangiocarcinoma. 
Genomic studies have revealed that most cases of primary liver carcinoma with 
this bi- phenotypic morphology represent proliferations derived from the same 
clone [47, 48]. Tumors that show two distinct genomic profiles between the 
phenotypes may represent “collision tumors” which arose as separate primaries 
[48]. Collision tumors are currently excluded from the WHO classification of 
combined hepatocellular- cholangiocarcinoma, although there is still debate on 
this matter [37]. The two phenotypic components in combined hepatocellular- 
cholangiocarcinoma may be regionally distinct or intermixed. There is no defin-
ing proportion required for either component, but diagnosis is based on 
recognition of the two morphologies on routine hematoxylin and eosin (H&E)-
stained slides (Fig. 8.5). Immunohistochemistry to demonstrate both hepatocel-
lular (Arginase-1, HepPar1) and biliary (CK7, CK19) phenotype may be useful 
to support the diagnosis, but this technique is ancillary to the H&E morphol-
ogy [37].
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 Immunohistochemistry of Cholangiocarcinoma

Immunohistochemistry plays a larger role in assessing intrahepatic CCAs compared 
to their extrahepatic counterparts because of the differential diagnosis with hepato-
cellular carcinoma (HCC) and the propensity of a wide variety of other adenocarci-
nomas to metastasize to the liver. A summary of immunohistochemical labeling 
patterns is shown in Table  8.1. The distinction of CCA from non-hepatic 

Fig. 8.5 Combined 
hepatocellular- 
cholangiocarcinoma has 
distinct histologic 
components

Table 8.1 Staining patterns in cholangiocarcinoma

Staining 
pattern

Intrahepatic 
cholangiocarcinoma, small 
duct type

Intrahepatic 
cholangiocarcinoma, large 
duct type

Extrahepatic 
cholangiocarcinoma

Positive CK7
CK19
CK20 (−/focal positive)
Albumin mRNA in situ
Mucicarmine (focal)
CD56
MUC1

CK7
CK19
CK20 (−/focal positive)
Mucicarmine
CA19–9
S100P
TFF1
MUC5AC
MUC6
MUC1

CK7
CK19
CA19–9
S100P
IMP3
Maspin
Methionyl-tRNA 
synthetase 1
Claudin-18
Mucicarmine

Negative HepPar1
Arginase-1
Alpha-fetoprotein
Polyclonal CEA 
(canalicular pattern)
CD10 (canalicular pattern)

Albumin mRNA in situ Albumin mRNA in situ
Smad-4
pVHL

Abbreviations: CEA Carcinoembryonic antigen, TFF1 trefoil factor 1, IMP3 insulin-like growth 
factor-I mRNA binding protein-3, pVHL von Hippel-Lindau protein
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adenocarcinomas relies on the integration of morphology, ancillary tests, as well as 
clinical context and radiological findings. When a patient has a known prior extra-
biliary adenocarcinoma, for instance, comparison should be made with prior histol-
ogy to exclude metastasis.

CCAs of all types are positive for CK7 and CK19 while negative or only 
focally positive for CK20. This keratin labeling pattern is by no means specific 
for CCA over adenocarcinoma from another site but is supportive evidence that 
an established primary liver carcinoma is CCA (as opposed to HCC). Typical 
HCCs only rarely or weakly label with CK7, which is a marker of poor prognosis, 
while strong CK7 labeling is supportive of CCA [49]. The fibrolamellar variant 
of HCC is a clinically and genetically distinct variant which is strongly CK7 posi-
tive, but its morphology is so distinctive that it is unlikely to be mistaken for 
CCA. Mucicarmine is a histochemical stain that can be used to highlight intracel-
lular mucin, which also supports glandular differentiation. Most CCAs are nega-
tive for hepatocytic lineage markers HepPar1, Arginase-1, and alpha-fetoprotein 
(AFP) [50–52].

Immunohistochemical approaches to evaluating intrahepatic tumors commonly 
involve excluding metastasis using a panel of markers given the keratin profile alone 
is nonspecific. In brief, these are generally useful ancillary tests for clarifying tumor 
origin, but interpretation requires an understanding of the sensitivity and specificity 
of these markers for their target sites. For example, TTF-1 and Napsin A are positive 
in the vast majority of lung adenocarcinomas and are generally negative in intrahe-
patic CCAs, but these stains have been reported positive in anywhere from 5–47% 
of extrahepatic CCAs [53–55]. This wide range may be related to the use of differ-
ent antibody clones between different institutions. CDX2 is often positive in lumi-
nal gastrointestinal tract tumors, but it can stain CCA in roughly 30% of cases, 
albeit patchy or with weaker intensity [55–57]. Estrogen receptor (ER) and proges-
terone receptor (PR) have high specificity for breast and gynecologic origin but 
modest sensitivity [58, 59]. Other markers for mammary origin such as GATA-3, 
mammaglobin, and GCDFP-15 also show modest sensitivity and specificity [55, 
60]. Some popular or emerging markers, such as PAX8 (renal, gynecologic, thy-
roid), NKX3.1 (prostate), and SATB2 (colon), have lower rates of cross-reactivity 
with CCA, in the range of 5–10% [55]. In summary, most popular immunohisto-
chemical lineage markers are not entirely specific and may show staining in at least 
a subset of CCAs. Prudence dictates caution in drawing conclusions about site of 
origin based on immunohistochemistry without knowledge of the clinical and radio-
logical setting.

Many markers have been evaluated for the differential expression in small versus 
large duct intrahepatic CCA. These stains are generally not employed in routine 
diagnosis. The large duct type is more likely to stain with CA19-9, S100P, and 
TFF1, while the small duct type labels with CD56. There is also differential mucin 
expression since MUC5AC and MUC6 label large duct while MUC1 labels both 
small and large duct types [38, 61, 62].
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 Albumin In Situ Hybridization

Until recently, there were no lineage-specific markers for CCA.  While this 
remains the case for extrahepatic CCA, albumin mRNA expression has emerged 
as a relatively specific marker for primary liver cancers of both hepatocellular and 
cholangiocellular origin. Improvements in automated in situ hybridization stain-
ing methods have increased the availability of this marker for clinical use, but at 
the time of this writing, although commercial availability has improved, it is still 
not widely in use. Interpretation of albumin labeling requires familiarity with the 
possible range of staining patterns. The stain is often patchy and a positive result 
requires at least 5% of tumor cells to label [63]. Labeling of entrapped hepato-
cytes must be excluded. Albumin mRNA ISH has an 89% sensitivity for intrahe-
patic CCA [46]. It is also positive in almost all hepatocellular carcinomas. 
Albumin does not stain pancreatic adenocarcinomas, extrahepatic CCA, and gas-
tric adenocarcinomas. The specificity is imperfect since it has been reported to 
occasionally label non-hepatic neoplasms such as acinar cell carcinoma of the 
pancreas, ductal breast carcinoma, gallbladder carcinoma, gastroesophageal junc-
tion carcinoma, lung carcinoma, and yolk sac tumors [46, 63–65]. The percent-
ages of intrahepatic CCAs labeling for albumin in a given study are affected by 
the proportion of tumors of the large duct phenotype, which do not tend to express 
albumin [38, 66].

 Cytology

Biliary brushings and drainage fluid are used to diagnose extrahepatic biliary 
lesions. For the diagnosis of malignant strictures, biliary brushings have variable 
sensitivity that ranges from 18% to 67%, with a pooled sensitivity of 45% by meta- 
analysis [5, 67]. The specificity is consistently high, with most studies approaching 
99% [5]. Since the sampling utilizes an exfoliative technique, it is not possible to 
distinguish between a noninvasive intraductal carcinoma and an invasive carcinoma 
(Fig. 8.6). Fine needle aspiration may be performed for the diagnosis of both extra- 
and intrahepatic neoplasms. For extrahepatic cholangiocarcinoma, a direct com-
parison of FNA with brushing showed that FNA has a much higher sensitivity (73% 
vs 44%) [4].

The cytologic criteria for the diagnosis of cholangiocarcinoma are similar for 
both exfoliative and aspiration techniques [Table 8.2]. The diagnosis requires the 
identification of multiple atypical cytological features such as two distinct cell pop-
ulations, cellular disorganization, cellular crowding and three-dimensionality, 
increased nuclear-cytoplasmic ratio, nuclear molding, nuclear size variation of >4:1 
ratio in cellular clusters, coarse/clumped chromatin, irregular thickening and inden-
tations of the nuclear membrane, and poor cellular cohesion leading to a background 
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Fig. 8.6 (a–d) Clusters of ductal epithelium with reactive atypia in the setting of a stent (a, 
ThinPrep, 400× (left) cell block (right)) or primary sclerosing cholangitis (b, ThinPrep, 400×) 
is cohesive and lacks three-dimensional architecture. Intraductal papillary neoplasms with 
high- grade atypia demonstrate three-dimensional architecture and anisonucleosis, but cannot 
be distinguished from invasive adenocarcinoma (c, ThinPrep, 400×). Adenocarcinoma has 
crowded epithelial clusters with marked anisonucleosis and chromatin alterations (d, 
ThinPrep, 400×)

Table 8.2 Cytological features of reactive biliary mucosa and cholangiocarcinoma in bile duct 
brushing

Reactive biliary mucosa Cholangiocarcinoma

Admixed inflammatory cells Two distinct populations
Prominent nucleoli Three-dimensional clusters
Lower nucleus-cytoplasmic ratio Poor cellular cohesion and single atypical cells
Anisonucleosis up to 1:3 ratio Increased nucleus-cytoplasmic ratio
Absent coarse chromatin Nucleus molding
Smooth nucleus membranes Anisonucleosis >4:1 ratio in clusters
Absent to rare single atypical cells Coarse chromatin

Irregularities of the nuclear membrane
Marked cellular disorganization
Marked cellular crowding
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with single atypical cells [68–71]. The presence of inflammation due to primary 
sclerosing cholangitis or biliary stenting prior to endoscopic brush sampling of bili-
ary disease creates significant diagnostic difficulties, yet specificity remains high 
even in this context (97%) [72]. A comparison of stent-associated changes with 
confirmed malignant cytology indicates that three-dimensional architecture, aniso-
nucleosis (≥1:6), coarse chromatin, and single atypical cells are features signifi-
cantly associated with malignancy (Fig. 8.6) [73].

The Papanicolaou Society classification system for the reporting of pancreati-
cobiliary cytology was published in 2015 [74] and provides useful terminology 
and criteria for the diagnosis of biliary cytology specimens. The system utilizes 
six diagnostic categories that include nondiagnostic, negative for malignancy, 
atypical, benign neoplastic, other neoplastic, suspicious for malignancy, and 
malignant.

 Ancillary Techniques for Enhancing Biopsy Diagnosis

FISH, molecular analysis, digital image analysis, and immunohistochemistry have 
been investigated to improve the suboptimal sensitivity for extrahepatic CCA in 
biliary brushing specimens [Table 8.3]. Apart from FISH, few are widely used in 
practice [75]. FISH for CCA is available as a commercial kit that evaluates peri-
centromeric regions of chromosomes 3, 7, 17, and band 9p21 in biliary brushing 
cytology [76]. Cells are evenly spread onto a slide which is then incubated with 
hybridization probes that correspond to the areas of interest. Each probe has a dif-
ferent fluorescent marker and the stained cells are analyzed under a fluorescence 

Table 8.3 Performance characteristics of biliary brushing and ancillary techniques for the 
diagnosis of cholangiocarcinoma

Test Sensitivity (%) Specificity (%)

Routine cytology [81, 101–103] 20.1–56 89–100
Biopsy [2–4] 62–78 100

FISH [83, 103] 41–45 95–100
KRAS mutation testing [83, 102] 29–38 96–100
TP53 mutation testing [102] 42 100
Digital image analysis for aneuploidy [67, 101] 39–45 77–89
Routine cytology + FISH [103] 57 89
Routine cytology + KRAS [102] 83 91
Routine cytology + DIA [67] 42.9 77
FISH + KRAS mutation testing [83] 54 96
Cytology + next-generation sequencing [81, 104] 56 97
Cytology + next-generation sequencing + FISH 
[81, 104]

66–73 97–100

Abbreviations: DIA Digital image analysis, FISH fluorescence in situ hybridization, KRAS Kirsten 
rat sarcoma
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microscope. Aneuploidy or polysomy, which is defined as >2 copies in 2 or more 
probes, is considered a positive result if seen in more than 5 cells. FISH has a 
sensitivity of 34–52% for detecting malignancy in pancreatobiliary brushings 
[77]. The specificity of FISH is more variable and generally lower than cytology, 
reported at 89–100% [77, 78]. Combining FISH and cytology, particularly in 
equivocal cases, increases the sensitivity by roughly 20–30% in several studies 
without reducing specificity [79–81]. Digital image analysis for the detection of 
aneuploidy performs with a similar sensitivity to cytology and has high specific-
ity [75].

Molecular techniques can enhance small biopsy diagnosis and potentially predict 
response to targeted therapy. For aiding diagnosis, testing is used in the context of 
the more prevalent genotypes of CCA at various anatomic sites. For extrahepatic 
CCA, the most common genetic alterations include TP53 (47%), KRAS (37%), and 
SMAD4 (30%) [82]. Options for molecular analysis on biliary brushings include 
single mutation testing or next-generation sequencing (NGS). KRAS testing is the 
most widely studied and reportedly increases the sensitivity of biliary brushing 
diagnostics to a degree roughly equivalent to the effect of combining cytology and 
FISH [83]. Limitations to KRAS testing include the lower prevalence of KRAS 
mutations in CCAs compared to pancreatic carcinomas and the fact that KRAS is an 
early genetic event in pancreatobiliary neoplasia and, therefore, the mutation can be 
detected in the absence of high-grade dysplasia or carcinoma [83–86].

There is less published experience with next-generation sequencing (NGS), but 
it seems to have similar sensitivity to FISH and equal specificity to cytology. NGS 
improves testing accuracy when used in combination with other methods [81]. An 
advantage of NGS is the possibility of testing cell-free DNA in exfoliative speci-
mens [81]. One study showed combined NGS and cytology results achieved a sen-
sitivity of 76%, elevated from 67% sensitivity of cytology alone, but it should be 
noted both suspicious and positive diagnoses were considered positive [81, 87]. An 
emerging technique is to perform NGS on the residual supernatant fluid after cen-
trifugation of a liquid-based specimen [88].

For intrahepatic CCA, the most common mutations and prevalence estimates are 
IDH1/2 (12–30%), BAP1 (20–32%), ARID1A (20%), TP53 (20%), PBRM1 (20%), 
and FGFR2 rearrangements (14%) [89–91]. The hotspot mutation for IDH1 
p.R132X is rarely seen in other epithelial neoplasms in the differential diagnosis, 
including extrahepatic CCA. A caveat is that rare HCCs have been reported with 
this mutation [90]. Histological features such as plump eosinophilic cells may sug-
gest the genotype [92]. Currently there is no surrogate immunohistochemical test-
ing available for the IDH1 mutations found in CCA. Because intrahepatic CCAs are 
often amenable to core biopsies, sequencing of cytology aspirates is not commonly 
performed.

Several immunohistochemical markers have been reported to improve the sensi-
tivity of biopsy and/or cytology for the diagnosis of extrahepatic CCA, such as S100 
(expression), IMP3 (expression), pVHL (loss), CD10 (loss), SMAD4 (loss), 
Claudin-18 (expression), Maspin (expression), methionyl-tRNA synthetase 1 
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(expression), and p53 (expression), but published experience is limited, and these 
markers are not widely used in practice [93–99].

In summary, routine cytology and the ancillary techniques are all highly specific 
tests for CCA, but they are limited by low sensitivity such that negative results are 
of limited value. FISH is the most widely studied and utilized adjunct to cytology, 
while NGS is emerging to provide a similar improvement in test sensitivity and use 
in identification of patients eligible for targeted therapy.

 Pathologic Grading and Staging

There is no specific grading system for CCA; most tumors are graded on a semiquan-
titative assessment of the proportion of tumor with gland formation. A tumor with 
≥95% gland formation is well differentiated, between 50 and 95% gland formation is 
moderately differentiated, and less than 50% is poorly differentiated [100]. This sys-
tem is similar to that of other gastrointestinal tumors. Pathologic staging of CCA is 
specific for tumors arising intrahepatic, extrahepatic, and distal bile duct as detailed by 
the Union for International Cancer Control eighth edition AJCC staging manual [100].

 Conclusion

Routine histopathology and cytology remain the most definitive methods for diag-
nosing and classifying CCA. In resection specimens, histopathology provides not 
only the diagnosis but also crucial staging and prognostic parameters. In biopsies 
and aspirates, the technique and adequacy of tissue acquisition can have a signifi-
cant impact on the sensitivity and specificity of the diagnosis. Well-established 
laboratory methods such as immunohistochemistry and in situ hybridization can 
provide valuable ancillary information to aid diagnosis, but pathologists and clini-
cians should be aware of existing caveats and limitations. Newer advances in molec-
ular pathology and digital image analysis may become increasingly utilized in the 
near future and enhance clinical management.
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Chapter 9
Challenges in Diagnosing 
Cholangiocarcinoma: Pulling Together 
Biochemical, Radiological, 
and Cytopathological Data
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PET Positron emission tomography
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TTF-1 Thyroid transcription factor 1

 Introduction

The previous chapters in this book have focused on one of the three main diagnostic 
modalities for CCA: biochemical (Chap. 6), imaging (Chap. 7), and pathological 
(Chap. 8). In the present chapter, we discuss how these three modalities come 
together in the diagnostic work-up of patients with a suspicion of CCA, with a focus 
on important pitfalls.

The aim of the diagnostic work-up of CCA is efficient diagnosis and staging of 
the disease to guide subsequent management. This work-up presents several chal-
lenges. The first diagnostic challenge is that CCA involves three disease entities that 
differ in genomic alterations, signs, and symptoms; intrahepatic (iCCA), perihilar 
(pCCA), and distal cholangiocarcinoma (dCCA). Therefore, they each have their 
own diagnostic approaches and AJCC staging system (Chap. 8). Moreover, distin-
guishing these different entities is important to guide proper management. The main 
aspect they share is that they all arise from the epithelial lining of the biliary tree, 
albeit in different anatomical locations: iCCA arises upstream from the second- 
order biliary ducts, then pCCA until the origin of the cystic duct, and then dCCA 
until the ampulla. These boundaries are ambiguous, and at the interface the diagno-
ses cannot be discerned with certainty.

The second challenge is that a definitive diagnosis can only be made with patho-
logical evaluation. This, in itself, comprises two challenges. Firstly, for most other 
cancers, it is straightforward to obtain tissue, because they are mostly large and have 
easy access for tissue acquisition. pCCA and dCCA, however, are mostly small 
lesions with periductal growth (rather than mass-forming) and are difficult to 
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visualize and biopsy. Despite the effort to obtain enough tissue by means of brush-
ing, intraductal biopsies, and/or endoscopic ultrasound (EUS)-guided fine needle 
aspiration (FNA), sensitivity does not exceed 74% (Chap. 8). Secondly, even when 
enough tissue has been obtained, the pathological evaluation can be challenging. 
For example, iCCA is the only CCA that is typically large and mass-forming, but at 
pathological evaluation, iCCA may be difficult to distinguish from hepatocellular 
carcinoma (HCC) or metastatic disease (e.g., pancreatic cancer).

The third challenge is that several nonmalignant diseases can masquerade as 
CCA. For example, a dominant stricture in primary sclerosing cholangitis (PSC) 
can be benign or due to pCCA (or dCCA) [1–6]. After repeated failed attempts of 
pathological confirmation, the suspicion of CCA can remain high enough to justify 
resection. Therefore, approximately 5–10% of patients undergo a major hepatic or 
pancreatic resection for a disease that may turn out to be benign at pathological 
assessment of the resected specimen [7].

In this chapter we first discuss the current standard diagnostic work-up of iCCA, 
pCCA, and dCCA. The focus of the chapter is thereafter on the challenges of the 
diagnostic work-up. These challenges are illustrated with case presentations.

 Standard Diagnostic Work-Up

The aim of the diagnostic work-up is to confidently diagnose and stage the disease 
in order to guide subsequent treatment. Staging should distinguish patients with 
(borderline) resectable, locally advanced (i.e., unresectable), and metastatic disease. 
Patients with (borderline) resectable CCA are considered for curative-intent resec-
tion, patients with locally advanced disease for systemic treatment (palliative and 
sometimes for induction) or locoregional treatments, and patients with metastatic 
disease for palliative systemic treatment.

 iCCA

Patients with iCCA mostly present with nonspecific abdominal complaints and 
weight loss. Approximately 15% of iCCA patients present with jaundice, because 
the tumor is growing toward the liver hilum. Carbohydrate antigen (CA) 19.9 is 
elevated in most patients, and about 5% of patients have elevated alpha-fetoprotein 
(AFP) above 200 ng/mL [8]. At imaging, one or multiple lesions are seen in the 
liver. Multiple lesions can involve a single large lesion with smaller nearby satellites 
or several lesions spread across the liver. Computed tomography (CT) imaging 
demonstrates peripheral enhancement of the lesions with subsequent central filling 
(Chap. 7). CT of the abdomen and chest can detect nodal and distant metastases 
(e.g., lung and peritoneum). Enlarged locoregional lymph nodes can be present in 
the hepatoduodenal and gastrohepatic ligament. More distant lymph nodes (e.g., 
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aortocaval) represent metastatic disease (stage IV) [9]. Magnetic resonance imaging 
(MRI) is unlikely to change management based on CT. A positron emission tomog-
raphy (PET) scan is not part of the standard work-up but may detect metastatic 
disease in some patients [10]. Imaging can generally distinguish iCCA from 
HCC. The other differential diagnosis of iCCA is metastatic disease with primary 
tumors in the colon, esophagus, stomach, pancreas, and breast. Upper and lower 
endoscopy and mammography are recommended if imaging is not consistent with 
iCCA [11, 12].

A solitary lesion of iCCA is resectable if a margin-negative resection is antici-
pated with an adequate liver remnant volume (Chap. 14). Selected patients with two 
or three lesions can also be considered for resection. A biopsy is unlikely to change 
management if presentation and imaging are consistent with iCCA. Most patients 
have locally advanced or metastatic disease. These patients should undergo biopsy 
if they are eligible for locoregional or systemic treatment. Pathological examination 
of iCCA is difficult, as no pathognomonic immunohistochemistry markers are 
available (Chap. 8). The diagnosis is mainly made by ruling out HCC and metastatic 
disease. Historically, iCCA has often been mislabeled as adenocarcinoma of 
unknown primary (ACUP). Sometime iCCA is detected incidentally in patients 
with liver cirrhosis who undergo surveillance for early detection of HCC. These 
lesions tend to be small and can be difficult to distinguish from HCC.

 pCCA

Patients with pCCA mostly present with painless jaundice and often weight loss. 
Blood tests generally show elevated bilirubin, except in the earliest of stages. 
Ultrasound shows dilated intrahepatic bile ducts, and sometimes a mass can be visu-
alized in the liver hilum. The extrahepatic bile duct and gallbladder are not dis-
tended, contrary to distal bile duct obstruction in dCCA and pancreatic cancer. CT 
of the abdomen may show a small mass (typically less than 3 cm) at the confluence 
of the left and right bile duct, with proximal biliary dilatation. Masses larger than 
3 cm mostly represent iCCA or metastases that have grown toward the liver hilum. 
CT of the chest is performed to rule out metastatic disease. Patients with metastatic 
disease may have metastases in the liver, lung, peritoneum, or lymph nodes beyond 
the hepatoduodenal ligament (e.g., aortocaval). PET scans may detect otherwise 
occult metastatic disease in a small percentage of patients but are not routinely 
recommended.

Analogous to iCCA, pCCA is resectable if a complete resection with adequate 
future liver remnant appears feasible. Resectability of pCCA depends on biliary 
extension of the tumor, as defined by the Bismuth classification [13]. Resectability 
also depends on vascular involvement; portal vein reconstruction may be required 
for a margin-negative resection. Hepatic artery reconstruction is less commonly per-
formed as it increases surgical risk and has worse long-term survival. While CT 
appears more reliable to assess vascular involvement, magnetic resonance 
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cholangiopancreatography (MRCP) provides superior delineation of the extent of 
biliary involvement.

Most patients require biliary drainage prior to resection or systemic treatment. 
An intraductal brushing or biopsy should be performed at the time of drainage but 
has a sensitivity below 74%, even when adding FISH or NGS (Chap. 8). Percutaneous 
biliary drainage should be avoided in patients eligible for liver transplantation, 
because it may cause seeding along the biopsy tract [14]. The differential diagnosis 
includes several nonmalignant diseases such as IgG4-mediated cholangitis and 
stone disease [7]. Presentation and imaging may provide clues for the likelihood of 
benign disease.

It is important to complete all imaging prior to biliary drainage, as stents distort 
imaging [15]. Surgical resection is sometimes performed in the absence of patho-
logical confirmation of cancer, [7] in particular when presentation and imaging are 
highly suspicious for pCCA.  Metastatic disease (e.g., intrahepatic metastases) 
should be confirmed by biopsy to avoid withholding surgery for distant lesions that 
may appear malignant but are in fact benign.

 dCCA

Patients with dCCA typically present with painless jaundice and weight loss. Serum 
bilirubin level is elevated. Ultrasound and CT demonstrate dilated intra- and extra-
hepatic bile ducts and a distended gallbladder, without an obvious mass in the head 
of the pancreas. CT may also demonstrate an intraductal mass, stricture, or enhanc-
ing wall thickening. CT of the abdomen and chest can detect distant metastatic 
disease (i.e., in the liver, lungs, or peritoneum). Most patients, however, do not have 
metastatic disease at presentation, because a small dCCA quickly causes jaundice, 
thereby prompting clinical evaluation. MRI and PET have no substantial impact on 
diagnosis and staging of dCCA.

An intraductal brushing or biopsy to confirm malignancy can be performed with 
endoscopic retrograde cholangiopancreatography (ERCP) (or percutaneously when 
ERCP is not feasible). However, sensitivity of a brushing is below 50% and of an 
intraductal biopsy no more than 75% (Chap. 8). Results of such specimens may 
repeatedly come back as negative or inconclusive. Moreover, ERCP is an invasive 
procedure with a 3–8% risk of pancreatitis, in addition to other potential adverse 
events [16]. EUS with FNA is a good alternative for pathological confirmation in 
dCCA, with a comparably high sensitivity and specificity (82% and 88%) reported 
in some studies [17, 18]. Importantly, if cancer is highly likely based on presenta-
tion and imaging, it will remain (highly) likely even after an inconclusive brush or 
biopsy; therefore, an ERCP with brush or biopsy is only justified if biliary drainage 
is needed or if the multidisciplinary team agrees to withhold surgical resection if the 
pathology result comes back negative or inconclusive. With regard to the need for 
biliary drainage, most but not all dCCA patients will undergo ERCP and stent place-
ment to relieve biliary obstruction, in particular if bilirubin is too high for 
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immediate surgery (e.g., >15 mg/dL) or if surgery is infeasible within 1 or 2 weeks. 
However, fit patients with a very high suspicion of resectable dCCA have fewer 
complications if they undergo resection without prior biliary drainage [19]. For 
patients who are nonoperative candidates, pathological confirmation is generally 
considered a prerequisite prior to palliative systemic treatment.

The differential diagnosis of dCCA includes several nonmalignant diseases such 
as IgG4-mediated cholangitis and stone disease. Presentation and imaging may pro-
vide clues for the likelihood of benign disease. The distal bile duct is surrounded by 
the pancreas; pancreatic ductal adenocarcinoma arising close to the distal bile duct 
may thus be indistinguishable from dCCA. Even pathological examination cannot 
distinguish dCCA from pancreatic ductal adenocarcinoma (PDAC) with certainty. 
Both cancers, however, require the same surgical procedure (i.e., pancreatoduode-
nectomy). Preoperative certainty about the diagnosis is only relevant for patients 
with (borderline) resectable PDAC who may benefit from neoadjuvant 
chemotherapy.

EUS may play a role in lymph node staging [20]. EUS-guided biopsy of enlarged 
aortocaval lymph nodes, for example, may confirm distant metastatic disease. This 
will be further discussed in Chap. 13.

 Case Presentations

 Case 1: IgG4-Related Sclerosing Cholangitis

A 72-year-old male patient presented with pain, itching, and jaundice for 2 weeks. 
Blood tests revealed fluctuating but generally abnormal liver enzyme tests and a 
high bilirubin level (Table 9.1). CT and MRCP showed a mass at the biliary conflu-
ence and an enlarged hilar lymph node (Fig. 9.1a). The diagnosis of pCCA was 

Table 9.1 Lab results at initial presentation, upon referral, and after start of treatment in a 72-year- 
old male presenting with pain, itching, and jaundice (case 1)

Lab results Initial presentation Referral 2 weeks after treatment Normal value

AST 74 58 20 <35 U/L
ALT 126 85 35 <45 U/L
Total bilirubin 7.1 1.2 0.7 <1.0 mg/dL
ALP 339 227 93 <115 U/L
GGT 319 228 153 <55 U/L
CA19.9 30 18 20 <35 kU/L
Creatinine 139 161 126 65–115 μmol/L
IgG4 x 12 6.0 0.08–1.4 g/L
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Fig. 9.1 Case 1: IgG4-related sclerosing cholangitis. (a) CT at first presentation: centrally 
obstructing tumor with dilatation of the intrahepatic bile ducts. (b) Pathology: lymph node biopsy 
with normal architecture (follicle formation) and sinus histiocytosis. Immunohistochemistry 
shows IgG- and IgG4-positive plasma cells. (c) CT after prednisone treatment: decrease in both 
size of tumor and dilatation of the intrahepatic bile ducts

a

b
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discussed with the patient. The patient was referred to a tertiary referral center. 
Upon presentation to the referral center, jaundice had decreased. His past medical 
history included a skin rash, lymphadenopathy, infections of the feet, and diffuse 
skeletal hyperostosis. No clear diagnosis had been found for all these conditions. 
The patient was discussed in a multidisciplinary meeting. MRI and CT scan reas-
sessment were suspicious for pCCA showing a perihilar mass with bilateral involve-
ment of the second-order bile ducts (i.e., Bismuth IV) without vascular involvement 
(Fig. 9.1a). An extended right hemihepatectomy to remove the mass was technically 
feasible.

No ERCP had been performed given serum bilirubin had normalized without 
treatment (Table 9.1). Moreover, CA19.9 was normal, and serum IgG4 was 12 g/L 
(i.e., five times the upper limit of normal). Thus, IgG4-related sclerosing cholangitis 
appeared more likely than pCCA, because of highly elevated IgG4, spontaneous 
normalization of bilirubin, and previously unexplained systemic symptoms. A few 
years prior, a biopsy of mediastinal lymph nodes had been performed; this biopsy 
was reassessed, and IgG4 staining was positive (Fig. 9.1b). Treatment with 40 mg 
prednisone daily was commenced. Within a few days, the patient experienced 
improvement of his symptoms. Not only did his jaundice disappear, but he also 
described improvement of all other symptoms. Repeat imaging (Fig. 9.1c) showed 
near normalization of the bile duct dilatation and disappearance of the mass. Repeat 
blood tests (Table  9.1) showed normalization of cholestasis. Treatment response 

c

Fig. 9.1 (continued)
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confirmed the diagnosis of IgG4-related sclerosing cholangitis, and surgical inter-
vention was appropriately averted.

This case illustrates how cross-sectional imaging that is very suspicious for 
pCCA may mimic IgG4-related sclerosing cholangitis (and vice versa). In particu-
lar, if IgG4 is highly elevated (i.e., at least twice the upper limit of normal), the 
possibility of IgG4-related sclerosing cholangitis should be carefully considered. 
Other clues of IgG4 disease in this case were the spontaneous improvement of 
symptoms, fluctuating or normalizing serum bilirubin without biliary drainage, and 
(previously) unexplained symptoms involving other organ systems, highlighting the 
importance of a thorough patient review. Of note is that although the presence of 
compatible histology and immunohistochemistry is essential, it is not considered 
sufficient because appropriate clinical findings and laboratory tests are required [15].

 Case 2: IgG4-Related Sclerosing Cholangitis II

A 65-year-old female patient presented with jaundice, nausea, and malaise. Her past 
medical history included hypertension and mild asthma for which she used inhala-
tion medication. Her family history revealed a brother with autoimmune pancreati-
tis and no family members with cancer. On physical examination no abnormalities 
were seen besides jaundice and mild abdominal tenderness. Lab results showed 
elevated bilirubin, AST, and ALT (Table 9.2). Abdominal ultrasound, CT, and MRI 
showed dilated intrahepatic bile ducts (Fig. 9.2a, b). On MRI a small mass was seen 
at the biliary confluence. The patient was referred to a tertiary center.

Upon presentation to the referral center, the patient reported spontaneous 
improvement of symptoms. Lab results showed that serum bilirubin had decreased 
without biliary drainage and serum IgG4 level was normal. Imaging was reviewed 
at the multidisciplinary meeting and showed thickening of the tail of the pancreas 
suggestive of autoimmune pancreatitis. A treatment trial of prednisone 40 mg daily 
was started. On repeat CT 2 weeks later, the small mass, dilated intrahepatic bile 
ducts, and pancreatic tail enlargement largely resolved (Fig. 9.2c, d).

Table 9.2 Lab results at initial presentation, upon referral, and after start of treatment in a 65-year- 
old female presenting with jaundice, nausea, and malaise (case 2)

Lab results Initial presentation Referral 2 weeks after treatment Normal value

AST 221 110 28 <35 U/L
ALT 565 294 79 <45 U/L
Total bilirubin 8.7 3.3 1.5 <1.0 mg/dL
ALP 445 657 213 <115 U/L
GGT 236 521 174 <55 U/L
CA19.9 x 38 15 <35 kU/L
Creatinine 72 70 80 65–115 μmol/L
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This case illustrates that not all patients with IgG4-related sclerosing cholangitis 
have elevated serum IgG4 levels. In a large retrospective study by Tanaka et al., 84% 
of the patients with IgG4-related sclerosing cholangitis had elevated IgG4 levels at 
first presentation [21]. Fluctuating symptoms and spontaneous improving cholesta-
sis require consideration of IgG4-related sclerosing cholangitis [21]. Moreover, 
patients with IgG4-related sclerosing cholangitis may have concomitant autoim-
mune pancreatitis, as illustrated herein [22–25].

 Case 3: Stone Disease

A 58-year-old female patient presented with sudden onset abdominal pain and lab 
results consistent with cholestasis. On MRCP she had gallstones and isolated left 
intrahepatic bile duct dilatation (Fig.  9.3a) suggestive of Mirizzi syndrome. She 
underwent an ERCP, at which time a stenosis was seen in the left hepatic duct, and 
a plastic stent was placed. She subsequently underwent a laparoscopic subtotal 

a b

c d

Fig. 9.2 Case 2: IgG4-related sclerosing cholangitis. (a) CT at first presentation: centrally 
obstructing liver tumor with dilatation of the intrahepatic bile ducts. (b) CT at first presentation: 
pancreas showing mild swelling (“sausage”-like appearance), compatible with autoimmune pan-
creatitis. (c) CT after prednisone treatment: decrease in both size of liver tumor and dilatation of 
the intrahepatic bile ducts. (d) CT after prednisone treatment: pancreas showing less swelling
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cholecystectomy for acute cholecystitis. A necrotic gallbladder with multiple stones 
and pus was removed. A postoperative type “A” bile leak was treated with an ERCP 
to replace the migrated plastic stent. There was a persistent stenosis in the common 
hepatic and left intrahepatic duct. Brush cytology of this stenosis was diagnosed as 
adenocarcinoma. The patient was referred to a tertiary referral center.

Upon presentation to the referral center, the patient endorsed improvement in 
appetite and resolution of abdominal pain. On physical examination no abnormali-
ties were found. Lab results showed improved AST/ALT but persistently elevated 
ALP (Table 9.3). CT and MRCP showed persistent dilatation of the intrahepatic bile 
ducts with thickening of the hepatic duct (Fig. 9.3a, b) suspicious for pCCA. However, 
reassessment of the brush cytology at the referral center did not confirm the diagno-
sis of adenocarcinoma but showed only atypical cells [26]. ERCP in combination 
with cholangioscopy was then performed for better evaluation of the stricture. 
Surprisingly, it showed that the left hepatic duct was obstructed by a large uncalci-
fied stone, which was not seen on previous cross-sectional imaging and mistaken for 
Mirizzi syndrome. With lithotripsy the stone was fragmented and then removed 
with balloon sweeping. Bilateral stents were placed to optimize bile flow. She 
underwent progressive stenting to treat the associated benign ductal stenosis. Twelve 
months later, she was asymptomatic with no signs of cholestasis.

This case illustrates the difficulty for pathologists to differentiate severe inflam-
mation from adenocarcinoma (see also Chap. 8). Brushings and biopsies should be 
reviewed independently by an expert pathologist. Moreover, inflammation (and 
consequent benign stricturing) due to stone disease can mimic pCCA on imaging. 
In addition, chronic hepaticolithiasis is in itself a risk factor for CCA, which further 
complicates the differential diagnosis and work-up. Finally, both CT and MRI may 
not show uncalcified intrahepatic stones (i.e., false negative findings) that are found 
upon cholangioscopy.

a b

Fig. 9.3 Case 3: Stone disease. (a) MRI/MRCP: dilatation of the perihilar and intrahepatic bile 
ducts with obstructing cystic duct stone suspicious for Mirizzi syndrome (b) CT scan: thickening 
of the hepatic duct suspicious for cholangiocarcinoma
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 Case 4: Infectious Disease

A 20-year-old Caucasian male patient presented with acute abdominal pain in the 
right upper quadrant and jaundice. The symptoms started nearly 3 weeks prior to 
presentation, and he had noticed jaundice for about a week. Two weeks later his 
symptoms spontaneously improved. He had traveled to Croatia and France in the 
past 5 years. On physical examination of the abdomen, only slight tenderness in the 
right upper quadrant was noted. Lab results showed mildly elevated ALP and GGT, 
and serology was negative for hepatitis A, B, C, and E (Table 9.4). Serology for 
Echinococcus granulosus was positive (titer 1:160). An MRI showed cystic dilata-
tion of the intrahepatic bile ducts, predominantly in the left liver, with possible stone 
formation (Fig. 9.4a). No masses or lymphadenopathy were seen. Since these find-
ings were atypical for echinococcal infection and the differential diagnosis included 
iCCA, the patient was referred to a tertiary center.

At a multidisciplinary meeting, a differential diagnosis was established including 
focal Caroli syndrome, iCCA, HCC, and infectious diseases like echinococcal cysts. 
However, imaging was atypical for each of the differential diagnoses. A repeat CT 
scan showed several new hypodensities with eggshell calcifications in liver seg-
ments 2, 3, 4, and 8 (Fig.  9.4b). Serology came back highly positive for both 
Echinococcus granulosus (ELISA 58.4  U/mL) and Echinococcus multilocularis 
(ELISA IgG: 6400). All things considered, Echinococcus multilocularis infection 
was considered most likely. A PET scan was performed, which did not show extra-
hepatic manifestation of the disease. The patient was started on albendazole treat-
ment 400 mg twice daily, and periodic repeat imaging will be performed to monitor 
the treatment effect. Surgery is the only curative option but is reserved for after 
albendazole has decreased the extent of disease in order to preserve as much liver 
tissue as possible.

This case illustrates how infection in the liver, in this instance Echinococcus 
multilocularis, can mimic iCCA. Echinococcosis is a zoonotic infection caused 
by tapeworms of the Echinococcus genus. It is a rare condition, though it has 
shown progressive spread to non-endemic areas in Northern Europe. Imaging 
features are variable, and initial misdiagnosis is common. Imaging findings 
include infiltrating lesions with irregular non-enhancing margins, small cystic 

Table 9.3 Lab results on first presentation, at referral, and 2 weeks after treatment in a 58-year-old 
female presenting with sudden onset abdominal pain (case 3)

Lab results Initial presentation Referral 2 weeks after treatment Normal value

AST 59 32 50 <35 U/L
ALT 64 34 77 <45 U/L
Total bilirubin 0.4 0.2 0.3 <1.0 mg/dL
ALP 207 190 249 <115 U/L
GGT 198 177 299 <55 U/L
CA19.9 x 12 24 <35 kU/L
Creatinine 52 63 66 65–115 μmol/L
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components, scattered calcifications, and irregular septa within necrotic cavities 
[27]. Serology is often positive, and cross-reaction with Echinococcus granulo-
sus is possible [28].

 Case 5: Infectious Disease II

A 44-year-old healthy female patient presented with complaints of itching. No abnor-
malities were detected on physical examination. Lab results showed no abnormalities 
besides elevated total bilirubin of 1.75 mg/dL (Table 9.5). An abdominal CT scan 
showed a 5-centimeter hypodense liver mass with multiple satellites (Fig.  9.5). 
Subsequently, a PET scan was performed that showed uptake in the liver lesion (SUV 
of 7). The patient was diagnosed with unresectable iCCA and scheduled for palliative 
chemotherapy. She then came to a tertiary referral center for a second opinion.

Detailed patient history at referral found that she had traveled to Thailand 
3 months prior. An MRI was performed which showed an irregular lesion, atypical 
for iCCA (Fig. 9.5a). A new CT showed that one lesion had a major decrease in size 

Table 9.4 Lab results at initial presentation, upon referral, and after start of treatment in a 20-year- 
old Caucasian male presenting with acute abdominal pain in the right upper quadrant and jaundice 
(case 4)

Lab results Initial presentation Referral After treatment Normal value

AST 28 25 31 <35 U/L
ALT 86 19 18 <45 U/L
Total bilirubin 0.6 0.4 0.2 <1.0 mg/dL
ALP 160 97 74 <115 U/L
GGT 191 74 27 <55 U/L
CA19.9 x 7 x <35 kU/L
IgG4 x 0.5 x 0.08–1.4 g/L

a b

Fig. 9.4 Case 4: Infectious diseases. (a) MRI at first presentation: predominantly cystic-appearing 
liver lesion. (b) CT scan: clear calcifications within the lesions, raising suspicion for 
echinococcosis
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Table 9.5 Lab results at initial presentation, upon referral, and after start of treatment in a 44-year- 
old female patient presenting with complaints of itching (case 5)

Lab results Initial presentation Referral After treatment Normal value

AST 15 20 16 <35 U/L
ALT 13 26 14 <45 U/L
Total bilirubin 1.8 1.6 1.4 <1.0 mg/dL
ALP 38 89 51 <115 U/L
GGT 10 18 12 <55 U/L
CA19.9 X 2 x <35 kU/L

a b

c

Fig. 9.5 Case 5: Infectious diseases II (a) CT at first presentation: irregular central hypodense 
liver lesion. (b) CT after a month: multiple irregular peripheral hypodense masses, resolution of 
central lesions. (c) Pathology: HE liver biopsy with preserved architecture, necrosis (yellow cir-
cle), and prominent eosinophilic infiltration. Immunohistochemistry: Keratin 7 highlights the 
original bile ducts along with some ductular reaction
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and change in shape without treatment, and new lesions had developed in segments 
6 and 7 (Fig. 9.5b). Blood tests showed that she had severe eosinophilia. A percuta-
neous liver biopsy showed necrosis and a histiocytic reaction without malignancy 
(Fig. 9.5c). An eosinophilic infiltrate and a slight increase in IgG4-positive cells 
were seen. The blood tests and biopsy were consistent with hypereosinophilic syn-
drome (HES).

The work-up continued with excluding autoimmune diseases and parasitic infec-
tions. Autoimmune serology was negative. However, Fasciola hepatica serology 
was positive on indirect immunofluorescent-antibody test and ELISA. The patient 
was treated with triclabendazole, her symptoms resolved, and imaging showed 
marked improvement of the liver lesions.

This case, similar to the previous one, illustrates how infectious diseases can 
mimic CCA. In this case, the patient had infiltrative liver lesions resembling iCCA, 
but the liver lesions were caused by a liver fluke (Fasciola hepatica) that she most 
likely contracted during her travels in Thailand. Detailed information regarding 
liver flukes can be found in Chap. 11.

 Case 6: Adenocarcinoma of Unknown Primary

A 45-year-old female patient with a past medical history of stage III Hodgkin lym-
phoma, stage II papillary thyroid carcinoma, and stage I breast carcinoma presented 
with fatigue. On physical examination of the abdomen, tenderness in the upper abdo-
men was noted. Lab results showed abnormal liver tests (Table 9.6). A CT was per-
formed and showed multiple bilobar liver lesions suspicious for liver metastases. A 
PET scan found no extrahepatic disease. A liver biopsy was performed, and pathologi-
cal examination showed a poorly differentiated adenocarcinoma. Immunohistochemical 
analyses ruled out her previous malignancies as well as colorectal cancer. Upper 
endoscopy ruled out esophageal and gastric cancer. She was diagnosed with ACUP 
and started systemic chemotherapy with carboplatin and paclitaxel. She came to a 
tertiary referral center for a second opinion.

A new CT was performed that showed a large liver tumor with peripheral 
enhancement and capsular retraction (Fig. 9.6a, b). Outside pathology was reviewed 
and showed that the tumor cells were of epithelial origin, and therefore a lymphoma 
was excluded. Immunohistochemical profile (negative staining for thyroglobulin, 
TTF-1, and PAX-8) ruled out a thyroid (papillary) carcinoma. Moreover, negative 
staining for GATA-3, ER, and BAP loss (which were all positive in her breast car-
cinoma) together with the inconsistent histomorphology excluded metastasis from 
her breast carcinoma. Both histomorphology and immunohistochemical profile 
were consistent with iCCA (Fig. 9.6c). Based on imaging and pathology, she was 
diagnosed with iCCA. She is currently undergoing treatment with systemic chemo-
therapy (gemcitabine and cisplatin) and concomitant hepatic arterial infusion pump 
chemotherapy with floxuridine. Several studies have found 5-year OS of about 20% 
with combined systemic and intra-arterial chemotherapy for unresectable iCCA [29].
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Fig. 9.6 Case 6: Adenocarcinoma of unknown primary origin. (a) Arterial phase CT scan demon-
strating peripheral enhancement and capsular retraction. (b) Venous phase CT scan. (c) Pathology: 
HE liver biopsy with small gland formation. Immunohistochemistry: cytokeratin 7 positivity in 
tumor cells

Table 9.6 Lab results on ini-
tial presentation in a 45-year-
old female presenting with 
abdominal tenderness in the 
upper abdomen (case 6)

Lab results Initial presentation Normal value

AST 124 <35 U/L
ALT 147 <45 U/L
Total bilirubin 0.5 <1.0 mg/dL
ALP 518 <115 U/L
CEA 1 <5 μg/L
CA19.9 16 <35 kU/L
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This case illustrates that radiologists and pathologists are sometimes unfamiliar 
with the imaging and immunohistochemical profile of iCCA, thus resulting in an 
incorrect diagnosis of ACUP by medical oncologists. ACUP in the liver should only be 
diagnosed after ruling out iCCA by a multidisciplinary team experienced with iCCA.

 Case 7: Cirrhotic Liver

A 62-year-old male patient with a past medical history of sarcoidosis treated with 
steroids, obesity, and alcohol abuse disorder was diagnosed with a Child-Pugh B7 
liver cirrhosis. Due to continued alcohol use, a liver transplantation was contraindi-
cated. Biannual abdominal ultrasound was performed for HCC surveillance.

After 3  years of follow-up, a hypodense lesion was seen on ultrasound. Lab 
results showed normal liver tests and tumor markers (Table  9.7). An MRI scan 
showed a lesion with a diameter of 14 mm in segment 7 (Fig. 9.7a). The lesion 
showed rim hyperenhancement, without decrease in intensity from earlier to later 
phase (i.e., non-peripheral washout). The lesion was classified as LI-RADS M (i.e., 
malignant but not HCC) (Fig. 9.7b).

A CT scan of the chest and a PET scan were performed to rule out metastatic 
disease. A liver biopsy was performed, and pathology reported adenocarcinoma 
with an immunohistochemical profile inconsistent with hepatocellular differentia-
tion (no HepPar-1 or AFP expression and no canalicular pattern of expression with 
CD10 and polyclonal CEA). The tumor cells, however, did stain positive for mark-
ers of biliary differentiation (such as keratin 7 and keratin 19), and together with 
BerEp-4 expression and histomorphology, this was consistent with iCCA (Fig. 9.7c). 
Radiofrequency ablation was performed without complications.

This case demonstrates that cirrhosis is a risk factor for iCCA [30]. Indeed, iCCA 
is more common in cirrhosis than previously recognized. Most new hepatic lesions 
represent HCC, but small lesions may be difficult to distinguish from iCCA. Treatment 
of the new liver lesion in this patient would have been ablation regardless of a diagno-
sis of HCC or iCCA. However, distinguishing iCCA from HCC is relevant in patients 
that may be eligible for liver transplantation, because survival outcomes are worse for 
iCCA after transplantation (Chap. 15). Moreover, systemic and locoregional treat-
ments differ between iCCA and HCC (discussed further in Chaps 17 and 18).

Table 9.7 Lab results on initial 
presentation in a 62-year-old male 
with a past medical history of alcohol 
abuse disorder and Child- Pugh B7 
liver cirrhosis (case 7)

Lab results Initial presentation Normal value

AST 33 <35 U/L
ALT 30 <45 U/L
Total bilirubin 0.8 <1.0 mg/dL
ALP 108 <115 U/L
CEA 2.0 <5 μg/L
AFP 9 <10 μg/L
Ca 19.9 18 <35 kU/L
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 Case 8: Primary Sclerosing Cholangitis

A 54-year-old male patient presented with jaundice, itching, and malaise. His past 
medical history included mild ulcerative proctitis and PSC. Blood tests revealed 
elevated liver enzyme tests and bilirubin level (Table 9.8). An abdominal CT scan 
showed a liver with irregular surface contour with minimal dilatation of the intrahe-
patic bile ducts, discontinuous narrowing of the bile ducts, and slight arterial 
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c

Fig. 9.7 Case 7: Cirrhotic liver. (a) MRI (portal venous phase, Primovist contrast): cirrhotic liver, 
with a peripherally enhancing spheroid lesion in segment 7. (b) MRI (late phase, Primovist con-
trast): in this phase, after contrast injection, the lesion can still be seen. (c) Pathology: HE liver 
biopsy with adenocarcinoma, with relatively small gland formation. Immunohistochemistry: cyto-
keratin 19 positivity in tumor cells. HepPar-1 highlights the preexistent hepatocytes (tumor cells 
are negative)
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enhancement of the common hepatic duct and the cystic duct junction (Fig. 9.8a). A 
well-defined mass was not identifiable.

ERCP was performed, and the fluoroscopic images showed a significant stenosis 
of the common hepatic duct and cystic duct conjunction extending proximally to the 
confluence of the left and right main ducts (Bismuth-Corlette type II classification). 
Intraductal brushing and biopsy was performed, and a plastic stent was placed 
across the stenosis (Fig. 9.8b). Malignancy was not found in the obtained specimens.

Irregular wall thickening at the level of the dominant stenosis was seen at MRCP, 
and combined with high signal on diffusion-weighted imaging, the diagnosis CCA 
was deemed more likely than a benign stricture. Based on the clinical presentation 
and imaging, CCA was sufficiently likely to proceed with surgical resection. 
Because of the extent of the stenosis on fluoroscopy, a right hemihepatectomy with 
extrahepatic bile duct resection was performed, and pathological examination 
showed a well-differentiated perihilar adenocarcinoma.

This case illustrates the difficulty of diagnosing CCA in patients with 
PSC. Interpreting imaging is often challenging due to pre-existing biliary strictures 
and intraductal tumor growth without clear extra-ductal mass forming. Moreover, 
pathology is often inconclusive.

a b

Fig. 9.8 Case 8: Primary sclerosing cholangitis. (a) CT at first presentation (coronal view): thick-
ening and slight enhancement of the common hepatic duct (two yellow arrows). No wall thicken-
ing is seen at the common bile duct (orange arrow). (b) ERCP: significant stenosis of the common 
hepatic duct and cystic duct conjunction extending to the confluence of the left and right main ducts

Table 9.8 Lab results at initial 
presentation in a 54-year-old male 
presenting with jaundice, itching, and 
malaise (case 8)

Lab results Initial presentation Normal value

AST 182 <35 U/L
ALT 230 <45 U/L
Total bilirubin 101 <1.0 mg/dL
ALP 350 <115 U/L
CEA 3.55 <5 μg/L
AFP 3 <10 μg/L
Ca 19.9 56 <35 kU/L

9 Challenges in Diagnosing Cholangiocarcinoma: Pulling Together Biochemical…



248

 Conclusion

In this chapter, and by way of these eight illustrative cases, we have demonstrated 
that the diagnostic work-up of patients with (suspected) CCA is a challenging multi-
disciplinary effort including gastroenterologists, surgeons, medical oncologists, radi-
ologists, and pathologists, among others. The differential diagnosis should include 
IgG4-related sclerosing cholangitis, stone disease, parasitic disease, and metastatic 
disease from extrahepatic primary cancers, and in some cases even more esoteric 
disorders may be included. A meticulous patient history, physical examination, and 
evaluation of imaging and laboratory tests by multidisciplinary experts are required 
to determine the correct diagnosis and identify the best course of management.

In addition, for the subset of cases which evade definitive diagnosis despite these 
measures, continued developments in diagnostic tools, including but not limited to 
molecular biological (e.g., “omics”-based approaches) and other advanced tech-
niques, are clinically needed and anticipated.
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GP2 Glycoprotein 2
HCC Hepatocellular carcinoma
IBD Inflammatory bowel disease
lncRNA Long noncoding RNA
LT Liver transplantation
miRNA Micro-ribonucleic acid
MRCP Magnetic resonance cholangiopancreatography
MRI Magnetic resonance imaging
NO Nitric oxide
pCCA Perihilar cholangiocarcinoma
PET Positron emission tomography
PSC Primary sclerosing cholangitis
TRAIL Tumor necrosis factor-related apoptosis-inducing ligand
UC Ulcerative colitis
US Ultrasonography

 Primary Sclerosing Cholangitis: Background and Risk 
of Malignancies

Primary sclerosing cholangitis (PSC) is a chronic liver disease of unknown etiology 
but likely sustained by immune-mediated mechanisms, featuring ductopenic bile 
duct injury, cholestasis, peribiliary fibrosis, and associated multifocal strictures 
alternating with segmental ductal ectasia [1, 2]. Since PSC can target any segment 
of the biliary tree, including either the intrahepatic or the extrahepatic portions, PSC 
is currently divided into three main variants (or subtypes) according to the level and 
extent of biliary involvement (Table 10.1): classic PSC, small-duct PSC, and auto-
immune hepatitis (AIH)-associated PSC.

A unique feature of PSC is its strong association with inflammatory bowel disease 
(IBD), with chronic ulcerative colitis (UC) comprising nearly 75–80% of these cases, 
while Crohn’s disease (CD) and indeterminate colitis comprise approximately 
10–15% and 5–10%, respectively [3]. Although the clinical course of the disease is 

Table 10.1 Different subtypes of primary sclerosing cholangitis  [1, 2, 56]

Subtype
Biliary 
involvement Clinical features and risk of malignancy

Classic 
(90%)

Small and 
large bile 
ducts

70–80% of patients have IBD; increased risk of colon cancer and 
gallbladder cancer, cholangiocarcinoma, and hepatocellular 
carcinoma

Small-duct 
(5%)

Only small 
bile ducts

May progress to classic subtype; associated with longer survival 
and lower risk of cholangiocarcinoma than the classic subtype

AIH- 
associated 
(5%)

Small and 
large bile 
ducts

Associated with interface hepatitis. Higher than expected levels 
of aminotransferases and IgG; patients usually younger than 
25 years at diagnosis (35% of children with PSC); better 
prognosis than the classic subtype but worse than autoimmune 
hepatitis alone
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quite heterogeneous, most patients progress to end-stage liver disease and require 
liver transplantation (LT) [4]. Currently, PSC is still regarded as an “orphan” disease, 
given the lack of effective therapies in hindering disease progression. Though LT has 
significantly improved long-term survival of PSC patients with end- stage liver dis-
ease, up to 40–50% of deaths remain cancer-related and make PSC a bona fide pre-
malignant condition [5]. Among cancers associated with PSC, cholangiocarcinoma 
(CCA) is the most diagnosed and lethal tumor, but PSC patients can also develop 
colorectal (especially when PSC is associated with UC) and gallbladder cancer [6]. 
Unlike other chronic liver diseases, the risk of hepatocellular carcinoma (HCC) is 
quite low, and it seems to be related to the progression to cirrhosis [7, 8].

Among the three anatomical subtypes of CCA, the one most commonly diagnosed 
in PSC patients is the perihilar form (pCCA), as generally observed in CCA patients 
even in the absence of a PSC background. Morphologically, CCA frequently presents 
as an obstructive biliary stricture without evidence of a mass on cross-sectional imag-
ing [9]. There are some important distinctive features of PSC- associated CCA. In 
PSC patients, the lifetime risk of CCA development is 7–14% (corresponding to a 
400- to 1500-fold increase in respect to the general population), with a 10-year cumu-
lative incidence of 7–9% according to multiple studies [10–12]. Interestingly, CCA 
development is not related to the duration of the disease, in contrast with what is 
generally observed with other primary liver malignancies, HCC in particular, com-
monly arising in a cirrhotic setting [6]. Of note, one third of the CCAs detected in 
PSC is diagnosed within the first year from the PSC diagnosis, thus suggesting that a 
long-standing disease becomes symptomatic because of the tumor [13]. Moreover, 
since PSC strikes young individuals, in their third to fifth decade, PSC-associated 
CCA develops about 20 years earlier than in CCA patients without PSC [8].

PSC-related factors predisposing to CCA are still largely unknown. A recent 
study indicates duration and severity of PSC, age at diagnosis, smoking, alcohol 
consumption, or a history of colorectal dysplasia as factors bearing an increased 
CCA risk [5]. On the other hand, small-duct PSC and pediatric patients have a low 
risk of CCA development [6, 14]. As aforementioned, PSC patients also have a 
lifetime risk of gallbladder cancer ranging from 3 to 14%, whereas patients with 
PSC and UC have a fourfold increased risk of colorectal cancer when compared to 
patients with UC alone. Among other epithelial cancers, the risk of developing HCC 
is also slightly increased, ranging from 0.3 to 2.8% [5].

 Pathogenesis of PSC-Associated CCA: The Archetype 
of a Premalignant Condition Sustained by 
Fibroinflammatory Lesions

The pathogenesis of PSC involves both environmental and inherited factors, with a 
yet unidentified environmental trigger probably activating a persistent cholangio-
cyte injury in genetically predisposed individuals. This injury is associated with a 
pronounced accumulation of fibrotic tissue, which prevails on the inflammatory 
infiltrate, with the development of the typical “onion skin-like” lesions, the 
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hallmark of the disease [1, 4]. These lesions are made up of activated fibroblasts and 
macrophages and by a concentric peribiliary deposition of new extracellular matrix 
(ECM) components, in particular collagen type I and fibronectin, which induce pro-
gressive narrowing of the damaged bile ducts, eventually resulting in ductopenia [4, 
15]. Moreover, ECM components, by binding soluble mediators (growth factors, 
chemokines, cytokines) via low-affinity non-covalent interactions, create gradients 
that further stimulate recruitment of fibroblasts and inflammatory cells to the dam-
aged ducts leading to cholangiocyte proliferation and neoangiogenesis [16].

Remarkably, in CCA, neoplastic bile ducts are embedded in a dense desmoplas-
tic tissue populated by myofibroblasts (cancer-associated fibroblasts) and macro-
phages (tumor-associated macrophages), together with a variety of innate and 
adaptive immune cells, encompassing T lymphocytes, macrophages, and neutro-
phils, which reproduces the prominent fibroinflammatory reaction featuring PSC 
[17–19] (Fig. 10.1). This observation lends support to the concept that PSC is para-
digmatic of the pathogenetic sequence from fibroinflammation to cancer, driven by 
a proficient microenvironment characterized by qualitative and quantitative changes 
in ECM components associated with a dense myofibroblast gathering (Fig. 10.2). 
Moreover, either pro-inflammatory mediators released in the periductal milieu or 

a b

c d

Fig. 10.1 Primary sclerosing cholangitis (a, c) and cholangiocarcinoma (b, d) share an exuberant 
fibrotic reaction embedding the bile ducts (a, b, Masson’s trichrome), densely populated by acti-
vated myofibroblasts laying closely adjacent to cholangiocytes (c, d, immunohistochemistry for 
alpha-smooth muscle actin). Magnification a, b, 100×; c, 200×; d, 400×
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cholestasis cooperates with the inciting effects of the fibrotic stroma. IL-6, nitric 
oxide (NO), and reactive nitrogen and oxygen species induce DNA damage and 
promote epithelial cell proliferation while inhibiting apoptosis. TNF-α is also 
involved in the upregulation of inducible NO synthase.

Once cholangiocytes have gained a malignant phenotype, they release further 
growth factors, cytokines and chemokines acting as a feed-forward loop that poten-
tiate CCA invasiveness [6]. The tumor necrosis factor-related apoptosis-inducing 
ligand (TRAIL), a pro-apoptotic death receptor agonist, might also be involved in 
the sequence PSC-CCA by activating a sublethal pro-apoptotic signaling that 
induces chromosomal instability [20]. Furthermore, cholestasis that may exert sev-
eral effects on malignant transformation of the biliary epithelium has been shown, 
as related to the activation of receptor tyrosine kinases, such as the epidermal growth 
factor receptor leading to cell proliferation, and of cyclooxygenase-2 (COX-2), 
which, beyond promoting proliferation, stimulates angiogenesis and inhibits apop-
tosis [21, 22]. Of note, development of an abundant stromal reaction nearby the 
tumoral ducts (so-called tumor reactive stroma) is a common trait in many epithelial 
malignancies with pronounced invasive properties, including, beyond CCA, pancre-
atic ductal adenocarcinoma and invasive ductal breast carcinoma among others, 
where it provides a scaffold sustaining tumor cell dissemination [23]. However, the 

Normal liver PSC Biliary dysplasia CCA

Neoplastic degeneration

ECM Components Fibroblasts Activated myofibroblasts CAFs

Fig. 10.2 In primary sclerosing cholangitis (PSC), the histopathological sequence from fibroin-
flammation to biliary dysplasia and cancer (cholangiocarcinoma, CCA) is faithfully reproduced. 
The peribiliary microenvironment behaves as the main director of this sequence, sustained by 
ECM changes and prominent myofibroblast accumulation. Up-sided micrographs are derived from 
human liver biopsies immunostained by the biliary marker keratin-7. Magnification, 100×
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mechanisms underpinning the progressive course that culminate in cancer from 
fibrosis through dysplasia are largely uncharted, given the lack of experimental con-
ditions able to model the PSC-CCA progression. Thus, the development of an ani-
mal model recapitulating this pathogenetic sequence is eagerly awaited, as a 
valuable tool to capture the pathways promoting biliary carcinogenesis and, possi-
bly, to identify putative biomarkers detecting tumor onset in the earliest stages.

 Clinical Presentation of PSC-Associated CCA: 
The Confounding Presence of Dominant Strictures

Early CCA diagnosis can be extremely challenging, as its clinical presentation is 
generally insidious. The diagnostic difficulty in detecting potential CCA is particu-
larly true in patients with PSC.  In fact, symptoms of PSC (fatigue, pruritus), or 
related to its complications, such as acute cholangitis (jaundice, fever, abdominal 
pain), eventually accompanied by weight loss and worsening of cholestatic labora-
tory profile, especially a sustained elevation in serum bilirubin and alkaline phos-
phatase (ALP), can be associated with CCA as well [8, 24].

In this respect, a major concern in PSC is the development of dominant stric-
tures. Dominant strictures are focal high-grade biliary stenoses, generally defined as 
having a diameter ≤1.5 mm in the common bile duct or ≤1 mm in the right and left 
hepatic duct [25]. They occur in approximately 50% of patients with PSC and can 
be difficult to discriminate from CCA, either clinically or morphologically. 
Typically, recurrent episodes of bacterial cholangitis in a PSC patient are highly 
suggestive of a dominant stricture and may contribute to disease progression [26]. 
The relationship between CCA and dominant strictures can be perplexing, since 
CCA may arise from a dominant stricture, whereas, on the other hand, only 5% of 
dominant strictures have an underlying malignancy. When associated with a domi-
nant stricture, CCA usually develops in the hilum or in the common bile duct, and, 
conversely, benign dominant strictures affect mainly the extrahepatic bile ducts [8].

 Diagnosis of PSC-Associated CCA: Critical Issues 
and Multimodal Approach

With the improvement of surgical resection and LT techniques for locally advanced 
CCA, early detection of this tumor when arising in a PSC background is crucial to 
improve patient prognosis. As there is no clear relationship between PSC duration 
and CCA development, patients with a recent PSC diagnosis should be also screened 
for biliary malignancy with the combined use of laboratory tests, cross-sectional 
imaging, and endoscopic techniques, along with conventional and, possibly, new 
biomarkers to be tested in serum and eventually in bile and in other biological flu-
ids [6, 8].
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 Laboratory Tests and Serum Biomarkers

CCA usually presents with rapid worsening of liver biochemistries (mostly ALP 
and eventually total bilirubin), eventually leading to clinical deterioration (pruritus, 
jaundice, weight loss, acute cholangitis) in an otherwise stable PSC patient [27].

Among conventional serum biomarkers, carbohydrate antigen (CA) 19-9, a 
membrane glycolipid expressed by tumoral duct cells, is the most associated with 
CCA, though studies addressing its role in PSC patients are scarce. In addition, 
CA19-9 has significant variability in sensitivity and specificity depending on the 
cutoff value. The optimal cutoff is 129 U/mL, showing a sensitivity of 78% and a 
specificity of 98%, though 1/3 of PSC patients with increased levels of CA19-9 
above this cutoff are not diagnosed with CCA. Importantly, serum levels of CA19-9 
are influenced by the allelic variants of fucosyltransferase (FUT). Two different 
FUT genotypes, 2 and 3, that determine the Lewis blood group, catalyze the final 
steps of CA19-9 biosynthesis. Based on these genotypes, distinct groups with low, 
intermediate, and high expression of CA19-9 can be identified, indicating FUT2/3 
genotype-dependent cutoff values for CA19-9 as a means to improve its sensitivity 
by reducing the false positives [27–29]. Noteworthy is the observation that 7–10% 
of the general population is Lewis blood antigen-negative and lacks expression of 
CA19-9 [30]; thus, normal or undetectable levels of CA19-9 do not effectively rule 
out the possibility of CCA. Another factor that can limit the clinical usefulness of 
CA19-9 in PSC patients is bacterial cholangitis, which is responsible for marked 
though transient increase in CA19-9 serum levels [31], while dominant strictures 
seem to have less effect on biomarker expression [32].

Serum CEA is another biomarker of interest, as it is not influenced by bacterial 
cholangitis and dominant strictures, possesses a higher specificity than CA19-9, and 
potentially could be used to predict survival after CCA resection. However, com-
pared with CA19-9, CEA has a lower sensitivity, as it is increased, for instance, by 
cigarette smoking (a well-established risk factor for CCA development). Similar to 
CA19-9, CEA levels are influenced by FUT genotype. Of note, measurement of 
both CA19-9 and CEA has been proposed to improve early diagnosis of CCA [8].

Imaging techniques are a critically important asset for CCA diagnosis, as the 
detection of morphological abnormalities in the biliary tree is a prerequisite for 
endoscopic procedures, as discussed in detail elsewhere in this book (Chap. 7, 
Viragh K et al.). In brief, ultrasonography (US) is a common first-line test and has a 
sensitivity of 57% and specificity of 94% in this context. However, while US is 
particularly useful in detecting mass lesions, the infiltrating or intraductal morpho-
logical phenotype of CCA can be difficult to appreciate, especially in a background 
of PSC [27, 33]. Magnetic resonance imaging (MRI) has a much higher sensitivity 
than US and has become the technique of choice for both diagnosis and staging of 
CCA. The combination of MRI with magnetic resonance cholangiopancreatogra-
phy (MRCP) provides the most accurate noninvasive method to study the biliary 
tree and to unveil tumoral infiltration. More features suggestive of a neoplastic 
behavior can be identified by dynamic contrast-enhancement MRI, magnetic 
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resonance angiography, and diffusion-weighted imaging (DWI), which permits rec-
ognition of distant metastases, involvement of the vascular bed, and distinction of 
CCA from HCC [33, 34]. Computed tomography (CT) can characterize mass 
lesions, investigate tissue invasion with involvement of regional lymph nodes, and 
detect the presence of extrahepatic dissemination in CCA, but its sensitivity and 
specificity is reduced in the setting of PSC-associated CCA (75% and 85%, respec-
tively) [27, 33, 35].

18F-Fluoro-deoxyglucose (18F-FDG) positron emission tomography (PET), even-
tually complemented with CT (PET/CT), can be a valuable approach to detect early, 
small biliary tumors and metastases. In particular, PET is useful to discriminate 
CCA from dominant strictures in PSC patients. A high tissue uptake index (SUVmax/
liver ≥3.3) is a good parameter for CCA diagnosis, with sensitivity and specificity 
of both around 90%, while an index <2.4 seems to rule out CCA [36]. Major draw-
backs of this technique are (i) the increased number of false positives in conditions 
of ongoing tissue inflammation due to bacterial cholangitis or intense background 
disease activity and (ii) the lack of accuracy in detecting perihilar tumors, both of 
which are unfortunately common events in PSC.

Endoscopic procedures such as endoscopic retrograde cholangiopancreatogra-
phy (ERCP) remain an important part of PSC management, in particular when 
imaging results are uncertain or tissue sampling is needed [37]. Dominant strictures 
represent the most common indication for endoscopic biliary procedures in PSC, as 
these lesions require careful exclusion of malignancy along with local treatment via 
balloon dilation and/or stenting [37, 38]. Biliary intraductal brushing can be per-
formed during ERCP to evaluate for possible malignancy; despite a high specificity 
(>95%), however, it has poor sensitivity (5–40%) [39]. Thus, to improve diagnostic 
accuracy of conventional cytology, biliary brushing has been coupled with fluores-
cence in situ hybridization (FISH) assessing for chromosomal instability [39, 40], 
resulting in a specificity of nearly 100% and an increase in sensitivity up to 45–49% 
[41]. Of note, sensitivity can reach 76–89% if supported by analysis of the tumor 
suppressor gene p16 (by evaluating the deletion of the 9p21 locus) [41, 42]. 
Detection of polysomy by FISH either in multiple areas of the biliary tree (multifo-
cal) or in consecutive endoscopic procedures (serial) has been associated with a 
higher risk of CCA than when detected in unifocal or single samples [43, 44].

Endoscopic ultrasound (EUS) is another available technique to evaluate domi-
nant strictures (as well as lymphadenopathy), having the advantage of lower mor-
bidity than ERCP [39]. A meta-analysis performed in biliary obstructions of 
different etiologies showed that EUS had an overall sensitivity of 78% and a speci-
ficity of 84% in detecting malignancy [45]. Sensitivity and specificity could be fur-
ther improved by combining EUS with fine needle aspiration (FNA), though patients 
who underwent EUS-FNA would be excluded from LT according to the Mayo 
Clinic protocol because of the risk of tumor seeding [46]. Additional studies are 
needed to better understand the role of EUS in this setting [39].

Another useful technique that has drawn increasing interest is cholangioscopy, as 
it allows direct visualization of the biliary mucosa to detect suspicious lesions such 
as nodules, ulcers, polyps, or projections and to collect tissue samples [47]. A 
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cholangioscopic finding of dilated, tortuous subepithelial vessels is a highly sugges-
tive feature of malignancy, though it can also be present in PSC without dysplasia 
[40]. Similarly, cholangioscopic biopsies are relatively limited by their small size. 
Notably, it is important to recognize that most studies have been conducted so far 
with the first-generation devices. Given the introduction of the new (third- generation) 
high-resolution cholangioscope (Spyglass DS™, Boston Scientific Corp., Natick, 
MA, USA) that provides a more thorough inspection of the mucosal profile, further 
studies will be needed to reassess the diagnostic accuracy of this technique, its cost-
efficacy, and the rate of adverse events [39].

 Novel Tumoral Biomarkers

Given the limitations of conventional serum biomarkers and noninvasive techniques, 
there is a need to identify novel disease biomarkers aimed at improving the early 
detection of CCA, eventually beyond serum sampling. These include anti- 
glycoprotein 2 (GP2), bile and urine biomarkers, and extracellular vesicles.

Anti-GP2 is a secretory IgA autoantibody targeting proteins predominantly 
expressed by exocrine pancreatic cells that can be found in PSC patients, especially 
those with the classic variant involving the large bile ducts, where it likely associ-
ates with poor outcomes (meaning early death or shorter LT-free survival), and this 
effect was primarily dependent upon development of CCA. Among the several iso-
forms, the combined use of anti-GP21 and anti-GP24 IgA seems more sensitive than 
using only one isoform, and the detection of anti-GP23 IgG seems related with a 
higher risk of CCA development in PSC patients. Notably, the presence of anti-GP2 
IgA could identify a subset of PSC patients with a severe disease phenotype, as its 
association with PSC/CCA is not related with duration of disease, older age at diag-
nosis, and serum levels of bilirubin [8, 48]. Thus, anti-GP2 IgA may be regarded as 
novel tool enabling early diagnosis of PSC-associated CCA, but further studies are 
awaited to figure out its possible role for prioritizing LT in high-risk PSC patients 
[8, 48]. Another panel that has been proposed with the aim of discriminating benign 
from malignant biliary strictures includes pyruvate kinase M2, cytokeratin 19 frag-
ment, mucin 5 AC, and gamma glutamyl-transferase [8].

Another biological sample that can be harnessed for prognostic/diagnostic pur-
poses in PSC is bile [28]. Bile and urine proteome analysis have shown interesting 
results, with combined analysis having a sensitivity of 72% and a specificity of 96% 
[8]. One fundamental issue with bile collection is that it requires ERC (or other 
invasive means of biliary access). This is a subject of active investigation deserving 
consideration in future studies [28, 49].

In addition to soluble factors, cholangiocytes may secrete extracellular vesicles 
(EVs) as a means of cell-to-cell communication. EVs contain proteins, lipids, and 
nucleic acids, such as micro-ribonucleic acids (miRNAs) and long noncoding RNAs 
(lncRNAs). In malignant cholangiocytes, a miRNA of interest is miRNA-195, 
which is mutually exchanged by neoplastic and stromal cells, as it is 
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constitutionally downregulated in both cell types and, thus, could be involved in 
tumorigenesis. On the other hand, trafficking of lncRNA seems related more with 
CCA progression. EVs produced by cancer cells contain a range of pro-invasive 
factors normally not released by healthy cholangiocytes. Their assessment in the 
so-called liquid biopsy might provide a novel noninvasive tool for early detection of 
CCA [49, 50].

 Surveillance Programs: Still Searching for the Way to Go

One of the main issues concerning the risk of CCA in PSC has been the lack of an 
effective evidence-based surveillance protocol to monitor these patients. There are 
a number of questions that must be addressed before establishing an effective pro-
gram, including (a) how frequently surveillance should be performed, (b) the tools 
(radiological and laboratory) with which surveillance should be conducted, and (c) 
how to risk stratify patients for tumor development (e.g., are there some patients 
who need not undergo CCA surveillance or who need it more frequently than other 
PSC patients?) [27].

To help address this uncertainty, a study was undertaken in a large population of 
PSC patients undergoing annual imaging with US, CT, or MRI/MRCP coupled with 
annual CA19-9 testing, with further evaluation by MRI/MRCP and/or ERCP if any 
newly identified biliary lesion. Taking this approach, PSC patients in the surveil-
lance group were found to have a significantly higher 5-year overall survival (68% 
vs 20%, p < 0.001) and a significantly lower rate of CCA-related adverse events 
(32% vs 75%, P < 0.001) compared to those without a regular surveillance [51]. 
Based primarily on the findings of this study, published in 2018, a CCA surveillance 
protocol was published in 2019 by the American Gastroenterological Association 
recommending the combination of imaging and CA19-9 for CCA surveillance [27]. 
Of the imaging modalities available, MRCP (with intravenous contrast, if possible) 
and US appeared to have the best performance characteristics [51]. Further consid-
erations regarding cancer surveillance in PSC are discussed elsewhere [5, 8, 27]. 
Large prospective studies would be useful to identify the best surveillance strategy, 
with the ultimate goal of improving early diagnosis when CCA is more likely to be 
eligible for curative treatment (e.g., surgery, LT) [27, 51].

 Treatment: LT Is Often the Most Convenient Approach 
for PSC-Associated CCA

PSC patients with a new CCA diagnosis should undergo a multidisciplinary evalu-
ation to choose the best treatment option based on the tumor stage. Surgical resec-
tion and LT are the only potentially curative options for early-stage CCA.  If the 
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patient is eligible for resection, surgery is the first-line approach in all CCA sub-
types. Patients with intrahepatic CCA can undergo resection of the involved seg-
ments or lobe, whereas distal CCA usually involves a pancreatoduodenectomy. In 
pCCA, based on tumor extension, resection can involve the intra- and extrahepatic 
bile ducts and the ipsilateral liver, the gallbladder, and the involved regional lymph 
nodes. Unfortunately, the 3-year survival rate is still quite low (<20%), even when a 
resection with negative tumor margins is achieved. Moreover, PSC-associated 
CCAs are rarely diagnosed at an early stage, with most patients presenting with 
advanced and unresectable disease and reduced functional liver mass caused by the 
underlying disease.

LT is an option for patients with unresectable disease, and it is particularly attrac-
tive in PSC patients as it removes the “oncogenic field effect” exerted by the under-
lying chronic fibroinflammation. In this regard, patient selection is crucial to achieve 
the best possible outcomes and to ensure the optimal organ allocation. Data from the 
Nordic Liver Transplant Center based on a cohort of 53 CCA patients (34 with PSC/
CCA) shows a 5-year survival of 58% when patients were selected based on a TNM 
stage ≤2 and a CA19-9 level ≤100 U/mL, regardless of tumor localization [52]. A 
5-year survival rate up to 70% can be achieved in patients with early-stage pCCA if 
neoadjuvant chemoradiation is performed, although less than 10% of patients are 
indeed eligible candidates [53]. Another procedure for patients with unresectable 
pCCA eventually eligible for LT is the Mayo Clinic protocol. In this multimodal 
approach, patients undergo external beam radiation therapy, followed by 2 weeks of 
brachytherapy and then abdominal exploration for staging. Intravenous 5- fluorouracil 
is administered for chemosensitization during radiotherapy, and capecitabine is 
administered afterward until LT is performed. Following this protocol, a 5-year sur-
vival of 74% was reported in the first study [53], and similar results were repro-
duced in a larger multicenter study in which, notably, more than two thirds of 
patients had a PSC-associated CCA [54].

Beyond surgery, there are currently no data regarding specific treatment of PSC/
CCA in more advanced stages, and the reader may refer to the relative chapters 
discussed elsewhere in the present book. Whether PSC/CCA harbors specific 
molecular signatures possibly behaving as actionable targets is a subject deserving 
attention by future studies. In fact, given the growing number of potential targets 
emerging in CCA, patients with unresectable PSC/CCA can be an ideal subset to be 
considered for enrolment in clinical trials [54, 55].

 Summary and Future Directions

The close association of CCA with PSC provides a unique opportunity to unravel 
the intricate mechanisms by which a chronic inflammatory epithelial lesion with 
prominent scarring progresses through dysplasia and, in some cases, carcinoma. 
Although this area has been actively investigated in the past few decades, several 
challenges remain. For instance, the approach to surveillance remains an area of 
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uncertainty, and discriminating CCA from a DS still often poses a diagnostic conun-
drum. From a therapeutic perspective, LT remains the most definitive treatment for 
CCA, but in some cases, this is not an option, in part because PSC-associated CCA 
is a difficult-to-diagnose disease in early stages. Future efforts are eagerly awaited 
to identify reliable predictive biomarkers of PSC progression and associated carci-
nogenesis as well as effective tailored therapies.
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PI Periductal-infiltrating intrahepatic cholangiocarcinoma
TNF Tumor necrosis factor

 Introduction

In the northeast of Thailand, a cultural habit of eating raw fish on a daily basis 
results in a local population being repeatedly exposed to liver fluke (O. viverrini) 
infection and having the highest incidence of cholangiocarcinoma (CCA) world-
wide [1, 2]. There is substantial evidence from animal models that liver flukes are a 
CCA risk factor which exert carcinogenic effects by inducing chronic inflammation 
of bile ducts during the course of persistent infestation [3–6]. The morphology and 
histology of CCA in regions endemic of liver fluke or hepatolithiasis are similar to 
sporadic CCA [7, 8], with the majority of tumors arising from large bile ducts, and 
specifically perihilar CCA (pCCA) being the most common [9, 10]. However, in 
fluke-related CCA, intrahepatic CCA (iCCA) [1, 2] and the papillary CCA pheno-
type are more common than in sporadic CCA [10–12]. The peak age incidence of 
fluke-related CCA is in the sixth decade, about 5–10 years younger than sporadic 
CCA.  This chapter provides an overview of the geographical distribution and 
pathology of liver flukes, the spectrum of CCA, treatment outcomes, and the pre-
vention of endemic fluke-related CCA in Thailand.

 The Parasites and Their Associated Illnesses

Fascioliasis and opisthorchiasis are two food-borne trematode zoonoses, causing 
hepatobiliary diseases in humans. As the former is not a chronic zoonosis or risk 
factor for CCA, it will be only briefly discussed, with the major focus of the chapter 
being on opisthorchiasis, a major risk factor for CCA in endemic regions.

 Fascioliasis

Fascioliasis is a parasitic infection of ruminants, caused by Fasciola hepatica or 
Fasciola gigantica, also known as “the liver fluke of sheep and cattle” (Fig. 11.1a). 
Fascioliasis is a global veterinary problem, though an increasing number of human 
cases, estimated to be exceeding 2.4 million people worldwide, have been reported 
in several regions of the Middle East, Asia, Latin America, and Africa [13–15]. 
People are accidental hosts that become infected by eating raw watercress or other 
water plants contaminated with parasite larvae. The young worms move through the 
intestinal wall, the abdominal cavity, and the liver tissue, into the bile ducts, where 
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they develop into adult flukes, which are larger than human bile ducts. The pathol-
ogy is pronounced in the bile ducts and liver, causing (i) bile duct obstruction and 
liver necrosis (rotted liver disease) (Fig. 11.1b) or (ii) parasitic pseudotumor, which 
may also occur in ectopic sites [14, 16]. Fasciola infection is transient and noncar-
cinogenic in humans.

 Opisthorchiasis

 Geographical Distribution and Mode of Transmission

Opisthorchiasis is a freshwater fish-borne disease caused by the liver flukes, 
Opisthorchis viverrini (Fig.  11.1a), Opisthorchis felineus, and its closely related 
Clonorchis sinensis (clonorchiasis). O. viverrini is prevalent mainly in the lower 
Mekong subregion countries including Thailand, Laos, Cambodia, and Vietnam 
(Fig. 11.2a). O. felineus occurs in Ukraine, Kazakhstan, and Russia. C. sinensis is 
endemic in China, Korea, and Taiwan [17–19]. Infection with the liver flukes 
O. viverrini and C. sinensis persists as a major public health problem in Asia. Recent 
estimates suggest that about 35 million people are infected by C. sinensis world-
wide, and in China alone, it could reach 15 million people [20]. Current reports of 
O. viverrini infection reach over ten million people, with approximately six million 
in Thailand alone [21]. The geographical pattern of liver fluke infection is not uni-
form; it depends on local habits of eating raw fish and presence of the first interme-
diate host, e.g., the sand snail (“Bithynia siamensis”). Moreover, in endemic areas, 
prevalence and intensity of infection are higher in rural riparian communities (as 
compared to urban communities), being relatively common along the tributaries of 
rivers and in the vicinity of natural water sources.

In China, C. sinensis is found mainly in South China, e.g., Guangdong, Guangxi, 
and Sichuan [20]. In Thailand, the distribution of O. viverrini is endemic in the 

a b

Fig. 11.1 Fascioliasis. (a) Two types of liver fluke, adult Fasciola (left) and adult Opisthorchis 
(right); (b) adult Fasciola (arrowhead) migration out of bile ducts causing liver parenchyma necro-
sis (asterisk)
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northeast followed by the north and the central region, with virtually no infection in 
the south of the country (Fig. 11.2a) [22]. Interestingly, the age-standardized inci-
dences rates of CCA are 15 times higher in highly endemic regions of liver fluke 
infection compared to regions where infection is rare (Fig. 11.2a) [23].

In Northeastern Thailand, liver fluke infection is induced by eating popular sim-
ple dishes: marinated chopped raw fish (“Koi Pla”) or a short-pickled fish 
(“PlaSom”), preparations from freshwater fish (a second intermediate host in the 
life cycle of liver fluke) which contains the infective metacercaria in tissue 
(Fig. 11.2b) [24, 25]. The metacercaria excysts to become a juvenile worm in the 
duodenum and then migrates to the intrahepatic bile ducts via the common bile 
duct, and the hermaphroditic adult flukes (Figs. 11.1a and 11.2c) produce eggs that 
are excreted in the feces [26]. The egg develops into larva in the Bithynia spp. snail 
(the first intermediated host), which then releases the free-swimming cercaria which 
penetrates into fish tissue, encyst, and develop into infective metacercaria [24]. 
Although poor sanitation may be a major cause of human fecal contamination of 
community water, improvements in sanitation will likely not completely prevent the 
continuation of O. viverrini transmission, as the feline and canine reservoir hosts 
will continue to pass on the eggs [27].

 Diagnosis and Treatment

Fecal analysis and enzyme-linked immunosorbent assay (ELISA) testing are used 
to diagnose opisthorchiasis. Presence of adult flukes during laparotomy or at autopsy 
and microscopic demonstration of eggs present in the feces or bile specimens, either 
by simple smear or concentration techniques, are the gold standard for diagnosing 
fluke infestation. The modified formalin-ethyl acetate concentration technique can 
quantify the intensity of infection into number of egg counts per gram of stool [28]. 
The immunodiagnosis via serologic detection of anti-parasitic antibody for 

b ca

Fig. 11.2 (a) The estimated percentages of prevalence of liver fluke infection in the Mekong sub-
region countries, including geographical variation of liver fluke prevalence and age-standardized 
incidence rates of cholangiocarcinoma (CCA) in Thailand (Adapted from Bragazzi M et al. (2012) 
& Sripa B et al. (2011)) [2, 135]. (b) Freshwater crypinids, second intermediate host, inset a meta-
cercaria of O. viverrini in fish fresh (200 μm). (c) Cholangioscopic picture of adult Opisthorchis 
inhabiting inside a lumen of the large intrahepatic bile duct. Cr. Ake Pugkhem (MD), KKU
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assessment of previous exposure to infection and detection of parasitic antigen 
using mAb detection in stool for determining current infection is also employed. 
While mAb ELISA detects O. viverrini antigens or copro-antigens in stool, it only 
detects current infections, whereas the indirect antibody ELISA can detect past 
infections, as antibodies persist in body fluids following treatment. However, use of 
the indirect antibody ELISA in epidemiological studies is limited because of cross-
reaction with other parasites and inability to differentiate between present and past 
exposure to infection [29].

Praziquantel is cheap, inexpensive, and effective anti-helminthic treatment for 
O. viverrini infection and has been used in Thailand since the early 1980s. This drug 
reduced the prevalence of O. viverrini infection in Thailand from 80% to 15–20% 
in 1997 [21]. Despite the high effectivity of anti-parasitic treatments, the prevalence 
and reinfection rates for liver fluke remain considerable [30], and cholestasis from 
inflammation and fibrosis of the bile duct persists as a risk factor for CCA develop-
ment [31].

 Pathology of Opisthorchiasis and Cholangiocarcinogenesis

The precise mechanisms of CCA are not completely understood; however, several 
recognized risk factors share common features: cholestasis; infection; and inflam-
mation. The known reported risk factors for CCA include primary sclerosing chol-
angitis [32], hepatolithiasis [33], unresected choledochal cyst, chronic hepatitis 
virus infection [34], Helicobacter pylori infection [35], and liver fluke infestation 
with O. viverrini and C. sinensis [17, 24, 36]. Based on case series, epidemiological, 
and experimental animal models, the International Agency for Research on Cancer 
[37] classified O. viverrini and C. sinensis as class 1 and 2A carcinogens in humans. 
Nevertheless, and despite health education efforts, enduring eating habits continue 
to enable liver flukes to pose a persistent health problem in Asian countries.

 Pathology of Opisthorchiasis

Infestation with liver flukes is usually neglected because of a lack of or only nonspe-
cific symptoms. Only small fraction of individuals with liver fluke infection (typi-
cally those with heavy infection burden) have symptoms of abdominal pain, 
flatulence, or dyspepsia [38, 39]. Infestation is occasionally also associated with 
development of secondary hepatobiliary diseases, e.g., suppurative cholangitis and 
cholelithiasis [40–44].

In humans, O. viverrini inhabits the lumen of the intra- and extrahepatic bile 
ducts (Fig. 11.2c) and rarely the gallbladder and pancreatic duct [26]. The patho-
logic consequences of infection occur mainly in the biliary tree, and severity appears 
to be associated with both intensity and duration of infection.
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In early stages of infection, the biliary mucosa in proximity of a fluke becomes 
edematous or desquamated, with inflammatory cell infiltration in ductal walls. In 
heavy infection, chronic and repeated mechanical injury by fluke bodies and suck-
ers results in a periductal mononuclear infiltration response to mucosal trauma and 
fluke antigens, regenerative hyperplasia with or without goblet cell metaplasia of 
biliary epithelia, and proliferation of submucosal peribiliary glands (PBGs) [44–46] 
(Fig. 11.3a). Chronic and persistent infection result in increasing fibrosis in periduc-
tal tissue and the bile duct wall, and the fibrotic bile ducts compress and narrow the 
lumen, leading to cholestasis (Fig. 11.3b) [43, 44]. Biliary pathology of opisthor-
chiasis is similar in adults and children, and the changes are established within 
7–15 years after fluke infestation [47].

A distinct gross pathological finding in chronic and heavy infection is white 
fibrotic lines or nodules that appear on the capsular surface of the liver (Fig. 11.4a) 
[43, 48, 49]. The bile ducts on cut surfaces of the liver and the extrahepatic bile duct 
may show slight thickening (Fig.  11.4b). The gallbladder may have mild mural 
thickening and contain sludge [40, 50]. The other organs are unremarkable.

While opisthorchiasis has mostly nonspecific symptoms, occasional complica-
tions do occur. Patients may present with high fever with chills, right subcostal pain 
from bile sludge or pigment stone obstructing the cystic duct leading to acute cho-
lecystitis, or secondary infection from bacteria in bile on minute ulcers from fluke 
suckers resulting in a suppurative cholangitis [43, 51].

a b

Fig. 11.3 Histopathology of large intrahepatic bile ducts in chronic opisthorchiasis. (a) Biliary 
epithelial and peribiliary gland (PBG) hyperplasia, focal nuclear stratification of biliary epithelial 
hyperplasia (black arrow), with PBGs and conduits proliferation in the submucosa noted. (b) 
Periductal fibrosis, fibrosis at bile duct wall, with remnant PBGs is focally seen. Focal hyperplasia 
of biliary epithelium and a fluke in a narrowing bile duct lumen are evidence
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 Liver Fluke-related Cholangiocarcinogenesis

Carcinogenesis is a multistage process driven by carcinogens which induce genetic 
and epigenetic damage in susceptible cells that gain a selective growth advantage 
and undergo clonal expansion as the result of activation of oncogenes and/or inacti-
vation of tumor suppressor genes [51, 52]. In cholangiocarcinogenesis associated 
with liver fluke infection, the chronic inflammation process plays a key role, and 
hyperplasia of PBGs and regenerative hyperplasia of the biliary epithelium are 
thought to be sources of cancer susceptibility.

PBGs are tubular-alveolar glands with serous and mucinous acini embedded in a 
submucosa and fibromuscular bed which connect to bile duct lumina by small con-
duits (Fig. 11.5). Human PBGs contain biliary stem/progenitor cells within extrahe-
patic and large intrahepatic bile ducts [53–55] and are able to respond to bile duct 
epithelial loss with proliferation, differentiation, and maturation to restore epithelial 
integrity [56–58]. PBGs may undergo hyperplastic changes, as can be seen in the 
setting of chronic bile duct inflammation in hepatolithiasis and those with liver fluke 
infestation (Fig. 11.3a) [59, 60]. Chronic inflammation is a risk factor for the devel-
opment of numerous cancers. In the case of CCA, several lines of evidence exist. 
For example, a series of experimental studies of O. viverrini infection in hamster 
models demonstrate this relationship [61–63]. In response to O. viverrini infection, 
macrophages and other inflammatory cells are activated by proinflammatory cyto-
kines (IL-1β, TNF, IL-6). The proinflammatory cytokines (e.g., IL-1, TNF) are 
capable of stimulating NF-κB transcription factors-mediated induction of oxidative 
stress response enzymes, thus generating reactive oxygen and nitrogen species.

a b

Fig. 11.4 Pathology of the liver and perihilar bile duct in chronic opisthorchiasis. (a) Evidence of 
liver fluke infestation in liver with cholangiocarcinoma (CCA): white streaks and nodules of 
fibrotic bile ducts at capsular surface on both lobes of liver; note a CCA mass [asterisk] at segment 
VIII of right lobe; (b) few adult Opisthorchis [arrow] in lumen of thick-walled bile duct at hepatic 
hilum [RHD, right hepatic duct; LHD, left hepatic duct; and CHD, common hepatic duct]

11 Fluke-Associated Cholangiocarcinoma: A Regional Epidemic



272

Nitric oxide is generated by inducible nitric oxide synthase and can cause dam-
age to DNA and proteins resulting in mutagenic changes [64]. During these pro-
cesses, proinflammatory cytokines can also stimulate cyclooxygenase-2 expression, 
which can promote PBGs and biliary epithelium growth via activation of growth 
factors such as epidermal growth factor receptor and mitogen-activated protein 
kinases [65, 66]. Moreover, during the repair process, PBGs react to maintain bile 
duct integrity with proliferation and regeneration of the epithelial lining, paralleled 
by stromal remodeling via myofibroblasts. Myofibroblasts are generated from a 
variety of sources including resident mesenchymal cells, epithelial and endothelial. 
These processes are termed epithelial-mesenchymal transition that results in an 
increase in fibrosis of the bile ducts and nearby tissue (Figs. 11.3b and 11.4) [67–
69]. Periductal fibrosis leads to cholestasis, which fosters an environment in which 
repeated bacterial infection, continued cell death, and compensatory regeneration 
might act as nonspecific enhancing stimuli and increase susceptibility to carcino-
gens in bile. Chronic bile duct damage induced by persistent fluke infestation and 
inflammatory cytokines can result in genetic mutations of regenerative epithelium 
and expansion of initiated cells, eventually leading to CCA.

Fig. 11.5 Biliary epithelium dysplasia (note stratification and enlarged nuclei) of flat precursor 
lesion, now termed biliary intraepithelial neoplasia (BilIN) of the extrahepatic bile duct (large bile 
duct). Note the dysplasia is also seen at epithelial lining of peribiliary gland (PBG) conduits (black 
arrow) that continue to BilIN lesion. Inset is normal extrahepatic bile duct, showing normal PBG 
(arrowhead) and a tubular conduit (white arrow) connecting to bile duct lumen
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It is important to note that that CCA develops only in a small percentage of 
definitive hosts (e.g., humans, cats, dogs) with chronic liver fluke infection, imply-
ing that other factors or an additional pathological process may be necessary for 
malignant transformation. Most epithelial cancers develop in a stepwise progres-
sion from normal mucosal cells to epithelial hyperplasia or adenomatous hyperpla-
sia, dysplasia, carcinoma in situ, and eventually invasive cancer (see also Chaps 3 
and 4). Marked hyperplasia of PBGs, in part associated with dysplasia, is observed 
in patients with hepatolithiasis and those with liver fluke infestation [59, 60]. 
Biliary epithelial hyperplasia precedes biliary epithelial dysplasia [33, 49, 70] 
(Fig. 11.5), now termed biliary intraepithelial neoplasia (BilIN) [71, 72] (Fig. 11.6a), 
a flat precursor lesion of large bile duct CCA which progresses to tubular adenocar-
cinoma via the hyperplasia-dysplasia-carcinoma sequence (Fig. 11.6a, c) [73, 74]. 
PBG hyperplasia can develop into intraductal papilloma (adenoma), now termed 
intraductal papillary neoplasm of bile duct (IPNB) (Fig. 11.6b) [59, 75–77], a nod-
ular precursor lesion of papillary carcinoma (of the large bile duct) which 

a b

c d

Fig. 11.6 Precursor lesions and carcinogenesis of large bile duct cholangiocarcinoma (CCA). (a) 
Flat precursor lesion: biliary intraepithelial neoplasia [BilIN]. A micropapillary growth of atypical 
biliary epithelium. (b) Nodular precursor lesion: intraductal papillary neoplasm of bile duct 
[IPNB], a macroscopic lesion with prominent papillary growth of atypical biliary epithelium with 
fibrovascular core. (c) Tubular adenocarcinoma [TubCa] (black arrow); the invasive lesion pro-
ceeds from high-grade BilIN lesion and carcinoma in situ at mucosa lining lumen. This carcino-
genesis process termed “hyperplasia-dysplasia-carcinoma sequence.” (d) Papillary carcinoma 
[PapCa], with early invasive foci (white arrow), wherein the malignant lesion progresses from an 
IPNB. This carcinogenesis process is named “adenoma-carcinoma sequence”
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undergoes malignant transformation by way of adenoma-carcinoma sequence 
(Fig. 11.6b, d) [78–80]. Thus, bile duct changes in chronic liver fluke infection can 
progress to precancerous lesions and ultimately transform into CCA.

 Cholangiocarcinoma in Thailand

 Spectrum of Cholangiocarcinoma

CCA is a heterogeneous group of malignancies arising from hepatic progenitor cells, 
biliary epithelial cells, or PBGs of the intrahepatic and extrahepatic bile ducts [78, 81, 
82]. In 2010, the American Joint Committee on Cancer reclassified CCAs into intrahe-
patic CCA (iCCA) and extrahepatic CCA (eCCA), using hepatic ducts as the separation 
point. The latter (eCCA) is further subdivided into perihilar CCA (pCCA) and distal 
CCA (dCCA) at the level of the cystic duct [83–85]. Using this proposed classification, 
CCA case distribution is as follows: 60–70% pCCA, 20–30% dCCA, and 8–10% 
iCCA. CCA arising from the intrahepatic bile ducts accounts for only 10% of cases.

Khon Kaen is a city in NE Thailand, with a population of 1.7 million people, and 
an endemic area of the liver fluke O. viverrini. CCA is highly prevalent in Khon 
Kaen, with an age-standardized incidence rate (ASR) of 58.8 and 23.6 per 100,000 
males and females, respectively [86]. Of 221 patients operated on with a curative 
intent for CCA between 2011 and 2014 at Khon Kaen University Hospital (KKH), 
employing the AJCC-2010 subtypes, pCCA was the most common type with 117 
(52.9%), followed by iCCA 82 (37.1%), dCCA 9 (4.1%), and combined type 
(skipped intra- and extrahepatic tumors arising from multifocal or diffuse intra-
ductal lesions) 13 (5.8%) (Fig. 11.7). Peak age incidence was in the sixth decade, 
about 5–10 years younger than sporadic CCA [10].

iCCA is divided into peripheral type, which is located in the subcapsular area, and 
central type, which presents as a focal liver mass proximal to the hepatic hilum. The 
former usually arises from the small intrahepatic bile ducts (bile ductules, interlobu-
lar and septal bile ducts), while the latter arises from the large intrahepatic bile ducts 
(segmental and area ducts) [87, 88]. In addition to their anatomical location, CCAs 
are also classified by their gross features, which relate to their growth and spread 
patterns [89, 90]. iCCAs are classified into mass-forming (MF), periductal- infiltrating 
(PI), and intraductal-growing (ID) types. The MF type (Fig. 11.7a) usually belongs 
to the peripheral type of iCCA while PI and ID to central type [78]. However, in the 
advanced stages, iCCA of the PI type and those of IG type invade the liver paren-
chyma, termed as PI+MF and ID+MF types and manifested as MF type (Fig. 11.8) 
[88, 90, 91]. These were the cases, found in liver fluke-related CCA; among 82 cases 
of iCCAs, 71 (86.5%) were MF, and 10 (12.2%) were ID, and PI was 1 (1.2%) case. 
The gross classification of iCCA is relatively comparable with the grouping of 
eCCAs (pCCA and dCCA) into nodular-infiltrating (Fig. 11.7b), flat, or scirrhous 
and polyploid types (Fig. 11.7c) [78]. Among the 117 cases of pCCA in the Khon 
Kaen University Hospital surgical series, 51 (43.6%) were scirrhous type, 47 (40.2%) 
were nodular-infiltrating type, and 19 (16.2%) were polypoid type.
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Histologically, CCAs are adenocarcinomas whose major phenotypes are tubular 
and papillary, and additionally rare variants (Chap. 3, Nakanuma et al.) [78, 89]. 
With regard to the histological phenotypes in the aforementioned 221 cases, overall 
incidence of the tubular type (Fig.  11.6c) was 143 (64.7%), the papillary type 
(Fig. 11.6d) was 62 (28.1%), and variant types was 16 (7.2%).

 Risk Factors and CCA Subtypes

CCAs are a heterogeneous group of bile duct cancers. The different CCA subtypes 
might reflect the diverse underlying risk factors. In Thailand, people are exposed to 
a number of risk factors for CCA – e.g., infestation with the liver fluke O. viverrini, 
infection with HBV and HCV, and nitrosamine in traditional fermented dishes [3, 6, 
49]. Chronic inflammation associated with fluke infestation primarily affects large 
intrahepatic bile ducts near the hepatic hilum and the proximal extrahepatic bile 
duct [6, 49], which likely contributes to the high incidence of iCCA and pCCA. A 
case-control study showed a significant association between papillary iCCA and 
repeated use of praziquantel [92], findings which support the hypothesis that 
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Fig. 11.7 Spectrum of prevalence and subtypes of 221 cholangiocarcinoma (CCA) cases in 
Thailand, display on each representative of subtype. (a) Intrahepatic CCA 82 (37.1%). (b) Perihilar 
CCA 117 (52.9%), the arrow points to the primary site at proximal extrahepatic bile duct. (c) Distal 
CCA 9 (4.1%); the arrowhead indicates the ampulla of Vater and the intraductal polypoid lesion 
pointed out by arrow. (d) Combined CCA 13 (5.8%), skipped intrahepatic and extrahepatic lesions, 
marked by black and white asterisks, respectively
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papillary CCA is more common in chronic inflammation-related CCA, as observed 
in CCA associated with hepatolithiasis and clonorchiasis in Japan and Korea 
[93, 94].

Chronic viral hepatitis are the other prevalent risk for CCA in Thailand. The 
prevalence of HBsAg and HCV infection in Thailand is 10% and 1–3%, respec-
tively. However, a study that compared prevalence of HBsAg and HCV Ab in 295 
CCA patients showed no significant difference compared to the general population 
[95]. Chronic hepatitis or cirrhosis was rare in livers with iCCA, and cholangiocel-
lular carcinoma, a phenotype related to chronic hepatitis-associated CCA, accounts 
for only 1–2% of cases [96, 97].

 Survival Studies of CCA in the Endemic Area of Liver Fluke

 A 3-Month Prospective Study

KKH is an academic tertiary care institution. Many patients referred to KKH are 
diagnosed as CCA on clinical suspicion, and most of the confirmed CCA patients are 
late clinical cases. In a study including 270 patients (123 referral cases) who were 

a b

Fig. 11.8 Intrahepatic cholangiocarcinoma (iCCA) at advanced stages when tumor invading liver 
parenchyma, both periductal-infiltrating (PI) and intraductal-growing (ID) types, can manifest as a 
focal liver mass akin to the mass-forming (MF) type of CCA. (a) MF tumor from advanced PI 
(PI+MF) iCCA, arrow points to primary lesion. (b) MF tumor from advanced ID (ID+MF), arrow 
points to primary lesion
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seen at KKH in May–July 2010 for suspicion of CCA, 163 patients were ultimately 
diagnosed with CCA [98]. The median age was 62 years (53.2–70.8), and M/F ratio 
was 2/1. Diagnosis was made from radiologic imaging in 84%, and 78.8% of patients 
had elevated tumor markers. Histopathology confirmation of primary tumor was 
obtained in only 8.6%. Of the 163 patients, 59% were diagnosed with iCCA and 41% 
with eCCA. The majority of patients (61.3%) had stage IV disease, and 107 (65.6%) 
received only supportive care; curative resection was performed for only 6.1% of 
patients. Overall median survival was 4 months, and 2-year survival was 8.1%. There 
was no statistically significant difference (p > 0.05) in median survival among the 
symptomatic treatment groups, the biliary drainage group, or the chemotherapy 
group (Fig. 11.9). Most CCA patients already had unresectable disease at their first 
visit and received only symptom-based care. These results were comparable with the 
survival of advanced CCA patients in other Asian countries [99, 100].

 A Retrospective Study of Resectable, Mass-Forming iCCA

The MF type is the most common type of iCCA, usually presenting as a non- 
capsulated firm white mass in the liver, though an advanced MF iCCA lesion cannot 
be differentiated from the advanced PI type (PI + MF) or advanced ID type (ID + MF) 
(Fig.  11.8). The mainstay of treatment of iCCA is surgical resection [101, 102], 
though not all patients are candidates, depending on their stage of disease (Chap. 14, 
Gholami et al.); in addition, many patients experience recurrence despite complete 
removal of the tumor [102, 103], and the subsequence prognosis is poor.

A retrospective study was performed in which 50 MF iCCA cases underwent 
hepatic resection at KKH between January 2004 and December 2009 [104]. The 
median age at diagnosis was 57.2 years (32–72), and the patients were 26 males and 
24 females. The mean tumor size was 6.49 cm, and 86% were single masses. Most 
patients had stage IV disease, and lymph node involvement was noted in 64%. A 
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Fig. 11.9 Kaplan-Meier 
survival curves of the four 
treatment groups were 
compared; the surgical 
resection group had best 
2-year survival, 70% (95% 
CI, 32.9–89.3), P < 0.001. 
Others had similar median 
survival without statistical 
difference (p = 0.37): 
biliary drainage 5 months, 
chemotherapy 6 months, 
symptomatic treatment 
4 months (Adapted from 
Luvira V. et al. 
(2016)) [98]
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disease-free surgical margin was achieved in half of the patients. The median 
recurrence- free survival time was 188 days. The most frequent recurrence site was 
the surgical margin (45%), regional lymph nodes (42.5%), and the liver remnant 
(37.5%). The respective 1-, 2-, and 3-year recurrence-free survival rates were 
16.2%, 5.4%, and 2.7% [104]. The current study had high prevalence of lymph node 
involvement, leading to recurrences within 2  years after surgery. Lymph node 
involvement of iCCA represents systemic disease [105, 106], and adjuvant chemo-
therapy may add benefit in affected patients.

 A Twofold Improved Survival in a Subset of Curative Resection for pCCA

Accounting for approximately half of all CCA cases, pCCA is a tumor located in the 
extrahepatic biliary tree proximal to the origin of the cystic duct. In early stages, it 
is treated with partial hepatectomy with hilar bile duct resection [107, 108]; how-
ever, the perioperative management and surgical procedures are complicated 
because of the tumor location, and in some instances liver transplantation may be 
required (Chap. 15, Agopian et al.). Previous reports of curative resection of pCCA 
in Thailand were unsatisfactorily low (0–10.8%) [104, 105].

Multivariate analyses were carried out based on the survival data of 153 patients 
who underwent curative resection of pCCA at KKH from January 2006 to December 
2011. Among these 153 patients, the mean age was 56.8 years (56.8 ± 2), M/F ratio 
was 3/1, and 66 (43.1%) cases were R0 resection (tumor-free resection margin) and 
87 (56.9%) R1 resection (microscopically margin-positive resection). Histological 
findings showed that 91 (59.4%) were papillary carcinoma and 62 (51.6%) were 
tubular adenocarcinoma and 50 cases (32.7%) had lymph node metastasis. The 
overall 5-year survival rate was 20.6%. Patients with R0 and R1 resection had a 
median survival time of 40.2 and 14.6 months and 5-year survival rate of 35.6% and 
6.4%, respectively. Papillary carcinoma had a median survival time of 23.4 months, 
while tubular adenocarcinomas had a median survival of 16.3 months. Independent 
factors that were associated with improved survival outcome were R0 resection, no 
lymph node metastasis, and papillary histology [9]. Radical surgical technique com-
bined with early-stage diagnosis can lead to a substantially improved prognosis and 
5-year survival in pCCA patients [9].

 Long-Term Follow-Up Intraductal Papillary Neoplasm of the Bile 
Duct (IPNB)

IPNB is an intraductal papillary tumor of the bile duct with a fine fibrovascular core. 
It represents a preinvasive lesion of IG type iCCA and polyploid type eCCA 
(Fig. 11.6b, d) [80, 88]. IPNBs are multifocal lesions (Fig. 11.7d), undergo malig-
nant transformation by adenoma-carcinoma sequence [78, 88], and in general have 
a better prognosis than conventional CCA, tubular adenocarcinoma [111–113]. A 
retrospective study was conducted of the prognosis of 148 IPNB patients who 
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underwent curative resection between January 2005 and December 2011. The 
median age at diagnosis was 60 years (35–76), and the male/female ratio was 2/1. 
Most tumors (62%) were the intrahepatic type, 27% the extrahepatic type, and 11% 
the combined type. Microinvasive carcinoma was seen in 50 cases (34%) and was 
the most common level of invasiveness. The survival of patients with benign IPNB 
was 3064  days, significantly greater than the 1422  days for malignant IPNB 
(p < 0.001). The respective median survival time for dysplasia, carcinoma in situ, 
microinvasive carcinoma, and macro-invasive carcinoma was 3064 days, 2034 days, 
1483 days, and 730 days, respectively. The 5-year survival of patients undergoing 
R0 resection approached 59.7% (Fig. 11.10) [11]. This study lends support to the 
notion that IPNB has more favorable prognosis than conventional CCA. The sur-
vival after 5 years decreased from adenoma to dysplasia and carcinoma in situ to 
invasive carcinoma, confirming the adenoma-carcinoma sequence in carcinogenesis 
[80, 88]. There was no difference in mean age between groups, suggesting the intra-
ductal tumors might require a short time to evolve into invasive lesions. Thus, per-
forming early surgical intervention was recommended [11].

 Adjuvant Chemotherapy Improves Survival Time in Resectable Patients

CCA patients are known to have poor treatment outcomes. Surgery is the best option 
for all subtypes of CCA with local, resectable disease. Chemotherapy and radio-
therapy are relatively ineffective in treating non-operable CCA. Single-agent che-
motherapy (mitomycin C, fluorouracil (5-FU), cisplatin) for unresectable CCA 
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Fig. 11.10 Kaplan-Meier survival curves of intraductal papillary neoplasm of bile duct (IPNB) 
patients treated by hepatic resection stratified by benign (n = 24) and malignant IPNB (n = 124). 
The survival of patients with benign IPNB was significantly greater than malignant IPNB 
(P < 0.001). The respective median survival time for dysplasia, carcinoma in situ, microinvasive 
carcinoma, and macro-invasive carcinoma was 3064 days (95% CI: 2329–3798), 2034 days (95% 
CI: 1761–2306), 1483 days (95% CI: 1032–1933), and 730 days (95% CI: 205–1254) (Adapted 
from Luvira V. et al. (2017)) [12]
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yields a poor response rate of 8–10% [114–116]; combined gemcitabine and 
capecitabine yields a median survival of 12–14 months [116, 117]. Benefits of adju-
vant therapy in achieving long-term survival in resectable CCA patients are contro-
versial [118]. Adjuvant chemotherapy is discussed in greater detail elsewhere in this 
book (Chap. 16, Kirks and Rocha), as are palliative chemotherapy (Chap. 17, 
Hessey and Bridgewater) and interventional radiologic therapies (Chap. 18, An and 
Wehrenberg-Klee).

A retrospective study was done to evaluate benefits of adjuvant chemotherapy 
which included 263 patients who underwent curative resection in KKH. These 
patients had pathological reports showing a clear margin (R0) or microscopic mar-
gin (R1) of lesion-free tissue. There were 138 patients who received adjuvant che-
motherapy. This group had a significantly lower mean age than patients not receiving 
adjuvant chemotherapy (57.7 vs 60.4 years, p = 0.01). A serum albumin level above 
3 g/dL was more common in the adjuvant chemotherapy group than in the no adju-
vant chemotherapy group (87.7% vs 79.2%, P = 0.04). Patients who received adju-
vant chemotherapy had significantly longer overall median survival time (21.6 vs 
13.4 months, p = 0.01). Patients who received a combination of gemcitabine and 
capecitabine regimen had the longest survival time (median survival time of gem-
citabine and capecitabine 31.5 months, 5-fluorouracil and mitomycin 17.3 months, 
5-fluorouracil alone 22.2 months, capecitabine alone 21.6 months, and gemcitabine 
alone 7.9 months, p = 0.02) [119]. This large study shows that adjuvant chemo-
therapy significantly improves survival time in resectable surgical patients. The pos-
sible mechanism of benefit of adjuvant chemotherapy in CCA is prevention of 
outgrowth of micrometastatic disease, which consequently prolongs disease-free 
survival [120, 121].

 Cancer Control for Cholangiocarcinoma in Thailand

 Primary Prevention: Liver Fluke Control

Over the last four decades, animal models have revealed substantial evidence that 
chronic liver fluke infestation is a strong risk factor for endemic fluke-associated 
CCA [3, 4, 61, 62]. Thus, the prevention of CCA has largely been centered around 
control of the liver fluke by anti-parasitic drugs and a campaign to refrain from eat-
ing raw fish [122–124].

Khon Kaen Cancer Registry (KKCR) reported the ASR of CCA in Khon Kaen 
over three decades, from 1989 to 2013 [86] (Fig. 11.11a). Most patients presented 
at late stages, and 5-year survival is only 3.1% (CI 2.4–10.4). However, the KKCR 
data showed that there was a decreased trend in CCA incidence occurring since 
2002 through 2013 and that the incidence was projected to stabilize by 2025 [86]. 
Of note, the declining incidence was in parallel with the prevalence of O. viverrini 
both at local and national levels, which decreased over time from >60% in 1984 to 
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Fig. 11.11 (a) Incidence rates (per 100,000 per year) for cholangiocarcinoma (CCA) by sex in 
Khon Kaen Province from 1989 to 2013, showing trend downward since 2002 through 2013. (b) 
The incidence of CCA was declining, in parallel with the prevalence of O. viverrini both at local 
and national levels (Adapted from Kamsa-Ard et al. (2019)) [86]
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<10% after 1997 [86] (Fig. 11.11b). The explanations behind the decrease in the 
incidence of CCA are far from conclusive given the multifactorial risk factors 
involved and the complex nature of carcinogenesis; nevertheless, it is conceivable 
that the decrease in fluke burden could have been a contributing factor. It should be 
noted, though, that these trends are not solely based on liver fluke control programs 
but also general extensive improvements in the healthcare system and socioeco-
nomic development in the region. In fact, the incidence of CCA in the region 
remains high and still largely confined to a restricted group of people, wherein life-
styles and/or environmental carcinogenesis factors are likely issues. Indeed, a recent 
systemic review and meta-analysis reported numerous risk factors which were 
grouped into behaviors, socioeconomics, diet, genetics, gender, immune response, 
treatment for O. viverrini, and other infections [118, 125].

In addition, the combination of alcohol and smoking is significantly associated 
with an increased risk of CCA and is an even greater risk factor than O. viverrini 
exposure [125, 126]. These findings indicate continuous education of the public 
aiming not only for the next generation without fluke infestation but also acquisition 
of appropriate health behaviors.

 Secondary Prevention: Ultrasonography Screening 
for Early CCA

CCA in the early stage of disease has no specific symptoms and clinical signs, and 
noninvasive biomarkers are not always reliable, especially in subclinical cases 
[127] (see also Chap. 6, Luang et al.). In addition, chronic infestation of liver fluke 
infection has nonspecific symptoms, as mentioned previously; thus to identify risk 
groups among a high-prevalence community adds further difficulty [128, 129]. In 
2014, a preliminary study for early CCA detection using transabdominal ultraso-
nography screening at an endemic community on the outskirts of Khon Kaen was 
reported. Ultrasonography was used to detect small masses, bile duct segmental 
dilatation, or abnormally thickened bile duct echo patterns (fibrotic thickening 
ducts, a stigmata of chronic liver fluke infestation) [128, 130–132]. Suspicious 
lesions required further imaging for characterization, including computerized 
tomography (CT) or magnetic resonance imaging (MRI) [130, 133]. Two of eight 
suspected cases of early CCA consented to operation. Pathological diagnosis 
revealed that both had CCA: Case 1 was a 67-year-old women with papillary carci-
noma in situ of iCCA (IPNB with carcinoma in situ of superficial spreading type) 
(Fig. 11.12a, c) [71] in whom diagnostic imaging had demonstrated a thickening 
and dilatation of bile duct in left lobe of the liver. Case 2 was a 57-year-old male in 
whom ultrasound showed an ill-defined outline mass lesion in the right liver lobe 
with a mild degree of dilatation of intrahepatic ducts; MRI showed a 2 cm mass 
lesion in segment 8. The pathological diagnosis was a subclinical advanced tubular 
adenocarcinoma of pCCA (T3N1M0, stage 3B) [71], with tumor arising from the 
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proximal extrahepatic bile duct, invading transmurally, and then periductal infiltrat-
ing with vascular and liver parenchymal involvement forming a liver mass 
(Fig.  11.12b, d) [134]. Overall, the study findings indicate that transabdominal 
ultrasonography has a potential role as a routine surveillance modality in an 
endemic area of liver fluke; however, unexpected subclinical advanced cases or 
misdiagnosis could occur; thus tissue diagnosis prior to complete surgical resection 
is mandatory.

 Conclusion

Despite increased awareness and steady progress with regard to liver fluke control, 
while there has been a decreased trend in CCA incidence, prognosis in those who 
do develop CCA has not improved substantially. A majority of patients receive only 
palliative treatment due to their advanced stage of disease, with only 10–15% of 
patients being considered surgical candidates. Papillary carcinoma is common in 

a

c d

b

Fig. 11.12 Two cholangiocarcinoma (CCA) cases from ultrasonographic screening. (a) Case 1. 
Intrahepatic CCA, papillary carcinoma in situ, displayed thickening, and dilatation of the large 
intrahepatic bile ducts (white arrow) at left lobe of the liver. (b) Case 2. Tubular adenocarcinoma 
of perihilar CCA, a 2 cm focal mass lesion at hepatic hilum. Tumor arising from the proximal 
extrahepatic bile duct (black arrow). (c) A micrograph from (a) showing an intraductal papillary 
carcinoma of bile duct, superficial spreading type. (d) A micrograph from (b) showing tubular 
adenocarcinoma (mucin-producing), infiltrating at perihilar soft tissue and liver parenchyma
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the east, accounting for a third or more of large bile duct CCA cases, and has a better 
prognosis than the tubular adenocarcinoma (i.e., conventional) phenotype of 
CCA. The pathogenesis of tubular and papillary CCA is different; studies regarding 
the risk factors and therapeutic outcomes of these two CCA phenotypes should be 
performed separately. Bile duct stem cells are endodermal stem cells like the stem 
cells of the pancreas and gallbladder. Malignant tumorigenesis of these three organs 
may share benefits from future biomarkers for diagnosis, chemoprevention, chemo-
therapy, and targeted treatments. Taken together, such advancements could help 
decrease the incidence and public health burden of CCA and improve prognosis in 
patients suffering from it.
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 Background

Cholangiocarcinoma (CCA) is the most frequent and aggressive malignant tumor of 
the biliary tract [1] and the second most common hepatic malignancy (after hepato-
cellular carcinoma). The first reported case of CCA was described by Durand-Fardel 
in 1840 [2].

CCAs represent a heterogeneous group of intrahepatic and extrahepatic epithe-
lial cell malignancies with features of cholangiocyte differentiation [3–5]. 
Cholangiocarcinogenesis is a multistep process which progresses in a background 
of chronic bile duct inflammation, cholangiocyte damage, and bile stasis [6–9].

In addition, CCAs are extensively supported by a highly desmoplastic tumor 
microenvironment and have profound genetic heterogeneity, both of which contrib-
ute to therapeutic resistance [10].

CCAs are classified anatomically as intrahepatic (iCCA), perihilar (pCCA), and 
distal (dCCA), as discussed in greater detail elsewhere in this book (Chap. 2) [11]. 
Among these, pCCA is the most common subtype, representing 50% of CCA cases 
[12]. Endoscopic management plays a major role in pCCA and dCCA, as will be 
discussed in this chapter, whereas the role of endoscopy in iCCA is minimal, though 
there is a growing role for endoscopic ultrasound (EUS) (Chap. 13).

 Classification and Staging

 pCCA

The Bismuth classification, later modified by Corlette, is the best known and most 
used classification system for pCCA. It is used to try to define the correct therapeu-
tic approach and is based on macroscopic tumor appearance on pre-surgical imag-
ing and/or endoscopic data (Fig.  12.1). This classification [13, 14] provides 
preoperative assessment of local spread and classifies Klatskin tumors as Type I 
(below the confluence of the left and right hepatic ducts), Type II (reaching the con-
fluence), Types IIIA and IIIB (occluding the common hepatic duct and the right or 
left hepatic ducts, respectively), and Type IV (involving the confluence and both the 
right and left hepatic ducts). Despite its worldwide application and large use in lit-
erature, it has some limitations: the absence of longitudinal description of the cancer 
extension, no relation with prognostic data, and no clearly defined resectability cri-
teria [15].

Since the 7th edition of American Joint Committee on Cancer (AJCC) classifica-
tion, pCCA has been recognized as a separate disease from the distal 
CCA. Unfortunately, histopathological evaluation of surgical specimens, together 
with preoperative imaging data, is needed to define the correct TNM classification. 
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For these reasons, it cannot be used to define resectability during the diagnostic 
phase. At the end of 2016, the AJCC classification was revised, and the 8th edition 
of TNM classification was published. Some main changes were introduced in the 
8th edition to improve tumor description [16]. T4 stage is no longer linked to 
Bismuth-Corlette Type IV pCCA, as underlined by Ebata et al. [17]. T4 pCCA is 
now defined as a tumor invading the main portal vein or its branches bilaterally, or 
the common hepatic artery, or unilateral second-order biliary radicals with contra-
lateral portal or hepatic artery involvement. According to the current TNM classifi-
cation, N stage depends on the number of locoregional lymph nodes involved. 
Furthermore, stage IIIC category was introduced in TNM staging.

In selected pCCA cases, diagnosis should rely on invasive examinations: endo-
scopic retrograde cholangiopancreatography (ERCP), percutaneous transhepatic 
cholangiography (PTC), cholangioscopy, and EUS. They should be addressed to 
clarify the nature of a stenosis (biopsy) or to drain bile ducts [16, 18, 19]. Indeed, 
ERCP and PTC are not more relevant than MRCP images in visualizing complete 
biliary tree [20, 21], hence the need for a clear and objective planning of the study 
ahead for the patient.

 CCA in General

Other classifications have been proposed (e.g., Memorial Sloan Kettering Cancer 
Center), but none of them have supplanted the use of the Bismuth-Corlette. In 
oncology, tumor-node-metastasis (TNM) classification is accepted worldwide to 
define CCA stage and prognosis, regardless of anatomical location [4].

Fig. 12.1 SpyGlass 
system fastened to and 
inserted through the 
duodenoscope
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 Endoscopic Management

Endoscopy, as a diagnosis tool, is indicated in patients with indeterminate biliary 
strictures (classically defined as strictures for which a definitive diagnosis is not 
available after imaging and biliary cytology). In these cases of biliary dilation/
obstruction without an obvious mass lesion seen on cross-sectional imaging, endo-
scopic modalities, such as EUS (discussed in detail in Chap. 13) and ERCP, offer 
the ability to further characterize indeterminate biliary strictures (location, length, 
etc.), assess for presence of biliary mass, and assist with staging by identifying 
lymphadenopathy or liver lesions [4].

 Endoscopic Retrograde Cholangiopancreatography

Biliary endoscopy plays a major role in the diagnosis of CCA. Endoscopic tech-
niques have become the primary modality to obtain samples for cytology and/or 
histology, though the diagnostic yield with traditional methods has remained mod-
est (Fig. 12.1). There are several factors that contribute to this: small lesion size, 
lack of direct endoscopic (i.e., cholangioscopic) visualization, and significant des-
moplastic reaction surrounding the tumor [4].

ERCP has an integral role in pCCA management by enabling not only the detec-
tion of malignant biliary strictures but also the acquisition of biliary brushing sam-
ples for cytological and genetic assessment. A number of emerging cytological 
techniques have potential clinical utility in pCCA diagnosis. Conventional biliary 
cytology has a high specificity (97%) in the detection of pCCA but limited sensitiv-
ity (43%) [22], predominantly because CCAs are desmoplastic, paucicellular 
tumors potentially located in inaccessible regions of the biliary tree, causing diffi-
culties in adequate specimen retrieval.

 Endoscopy-Guided Therapy

 Cholangioscopy (SpyGlass)

Biliary strictures are the second most frequent indication for ERCP. Biliary stricture 
diagnosis (i.e., stricture etiology) using either biliary brush cytology or forceps 
biopsies cannot distinguish between malignant and benign etiologies in around 50% 
of cases [23, 24]. Smaller-caliber endoscopic equipment has been developed to 
enter into small ducts. In 1975, peroral cholangiopancreatoscopy began with the 
mother-baby system. This endoscopic technique enabled direct visual examination 
of the pancreatobiliary tree, tissue sampling, and treatment of difficult biliary and 
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pancreatic stones [25, 26]. Nevertheless, the use of this device has some limitations 
[24, 27]. The SpyGlass™ Direct Visualization System, a single-operator cholangio-
pancreatoscope (SOCP) for peroral cholangiopancreatoscopy, was released in 2006 
[28]. The system includes a reusable optical probe and a small 3.3 mm catheter 
(SpyScope™) with four-way tip deflection and a separate irrigation and working 
channel; while an important development, it also had various limitations [29, 30]. In 
2015, the upgraded SpyGlass™ Digital System was released. Compared to its leg-
acy version, the Digital System has a digital sensor with a higher resolution, wider 
field of view, automatic light control, and LED illumination. In the last years, 
SpyGlass has opened new opportunities for the management of biliopancreatic dis-
eases (Fig. 12.2). The endoscopic sensitivity, specificity, and diagnostic accuracy 
for the detection of malignancy using this system have been reported to be up to 
88%, 80%, and 83%, respectively (Figs. 12.1 and 12.2).

The other importance of SpyGlass is to confirm malignant diagnosis in patients 
with indeterminate biliary stenosis. Many patients with benign biliary strictures are 
wrongly diagnosed only by ERCP. In our experience, with SpyGlass we can reliably 
obtain samples having a bile duct malignancy discovered by further histopathologi-
cal analysis. In this scenario, many of them are good candidates for surgical curative 
treatment. In one of our studies, we estimated that four or more biopsies per patient 
are considered as adequate to obtain a sensitivity and specificity of 54% and 
87.5% [29]

a b

Fig. 12.2 (a) An indeterminate biliary stricture visualized by SpyGlass cholangioscopy with 
spontaneous bleeding and tortuous vessels, suggestive of a cholangiocarcinoma. (b) Biopsies 
taken at the site of a biliary stricture with cholangioscopic forceps (SpyBite™)
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 Endosonography

Presently, the use of EUS alone is associated with a high tumor detection rate com-
pared with the use of CT or MRI, with better performance in the detection of dCCA 
versus pCCA (100% versus 83%, respectively) [29]. Fine-needle aspiration (FNA) 
during EUS carries a high risk of tumor seeding: among 191 patients with pCCA, 5 
of 6 patients (83%) who underwent a transperitoneal primary tumor biopsy devel-
oped peritoneal metastases compared to 14 of 175 (8%) of those who did not 
undergo a transperitoneal biopsy [30].

 Photodynamic Therapy

As CCAs often spreads along the biliary tree, local treatment for patency of the 
common bile duct and the hilum is of crucial interest [31]. PDT acts by creating free 
radicals-associated tumor cell destruction due to porfimer enrichment in CCA cells. 
Usually, porfimers are injected intravenously followed by intraluminal photoactiva-
tion through cholangioscopy.

Effectiveness of photodynamic therapy (PDT) has been demonstrated in two ran-
domized controlled and a few controlled studies [32–37]. Today, endoscopic drain-
age in combination with intraluminal PDT is arguably the best palliative concept 
that patients can be offered. Mean survival can be prolonged from 6  months to 
approximately 14 months by adding PDT to sufficient endoscopic drainage. A bur-
den associated with PDT for patients is the increased phototoxicity of the photosen-
sitizer for 3–4 weeks [38].

 Radiofrequency Ablation

Radiofrequency ablation (RFA) is a new endoscopic palliation therapy for malig-
nant biliary obstruction. This technique can be used in two ways; percutaneous 
(PTC) or endoscopic (via small duodenoscopes or SpyGlass). Percutaneous RFA is 
a well-established therapy for hepatocellular carcinoma and iCCA [57, 58]. 
Recently, in two studies, endoscopically applied RFA was evaluated for the treat-
ment of malignant biliary obstruction [39, 40]. Both studies demonstrated immedi-
ate and 30-day safety and 90-day biliary patency (Fig. 12.3).

The utilization of peroral cholangioscopy before and after RFA application has 
been also reported with promissory results [41]. In a small group of selected patients, 
including some randomized controlled trials, pre and post-cholangioscopy RFA 
treatment was demonstrated to be feasible including cases with previously SEMS 
placement (confirmed with the presence of the neoplastic tissue) to achieve tumor 
ablation [42, 43]. However, the value of peroral cholangioscopy in directing the 
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RFA biliary application still remains to be established. Our group recommends the 
use of RFA with cholangioscopy to have more intraductal details of results.

Biliary RFA can significantly alleviate jaundice, reduce the thickness of tumor 
lesions, prolong stent patency, and improve survival and quality of life with pCCA 
and dCCA (Fig. 12.5) [39]. Adverse events, as reported by some multicenter trials 
conducting RFA, are residual intraductal adenoma after papillectomy, comprised 
hemorrhage, pancreatitis, paraduodenal abscess, and post-RFA biliary strictures 
necessitating biliary drainage [44, 45] (Fig. 12.4). Of note, hepatobiliary lesions are 
usually surrounded by normal parenchyma, and thermal injury beyond the neopla-
sia does not usually affect important structures, whereas pancreatic tumors often 
encase vessels and the distal bile duct or are in contact with the gastric or duodenal 

a b

Fig. 12.3 (a) Endoscopic view of radiofrequency ablation therapy catheter insertion through duo-
denoscope working channel. (b) Fluoroscopic view of radiofrequency ablation therapy catheter 
within the distal common bile duct

a b

Fig. 12.4 (a) Cholangioscopy pre-radiofrequency ablation (RFA). (b) Cholangioscopy post-RFA, 
with therapeutic ductal changes noted
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wall. Some studies reported frequent and severe adverse events in pancreatic tumors 
with biliary extension [46].

At the moment there is no consensus on the optimal frequency and interval of 
RFA therapy. In most studies, RFA therapy was performed regularly every 
3–4 months [47]. Because of inter-individual differences in tumor growth rate, it is 
difficult to accurately determine the time and frequency of RFA treatment required 
for each patient.

Importantly, RFA acts only on local tumors, indicating that this treatment may 
not have the ability to completely destroy a tumor mass. Cisplatin and gemcitabine 
have been used as first-line chemotherapies in advanced CCA. However, the effi-
cacy of RFA combined with palliative chemotherapy for the treatment of extrahe-
patic CCA is not clear [48].

Biliary RFA treatment appears to be a promising adjuvant therapy in patients 
with malignant biliary obstruction. In these patients, the procedure is safe and well 
tolerated and improves stent patency and survival [9]. More data on larger patient 
population is needed, but this step is progressively achieved with cumulative articles 
in recent years.

 Endoscopic Palliation

Before planning any palliative drainage, either by ERCP or percutaneously, it is 
mandatory to obtain a cholangiogram to define the extent of biliary ductal involve-
ment. Magnetic resonance cholangiopancreatography (MRCP) continues to be the 
preferred investigation for this purpose.

 Endoscopic Stenting Technique

Stents for palliation of biliary obstruction due to CCA are mostly placed via ERCP 
[49]. In a recent consensus, the American Society for Gastrointestinal Endoscopy 
graded endoscopic hilar stenting as a level 3 ERCP procedure in terms of complex-
ity, with level 1 being the simplest and level 4 being most complex [50]. In general, 
a higher level of complexity is associated with a lower success rate and a higher 
adverse event rate [51]. Therefore, hilar stenting should be practiced only by expe-
rienced therapeutic endoscopists.

In general, there are two types of biliary stents: plastic and metallic stents. The 
design and coating of plastic stents may differ between producers, but do not differ 
largely in terms of clinical success or adverse events [52, 53]. The main adverse 
event of plastic stents is early clogging or stent migration. Therefore, the diameter 
of plastic stents with the best clinical patency rate is 10 Fr, whereas a diameter 
>11.5 Fr does not add any advantage [54, 55]. Different plastic designs with coating 
and antireflux valve mechanisms have been introduced to the market. They seem to 
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show higher patency rates compared to standard polyethylene stents [56]. Larger 
studies need to confirm this effect. The need for stent exchange after 3–4 months or 
due to clogging or infection is considered to be one of the major drawbacks of plas-
tic stents. Multiple plastic stent insertion may lead to better biliary drainage but can 
be technically challenging and time-consuming. Self-expanding metallic stents 
(SEMS) are differentiated into uncovered, partially covered, and covered. Covered 
SEMS are normally used when the stent might need to be retrieved later on. 
Uncovered SEMS show a lower cholecystitis rate but a higher rate of tissue ingrowth 
and therefore stenosis [57, 58]. Stent-in-stent insertion may be performed to address 
the latter. The effectiveness of such techniques has not been rigorously evaluated to 
date. Because of tissue ingrowth, uncovered SEMS are also hardly removable; thus 
stent migration occurs significantly more often with covered SEMS [59, 60]. A 
recent meta-analysis by Moole et al. [61] comparing covered and uncovered SEMS 
found that covered SEMS come along with higher patency rates.

A variety of plastic stents and SEMS are available and have been used for the 
stenting in CCA. In general, 10 Fr plastic stent and uncovered SEMS are preferred. 
The distal end of stents may be left in the duodenum or in distal bile duct, but the 
later situation may make reintervention more difficult. When more than one stent 
(plastic or SEMS) is to be placed, the stents are usually placed side by side (Fig. 12.2). 
However, in the last few years, a new dual stent design called “stent-in- stent” has 
been developed for metal stenting [62, 63]. In this technique, the first stent has an 
open-cell design, allowing the second stent to pass easily through the first stent.

In a recent study by Lee et al. [64] from South Korea, the stent-in-stent technique 
for bilateral stenting was evaluated in 84 patients with inoperable CCA. Technical 
and clinical success was achieved in 95.2% and 92.9% of patients, respectively. The 
median survival and patency were noted to be 256 days and 239 days, respectively. 
Still, this new stent design can be problematic if the first stent becomes occluded. In 
the study by Lee et al. [64], 30.8% patients had an obstruction of the primary biliary 
stent. For revision stenting, bilateral metal stents could be placed in 55%, while 
plastic stents were placed in the remaining patients [64].

When survival is estimated to be <4  months, 10 Fr plastic stents are recom-
mended, even if recommendation grade Ic was given [65]. In former guidelines 
SEMS showed higher effectiveness in patients with an overall survival estimated to 
be >4 months. In patients with a life expectancy of up to 1 month, no clear indica-
tion for either plastic or SEMS exists [65]. The concept of best supportive care 
should be followed in these cases. The new ESGE guidelines instead recommend a 
covered 10  mm SEMS placement at first intervention, regardless of general life 
expectancy [9]. The former argument of better cost-effectiveness in plastic stents is 
now proven not to be true. Uncovered SEMS should normally be used only in his-
tologically confirmed hilar or distal obstruction by CCA, as retrieval is difficult or 
impossible afterward [9]. The number of stents depends of the location of the 
obstruction and the efficacy of the drainage. In patients with distal obstruction, sin-
gle stent insertion is the standard of care. The question of uni or bilateral stent inser-
tion only becomes important in hilar obstruction. Several meta-analyses have 
discussed the role of uni and bilateral drainage. Unilateral drainage seems to be 
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equally efficient to bilateral drainage for bilirubin regression and diminution of 
patients’ symptoms with no statistical difference in occlusion rate, therapeutic fail-
ure, or cholangitis. SEMS placement is clearly favored [66, 67]. The objective of 
ERCP should be drainage of at least 50% of all liver sectors as it provides better 
overall survival [68]. In general, endoscopic bile duct decompression should not 
only relieve jaundice or treat cholangitis, it should also allow for readministration of 
chemotherapy. Up to now, no clear data exist on how many patients are able to 
resume chemotherapy after bile duct decompression. The advantages of endoscopic 
decompression on patient survival of this highly morbid patient cohort are neither 
studied nor subclassified for distal, hilar, or intrahepatic CCs. Clinically, the main 
advantage of endoscopic instead of percutaneous bile duct compression is a higher 
quality of life with less need for technical surveillance in patients receiving ERCP. In 
terms of morbidity/mortality after endoscopic or percutaneous bile duct decompres-
sion, the center’s experience is crucial for choosing the right method.

The total failure rate of ERCP-guided drainage in CC is 6–7%. Therefore, other 
drainage possibilities such as PTBD and EUS/computed tomography-guided tran-
shepatic or EUS-guided transduodenal drainage need to be considered. The tech-
nique of EUS-BD is being increasingly investigated in cases of ERCP failure. Up to 
now, it is mostly performed at centers with high experience for interventional 
EUS. In EUS-BD, a transgastric hepatic EUS is performed in order to characterize 
intrahepatic biliary dilation not accessible by ERCP.  Then, biliary drainage is 
ensured by direct transgastric endosonography-guided puncture of the intrahepatic 
dilated bile ducts and stent insertion [69]. Indications of EUS-BD are insufficient, 
technically not feasible, or contraindicated PTBD or ERCP. The technical success 
rate can reach 100% when the procedure is performed by experts. Still, adverse 
events such as peritonitis, cholangitis, bile leakage, and stent migration may occur 
in up to 20% [70, 71] (Fig. 12.5).

Fig. 12.5 ERCP with hilar 
biliary stenosis with 
proximal bile duct dilation 
suggestive of perihilar 
cholangiocarcinoma
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 Conclusion

CCA is characterized by high mortality and low rate of resectable patients. The 
complete approach to these patients requires multidisciplinary working groups. The 
best results, with low rates of adverse events, are seen in high-volume centers.

Endoscopy plays a major role in patients with CCA, especially pCCA and 
dCCA. Biliary tract compression with cholangitis is often the first problem to man-
age during the subsequent clinical course. Immediate antibiotic therapy is crucial, 
and ERCP with stent placement should be performed within <48 h after diagnosis 
of cholangitis to reduce morbidity and mortality. If ERCP fails, repeated ERCP 
should be considered before switching to other treatment options such as PTBD or 
EUS-BD. PTBD is often the treatment of choice for decompression in Type III and 
IV Klatskin tumors. Some new guidelines recommend SEMS placement early on, 
regardless of the patient’s life expectancy. Nutritional care must not be forgotten.

An enduring issue for the medical team is to obtain rapid and accurate diagnosis. 
New endoscopic modalities and technologies, such as SpyGlass, are occupying an 
important role in early diagnosis, and in addition, there is a growing role for endo-
scopic treatment of CCA via advanced stenting and ablative techniques. For this 
reason, patients must be referred to specialized centers upon a suspected diagnosis 
of CCA. Endoscopic biliary drainage is an important tool in non-resectable patients 
and in those that are candidates for two-stage hepatectomy.
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Chapter 13
The Role of Endoscopic Ultrasound 
in Cholangiocarcinoma

Tarek Sawas, Neil Marya, and Michael Levy

Abbreviations

AE Adverse event
CCA Cholangiocarcinoma
CT Computed tomography
eCCA Extrahepatic cholangiocarcinoma
ERCP Endoscopic retrograde cholangiopancreatography
EUS Endoscopic ultrasound
FNA Fine needle aspiration
FNB Fine needle biopsy
HCC Hepatocellular carcinoma
iCCA Intrahepatic cholangiocarcinoma
MRCP Magnetic resonance cholangiopancreatography
MRI  Magnetic resonance imaging
PSC Primary sclerosing cholangitis
US Transabdominal ultrasound

 Introducstion

Cholangiocarcinoma (CCA) is a biliary tumor that can originate from both the intra-
hepatic and extrahepatic biliary epithelium. Annually, approximately 5000 new 
cases of CCA are diagnosed in the United States [1]. Although CCA is a relatively 
rare cancer, data suggest that the incidence of both intrahepatic and extrahepatic 
CCA (iCCA and eCCA, respectively) is increasing [2]. Despite advances in chemo-
therapy regimens and surgical treatments, CCA continues to be an aggressive 
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cancer with a high mortality rate. Patients with localized iCCA and eCCA have 
5-year survival rates of 15% and 30%, respectively, while those with metastatic 
CCA have a 5-year survival rate of only 2%, regardless of tumor location [3]. Thus, 
early diagnosis and accurate staging are key to optimizing treatment outcomes and 
improving survival in patients with CCA.

Currently, diagnostic approaches for patients with suspected CCA involve a 
combination of imaging modalities (e.g., transabdominal ultrasound [US], com-
puted tomography [CT], and magnetic resonance imaging/cholangiopancreatogra-
phy [MRI/MRCP]) as well as laboratory markers (e.g., serum liver tests, carbohydrate 
antigen 19-9) [4]. Endoscopic retrograde cholangiopancreatography (ERCP) is 
commonly performed along with intraductal brushings and biopsies for a tissue 
diagnosis of suspicious lesions in cases of eCCA. The role of endoscopic ultrasound 
(EUS) in CCA, by contrast, is generally less established but continues to evolve. 
Like other endoscopic procedures, EUS is a minimally invasive procedure that is 
often performed in the outpatient setting. Due to the proximity of the stomach and 
duodenum to the extrahepatic and intrahepatic bile ducts, EUS allows for detailed 
imaging of the biliary tree, liver, regional lymph nodes, surrounding vasculature, 
and potential sites of regional metastasis.

This chapter focuses on the role of EUS in the diagnosis and staging of CCA and 
addresses pitfalls and risks associated with the procedure, particularly as it relates to 
the CCA patient population.

 Diagnosis and Staging

 Endosonographic Detection of Tumors and Strictures

The evaluation for potential etiologies of biliary obstruction routinely begins with 
noninvasive imaging (typically US or CT and thereafter MRI/MRCP), which is use-
ful for directing whether more invasive procedures, including ERCP and EUS, are 
necessary. Occasionally noninvasive imaging modalities are unable to determine the 
presence and cause of biliary obstruction, in which case EUS has an important and 
complementary role for identifying the cause of obstruction. Unlike ERCP, which 
carries risks such as acute pancreatitis due to the invasive nature of cannulation, 
imaging of the bile duct on EUS has a risk profile akin to traditional upper endos-
copy. While EUS is less capable of identifying the etiology of obstruction for many 
intrahepatic and hilar tumors due to the restricted imaging in these locations, imag-
ing of other local and distant sites, with or without tissue sampling (e.g., fine needle 
aspiration [FNA] or biopsy [FNB]), often provides additional key staging 
information.

Zaheer et al. (2013) evaluated the role of EUS in determining the cause of biliary 
obstruction among 412 consecutive patients who were referred for EUS prior to 
ERCP. The authors demonstrated that EUS was 99%, 92%, and 90% accurate in 
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detecting choledocholithiasis, benign biliary strictures, and malignant biliary stric-
tures, respectively. The most common sources of malignant biliary obstruction were 
pancreatic adenocarcinoma, CCA, and ampullary tumors, respectively [5]. This 
study demonstrated the accuracy of EUS in detecting malignant biliary strictures 
across an array of tumor sites and pathologies. Similarly, Mohamadnejad et  al. 
(2011) prospectively evaluated 81 patients with CCA and reported an overall pri-
mary tumor detection rate of 94% that was significantly greater for eCCA versus 
iCCA (100% vs. 83%, p < 0.01) [6].

These studies and other demonstrate how EUS imaging alone is a powerful tool 
used to determine the cause and site of biliary obstruction (Fig. 13.1).

 Sampling of Strictures via Fine Needle Aspiration

In patients with laboratory and imaging findings concerning for possible CCA, tis-
sue acquisition is generally required to establish a definitive diagnosis prior to initi-
ating therapy. Historically, however, obtaining a definitive histological or cytological 
diagnosis of CCA has been challenging, in large part due to the desmoplastic nature 
of these lesions. In patients with suspected eCCA (including perihilar and distal), 
ERCP is commonly the first modality chosen for tissue acquisition purposes. The 
preference for ERCP is driven by the ability to sample strictures but to also perform 
therapeutic interventions, such as balloon dilation and intraductal stenting. ERCP- 
based tissue acquisition techniques include intraductal brush cytology and 

Fig. 13.1 EUS evidence of a biliary stricture and diminutive lumen (arrow) surrounded by marked 
bile duct wall thickening. The bile duct wall was biopsied and brushed. Findings came back posi-
tive for cholangiocarcinoma
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intraductal biopsies (guided by either fluoroscopy or cholangioscopy). Studies dem-
onstrate that the sensitivity of ERCP-based tissue acquisition for indeterminate bili-
ary strictures ranges from only 35% to 75% [7–11].

Multiple studies have shown that EUS-FNA has superior sensitivity compared to 
ERCP-based tissue acquisition techniques. While FNA should not be performed for 
strictures that represent potentially resectable or transplantable perihilar tumors, 
Weilert et al. (2014) compared the sensitivity and accuracy of primary tumor EUS- 
FNA to ERCP with brushings in 51 patients with malignant and benign biliary stric-
tures. The authors found that compared to ERCP, EUS-FNA was significantly more 
sensitive (94% versus 50%, p < 0.001) and significantly more accurate (94% versus 
53%, p < 0.001). A recent meta-analysis by De Moura et al. (2018) compared yields 
of EUS-FNA and ERCP with brushings in 294 patients presenting with indetermi-
nate biliary strictures. The study demonstrated that the mean sensitivity of EUS- 
FNA was greater than ERCP with brushings (75% versus 49%) [12].

The diagnostic yield of EUS-FNA of biliary tract lesions is expected to increase 
substantially as novel genetic analysis techniques for biliary tract specimens expand. 
The feasibility of applying targeted next-generation sequencing for EUS-FNA sam-
ples obtained from various other organ systems has already been demonstrated 
[13–16]. A recent study by Hirata et al. (2019) evaluated whether targeted amplicon 
sequencing of biliary tract tumors specimens obtained during EUS-FNA was fea-
sible, demonstrating that targeted amplicon sequencing of EUS-FNA samples of the 
biliary tract was successful in identifying pathogenic genetic abnormalities in 95% 
of patients [17]. More work is needed to clarify whether these and other detected 
molecular changes guide and improve patient management and outcome.

As will be more fully reviewed later, despite the demonstrated utility of EUS- 
FNA of primary CCA tumors, this practice cannot be routinely advocated due to the 
risk tumor seeding. In fact, the mere performance of EUS-FNA of primary CCA is 
considered an absolute contraindication to resection and transplant in most centers.

 Staging and Evaluating Resectability

Currently, the only options for curative treatment of CCA are surgical resection or 
liver transplantation. Preoperative staging of CCA is necessary to optimize treat-
ment options and outcomes. Multiple staging systems have been utilized for CCA, 
and several factors are considered when determining if a patient has resectable or 
transplantable disease [18–20]. Factors include the primary tumor location and 
extent, presence of nodal metastases, atrophic hepatic lobes, tumor invasion of sur-
rounding vasculature, distant metastases, and anticipated residual hepatic function. 
The gold standard for accurate disease staging is a staging laparoscopy. Enhanced 
imaging techniques, however, can prevent patients from having to undergo staging 
laparoscopy.
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Currently, CT and MRI/MRCP are commonly employed noninvasive imaging 
methods for CCA staging. Fewer data are available to determine the role and utility 
of EUS in this regard. Mohamadnejad et  al. (2011) evaluated EUS among 81 
patients who were referred for surgical management of CCA and found EUS to be 
superior to CT or MRI in identifying patients ultimately deemed to have unresect-
able disease. In their study, EUS correctly identified unresectable disease in 8 of 15 
patients; of these 8 patients identified on EUS as being unresectable, CT/MRI failed 
to identify unresectable disease in 6 of the patients. Typical sites of disease spread 
identified on EUS, but not CT or MRI, included hepatic artery invasion, peritoneal 
involvement, and liver metastases [6].

Additionally, EUS has an essential role in evaluating for locoregional nodal 
metastases (Fig. 13.2) in CCA patients, which is important given the poor 5-year 
survival rates of those with nodal disease (0–25%) [21–23]. Thus, correctly identi-
fying nodal metastases in CCA is vital in selecting which patients may reasonably 
undergo surgical resection or liver transplantation. Gleeson et al. (2008) evaluated 
the accuracy of EUS-FNA in detecting locoregional nodal metastases in patients 
with unresectable hilar CCA prior to possible liver transplantation. Given that in our 
experience the lymph node morphology does not correlate with malignancy in 
patients with CCA, we sample locoregional lymph nodes whenever identified at 
EUS, as performed in this study. EUS identified locoregional lymph nodes in all of 
the included patients, among whom EUS-FNA identified nodal metastases in eight 
patients (17%). Among the eight patients with malignant lymph nodes on EUS, only 
two were found to have had suspicious adenopathy on CT and/or MRI. Importantly, 
among the 22 patients who subsequently underwent exploratory laparotomy, 20 
(90.9%) were confirmed to have no nodal metastases as demonstrated on EUS [24]. 
Thus, the role of EUS-FNA in CCA patients prior to undergoing liver transplant or 
resection should be considered. It is important to note that the investigators found 
that sonographic nodal features did not distinguish between malignant and nonma-
lignant adenopathy, thereby mandating lymph node FNA among CCA patients to 
make such distinction.

a b

Fig. 13.2 (a, b) Linear EUS evaluation of two porta hepatis lymph nodes. EUS-FNA of the nodes 
came back malignant (a) and benign (b)
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 Assessment of Intrahepatic Cholangiocarcinoma

By definition, iiCCA arises above the level of the second-order bile ducts and gener-
ally presents as a mass lesion within the hepatic parenchyma [4]. Although iCCA is 
a rare malignancy, it is the second most common primary hepatic malignancy after 
hepatocellular carcinoma (HCC) [1]. It is usually detected during routine HCC 
screening transabdominal US or CT in patients with liver cirrhosis. The enhance-
ment pattern on CT or MRI usually distinguishes iCCA from HCC [24, 25]. 
However, this can be extremely challenging, and a tissue diagnosis (FNA/B) might 
be needed for the ultimate diagnosis. Historically, hepatic lesions were sampled 
percutaneously using US guidance due to easy access and the widespread miscon-
ception that hepatic lesions could not be adequately visualized and sampled with 
EUS.  Although the percutaneous approach remains the predominant method for 
tissue acquisition, the use of EUS-FNA has increased in recent years. EUS provides 
appropriate assessment of the left lobe and hilum from the gastric body, antrum, and 
duodenal bulb, whereas portions of the right lobe are best examined from the duo-
denal bulb or second portion of the duodenum. Unfortunately, published EUS stud-
ies excluded patients with iCCA, thereby limiting our knowledge of the role of EUS 
in the diagnosis and management of iCCA.

 Tumor Seeding

Tissue confirmation of suspected CCA is highly desired before proceeding with a 
complex and high-risk surgical treatment. However, the benefits of primary tumor 
EUS-FNA (as opposed to lymph node EUS-FNA) must be weighed against the risk 
of tumor seeding, which is also referred to as needle tract seeding or implantation 
metastasis. Needle tract seeding is a result of implantation of tumor cells along the 
FNA (or FNB) needle tract. This occurrence may lead to change of tumor stage and 
always converts resectable tumors to a non-operable care strategy. In fact, mere 
performance of EUS-FNA, in the absence of any clear needle tract seeding, and 
irrespective of the cytological interpretation, designates a tumor as unresectable and 
non-transplantable in most centers. As a result of these concerns, we avoid EUS- 
FNA or FNB for potentially resectable or transplantable tumors.

Generally, risk factors for needle tract tumor seeding include larger tumor size 
and high-grade tumors, large-caliber needles, multiple needle passes, and paucity of 
normal parenchymal tissue along the needle tract [26]. The reported clinically 
apparent tumor seeding after FNA is rare, estimated at 1/10,000–40,000 [27]. 
However, this risk is likely greatly underestimated due to the high mortality among 
patients who are not surgical or liver transplant candidates [28]. Additionally, tumor 
seeding might be misinterpreted as a recurrence in patients who undergo curative 
surgery or liver transplant. Tumor seeding may deposit cells that are undetected in 
the resected surgical specimen. This would progress over time to an overt clinical 
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disease, which is often misinterpreted as recurrence rather than a disease progres-
sion due to a needle tract seeding [28].

In a prospective study by Levy et al. [29], the presence of malignant cells within 
the gastrointestinal luminal fluid after performing EUS-FNA was evaluated in 
patients with pancreatic cancer. Post-EUS-FNA luminal fluid cytology was positive 
in 12% of patients, suggesting translocation of malignant cells from pancreatic can-
cer tissue into the gastrointestinal lumen due to EUS-FNA. This process likely rep-
resents the underlying method by which needle tract seeding develops. In another 
retrospective cohort study from our institution, Heimbach et al. [30] compared the 
incidence of peritoneal metastasis between patients who did and did not undergo 
transperitoneal FNA among 191 liver transplant candidates with locally unresect-
able perihilar CCA. Among the 16 patients who underwent transperitoneal FNA (13 
percutaneous, 3 EUS), 6 were positive for malignancy. During operative staging, 
peritoneal metastasis were detected in 5/6 (83%) patients who underwent transperi-
toneal FNA and had positive pathology compared to only 14/175 (8%) in those who 
did not undergo transperitoneal FNA (p = 0.0097). The two groups were similar in 
terms of CA 19-9 levels, frequency of mass detection, tumor size, and histology, 
arguing that the transperitoneal tumor sampling itself might be responsible for the 
higher incidence of peritoneal metastasis from tumor seeding. Therefore, our center 
adopted a protocol excluding patients with CCA from liver transplant who have had 
undergone transperitoneal sampling.

This approach poses significant clinical challenges as obtaining tissue diagnosis 
with traditional ERCP brush cytology and transpapillary biopsy can be extremely 
difficult and exhaustive. It also poses the challenge of proceeding into a high-risk 
surgery without a confirmed tissue diagnosis, since 10–20% of patients resected for 
presumed diagnosis of CCA may be found to have benign disease or another malig-
nancy [31–34]. This diagnostic dilemma has led some to adopt less stringent criteria 
and reliance on other surrogates such as CA 19-9 levels and/or imaging to provide 
a presumptive diagnosis in an appropriate clinical presentation. However, this 
approach might lead to a potential misdiagnosis and unnecessary surgery.

It is important to point out that most studies evaluating needle tract seeding were 
performed on percutaneous biopsies and that these studies might not reflect the 
actual risk of tumor seeding after EUS-FNA. Data suggest that percutaneous FNA 
may carry a higher risk of tumor seeding compared to EUS-FNA. Micames et al. 
[35] conducted a retrospective study in patients with pancreatic cancer and found a 
significantly lower incidence of peritoneal metastasis with EUS-FNA 2.2% com-
pared to percutaneous FNA 16.3%, P = 0.025. One plausible explanation for these 
findings is that EUS-FNA has a shorter tract to traverse (and hence lower risk of 
causing tumor seeding). Another important point is whether EUS-FNA of a primary 
CCA tumor would worsen survival. In a retrospective single center study [36] of 
119 patients with CCA who underwent curative intent surgical resection, preopera-
tive EUS-FNA did not impact overall survival or progression-free survival in the 
FNA group compared with those without FNA.

Finally, our stringent protocol to avoid EUS-FNA in transplant candidates or 
surgically resectable tumors pertains to the primary CCA tumor only. In contrast, 
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lymph node EUS-FNA has not been shown to induce tumor seeding, and the find-
ings substantially impact clinical decisions and the disease course. Identifying posi-
tive lymph nodes spares patients from undergoing unnecessary neoadjuvant 
chemotherapy and staging laparotomy [22, 37].

 Hindrances of EUS

There are several factors that impact the diagnostic yield of EUS in CCA. First, 
primary sclerosing cholangitis (PSC) is a major risk factor for CCA. PSC is often 
associated with multiple biliary strictures, dense fibrosis, and diffuse benign (and 
sometimes bulky) lymphadenopathy. These features impair the accuracy of the EUS 
imaging in detecting CCA [6, 38, 39]. Another hindering factor of EUS imaging is 
the presence of biliary stents that are present in approximately 90% of patients at the 
time of EUS [6, 40, 41]. Their presence decreases EUS performance by creating 
acoustic shadowing deep to the stent or from stent-induced sludge. The resulting 
artifact impairs EUS examination of the bile ducts and surrounding tissues and can 
prohibit FNA of deep structures [40]. These limitations may be overcome by imag-
ing from various locations (e.g., duodenum and stomach), minimizing air insuffla-
tion (which further hinders visualization), and occasionally stent removal prior to 
EUS [28].

 Adverse Events Associated with Hepatic FNA/B

EUS and EUS-FNA/B are generally safe. However, the adverse event (AE) rate fol-
lowing hepatic EUS-FNA is higher than for other sites. In a meta-analysis, Wang 
et al. [42] reported a 2.3% morbidity after hepatic EUS-FNA. Similarly, in a retro-
spective international study [43], AEs were encountered in 3.5% of patients; these 
included abdominal pain, fever, bleeding, and death. The only AE reported in a 
CCA study was hemobilia following EUS-FNA in 1 of 74 patients [6]. This patient 
was managed conservatively with observation alone.

 Conclusion

The growing role of EUS and EUS-FNA for CCA diagnosis and staging has largely 
been driven by the limited and not-infrequently suboptimal noninvasive imaging 
and endoscopic sampling techniques. While primary tumor EUS-FNA is strongly 
discouraged due to the potential of tumor seeding and potential consequent exclu-
sion from resection and transplant treatment options, EUS-FNA has an important 
role for detecting malignant lymphadenopathy, which can have considerable impact 

T. Sawas et al.



315

on staging, prognosis, and management. Critical is the understanding that imaging 
criteria among suspected CCA patients do not distinguish benign from malignant 
nodes, thus making tissue sampling (e.g., FNA) necessary for all such patients. We 
consider EUS necessary regardless of cross-sectional imaging findings (unless 
unresectable disease is identified) due to the enhanced staging that is primarily asso-
ciated with nodal assessment. Although PSC, the presence of biliary stents, and 
other factors can hinder EUS performance, their impact can be greatly minimized 
by adopting careful examination techniques. Further study is needed to more clearly 
determine the impact of EUS and EUS-FNA on tumor detection, staging, needle 
tract seeding, treatment, and long-term outcomes.
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RLV Remnant liver volume
SEER Surveillance, Epidemiology, and End Results
TFLV Total functional liver volume
TLV Total liver volume
TNM Tumor Node Metastasis

 Introduction

Cholangiocarcinomas (CCAs) are a rare and heterogeneous group of malignancies 
arising from the biliary ductal epithelium. It can be classified based on histopathol-
ogy, gross pathology, and anatomic location, though from a surgical perspective, the 
anatomic classification has the greatest impact on management considerations. 
Histopathologically, the vast majority of CCAs are adenocarcinomas (>90%), fol-
lowed by squamous cell carcinomas, and rarely adenosquamous carcinomas. For 
intrahepatic CCA (iCCA), the disease can also be classified based on the gross his-
tologic appearance of lesions. Specifically, intrahepatic CCA occurs as mass form-
ing, periductal infiltrating, or intraductal [1]. This gross appearance classification 
does not pertain to extrahepatic cholangiocarcinoma (eCCA), which tends to have 
less uniform morphology. Morphologic variation has implications for local struc-
ture invasion and prognosis but typically does not alter medical or surgical treat-
ment considerations. Anatomically, CCA is most commonly divided into iCCA and 
eCCA, with extrahepatic CCA being subdivided into hilar CCA and distal CCA, a 
delineation which helps determine options for therapy [2]. Using a modified ana-
tomic classification, CCA may be more appropriately divided into three subsets: 
iCCA, perihilar (pCCA), and distal CCA (dCCA) [3].

In this chapter, we will discuss the evaluation and surgical management of 
patients presenting with CCA, with an emphasis on anatomic considerations, surgi-
cal technique, and postoperative outcomes, including morbidity, mortality, and 
long-term survival.

 Anatomic Distribution

The anatomic landmarks that discern the modified anatomic classification of CCA 
are as follows: iCCA occurs proximal to the confluence of the left and right hepatic 
ducts; pCCA occurs between the common hepatic duct and insertion of the cystic 
duct into the common hepatic duct; dCCA occurs down to the ampulla of Vater 
(Fig. 14.1) [4]. Klatskin tumors, a subtype of pCCA, occur at the junction of the left 
and right hepatic ducts within the porta hepatis, as originally described by 
G. Klatskin [5]. The relative anatomic distribution of CCAs does appear to have 
geo-regional differences, with potential impact on mortality [6]. In the United 
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States, the anatomic distribution of CCA has been well-described, with approxi-
mately 67% of cases as perihilar, 27% distal, and 6% intrahepatic as described in 
one of the early, seminal studies of a single institution experience of 294 patients 
[3]. On follow-up analysis of 564 patients, a relative increase in dCCA was found 
(42%), while 50% of cases were perihilar and 8% were intrahepatic [7]. A more 
recent analysis of the Surveillance, Epidemiology, and End Results (SEER) data 
shows that the incidence of iCCA has been increasing in the United States, whereas 
the incidence of extrahepatic CCA appears relatively stable [8], though this could be 
related to changes in classification and coding. On a global scale, a recent report 
examining World Health Organization and Pan American Health Organization data-
bases also identified a rise in iCCA incidence with associated increase in mor-
tality [9].

 Preoperative Evaluation of Cholangiocarcinoma

The workup and evaluation of CCA begins with the clinical presentation as patients 
presenting with signs or symptoms of biliary obstruction may need intervention 
prior to a more definitive diagnosis. It is estimated that approximately 90% of 
patients with pCCA will have signs or symptoms of biliary obstruction and up to 
10% will have cholangitis [10]. For those patients presenting with cholangitis, 
immediate attention needs to be made toward decompression of the biliary system 
and management of the acute infection. Decompression can be achieved via endo-
scopic retrograde cholangiography (ERC) or transhepatic biliary drainage, with 
pros and cons to each approach in the setting of potential underlying CCA.

For patients with incidental hepatobiliary lesions on imaging or abnormalities in 
laboratory values, the initial workup includes measurement of serum liver tests and 
tumor markers, including CA19-9, AFP, and CEA. There are limitations to these 
tumor markers, however. Notably, CA19-9 is elevated with biliary (or pancreatic 
ductal) obstruction of any etiology, and CEA is less specific and can be increased 

Intrahepatic

Perihilar

Distal

Fig. 14.1 Anatomic 
classification of 
cholangiocarcinoma. 
Intrahepatic CCA occurs 
proximal to the joining of 
the left and right hepatic 
ducts, perihilar CCA 
occurs between the 
formation of the main 
hepatic duct and the 
insertion of the cystic duct, 
and distal CCA occurs 
distal to the insertion of the 
cystic duct up to the 
ampulla of Vater
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with other malignancies. Abdominal ultrasound or computed tomography (CT) 
imaging will frequently be obtained for patients with abnormal serum liver test 
values or abdominal pain and can be useful for evaluation of CCA.  Contrast- 
enhanced high-resolution CT imaging provides excellent diagnostic and anatomic 
detail for resection but can underestimate intrahepatic tumor extent [11]. 
Gadolinium-enhanced magnetic resonance imaging with magnetic resonance chol-
angiopancreatography (MRI/MRCP) provides improved resolution of the intrahe-
patic extent of disease and is the imaging modality of choice for evaluation of biliary 
obstruction, with accuracy rates over 80% [11]. Representative illustrations of the 
anatomic subtypes and resultant ductal dilatation as may be seen on imaging studies 
are shown in Fig. 14.2.

Other imaging tests that have been evaluated in CCA include duplex ultrasonog-
raphy and positron emission tomograph (PET) imaging. Although duplex ultraso-
nography has a role in providing additional information regarding vascular 
involvement, the role for PET imaging is less clear. For pCCA, PET imaging has not 
been shown to add additional diagnostic or prognostic benefit over other high- 
quality cross-sectional imaging modalities [10], though there is some debate regard-
ing its utility in iCCA, especially when combined with CT imaging [12]. Additional 
information regarding imaging of cholangiocarcinoma is presented elsewhere in 
this book (Chap. 7, Viragh et al).

In addition to the items discussed above, per 2019 NCCN guidelines [2], the 
complete workup for iCCA and eCCA is similar with a notable difference of upper 
and lower endoscopy for patients with iCCA to evaluate for primary malignancies 
that may be the source of hepatic metastatic disease masquerading as CCA. Additional 
imaging to complete the workup and staging should include CT imaging of the 
thorax to rule out metastatic disease.

1

a b c

2

Fig. 14.2 3D modelling illustrations of cholangiocarcinoma anatomic subtypes (green mass) and 
radiographic sequelae based on tumor location. (a) Intrahepatic cholangiocarcinoma in the left 
lobe with resultant dilatation of the proximal left lobe ducts. (b) Klatskin tumor or perihilar chol-
angiocarcinoma at the bifurcation of the left and right hepatic ducts with bilateral proximal ductal 
dilatation. (c) Distal cholangiocarcinoma leading to intrahepatic and extrahepatic ductal dilatation 
occurring (c1) without or (c2) with pancreatic ductal dilatation, depending on tumor location
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 Anatomic Classification and Initial Staging

Following initial evaluation, anatomic disease classification can be assigned (iCCA, 
pCCA, or dCCA), and patients can then be clinically staged accordingly, keeping in 
mind that tissue diagnosis is not required for proceeding with definitive surgical 
treatment. For all CCA subtypes, staging can be performed according to the AJCC 
eighth edition (Table 14.1). Additionally, other staging adjuncts and modalities exist 
and can be helpful for staging iCCA (Liver Cancer Study Group of Japan [1], 
National Cancer Center of Japan Staging System [13]), pCCA (Bismuth-Corlette 
Classification [14], Jarnagin-Blumgart Classification [15, 16]), and dCCA (US 
Extrahepatic Biliary Malignancy Consortium [17]). Most typically in the United 
States, clinical staging follows the AJCC TNM system, with notable differences in 
staging between the CCA subtypes based on T stage (Table 14.1). For iCCA, size 
and depth of invasion dictate T stage. This slightly differs from pCCA in which 
depth of invasion and invasion of surrounding structures are critical determinations 
of T stage. The Jarnagin-Blumgart Classification of T stage in pCCA expands on 
this by utilizing a more complete assessment of the extent of tumor invasion and 
anatomic sequelae (i.e., vascular occlusion and liver atrophy), adding predictive and 
prognostic value to pCCA staging [16]. Lastly, determining clinical T stage for 
dCCA is currently based on measured depth of invasion (if not invading major 

Table 14.1 TNM staging for site-specific cholangiocarcinoma based on AJCC eighth edition

Tumor Intrahepatic Perihilar Distal

Tis Intraductal In situ or high-grade 
dysplasia

In situ or 
high-grade 
dysplasia

T1 T1a: ≤5 cm, no vascular invasion
T1b: >5 cm, no vascular invasion

Confined to bile duct <5 mm bile duct 
wall invasion

T2 Single tumor with vascular 
invasion, or ≥2 tumors ± vascular 
invasion

T2a: invades periductal 
adipose tissue
T2b: invades liver

5–12 mm bile 
duct wall 
invasion

T3 Perforates visceral peritoneum Invades portal vein or 
hepatic artery (unilateral 
involvement)

>12 mm bile 
duct wall 
invasion

T4 Invades extrahepatic structures Complete invasion of portal 
vein or CHA

Invades major 
vascular 
structures

Node Intrahepatic Perihilar Distal

N0 Absent Absent Absent
N1 Present 1–3 LN+ 1–3 LN+
N2 N/A ≥4 LN+ ≥4 LN+
Metastasis Intrahepatic Perihilar Distal

M0 Absent Absent Absent
M1 Present Present Present

CHA common hepatic artery, LN lymph node
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vascular structures). Recent results from a multi-institution consortium have also 
expanded the pathologic T-stage classification for dCCA by incorporating tumor 
size and lymphovascular invasion status as the key criteria for T-stage determination 
and improved prognostication [17]. While pathologic staging of CCA can only be 
obtained after resection, assessment of clinical stage based on high-quality imaging 
allows for the most thorough consideration of resectability and adequate preopera-
tive preparation where applicable. Excluding metastatic disease (most commonly 
liver, peritoneum, and lung) and extensive nodal involvement, there is no consensus 
on what disease is “unresectable,” and this will be addressed in later Section 
(Defining Resectability).

 Future Liver Remnant and Portal Vein Embolization

Surgical management of iCCA and pCCA is unique from dCCA, as an R0 hepatic 
resection is the cornerstone of surgical therapy. Because iCCA and pCCA involve 
liver resection, accurate determination of the future liver remnant (FLR) is neces-
sary to minimize the risk of postoperative liver failure. The percent FLR can be 
calculated using high-quality cross-sectional imaging, typically as remnant liver 
volume (RLV)/total functional liver volume (TFLV)  ×  100). Total liver volume 
(TLV) can be estimated from CT imaging but can also be calculated based on body 
surface area (BSA) as −794.41  +  1267.28  ×  BSA [18]. In a healthy liver, a 
FLR ≥ 20% is considered adequate, though this increases to ≥40% in patients with 
intrinsic liver dysfunction [19]. For those patients in whom the projected FLR is 
inadequate, preoperative portal vein embolization (PVE) of the tumor-bearing liver 
segment(s) can be selectively performed to induce growth of the contralateral 
hemiliver and increase the FLR [20].

The principle of PVE in this context involves selective portal venous occlusion 
to take advantage of the liver’s remarkable ability to regenerate as a mechanism of 
compensation. This phenomenon was first identified in a rabbit model 100 years ago 
[21]. Following occlusion of the intended segment, an immediate change in portal 
venous flow occurs, increasing the metabolic demand of the liver and inducing a 
cascade of downstream signals, ultimately resulting in hepatocyte replication and 
liver hyperplasia [22]. As these changes begin very early following PVE, studies 
have examined the timing in which liver changes can be clinically detected [23]. In 
this study the authors identified a kinetic growth rate (KGR) of approximately 2.4% 
per week, noting that these patients did not have significant underlying liver dys-
function. The KGR is variable and is typically lower in patients with intrinsic liver 
dysfunction (e.g., cirrhosis or active inflammation); however, a KGR above 1.5% 
per week is considered adequate for resection. In addition to the efficacy of PVE, 
large studies have also confirmed the safety of the procedure and associated postop-
erative outcomes. A meta-analysis evaluating the impact of preoperative PVE in 
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1088 patients [24] demonstrated the relative safety of PVE with a morbidity rate of 
2.2% and no mortality reported. Moreover, of the patients that underwent PVE, 85% 
underwent the planned operation after 4 weeks, and of the 930 patients who under-
went resection following PVE, only 23 (2.5%) developed transient liver failure and 
7 patients (0.8%) died.

 Periampullary Tumors: Distal Cholangiocarcinoma  
or Pancreatic Ductal Adenocarcinoma?

One challenge in the evaluation of patients presenting with a periampullary mass is 
the differentiation of dCCA and pancreatic ductal adenocarcinoma (PDAC). 
Although differences in preoperative laboratory values and imaging characteristics 
have been described (i.e., CA19-9, pancreatic duct diameter), definitive determina-
tion of dCCA vs. PDAC is not made until final pathologic analysis of the resected 
specimen. Even ERCP-guided biopsies cannot confidently delineate the two pathol-
ogies, with reported accuracy ranging from 47% to 95% [25]. For clearly resectable 
disease, this may not pose a dilemma. In the locally advanced or metastatic setting, 
however, neoadjuvant and definitive chemotherapeutic regimens differ between the 
two diseases, and without a definitive tissue diagnosis, inadequate treatment may 
be given.

 Resection for Cholangiocarcinoma

 Defining Resectability

The definition of resectability is dependent on the subtype of CCA; however, the 
presence of metastases and a patient’s inability to tolerate a major operation pre-
clude resection for all subtypes. For iCCA, the presence of lymph node metastases 
outside the regional nodal basin (N2 disease) and invasion of the main hepatic artery 
or bilateral hepatic arteries are generally considered unresectable. For pCCA, the 
presence of N2 disease also precludes resection, in addition to specific characteris-
tics of the local tumor invasion, including extension of the tumor into bilateral seg-
mental bile ducts, unilateral hepatic atrophy with contralateral bile duct involvement 
or vascular involvement, or unilateral bile duct involvement with contralateral vas-
cular involvement [10]. Unresectability for dCCA follows general recommenda-
tions for all periampullary tumors, in which unresectable disease is generally 
considered to be encasement of the hepatic artery or superior mesenteric artery and/
or extensive involvement of the portal vein.
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 Diagnostic Laparoscopy in CCA

Many surgeons begin with a diagnostic laparoscopy, as it has been reported that 
nearly 30% (6/22) of iCCA patients undergoing curative intent surgery will have 
occult metastatic disease at the time of surgery [26], and for pCCA, nearly 50% of 
tumors are unresectable at the time of surgery (of which 58% was due to metastatic 
disease and 43% due to unresectable local invasion) [27]. This has led most sur-
geons to suggest the need for staging laparoscopy for all CCA patients with radio-
logically resectable disease. Although some groups have challenged this with more 
recent results suggesting decreasing rates of unresectability likely secondary to 
improvements in imaging technology [28], currently, diagnostic laparoscopy is 
practiced at many high-volume centers and recommended by the authors.

 Resection of iCCA

After determination of resectability, surgical treatment of iCCA involves achieving 
an R0 liver resection and portal lymphadenectomy. If found to be resectable, most 
typically, the operation begins with the portal lymphadenectomy followed by major 
hepatic resection. Major vascular involvement, determined either preoperatively or 
during surgery, should not preclude resection. Although the negative prognostic 
impact of major vascular invasion is known, a recent multi-institutional study dem-
onstrated that surgery should proceed if an R0 resection can be obtained [29]. In this 
retrospective study evaluating over 1000 patients who underwent resection for 
iCCA, patients were divided into those that did (n = 128) and did not (n = 959) 
undergo vascular resection. Although the two groups had significantly different 
clinical and demographic characteristics, the authors showed that the postoperative 
mortality and complication rate was not significantly different between the two 
groups. It should be noted, however, that while not statistically significant, the com-
plication rate was nearly 14 percent higher in the vascular resection group (55.5% 
vs. 41.9%) [29]. A recent review evaluating the literature on minimally invasive 
resection for CCA highlights the challenges of laparoscopic or robotic approaches 
and notes that iCCA and dCCA may be most amenable to a minimally invasive 
approach, though prospective data investigating this question are limited [30].

 Resection of pCCA

Similar to the principles of resection for iCCA, surgery for pCCA aims for an R0 
resection with adequate biliary drainage, vascular supply, and intrinsic hepatic func-
tion. As noted above, a critical difference in pCCA management is the benefit of 
orthotopic liver transplantation (OLT) in highly selected patients. As most patients 
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are not eligible for LT, critical components of resection are as follows: (1) thorough 
exploration for metastatic disease, (2) lymphadenectomy, (3) distal biliary transec-
tion, (4) arterial and portal venous division, (5) hepatic venous division, (6) partial 
hepatectomy, and (7) biliary reconstruction. Another caveat to resection for pCCA 
is the need for routine resection of the caudate lobe; a caudate lobectomy is fre-
quently performed during pCCA resection due to the high rate of pathologic involve-
ment and increased R0 resection rates when caudate lobectomies are performed [10].

The anatomic proximity to critical vascular structures in pCCA increases the risk 
of portal venous and hepatic arterial invasion. Again, similar to iCCA principles, 
while major vascular invasion has negative prognostic implications, the need for 
portal venous resection to achieve complete tumor removal for an R0 resection 
should not be a contraindication to surgery. Evidence for hepatic arterial resection 
and reconstruction is less clear, and any oncologic benefits may be limited by 
increased postoperative complications. A 2018 retrospective analysis of patients 
with pCCA aimed to answer the question of which vascular involvement has poor 
prognostic impact for all patients, regardless of future treatments. The authors 
showed that main portal vein and unilateral or main hepatic artery involvement 
adversely affected overall survival, whereas unilateral portal vein involvement did 
not have significant impact on overall survival [31].

 Resection for dCCA

The surgical management for dCCA does not involve hepatic resection but rather 
most commonly involves pancreaticoduodenectomy (e.g., Whipple procedure). 
Rarely, if disease is limited to the proximal bile duct, an R0 resection can be achieved 
with biliary resection and hepaticojejunostomy reconstruction (i.e., without pancre-
atic head resection). During pancreaticoduodenectomy for dCCA, there is debate 
over the benefit of portal venous resection to increase R0 resection rates and improve 
survival [32, 33]. For pancreatic adenocarcinoma (PDAC) outcomes, the role of 
portal venous resection is similarly controversial, despite being more extensively 
investigated. For example, a recent meta-analysis evalsuated 30 articles pertaining 
to PDAC and concluded that the addition of venous resection (portal and/or superior 
mesenteric vein) was associated with increased complications and mortality and 
decreased R0 resection rates [34]. These conclusions are challenged by results from 
the MD Anderson group showing that in a high-volume specialty center, venous 
resection and reconstruction are not independently associated with worse outcomes 
and are beneficial with appropriate PDAC patient selection [35].

Although this subject has not been investigated in dCCA to the extent of PDAC, 
retrospective data suggest that combined vascular resection and pancreaticoduode-
nectomy for dCCA did not increase R0 resection rates or improve survival and were 
associated with increased blood transfusions and length of surgery [33]. As the evi-
dence for vascular resection and reconstruction continue to develop for all CCA 
subtypes, the boundaries of anatomic resectability will continue to evolve.
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 Transplantation for CCA

The goal of surgical management of CCA, regardless of anatomic classification, is 
complete removal of the tumor resulting in an R0 resection, with adequate biliary 
drainage, vascular supply, and intrinsic hepatic function. Options for locally 
advanced, unresectable tumors are limited, and OLT has been extensively evaluated 
as a treatment for CCA in this population and is further discussed in this text 
(Agopian et al., Chap. 15). Reports on the early experience of transplantation for 
unresectable iCCA and pCCA were disappointing and did not support the use of 
transplantation [36]. High postoperative mortality and recurrence rates significantly 
limited the use of OLT for CCA.

For transplantation to be effective in CCA, there was a clear need for improved 
patient selection and neoadjuvant therapies to mitigate systemic microscopic dis-
ease and thus recurrence rates. This was addressed by the Mayo Clinic Rochester 
group beginning in 1993 with a novel protocol for pCCA. Using strict inclusion and 
exclusion criteria, appropriately selected patients underwent extensive neoadjuvant 
therapy and then were maintained on capecitabine while awaiting transplantation 
[37]. The results of this protocol were very encouraging with 5-year survival rates 
of 56% in de novo CCA patients and 76% in patients with primary sclerosing chol-
angitis (PSC). These results were corroborated in a large, retrospective multicenter 
cohort study examining outcomes for pCCA treated with either resection or trans-
plantation (many in accordance with the aforementioned Mayo Clinic protocol). In 
the intention-to-treat analysis, 5-year overall survival for patients undergoing resec-
tion and transplantation was 17% and 53%, respectively, and this difference was 
maintained when the data were stratified for tumors size less than 3 cm and negative 
lymph node status [38]. Although transplantation appears to provide a significant 
benefit to the few selected patients with locally advanced pCCA, the majority of 
CCA patients do not meet the strict eligibility criteria due to disease burden or 
tumor location. Resection remains the only chance for cure for those patients with 
localized disease.

 Postoperative Morbidity and Mortality

The rate, severity, and types of postoperative complications following resection of 
CCA are dependent on disease location and extent of surgery, among other factors 
(e.g., baseline patient comorbidities). Table 14.2 highlights postoperative outcomes 
for CCA based on anatomic location. The current overall postoperative complica-
tion rate is around 40%, and postoperative mortality ranges from 0% to 4%. Types 
of complications are dependent on disease location, with iCCA and pCCA having 
increased rates of pleural effusions, bile leaks, and hepatic insufficiency, while 
dCCA is complicated by pancreatic fistulae and delayed gastric emptying. While 
the association between location of resected disease and type of complication may 
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Table 14.2 Postoperative morbidity and mortality rates for resection of cholangiocarcinoma from 
selected publications

Intrahepatic cholangiocarcinoma (iCCA)

Authora

Study 
period

Total 
patients Morbidityn Mortality Complications

Spolverato et al. 
[39]

1990–
2013

583 44.4% 
overall
15.6% 
major
26.2% 
minor

90-day: 3.5% Pleural effusion (20%)
Fluid collection/biloma 
(19%)
Intra-abdominal abscess 
(10%)
Wound infection (8%)
Hepatic insufficiency 
(7%)

Ali et al. [40] 1997–
2011

121 43% overall
17% major

90-day: 1% Not described

DeOliveira et al. 
[7]

1973–
2004

44 35% overall 30-day: 4.5% Abscess (9%)
Respiratory (7%)
Wound infection (5%)
MOSF (5%)
Sepsis (5%)

Ohtsuka et al. 
[41]

1984–
2001

64 50% 30-day: 4%
In-hospital: 
8%

Pleural effusion (16%)
Wound infection (16%)
Liver failure (10%)

Perihilar cholangiocarcinoma (pCCA)

Author Study 
period

Total 
patients

Morbidity Mortality Complications

Allen et al. [42] 1987–
2005

106 Not 
reported

30-day: 3.8%

DeOliveira et al. 
[7]

1973–
2004

281 35% overall 30-day: 5.4% Wound infection (16%)
Sepsis (10%)
Abscess (8%)
Bile leak (7%)
Respiratory (5%)
GI bleed (5%)

Hasegaqa et al. 
[43]

1990–
2003

49 46.8% 
major

In-hospital: 
2%

Bile leak (26%)
Cholangitis (10%)
Abscess (8%)

Nagino et al. 
[44]

1990–
1999

105 37.1% 
minor
43.8% 
major

30-day: 3.8%
90-day: 9.5%

Pleural effusion (63%)
Wound sepsis (37%)
Liver failure (28%)
Intra-abdominal abscess 
(12%)

Gerhards et al. 
[45]

1983–
1998

112 65% 30-day: 14%
In-hospital: 
18%

Liver or intra-abdominal 
abscess (25%)
Bile leak (22%)
Bleeding (intra- 
abdominal or GI) (18%)
Liver failure/necrosis 
(12%)
Cholangitis (10%)

(continued)
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Table 14.2 (continued)

Intrahepatic cholangiocarcinoma (iCCA)

Authora

Study 
period

Total 
patients Morbidityn Mortality Complications

Distal cholangiocarcinoma (dCCA)

Author Study 
period

Total 
patients

Morbidity Mortality Complications

Andrianello et al. 
[46]

2000–
2013

46 76.1% 
overall

0% Pancreatic fistula (48%)
Abdominal collections 
(35%)
Respiratory (24%)
Hemorrhage (22%)
Delayed gastric 
emptying (11%)

Allen et al. [42] 1987–
2005

98 Not 
reported

30-day: 3.1%

DeOliveira et al. 
[7]

1973–
2004

239 35% overall 30-day: 3% Pancreatic leak (13%)
Wound infection (11%)
Delayed gastric 
emptying (11%)
Abscess (7%)

aDeOliveira et al. (2007) include 564 total patients, and results are divided by anatomic classifica-
tion. Allen et al. (2008) include 204 total patients and results are divided by anatomic classification
bMajor and minor morbidity determined by Clavien-Dindo classification (≥3 for major) or at dis-
cretion of author(s)

seem obvious to the experienced hepatopancreatobiliary surgeon, this may be less 
clear to other nonsurgical members of the patient care team. Specifications on the 
anatomic location and extent of resection are critical details to all healthcare profes-
sionals involved in the perioperative care of patients with CCA, as these details 
guide differential diagnoses, management, and intervention strategies.

 Adjuvant Therapy and Outcomes Following Surgery

Outside of the Mayo Clinic protocol for transplantation for pCCA, the role of neo-
adjuvant therapy for CCA is unclear. Due to the high postoperative recurrence rates 
of CCA, efforts have focused on adjuvant therapies (Table  14.3). For locally 
advanced or metastatic CCA, the ABC-02 trial established cisplatin plus gem-
citabine as the optimal regimen [47]. For resectable disease, current standard of care 
is surgery (with goal of R0 resection) followed by observation alone. A few larger 
trials have investigated the role of adjuvant chemotherapy with varying results. The 
BCAT trial, a phase II randomized trial, compared gemcitabine (n = 117) to obser-
vation (n = 108) in patients with eCCA [48]. Results from this trial found no differ-
ence in median overall survival between the treated and untreated groups (62.3 vs. 
63.8 months) or relapse-free survival (36.0 vs. 39.9 months) and no differences on 
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subset analysis based on lymph node status or anatomic classification. Similar 
results were obtained from the recently published PRODIGE 12-ACCORD trial 
evaluating the effects of adjuvant gemcitabine with oxaliplatin (GEMOX) com-
pared to observation alone [49]. In this randomized, multicenter trial, 196 total 
patients were evaluated (156 patients with CCA), and those patients receiving 
GEMOX had a median survival of 75.8 months compared to 50.8 months in the 
observation group (HR 1.08, p  =  0.74). No differences were identified in recur-
rence-free survival between the treatment groups or within disease subsets, although 
adverse events were significantly higher in the group receiving GEMOX (GEMOX 
with 62% grade 3, 11% grade 4 vs. observation with 18% grade 3, 3% grade 4).

In contrast to these negative trials, the recently published BILCAP trial showed 
a trend toward a survival benefit for patients receiving adjuvant capecitabine [50]. 
The BILCAP trial included 447 patients randomly assigned to either adjuvant 
capecitabine or observation, of which 368 patients had pathologically proven CCA 
(including intrahepatic, perihilar, and distal). Patients underwent curative intent sur-
gery and after 16 weeks underwent randomization. The primary outcome was over-
all survival in the intention-to-treat group, and secondary outcomes were overall 
survival in the per-protocol group. The intention-to-treat group trended toward 
increased overall survival but did not reach statistical significance. In the per- 
protocol analysis, however, median survival was 53 months in the capecitabine arm 
compared to 36 months in the observation arm (HR 0.75, P = 0.028), suggesting a 
benefit of adjuvant therapy for all CCA subtypes. Although the results of this trial 
did not reach statistical significance in intention-to-treat analysis, they have become 
the new standard by most physicians. Currently, updated American Society of 
Clinical Oncology (ASCO) guidelines recommend 6 months of adjuvant capecitabine 
for resected biliary tract cancer [51].

The role of combined chemotherapy and radiation therapy has also been investi-
gated as adjuvant therapy for CCA. Published in 2015, the SWOG S0809 trial was 
a phase II trial examining the role of adjuvant chemoradiotherapy for extrahepatic 
CCA.  The investigators utilized a non-random cohort of patients who received 
capecitabine and gemcitabine followed by capecitabine and external-beam radiation 
[52]. This trial included patients with pCCA and dCCA as well as gallbladder car-
cinoma. Two-year overall survival was 67% for patients with an R0 resection and 
60% for R1 resection, respectively. Compared to historic controls, these results 
were quite encouraging and suggested a role for adjuvant chemoradiation in patients 
where an R0 resection could not be obtained. These results have also been incorpo-
rated into the ASCO guidelines, wherein it is recommended that patients with an R1 
resection receive adjuvant chemoradiation under the guidance of a multidisciplinary 
team [51].

Results from the described clinical trials investigating adjuvant therapy for CCA 
highlight some of the challenges in making progress in this field. CCA is a relatively 
rare and heterogenous disease. To attain adequate enrollment to detect clinically 
meaningful results, there is often a need to combine anatomic disease subtypes. 
While this increases the heterogeneity of the study population, it also allows for 
more generalizability of the results (as seen with the BILCAP trial). The positive 
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trials to date provide great inspiration that, through international collaboration and 
thoughtful trial design, further advances can be made in adjuvant and neoadjuvant 
therapies for CCA. This approach is highlighted by the increasing understanding of 
the molecular heterogeneity of CCA and use of targeted therapies [53].

 Postoperative Surveillance

The NCCN guidelines propose a similar surveillance algorithm for both iCCA and 
eCCA [2]. Specifically, following resection, both iCCA and eCCA patients may 
undergo high-quality cross-sectional imaging of the chest and abdomen every 
6 months for the first 2 years, followed by yearly imaging for up to 5 years. In many 
high-volume centers, these patients may undergo extended surveillance as site and 
timing of disease recurrence are quite variable, and the majority of resected patients 
will ultimately experience recurrence [54, 55].

 Future Directions in Surgery for Cholangiocarcinoma

Future directions and advancements in the treatment of CCA fall into three broad 
categories  – patient selection, operative techniques, and adjuvant therapies. 
Selecting the patients who will most benefit from resection has been an area of 
extensive investigation. The principle of neoadjuvant therapy is based on the 
assumption that even in localized disease there is already micrometastases present; 
therefore upfront surgery is not optimal as it may delay more important systemic 
therapies. Another benefit of neoadjuvant therapy is the selection of patients with 
both preferable tumor biology and performance status. Efforts are then placed on 
stratifying patients with localized disease into who benefits most from upfront sur-
gery vs. neoadjuvant systemic treatment. Extensive research is being conducted into 
biomarkers, such as the use of circulating tumor DNA, to help identify these patients 
and track response to therapies to help guide these clinical decisions.

Improvement in operative techniques and vascular reconstruction have greatly 
expanded the “resectability” of CCA, but significant limitations remain for advanc-
ing minimally invasive approaches to CCA.  Currently, either a laparoscopic or 
robotic approach to CCA is limited to select cases but can include all anatomic vari-
ants (iCCA, pCCA, dCCA). A minimally invasive approach to pCCA can be techni-
cally difficult, though, due to challenges in caudate lobectomy and vascular 
reconstruction. As experience and advances in robotic technology increase, com-
plete minimally invasive approaches to all forms of CCA may be more common, 
with the resultant improvement in length of stay and complications and without 
compromising oncologic outcomes [56, 57]. Given the expertise required and steep 
learning curve associated with minimally invasive hepatic resection, it is likely that 
these operations will be appropriately limited to high-volume, specialized centers.
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Results of clinical trials investigating adjuvant therapy in CCA highlight the 
urgent need for improved therapies. This is being addressed through novel trials 
attempting to match susceptible tumors to specific therapies. The MOSCATO-1 trial 
aims to direct specific tumors to targeted agents via high-throughput tumor sequenc-
ing [58]. Through this technique, the authors have identified a subset of CCA 
patients who appear to benefit from novel therapies that may otherwise not be 
addressed in larger clinical trials [59]. Several targetable pathways and therapies for 
CCA have been investigated to date [53, 60], but the fibroblast growth factor recep-
tor (FGFR) and isocitrate dehydrogenase (IDH) pathways have yielded encouraging 
early results. FGFR inhibitors are being used to target CCA subtypes with FGFR 
translocations and resultant fusion proteins, which is present at varying proportions 
depending on anatomic subtype (higher in iCCA) [61]. IDH1/IDH2 are commonly 
mutated genes in CCA (also occurring more frequently in iCCA) but are also pres-
ent in other GI cancers [62]. Ivosidenib, an IDH1 inhibitor, is currently being inves-
tigated in the multi-institutional ClarIDHy trial, and an updated analysis was 
recently presented [63]. Early results showed that nearly 22% of patients in the 
treatment arm were progression-free at 12 months, while all patients recurred within 
12 months in the placebo arm. These encouraging results for FGFR and IDH inhibi-
tion highlight the potential for improved outcomes with targeted therapy in appro-
priately selected patients.

 Conclusion

The success of surgical management for CCA heavily relies on advances in patient 
selection, operative technique, and novel therapies. Significant progress has already 
been achieved in CCA treatment through improvements in disease classification, 
expanding criteria for resection, selection of those who may benefit from transplanta-
tion, and molecular and genomic analysis of tumors. These advances highlight the 
burgeoning recognition of the vast heterogeneity underlying a single diagnosis of 
“cholangiocarcinoma.” As this appreciation for the heterogeneity of CCA continues 
to grow, the role for surgery in the management of CCA is likely to change. This will 
include clearer identification of which patients will benefit from surgery early in their 
management and which patients require neoadjuvant chemotherapy or targeted ther-
apies. And although there are advances in transplantation and novel targeted thera-
pies, surgery has been and will continue to be the cornerstone of therapy for CCA.
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Chapter 15
Liver Transplantation 
for Cholangiocarcinoma

James R. Butler and Vatche G. Agopian

Abbreviations

CCA Cholangiocarcinoma
ERCP Endoscopic retrograde cholangiopancreatography
hCCA Hilar cholangiocarcinoma
iCCA Intrahepatic cholangiocarcinoma
LT Liver transplantation
MELD Model for end-stage liver disease
PSC Primary sclerosing cholangitis

 Introduction

Biliary tract cancers arise from the biliary epithelium and include cholangiocarci-
noma (CCA) and gallbladder carcinoma. The incidence in most developed countries 
is low, with approximately 9000 new cases in the United States each year. Of all 
biliary tract cancers, CCA is the most common, with approximately 5000 new cases 
diagnosed in the United States annually [1]. Although primary sclerosing cholangitis 
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(PSC), biliary ductal cysts, parasitic infections, and hepatolithiasis are established 
risk factors, most patients present without an identifiable underlying cause, thereby 
obscuring any chance of systematically anticipating this disease. Subsequently, the 
majority of patients present with unresectable, advanced-stage tumor burden.

CCAs are classified as distal (dCCA), hilar or perihilar (hCCA, i.e., Klatskin’s 
tumor), or intrahepatic (iCCA), depending on their anatomical location – with surgi-
cal extirpation being the only curative-intent treatment. However, for the 60–70% of 
all CCAs which present within 2 cm of the proximal biliary bifurcation (i.e., hCCA), 
complete margin-negative resection is achieved in only 30–80% of cases following 
surgical resection [2, 3]. In addition, iCCAs can be large and multifocal and often 
occur in patients with advanced underlying liver disease and cirrhosis, all of which 
may limit the ability to perform curative-intent major hepatic resections [4].

Despite recent modest improvements in survival with the use of systemic chemo-
therapy, immunotherapy, and targeted palliative chemotherapeutic approaches [5–
9], median survival without surgery remains a dismal 6–12 months [10, 11]. Even 
for patients who undergo curative-intent surgical resection, the 5-year survival 
approaches only 40%, mainly due to negligible 5-year survival rates for the signifi-
cant proportion of patients in whom a margin-negative resection is not obtained 
(i.e., R1 resections) [3]. Because achieving negative margins is paramount, liver 
transplantation (LT) for hCCA and iCCA has emerged as a logical strategy. LT 
affords complete resection with negative margins even in patients who have locally 
unresectable disease or insufficient hepatic reserve to support resection.

LT for CCA was first introduced in the 1990s, with underwhelming success. 
Thomas Starzl’s group reported a 5-year survival of 25% in a cohort of 38 patients 
[12], while Jonas et al. reported the German experience to have a 4-year survival of 
only 30% and unacceptable morbidity [13] (Table 15.1). However, in these early 
experiences, there were no stringent patient selection protocols, and utilization of 
neoadjuvant or adjuvant systemic therapies was highly variable. In fact, the majority 
of these patients were found to have advanced stage disease, including identification 
of involved regional lymph nodes and even distant abdominal metastases recog-
nized after total hepatectomy. Not surprisingly, disease-free survival was thus short.

In this chapter, we will review recent data on outcomes of LT for both hCCA and 
iCCA given the considerable improvements in protocol-driven patient selection and 
utilization of neoadjuvant and adjuvant therapy.

 Hilar Cholangiocarcinoma (hCCA)

 Neoadjuvant Therapy

Despite the overall poor results reported in these early studies of LT for hCCA, it 
was recognized that all 5-year survivors were node-negative at the time of LT. This 
realization, coupled with the known aggressive natural history of the disease, leads 
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Table 15.1 Selected series of liver transplantation for hilar cholangiocarcinoma

Author, year Center N
Patient 
selection

Neoadju-
vant 
chemora-
diother-
apy

1-year 
survival 
%

5-year 
survival 
% R0%

5-year 
disease 
recur-
rence %

Iwatuski 
et al., 1998 
[12]

Pittsburg, 
single 
center

38 None 61% 60 25 81 –

Jonas et al., 
1998 [13]

Germany, 
single 
center

14 None 0% 56 30 at 
3 years

92 57

Sudan et al., 
2002 [14]

Nebraska, 
single 
center

11 None 100% 33 100 55

Heimbach 
et al., 2004 
[15]

Mayo, 
single 
center

28 Mayo 100% 
Mayo

88 82 – 14

Rea et al.,
2005 [24]

Mayo, 
single 
center

38 Mayo 100% 
Mayo

92 82 97 13

Kaiser et al., 
2008 [46]

Germany, 
multi-
center

47 0% 61 22 – –

Rosen et al., 
2008 [47]

Mayo, 
single 
center

90 Mayo 100% 
Mayo

90 71 – –

Darwish 
et al., 2012 
[17]

United 
States, 
national

216 Variable 100% – 53 – 20

Schule et al., 
2013 [21]

Germany, 
single 
center

16 +LN
−LN

0%
0%

– 50
0

100
100

50

Weling et al., 
2014 [48]

Michigan, 
single 
center

6 Mayo 100% 83 – 100 –

Mantel et al., 
2016 [20]

Europe, 
multina-
tional

105 Mayo (28)
Beyond 
(77)

0%
0%

– 59
21

93
89

46
79

Ethun et al., 
2018 [23]

United 
States, 
multi 
center

41 Varied 95% 93 64 90 24

Zabarowski 
et al., 2020 
[49]

Ireland, 
single 
center

26 Mayo 100% 
Mayo

81 55 96 48
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physicians at the University of Nebraska to develop the first neoadjuvant chemora-
diotherapy protocol to aid in temporizing locally advanced hCCA as bridge to LT 
[14]. This protocol concept was soon thereafter applied at Mayo Clinic to carefully 
selected early-stage, unresectable hCCA, yielding unprecedented survival outcomes 
[15]. In their approach, neoadjuvant external beam radiation was combined with 
intravenous fluorouracil (5-fluorouracil) sensitization, followed by intraluminal 
brachytherapy and oral capecitabine while awaiting LT (Fig.  15.1). Their initial 
results, published in 2000 [16], were updated in 2004 to report an 82% 5-year sur-
vival [15]. While there was some criticism regarding the fact that 7/28 (25%) 
patients had no residual tumor identified in the explant pathology, raising the ques-
tion of whether these patients truly had hCCA (as opposed to more indolent or 
precancerous conditions, e.g., PSC), these nonetheless excellent results revived 
interest in LT for CCA that had been largely abandoned. In fact, numerous contem-
porary series have reported 5-year survival rates following LT for hCCA that are 
equivalent to other non-cancer indications for LT utilizing similar neoadjuvant pro-
tocols and strict selection criteria (Table 15.1). These uniformly acceptable results 
have formed the basis for the granting of MELD exception points to prioritize unre-
sectable hCCA patients who meet strict criteria [17].

 Patient Selection

Table 15.2 summarizes the inclusion and exclusion criteria as outlined in the initial 
Mayo Clinic experience. Saliently, this process selects patients with early-stage 
hCCA which is deemed unresectable or arises within the setting of PSC. Although 
vascular encasement of hilar vessels is not a contraindication, tumors >3 cm and 
gallbladder involvement represent contraindications to LT. Prior to LT all patients 

External beam radiation
(45 Gy in 30 fr, 1.5 Gy twice daily and continuous infusion

5-FU over 3 weeks)

Brachytherapy
(20 Gy at 1 cm in 20-25 hrs) 2 weeks following completion of

external beam radiation therapy

Capecitabine
Until the time of transplantation and held during perioperative

period for staging

Abdominal exploration for staging
As time nears for deceased donor transplantation or day

prior to LDLT

Liver transplant

Fig. 15.1 Mayo Clinic 
neoadjuvant therapy and 
liver transplantation 
protocol
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undergo a staging abdominal exploration to evaluate for regional lymph node 
involvement, locally extensive disease, or peritoneal metastases which preclude 
LT. Although the success of the Mayo Clinic protocol is impressive, it is difficult to 
assess the relative contribution of neoadjuvant chemoradiotherapy and more rigor-
ous selection practices on the improved outcomes given that they were instituted 
concurrently. Furthermore, many series utilizing the Mayo Clinic protocol for 
patient selection report only the post-LT (i.e., per protocol) outcomes and not intent- 
to- treat analyses, thus limiting the ability to incorporate dynamic changes on the 
waitlist such as progression versus response to neoadjuvant therapy as potentially 
useful markers to aid patient selection.

At the tissue level, diagnosis of hCCA can be challenging because intraductal 
brushing or biopsy is often inconclusive [18]. To address this challenge, the combi-
nation of a malignant-appearing stricture on percutaneous transhepatic or endo-
scopic retrograde cholangiography (ERCP) and one of the following additional 
findings has been deemed sufficient for diagnosis: (1) a mass at the site of stricture 
by cross-sectional imaging, (2) serum CA 19-9 > 100 U/mL, or (3) polysomy on 
fluorescent in situ hybridization. Considering this latitude for establishing a diagno-
sis of hCCA, many patients enter treatment protocols without pretreatment patho-
logic confirmation of malignancy. However, when studied in multivariate analysis, 
the absence of pretreatment tissue diagnosis does not inflate 5-year survival except 
in patients with underlying PSC, where the incidence of benign strictures is much 
higher [17, 19].

Underscoring the importance of proper patient selection, a recent retrospective 
analysis of the European Liver Transplant Registry data reported a 5-year overall 
survival rate of 59% without the use of neoadjuvant therapy [20]. In this experi-
ence, the authors identified 28 patients of 147 who had undergone LT for hCCA 
who met strict Mayo Clinic criteria (Table 15.2) but had not received neoadjuvant 

Table 15.2 Inclusion and exclusion criteria for Mayo protocol

Inclusion criteria Exclusion criteria

Diagnosis:
  Pathologically confirmed hilar cholangiocarcinoma
    or
  Malignant appearing stricture + one of the following:
   Mass at the site of stricture on imaging
   Serum CA 19-9 > 100
   Polysomy on fluorescent in situ hybridization

Intrahepatic cholangiocarcinoma

Radial tumor diameter <3 cm Prior resection or attempted 
resection

Absence of intrahepatic or extrahepatic metastases on 
imaging by cross-sectional imaging and
Negative nodal involvement on staging laparotomy

Presence of intrahepatic or 
extrahepatic metastases

Candidate for LT History of malignancy within 
5 years

Unresectable cancer above the cystic duct Prior radiation or chemotherapy
Resectable cancer in setting of PSC Transperitoneal biopsy
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chemoradiotherapy. Given that the results in this small subset of patients were compa-
rable to patients with a pretreatment diagnosis of hCCA who underwent neoadjuvant 
therapy and subsequent LT, the authors cautiously concluded that patient selection 
alone may generate improved outcomes following LT for hCCA. Unfortunately, due 
to a lack of uniformity of neoadjuvant practices in the remaining hCCA patients 
undergoing LT within this dataset, a comparative analysis to evaluate for a pos-
sible benefit of neoadjuvant treatment in addition to strict patient selection could 
not be performed. Similarly, Schule et al. retrospectively assessed prognostic factors 
associated with survival in the absence of neoadjuvant therapy. By controlling only 
for negative lymph node status, they reported an acceptable 5-year survival of 50% 
without multimodal therapy [21]. Considering the 5-year survival in this study was 
0% for patients with node-positive disease, this once again raises the question of 
whether the successful outcomes of the Mayo Clinic protocol are primarily due to 
its rigorous assessment of nodal involvement as opposed to a benefit of neoadjuvant 
chemoradiotherapy. As depicted in Table 15.1, patient selection practices and neo-
adjuvant approaches have varied considerably across studies. Current recommenda-
tions to address early hCCA include combination neoadjuvant chemoradiotherapy 
prior to LT.

 Comparing Transplantation with Resection

The rationale of LT in the treatment of unresectable hCCA is intuitive; in fact, out-
comes of unresectable patients treated within the Mayo Clinic protocol demonstrate 
superior 5-year survival to patients undergoing curative-intent resection [22–24]. 
Foremost, LT offers superior rates of R0 resection despite addressing surgically 
“unresectable” cohorts (Table 15.1). Even in the most experienced centers, R0 final 
margin status rates approach only 70% for resection compared to a 90% R0 rate 
with LT. In addition to superior rates of margin-negative resection following total 
hepatectomy, LT also appears to confer a lower 90-day mortality than partial hepa-
tectomy for CCA [23, 25]. This fact is likely owed to the complexity of resection 
required, which often combines extended hepatectomy with bilioenteric anastomo-
sis and vascular reconstruction.

Several nonsurgical factors also affect the disparate outcomes that are reported 
when comparing surgical resection and LT. A key factor is the variation observed in 
the proportion of patients that actually make it to surgical resection versus 
LT. Progression of disease while undergoing neoadjuvant therapy and subsequent 
“waitlist dropout” while awaiting allograft availability are real issues and may con-
fer a significant positive bias when reporting outcomes in only the patients who 
make it to LT. Moreover, as wait times for allografts are variable by region and 
country, waitlist dropout may be variable by geography. Although the practice of 
granting MELD exception points for this disease, coupled with neoadjuvant ther-
apy, has decreased dropout rates, a significant number of listed hCCA patients still 
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ultimately do not make it to LT, with waitlist dropout reported as high as 23.9% at 
12 months [26]. Conversely, resection for hCCA often requires only preoperative 
biliary drainage, with or without portal vein embolization to support extended hepa-
tectomy. This abbreviated preoperative phase yields less time for aggressive biology 
to declare itself; subsequently, reported dropout rates for patients undergoing preop-
erative preparation for non-transplant surgical resection of hCCA are comparably 
low (less than 20%) [27]. Furthermore, there are no upfront restrictions on making 
sure lymph node-positive patients do not undergo surgical resection. As such, it is 
important to appraise any comparison between resection and LT within the context 
of intent-to-treat analyses.

Interpreting reported differences in outcomes between surgical resection and LT 
is also challenged by significant cohort heterogeneity between resection and LT 
patients. To date, this challenge has perhaps been most completely addressed by 
Ethun et al. describing a retrospective review of LT versus resection in 304 patients 
from a US multicenter cohort [23], where they report a 5-year overall survival 
strongly favoring LT over resection for pathologically confirmed hCCA (64% vs 
18%, p = 0.001). Even after excluding resection cases for patients with variables 
known to negatively impact survival (e.g., tumors >3 cm and lymph node positiv-
ity), the LT group still demonstrated superior 5-year survival compared to surgical 
resection (54% vs 29% p = 0.001). These compelling results have raised the ques-
tion of whether LT should be considered as preferred therapy even in patients with 
resectable hCCA.  This very question is currently under investigation with the 
European TRANSPHIL study (NCT02232932), an open-label, randomized multi-
center trial comparing outcomes for resectable hCCA in patients undergoing either 
surgical resection or neoadjuvant chemoradiation followed by LT utilizing the Mayo 
Clinic protocol. The community awaits the results of this study with great anticipa-
tion, as they are certain to inform the best curative-intent treatment strategy for 
patients with this difficult malignancy.

 Intrahepatic Cholangiocarcinoma (iCCA)

Intrahepatic cholangiocarcinoma (iCCA) is much less common than hCCA, 
accounting for under 10% of new cases each year. Similar to HCC, iCCA is strongly 
associated with underlying cirrhosis and chronic viral hepatitis, and its incidence 
has been increasing significantly over the past decade [28], which is in part due to 
the increasing incidence of obesity and the metabolic syndrome [29]. Although 
iCCA has traditionally been considered a contraindication to LT (Table 15.3), this 
tenet has recently been challenged due to numerous single-center and retrospective 
multicenter studies demonstrating acceptable outcomes in well-selected recipients 
[30]. Similar to hCCA, appropriate patient selection, coupled with neoadjuvant and/
or adjuvant protocols, appears to offer an avenue toward favorable post-LT out-
comes in this traditionally excluded group of patients.
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Initial experiences with LT for iCCA reported very poor survival, mostly 
attributable to large tumor burden at the time of LT [31, 32]. Subsequently, nearly 
all published data regarding LT for iCCA is retrospective in nature, with CCA 
diagnosis identified after LT explant tissue analysis. In 2004, Robles et al. retro-
spectively analyzed a multicenter cohort of 23 patients with iCCA who under-
went LT; 5-year survival was 42% [33]. As outlined in Table  15.3, multiple 
retrospective analyses beginning in 2014 have presented acceptable results for LT 
in iCCA. The first study to overtly champion the importance of a patient selection 
strategy to facilitate LT for iCCA was reported by Sapisochin et al. in 2016 [34]. 

Table 15.3 Selected series and outcomes of liver transplantation for intrahepatic cholangio-
carcinoma

Author, year Center N

1-year 
survival 
%

5-year 
survival 
%

Neoadjuvant 
treatment

5-year 
disease- 
free 
survival %

Shimoda 
et al., 2001 
[50]

Los Angeles, 
single center

16 62 39 at 
3 years

None 35

Robles et al., 
2004 [33]

Spain, single 
center

23 77 42 None 35 at 
2 years

Sotiropolus 
et al., 2008 
[51]

Germany, 
single center

10 70 33 None –

Vallin et al., 
2013 [52]

France, 
multicenter

10 80 24 None –

Sapisochin 
et al., 2014 
[53]

Spain, 
multicenter

27 71 57 None 36

Facciuto 
et al., 2015 
[54]

New York, 
single center

7 71 57 None 44

Vilchez et al., 
2016 [55]

UNOS, 
national

440 79 47 None –

Sapisochin 
et al., 2016 
[34]

International, 
multicenter

15 earlya

33 
advancedb

93a

79b

65a

45b

None 18a

61b

Lunsford 
et al., 2017 
[37]

Huston, single 
centerc

12 100 83 6-month 
chemotherapy

50

De Martin 
et al., 2020 
[36]

France, 
multicenter

49 92 69 Variable –

aSapisochin et al. found that patients with a single iCCA <2 cm (considered very-early iCCA) had 
a 5-year survival of 65% after LT and disease recurrence of only 18%. In contrast, patients with 
advanced disease
bReported a 5-year survival and recurrence rate of 45% and 65%, respectively
cOnly prospective study on this topic
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In this multicenter retrospective study, the authors found that patients with a sin-
gle iCCA <2 cm (considered very-early iCCA) had a 5-year survival of 65% after 
LT and disease recurrence of only 18%. In contrast, patients with tumors >2 cm 
reported a 5-year survival and recurrence rate of 45% and 61%, respectively. 
However, in this subset, it was notable that patients with a known (i.e., non-inci-
dental) iCCA prior to LT had lower tumor recurrence rates and superior actuarial 
1-, 3-, and 5-year survival compared to incidentally diagnosed iCCA >2  cm, 
likely attributable to the fact that 69% of patients with a pre-LT diagnosis received 
neoadjuvant therapy. Supporting this contention, a UCLA study by Hong et al. of 
37 iCCA cases demonstrated that the addition of neoadjuvant and adjuvant ther-
apy with LT significantly reduced recurrence rates for iCCA after LT, with LT 
recipients receiving both having a 28% recurrence rate compared to 40% for 
those receiving adjuvant therapy alone and 50% for those receiving neither neo-
adjuvant nor adjuvant therapy [35]. A multicenter prospective clinical trial is cur-
rently underway to validate these retrospective findings, with results expected in 
2026 (NCT02878473).

Despite the promise of these selection practices, detection of very-early, <2 cm 
iCCA in unresectable cirrhotic patients is a challenge. More recently, several groups 
have also reported their experience with LT with tumors larger than 2  cm with 
acceptable results. De Martin et  al. studied outcomes of 24 patients with iCCA 
>2 cm and ≤5 cm who underwent LT and reported an overall recurrence rate of 21% 
and overall survival of 65% at 5 years [36], which represent superior results com-
pared to the multicenter study reported by Sapisochin et al. [34]. A recent prospec-
tive study from Lunsford et  al. employed LT in patients with locally advanced 
unresectable iCCA, pushing the traditionally acceptable limits by inclusion of iCCA 
patients with multifocal and large lesions which would be considered beyond the 
Milan Criteria for HCC [37]. This study enrolled patients with either large (iCCA 
>5 cm) or multifocal disease (median pre-LT number of four lesions) without vas-
cular invasion, extrahepatic disease, or lymph node involvement. By allowing only 
iCCA patients demonstrating a sustained response to gemcitabine and cisplatin for 
a minimum 6 months to receive LT, they were able to achieve 5-year survival of 
83% after LT despite large tumor burden identified at explant (median number of 
seven lesions with median cumulative tumor diameter of 14.2 cm). While the num-
ber of patients undergoing LT was quite small (n = 6) in this initial report, it pro-
vided a strong framework to allow for life-saving LT in highly selected patients with 
unresectable but not extrahepatic disease.

In summary, LT for iCCA remains controversial, and extrapolating results from 
retrospective data is challenged by heterogeneity among treatment protocols and 
small sample sizes. To solidify the practice of LT for iCCA or make an argument for 
MELD exception, further prospective data will be necessary. Currently available 
data support consideration of LT either for (1) very-early stage (<2 cm) and inter-
mediate stage (2–5 cm) iCCA diagnosed within the context of chronic liver failure 
or (2) locally advanced disease in highly selected patients who have demonstrated a 
sustained tumor response to neoadjuvant treatment.
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 Perioperative and Technical Considerations

 Preoperative Preparation

With the current landscape necessitating neoadjuvant chemoradiotherapy for the major-
ity of patients undergoing LT for CCA, several common sequelae should be antici-
pated. Radiation therapy confers patients a relatively high rate of duodenal ulceration 
[38]. As such, it is recommended to employ proton pump inhibitors in these patients 
during therapy and for a minimum of 1 month afterward. In addition to challenges with 
tumor cachexia, patients undergoing neoadjuvant chemoradiotherapy are uniquely 
nutritionally challenged, as radiation therapy often begets gastropathy, gastritis, and 
gastric dysmotility. The severity of these symptoms may be exacerbated by periopera-
tive narcotics at time of LT. Subsequently, close monitoring for these symptoms preop-
eratively is important, and surgeons should have a low threshold to employ jejunal 
feeding access for this at-risk population. Preoperative nutritional optimization has 
been associated with improved survival in patients undergoing resection for CCA [39]. 
Although not specifically studied in the context of malignancy, many studies support 
the benefit of preoperative nutritional optimization to support LT survival as well [40].

Due to the nature of CCA, biliary obstruction and cholangitis are frequent problems 
encountered in the preoperative course. Despite initial controversy, the use of covered 
self-expanding metal stents to alleviate these problems does not preclude effective 
radiotherapy. Such stents are proven to prevent tumor ingrowth but carry a higher rate 
of migration and cholecystitis [41, 42]. Perhaps most importantly, providers should 
have low threshold to initiate empiric antibacterial coverage in any patient with sus-
pected acute cholangitis. Prophylactic antibiotics should be considered peri-ERCP and 
post-procedure according to practice guidelines [43]. As time to repeat ERCP and stent 
occlusion can be variable, some centers also provide patients with indwelling biliary 
stents a prescription for antibiotics and instructions to empirically begin treatment at 
the onset of symptoms indicating worsening biliary obstruction or infection.

Similar to biliary obstruction, cholecystitis often develops in patients awaiting LT 
for CCA. Its frequent incidence is derivative to tumor obstruction of the cystic duct 
or complications of biliary stenting. Diagnosis is reliable by ultrasound, as in conven-
tional cases; however, treatment should avoid cholecystectomy as there is a high risk 
of tumor dissemination [44]. Treatment includes prompt initiation of antibiotics and 
decompression, with both ERCP and percutaneous stenting as acceptable options.

 Operative Considerations

Both deceased donor and living donor LT have been successfully employed to treat 
CCA. When described, surgical technique for LT follows institutional protocol but 
favors a bicaval approach when there is caudate involvement. Staging laparotomy 
described in the Mayo Clinic protocol is performed through a right or bilateral 
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subcostal incision and includes a thorough abdominal exploration, including manual 
palpation of the hilum. Routine biopsies of nodes overlying the common bile duct as 
well as the distal hepatic artery at the level of the gastroduodenal artery are performed 
at this time. Extrahepatic disease or lymph node metastases preclude LT. While this 
staging laparotomy has initially been described as being performed prior to LT, many 
centers have now incorporated this staging to be done at the time of an organ offer.

LT performed for hCCA should include very low dissection of the portal struc-
tures and routine frozen section of the distal bile duct margin. A positive distal bile 
duct margin needs to prompt consideration of a pancreaticoduodenectomy to 
achieve a margin-negative curative intent operation. If a pancreaticoduodenectomy 
is required, proton pump therapy is recommended for life [45]. Finally, recipients 
undergoing neoadjuvant intraluminal brachytherapy have been noted to have a 
higher incidence of vascular complications, particularly hepatic artery thrombosis. 
Subsequently, routine employment of an infrarenal aortic conduit using donor iliac 
vessels to supply the donor artery has been described and should be considered.

 Conclusion

While LT has been the gold standard treatment for patients with unresectable hepa-
tocellular carcinoma for nearly three decades, a new era of “transplant oncology” 
has been ushered in with the recognition that LT is also a viable curative therapy for 
patients with CCA. Given the relative scarcity of available donor liver allografts, 
rigorous patient selection must be applied to mitigate oncologic risk and ensure 
meaningful organ utilization (Table 15.4). Although questions exist regarding the 

Table 15.4 Data-supported recommendations for LT in hilar vs intrahepatic cholangiocarcinoma

hCCA iCCA

Age <68, absence of comorbidities 
precluding LT

<65, absence of comorbidities 
precluding LT

Histologic 
confirmation

Optional, excluding 
transperitoneal

Mandatory, often transperitoneal

Size staging <3 cm Unresectable <2 cm in setting of 
chronic liver failure or
Unresectable >2 cm with sustained 
response to chemotherapy ± RT

CA 19-9 No upper limit reported >100 relative contraindication
Multifocality Contraindication To be defined
Preoperative lymph 
node assessment

Mandatory – rule out nodal 
disease

Mandatory – rule out nodal disease

Neoadjuvant treatment Chemoradiotherapy Very early disease – to be defined
Advanced disease – recommended as 
selection tool

Eligibility for MELD 
exception

Yes Not currently
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application of LT for resectable hCCA and iCCA, diligent patient selection and 
multimodal neoadjuvant and adjuvant therapy seem to be of paramount importance. 
With increasing rates of living donor LT, extended criteria organ utilization, and the 
advances seen within the field of xenotransplantation, the promise of a supply-side 
fix to organ shortages may further expand opportunities to offer LT as a treatment 
for CCA.
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pCCA Perihilar cholangiocarcinoma
PD Pancreaticoduodenectomy
RFS Recurrence-free survival
SIRT Selective internal radiation therapy
SWOG Southwest Oncology Group
VEGF Vascular endothelial growth factor

 Introduction

Cholangiocarcinoma (CCA) is an epithelial-based tumor arising from the biliary 
tract which can originate anywhere from the peripheral intrahepatic biliary radicles 
to the periampullary region. CCA has been historically defined based on the loca-
tion of disease as intrahepatic CCA (iCCA) arising from the second-order biliary 
ducts or farther into the livery periphery, perihilar CCA (pCCA) arising from the 
takeoff of the cystic duct to the main lobar bile ducts, or distal CCA (dCCA) arising 
from the cystic duct takeoff distally to the ampulla (Chap. 2, Mederos and Girgis) 
[1]. While the description of site of disease allows for some degree of surgical oper-
ative planning for surgically resectable disease, among other potential interventions 
for resectable or unresectable disease, recent investigations into the molecular char-
acteristics of tumors at different sites suggest that the tumors arising in these respec-
tive locations represent distinct disease entities at a biological and molecular level.

The incidence of CCA in the Western world is rising, in large part due to 
increases in the prevalence of nonalcoholic steatohepatitis (NASH) and nonalco-
holic fatty liver disease (NAFLD) as well as changes in the coding and reporting 
of intrahepatic tumors [1–3]. Long asymptomatic growth periods, the possibility of 
diagnostic dilemma, and the complex anatomy of the hilum of the liver all contrib-
ute to a minority of lesions being resectable at the time of diagnosis [4]. Other fac-
tors adding layers of complexity to assessment and therapeutic algorithms in CCA 
include the presence of portal lymphadenopathy, intrahepatic metastases, multifocal 
lesions, biliary obstruction, and a background of cirrhosis.

The treatment of CCA underscores the need for a multidisciplinary approach 
to select from a wide range of therapies. These include endoluminal, surgical, and 
regional therapies, as well as systemic cytotoxic or molecular targeted agents, with a 
combination of these being not infrequently used in order to best tailor treatment for 
an individual patient. Nevertheless, weighing comparatively poor overall survival 
(OS) rates with chemotherapy alone, the need to consider liver remnant function in 
certain resections, and the likelihood of residual disease after curative-intent surgi-
cal resection, additional disease treatment strategies and therapeutic options have 
been sought. These include targeted therapies, and, for limited disease in pCCA 
and iCCA, liver transplantation (Chap. 15, Butler and Agopian). Additional trials 
continue to better define optimal adjuvant therapeutic strategies in resected disease 
and treatment regimens that may convert initially advanced disease to surgically 
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resectable disease. In this chapter, we highlight current multidisciplinary CCA 
treatment focusing on systemic therapies; recent advances in cytotoxic and targeted 
therapies are discussed along with their roles in patients undergoing curative-intent 
surgical resection as well as those with locally advanced or metastatic disease.

 Prognostic Tools and Factors

While national surgical database outcomes have been used to stratify patients’ risks 
of postoperative complications [5], these databases and online risk calculators have 
yet to be refined to a level that would allow a confident prediction of disease-specific 
or cancer-related outcomes. These efforts may be further complicated when consid-
ering a disease such as CCA that occurs at different anatomical locations (requiring 
disparate surgical resections) and our evolving level of understanding of tumor biol-
ogy and molecular individuality. The use of preoperative prediction tools as com-
pared with postoperative findings such as tumor pathology findings has also been a 
recent topic of interest in influencing attempts to improve preoperative prediction 
metrics to include such tools as machine learning [6]. These efforts seek to identify 
patients at high risk for recurrence, those for whom a neoadjuvant approach may 
be considered, and the optimal timing for surgery in a multidisciplinary treatment 
approach.

Multiple clinical preoperative and pathologic tumor analysis factors have been 
used to form aspects of tumor staging systems as well as to prognosticate upon 
the biology of disease in CCA as well as the expected chances of disease recur-
rence. In pCCA and iCCA, the presence of portal lymphadenopathy, surgical mar-
gin positivity, multifocal disease or satellite lesions, hilar vascular involvement, and 
elevated serum tumor markers following biliary decompression have been identified 
as indicators of more advanced disease and suggest a higher recurrence risk [7–10]. 
Increased interest in the molecular profiles of CCA as well as understanding of the 
role of the immune response to tumors has identified easily measured indices that 
can provide some prognostic information on tumor biology and recurrence risk.

Using preoperative complete blood count with differential, the calculation of 
neutrophil to lymphocyte ratio (NLR) has been shown to have prognostic validity in 
resections for other primary and metastatic hepatic tumors [11–13]. A large, multi- 
institutional, retrospective review confirmed this among a cohort of 991 resected 
patients with iCCA, finding that elevated NLR was independently associated with 
worse overall survival. Using a ratio of <5 vs. ≥5, patients with elevated NLR had a 
median survival of 21.9 months compared with 41.7 in the lower NLR group [14]. 
When adding this score to an established prognostic tool including other standard 
disease factors such as tumor size, periportal lymphadenopathy, vascular invasion, 
etc., the overall prognostic ability was improved. Using a high vs. low NLR cutoff 
of ≥3 vs. <3, improvements in 5-year overall survival and recurrence-free survival 
were also identified in a retrospective single-center US study. A unique subanalysis 
in this study further demonstrated the improvements in survival in those patients 

16 Neoadjuvant and Adjuvant Therapy for Cholangiocarcinoma



358

treated with neoadjuvant chemotherapy prior to resection for borderline-resectable 
or advanced iCCA, showing that those patients treated in a neoadjuvant fashion 
with NLR <3 had a 95% 5-year OS while those with >3 had an OS of 50% at 5 years 
[15]. These results include only resected patients and did not include an intention- 
to- treat analysis; these results must be considered a highly selected surgical group, 
but the findings of a survival difference based on such an easily measured metric 
suggest the utility of NLR in patients with iCCA.

Postoperatively, the distribution and maximum number of various types of 
immune cells have also been studied in patients who underwent resection for iCCA 
and dCCA. After analyzing a broad review of postoperative factors, Shinke et al. 
identified significant differences in overall survival, disease-free survival, as well 
as survival after recurrence based on differences in postoperative peak numbers of 
neutrophils and eosinophils. Lower peak neutrophil count after resection was asso-
ciated with improved overall survival at 1, 3, and 5 years (92.0 vs. 80.0%; 66.9% 
vs. 51.5%; and 49.5% vs. 40.2%; p = 0.04) and improved survival 1, 3, and 5 years 
after recurrence (67.3% vs. 40.0%; 27.7% vs. 10.4%; and 18.5% vs. 0%; p = 0.03); 
a higher peak eosinophil count was also associated with improved OS and survival 
after recurrence [16]. While these findings are available only following a surgery 
with a curative intent, they certainly highlight the evolving role and understanding 
of the immune system and systemic effects occurring in the perioperative period as 
well as their potential long-term prognostic value. Other biochemical metrics that 
have been investigated in the postoperative period include measurement of albumin- 
bilirubin grade and relating this to survival outcomes [17]. It may yet be premature 
to suggest alterations in therapy decisions or surveillance based on these findings, 
but such easily followed and measured values such as these could further enrich 
the comprehensive treatment discussion had with patients who undergo resection 
for CCA.

Evolving use of online platforms and machine learning technology with image 
analysis shows promise in determining which patients will benefit most from sur-
gical resection. Developed online risk prediction calculators for iCCA include 
many conventional prognostic factors such as nodal positivity and R1 resection, 
factors that can only be determined after resection and pathologic analysis [18]. 
Using machine learning technology to evaluate preoperative imaging characteris-
tics compared against known survival in a retrospective fashion, algorithms may 
be developed to determine which patients will benefit from resection as compared 
with other strategies such as systemic with or without concomitant liver-directed 
regional therapy [19]. The goal of these new endeavors would certainly be to select 
patients who will benefit from surgery rather than using surgical specimens to estab-
lish prognosis and simultaneously subject low-yield surgical patients to the immu-
nologic challenge of surgery.

For patients presenting with advanced or metastatic disease, prognostic factors 
and indices focus on expected response to chemotherapy. In addition to assessing a 
patient’s functional status and anatomic disease burden, gauging and communicating 
the expected response to systemic treatment can enhance an informative and com-
plete discussion of expectation with patients undergoing systemic therapy. Notably, 
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these data concern cytotoxic chemotherapy; while targeted therapy based on tumor 
molecular profiling may have an evolving role in the treatment of advanced disease, 
data regarding prognosis with immunotherapy are still being described [20].

Using similar values obtained and mentioned above, several indices use immune 
cells and nutritional markers to stratify patients’ survival on chemotherapy for 
advanced disease based on immune response as well as inflammatory and nutri-
tional markers [21, 22]. Improved nutritional indices were found to correlate with 
improved functional status as well as longer overall survival, likely reflecting the 
effects of cancer-related cachexia, inflammation, and functional reserve in patients 
presenting with advanced biliary tract malignancy [22]. Notably, these studies focus 
on patients with a preserved functional status and those who are therefore deemed 
clinically suitable for palliative chemotherapy for advanced disease which com-
prises both surgically unresectable and metastatic CCA.  Further supporting the 
idea that CCA may be biologically distinct and behave differently based on site of 
disease origin (gallbladder, intrahepatic, and distal subtypes), varying prognostic 
factors for overall survival and progression-free survival times have been described 
with different prognostic factors based on the different disease sites [23].

 Adjuvant Chemotherapy Trials

Due to historically poor survival with surgery alone for CCA as well as the likeli-
hood for margin-positive resections and regional lymphatic metastases, adjuvant 
chemotherapy has been studied as an integral part of the treatment regimen for 
patients with surgically resectable disease. The heterogeneity of disease sites in 
CCA coupled with the typically advanced state of presentation and commensurate 
minority of patients being unresectable at presentation has limited the early analysis 
of outcomes to those patients with CCA included with other hepatobiliary and/or 
pancreatic tumors. Clinical factors and outcomes of completed adjuvant therapy tri-
als are summarized in Table 16.1.

A Japanese study by Takada et al. published in 2002 demonstrated an improve-
ment in survival when adjuvant chemotherapy was administered following curative- 
intent resection. In this phase III trial, patients undergoing surgery for CCA arising 
in the extrahepatic bile duct and gallbladder were included for randomization 
and analysis with patients undergoing resection for pancreatic as well as ampul-
lary tumors. The trial arms were surgery alone compared with surgery followed by 
5- fluorouracil (5-FU) and mitomycin C. While the per-protocol analysis resulted in 
a 5-year OS benefit for patients with resected adenocarcinoma of the gallbladder 
undergoing adjuvant therapy (36% vs. 14%, p < 0.0367), this positive benefit did 
not extend to all disease sites included in an intention-to-treat analysis [24].

Similarly, dCCA patients were included in the European Study Group for 
Pancreatic Cancer (ESPAC) 3 trial examining the effect on survival of adjuvant 
chemotherapy on resected periampullary cancers. As in the Takada trial, dCCA 
were included in analysis with other periampullary cancers including pancreatic 
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ductal adenocarcinoma and comprised 19% of the 428 patients included in this trial. 
Patients were randomized to chemotherapy vs. observation with the treatment arm 
further dividing patients into treatment with 5-FU or gemcitabine. While no differ-
ence was noted in survival between the two treatment agents, OS for those patients 
receiving adjuvant chemotherapy was improved (43.1 vs. 35.2 m) though this did 
not reach statistical significance (p > 0.25) [25].

 Completed Adjuvant Therapy Trials

 SWOG 0809

A prospective, single-arm phase II published in 2015 by the Southwest Oncology 
Group (SWOG) investigated survival outcomes for patients with resected extrahe-
patic (perihilar and distal) CCA and adenocarcinoma of the gallbladder. The treat-
ment regimen of the trial included adjuvant gemcitabine with capecitabine followed 
by radiotherapy to the resection field (54–59.4 Gy) and surrounding nodal basin 
(45 Gy) with concurrent capecitabine. Of the 79 patients enrolled in the trial (68% 
extrahepatic CCA, 32% gallbladder), 86% of patients completed the treatment. In 

Table 16.1 Comparison of details from completed adjuvant therapy trials

SWOG 0809
(United States)

BCAT
(Japan)

PRODIGE 12 
(France)

BILCAP (United 
Kingdom)

Design Single-arm phase 
II

Randomized phase 
III

Randomized 
phase III

Randomized phase 
III

Treatment Gem + Cape 
Followed by Cape 
+ RT

Gem
vs.
Obs

Gem + Ox
vs.
Obs

Cape
vs.
Obs

n 79 225 196 440
Cancer type
iCCA
pCCA
Gallbladder
dCCA

0
48%
32%
20%

0
48%
0
52

45%
8%
19%
28%

19%
28%
18%
35%

R1 (%) 32 11 15 38
+Lymph 
node (%)

n/a 35 37 54

End point 
and summary

2 yr. OS 65%;
R0 and R1 OS 
similar at 35 and 
34 months, 
respectively

OS and RFS 
similar between 
treatment and 
control

RFS similar 
between 
treatment and 
control

Per-protocol 
analysis shows 
improved OS in 
treatment group

Gem gemcitabine, Cape capecitabine, RT radiotherapy, Obs observation, Ox oxaliplatin, Cis cis-
platin, OS overall survival, RFS recurrence-free survival, R0 microscopically negative resection 
margin, R1 microscopically positive resection margin, SWOG Southwest Oncology Group, BCA 
Biliary Cancer Adjuvant Trial
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addition to disease site, patients were also stratified in the analysis based on the 
resection margin; 68% of patients had an R0 margin, while 32% had microscopi-
cally positive surgical resection margins. Projected 2-year overall survival in the 
trial was estimated to be 65%; OS varied slightly in the R0 (67%) and R1 (60%) 
groups. Two-year disease-free survival was also estimated in the study to be 54%. 
Using the stratification based upon resection margin status, median overall survival 
was 34 months for patients with R0 resection and 35 months for patients with R1 
resection. Factors limiting the study’s results include no outcome stratification 
based on lymphatic metastases status as well as the absence of an observation arm. 
The aim of the study, however, was investigational and to establish that treatment 
could improve historical observation survival findings in addition to the tolerability 
and feasibility of the regimen [26].

 BCAT

The Biliary Cancer Adjuvant Trial (BCAT) was a randomized, phase III, multi-
center trial completed in Japan that analyzed the effects of adjuvant gemcitabine 
chemotherapy on survival following curative-intent resection of CCA.  With 225 
patients included in final analysis, 117 patients (43.6% pCCA, 56.4% dCCA) were 
randomized to the treatment arm. While the proportion of lymph node metastases in 
the treatment arm was similar to other trials, BCAT had the lowest R1 rate among 
adjuvant trials (9.4% in the treatment arm). Of note, this population underwent a 
somewhat varied range of surgical interventions including pancreaticoduodenec-
tomy (PD), PD along with partial hepatectomy, and excision of the extrahepatic 
bile duct with bilioenteric anastomosis. In the treatment arm, 3-year OS was 68.1%, 
while 5-year OS was 51.7%; this did not differ with 3-year (65.7%) or 5-year 
(51.6%) OS in the observation arm, suggesting no benefit to adjuvant gemcitabine 
in this population. Given these findings, the trial was terminated following interim 
analysis. Further subgroup analysis based on pathologic details did not reveal fur-
ther prognostic stratification factors [27].

 PRODIGE 12-ACCORD 18

The PRODIGE 12-ACCORD 18 was a multicenter, phase III study conducted at 
33 French centers that compared treatment with gemcitabine and oxaliplatin versus 
observation alone in resected biliary tract cancers. The goals of the study were to 
analyze differences in recurrence-free survival and quality of life. The treatment 
arm of 95 patients included a somewhat higher percentage of patients with resected 
iCCA compared with other adjuvant trials including a mixture of CCA disease sites. 
Analysis of the study results demonstrated no difference in RFS between study 
and treatment arms (median RFS 30.4 months with treatment, 18.5 months obser-
vation). While quality of life was not different between the groups, only 33% of 
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patients in the treatment arm were able to complete the entirety of the planned 
adjuvant chemotherapy regimen with most stopping treatment due to toxicity [28].

 BILCAP

The BILCAP, or capecitabine compared with observation in resected biliary tract can-
cer, study enrolled 447 over 8 years at 44 hepatobiliary surgery centers across the 
United Kingdom. Patients randomized between the treatment and observation arms 
comprised a spectrum of disease sites and were well matched between arms of the 
trial (treatment: iCCA 19%, pCCA 29%, gallbladder 17%, dCCA 34%). Patients 
were also stratified for lymph node positivity though routine portal lymphadenectomy 
was not mandated by trial parameters for patients undergoing partial hepatectomy for 
iCCA. BILCAP’s sensitivity analysis was based upon Takada et al. where 2-year OS 
was 20% [24]; the goal of the BILCAP trial was to evaluate the ability of the interven-
tion to increase this by 12–32% at 2 years after surgery. To achieve this, the initial trial 
protocol planned to enroll and randomize 360 patients. On data monitoring committee 
review after the trial had begun, the target recruitment was increased.

Based on the trial’s intention-to-treat analysis, differences in OS and recurrence- 
free survival outcomes did not reach statistical significance (median OS 51.1 vs. 
36.4 months, p 0.097). However when excluding the patients (n = 13) who with-
drew from treatment, received no adjuvant chemotherapy drug, or were deemed 
ineligible to continue, the per-protocol analysis of the treatment arm compared with 
observation cohort demonstrated a significant improvement in median OS (53 vs. 
36 months, p 0.028). Along with these survival results, the demonstrated tolerability 
of oral capecitabine in this study led the authors to suggest this regimen as a stan-
dard of care for resected biliary tract cancer [29].

 Ongoing Adjuvant Therapy Trials

While the results of these trials would suggest adjuvant chemotherapy with 
capecitabine as an efficacious and well-tolerated regimen for patients after curative- 
intent resection for CCA, additional trials are underway to investigate not only 
combinations of chemotherapeutic agents but also targeted therapies (Table 16.2). 
A currently enrolling German phase III trial across several European nations 
(ACTICCA-1) is seeking to explore the potential survival advantage conferred with 
gemcitabine and cisplatin as compared with observation alone in patients follow-
ing curative-intent resection of biliary tract cancer [30]. Building upon results seen 
in the setting of advanced CCA and the administration of palliative chemotherapy 
[31], this trial’s primary goals are DFS and OS at 24 months.

The Japan Clinical Oncology Group (JCOG) is also conducting a phase III trial to 
compare survival differences between adjuvant S1 and observation following resec-
tion of biliary tract cancer. S1 is an oral fluoropyrimidine agent composed of tegafur, 
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5-chloro-2,4-dihydroxypyridine, and potassium oxonate. Previous Japanese clinical 
trials have demonstrated survival benefit of S1 compared with gemcitabine following 
resection of pancreatic adenocarcinoma [32] and compared with observation follow-
ing resection of gastric adenocarcinoma [33]. Further, a phase II trial was also con-
ducted in Japan in which 40 patients were treated with S1 in the setting of advanced 
and unresected CCA [34]. The Adjuvant S1 for Cholangiocarcinoma Trial (ASCOT) 
is enrolling treatment-naïve patients treated with curative-intent surgery for CCA at 
all disease sites and including the ampulla of Vater. The initial sample size was 350 
patients but was increased to 440 in 2017 to increase the study’s power. The primary 
outcome will be assessment of overall survival and patients will be stratified by disease 
site as well as based on the presence of margin positivity and positive surgical mar-
gins. Secondary outcomes include recurrence-free survival and the occurrence [35].

 Adjuvant Therapy Trials: Conclusion

Difficulty in interpreting the results of these clinical trials in part stems from the 
heterogeneity of the disease sites/subtypes that were included in analysis; with 
increasing evidence that tumors at different sites in the biliary tract have dispa-
rate mutations and molecular profiles, the inclusion of disparate tumor subtypes in 

Table 16.2 Characteristics of ongoing adjuvant therapy trials

ACTICCA (Germany) ASCOT (Japan)

Design Randomized phase 3 Randomized phase 3
Treatment Gem + Cis

vs.
Obs

S1
vs.
Obs

n 440a 440a

Cancer type
iCCA
pCCA
Gallbladder
dCCA

36%b

End point and 
summary

Primary outcome will be RFS; OS 
included as a secondary outcome

Primary outcome will be OS; RFS 
will be a secondary outcome

Gem gemcitabine, Cape capecitabine, RT radiotherapy, Obs observation, Cis cisplatin, OS overall 
survival, RFS recurrence-free survival, R1 microscopically-positive resection margin, ASCOT 
Adjuvant S1 for Cholangiocarcinoma Trial
aThe ACTICCA and ASCOT trials are currently enrolling. In ACTICCA, the goal enrollment to 
meet power will be 220 patients per arm with 80 patients per arm having adenocarcinoma of the 
gallbladder and the other 140 patients having either intrahepatic or hilar/distal (extrahepatic, to 
include hilum) cholangiocarcinoma. The ASCOT trial will include patients with adenocarcinoma 
of the ampulla of Vater
bBy trial design, the ACTICCA trial seeks to enroll and follow 140 patients in the treatment arm, 
80 (36%) of whom will receive treatment after resection of muscle-invasive adenocarcinoma of the 
gallbladder. This is a projected proportion; the trial results are not yet published
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order to facilitate timely accrual into a trial tangentially confuses efforts to inter-
pret the results for any single patient whose tumor is broadly described as “CCA.” 
Ongoing and future clinical trials, potentially aided by international collaborative 
efforts or registries, may be able to focus in on CCA types by location or even 
by molecular mutational profile. Currently available results of trials analyzing 
outcomes of adjuvant therapy must be considered in the context of their exam-
ined patient population as well as the examined proportion of each tumor type, 
the microscopically positive resection margin, and lymph node positivity so as 
to select a treatment regimen that best fits a patient being considered for adjuvant 
therapy [36, 37]. As we await results from currently enrolling adjuvant therapy tri-
als in Europe and Japan, current recommendations for adjuvant therapy following 
curative-intent resection include consideration of the results of the BILCAP and 
SWOG 0809 trials. Adjuvant chemotherapy with capecitabine and the consider-
ation of chemoradiotherapy in the setting of positive resection margin have been 
incorporated into American Society of Clinical Oncology (ASCO) Guidelines for 
resected biliary tract cancers [38].

 Neoadjuvant Therapy

The concept of neoadjuvant chemotherapy has been applied to CCA at each of 
its anatomical sites. The most rigorous neoadjuvant therapy protocols have been 
applied to pCCA patients enrolled in programs considering orthotopic liver trans-
plantation (OLT) as the surgical intervention. The often advanced nature and large 
size of iCCA place many patients into a risky category that must consider not only 
the biology of a tumor detected at a large size but also the size, function, and health 
of a potential liver remnant after curative-intent surgery. Neoadjuvant therapy prior 
to hepatectomy for iCCA as part of a comprehensive pre-surgical treatment plan 
potentially addresses multiple facets of surgical resectability: the administration of 
systemic therapy allows assessment of disease biology and may decrease the size of 
the lesion, the extent of hepatic resection may be altered, and liver-directed mold-
ing therapies can also be used to increase the size of the future liver remnant. While 
many studies have assessed the effect of chemotherapy regimens on survival when 
administered in a palliative intent for advanced CCA, others have focused on the 
utility of neoadjuvant therapy to downstage a tumor to facilitate surgical resection.

Studies assessing the efficacy of palliative-intent chemotherapy typically con-
sider CCA as “advanced disease” when there is evidence of metastases or when the 
patients are considered surgically unresectable based on anatomical considerations 
such as vascular involvement by tumor, intrahepatic metastases, or tumor multifo-
cality. Current (2019) National Comprehensive Cancer Network (NCCN) guide-
lines for the treatment of iCCA suggest surgical resection for lesions considered 
able to be resected with R0 margin, while those who are considered unresectable 
should be treated with palliative chemotherapy, radiotherapy, or other arterial-based 
local-regional therapies [39]. Unlike in pancreatic cancer, the current version of 
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these guidelines does not specifically note a category of “borderline resectability,” 
leaving clinicians to direct the consideration of neoadjuvant therapy with a goal of 
surgical resection as part of a multidisciplinary approach.

The currently recommended first-line chemotherapy regimen for advanced 
iCCA is derived from the ABC-02 trial, a phase III, randomized, multicenter trial 
conducted in the United Kingdom comparing survival outcomes for patients with 
advanced CCA; the definition for “advanced” included locally advanced/unresect-
able disease, recurrent disease after previous resection, and metastatic disease. 
Extending a previous phase II study in which gemcitabine plus cisplatin was com-
pared with gemcitabine alone in this setting with the finding that the combination of 
agents improved progression-free survival [31, 40], this study included 410 patients 
with 204 patients receiving the combination of agents while 206 received gem-
citabine alone. This study found that median overall survival (11.7 vs. 8.1 months, 
p < 0.0001) and progression-free survival (8.0 vs. 5.0 months, p < 0.0001) were both 
improved by approximately 3 months in the gemcitabine plus cisplatin group as 
compared with single-agent gemcitabine. The combination therapy was overall well 
tolerated; an increase in neutropenia was identified in the gemcitabine plus cisplatin 
group but did not reach statistical significance [31].

While the ABC-02 trial considers the effects of chemotherapy on survival in the 
setting of advanced disease or patients who are not considered for surgery regard-
less of response to therapy, other studies have sought to define a role for convert-
ing initially unresectable disease (by unknown biology or extent at detection) to 
surgical resection. A retrospective review of patients undergoing major resection 
(n = 32, 30.2% major hepatectomy or n = 72, 69.7% PD) for CCA analyzed out-
come and stratified patients based on neoadjuvant chemoradiotherapy (n = 27) ver-
sus surgery alone (n = 79). The patients in the neoadjuvant group received three 
cycles of gemcitabine with 50–60Gy of external beam radiation to the tumor bed 
and regional nodal basin. The most common indications for surgery were dCCA 
(n = 72, 69.7%) and pCCA (n = 31, 29.2%). While no difference was found in the 
incidence of adjuvant therapy, the administration of neoadjuvant therapy was asso-
ciated with improved 3-year resection-free survival (78.3% vs. 56.8%, p 0.0565); 
the primary site of disease was not associated with any difference in RFS [41]. 
While this study’s outcomes are limited by its retrospective and non-randomized 
design, this highlights both the potential difficulty in creating a multi-institutional 
study for borderline- resectable CCA without an explicit and universal definition of 
borderline disease and the potential benefit for neoadjuvant therapy.

A French hepatobiliary surgery center has published a single-center experience 
with downstaging initially unresectable iCCA using systemic therapy [42]. Deemed 
initially unresectable based on portal lymphadenopathy and vascular invasion, 74 
patients underwent a median of 6 cycles of varied chemotherapy regimens, the most 
common of which was gemcitabine plus oxaliplatin in 44 patients. Four patients in 
the cohort were treated with selective internal radiation therapy (SIRT) as well as 
systemic therapy to facilitate resection. Of the 74 patients initially considered unre-
sectable, 39 (52.7%) were considered downstaged to facilitate resection, which was 
performed. There was no difference in additional hepatic molding procedures such 
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as portal vein embolization or in extended resections between the up-front surgical 
and neoadjuvant therapy groups.

Even after neoadjuvant therapy, R0 resection was accomplished more frequently 
in the up-front resectable cohort (59 vs. 31%, p = 0.004). Recurrence-free survival 
and median overall survival did not differ in the groups treated with up-front surgery 
or surgery after downstaging; there was no difference in the frequency of adjuvant 
chemotherapy delivery. While this trial is limited by its nonrandomized nature and 
the diverse treatment regimens delivered in the neoadjuvant cohort, it does demon-
strate that neoadjuvant therapy can convert select initially unresectable patients to 
surgical resectability. The demonstration of no improvement or of disease progres-
sion while on therapy also selects patients who would not benefit from an exten-
sive resection. The study’s findings did demonstrate overall survival benefit for 
patients who were able to undergo resection as compared with chemotherapy alone, 
likely reflecting disease biology as well as the benefits of resection and response to 
systemic therapy. Median overall survival with up-front surgery was 25.7 months 
as compared to 24.1 months in the surgery after chemotherapy; without surgery, 
patients receiving chemotherapy alone had a median OS of 7.8 months. The study’s 
multivariate analysis also demonstrated that, at the time of presentation, standard 
serum studies such as bilirubin, albumin, and CA 19-9 were not predictive of con-
version to resectability, suggesting that additional study is needed to identify reli-
able markers for predicting response in this patient population [42].

While pooled results of mostly nonrandomized studies suggest the feasibility of 
delivering neoadjuvant chemoradiotherapy to facilitate improvement in R0 resec-
tion rate in pCCA and dCCA [43], the absence of a prospective trial – fueled by 
the lack of consensus guidelines for borderline disease as well as institutional dif-
ferences in considerations for borderline resectable disease – limits the strength of 
recommendations for neoadjuvant treatment in the setting of up-front resectable 
disease though chemotherapy may be given to test disease biology in patients with 
iCCA.  Basing conclusions on the benefits of neoadjuvant therapy by pathologic 
stage rather than by disease site may also confound the generalizability of results 
between disease sites [44], again suggesting that the disease sites may have different 
prognostic factors separate from their designation as “CCA.”

Additional work is proceeding to determine the optimal regimen to be used in a 
neoadjuvant fashion. Using as a standard previous studies identifying the combina-
tion of gemcitabine and cisplatin in the setting of advanced CCA [31], alterations 
in the systemic chemotherapy for advanced or borderline-resectable CCA are being 
explored as are varying regional treatments. Building upon experience using the 
combination of gemcitabine, cisplatin, and albumin-bound (nab)-paclitaxel (GAP) 
for the treatment of pancreatic adenocarcinoma, this chemotherapy regimen was 
used in a phase II clinical trial for advanced CCA. This cohort of 60 patients receiv-
ing treatment included 63% iCCA, 22% adenocarcinoma of the gallbladder, and 
15% extrahepatic CCA; 78% had known metastatic disease, while 22% had locally 
advanced unresectable disease. Compared with historical controls [31], the median 
progression-free survival in this cohort was 11.8, while median overall survival 
was 19.2 months [45]. Given these findings, this treatment regimen has now been 
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advanced to a phase III randomized clinical trial being conducted by the Southwest 
Oncology Group as trial S1815; the control arm will be current standard-of-care 
systemic therapy, gemcitabine and cisplatin. The use of regimens such as this in 
resectable but oncologically high-risk disease (regional lymphadenopathy, multifo-
cal disease, elevated tumor markers, etc.) is also being explored. Given the efficacy 
of the Mayo/MDACC GAP trial and rapid accrual of S1815, we have begun an 
exploratory pilot study of neoadjuvant GAP for resectable but oncologically high- 
risk iCCA (large tumors, major vascular invasion, multifocal disease restricted to 
same lobe, suspicious or positive portal lymph nodes). It is currently enrolling 34 
pts across six high-volume institutions with a primary endpoint of feasibility to 
deliver the regimen and proceed to resection. Secondary outcomes will be recur-
rence, survival, and toxicity (personal communication).

 Additional Therapies

 Radiotherapy for Cholangiocarcinoma

The role of radiotherapy in the treatment of CCA is divided based on the specific 
treatment indication and patient circumstance. Radiotherapy can be delivered after 
curative-intent surgery (adjuvant radiotherapy), in a neoadjuvant setting prior to 
planned OLT for perihilar CCA, as selective internal radiotherapy for local control 
of a locally advanced liver lesion as well as potentially to induce hypertrophy of a 
planned future liver remnant, or as local control lesions for which definitive surgical 
resection is not possible or planned, as also discussed elsewhere in this book (Chap. 
17, Hessey and Bridgewater).

Following curative-intent resection, multiple retrospective studies suggest a ben-
efit to adjuvant radiotherapy combined with concurrent chemotherapy. This ben-
efit seems to be highlighted in patients with R1 resection, close margins, or lymph 
node-positive disease [46, 47]. A more recent meta-analysis including over 1400 
patients with dCCA and adenocarcinoma of the gallbladder found 5-year overall 
survival benefit to adjuvant radiotherapy in patients with positive lymph nodes as 
well as R1 margins; local recurrence was also reduced in patients who received 
adjuvant RT. [48]

A US multi-institutional single-arm phase II trial demonstrated safety of a regi-
men consisting of adjuvant gemcitabine and capecitabine followed by conformal 
external beam radiation therapy (EBRT) with concurrent capecitabine. This trial 
included patients with resected perihilar and extrahepatic CCA as well as adeno-
carcinoma of the gallbladder. While no survival differences were noted between 
patients with R0 and R1 resection margins, overall survival and local control rates 
were 68% and 87%, respectively, at 2 years after resection. The regimen was overall 
well-tolerated [26].

Postoperative radiotherapy or radiotherapy delivered with the goal of local con-
trol in the setting of advanced or unresectable disease must consider both local 
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control and toxicity to surrounding structures. Radiotherapy is also typically admin-
istered as part of a multidisciplinary protocol for patients with early pCCAs who 
are deemed eligible for OLT. Publications describing complications in these settings 
typically highlight the local control afforded contrasted with the described side 
effects of stereotactic body radiotherapy (SBRT) for locally advanced and unre-
sectable tumors. While local control, described as absence of disease progression 
in the radiated field, may be attainable, duodenal toxicity hemorrhage, duodenal 
stenosis, biliary stricture distant from the tumor site, and abdominal pain may result 
from focused high-dose radiotherapy [49–51]. Patients undergoing RT as part of a 
treatment algorithm with the possibility of resection must also be surveilled for the 
development of hepatic or distant metastases [50].

Hepatic artery radioembolization (HARE) or selective internal radiotherapy 
(SIRT) utilizes the tumor-treating effects of microspheres bonded with radiation- 
emitting isotopes to treat liver tumors from within their microvascular bed. HARE 
for iCCA is described for multiple indications including for local-regional therapy 
to downstage an advanced tumor in conjunction with systemic chemotherapy; to 
treat tumor while also inducing liver remnant hypertrophy; and to provide local 
control in a palliative setting when no surgical resection is possible based on tumor 
extent, liver remnant volume, metastatic disease, or patient factors that preclude 
curative resection [52].

While many small series demonstrate the feasibility of HARE for unresectable 
iCCA in a palliative approach, the combined use of HARE with systemic cytotoxic 
chemotherapy has been studied in a multi-institutional phase II clinical trial after 
initial results from an institutional study demonstrated local tumor control and the 
ability to decrease tumor volume and achieve R0 resections in a subset of patients 
[53]. HARE followed by systemic chemotherapy was used to assess disease biol-
ogy and potentially enhance the resectability of locally advanced iCCA that was 
chemotherapy naïve. Response was assessed at 3 months after HARE during which 
time systemic therapy with gemcitabine and cisplatin was being administered. Over 
this period, disease control (including failure to progress as well as radiographic 
response) was 98%. Median overall survival was 22 months in this cohort of 41 
patients with 22% of patients found to have disease response to therapy that allowed 
for surgical resection [54]. In a pooled analysis of studies with varying designs, 
overall survival following HARE for unresectable iCCA was over 15 months. While 
this is longer than trials treating patients with definitive chemotherapy for advanced 
iCCA, many of the trials in this pooled analysis included patients who had been and 
continued to receive systemic therapy after HARE [55].

 Liver Transplantation for Cholangiocarcinoma

OLT has been described for patients with early-stage pCCA and is conducted at 
a few select centers following rigorous systemic and local-regional radiotherapy 
followed by surveillance. This procedure is considered for patients meeting strict 
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inclusion criteria: unresectable hilar/perihilar tumor with a diameter of <3 cm and 
the absence of hepatic or systemic metastases; social history, social support, and 
patient comorbidity as well as oncologic historical factors required for transplant 
listing in the setting of end-stage liver disease also apply to patients being consid-
ered in OLT for pCCA protocols [56]. The pretransplant therapy consists of hilar 
radiotherapy with concurrent chemosensitization, brachytherapy, and then a period 
of chemotherapy during a surveillance period prior to listing for OLT [57]. After 
meeting these initial inclusion criteria and enjoying favorable response to chemo-
therapy, patients undergoing OLT for pCCA have been found to have disease-free 
survival of 65–70% [57, 58].

Centers experienced in OLT for pCCA protocols as well as living donor OLT 
(LDLT) have published results of LDLT for pCCA. The recipients were treated with 
similar pretransplant therapy including radiation and chemotherapy. Compared to 
other LDLT patients, those undergoing LDLT for pCCA developed late vascular 
anastomotic and bilioenteric anastomotic complications than patients undergoing 
LDLT for other indications. While the vascular complications did not negatively 
affect survival in the analysis, residual tumor found in the explanted liver did con-
tribute to inferior survival. Overall survival at 5 years in this cohort of patients was 
66.5% [59].

Given the positive outcomes following OLT for pCCA, the feasibility of OLT 
for iCCA has been investigated as a potential treatment option. An initial retrospec-
tive study published in 2014 demonstrated through pooling of results from several 
European centers a 5-year actuarial survival of 73% in patients with known cirrhosis 
and what was termed “very early” iCCA; these were defined as tumors less than or 
equaled to 2 cm in diameter [60]. Of the 29 patients included in the study, 4 had 
tumors found incidentally in the explanted liver. The study also identified factors 
associated with tumor recurrence, such as size >2 cm, multinodular tumor, vascu-
lar invasion, and poor tumor differentiation. This leads the authors to suggest that 
patients with known lesions meeting these criteria in a setting of cirrhosis may be 
able to receive OLT and not be excluded based on the presence of an iCCA.

An international follow-up building upon the 2014 study reaffirmed these find-
ings, this time delineating two groups, “very early” iCCA (tumor ≤2  cm) and 
“advanced” iCCA (any tumor greater than 2  cm in size or multinodular). Those 
in the “very early” group had a 5-year survival of 65% compared with 45% in the 
advanced group [61]. Additional selection criteria and description of outcomes of 
OLT for CCA is discussed further in a separate chapter of this book (Chap. 15, 
Butler and Agopian).

 Hepatic Arterial Infusion Pump Therapy

A recent phase II trial conducted at two high-volume hepatobiliary cancer cen-
ters has investigated the use of hepatic arterial infusion (HAI) pump therapy with 
concurrent systemic chemotherapy for the treatment and potential downstaging of 
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locally advanced and unresectable iCCA. The trial enrolled patients whose disease 
was considered advanced based on extensive vascular or biliary involvement, mul-
tifocal disease, regional lymphadenopathy, or a combination of these findings that 
would preclude curative surgical therapy with negative (R0) margin; patients with 
regional nodal disease that could be resected at the time of HAI pump placement 
were allowed to enroll. In the cohort enrolled at the primary site, 47% of patients 
had resectable regional nodal disease. With a primary outcome of 80% progression- 
free survival at 6  months, 42 patients were enrolled at the primary site with 38 
of these patients receiving the full treatment regimen of floxuridine via HAI and 
systemic gemcitabine and oxaliplatin. A confirmatory cohort of 10 patients was 
enrolled at the second center.

Of the 38 patients receiving therapy at the primary center, 58% achieved radio-
graphic partial response to therapy at 6  months, and 84% of patients had radio-
graphic disease stability at 6 months. Of this cohort of 38 patients, 4 (10.5%) were 
successfully downstaged by this treatment regimen to the extent that curative surgi-
cal resection was pursued. In the entire cohort, median progression-free survival 
was 11.8 months, while median overall survival was 25 months. There was no sur-
vival difference noted between patients with and those without regional lymph node 
metastases at the time of enrollment.

This trial highlights a potential additional treatment strategy for patients with 
advanced iCCA without distant metastases in centers with HAI pump experience. 
Additionally, differences in treatment response were noted based on certain tumor 
genetic mutations. An important inclusion criterion, the inclusion of patients with 
resectable regional nodal disease, underscores the ability to attain similar survival 
outcomes in patients with resectable nodal disease in the setting of aggressive sys-
temic and regional therapy [62].

 Targeted Therapy

Evaluation of tumor genomics from the anatomical location subtypes of CCA has 
demonstrated varying patterns of genetic mutations among tumors occurring at dif-
ferent locations in the biliary tract. While not all of these mutations are currently 
tied to prognosis, some, such as BAP1 and PBRM1 mutations, are associated with 
a predilection for bone metastases and worse survival in dCCA [63]. Further study, 
examining differences in genetic mutations among patients with and without fluke- 
associated CCA, has demonstrated survival differences [64]. Taken in concert with 
the immune-related factors associated with prognosis and mentioned previously 
in this chapter [8, 9, 11], the future treatment of CCA may increasingly integrate 
the use of targeted molecular therapy along with cytotoxic chemotherapy based 
on tumor-specific mutational profiles. Previous clinical trials combining cytotoxic 
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chemotherapy with targeted agents have yet to demonstrate significant survival or 
progression differences in patients with advanced disease [65, 66]. These trials did 
not, however, have patient-specific targeted therapy based on their tumor’s unique 
mutation profiles.

Tumor molecular profiling studies have identified medication-targetable muta-
tions in multiple genes in iCCA, accounting for the finding of actionable target(s) 
mutations in approximately 50% of patients [67]. Prevalence of common gene 
mutations in analyzed iCCA is summarized in Table 16.3.

Multiple clinical trials are currently enrolling to investigate epidermal growth 
factor receptor (EGFR) inhibitors (regorafenib, apatinib), isocitrate dehydroge-
nase (IDH) and fibroblast growth factor receptor (FGRF) inhibitors (erdafitinib, 
ponatinib, niraparib), and checkpoint inhibitors (nivolumab, pembrolizumab, dur-
valumab) in advanced CCA with or without concurrent cytotoxic chemotherapy 
[63]. MEK pathway inhibitors, BRAF inhibitors, and vascular endothelial growth 
factor (VEGF) inhibitors have also been investigated [68–70], among others. A sum-
mary of targeted agents along with their corresponding gene mutation is provided in 
Table 16.4. Additional study is also focusing on using targeted therapies to disrupt 
the tumor micro-environment to facilitate the delivery of convention cytotoxic ther-
apies into tumors that have been previously chemotherapy-resistant as an additional 
novel approach to deliver available and indication-approved drugs into intrahepatic 
tumors [71]. Enrolling and active clinical trials have focused on advanced disease 
and patients with unresectable tumors; further investigation is underway to establish 
the roles of targeted therapy following curative-intent resection or in the setting of 
local or systemic disease recurrence.

Additional interest is beginning to focus on determining the role of targeted ther-
apy agents in the neoadjuvant setting for patients with locally advanced, potentially 
resectable disease or with oncologically high-risk disease, such as in the presence of 
a multifocal unilobar tumor, portal lymphadenopathy, or high tumor markers. These 
patients must be completely staged with cross-sectional imaging, and consideration 
must be given to peritoneal staging to rule out the presence of occult metastatic dis-
ease prior to embarking on therapy with neoadjuvant intent. Further study is needed 

Table 16.3 Prevalence of actionable 
gene mutations identified in 
iCCA tumors

Gene mutation Prevalence

IDH1 30%
ARID1A 23%
BAP1 20%
TP53 20%
FGFR2 (fusion/rearrangement) 14%

Adapted from Lowery et al. [67]
IDH1 isocitrate dehydrogenase 1, BAP1 ubiquitin car-
boxyl-terminal hydrolase BAP1, TP53 tumor protein 53, 
FGFR2 fibroblast growth factor receptor 2
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to determine the optimal treatment regimen and if targeted therapy will be given along 
with or in place of cytotoxic agents. Certainly, tissue biopsy with molecular profiling 
will be needed in these cases in order to best determine treatment regimens; should 
they include targeted therapy and cytotoxic chemotherapy, regimens must be tailored 
to account for drug-specific toxicity profiles. A conceptual algorithm incorporating 
the evaluation components, decision process for neoadjuvant therapy, and additional 
considerations such as the use of targeted therapy is provided in Fig.16.1. Cases of 
this complexity should be thoroughly discussed in multidisciplinary format incorpo-
rating medical and surgical oncology as well as interventional gastroenterology and 
radiology perspectives; when modifiable patient risk factors are identified, additional 
specialists may be included to augment specific prehabilitation programs.

Table 16.4 Summary of molecular mutations and targeted therapy agents available or currently 
enrolling in clinical trials for treatment of CCA

NTRK (gene fusion) Entrectinib
Larotrectinib

FGFR1-3 (fusion/rearrangement) Pembrolizumab
Erdafitinib
Ponatinib
Infigratinib
Ganetespib (hsp90 inhibitor)a

IDH1 Ivosedinib
IDH2 Enasidenib
HER2 Trastuzumab emtansine
BRCA mutation Niraparib
ROS1 kinase fusion protein (including ALK fusion) Ceritinib

Entrectinib
KRAS mutation Selumetinib (MEK inhibitor)
BRAF Vemurafenib
MET/EGFR/MAPK Tivantinib
VEGFR Ramucirumab
Checkpoint inhibitor therapy
PD-1 Pembrolizumab

Nivolumab
Durvalumab

Anti-CTLA-4 antibodies Ipilimumab
Tremelimumab

NTRK neurotrophic tropomyosin-related kinase, FGFR fibroblast growth factor receptor, IDH iso-
citrate dehydrogenase, HER2 human epidermal growth factor receptor 2, BRCA breast cancer 
gene, ROS proto-oncogene tyrosine-protein kinase ROS, ALK anaplastic lymphoma kinase, KRAS 
Kirsten rat sarcoma viral oncogene homolog, EGFR epidermal growth factor receptor, MAPK 
mitogen-activated protein kinase, VEGFR vascular endothelial growth factor receptor, PD-1 pro-
grammed death protein 1, CTLA-4 cytotoxic T-lymphocyte-associated antigen
aGanetespib is an inhibitor of heat-shock protein 90 (hsp90), a downstream modulator of activity 
in FGFR2 mutations
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 Conclusions

The treatment of CCA has evolved from a strategy based largely upon disease 
location to one that incorporates tumor- and patient-specific biological con-
siderations. Collaborative efforts and clinical trials are providing data to guide 
treatment options as well as to identify patient and disease risk factors that sug-
gest when and which patients may benefit from neoadjuvant-intent therapy. For 
patients with advanced disease, the incorporation of recently developed therapies 
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6) Clinical trial

Labs Procedures

Fig. 16.1 Conceptual treatment flowchart for intrahepatic cholangiocarcinoma incorporating clin-
ical evaluation, staging, and therapeutic options. Abbreviations: CT computed tomography, C/A/P 
chest/abdomen/pelvis, LFT liver function test, CA19-9 cancer antigen 19-8, AFP α-fetoprotein, 
EGD esophagogastroduodenoscopy, ERCP endoscopic retrograde cholangiopancreatography, 
iCCA intrahepatic cholangiocarcinoma, GAP gemcitabine/abraxane/nab-paclitaxel. * Viral hepa-
titis serology may be considered in patients with known chronic liver disease or in those with 
concern for exposure to viral hepatitis; ** ERCP may be considered to obtain biopsy if there 
is a significant intraductal component or for therapeutic purposes should a future liver remnant 
need to be decompressed prior to initiation of systemic therapy or surgery, when planned; ‡ 
Immunotherapy is currently indicated for tumors with an identified elevated mutation burden or in 
cases with identified mismatch repair (MMR) defects
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may lead to improvements over historical survival data derived from trials analyz-
ing palliative therapies. As insights from ongoing trials are gained, the treatment 
landscape for CCA is likely to continue to evolve to include multidrug regimens, 
targeted therapies, and regional therapies. The widespread use of molecular pro-
filing of tumors is also expanding our knowledge of this disease process and 
further argues for an individualized, multidisciplinary approach to care for these 
patients.
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RAM  ramucirumab
SBRT  stereotactic body radiotherapy
SEER  US Surveillance, Epidemiology, and End Results
SIRT  selective internal radiotherapy
VEGF  vascular endothelial growth factor

 Introduction

Biliary tract cancers (BTCs) are a heterogenous group including cholangiocarcinoma 
(intrahepatic, hilar, and extrahepatic subtypes), gallbladder carcinoma, and ampullary 
carcinoma. Their relative rarity leads to BTCs often being pooled in clinical studies in 
order to achieve sufficient sample sizes. The phase III clinical trials that currently 
guide practice are no exception; consequently, this chapter describes the management 
of BTCs. Cholangiocarcinoma-specific data will be emphasized where available.

The majority of BTCs present in an advanced stage of disease owing to late onset 
or absence of symptoms and aggressive tumour biology. “Advanced” in this context 
describes distinct disease patterns: locally advanced and metastatic, which are uni-
fied by being unresectable at presentation and therefore incurable. The term may 
also refer to patients who have had surgery but then relapsed with local or metastatic 
disease or who have had incomplete resection of their disease, although “relapsed” 
is preferred.

Systemic chemotherapy is the mainstay of management in all of these scenarios. 
It is administered with palliative intentions: to lessen symptoms, improve quality of 
life (QoL), and prolong life. Without treatment, the median overall survival (OS) of 
patients with BTCs is poor, approximately 4 months [1–3].

The first section of this chapter summarizes the evidence that supports the use of 
chemotherapy as the first-line treatment for advanced BTCs. It also reviews the 
emerging remit of second-line chemotherapy. Section two of this chapter provides 
an overview of the evidence for radiotherapy in the management of advanced BTCs, 
which remains relatively undefined. Figure 17.1 illustrates a summary schematic of 
the treatment strategy for advanced BTCs as discussed in this chapter.

 Palliative Chemotherapy for Advanced BTCs

Two decades ago, it was clear that treatment with systemic chemotherapy improved 
survival in BTCs compared to best supportive care [1, 3], but evidence favouring 
one agent over another was sparse. A systematic review published in 2007 identified 
104 studies evaluating chemotherapy for advanced BTCs, of which only 3 were 
randomized controlled trials, each with a small sample size. Their pooled analysis 
suggested that chemotherapy with gemcitabine alone, fluorouracil alone, or either in 
combination with a platinum agent yielded the best response rates [4].
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 First-Line Systemic Chemotherapy

The Advanced Biliary Tract Cancer (ABC)-02 study was a large, UK-based phase 
III randomized trial that compared gemcitabine in combination with cisplatin 
(GemCis) to gemcitabine alone in patients with locally advanced or metastatic 
BTCs. It was an extension of the ABC-01 phase II randomized trial which demon-
strated an improvement in 6-month progression-free survival (PFS) with GemCis 
over gemcitabine alone [5]. In total, 410 patients were recruited: 242 cholangiocar-
cinoma (80 intrahepatic, 73 extrahepatic, 57 hilar), 148 gallbladder, and 20 ampul-
lary cancers [6]. As depicted in Fig. 17.2, a statistically significant improvement in 
median OS was observed with GemCis (11.7  months) compared to gemcitabine 
alone (8.1 months, hazard ratio [HR] 0.64, 95% confidence interval [CI] 0.52–0.80). 
The median PFS was also significantly improved in the combination arm (8.0 vs 
5.0 months, HR 0.63, 95% CI 0.51–0.77) [6].

At the same time, a parallel study, Biliary Tract (BT) 22 (n = 83), was underway 
in Japan. Using an identical treatment regimen, the BT22 study demonstrated that 
GemCis improved median OS compared to gemcitabine alone (11.2 vs 7.7 months, 
respectively, HR 0.69, 95% CI 0.42–1.13) [7]. The outcome data were strikingly 
consistent to those reported in ABC-02.

To achieve greater statistical power in the evaluation of the treatment effect, 
the UK and Japanese investigators performed a meta-analysis of the two trials. 
Confirming prior findings, compared with gemcitabine alone, the GemCis com-
bination was associated with a significant improvement in median PFS 
and OS [8].

Fig. 17.1 Treatment 
algorithm for advanced 
BTCs. Gem gemcitabine, 
Cis cisplatin. *Low-level 
evidence: the precise 
timing, disease setting, and 
modality of radiotherapy to 
use remains uncertain
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Based on this level 1 evidence, gemcitabine (1000 mg/m2) and cisplatin (25 mg/
m2), each on days 1 and 8 of a 21-day regimen, became the standard of care for 
patients with locally advanced, unresectable, or metastatic BTCs [9].

 Tolerability

Toxicity
Common adverse effects of GemCis include haematologic toxicity, liver injury, 
fatigue, nausea, vomiting, alopecia, anorexia, impaired renal function, thromboem-
bolism, and infection. In the ABC-02 trial, there was a non-significant increase in 
neutropenia in patients treated with GemCis, but the number of infections was simi-
lar in the two groups. Liver enzyme levels were more frequently deranged in the 
gemcitabine alone group (27.1%) compared to the GemCis group (16.7%), likely 
owing to better disease control in the latter [6].

Quality of Life
The modest survival benefit achieved with GemCis and poor overall prognosis of 
patients with advanced BTCs warrant careful consideration of the impact of this 
treatment on QoL. A follow-up study examined the QoL of 324 patients enrolled in 
the ABC-02 trial before, during, and after their treatment using validated QoL ques-
tionnaires. Patients who received GemCis had more favourable scores on scales 
relating to digestive symptoms, global health, social functioning, appetite loss, 
financial difficulties, insomnia, and satisfaction with health-care compared to 
patients who received gemcitabine alone, although statistical significance was not 
reached. Improved survival outcome was associated with better scores in global 
health, role functioning, physical functioning, and sexual functioning parame-
ters [10].
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Fig. 17.2 Kaplan–Meier 
survival curve from the 
ABC-02 trial 
demonstrating overall 
survival in patients with 
advanced BTCs who 
received gemcitabine plus 
cisplatin (solid line) versus 
gemcitabine alone (dotted 
line). (Adapted from John 
Bridgewater’s 2009 
presentation of the ABC-02 
data)
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 Specific Considerations

BTC Subtype
Molecular profiling studies demonstrate significant genetic heterogeneity between 
BTCs according to their anatomical subtype. Intrahepatic cholangiocarcinoma, in 
particular, is a distinct entity [11]. Subgroup and post hoc analyses of the ABC trial 
patients have been performed to investigate the potential differences in response to 
GemCis chemotherapy between BTC subtypes. No significant difference in PFS or 
OS was identified between patients with cholangiocarcinoma (all subtypes) and 
gallbladder or ampullary carcinomas [10].

Among patients who received GemCis, those with intrahepatic cholangiocarci-
noma had a longer median OS (15.4 months) compared to all other BTCs (11.7 months, 
HR 0.72, 95%CI 0.53–0.98, p = 0.04). The authors attribute this observation to a dif-
ference natural history rather than a better response to palliative chemotherapy [12].

Performance Status
The Eastern Cooperative Oncology Group (ECOG) Scale of Performance Status 
(PS) is an indicator of a patient’s functional level. Ranked on a scale from 0 to 5, PS 
0 is fully active, PS 1 is restricted in strenuous activity, PS 2 is ambulatory and self- 
caring but unable to work, PS 3 is limited ability to self-care, PS 4 is completely 
disabled, and PS 5 is dead. The ABC-02 trial included patients with PS between 0 
and 2. Higher PS was associated with poorer survival in the ABC-02 patients (PS 2, 
HR: 2.35; 95% CI: 1.68–3.28, P < 0.001) [10].

Importantly, patients with a good PS (0–1) appear to derive greater benefit from 
GemCis combination chemotherapy than patients who are PS 2. A subgroup analy-
sis showed that median OS of patients who were PS 2 was not significantly different 
between the combination and monotherapy arms (HR 0.88, 95% CI 0.50–1.56) [8]. 
Hence, it is preferable to consider gemcitabine monotherapy in these patients [9].

 Alternative Gemcitabine-Based Regimens

Prior to 2010, when GemCis was established as the first-line standard of care, sev-
eral chemotherapy regimens were used to treat advanced BTCs. During this time, 
small, early-phase trials suggested fluoropyrimidines have efficacy against BTCs 
[4]. This data, as well as the relative comparability of platinum agents, provides 
rationale for conducting trials evaluating the following combinations.

Gemcitabine Plus S1
S1 is an oral fluoropyrimidine used in gastrointestinal malignancies. FUGA-BT was a 
Japanese phase III non-inferiority study (n = 354) comparing first-line gemcitabine 
plus S1 (Gem-S1) to the standard of care GemCis for patients with advanced or recur-
rent BTCs in terms of OS. Gem-S1 was non-inferior to GemCis; median PFS (6.8 vs 
5.8 months) and median OS (13.4 vs 15.1 months, respectively, HR 0.945, 90% CI 
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0.78–1.15, p = 0.046 for non-inferiority). There was also no significant difference in 
the rate of adverse events between the arms (29.9% in Gem-S1, 35.1% in GemCis) 
[13]. Gem-S1, therefore, is considered an alternative standard of care option. It is 
predominantly used in Asian countries for patients with advanced or recurrent BTCs.

Gemcitabine Plus Oxaliplatin
Oxaliplatin is an alternative platinum agent to cisplatin which is less ototoxic and 
less nephrotoxic. Prior to the publication of ABC-02, a single-arm phase II study 
demonstrated that first-line gemcitabine plus oxaliplatin (GemOx) achieved a 
median PFS of 3.4 months and median OS of 8.8 months in patients with advanced 
BTCs [14]. A recent phase III trial conducted in India in patients with advanced 
gallbladder cancer (n = 260) compared first-line modified GemOx (mGemOx) to 
GemCis. The doses of gemcitabine and oxaliplatin are both lower in the modified 
regimen compared to the standard GemOx regimen. Median OS was not signifi-
cantly different between the groups: 9 months in the mGemOx arm and 8.3 months 
in CisGem arm (HR 0.78, 95% CI 0.60–1.01). Thrombocytopenia and neuropathy 
were more common in the mGemOx arm, and renal dysfunction was more common 
in the GemCis arm, in keeping with the known toxicity profiles of the agents [15]. 
No non-inferiority analysis was performed. This trial did not include any patients 
with cholangiocarcinoma, limiting its generalizability to management of BTCs in 
Western countries. Nonetheless, the activity of GemOx is likely to be similar to 
GemCis; thus GemOx could be considered if a patient was unable to receive cisplatin.

A Fluoropyrimidine Instead of Gemcitabine
Capecitabine is the oral prodrug of the fluoropyrimidine fluorouracil (5-FU). 
Capecitabine plus oxaliplatin (CapOx) is a well-tolerated combination used in gas-
tric and colorectal malignancies. A phase III non-inferiority trial conducted in South 
Korea (n  =  222) investigated the efficacy of CapOx versus GemOx as first-line 
therapy for advanced BTCs [16]. The median PFS was 5.3 months for the GemOx 
group and 5.8 months for the CapOx group, meeting their criteria for non-inferior-
ity. There was additionally no difference in OS. While the authors concluded that 
CapOx is an alternative first- line treatment for advanced BCTs, this has not been 
widely adopted into our practice.

 Adding Targeted Therapies to Chemotherapy

The increased understanding of the molecular basis of BTCs has identified multiple 
new candidate targeted therapies which are under investigation [11]. To date, the 
addition of targeted agents to standard of care chemotherapy has not added clinical 
benefit. While the chapter on targeted therapies will discuss these agents in more 
depth (Chap. 21, Shroff et  al.), the following trials are highlighted because they 
uphold GemCis as the standard of care.

BINGO was a phase II, open-label trial (n  =  150) performed in France and 
Germany that investigated the addition of cetuximab to GemOx for patients with 
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advanced BTCs. Epidermal growth factor receptor (EGFR) signalling regulates bili-
ary epithelial cell growth and proliferation. It is overexpressed in 67–100% of 
BTCs, hence the rationale for using the EGFR inhibitor cetuximab. The addition of 
cetuximab to GemOx did not improve PFS or OS. KRAS, BRAF, and EGFR sta-
tuses were not associated with patient outcome and did not predict response to treat-
ment [17]. Of note, the median PFS and OS in the GemOx control arm was similar 
to that achieved by GemCis in ABC-02.

ABC-03 was a phase II trial (n = 124) that assessed the effect of adding cediranib 
to GemCis on PFS in patients with advanced BTCs. Cediranib is a potent oral inhib-
itor of vascular endothelial growth factor (VEGF) receptors 1, 2, and 3. VEGF is a 
key regulator of angiogenesis. It is overexpressed in 40–75% of BTCs, and overex-
pression has been associated with unfavourable clinical phenotypes. There was no 
significant difference in PFS of patients who received cediranib compared to those 
who received placebo. Moreover, patients who received cediranib had more grade 
3-4 toxicities [18].

A recent phase II placebo-controlled trial (n = 309) evaluated the addition of 
ramucirumab (RAM) or merestinib (MER) to standard of care GemCis chemother-
apy. RAM is a VEGF receptor 2 inhibitor and MER inhibits MET, a member of an 
oncogenic pathway frequently dysregulated in tumours including BTCs. Preliminary 
results presented in abstract form report that the addition of RAM or MER to 
GemCis did not improve PFS or OS. Treatment was well tolerated, with safety pro-
files consistent with known profiles for RAM, MER, and GemCis [19].

The rarity and heterogeneity of BTCs as well as their late presentation and poor 
prognosis pose challenges to studying targeted therapies in this patient group. Trials 
that include molecular stratification strategies may help establish the as yet unde-
fined role of targeted therapies in BTC management. For now, combination chemo-
therapy remains the standard of care.

 First-Line Triplet Chemotherapy

The triplet combination of 5-fluorouracil, leucovorin, oxaliplatin, and irinotecan 
(FOLFIRINOX) was approved as a first-line treatment option for advanced pancre-
atic cancer after it was shown to significantly improve PFS and OS [20]. BTCs have 
some histological, biological, and therapeutic similarities to pancreatic cancer, pro-
viding rationale for assessing this regimen in patients with BTCs. A single-arm 
phase II trial evaluating FOLFIRINOX as salvage treatment for patients with pro-
gressive disease or excessive toxicity following three or more cycles of GemCis 
suggests that it can be administered safely in this setting [21]. AMEBICA was a 
phase II/III randomized trial comparing FOLFIRINOX to GemCis in patients with 
advanced BTCs that aimed to set a new first-line standard of care [22]. However, the 
phase II results did not meet the PFS threshold required to proceed to phase III.

Nanoparticle albumin-bound (nab)-paclitaxel used in combination with gem-
citabine is an alternative first-line treatment for advanced pancreatic cancer [23]. 
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Following the same logic as with FOLFIRINOX, a phase II open-label single-arm trial 
(n = 60) was set up to evaluate the addition of nab-paclitaxel to GemCis for patients 
with advanced BTCs. Impressively, the median PFS was 11.8  months (95% CI 
6.0–15.6), and median OS was 19.2 months (95% CI 13.2 – not estimable). Most 
patients completed six cycles and approximately half required a dose reduction. The 
most common grade 3 or higher adverse event was neutropenia (19 patients, 33%) 
[24]. Given the extension of PFS and OS observed beyond what is expected from the 
current standard of care, there is optimism about the planned phase III randomized trial.

 Second-Line Systemic Chemotherapy

In contrast, to date there is no established second-line systemic therapy for patients 
whose disease progresses during or following first-line GemCis combination therapy [9].

In the ABC-02 trial, 15.3% of patient were treated with second-line chemother-
apy [6]. In the BT22 trial, 75% of patients received second-line chemotherapy [7]. 
Despite the difference in the number of patients treated with second-line chemo-
therapy, the medial OS was similar (11.7 months in ABC-02 and 11.2 months in 
BT22), raising doubt about the benefit of second-line chemotherapy.

A systematic review of the use of second-line chemotherapy for patients with 
advanced BTCs published in 2014 captured outcomes of 761 patients from 25 stud-
ies. The authors reported that select patients with good performance status might 
benefit from second-line chemotherapy but concluded that overall there is insuffi-
cient evidence to recommend its use [25].

The ABC-06 study is a phase III randomized trial that aims to address this clini-
cal question (NCT 01926236). It compares a combination chemotherapy regimen 
including leucovorin, fluorouracil, and oxaliplatin (mFOLFOX) with active symp-
tom control to active symptom control alone in patients with advanced BTCs who 
have progressed on first-line treatment with GemCis. Preliminary results show that 
patients treated with mFOLFOX had marginally improved median OS (6.2 months) 
and a clinically meaningful increase in 6- and 12-month OS rates (50.6% and 
25.9%) compared to active symptom control (5.2 months, 5.5% and 11.4%, respec-
tively) [26]. Of note, the median OS in the active symptom control arm was better 
than in previous reports. These findings, when matured, are likely to determine the 
second-line standard of care for advanced BTCs.

 Summary

• GemCis combination chemotherapy improves OS and is the standard of care for 
patients with unresectable, metastatic, or relapsed BTCs.

• Ongoing studies investigating second-line therapies will continue to build a ther-
apeutic hierarchy for managing advanced BTCs.
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• There is no evidence that BTC subtypes should be treated with different chemo-
therapy regimens, but intrahepatic cholangiocarcinoma represents a distinct dis-
ease entity.

• Patients with an ECOG score of PS 2 (or more) do not benefit from combination 
chemotherapy and should be treated with gemcitabine monotherapy.

 Palliative Radiotherapy for Cholangiocarcinoma Management

Nearly one-half of patients with advanced BTCs have disease confined to the liver 
[12], making loco-regional therapies like radiotherapy attractive options. 
Additionally, strategies that provide local tumour control have the advantage of 
avoiding adverse effects of systemic therapy and increasing the treatment options 
available for patients unfit for systemic therapy. However, owing to a paucity of 
randomized trial data, there is no standard of care radiotherapy for patients with 
advanced BTCs.

The current European guidelines state that radiotherapy “may be considered” in 
patients with localized disease after first-line chemotherapy [9]. Various modalities 
of radiotherapy have been used to treat advanced BTCs, but high-level evidence 
supporting one method over another, the timing in relation to chemotherapy or the 
dose and fractionation of radiation, is scarce. Modalities include external beam 
radiotherapy (EBRT) using either conventional or conformal treatment planning 
techniques; brachytherapy with iridium-192; and, more recently, stereotactic body 
radiotherapy (SBRT). Centres have reported their experiences using these modali-
ties as retrospective series. Data from these series, limited by small sample size and 
selection bias, emphasize the need for randomized controlled trials to define the role 
of radiotherapy in the management of BTCs.

Advances in radiotherapy techniques, including intensity-modulated radiother-
apy, image-guided radiotherapy, and the use of motion management, enable more 
focussed treatments to be delivered at higher doses. Such techniques minimize tox-
icity to the duodenum and adjacent liver tissue, expanding the potential of radio-
therapy in managing BTCs. The following section will summarize lessons from 
historical and contemporary series evaluating radiotherapy techniques in the man-
agement of advanced BTCs. It will also introduce the randomized controlled trial 
that is currently underway.

 External Beam Radiotherapy: The Rationale

Several single-centre, retrospective series conducted in the 1980s reported that 
EBRT might improve survival in patients with unresectable or relapsed BTCs com-
pared to best supportive care [27–29]. More recent series comparing EBRT to best 
supportive care are, understandably, rare. One such study, conducted in 2008, 
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included patients with unresectable intrahepatic cholangiocarcinoma (n = 84) and 
compared 35 patients who received EBRT to 49 patients who did not. None of the 
patients received chemotherapy, and, although not randomized, the groups had 
comparable baseline characteristics. Treated patients received a median dose of 
50 Gy (dose range 30–60 Gy). Median OS was 9.5 months in the treated group and 
5.1 months in the untreated group (p = 0.003) [30].

In the early series, patients treated with higher radiation doses consistently 
achieved higher rates of local disease control and improved OS than patients treated 
with lower doses [27, 29, 31]. Contemporary studies also report a dose-response 
relationship [32–34]. One larger retrospective series (n = 79) found that patients 
with advanced intrahepatic cholangiocarcinoma treated with EBRT who received a 
>80Gy dose survived longer than those who received <80Gy (73% vs 38% alive at 
3 years, respectively) [34]. Although the optimal radiation dose for treating BTCs is 
not known, this trend has led to modalities that permit safe dose escalation being 
favoured.

 Brachytherapy

Intraluminal brachytherapy (ILBT) is one way to boost the radiation dose. It has the 
benefit of delivering high radiation doses over a short distance from the radioactive 
source (iridium-192), thereby sparing the adjacent normal tissues. Access via percu-
taneous transhepatic biliary drains or endoscopy to the site of disease has facilitated 
its use in BTC management for decades. Early series suggested that treating 
advanced BTCs with EBRT combined with ILBT is superior to ERBT alone [35, 
36] or ILBT alone [37]. Since then, most retrospective series evaluating radiother-
apy for locally advanced BTC have combined EBRT with a ILBT boost. These 
single-arm series report high 1-year local control rates (50–87%) and median OS 
rates between 10 and 16 months [38–40].

To compare EBRT to EBRT plus ILBT, the Japanese Radiation Oncology Study 
Group conducted a large retrospective series and generated a comparison arm using 
a propensity-score matched-pair analysis. The series included 209 patients with 
advanced BTCs; 153 received EBRT and 56 received both ILBT and EBRT. The 
authors concluded that EBRT plus ILBT is associated with improved local control 
but has no impact on OS compared to EBRT alone. Fifty-seven percent of patients 
also received chemotherapy, and this was taken into account when generating the 
matched-pair arm [41].

Despite the number of retrospective series published, their heterogeneity pre-
cludes performing a collective analysis of the efficacy of EBRT and ILBT. Poor 
durability of response following initial good local control is a common trend among 
the series [32, 42]. This might explain the conflicting and modest impacts on 
OS. Whether initial local control contributes to a meaningful delay in the develop-
ment of disease-related symptoms or improvement in QoL is not known.
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 Chemoradiotherapy

Due to the non-interventional nature of the available evidence, variations in the type 
and timing of chemotherapy that patients received are too great to draw conclusions 
about the optimal scheduling of radiotherapy in BTC management. A handful of 
retrospective series have compared patients treated with chemoradiotherapy to 
those treated with either chemotherapy or radiotherapy alone.

A retrospective analysis using the US Surveillance, Epidemiology, and End 
Results (SEER) database evaluated the impact of radiotherapy on survival of elderly 
patients with inoperable BTCs diagnosed between 1998 and 2011. Of the 2343 
patients included, 451 (19%) received radiotherapy within 4 months of diagnosis. In 
patients who received chemotherapy (n = 1053), treatment with radiotherapy was 
associated with improved survival (HR 0.82, 95%CI 0.70–0.97, p  =  0.02). In 
patients who did not receive chemotherapy (n = 1290), treatment with radiotherapy 
was not associated with improved survival (HR 1.09, 95%CI 0.91–1.30, p = 0.34). 
It is not possible to determine from this data if the addition of radiotherapy to che-
motherapy achieves better survival or if patients who received both had more 
favourable baseline characteristics [43].

Kim et al. published a retrospective series of patients with unresectable intrahe-
patic cholangiocarcinoma (n = 92) that compared 25 (27.1%) patients who received 
capecitabine cisplatin (XP) chemotherapy with EBRT and 67 (72.8%) patients who 
received XP chemotherapy alone. Patients in the chemoradiotherapy group received 
a mean radiation dose of 44.7 Gy and a mean 5.6 cycles of XP, whereas patients in 
the chemotherapy group received a mean 4.0 cycles. More patients in the chemora-
diotherapy group had a single intrahepatic lesion than those in chemotherapy group 
(72.0% vs 41.3%, p = 0.007). All other characteristics were balanced. Median PFS 
(4.3 vs 1.9 months, p = 0.001) and OS (9.3 vs 6.2 months, p = 0.048) were signifi-
cantly longer in the chemoradiotherapy group than in the chemotherapy group. The 
disease control rate (56.0% vs 41.5%, p = 0.217) and 1-year survival rates (30.4% 
vs 22.4%, p = 0.438) did not differ significantly. There was more neutropenia in the 
chemoradiotherapy group, but otherwise no significant difference in other toxici-
ties [44].

Different results were reported in a phase III trial conducted in France. Patients 
with unresectable advanced BTCs were randomized to chemoradiotherapy (50Gy 
with concurrent 5-FU and cisplatin) or combination GemOx chemotherapy. Median 
PFS and OS were significantly greater in the GemOx arm compared to the chemo-
radiotherapy arm. Grade 3–4 toxicities were mostly haematological (25% and 23%) 
and gastrointestinal (6% and 11%), in the GemOx arm and chemoradiotherapy 
arms, respectively. However, the study closed early after enrolling only 34 patients 
due to poor recruitment [45].

These conflicting findings provide rationale for performing a randomized trial 
comparing chemoradiotherapy and/or chemotherapy followed by radiotherapy to 
standard of care chemotherapy.
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 Stereotactic Body Radiotherapy

Technical advances in recent years enable more precise delivery of radiation, 
thereby permitting safer dose escalation. SBRT is one such a technique. SBRT 
achieves ablative radiation doses with a steep dose gradient and thus reduces toxic-
ity to normal tissues. Fewer fractions are used in SBRT, offering the advantage of a 
short overall treatment time and ease of sequencing with chemotherapy. SBRT has 
been applied to primary and metastatic liver lesions and is becoming the predomi-
nant method used for BTCs.

At present there is no randomized controlled trial evidence to support using 
SBRT to treat advanced BTCs. The retrospective studies evaluating SBRT for chol-
angiocarcinoma management are summarized in Table  17.1. These demonstrate 

Table 17.1 Studies evaluating SBRT in patients with advanced BTCs

Author
Year
Reference

Sample 
size Design

No. of patients 
who had 
chemotherapy,
timing, 
regimen

Median 
dose 
(Gy)/#

1-year 
local 
control 
rate

Median 
OS 
(months)

Grade ≥3 
toxicities

Tse et al. 
2008
[53]

10 
ICCA

P 4/10 (40%)
All prior
3 GemCap
1 5FU

36/6 65% 15 2 LFT 
elevation, 2 
worsening 
cirrhosis, 1 late 
bowel 
obstruction

Kopek 
et al. 2010
[48]

29 
HCCA
1 
ICCA

R None 45/3 84% 9.6 6 duodenal/
pyloric ulcer, 2 
duodenal 
stenosis

Momm 
et al. 2010
[50]

13 
HCCA

R 6/13 (46%)
2 prior, 4 post
Highly variable 
regimens

47.5/3 
or 4

NR 33.5 No severe 
toxicities

Polistina 
et al. 2011
[51]

10 
HCCA

R 10/10 (100%)
All 
concomitant 
weekly 
gemcitabine

30/3 80% at 
6 months

35.5 1 duodenal 
ulcer, 2 
duodenal 
stenosis

Barney 
et al. 2012a

[46]

6 
ICCA
3 
HCCA
1 
ECCA

R 8/10 (80%)
4 prior, 4 post
Regimens not 
listed

55/3 
or 5

100% 14 1 biliary 
stenosis, 1 
liver failure

Jung et al. 
2014a

[47]

33 
ICCA
25 
ECCA

R Not specified 45/3 85% 10 2 gastric/
duodenal ulcer, 
1 gastric 
perforation, 3 
biliary 
infection/
stenosis
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good 1-year local control rates (65–100%), generally superior to those achieved by 
EBRT [34, 46–53]. Survival outcomes in these series are reasonable, but interpreta-
tion is limited by confounding variables such as the natural history of the cholangio-
carcinoma subtypes included and additional treatment with chemotherapy.

Although SBRT is well tolerated and associated with fewer adverse effects than 
EBRT, toxicity remains a recognized limitation of using SBRT to treat hepatobiliary 
tumours. A phase II trial evaluating SBRT for pancreatic adenocarcinomas following 
gemcitabine chemotherapy reported severe gastrointestinal toxicity in 13% of 
patients [54]. Similar rates of toxicities are seen when SBRT is used the treat cholan-
giocarcinoma (Table 17.1). Rates of toxicity appear to be lower for patients with 
intrahepatic cholangiocarcinoma, thought to be due to the increased distance between 
the tumour and structures such as the stomach, duodenum, and jejunum [55, 56].

A 2014 meta-analysis evaluating radiotherapy modalities in primary liver 
tumours concluded that treating advanced cholangiocarcinoma with SBRT offers 
promising local control rates and acceptable toxicity, but small patient numbers and 
a lack of prospective trial data limit the interpretation of its role [55].

Table 17.1 (continued)

Author
Year
Reference

Sample 
size Design

No. of patients 
who had 
chemotherapy,
timing, 
regimen

Median 
dose 
(Gy)/#

1-year 
local 
control 
rate

Median 
OS 
(months)

Grade ≥3 
toxicities

Mahadevan 
et al. 2015a

[49]

31 
ICCA
11 
HCCA

R 18/32 (56%)
All prior
16 GemCis
2 Gem

30/3 88% 17 2 duodenal 
ulcer, 1 biliary 
infection, 1 
liver abscess

Sandler 
et al. 2016b

[52]

6 
ICCA
25 
HCCA

R 23/31 (74%)
All prior
19 GemCis
2 Gem
1 GemOx
1 CapOx

40/3 78% 15.7 3 duodenal 
obstruction, 3 
duodenal 
haemorrhage

Tao et al. 
2016
[34]

79 
ICCA

R 70/79 (87%) 
prior
Most GemCis
50/79 (63%) 
concurrent
Most 
capecitabine
37/79 (47%) 
after
Most 
irinotecan

58/3 
to 30

81% 30 No severe 
toxicities

P prospective, R retrospective, # fraction, NR not reported, OS overall survival, ICCA intrahepatic 
cholangiocarcinoma, HCCA hilar cholangiocarcinoma, ECCA extrahepatic cholangiocarcinoma, 
LFT liver function tests
aStudy includes patients with post-operative recurrence or residual disease
bStudy includes patients who proceeded to liver transplantation. Gem gemcitabine, Cap 
capecitabine, Ox oxaliplatin. Toxicities as per Common Terminology Criteria for Adverse Events
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 Proton Beam Therapy

Proton beam therapy (PBT) is an external beam radiation modality using charged 
particles. The advantage over conventional radiotherapy is that proton beams have a 
finite range and therefore no exit dose. This allows normal liver tissue to be spared 
and permits safe dose escalation [57].

A phase II study evaluated hypofractionated PBT in 43 patients with locally 
advanced unresectable or recurrent primary liver tumours, 39 of whom had intrahe-
patic cholangiocarcinoma. The 2-year local control rate was 94%. The median PFS 
was 8.4 months and median OS was 22.5 months. Three patients (7.7%) had grade 
3 toxicity, including liver failure, gastric ulcer, and elevated bilirubin. This median 
OS surpasses that achieved with standard of care chemotherapy (11.7 months) and 
approaches that achieved by surgery (27 months). While promising, the interpreta-
tion of this OS should take into account the predominance of intrahepatic cholan-
giocarcinoma patients included and the exclusion patients with extrahepatic 
disease [58].

A retrospective series of 20 patients with intrahepatic cholangiocarcinoma found 
similar results, reporting a median OS of 27.5 months among patients with localized 
disease. Among patients with extrahepatic metastases, however, median OS was 
9.6 months [59]. A series of mixed BTCs achieved similarly high local control rates, 
but the median OS was lower. The most frequent site of first disease progression 
was out-of-field [60]. Hence, patients with intrahepatic cholangiocarcinoma with-
out extrahepatic metastases are likely to benefit most from PBT and should be the 
focus of future randomized controlled trials.

 The ABC-07 Trial

The variable outcomes in the retrospective studies described demonstrate a clear 
need for a randomized trial that delineates the role of radiotherapy in the manage-
ment of BTCs.

The ABC-07 trial is a multi-centre UK-based phase II randomized trial that 
addresses this need. The study will recruit patients with locally advanced, unresect-
able intrahepatic or extrahepatic cholangiocarcinoma (excluding gallbladder and 
ampullary carcinomas). Patients are randomized to receive eight cycles of standard 
of care GemCis or six cycles of GemCis followed by SBRT. SBRT will be delivered 
in 5 or 15 fractions depending on tumour size at the time of radiotherapy planning. 
The primary outcome is the effect of the addition of SBRT to GemCis on 
PFS. Importantly, secondary outcomes will examine the SBRT toxicity profile, the 
potential to downstage inoperable disease to operable disease, and the impacts on 
QoL. This data will offer much needed clarity to the role of radiotherapy in treating 
advanced BTCs.
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 Summary

• The currently available published data consists of heterogenous retrospective or 
single-arm prospective studies, and interpretation of the outcomes is limited by 
confounding variables (e.g. use of chemotherapy).

• Delivering higher radiation doses confers better outcomes in patients with 
advanced BTCs.

• Techniques that increase precision and radiation dose (SBRT, PBT) are promis-
ing. The role of SBRT will be clarified by the results of the ABC-07 trial.

• Patients with intrahepatic cholangiocarcinoma often have liver-only disease and 
a favourable prognosis, making them ideal candidates for randomized controlled 
trials in this area.
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 Introduction

Cholangiocarcinoma (CCA) is the second most common primary hepatic malig-
nancy after hepatocellular carcinoma. Classification of CCA is typically based 
on anatomic location, with extrahepatic CCA defined as involving the hilum (i.e., 
Klatskin tumor) or common bile duct and intrahepatic CCA (iCCA) defined as 
involving the second-order bile ducts [1]. Over 90% of CCAs are classified as 
extrahepatic, with the majority of those involving the hilum. The incidence of CCA 
appears to be increasing over the past several decades in the United States, with a 
disproportionate increase in particular of iCCA cases [2, 3]. Although many cases 
of CCA are sporadic, several risk factors for CCA development include chronic 
viral hepatitis, primary sclerosing cholangitis, and other chronic biliary tract disor-
ders, including parasitic infections such as hepatobiliary flukes [1].

The prognosis for CCA is generally poor, with median 5-year survival of less than 
10% [4]. Hepatic resection and liver transplantation (LT) are the only potentially 
curative options in the treatment of iCCA, with 5-year survival in patients undergo-
ing surgical resection approximately 30% [5]. However, only approximately 30% 
of patients have resectable disease at the time of diagnosis. In addition, up to half 
of patients that undergo surgical resection develop recurrent disease, with the most 
common site of recurrence being within the remnant liver [6]. Most patients are 
asymptomatic during the initial stages of CCA, which makes early diagnosis and 
treatment extremely challenging. For patients with unresectable disease, systemic 
chemotherapy regimens are not very effective, with less than 1-year median overall 
survival even for standard-of-care chemotherapy with cisplatin and gemcitabine [7].

Interventional radiology (IR) offers several minimally invasive locoregional 
treatment options for unresectable iCCA and liver-dominant metastatic disease. The 
minimally invasive nature of interventional radiology procedures makes them well 
tolerated even in frail patients. Interventional radiology treatment modalities used 
in this context include thermal ablation, transarterial chemoembolization (TACE), 
and transarterial radioembolization (TARE). The aim of this chapter is to provide an 
overview of the different interventional radiology treatments for unresectable iCCA 
and summarize the available clinical data.

 Thermal Ablation

 Overview

Percutaneous thermal ablation is a minimally invasive procedure that uses extreme 
high or low temperatures to cause local tumor necrosis. Due to size constraints 
of ablation zones, thermal ablation is typically utilized in the setting of small- to 
medium-sized non-resectable tumors. Percutaneous placement of the ablation 
probes, which may be performed under CT or ultrasound guidance, makes the 
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procedure well-tolerated even in comorbid patients that are poor surgical candi-
dates. Alternatively, ablation may also be performed concurrently with abdominal 
surgery through an open incision. Studies comparing percutaneous thermal ablative 
techniques to surgery for hepatic malignancies have demonstrated decreased mor-
bidity and recovery times compared to open surgical resection [8–10].

Thermal ablation has been used to treat tumors in organs including the liver, 
kidney, and lung, bone, and soft tissues, which makes it a versatile option for treat-
ment of both iCCA and metastatic disease. The most common ablation techniques 
include high temperature ablation with microwave ablation (MWA) and radiofre-
quency ablation (RFA) and low temperature ablation with cryoablation. RFA applies 
a high-frequency alternating current to tumor cells to generate temperatures up to 
100 C and causes local coagulative necrosis. MWA is a more recently developed 
hyperthermic ablative technique that induces a local electromagnetic field to oscil-
late water molecules within cells. The resultant kinetic energy results in heating of 
local tissue to greater than 100 C [11] (Fig. 18.1). MWA can produce larger abla-
tion zones than RFA, as propagation of the RFA ablation zone is limited by current 
impedance caused by desiccation of tissues. In addition, MWA is less susceptible 
than RFA to heat-sink effect caused by adjacent vascular structures. With less ther-
mal energy dissipation by flowing blood, probability of tumor-kill is increased with 
decreased risk of local recurrence [12].

Cryoablation uses extreme low temperatures to cause direct cellular injury 
and tissue necrosis. The freezing temperatures of cryoablation are generated 
based on the gas-throttling Joule-Thomson effect, with gas expansion after being 
forced through a valve resulting in local cooling. During cryoablation, a liquid 
gas (e.g., argon) flows through the cryoablation probe before rapidly expand-
ing within a chamber at the tip of a probe to generate temperatures down to 
−160 C in the surrounding tissues. Lethal temperature for tumor cells is typi-
cally between −20 and −40 C, with cell death mediated by multiple mechanisms 
including cell membrane damage by ice crystal formation, vascular injury and 
thrombosis, and induction of coagulative necrosis [13]. Cryoablation is unique 

a b c

Fig. 18.1 Patient with multifocal intrahepatic cholangiocarcinoma intolerant of chemotherapy. 
Left hepatic lesions (not shown) were treated with left-lobar Y90 radioembolization. This single 
right-sided lesion shown on contrast-enhanced MRI (a, red circle) was amenable to microwave 
ablation (b). Note high-density hydrodissection (saline with dilute iodinated contrast) to protect 
peritoneum from thermal injury. One month post-ablation (c), contrast-enhanced MRI demon-
strates ablation zone with no residual tumor (yellow circle)

18 Interventional Radiology Therapies for Intrahepatic Cholangiocarcinoma



400

among thermal ablation techniques in that it allows for real-time visualization of 
the cryoablation zone by CT to confirm treatment of the target region.

Novel ablation techniques including irreversible electroporation and high- 
intensity focused ultrasound have promising initial data regarding safety and effi-
cacy. Irreversible electroporation delivers electrical pulses via percutaneous probes 
to destabilize cell membranes and induce pore formation to trigger cell death. His-
tologic studies have demonstrated that irreversible electroporation preserves col-
lagen structures and extracellular matrix within the ablation zone, which makes 
it an attractive potential option for hepatic tumors in close proximity to vascular 
structures and bile ducts [14–16]. High-intensity focused ultrasound is an ablative 
technique that does not require percutaneous probe placement and is performed 
completely noninvasively. The technique focuses high-intensity ultrasound beams 
on a small volume of tissue to generate heat and induce coagulative necrosis [17, 
18]. Further investigation is necessary to determine the utility of these techniques 
in the setting of iCCA.

 Efficacy and Safety Data

The vast majority of studies on thermal ablation of iCCA have examined the out-
comes of hyperthermic ablation with RFA and MWA. Although there is robust out-
comes data for cryoablation in the setting of hepatocellular carcinoma and hepatic 
metastases, additional studies are needed to confirm similar efficacy in the setting 
of iCCA.

Several retrospective case series have examined the safety and efficacy of radio-
frequency ablation in the setting of primary and recurrent CCA. The first case report 
of radiofrequency ablation for iCCA was published in 2002, which reported tech-
nically effective ablation of a single intrahepatic recurrence without evidence of 
residual disease for 10 months of follow-up [19]. Additional case series on RFA 
have demonstrated primary efficacy ranging between 70% and 92%, with primary 
efficacy defined as no evidence of residual tumor on follow-up imaging at 1 month 
[20–23]. A meta-analysis of radiofrequency ablation in the setting of CCA by Han 
et al. comprising 84 patients reported median survival time from time of procedure 
ranging between 20 and 60 months and pooled 1-year, 3-year, and 5-year survival of 
82%, 47%, and 24%, respectively. Pooled local tumor progression at 1 month was 
21% [24]. Prognostic factors for improved progression-free survival following RFA 
include fewer treated lesions and smaller tumor size [24, 25].

MWA has demonstrated similar efficacy in the treatment of both primary and 
recurrent iCCA. A retrospective study by Zhang et al. with 107 patients treated with 
MWA reported median progression-free survival of 8.9 months and median overall 
survival of 28 months [26]. An additional retrospective study by Yu et al. demon-
strated primary efficacy of 87.5% and overall survival at 6, 12, and 24 months of 
79%, 60%, and 60%. Local tumor progression at 4 months was observed in 10.5% 
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of patients with tumors less than 5 cm and 56% for tumors greater than 5 cm [27]. 
A study comparing outcomes of MWA and RFA to surgical resection in the setting 
of recurrent CCA demonstrated no significant difference in disease-free survival or 
overall survival between the two groups [28]. The incidence of major complications 
was significantly higher for surgical resection compared to percutaneous ablation 
(46.9% vs. 3.9%). However, in subgroup analysis of patients with tumors greater 
than 3 cm, there was greater overall survival in the surgical resection group com-
pared to thermal ablation.

Combination of thermal ablation with additional adjunctive interventional radiol-
ogy treatments has the potential to further improve efficacy of ablation in the setting 
of larger tumors. For example, a study by Peng et al. comparing combined RFA with 
transcatheter arterial chemoembolization (TACE) to RFA alone demonstrated sig-
nificantly improved overall survival with the combined therapy for lesions greater 
than 5 cm and in the setting of multiple lesions. Progression-free survival for the 
combined RFA and TACE at 1, 2, and 3 years was 93%, 83%, and 75% [29]. An 
additional study by Yang et al. on combined MWA with TACE demonstrated similar 
improved primary efficacy of 92% without any major complications [30].

Both RFA and MWA are relatively well-tolerated procedures with low rate of 
complications. A meta-analysis of radiofrequency ablation for CCA reported a 
major complication rate of 5.9%, which included two cases of liver abscess, biliary 
stricture, pleural effusion requiring thoracentesis, and pseudoaneurysm formation 
requiring coiling embolization [24]. Similarly, Zhang et al. reported a low major 
complication rate of 2.8% among 107 patients that underwent microwave abla-
tion for CCA [26]. In patients that have many medical comorbidities that are poor 
surgical candidates, thermal ablation is an important potentially curative treatment 
option to consider.

In addition, thermal ablation combined with immunomodulatory therapies (e.g., 
checkpoint inhibitors) is an emerging focus in oncology research [31, 32].  Studies 
have demonstrated that thermal ablation results in a local inflammatory response 
and stimulation of the immune system [33]. Augmentation of this response with 
immunotherapy aims to turn exposed tumor antigens into in situ vaccines to trigger 
a distant antitumor immune response, analogous to the abscopal effect described 
within the field of radiation oncology. A pilot study by Xie et al. investigated the 
efficacy of combined anti-CTLA-4 therapy (tremelimumab) and microwave abla-
tion in 20 patients with unresectable biliary tract cancer [34]. Median progression- 
free survival and overall survival were 3.4 months and 6.0 months, respectively, 
with an overall response rate of 12.5%. The combined therapy demonstrated an 
increased global immune response, with peripheral blood flow cytometry show-
ing an approximately threefold increase in activated CD8+ T cells in circulation 
following treatment. The correlation between the observed immune response and 
local antitumoral effects requires further investigation. Several additional ongoing 
clinical trials are currently studying the efficacy of combined thermal ablation with 
immunotherapy to assess the potential role for this combined therapy in the future 
of oncology care.
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 Chemoembolization

 Overview

TACE is a minimally invasive endovascular procedure which allows for selective 
delivery of chemotherapy and embolic material directly to tumor cells in the liver. 
Originally developed in the 1970s as a treatment for hepatocellular carcinoma, 
TACE has developed into an important palliative treatment option for unresectable 
and liver-dominant metastatic iCCA [35, 36].

The liver receives a dual blood supply from both the portal veins and the hepatic 
arteries. However, hepatic malignancies such as CCA receive the majority of their 
blood supply from the hepatic arteries [37]. This characteristic allows intra-arterial 
therapies such as TACE to be effective even for relatively hypovascular malignan-
cies such as CCA. The treatment effect of TACE is mediated by two main mech-
anisms: concentrated chemotherapy delivery to the tumor and embolic occlusion 
of hepatic arteries supplying the tumor [38]. Selective delivery of chemotherapy 
allows a concentrated dose to be administered to the tumor with decreased risk of 
systemic side effects. Embolization of the hepatic artery has the combined benefit of 
causing tumor ischemia and increasing retention of chemotherapy within the tumor.

During TACE, the chemotherapy agent is delivered intra-arterially either in com-
bination with lipiodol, an ethiodized oil contrast agent, followed by an embolic agent 
(e.g., Gelfoam or polyvinyl alcohol) or coated on drug-eluting beads (Fig. 18.2). 
Administration of chemotherapy in combination with lipiodol and an embolic agent 
is referred to as conventional TACE (cTACE). The most commonly utilized chemo-
therapeutic agents utilized during cTACE for CCA include doxorubicin, cisplatin, 

a b

Fig. 18.2 Patient with multifocal intrahepatic cholangiocarcinoma with single lesion in segment 
II/III not responding to chemotherapy (a, red circle). Due to location near stomach and heart, 
doxorubicin DEB-TACE of this lesion was pursued, with left-hepatic angiogram demonstrating 
faint tumor blush within segment II (b)
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gemcitabine, and mitomycin C. Administration of TACE with drug-eluting beads is 
referred to as DEB-TACE. DEB-TACE, which is typically performed with micro-
beads measuring between 100 and 300 um in diameter, allows for a sustained 
release of the chemotherapy from microbeads lodged within the tumor vasculature 
to maximize the cytotoxic effect [39, 40]. DEB-TACE for CCA is most commonly 
performed with beads coated with either doxorubicin or irinotecan. Bland transar-
terial embolization (TAE), which involves embolization of the tumor vasculature 
without combination with chemotherapy, is another well- recognized approach, and 
several studies have demonstrated no significant difference in survival benefit com-
pared to cTACE and DEB-TACE in the setting of hepatic malignancies [41, 42].

While TACE may induce local disease control in some patients, it is typically 
palliative rather than curative. A study by Lee et al. demonstrated residual viable 
CCA post-TACE in 100% (13/13) of explants following LT. The average percent-
age tumor necrosis following TACE for patients with CCA was 7.6%, significantly 
lower than 75.1% tumor necrosis observed for patients with HCC in the same study 
[43]. Patients with unresectable iCCA routinely undergo multiple TACE treatments 
in order to control or delay progression of disease. Regular follow-up imaging after 
TACE is crucial to guide decision-making regarding further treatment with TACE 
or another therapeutic modality.

 Efficacy and Safety Data

Retrospective studies on conventional TACE in the context of unresectable iCCA have 
demonstrated mean survival between 12 and 21 months post-treatment [35, 44–46]. A 
retrospective study by Park et al. compared outcomes for 72 patients that underwent 
cTACE and 83 patients that received supportive therapy alone and demonstrated a sig-
nificant survival benefit in favor of cTACE of 12.2 months compared to 3.3 months. 
Another retrospective study by Kiefer et al. with 62 patients showed that cTACE fur-
ther improves survival when administered sequentially after systemic chemotherapy, 
with median survival of 28 months with combination therapy relative to 16 months 
with TACE alone [44]. The treatment benefit of cTACE compared to surgical resec-
tion was assessed in a retrospective study by Scheuermann et al., which demonstrated 
superior median survival for R0 surgical resection compared to cTACE, but no signifi-
cant difference in median survival for cTACE compared to margin positive resection 
[47]. Poor prognostic factors for survival in patients undergoing cTACE for iCCA 
include large tumor size, tumor hypovascularity, Child-Pugh class B, and early tumor 
progression on imaging following the procedure [45, 48].

DEB-TACE has also been shown to be of value for patients with iCCA. Retrospec-
tive studies have demonstrated median survival post-DEB-TACE to be between 12 
and 13 months, similar to reported results for cTACE [49, 50]. In a study by Schiffman 
et al. with 24 patients, DEB-TACE demonstrated improved median overall survival 
when performed sequentially following systemic chemotherapy (FOLFOX or GEM-
ZAR) compared to systemic chemotherapy alone (17.5 vs. 7.4 months) [49].
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Patients that undergo TACE may develop post-embolization syndrome in up to 
20–40% of cases, with common symptoms including right upper quadrant pain, nau-
sea, fever, and serum transaminase/bilirubin elevation [51, 52]. These side effects 
typically self-resolve within 24–48 hours and may require an overnight hospitaliza-
tion for observation. Major complications from nontarget embolization including 
gastrointestinal ulceration/perforation, liver abscess, or cholecystitis are rare and 
occur in less than 2–5% of patients [53, 54].

Most studies on TACE in the setting of iCCA are limited by their retrospective 
nature and the lack of standardized treatment protocols. Differences in chemothera-
peutic agents, embolic agents, and operator experience limit comparison between 
different types of TACE procedures and other second-line therapeutic options. 
Based on current evidence, there is no significant difference in overall survival ben-
efit for cTACE compared to DEB-TACE [55, 56]. Future prospective studies are 
required to better assess the treatment benefit of TACE and evaluate the relative 
efficacy of DEB-TACE versus cTACE, as well as appropriate combinations with 
chemotherapy regimens.

 Radioembolization

 Overview

TARE involves intra-arterial delivery of radioactive microspheres to liver tumors 
via the hepatic arteries [57]. Similar to TACE, this procedure draws on the concept 
that hepatic malignancies derive the majority of their blood supply from the hepatic 
arteries. TARE is performed with Yttrium-90 (90Y)-coated microspheres, which 
emit high-energy beta radiation with a half-life of approximately 64.2 hours. The 
Y90-coated microspheres emit high-energy radiation with a mean penetration depth 
of approximately 2.5 mm, thereby sparing much of the surrounding tissue outside 
the area of deposition [58, 59]. 90Y radioembolization is also sometimes referred to 
as selective internal radiation therapy (SIRT) (Fig. 18.3).

There are currently two types of 90Y microspheres available: glass microspheres 
(TheraSpheres, BTG international) and resin microspheres (SIR-Spheres, Sirtex 
Medical). Selection of Y90 microsphere type is dependent on operator experience 
and preference. The two types of microspheres differ in size, with resin microspheres 
measuring 20–60 um compared to 20–30 um for glass microspheres, and radiation 
activity, with glass microspheres associated with a higher radiation dose per micro-
sphere compared to resin microspheres. Resin microspheres are FDA approved for 
treatment of metastatic colorectal cancer to the liver, while glass microspheres are 
approved with a humanitarian device exception for patients with unresectable hepa-
tocellular carcinoma. However, both are utilized in an investigational and off-label 
capacity in the context of iCCA.

Although intra-arterial administration of radioactive microspheres allows for 
high doses of radiation to be delivered selectively to tumors, nontarget delivery 
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of the dose has the potential to cause radiation-induced side effects. In order to 
reduce the risk of nontarget radioembolization, a planning procedure to localize 
and quantify the anticipated distribution of Y90 microspheres is performed approxi-
mately 1–2 weeks prior to the therapy [60]. 99mTechnicium-macroaggregated albu-
min (99mTc-MAA), a diagnostic radiopharmaceutical that is similar in size to Y90 
microspheres, is administered intra-arterially to the hepatic arteries supplying the 
tumor. SPECT-CT is performed immediately afterward to assess the distribution of 
particles. The lung shunt fraction, which is the anticipated proportion of the radia-
tion dose delivered to the lungs, is calculated based on the SPECT-CT results to 
assess the risk for radiation pneumonitis [61] (Fig. 18.4). Progressive dose reduc-
tion is typically performed as the lung shunt fraction increases above 10% of the 
total dose. A radiation dose to the lungs of greater than 30 Gray (Gy) in a sin-
gle treatment or 50 Gy over a series of treatments is a relative contraindication to 
TARE [62]. Pre-procedural angiography during 99mTc-MAA administration has 
the added benefit of characterizing the arterial supply to the tumor and providing an 
opportunity to coil nontarget arteries that supply the gastrointestinal tract that may 
arise from hepatic arteries.

 Efficacy and Safety Data

TARE has been shown to improve survival in the setting of liver-confined unresect-
able iCCA relative to historical controls. In several retrospective studies on Y90 
TARE for unresectable and limited metastatic disease, medial overall survival from 
time of procedure ranged between 9.3 and 22 months [63–66]. Factors associated 
with increased overall survival include higher baseline performance status (ECOG 

a b

Fig. 18.3 Patient with unresectable liver confined intrahepatic cholangiocarcinoma shown as 
hypodense mass on axial contrast-enhanced CT (a). Patient underwent Y90 radioembolization (b). 
Faint tumor blush can be appreciated on this delayed right hepatic artery angiogram  
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0 or 1), tumor burden involving <25% of the liver volume, tumor response to treat-
ment (i.e., partial response or stable disease), and higher radiation dose delivered 
[64, 66]. Decreased overall survival was associated with increased INR, bilirubin, 
CA 19–9, ALT, and MELD score post-treatment [67]. A prospective multicenter 
observational study on the safety and efficacy of TARE for unresectable or lim-
ited metastatic, chemotherapy refractory iCCA by White et al. demonstrated overall 
survival of 8.7  months and progression-free survival of 2.8  months at a median 
follow- up of 13.9 months [68]. Overall, survival outcomes for TARE are compa-
rable to alternative intra-arterial therapies including cTACE and DEB-TACE. How-
ever, there are no randomized clinical trials directly comparing efficacy of TARE, 
TACE, and other second-line therapies for iCCA. A meta-analysis by Boehm et al. 
comparing outcomes from TARE and TACE demonstrated slightly higher median 
overall survival for TARE compared to TACE (13.9 +/− 4.4 months vs. 12.4 +/− 
1.5 months). The response to therapy demonstrated in the meta-analysis (complete 
or partial response) was higher for TARE compared to TACE (27.4 +/− 10% vs. 
17.3 +/− 11.5%) [56].

Treatment with TARE also has the potential benefit of downstaging patients with 
borderline unresectable tumors into surgical candidates. In a study by Mouli et al., 

a

b

c

Fig. 18.4 99mTc-labeled-MAA scintigraphy was performed in a 68-year-old man with intrahepatic 
cholangiocarcinoma. (a) Single photon emission computed tomography (SPECT) imaging per-
formed by rotating a gamma camera around the patient, which demonstrates high uptake in the 
expected location of the liver. Region of photopenia in the left lobe of the liver corresponds to an 
area of central necrosis within a dominant mass. (b) SPECT radiotracer uptake superimposed on a 
low-dose attenuation correction CT demonstrates that the uptake corresponds to the liver without 
evidence of significant extrahepatic uptake. (c) Hepatopulmonary shunt fraction calculated based 
on planar scintigram demonstrates a lung shunt fraction of 7.23%. The patient was able to undergo 
successful treatment without radiation dose reduction
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46 patients with unresectable iCCA were treated with a total of 92 total TARE treat-
ments. Among the 46 patients, 5 (11%) had disease response that allowed them to be 
converted to resectable status and undergo curative R0 resection [69]. Another phase 
II clinical trial combining first-line chemotherapy and TARE for unresectable disease 
demonstrated an overall response rate of 39% by RECIST criteria and allowed 22% 
of patients to be downstaged to surgically resectable status [70]. The survival benefit 
of downstaging tumors for surgical resection was demonstrated in a retrospective 
study by Bourien et al., in which 19% of the patients were downstaged to surgical 
resection and had a subsequent median overall survival of 51.9 months, which was 
significantly higher than 16.4 months for patients treated with TARE alone [64].

TARE is well tolerated in the majority of patients and is typically performed 
as an outpatient procedure. Following the procedure, patients may develop post- 
radioembolization syndrome in up to 20–40% of cases, which includes fatigue, 
nausea, malaise, and right upper quadrant pain. The symptoms of post-radioem-
bolization syndrome are typically less severe than post-embolization syndrome 
observed following TACE and rarely require hospitalization. Side effects related to 
nontarget deposition of radioactive microspheres including gastrointestinal ulcer-
ation, radiation pneumonitis, and liver dysfunction are relatively rare [71, 72].

 Conclusion

Most patients with iCCA are diagnosed at an advanced stage and have a poor 
prognosis. Although surgical resection and LT are potentially curative treatment 
options, only a minority of patients have resectable disease at the time of diagnosis. 
In patients with unresectable and liver-confined or liver-dominant metastatic dis-
ease, locoregional therapies performed by interventional radiology offer effective 
palliative options. Thermal ablation and arterially directed therapies such as TACE 
and TARE have demonstrated survival benefit in retrospective studies comparable 
or even favorable to standard-of-care systemic chemotherapy. In addition, interven-
tional radiology procedures are minimally invasive with lower risk for complica-
tions compared to surgical resection.

Robust clinical data on the efficacy of interventional radiology procedures for 
iCCA is limited by the rarity of the disease, lack of standardized treatment proto-
cols, and retrospective nature of the majority of published studies. In addition, the 
technology within the field of interventional radiology evolves rapidly, with new 
devices and equipment being utilized every few years. Updated prospective trials 
will be necessary to accurately assess the efficacy of interventional radiology pro-
cedures and develop evidence-based indications and guidelines.

Overall, interventional radiology treatments such as thermal ablation and arteri-
ally directed therapies should be considered important components of the treatment 
arsenal for unresectable iCCA.  In the setting of liver-confined or liver-dominant 
disease, these therapies can be used in combination with or as an alternative to 
systemic chemotherapy.
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 Introduction

The term “biomarker” in clinical care refers to biomolecules produced by different 
cell populations in the human body that have been strongly linked with a particular 
disease or disorder [1, 2]. The detection and quantification of these molecules have 
become particularly useful to diagnose diseases at an early stage as well as to select the 
best therapeutic option for personalised medicine. Similarly, some biomarkers can also 
predict patient prognosis and risk of disease relapse [2, 3]. For clinical use, an ideal 
biomarker should be highly specific and sensitive for a disease, being able to differenti-
ate the disease from other biologically related conditions (specificity) and detect the 
disease when low levels of the biomolecule of interest are present (sensitivity) [4, 5].

In the case of CCA, early diagnosis remains an area of critical need, as presently 
65% of patients are diagnosed with an advanced stage of the disease when treatment 
options are very limited [6]. The frequently late diagnosis of CCA is mainly due to 
the non-specific symptoms and clinical manifestations of CCA, which are common 
to other biliary obstructive conditions [7, 8]. In contrast, the 35% of the cases diag-
nosed at early stages have potentially curative options, such as surgical resection or 
liver transplantation [9].

The diagnosis of CCA is based largely on non-invasive imaging, which may include 
contrast-enhanced computed tomography (CT) and magnetic resonance imaging (MRI). 
Endoscopic ultrasonography (EUS), endoscopic retrograde cholangiopancreatography 
(ERCP), and percutaneous transhepatic cholangiography (PTC) have additional roles in 
tissue acquisition and stenting of biliary strictures, with a very small risk of peritoneal 
seeding reported with PTC- and EUS-guided biopsy [10]. Serum biomarkers for diag-
nosis lack sensitivity and specificity [5, 6, 11], and there are currently no biomarkers 
established to predict patient outcome for the different disease sites: extrahepatic CCA 
(eCCA), intrahepatic CCA (iCCA), and perihilar CCA (pCCA) [11].

In this chapter we will review current biomarkers used in the clinical setting for 
the detection of CCA as well as novel strategies still under development for early 
diagnosis, surveillance, and prognostication and grouped according to tissue source 
(see Fig. 19.1).
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 Established Serum Biomarkers

The most commonly used serum biomarkers for the detection of CCA are carbo-
hydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA). However, 
they have low sensitivity and specificity and are not adequate for early diagno-
sis [3, 7].

 CA19-9

CA19-9 is a sialylated Lewis blood group antigen reported for the first time in 
colorectal cancer cells [12]. Synthesis of this biomolecule is directly linked to the 
activity of its two precursor enzymes known as fucosyltransferases 2 and 3 (FUT2 
and FUT3). Patient genotype regarding these enzymes affects the overall amount of 
CA19-9 liberated into the bloodstream, and it is estimated that 10% of the popula-
tion have inactive FUT3, thus being CA19-9 antigen negative (even in the presence 
of tissue-proven CCA) [13].

The sensitivity and specificity of CA19-9 for CCA vary among studies and patient 
cohorts analysed but are estimated to be around 50–80% and 40–70%, respectively 
[14]. Its low specificity arises from the fact that this marker is also detected in the 
serum of patients with other malignancies, such as pancreatic cancer, colorectal 
cancer, and hepatocellular carcinoma (HCC), as well as in benign inflammatory 
conditions including acute cholangitis, pancreatitis, choledocholithiasis, hepatitis, 
and cirrhosis [15, 16]. Levels of CA19-9 greater than 100 U/mL, in the absence 
of cholangitis, tend to indicate the presence of malignancy in the biliary tree [14, 
15, 17]. Lastly, levels of CA19-9 are also elevated in some respiratory conditions 
such as bronchiectasis, pulmonary fibrosis, and emphysema. For these reasons, it is 
estimated that around 10% of patients with elevated CA19-9 levels do not have any 
cancer of the biliary tree but instead some kind of benign disease [19].

 CEA

CEA is a group of 12 glycoproteins involved in cell adhesion that was linked to 
malignancy for the first time in colorectal cancer specimens [20]. Generally, levels 
higher than 5 ng/mL are considered abnormal in clinical practice [21]. Levels of 
these proteins are elevated during foetal development, but their expression is mini-
mal in adults. Although CEA represents a reliable biomarker for colorectal cancer, 
it is only elevated in 30% of patients with CCA. Like CA19-9, CEA may also be 
elevated in other conditions such as pancreatic cancer, colorectal cancer, cirrhosis, 
hepatitis, cholangitis, and inflammatory bowel disease [22]. Thus, detection of CEA 
in patients with suspected CCA may indicate a different primary malignancy meta-
static to the hepatobiliary system.
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 CA-125

The carbohydrate antigen 125, also known as mucin 16, is a large cell surface pro-
tein encoded by the MUC16 gene generally found in the epithelia of the endome-
trium, ovaries, bronchi, and cornea [23]. It is elevated in about 65% of CCA patients 
(normal upper limit of 37 U/mL) but also in pancreatic, colon, ovarian, breast, and 
lung cancers as well as in benign hepatobiliary conditions like cirrhosis [18, 24]. 
As with CEA, this serum biomarker is generally only tested when another primary 
malignancy is suspected.

 Emerging Biomarkers

 Blood Biomarkers

Among all the non-invasive sources of biomarkers, blood is easily and routinely col-
lected and is rich in biomolecules. Therefore, the majority of published and ongoing 
research studies have sought to identify more specific and sensitive blood biomark-
ers for CCA or to combine several biomarkers into a panel to improve their perfor-
mance (see Table 19.1).

 Extracellular Vesicles

Extracellular vesicles (EVs) have emerged as a promising source of biomarkers. 
EVs consist of a heterogeneous population of lipid bilayer spheres containing dif-
ferent biomolecules such as proteins, nucleic acids (DNA and RNA), lipids, and 
other metabolites [25]. Cells use these biomolecules for intercellular communica-
tion and, in the context of disease, to modulate pathological pathways [26]. EVs 
have been found in all body fluids including blood [27], urine [28], bile [29], saliva 
[30], and ascites [31].

Based on their diameter (30 nm–2 μm), EVs have been classified into two main 
groups: (i) small EVs or exosomes (30–100 nm in diameter) and (ii) large EVs or 
microvesicles (>100 nm) [27]. Small EVs constitute the most studied group. They 
have their origin in vesicles derived from the endomembranous system, which accu-
mulate to form multivesicular bodies and merge with the plasma membrane releas-
ing the exosomes to the extracellular space. In contrast, large EVs bud directly from 
the cell membrane of the parental cell [32, 33].

The amount, content, and surface markers of EVs have proven to reflect the 
biological features and staging of different types of cancer, including CCA [35]. In 
one study performed by Arbelaiz et al., the total amount and protein content of EVs 
isolated from patients with CCA, primary sclerosing cholangitis (PSC), HCC, and 
healthy individuals were compared [36]. HCC patients had the highest EV density 
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Table 19.1 Emerging biomarkers for CCA detection in blood

Biomarker Source Comparison
SEN 
(%)

SPE 
(%) AUC References

Protein-containing 
EVs

AMPN Serum CCA vs healthy 90.7 65.6 0.878 [36]
VNN1 Serum CCA vs healthy 72.1 87.5 0.876 [36]
PIGR Serum CCA vs healthy 83.7 71.8 0.844 [36]
FIBG Serum CCA vs PSC 88.4 63.3 0.796 [36]
A1AG1 Serum CCA vs PSC 76.7 70.0 0.794 [36]
S100A8 Serum CCA vs PSC 69.8 66.6 0.759 [36]
FCN2 Serum Early-stage CCA (I-II) vs 

PSC
100.0 80.9 0.956 [36]

ITIH4 Serum Early-stage CCA (I-II) vs 
PSC

91.7 80.9 0.881 [36]

FIBG Serum Early-stage CCA (I-II) vs 
PSC

91.7 80.9 0.881 [36]

RNA-containing 
EVs

RFFL Serum CCA vs [PSC+UC+healthy] 100.0 100.0 1.00 [37]
ZNF266 Serum CCA vs [PSC+UC+healthy] 91.7 91.3 0.976 [37]
OR4F3 Serum CCA vs [PSC+UC+healthy] 100.0 87.1 0.960 [37]
miR-551B Serum CCA vs [PSC+UC+healthy] 83.3 87.0 0.909 [37]
PMS2L4 Serum CCA vs [PSC+UC+healthy] 91.7 87.0 0.880 [37]
LOC643955 Serum CCA vs [PSC+UC+healthy] 83.3 87.0 0.873 [37]
EV surface 
markers

AnnexinV+

EpCAM+

AS6PR1+

Serum CCA vs liver disorders 65.8 47.0 0.621 [38]

microRNA markers

miR-21 Serum CCA vs healthy – – 0.910 [44]
miR-21 Plasma CCA vs healthy – – 0.940 [44]
miR-26a Serum CCA vs healthy 84.8 81.8 0.900 [46]
miR-150 Plasma iCCA vs healthy 80.6 58.1 0.791 [47]
miR-192 Serum CCA vs healthy 74.0 72.0 0.809 [48]
miR-106a Serum CCA vs healthy 81.6 85.0 0.890 [49]
miR-222
miR-483-5p

Serum CCA vs PSC-derived CCA – – 0.770 [50]

miR-126 Serum CCA vs PSC 68.0 93.0 0.870 [51]
miR-1281 Serum CCA vs PSC 55.0 90.0 0.830 [51]
miR-30b Serum CCA vs PSC 52.0 88.0 0.780 [51]
miR-122 Serum CCA vs PSC 32.0 90.0 0.650 [51]
Protein biomarkers

OPN Serum CCA vs healthy 88.0 100.0 0.964 [56]

(continued)
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in serum compared to the other groups. A range of different proteins were suggested 
as potential biomarkers to distinguish CCA from the other groups. Among these 
proteins, AMPN (aminopeptidase N), VNN1 (pantetheinase), and PIGR (polymeric 
immunoglobulin receptor) showed the highest diagnostic values when comparing 
CCA patients to healthy controls (AUC 0.878, 0.876, and 0.844, respectively), 
whereas FIBG (fibrinogen gamma chain), A1AG1 (alpha-1-acid glycoprotein), and 
protein S100A8 (AUC 0.796, 0.794, and 0.759, respectively) were the most promis-
ing candidates to differentiate PSC from CCA. Lastly, the proteins FCN2 (ficolin 2), 
ITIH4 (inter-alpha-trypsin inhibitor heavy chain 4), and FIBG (AUC 0.956, 0.881 
and 0.881, respectively) showed promise for the differential diagnosis of early-stage 
CCA (stages I–II) and PSC.

Transcriptomic analysis of EV content revealed messenger RNA (mRNA) and 
different non-coding RNA molecules (such as microRNAs [miRs], long non-coding 
RNAs, and small nucleolar RNAs) with potential for CCA diagnosis. In a recent 

Table 19.1 (continued)

Biomarker Source Comparison
SEN 
(%)

SPE 
(%) AUC References

IL-6 Serum CCA vs healthy 73.0 92.0 0.875 [61]
TGF-β1 Serum CCA vs healthy 71.1 68.9 0.668 [63]
TGF-β1 Serum CCA vs BBD 68.0 71.1 0.644 [63]
CYFRA 21-1 Serum iCCA vs BBD 75.6 96.2 0.879 [66]
CYFRA 21-1
PKM2
MUC5AC
GGT

Serum CCA vs PSC 81.8 90.0 0.903 [68]

MMP-7 Serum CCA vs BBD 75.0 78.0 0.730 [73]
S100A6 Serum CCA vs healthy 86.0 91.0 0.909 [74]
DKK1 Serum CCA vs healthy 76.0 100.0 0.872 [75]
SSP411 Serum CCA vs BBD 90.0 83.0 0.913 [76]
AFP Serum iCCA vs HCC 91.1 – – [80]
AFP
CA-242

Serum iCCA vs HCC 93.4 89.7 – [80]

Metabolites

TSA Serum CCA vs [BBD+healthy] 71.9 81.4 0.856 [82]
TSA Serum CCA vs HCC 82.6 83.1 0.885 [83]
TSA Serum CCA vs [chronic hepatitis + 

cirrhosis + healthy]
82.6 86.0 0.964 [83]

21-deoxycortisol
Bilirubin
LysoPC (14:0)
LysoPC (15:0)

Serum CCA vs healthy 98.5 99.2 0.993 [84]

SEN sensitivity, SPE specificity, AUC area under (ROC) curve, Ref reference, EV extracellular 
vesicles, CCA cholangiocarcinoma, PSC primary sclerosing cholangitis, UC ulcerative colitis, 
iCCA intrahepatic cholangiocarcinoma, BBD benign biliary disorders, HCC hepatocellular cholan-
giocarcinoma
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study by Lapitz et al., the serum EV content of CCA patients was compared with 
benign biliary conditions like PSC and ulcerative colitis (UC) as well as with healthy 
individuals [37]. A total of 1932 transcripts were differentially expressed in the 
CCA group compared to the other 3 subgroups combined into a single group, with 
RFFL (E3 ubiquitin-protein ligase rififylin), ZNF266 (zinc finger protein 266), and 
OR4F3 (olfactory receptor family 4 subfamily F member 3) being the mRNAs with 
the highest diagnostic potential (AUC 1.00, 0.976, and 0.960, respectively). The 
best-performing non-coding RNAs were miR-551B, PMS2L4, and LOC643955 
(AUC 0.909, 0.880, and 0.873, respectively).

The fact that large EVs bud from the plasma membrane of the parental cell is 
particularly interesting because some of the surface markers will remain on the 
vesicle lipid bilayer and mirror the pathobiological cues of the disease. For instance, 
tumour-associated microparticles (taMPs) carrying markers such as Annexin V, 
EpCAM (epithelial cellular adhesion molecule), and ASGPR1 (asialoglycoprotein 
receptor 1) allowed the differentiation of patients with liver malignancies (including 
CCA and HCC) from patients bearing non-liver cancers and cirrhosis, with 65.8% 
sensitivity but only 47% specificity. These taMPs decreased significantly at 7 days 
after curative resection, demonstrating their potential prognostic value [38, 39].

 Nucleic Acid Biomarkers

Similar to EVs, cell-free nucleic acids are released by healthy and cancer cells 
into different body fluids such as blood, urine, or bile [3, 34]. In terms of circulat-
ing DNA, some of the most commonly mutated genes in CCA, including KRAS, 
NRAS, BRAF, and PIK3CA, were first screened in tumour tissue by multiplex PCR 
and then in DNA isolated from matched plasma samples from patients. The muta-
tion pattern of the tumour was conserved in plasma suggesting the suitability of the 
technique for cancer detection [40].

Another group of nucleic acid biomarkers are circulating RNAs, with some 
studies suggesting their diagnostic value in CCA [41, 42]. Among them, miR-21, 
a small transcript with important roles in development, inflammation, and cancer 
invasion [43], was the most commonly upregulated miR in CCA, and in one study, 
it differentiated iCCA patients from healthy individuals with an AUC 0.91 in serum 
and 0.94 in plasma [44]. However, it was also upregulated in the blood of patients 
with other cancers such as HCC, limiting its specificity [45]. Patients with CCA 
have also shown increased levels of miR-26a [46], miR-150 [47], and miR-192 [48] 
and decreased levels of miR-106a [49].

Interestingly, a comparison of the differential expression of miRs in the blood 
of PSC-derived CCA patients (n  =  7) and CCA alone patients (n  =  63) showed 
increased levels of miR-222 and miR-483-5p in the latter group, achieving an AUC 
of 0.770 when combined [50]. Another study reported a panel of five miRs in serum 
(miR-126, -1281, -26a, -30b, and -122) with an individual maximum AUC of 0.870, 
though a combination of the different miRs in a logistic regression model did not 
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significantly improve their diagnostic accuracy [51]. However, further studies with 
larger cohorts are needed to validate these findings.

One of the strongest features that makes cell-free nucleic acids good candidate 
biomarkers for CCA is their ability to reflect the very heterogeneous pattern of 
mutations of these tumours. In addition, they can be easily isolated from blood, 
amplified, and detected by well-established targeted techniques such as qRT-PCR 
and microarray or by untargeted techniques such as whole genome sequencing 
(WGS) or whole transcriptome sequencing (also known as total RNA sequencing, 
RNA-Seq) [52, 53]. Although the above-mentioned publications support the poten-
tial of nucleic acid biomarkers for the early detection of CCA and patient stratifica-
tion, further studies are still needed to validate these findings.

 Proteins and Peptides

Proteins are generally more stable and abundant in blood than nucleic acids. In 
recent years, many studies have taken a proteomic approach aiming at identifying a 
protein signature for CCA [19].

Osteopontin (OPN) is a potential novel biomarker for CCA. This glycoprotein 
is involved in normal physiological processes like bone biomineralisation and in 
pathological conditions such as chronic inflammation [54] and tumour formation 
[55]. Serum levels of OPN have been reported to be elevated in patients with CCA 
compared to PSC and healthy controls, with an AUC of 0.964. Persistently high 
levels post-tumour resection were associated with poor postoperative survival, high-
lighting its potential role as a prognostic biomarker [56].

Interleukin-6 (IL-6) is an inflammatory cytokine secreted by cholangiocytes 
upon inflammatory stimuli [57, 58, 59]. In CCA, the cancerous cells also produce 
this protein, which upregulates Bcl-2, an antiapoptotic cytosolic protein, promoting 
tumour growth [60]. Serum levels of IL-6 had a 73% sensitivity and 92% specificity 
(AUC 0.875) for distinguishing CCA patients from healthy controls [61]. Addition-
ally, the concentration of IL-6 in blood decreased after tumour resection. Of note, 
IL-6 was also elevated in patients with other liver cancers like HCC [62]. Similarly, 
the cytokine transforming growth factor-β1 (TGF-β1), associated with cell invasion 
and microenvironment modification, was also found to be elevated in patients with 
CCA compared to healthy individuals (AUC 0.668) and to other inflammatory con-
ditions (AUC 0.644) [63].

Another proposed CCA biomarker is the soluble fragment of cytokeratin-19, i.e. 
CYFRA 21-1 [64]. This marker has been studied in other cancers, e.g. lung cancer 
[65], and in one study it distinguished CCA from other benign biliary conditions 
with 75.6% sensitivity and 96.2% specificity [66]. CYFRA 21-1 levels have also 
been reported to correlate with tumour stage and patient prognosis, with a 3-year 
survival rate of 76% in patients with low levels of CYFRA 21-1 compared with 
only 25% in patients with high concentrations [67]. One study from our group by 
Cuenco et al. reported that a panel of serum protein biomarkers, which included 
CYFRA21-1, PKM2 (pyruvate kinase M2), MUC5AC (mucin 5AC), and GGT 
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(gamma- glutamyltransferase), was able to differentiate CCA from PSC alone with 
81.8% sensitivity and 90.0% specificity (AUC 0.903) [68].

Matrix metalloproteinases 7 and 9 (MMP-7 and MMP-9) are two enzymes 
responsible for the degradation and remodelling of the extracellular matrix in pro-
cesses of tissue repair, embryonic development, and angiogenesis [69]. They also 
play an important role in tumour formation, and as such, increased levels of these 
proteins in blood have been linked to tumour presence [70–72]. Increased serum 
levels of MMP-7  in CCA patients compared with individuals with benign bili-
ary conditions showed an AUC of 0.730, but MMP-9 did not reliably differentiate 
between the two groups [73].

Several other proteins for CCA detection have been described. For example, 
serum S100A6, a calcium-binding protein, had an AUC of 0.909 when comparing 
CCA to healthy controls [74], while Dickkopf-related protein 1 (DKK1) had an AUC 
of 0.872 in iCCA versus healthy controls [75]. Spermatogenesis-associated protein 
20 (SSP411) showed an AUC of 0.913 in CCA versus benign biliary disorders and 
healthy controls [76]. A specific glycoprotein known as KL-6, a type of MUC1, 
has also showed potential when comparing blood levels of CCA patients to healthy 
individuals, HCC patients, and metastatic liver cancer patients [77]. Serum alpha 
fetoprotein (AFP) showed good results differentiating HCC from CCA patients, 
but low specificity [78]. However, when combining AFP with carbohydrate antigen 
242 (CA-242), a potential marker of pancreatic cancer [79], the overall sensitivity 
and specificity increased to 93.4% and 89.7%, respectively [80]. Larger studies are 
needed to validate these findings.

 Serum Metabolites

In addition to the previously mentioned biochemical groups, small molecules have 
also been reported to be altered in the blood of patients with CCA. Sialic acid (TSA) 
is a neurotransmitter which has been linked to different cancers including brain 
tumours, leukaemia, melanoma, and also CCA [81]. In one study by Wongkham 
et al., the total amount of TSA in CCA patients compared with individuals with 
benign biliary conditions (including cholangitis, cirrhosis, and gallstones, among 
others) had an AUC of 0.670, which increased to 0.856 when compared to healthy 
controls alone [82]. In another study, Kongtawelert et al. compared TSA levels in 
blood of CCA versus HCC patients (AUC 0.885) and CCA versus cirrhosis and 
chronic hepatitis patients (AUC 0.964) [83].

Liang et al. performed a metabolomic analysis of the serum of CCA patients 
and compared it with healthy individuals. During the initial discovery phase, 
75 differentially expressed metabolites were found between groups. After the 
validation phase in 225 CCA and 101 healthy serum samples, the 4 markers 
that showed the best diagnostic performance were 21-deoxycortisol (under-
expressed in CCA), bilirubin (over-expressed), lysophosphatidylcholine 14:0 
(lysoPC (14:0), under- expressed), and lysophosphatidylcholine (lysoPC (15:0), 
over-expressed). The calculated AUCs were 0.918, 0.922, 0.954, and 0.927, 
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respectively, which increased to 0.993 when the four metabolites were com-
bined [84]. Further validation studies of these metabolites are expected.

 Circulating Tumour Cells

Circulating tumour cells (CTCs) represent a potential tool for the detection of CCA 
and have been reported in other cancers including HCC [85], pancreatic cancer [86], 
and colorectal carcinoma [87]. CTCs have also been studied as a cause of metastasis 
and tumour relapse, opening the possibility of their use as prognostic biomarkers [88]. 
To date, the only FDA-approved system for cancer detection is the CellSearch® sys-
tem, which selects CTCs positive for DAPI, CK-8/18 (hepatocyte antigens), and CK-19 
(cholangiocytes antigen) and negative for CD45 staining (leukocyte antigen). However, 
in one study, only 25% of patients with CCA showed elevated CTC levels [89].

The accuracy of CTCs as prognostic biomarkers has not yet been well-studied in 
CCA, and only a few studies have reported small subgroups of CCA patients within 
their cohorts of patients with hepatobiliary disorders. One study isolated CTCs from 
the blood of CCA patients and showed a high variability in mutations on exon 12 
of KRAS gene [88]. Others have reported that CTCs could play an important role 
in tumour metastasis through their interaction with different T-cell populations in 
the circulation [86].

 Bile Biomarkers

Bile is a complex mix of biomolecules synthesised by the liver and used in the pro-
cess of digestion. Its major components include bile acids, phospholipids, cholesterol, 
urea, bilirubin and a variety of hormones and digestive enzymes. In recent years, bile 
has gained attention as a source of potential novel biomarkers for biliary disorders 
like CCA [89, 90]. Different groups have used approaches based on omics to identify 
alterations in the concentration and composition of these organic molecules.

 Bile Metabolites

Metabolomic studies performed by several groups have identified alterations in the 
composition of bile in CCA patients [91]. Bile acids, phospholipids, and choles-
terol have shown the biggest differences between disease groups, highlighting their 
promising diagnostic potential.

Bile acids are steroid acids synthesised from cholesterol by hepatocytes. They 
regulate levels of cholesterol in the body, assist in fat absorption, and allow phos-
pholipid transport. Analyses of the total content of bile acids in CCA patients have 
shown a reduction in secondary bile acids, such as deoxycholic and lithocholic acids, 
compared to patients with biliary tract stones and healthy individuals [92]. A decrease 
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in glycine- and taurine-conjugated bile acids, phospholipids, and cholesterol was also 
observed in CCA patients compared to benign controls [93]. However, when com-
paring bile from CCA and PSC patients, the levels of glycine-conjugated acids and 
phosphatidylcholines were significantly increased in the cancer group [94]. In another 
study, magnetic resonance spectroscopy of bile had an 88.9% sensitivity and an 87.1% 
specificity in distinguishing CCA from non-PSC benign biliary conditions [95].

 Proteins and Peptides

Analysis of the bile proteome has also been widely explored to identify proteins 
abnormally expressed in CCA patients. In this context, biliary levels of insulin-like 
growth factor 1 (IGF-1), also called somatomedin C, a hormone synthesised in the 
liver with important roles in growth and development, was increased in eCCA patients 
compared with those with pancreatic cancer or non-malignant disorders (AUC 1.00) 
[96]. Lipocalin-2 (LCN2), a secreted protein responsible for the transport of some 
hydrophobic substances, was found elevated in the bile of 30 CCA patients compared 
to 36 gallstone patients, with a sensitivity of 87% and an AUC of 0.81 [97].

Minichromosome maintenance (MCM) proteins are a family of proteins con-
served in all eukaryotic cells due to their role in DNA replication [98] which have 
been explored as markers of proliferation and cancer progression [99]. Specifically, 
MCM-7 has been linked to the activation of oncogenes in CCA [100]. In a study 
conducted in our laboratory by Ayaru et al., biliary MCM-5 as a marker of pancrea-
tobiliary malignancy (including CCA) had a sensitivity of 66% compared to 20% 
for biliary brush cytology (AUC 0.800) [101].

The ratio of pancreatic elastase (PE) and amylase in bile could be another possi-
ble marker of CCA. Low levels of amylase may be associated with complete biliary 
obstruction caused by a tumour. Patients with CCA had an increased PE/amylase 
ratio compared with gallstone patients, with a sensitivity of 82% and a specificity of 
89% (AUC 0.877) [102].

Lastly, increased biliary levels of Mac-2-binding protein (Mac-2BP), a cell- adhesive 
protein of the extracellular matrix found upregulated in many cancers, showed prom-
ising values for the differential diagnosis of CCA from patients with benign biliary 
disorders including PSC. The study reported an AUC of 0.700 that increased to 0.750 
when Mac-2BP levels were combined with biliary levels of CA19-9 [103].

 Extracellular Vesicles

EVs in bile have also been studied for the differential diagnosis of CCA.  The 
total amount of EVs in bile in CCA patients was compared to patients with non- 
malignant bile duct stenoses. Cancer patients showed an increased total amount 
of EVs (4.00 × 1015 compared to 1.26 × 1014 nanoparticles/L), being able to dif-
ferentiate malignant from non-malignant patients with 100% sensitivity and 100% 
specificity (AUC 1.00) [104]. Another study compared the transcriptomic content of 
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EVs in patients with the same conditions and found a panel of five miRs (miR-191, 
miR- 486-3p, miR-1274b, miR-16, miR-484) able to differentiate CCA with 67% 
sensitivity and 96% specificity [105].

 Genetic Biomarkers

Circulating RNAs have also been reported in bile. In one study by Plieskatt et al., 
the content of miRs in bile was compared between patients with malignant and 
benign biliary tract conditions like choledocholithiasis. miR-9 and miR-145 showed 
the highest diagnostic accuracy (AUC 0.975 in both cases) to differentiate between 
the two groups [106]. A different research group found that the expression of 
miR- 150-5p was decreased in the bile of CCA patients compared to healthy indi-
viduals [47]. In terms of their ability to differentiate PSC-derived CCA from benign 
PSC, four miRs were identified (miR-412, miR-640, miR-1537, and miR-3189) 
showing AUC ranging from 0.78 to 0.81. The combination of biliary miR-1537 and 
CA19-9 levels had an AUC of 0.91 [51].

Changes in DNA methylation in CCA bile samples have been studied by a few 
groups. Shin et al. described a biomarker panel based on the altered methylation pat-
tern of five genes involved in tumour growth, invasion, migration, and differentiation 
(CCND2, CDH13, GRIN2B, RUNX3, and TWIST1). The combination was able to 
differentiate eCCA from a control group of patients with benign disorders like chole-
cystitis and cholangitis with 83.3% sensitivity and 100% specificity [107]. Thus, the 
detection of DNA methylation alterations could be a powerful diagnostic strategy for 
patients with CCA, but further studies are needed to consolidate these data.

 Serotonin

Serotonin is a neurotransmitter which also plays an important role in liver regenera-
tion and is overexpressed in CCA [108]. Alpini et al. reported increased levels of 
TPH-1, an enzyme involved in the route of serotonin synthesis, in 48 tumour biop-
sies of CCA patients compared to healthy liver tissue. Decreased levels of enzymes 
responsible for serotonin degradation, such as monoamine oxidase A, were also 
observed. Finally, increased levels of serotonin were found in the bile of CCA 
patients but not in patients with intrahepatic stones [109].

 Urine Biomarkers

Urine has been shown to be a useful non-invasive source of biomarkers for different 
cancers, including bladder [110], kidney [111], liver [112], and pancreas [113], with 
advantages of ease of access and low proteome complexity compared to blood [114]. 
However, its applicability to biliary tract cancers has been only recently explored.
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 Volatile Organic Compounds

Urine is a body fluid rich in a variety of volatile organic compounds (VOCs) that 
have been screened for markers that may differentiate CCA from benign biliary 
conditions. Navaneethan et  al. used selected-ion flow-tube mass spectrometry 
(SIFT-MS) to measure the concentration of VOCs in urine. Results showed that a 
combination of ethane and 1-octene levels distinguished CCA from PSC patients 
with an 80% sensitivity and 100% specificity (AUC 0.900). In addition, by compar-
ing the concentration of 2-propanol and acetonitrile, the authors reported an effi-
cient tool for separating CCA cases from a mixed group of PSC and other benign 
biliary conditions (AUC 0.862) [115].

 Proteomic Profile

The total urinary proteome of 41 patients bearing different biliary conditions includ-
ing CCA, PSC, and other benign disorders has also been analysed with the aim of 
finding a singular proteomic signature able to detect and differentiate malignancies. 
Around 5600 different peptides were selected from the samples with a frequency 
higher than 20%. Out of these, 43 peptides were chosen as potential biomarkers 
of CCA showing AUC ranging from 0.630 to 0.890 [116]. Some of these peptides 
were assigned to well-known proteins such as collagen α-1 and α-2 (extracellular 
matrix components), osteopontin, uromodulin (an inhibitor of calcium crystallisa-
tion in renal fluids), and the antigen CD99 (involved in transmembrane transport). 
The panel of identified distinct markers was then validated in a different cohort of 
123 patients that included CCA, PSC, and other benign biliary disorders, proving 
efficiency in discriminating CCA cases with a sensitivity of 83% and a specificity 
of 79% (AUC 0.870) [117].

 Extracellular Vesicles

EVs have also been sourced from urine showing particularly good potential when 
their transcriptomic content was analysed. In a comparative study of the RNA con-
tent of EVs from CCA (n = 23), PSC (n = 5), UC (n = 12), and healthy individuals 
(n = 5), a total number of 27,319 transcripts were identified, out of which 1470 
were unique in CCA samples. Messenger RNAs INO80D, MAP6D1, and RRAGD 
(AUC 1.00 for all) and non-coding RNAs HCG4, MIR200C, and LOC100134868 
(AUC 0.930, 0.904, and 0.896, respectively) were the best candidate markers for 
the differential diagnosis of CCA versus healthy individuals. CLIP3, VCAM1, and 
TRIM33 messenger RNAs (AUC 0.965 for all) were able to differentiate CCA ver-
sus PSC; whereas MT1F, GPX3, and LDHA (AUC 0.915, 0.897, 0.894, respec-
tively) were selected to distinguish CCA from a control group that combined PSC, 
UC, and healthy patients [37].
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 Histological Markers

Biopsy confirmation is often required for the clinical diagnosis of CCA [10]. In this 
regard, biomarkers analysed in resected tissue may provide complementary infor-
mation for patient stratification, prognosis, and personalised therapies.

 Genomic Markers

Considering the high heterogeneity of mutations between the different subtypes of 
CCA tumours, finding key and specific altered genes can inform treatment options 
and predict patient outcome after tumour resection [118]. Mutations in DNA repair 
and cell growth genes (such as TP53 and KRAS, respectively) have been linked to 
worse patient prognosis than mutations in metabolic genes like IDH-1 and IDH-2 
(encoding the enzymes isocitrate dehydrogenases 1 and 2) [7, 119–122]. The fibro-
blast growth factor receptor 2 gene (FGFR2) has been frequently reported mutated 
in iCCA patients and not in other liver cancers, suggesting the diagnostic potential 
of this genetic marker [118]. However, studies involving larger patient cohorts are 
required to validate these markers.

CCA tissue samples have also been used to identify novel biomarkers based 
on epigenetic alterations. A study conducted by Andresen and co-workers identi-
fied a four-gene panel (CDO1, CNRIP1, SEPT9, VIM) using tissue from brush 
cytologies. The panel showed a sensitivity of 85% and a specificity of 98% (AUC 
0.944) in discriminating CCA from PSC patients [123]. Similarly, and although 
less investigated, other genes have also shown abnormal methylation patterns in 
CCA such as MLH1, DCLK1, CDO1, ZSCAN18, and ZNF331. These genes play 
key roles in DNA repair, stemness, and tumour growth and invasion [124, 125]. 
To date, the characterisation of the CCA methylome is still limited. A summary 
of the main steps towards the implementation of a novel biomarker is represented 
in Fig. 19.2.

 Transcriptomic Markers

Whole transcriptome sequencing of resected tumour tissue has allowed researchers 
to better understand the biology and behaviour of CCA. In an integrative molecular 
analysis that combined gene expression levels, single-nucleotide polymorphisms 
(SNPs), and immunohistochemical markers of 153 patients, two subtypes of iCCA 
were found. In the so-called inflammatory type, an overexpression of inflammation- 
related genes (such as different cytokines and STAT3) was reported, whereas in the 
‘proliferation type’, an activation of oncogenes (KRAS, MAPKs, and MET) was 
observed and linked to worse patient outcome [126].
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A different study examining the recurrence-free interval after resection of CCA 
and gallbladder cancer linked the overexpression of CTL4 (cytotoxic T-lympho-
cyte-associated protein 4) and FOXP3 (marker of naturally occurring regulatory 
T cells) to patients with no CCA recurrence up to 18 months after resection [127]. 
Recently, the expression of IL-33 in tumour tissue was also associated with better 
prognosis in both iCCA and pCCA patients [128].

 Immunohistochemical Markers

A number of prognostic markers for CCA have been identified using histological 
tumour samples. In one of the largest meta-studies to date, the histological signature 
of 4126 CCA patients was compared, identifying 77 potential prognostic biomark-
ers. Some of these markers were fascin (an actin bundling protein), the epithelial 
growth factor receptor (EGFR), mucins 1 and 4 (MUC1/4), and p27 (a tumour sup-
pressor protein able to block the proliferation of cancer cells). Over-expression of 
these five proteins was linked to increased patient survival [129]. Similarly, Suzuki 
et al. reported that increased expression of the pyruvate kinase type M2 (PKM2) in 
tumour tissue may enhance tumour cell invasion and promote lymph node metasta-
sis in iCCA cases [130].

2. Sample collection

1. Selection of
patients

6. Validation in
international cohorts

5. Candidate biomarker
    selection

4. Univariate/Multivariate
analysis

3. Metabolite analysis
& Data processing

Biomarker
discovery

Fig. 19.2 Steps to cancer biomarker discovery. The process starts with the selection of a cohort of 
patients for biomarker discovery. Samples (blood, bile, urine, tissue) are screened for potential 
altered biomolecules. Levels of these molecules are then compared between cancer and control 
groups, and statistical differences and diagnostic potential are calculated. Only a few biomolecules 
(or a combination) get selected for further validation in larger cohorts. (This figure was created 
using images from Servier Medical Art Commons Attribution 3.0 Unported License (http://smart.
servier.com). Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 
Unported License)
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 micro-RNA

Microarray profiling of CCA resected tumours has allowed the identification of 
small RNA molecules with the potential for CCA detection and staging [39]. The 
best characterised is miR-21, which has shown 95% sensitivity and 100% specific-
ity in the detection of CCA versus normal bile duct and liver tissue [131, 132]. This 
miR has also been linked to worse prognosis. In another study, miR-21 had similar 
expression in CCA and PDAC tissue compared to normal surrounding tissue, while 
a panel of seven other miRs were differently expressed [133].

 Conclusion and Future Perspectives

CCA remains a deadly disease due in part to the lack of accurate non-invasive diag-
nostic tests, especially for early-stage disease. The identification and validation of 
specific markers could not only help discriminate which patients could undergo 
tumour resection, the only available curative option to date, but also predict the 
risk of recurrence after surgery. A great number of biomarkers including genetic 
material (DNA/RNA), circulating proteins, extracellular vesicles, bile acids, and 
metabolites, among others, have been identified in blood, bile, urine, and tumour 
tissue of CCA patients. However, in order to be translated to the clinical setting, the 
diagnostic and prognostic potential of these biological entities need to be validated 
in large international cohorts and compared with appropriate disease control groups.
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 Introduction

Cholangiocarcinoma (CCA) represents a diverse group of biliary tract malig-
nancies comprising nearly 3% of all gastrointestinal tract cancers [1]. CCA is 
classically subdivided into three anatomical groups: intrahepatic, perihilar, and 
distal CCA.  The incidence of CCA shows variable geographical distribution, 
ranging between 0.3 and 85 per 100,000 individuals [2]; similarly, risk factors 
for CCA vary by geographic region (Chap. 5). In the Western world, primary 
sclerosing cholangitis (PSC) is the most important risk factor for CCA. Although 
not yet recognized as standard of care, experts recommend surveillance for 
CCA in PSC patients [3]. Immunoglobulin G4-related sclerosing cholangitis 
(IgG4-SC) has been recently described as the biliary manifestation of IgG4-
related disease (IgG4-RD). A few recent studies have reported CCA as an out-
come in IgG4-SC patients; however, the role of CCA surveillance in IgG4-SC 
patients is less clear.

In this chapter, we focus on the role of surveillance for CCA in PSC and the 
evidence supporting it. We also discuss the association between CCA and IgG4-SC 
as well as closely related topics.

 Primary Sclerosing Cholangitis

 Background

Primary sclerosing cholangitis (PSC) is a progressive fibroinflammatory disease of 
the bile ducts that ultimately leads to cirrhosis and its consequent complications [4]. 
PSC is often associated with inflammatory bowel disease (IBD), especially ulcer-
ative colitis (UC), with a reported IBD prevalence of 70–80% in PSC patients [5]. 
The etiopathogenesis of PSC remains enigmatic. However, with ongoing research 
and advanced technologies, such as genome-wide association studies (GWAS), the 
complex relationship between human genes, the environment, and PSC has begun 
to unravel [6–13]. Further, the gut microbiome concept, originally introduced in the 
1980s, has become increasingly recognized as a key player in the pathophysiology 
of PSC and IBD [14–18].

PSC is a very heterogeneous disease in several ways: it affects men and women; 
children and adults; individuals of different ethnic and racial backgrounds; and 
small and large bile ducts and occurs with (diagnosed before, contemporaneously, 
or after) or without IBD [19]. In addition, PSC can coexist (i.e., “overlap”) with 
autoimmune hepatitis (AIH), a phenomenon observed more commonly in children 
(~33%) compared to adults (~6.6%) [20, 21].
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 Risk of Malignancy in Primary Sclerosing Cholangitis

The risk of malignancy in PSC patients has been firmly established [22, 23]. In fact, PSC 
has been designated as a “premalignant condition” by experts [24]. Several observa-
tional studies have reported a substantial increased risk for hepatobiliary (HBCa) and 
colorectal cancers in PSC patients compared to the general population [23, 25–30]. 
Among all, CCA is considered the most dreaded malignant complication of 
PSC. According to the largest, population-based study to date, CCA has been reported 
to be the most common cause of liver-related death in PSC patients [31]. The risk of 
CCA has been reported to be more than 1000-fold greater in PSC compared to the gen-
eral population [32]. The lifetime risk of CCA in PSC is estimated to be 7–13% [33]. 
Due to the increased proportion of patients with asymptomatic disease, PSC and CCA 
are often simultaneously diagnosed. In a recent multicenter, international study, nearly 
30% of all CCA cases were diagnosed within the first year of PSC diagnosis [21].

CCA is one of the most aggressive tumors of the biliary tract, with a reported 
median survival in all anatomical types (intrahepatic, perihilar, and distal CCA) 
without surgery ranging between 5 and 12 months [34]. Unfortunately, many CCA 
patients (~28%) present with advanced-stage CCA, which disqualifies them from 
curative treatment [34]. Collectively, these data highlight the notoriety of CCA in 
the setting of PSC.

 Diagnosis of Cholangiocarcinoma in Primary 
Sclerosing Cholangitis

In the setting of PSC, CCA diagnosis is based on the finding of a mass or dominant 
biliary stricture on cross-sectional imaging and/or endoscopic retrograde cholangio-
pancreatography (ERCP), often associated with serum carbohydrate antigen 19–9 
(CA 19–9) elevation, and confirmed by positive biliary cytology and/or fluores-
cence in situ hybridization (FISH) polysomy. The diagnosis of CCA, especially in 
the context of PSC, is often extremely difficult and requires a multidisciplinary 
approach. Further details regarding the diagnosis of CCA and associated challenges 
are discussed elsewhere in this book (Chaps. 6, 7, 8, 9, and 10).

 Therapies for Primary Sclerosing Cholangitis 
and Associated Cholangiocarcinoma

Detailed discussion of therapies for PSC, including novel ones, is beyond the scope 
of this chapter. In brief, however, it should be noted that no medical or surgical 
therapy has been conclusively proven to halt disease progression or prevent CCA in 

20 Cholangiocarcinoma Surveillance in Primary Sclerosing Cholangitis…



438

PSC. Ursodeoxycholic acid (UDCA) has been extensively investigated, but ran-
domized trials did not show clinical benefits in PSC [35, 36]. Details regarding 
treatment options for CCA complicating PSC are discussed elsewhere in this book 
(Chaps. 10, 12, 14, 15, 16, 17, 18, and 21).

 Cancer Surveillance in Primary Sclerosing Cholangitis

 Overview Regarding Surveillance

The term “surveillance” stems from the French compound word surveiller (sur-, 
“over”; veiller, “to watch”), meaning “to watch over” or “to oversee.” In the medical 
field, surveillance implies continued and close monitoring for an anticipated event 
in an at-risk population, with the overall goal of improving outcomes. Prior to 
applying a surveillance strategy, there are key elements that need to be considered:

 (a) Identification of the target population to be under surveillance.
 (b) Identification of what needs to be surveilled for.
 (c) Identification of the surveillance tools and their availability and costs.
 (d) Data collection from the population under surveillance.
 (e) Treatment of the condition surveilled for should be effective, available, and 

standard.
 (f) The surveillance and treatment should be cost-effective and improve the sur-

vival of the target population.

The leading societies recommend surveillance for gallbladder cancer (abdominal 
imaging on an annual basis) and colorectal cancer (screening colonoscopy every 
1–2 years) in PSC patients as well as surveillance for hepatocellular carcinoma in 
the subset of PSC patients with cirrhosis [37–40]. However, surveillance for CCA 
has been relatively controversial, in large part due to a paucity of data demonstrating 
overall benefit. Prospective studies designed to examine the clinical benefit of sur-
veillance for CCA in PSC are lacking. Nevertheless, experts have advocated for 
surveillance for CCA in PSC [3, 26, 41, 42], and supportive data have recently 
emerged in this regard, as discussed below.

 Evidence Supporting the Implementation of CCA Surveillance in PSC

In 1995, a surveillance program for HBCa in PSC patients launched at the Mayo 
Clinic Rochester. Surveillance for CCA consisted of annual imaging with abdom-
inal ultrasound (US), computed tomography (CT), or magnetic resonance imag-
ing (MRI)/cholangiopancreatography (MRCP) plus serum CA 19–9. Not all 
patients and their providers participated in this surveillance program; as a result, 
there were two groups of PSC patients based on surveillance status (surveillance 
vs. no- surveillance groups). Using the extensive PSC database at Mayo Clinic, a 
retrospective study was conducted to examine the role of surveillance for HBCa, 
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including CCA, in PSC patients seen between 1995 and 2015 [43]. PSC patients 
were included if they had at least 1 year of clinical follow-up and were categorized 
according to their surveillance status. HBCa-related adverse event was defined as 
HBCa recurrence or HBCa-related death. The primary endpoints were HBCa recur-
rence, HBCa-related death, and overall survival. A total of 830 PSC patients met the 
inclusion criteria (40 in the surveillance group and 39 in the no-surveillance group), 
with a cumulative follow-up of 712 and 283 person-years pre- and post-HBCa 
diagnosis, respectively [43]. During the follow-up, a total of 79 patients developed 
HBCa; 56 patients were diagnosed with CCA. Overall, PSC patients in the surveil-
lance group had a better 5-year overall survival (68% vs. 20%) and a lower 5-year 
probability of experiencing an HBCa-related adverse event (32% vs. 75%) com-
pared to PSC patients in the no-surveillance group.

CCA groups were then analyzed separately based on tumor location; 37 PSC 
patients developed extrahepatic CCA, and 19 PSC patients developed intrahepatic 
CCA. Regarding the PSC patients who developed extrahepatic CCA, 14 were in the 
surveillance group and 23 were in the no-surveillance groups [43]. Upon subgroup 
statistical analysis of those who developed extrahepatic CCA, those in the surveillance 
group were more likely to present without lymph node metastases (93% vs. 50%) and 
without extrahepatic metastases (100% vs. 68%) and were more likely to receive liver 
transplantation as a treatment for CCA (93% vs. 45%) compared to those in the no-
surveillance group [43]. More importantly, the 5-year probability of an extrahepatic 
CCA-related adverse event (i.e., recurrence or cancer-related death) was lower in the 
surveillance vs. the no-surveillance group (14% vs. 64%, respectively). Regarding the 
PSC patients who developed intrahepatic CCA (n = 19), 6 were in the surveillance 
group, and 13 were in the no-surveillance group [43]. Upon subgroup analysis of those 
who developed intrahepatic CCA, there was a tendency toward presenting without 
intrahepatic metastases (67% vs. 38%) and a tendency toward a higher rate of undergo-
ing surgical resection of the tumor (50% vs. 31%) in the surveillance group compared 
to the no-surveillance group. Further, there was a tendency toward higher 5-year intra-
hepatic CCA-related survival (21% vs. 8%) and a tendency toward longer survival 
(median time from intrahepatic CCA diagnosis until death) in the surveillance com-
pared to the no-surveillance group (24.5 months vs. 7.5 months, respectively) [43].

Combining all PSC patients who developed CCA (n = 56), 20 patients were in 
the surveillance group and 36 were in the no-surveillance group. The 5-year prob-
ability of experiencing a CCA-related adverse event (i.e., recurrence or cancer- 
related death) was lower in the surveillance vs. the no-surveillance group (29% vs. 
75%, respectively) [43]. It is important to point out the limitations of this study, the 
main ones being its retrospective design and the relatively low number of events of 
interest (i.e., development of HBCa).

In a recent large UK nationwide study that included 2588 PSC-IBD patients identi-
fied over a 10-year period, a total of 334 patients developed hepatopancreatobiliary can-
cer (HPB), of whom 164 patients developed CCA [44]. The group reported greater than 
twofold risk reduction in HPB-related death. After excluding all CCA cases that were 
diagnosed within the first year of PSC diagnosis (n = 111/164), there was no difference 
in post-CCA survival between the surveillance and no-surveillance groups [44]. It is 
unclear why there was no difference in the post-CCA survival between the surveillance 
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and the no-surveillance group in the UK study. One possible explanation is that the 
number of PSC-IBD patients who underwent annual imaging surveillance and devel-
oped CCA was too small (n = 7) to detect a statistically significantly difference in the 
post-CCA between surveillance and the no-surveillance group [44].

There is continued debate on the optimal strategy for CCA surveillance in 
PSC.  Some experts in the field recommend abdominal US with CA 19–9 every 
6–12 months [27, 45]. A recent statement by expert radiologists and hepatologists of 
the International PSC Study Group provided quality standards for the use of MRI/
MRCP as a screening tool for CCA in PSC patients [46]. In a recent study at our 
institution, clinical, biochemical, cholangiographic, and imaging data on 226 adult 
patients with large-duct PSC cared for at the three Mayo Clinic sites (Rochester, 
Florida, and Arizona), of whom 120 patients developed perihilar CCA, were exam-
ined [47]. All patients underwent US and MRI/MRCP within 3 months of each other. 
Patients with CCA were required to have their imaging studies within 3 months of 
CCA diagnosis, and those without CCA were required to have a minimum follow-up 
of 2 years after imaging to mitigate the possibility of an occult CCA. Imaging studies 
were re-reviewed by radiologists who were blinded to the patients’ clinical and bio-
chemical data [47]. There were several important findings in this study. MRI was 
found to have a significantly better diagnostic performance in detecting early-stage 
perihilar CCA compared to US (area under curve: 0.87 vs. 0.70, respectively) [47]. 
In addition, the absence of symptoms at the time of CCA diagnosis was associated 
with better 5-year overall survival (82% vs. 46%, respectively), better 5-year pro-
gression-free survival among those listed for liver transplantation as curative treat-
ment for perihilar CCA (77% vs. 37%, respectively), and better 5-year recurrence-free 
survival following liver transplantation (89% vs. 65%, respectively) compared to 
those who had symptoms at the time of CCA diagnosis [47]. Furthermore, individu-
als who were asymptomatic at the time of CCA diagnosis and had their cancer 
detected by MRI only were found to have a better 5-year overall survival (100% vs. 
33%, respectively) and a better 5-year progression-free survival among those listed 
for liver transplantation as curative treatment for perihilar CCA (88% vs. 33%, 
respectively) compared to those who were asymptomatic at the time of CCA diagno-
sis and had their cancer detected by US [47]. These findings (a) show that MRI/
MRCP is superior to US in detecting perihilar CCA at an early stage, which trans-
lates into improved survival, and (b) confirm our earlier observation that surveillance 
for hepatobiliary cancers in PSC is associated with improved outcomes [43].

 Take-Home Points Regarding CCA Surveillance in PSC

Routine surveillance for CCA in PSC is rational and prudent. There are no prospec-
tive studies comparing between the diagnostic accuracy of US, CT, and MRI abdo-
men with contrast and MRCP. A common practice in many high-volume institutions 
is surveillance with MRI abdomen with contrast and MRCP with or without CA 
19–9 on an annual basis [48, 49]. We recommend beginning surveillance for CCA in 
PSC patients (MRI/MRCP or US with CA 19–9 annually; Fig. 20.1) as soon as the 
diagnosis of PSC is established, regardless of the stage of PSC. This is because 8% 
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of all CCA cases in the aforementioned study had early histological stage PSC at the 
time of CCA diagnosis [43], validating earlier observations [21]. The American 
Gastroenterology Association recently introduced surveillance for HBCa, including 
CCA, in the updated PSC clinical practice guidelines [50]. Further, the Italian 
Association for the Study of the Liver (AISF) in collaboration with the International 
Liver Cancer Association (ILCA) recently recommended implementing surveillance 
for CCA in patients with PSC every 6–12 months using cross-sectional imaging of 
the liver/bile ducts (US, MRI/MRCP, or CT) combined with serum CA 19–9 [51].

 Immunoglobulin G4-Related Sclerosing Cholangitis

 Background

Immunoglobulin G4-related sclerosing cholangitis (IgG4-SC) is relapsing- 
remitting, autoimmune disease of the biliary tract characterized cholangiographi-
cally by biliary strictures (intrahepatic, extrahepatic, or both) and histopathologically 
by infiltration of the biliary tree with IgG4-positive plasma cells and often serologi-
cally by elevated IgG4 levels [52, 53]. It is a rare disease, mostly affecting men who 
are 50  years of age or older [54]. It is often associated with autoimmune 

Annual CCA surveillance with
MRI/MRCP or US abdomen plus serum CA 19-9

Elevated CA 19-9 or
dominant stricture, biliary

dilatation, or ductal thickening

Elevated CA 19-9 and
imaging worrisome for CCA

ERCP with sampling for
routine cytology and FISH

Duct-based mass

All negative, cytology
atypical, and/or FISH
trisomy or tetrasomy

MRI/MRCP + CA 19-9 in
6 months

Resume baseline
surveillance for CCA

MRI/MRCP every 6
months x 2-5 years

ERCP ± MRI/MRCP in
4-6 months

MRI/MRCP every 6
months x 2-5 years

ERCP ±
MRI/MRCP in 3-4

months x2

Cytology
suspicious & FISH

polysomy

Cytology
positive for

CCA

Multi-specialty
care planning for

management

Cytology suspicious
or FISH polysomy

Liver mass

Positive result(s)
Negative results

Consider MRI/MRCP if
imaging modality used was US

Fig. 20.1 Proposed algorithm for CCA surveillance in patients with PSC. Abbreviations: CA 19–9 
carbohydrate antigen 19–9, CCA cholangiocarcinoma, ERCP endoscopic retrograde cholangio-
pancreatography, EUS endoscopic ultrasound, FISH fluorescence in situ hybridization, MRI mag-
netic resonance imaging, MRCP magnetic resonance cholangiopancreatography, US ultrasound
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pancreatitis, which is the pancreatic manifestation of IgG4-related disease 
(IgG4-RD). IgG4-SC can mimic malignancy, presenting as a dominant stricture, 
soft tissue enhancement, or even a biliary mass [55]. Thus, akin to PSC, differentiat-
ing between IgG4-SC and CCA can be challenging, often exposing the patients to 
unnecessary procedures and surgeries. By extension, distinguishing IgG4-SC from 
PSC can also be challenging, as discussed elsewhere [56, 57].

 Therapies for Immunoglobulin G4-Related 
Sclerosing Cholangitis

Immunosuppressive therapy is the mainstay treatment for patients with IgG4-
SC. Nearly 90% of IgG4-SC patients respond to steroids. However, relapse is 
quite common, often requiring re-administration of steroids or initiation of steroid- 
sparing agents or B cell depletion therapy [58, 59]. A detailed description of steroids 
and other immunosuppressive regimens is beyond the scope of this chapter but has 
been recently discussed elsewhere [58, 60].

 Risk of Malignancy in Immunoglobulin G4-Related 
Sclerosing Cholangitis

IgG4-SC is a newly described entity of IgG4-RD; hence, the epidemiology of IgG4-SC 
has not been well studied. Studies have reported an overall increased risk of malig-
nancy in IgG4-RD patients, ranging between 5.4% and 21.5% [61–68]. The incidence 
and lifetime risk of CCA in IgG4-SC are not well defined due to the rarity of the dis-
ease but appear to be increased compared to the general population. In the largest 
outcomes study to date including 527 Japanese patients with IgG4-SC, CCA was 
reported in only 0.4% of the cohort [69]. A higher prevalence of CCA was reported in 
Western cohorts, 3.2% in a British cohort [70], and 10% in a German cohort [71].

In a recently published report on the largest IgG4-SC cohort in North America, 3 of 
the 89 IgG4-SC patients developed CCA during a median follow-up of 5.7 years [72]. 
Based on these data, compared to the average nationwide in the United States, the inci-
dence of CCA was found to be nearly 130 times greater in the IgG4-SC group [72].

 Surveillance for Cholangiocarcinoma in Immunoglobulin 
G4-Related Sclerosing Cholangitis

To date, there is no consensus on surveillance for CCA in IgG4-SC patients. 
Although still debatable, based on limited data and expert opinion, surveillance for 
CCA as a part of IgG4-SC management is reasonable (Fig. 20.2).
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 Future Directions

There are several key questions and issues regarding surveillance for CCA in PSC 
and IgG4-SC. Which PSC and IgG4-SC patients benefit most from CCA surveil-
lance? What modalities and biomarkers are most effective for surveillance? Is 
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lgG and/or lgG4; elevated CA 19-9;
lgG4-related disease
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AIP; retroperitoneal fibrosis; enlarged
lymph nodes?
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lgG4, & CA 19-9 in 2-3 months.
MRI/MRCP ± ERCP in 3-4 months

Clinical, biochemical,
serological, radiological, and
cholangiographic response?

Continue Prednisone and start Rituximab
(induction and maintenance dose).
Repeat liver chemistries, total lgG, lgGa, &
CA19-9 every 2-3 months until normalization.
Repeat MRI/MRCP ± ERCP every 3-4
months radiological and/or cholangiographic
resolution, then every 6-12 months.
Monitor liver chemistries, total lgG, lgG4 &
CA19-9 every 6-12 months.

Consider repeating MRI/MRCP ± ERCP
for repeat brushings for cytology and FISH.
Consider EUS for sonographic
assessment of the pancreas and possible FNA.
Conider serology/or liver biopsy to
evaluate for autoimmune liver/biliary diseases.
Consider Surgery consult for possible
exploratory laparotomy.

MRI/MRCP, liver chemistries,
total lgG, lgG4 & CA19-9

every 6-12 months to monitor
for disease relapse, and

Surveillance for CCA.

Relapse (clinical,
biochemical, serological,
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Fig. 20.2 Proposal for CCA surveillance in patients with IgG4-SC. Abbreviations: AIP autoim-
mune pancreatitis, CA 19–9 carbohydrate antigen 19–9, CCA cholangiocarcinoma, ERCP endo-
scopic retrograde cholangiopancreatography, EUS endoscopic ultrasound, FISH fluorescence in 
situ hybridization, IgG immunoglobulin, IgG4 immunoglobulin G4, MRI magnetic resonance 
imaging, MRCP magnetic resonance cholangiopancreatography
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surveillance cost-effective? In PSC patients, should surveillance be only for those 
who have persistently abnormal liver chemistries? In IgG4-SC patients, what is the 
risk of CCA, and what is the optimal surveillance interval? It is our hope that 
advanced technology, such as GWAS and multi-omics approaches using combined 
data from genomics, proteomics, methylomics, transcriptomics, and metabolomics, 
might identify alterations contributing to the development of malignancy in PSC 
patients and thus optimize surveillance strategies in PSC and IgG4-SC patients.

 Conclusions

CCA is the most feared complication of PSC. Early diagnosis of CCA is crucial for 
optimal outcomes. Surveillance for CCA in PSC has historically been controversial, 
though recent data and guidelines now support it [43, 50]. The approach in many 
high-volume centers is annual MRI/MRCP coupled with serum CA 19–9, though 
better and more tailored approaches are expected. Surveillance for CCA in PSC 
patients should begin as soon as the diagnosis of PSC is established, irrespective of 
the stage of PSC. With regard to IgG4-SC, the risk of CCA is less defined, and there 
is no consensus regarding the need for surveillance. Larger studies are required to 
better examine the risk of CCA in IgG4-SC patients, though available data demon-
strate that it is significantly increased, thus suggesting a role for surveillance.
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PD-L1 Program cell death protein 1 ligand
PFS Progression-free survival
RPSFT Rank preserving structural failure time
TKI Tyrosine kinase inhibitor

 Introduction

Since 2010, the standard of care in treating all advanced, inoperable biliary tract 
cancers has been combination gemcitabine and cisplatin (gem-cis). Valle et al. dem-
onstrated in the phase 3, randomized ABC-02 trial, a median overall survival (OS) 
of 11.7 months with this combination compared to 8.1 months with single-agent 
gemcitabine in patients with unresectable, recurrent, or metastatic biliary tract can-
cers, including cholangiocarcinoma (CCA). The rate of tumor control among 
patients in the cisplatin-gemcitabine group was significantly increased (81.4% vs 
71.8%, P = 0.049) [1]. Additionally, these benefits were seen without the addition 
of substantial toxicity, establishing gem-cis as the standard of care for all biliary 
tract cancers.

Until recently, the treatment for advanced biliary tract cancers in the second-line 
setting has been relatively less clear. Data informing treatment in the second-line 
setting had been lacking, with no prospective, phase 3 studies performed until 2019. 
Rogers et al. were the first to explore this matter, performing a single institution 
retrospective study between 2009 and 2012 to evaluate progression-free survival 
(PFS) in patients with advanced CCA who were started on second-line systemic 
treatment. Fifty-six patients were included in the analysis, with 95% having intrahe-
patic CCA [2]. Second-line treatment regimens were classified into four groups—
gemcitabine plus platinum (19.6%), gemcitabine plus fluoropyrimidine (28.6%), 
other FU combination (37.5%), and others (14.3%). Median PFS was 2.7 months 
(95% CI, 2.3–3.8  months) with a median OS of 13.8  months (95% CI, 
12–19.3 months) and a disease control rate of 50% [2]. Despite a potential survival 
benefit with second-line systemic therapy, no significant difference in survival was 
identified between the four treatment groups [2].

Delving deeper, Lamarca et al. conducted a systemic review evaluating the qual-
ity of evidence supporting the use of second-line chemotherapy for patients with 
advanced biliary tract cancers. The study evaluated OS, response rate (RR), toxicity, 
and quality of life. Twenty-five studies were included in the analysis—14 phase 2 
clinical trials, 9 retrospective analyses, and 2 case reports with data collected from 
761 patients [3]. The mean OS was 7.2  months [95% confidence interval (CI) 
6.2–8.2] [3]. The mean PFS, RR, and disease control rate were 3.2 months (95% CI 
2.7–3.7), 7.7% (95% CI 4.6–10.9), and 49.5% (95% CI 41.4–57.7), respectively [3]. 
Despite the low standards in terms of outcomes (OS, PFS) of second-line chemo-
therapy in advanced biliary tract cancers, the data suggests select patients, particu-
larly those with adequate performance status, may benefit from treatment.
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The largest cohort of patients with advanced biliary tract cancers failing first-line 
therapy was studied in a multicentered trial across three US academic medical cen-
ters that evaluated treatment practice and outcomes for second-line chemotherapy 
[4]. Institutional registries were reviewed from April 2010 to March 2015, and 198 
patients were identified (intrahepatic CCA 61.1%, extrahepatic CCA 14.1%, and 
24.8% gallbladder carcinoma) [4]. The median overall survival from initiation of 
second-line therapy (OS2) was 11  months (95% confidence interval [CI], 
8.8–13.1  months). The median OS2 for patients with intrahepatic CCA was 
13.4 months (95% CI, 10.7–17.8 months), which was longer than that for patients 
with extrahepatic CCA (6.8 months; 95% CI, 5–10.6 months) or gallbladder carci-
noma (9.4 months; 95% CI, 7.2–12.3 months; p = 0.018) [4]. Survival was longer 
than expected compared to prior studies, likely reflecting more favorable tumor 
biology among patients who were able to receive second-line therapy after the pro-
gression of disease on first-line chemotherapy [3, 4]. The median time to second- 
line treatment failure was 2.2 months (95% CI, 1.8–2.7 months), and it was similar 
across tumor locations (p  =  0.60), highlighting the limited efficacy of standard 
second- line regimens [4]. The study noted more than half of the patients went on to 
receive additional lines of treatment, further underlining the need for new effica-
cious therapies.

 Early Progress in Systemic Therapies

Despite the seeming lack of therapies in the treatment of CCA, several recent stud-
ies have shown signs of progress. In the recently concluded ABC-06 trial, 162 
patients with advanced biliary tract cancers who failed treatment with gem-cis were 
randomized 1:1 (March 2014 to Jan 2018) into two arms—treatment with active 
symptom control (ASC) or ASC plus folinic acid, fluorouracil, and oxaliplatin 
(mFOLFOX) [5]. Initial results revealed a survival benefit with ASC + FOLFOX 
arm with an adjusted HR of 0.69 (95% CI 0.50–0.97; p = 0.031; ASC + mFOLFOX 
vs ASC) [5]. Median OS and OS rate (%) at 6 months and 12 months, respectively, 
were 5.3 months, 35.5%, and 11.4% for the ASC arm and 6.2 months, 50.6%, and 
25.9% for the ASC + mFOLFOX arm, respectively [5]. The survival seen in the 
ASC arm was greater than assumed, while ASC + mFOLFOX improved OS after 
progression with gem-cis treatment with a clinically meaningful increase in 6-month 
and 12-month OS rate [5]. Though awaiting final results, initial data from this trial 
is suggestive of ASC + mFOLFOX becoming the standard of care in the second-line 
setting for advanced biliary tract cancers (NCT01926236).

A step forward in systemic therapies came in a phase 2 clinical trial evaluating 
the association between PFS and the addition of nanoparticle albumin-bound (nab)-
paclitaxel to gem-cis [6]. Existing preclinical data suggest nab-paclitaxel enhances 
gemcitabine delivery in pancreatic tumors, raising the possibility of similar effects 
in biliary tract cancers [6]. This open-label, single-arm, phase 2 clinical trial was 
conducted at the University of Texas MD Anderson Cancer Center and the Mayo 
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Clinic in Phoenix, Arizona. A total of 62 patients with advanced biliary tract cancers 
were enrolled between April 2015 and April 2017. Of 60 patients who started treat-
ment, the mean (SD) age was 58.4 (11.0) years, 38 (63%) had intrahepatic CCA, 9 
(15%) had extrahepatic CCA, 13 (22%) had gallbladder cancer, 47 (78%) had meta-
static disease, and 13 (22%) had locally advanced disease [5]. Dose adjustments 
were made due to adverse hematologic events among the first 32 patients enrolled, 
resulting in the remaining 28 patients having dose-reduced regimens. Median PFS 
in 58 patients was 11.8 (95% CI, 6.0 to 15.6) months. The median overall survival 
was 19.2  months in 57 patients (95% CI, 13.2  months to not estimable) [6]. 
Treatment response data were available for 51 patients, and the partial RR was 45%, 
with a disease control rate of 84%. Grade 3 or higher adverse events occurred in 
58% of patients, and 9 patients (16%) withdrew owing to adverse events [5]. Post 
hoc analyses showed that treatment efficacy was not significantly associated with 
starting dose, tumor type, or disease status and that tolerability was improved with 
reduced vs high-dose treatment [6]. Additionally, with treatment, 12 patients were 
converted from unresectable to resectable disease allowing surgical intervention; 2 
of these patients subsequently achieved a pathologic complete response [6]. This 
study demonstrated that the addition of nab-paclitaxel to gem-cis notably prolonged 
median PFS when compared to the historical control of gem-cis alone [1, 6]. These 
findings are being tested in a phase 3 randomized clinical trial (S1815 Study, 
NCT03768414).

Despite some encouraging progress in systemic therapies, the reality is the 5-year 
survival for CCA remains poor at 5–10% [1, 6]. There is a dire need for improved 
treatment options for patients with CCA in both the first-line and second-line set-
tings, particularly given the known toxicity profile of geme-cis [6]. Part of the chal-
lenge is that CCA has varying molecular etiologies and is clinically heterogeneous, 
differing in presentation and complexities depending on the location of the tumor 
and underlying hepatobiliary disease. This has made development of universal treat-
ments challenging, raising the question if targeted therapies will yield more promis-
ing results.

 Importance of Molecular Profiling

 Next-Generation Sequencing in Cholangiocarcinoma

Next-generation sequencing (NGS) refers to several different modern sequencing 
technologies that allow for sequencing of DNA and RNA much more quickly and 
inexpensively than the previously used Sanger sequencing method [7]. It has 
expanded in the last decades with significant improvements in reliability, gene 
sequencing, analyses, and data interpretation that has played a key role advancing 
the study of genomics and molecular biology. Improved efficacy and affordability 
have further made the use of NGS feasible in modern clinical practice with applica-
tions ranging from mutation detection in inherited cancer syndromes, detection of 
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spliceogenic variants, cancer somatic mutation analysis, pharmacogenetics, and liq-
uid biopsy [7]. NGS has been central in advancing understanding of cancer biology 
with the identification of genetic variances contributing to tumor growth, develop-
ment and metastasis, driver genes, driver mutations, and passenger mutations [7]. 
Furthermore, NGS has opened doors in the clinical realm via improved patient clas-
sification, prognostication, targeted treatments, drug resistance, and pharmacoge-
netics. Recent advances in the understanding of the pathogenesis of CCA are linked 
to molecular insights provided by NGS.

Jusakul et al. were among the first to begin to explore the molecular and epig-
enomic landscape in CCA. In this study, a cohort of nearly 500 CCA specimens 
from distinct geographical regions was analyzed with NGS at the whole genome 
level [8]. Four distinct etiological clusters were recognized, defined by differences 
in gene expression, mutations, copy number changes, and epigenetic changes. The 
specific mutations noted were ERBB2 amplification, TP53 mutations, levels of 
PD-1/PD-L2 expression, IDH1/2 and BAP1 epigenetic mutations, and FGFR/
PRKA-related gene rearrangements [8]. The relevance of classifying CCAs by 
these driver genes, noncoding promoter mutations, and structural variants is that 
each subtype exhibited distinct molecular and clinicopathologic features. Molecular 
profiling of these CCAs provided insight beyond the anatomical location of the 
tumor. Additionally, CCAs in different anatomical locations did not differ in their 
survival trends, while CCAs stratified by molecular clusters showed significant dif-
ferences in survival [8]. This highlights how distinct cancer subtypes in the same 
organ may arise through varying oncogenic processes. Given this, NGS offers the 
potential to identify disease subsets with differing prognostic and therapeutic impli-
cations, while further informing the development of targeted therapies.

The concept of developing targeted therapies based on a CCA molecular profile 
has prompted the search for these actionable mutations (Table 21.1). Emerging data 
from NGS analyses have identified two such mutations holding considerable prom-
ise, the FGFR2 fusion and IDH1 and IDH2 mutations, which are the two most com-
mon genetic alterations seen in intrahepatic CCA [9].

 Isocitrate Dehydrogenase (IDH1/IDH2) Mutations

Mutations in the isocitrate dehydrogenase genes (IDH1 and IDH2) were first dis-
covered using NGS, and collaborative efforts to characterize IDH mutations have 
shown these mutations are higher in intrahepatic CCA (iCCA) than extrahepatic 
CCA [9]. IDH mutations are seen in about 20–25% of iCCA [8, 9]. However, the 
prognostic significance of IDH mutations remains unclear.

IDH1 and IDH2 are metabolic enzymes that normally function as components of 
the tricarboxylic acid cycle, catalyzing the interconversion of isocitrate and alpha-
ketoglutarate. The mutant IDH loses its normal enzymatic activity and instead pro-
duces increased amounts of the oncometabolite 2-hydroxyglutarate(2-HG) [9]. 
2-HG can competitively inhibit dioxygenases, which play a role in DNA 
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demethylation. Increased amounts of 2-HG can be detected both in the tumor and 
blood [9]. Furthermore, IDH and KRAS mutations can cooperate to drive the expan-
sion of the liver, progenitor cells, development of premalignant biliary lesions, and 
progression to metastatic iCCA [9].

Highly specific IDH inhibitors have been developed. These inhibitors block the 
function of mutant IDH1 or IDH2, which reduces the levels of oncometabolite 
2-HG [10]. One such inhibitor, ivosidenib (IVO), an oral, reversible inhibitor of 
mutant IDH1 (mIDH1) was well tolerated among patients with advanced solid 
tumors with IDH1 mutations in a phase 1 I trial (NCT02073994). IVO is currently 
approved in the USA for the treatment of mIDH1 acute myeloid leukemia in newly 
diagnosed patients ineligible for intensive chemotherapy and patients with relapsed 
or refractory disease. Seventy-three patients with mIDH1-CCA were enrolled in the 
study and received IVO [10]. These patients had a median of two prior treatments 
(range 1–5), pointing to a refractory study population. The median PFS was 
3.8 months (95% CI 3.6–7.3), 6-month PFS was 40.1% (28.4–51.6), and 12-month 
PFS was 21.8% (12.3–33.0) [10]. Median OS was 13.8 months (95% CI 11.1–29.3); 

Table 21.1 Actionable mutations in cholangiocarcinoma

Actionable 
mutation Prevalence

Targeted 
therapies Mechanism of action

IDH 1 and IDH 
2 mutation

20–25% of 
iCCA

Ivosidenib Blocks the function of mutant IDH1 or IDH2, 
which reduces the levels of oncometabolite 
2-HG

FGFR2 fusion 15–20% of 
iCCA

Infigratinib, 
TAS-120, 
pemigatiniba

Inhibits the constitutively active FGFR 
signaling that promotes cell proliferation and 
inhibits apoptosis

KRAS 7–24% in 
iCCA

AMG510b Binds to the cysteine residue in KRAS G12C 
mutations, holding the protein in its inactive 
form

B-raf 3–5% of 
CCA

Vemurafenib, 
dabrafenibc

Selectively inhibits the mutated BRAF V600E 
kinase that leads to reduced signaling through 
the aberrant mitogen-activated protein kinase 
(MAPK) pathway

BRCA1, 
BRCA2, and 
PARP inhibition

Unknown Niraparib, 
olaparib

Inhibits the role of PARP-1 and PARP-2 in 
DNA repair. By blocking PARP enzymatic 
activity and increasing the formation of 
PARP-DNA complexes, these inhibitors induce 
DNA damage and cell death

Her2/neu 9–20% of 
CCA

Varlitinib, 
lapatinib, 
pertuzumab, 
trastuzumab

Varlitinib and lapatinib selectively and 
reversibly bind to both EGFR (ErbB-1) and 
Her2/neu (ErbB-2) and prevent their 
phosphorylation and activation, which may 
result in inhibition of the associated signal 
transduction pathways, inhibition of cellular 
proliferation and cell death

aPemigatinib is currently the only FDA-approved drug for CCA
bAMG510 is only for the KRAS G12C mutation which is rare in CCA
cGiven in combination with MEK inhibitors
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however, data were censored for 48 patients (66%) [10]. No dose-limiting toxicities 
were reported, and maximum tolerated dose was not reached [10]. Given these 
encouraging results, 500  mg daily dose of IVO was selected for expansion in a 
phase 3 trial [10].

The ClarIDHy study, is the phase 3 clinical trial that evaluated IVO versus pla-
cebo (PBO) in patients with previously treated nonresectable or metastatic mIDH1- 
CCA. As of January 2019, 185 pts. were randomized to IVO (n = 124) or PBO 
(n = 61) [11]. Crossover from PBO group to IVO was permitted when progressive 
disease was documented. Initial results are promising, showing PFS 2.7 vs 
1.4 months (IVO vs PBO). PFS rates at 6 and 12 months were 32.0% and 21.9% in 
IVO arm. On the other hand, no PBO patients were progression-free for ≥6 months 
at data cutoff [11]. The primary endpoint was PFS, with IVO showing clear benefit 
with a hazard ratio = 0.37 (95% CI 0.25, 0.54; p < 0.001) [11]. IVO’s efficacy was 
seen across all subgroups. Intention to treat analysis showed median OS was 10.8 
mo for IVO compared to 9.7 months for PBO (HR = 0.69; one-sided p = 0.06) with 
57% of PBO patients crossed over to IVO [10]. The rank preserving structural fail-
ure time (RPSFT)-adjusted median OS was 6  months for PBO (HR  =  0.46; 
p = 0.0008) [11]. Grade ≥ 3 adverse events reported in 46% IVO vs 36% PBO, and 
there were no treatment-related deaths. This study demonstrated significant 
improvement in PFS with IVO and a favorable OS trend compared to PBO [11]. 
This is the first pivotal study demonstrating the clinical benefit of targeting mIDH1 in 
patients with advanced mutant IDH1 CCA.

Other clinical trials testing IDH1 and IDH2 inhibitors are ongoing (NCT02746081, 
NCT02273739, NCT02381886, NCT02481154) [9]. The promise of targeting 
IDH1 and IDH2 with these targeted therapies raises questions on how these treat-
ments should be used—as first-line therapy in certain populations or whether these 
inhibitors should be combined with chemotherapy or other treatment modalities. 
Additionally, the utility of these inhibitors in the adjuvant and neoadjuvant settings 
will need to be explored. Regardless, the potential of these inhibitors offers opti-
mism for improved therapies and a direction for future drug development.

 Fibroblast Growth Factor Receptor 2 (FGFR2) Fusions

The second touted actionable mutation in CCA is the fibroblast growth factor recep-
tor 2 (FGFR2) fusion. This genetic phenotype is seen in about 15–20% of iCCA [9]. 
Genome-wide structural analyses first showed recurrent translocation events involv-
ing the FGFR2 locus [9]. The mechanism by which FGFR2 fusions drive oncogen-
esis has yet to be fully elucidated. However, it is thought that genetic alterations of 
FGFR can alter FGFR kinase activity and result in constitutively active FGFR sig-
naling that promotes cell proliferation and inhibits apoptosis [12]. Jain et al. reported 
on clinical characteristics and treatment outcomes of biliary tract cancers with FGFR 
genetic alterations in a retrospective analysis and found this subtype to be associated 
with an indolent disease course and prolonged survival. It was additionally noted 
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this subtype affected a disproportionate number of young women [12]. Since the 
initial discovery of recurrent FGFR2 fusions being present in multiple tumor types 
and particularly in iCCA, it has become the focus of developing targeted therapies.

The earliest reported data of selective FGFR inhibition in CCA is with oral agent 
BGJ398. BGJ398 is an orally bioavailable, selective pan-FGFR kinase inhibitor that 
has shown preliminary clinical activity against tumors with FGFR alterations [13]. 
A multicenter, open-label, phase 2 study (NCT02150967) evaluated BGJ398 antitu-
mor activity in patients age ≥ 18 years with advanced or metastatic CCA containing 
FGFR2 fusions or other FGFR alterations whose disease progressed on prior ther-
apy [13]. Sixty-one patients (median age, 57 years) with FGFR2 fusion (n = 48), 
mutation (n = 8), or amplification (n = 3) participated. At the prespecified data cut-
off (June 30, 2016), 50 patients had discontinued treatment. All responsive tumors 
contained FGFR2 fusions. The overall RR was 14.8% (18.8% in FGFR2 fusions 
population), disease control rate was 75.4% (83.3% FGFR2 fusions population), 
and estimated median PFS was 5.8  months (95% CI, 4.3 to 7.6  months) [13]. 
BGJ398 is a first-in-class FGFR kinase inhibitor with a manageable toxicity profile, 
showing meaningful clinical activity against refractory CCA containing FGFR2 
fusions. This promising antitumor activity supports continued development of 
BGJ398 in this patient population and further suggests FGFR inhibitor therapy as a 
viable therapeutic option in advanced biliary tract malignancies. The PROOF trial 
is currently ongoing, evaluating the efficacy of BGJ398 vs gem-cis in first-line treat-
ment of patients with unresectable locally advanced or metastatic CCA with FGFR2 
fusions or translocations (NCT03773302). It is a multicenter, open-label, random-
ized, controlled phase 3 clinical trial aiming to enroll 384 patients [14]. Patients will 
be randomized 2:1 to infigratinib versus standard of care, with the ability for patients 
who are unresponsive to gem-cis to cross over and receive infigratinib [14]. In 
January 2020, infigratinib (BGJ398) received fast-track and orphan drug designa-
tions by the FDA, highlighting the optimism surrounding the drug’s potential to 
treat CCA in this select patient population [14].

TAS-120 is another irreversible FGFR inhibitor showing promise in clinical tri-
als. A phase 1 study of TAS-120 (8–24 mg QD) in adult patients with advanced 
solid tumors (NCT02052778) found the maximum tolerated dose to be 20 mg QD 
[15]. Meric-Bernstam et al. specifically analyzed patients with CCA enrolled in this 
study. 45 patients with CCA (intrahepatic n = 41) with FGF/FGFR aberrations were 
treated at 16 (n = 24), 20 (n = 14), and 24 mg (n = 7) QD (median age 53 y [range 
29–73]). Of note, 76% of the patients were female. 28 patients (62%) had tumor 
FGFR2 gene fusions, while 17 (38%) had other FGF/FGFR aberrations [15]. All 
patients received prior systemic therapy, 28.9% with reversible FGFR inhibitor, 
revealing a highly refractory patient population with prior FGFR inhibitor exposure. 
Of the 28 pts. with FGFR2 gene fusions, 20 (71%) experienced tumor shrinkage, 
and 7 achieved confirmed partial responses [13]. The objective RR was 25%. 15 of 
28 (54%) patients had stable disease as best response [15]. The disease control rate 
was 79%. Of the 17 patients with other FGF/FGFR aberrations, 3 had cPRs (all had 
FGFR2 rearrangements; 1 also had FGFR2 amplification). Median treatment time 
was 7.4 months. Of the 13 patients with prior FGFR inhibitor treatment, 4 (3 with 
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FGFR2 gene fusions, 1 with FGFR2 amplification) had cPRs [15]. Grade ≥  3 
treatment- related adverse events were reported in 23 of 45 (51%) patients, with the 
most common being hyperphosphatemia (22%) [15]. TAS-120 showed notable clin-
ical activity with manageable toxicities in patients with CCA and FGFR2 fusions. 
The drug further showed efficacy in patients who had progressed on prior FGFR 
inhibitors. A phase 2 study testing TAS-120 in patients with FGFR2 gene fusions is 
ongoing. Interim analysis as of May 2020 reported data for 67 patients with a mini-
mum of 6 months of follow-up and found the ORR was 37.3% (1 CR = 1.5%; 24 
PR = 35.8%) [16]. Median duration of response was 8.31 months. The most com-
mon treatment-related adverse events (all grades, grade 3) at the time of analysis 
were hyperphosphatemia (80.6%; 26.9%), diarrhea (37.3%; 0%), and dry mouth 
(32.8%; 0%) [16]. There were no grade 4 treatment-related adverse events. This 
initial analysis is encouraging that TAS-120 may have clinically meaningful benefit 
in patients with refractory iCCA with FGFR2 gene fusions.

Pemigatinib is an orally bioavailable inhibitor of FGFR 1, 2, and 3 currently 
being investigated. The Fight-202 trial is a phase 2, open-label, single-arm, multi-
center study evaluating the efficacy of pemigatinib in patients with advanced or 
surgically unresectable CCA with FGFR2 translocation who have failed at least one 
previous treatment (NCT02924376). Patients were enrolled in three cohorts—those 
with FGFR2 translocations (A), those with other FGF/FGFR genetic alterations 
(B), or those with neither (C) [17]. Each cohort received pemigatinib 13.5 mg daily 
on a 21-day cycle until disease progression or intolerable toxicity. Interim data pre-
sented in September 2019 showed an objective RR of 35.5% in cohort A [17]. 
Median duration of response in this group was 7.5 months. No response was seen in 
cohort B or C. Median PFS was 6.9 months in cohort A compared with 2.1 months 
in cohort B and 1.7 months in cohort C [18]. This data supports FGFR inhibition 
being a meaningful treatment for this subset of patients with CCA. Based on the 
data from FIGHT-202, a phase 3 study of pemigatinib versus gem-cis chemotherapy 
in first-line treatment of patients with unresectable or metastatic CCA with FGFR2 
rearrangements is underway (NCT03656536). As of April 2020, pemigatinib 
became the first FDA-approved targeted therapy for treatment of adults with previ-
ously treated, unresectable locally advanced or metastatic CCA with a fibroblast 
growth factor receptor 2 (FGFR2) fusion or other rearrangement [18].

Other selective FGFR inhibitors including Debio-1347(Debiopharm, 
NCT01948297), are currently being evaluated in early phase trials in patients with 
advanced solid tumors, including iCCA [9]. A third nonselective TKI, ARQ-087 
(ArQule, NCT01752920), has shown some encouraging antitumor activity in 
advanced iCCA with FGFR2 fusion as well [9]. Overall, the preliminary data for 
FGFR inhibitors in advanced ICC provides some optimism. However, some debate 
exists regarding if these trends in survival can be attributed to these targeted thera-
pies or to the natural history of FGFR phenotype, given its favorable survival profile. 
Looking to the future, questions remain whether these drugs can evolve into front-
line therapies or if they should be used with chemotherapy or other forms of therapy.
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 Mechanisms of Resistance

Initial clinical trials of targeted therapies in CCA, though encouraging, have also 
raised concerns of drug resistance [9]. Mechanisms of resistance are not fully under-
stood at this time, and adequately addressing resistance will likely determine the 
durability of these targeted therapies.

A mechanism for acquired resistance to IDH inhibitors, known as isoform 
switching, was first detailed in four clinical cases [19]. Harding et al. describe a 
selective pressure of inhibiting mutant IDH activity in one subcellular compart-
ment, which in turn provides a growth advantage for malignant subclones with 
unchecked mutant IDH activity in another subcellular compartment. In other words, 
by “isoform switching” from mutant IDH1 to mutant IDH2 or vice versa, IDH- 
mutant cancers can develop resistance to isoform-selective IDH inhibitors and 
restore the production of oncometabolite 2-HG, ultimately promoting tumor pro-
gression [19]. The frequency of mutant IDH isoform switching as a mechanism of 
resistance to IDH inhibition remains uncertain.

Development of acquired resistance to FGFR kinase inhibitors has been even 
more prevalent, threatening the durability of benefit. The emergence of secondary 
FGFR2 kinase domain mutations has been observed in patients in the BGJ398 clini-
cal trials [13]. Furthermore, Goyal et al. reported that the irreversible FGFR inhibi-
tor TAS-120 demonstrated efficacy in four patients with FGFR2 fusion-positive 
iCCA who developed resistance to BGJ398 or Debio-1347. After examining serial 
biopsies, circulating tumor DNA, and patient-derived iCCA cells, it was found that 
TAS-120 was active against multiple FGFR2 mutations which conferred resistance 
to BGJ398 or Debio-1347 [20]. Functional assessment and modeling of the clonal 
outgrowth of individual resistance mutations from polyclonal cell pools mirrored 
the resistance profiles observed clinically for each inhibitor [20]. These findings 
suggest that strategic sequencing of FGFR inhibitors, guided by serial biopsy and 
ctDNA analysis, may prolong the duration of benefit from FGFR inhibition in 
patients with FGFR2 fusion-positive iCCA. Moving forward, therapeutic strategies 
to prevent or overcome resistance will be pivotal to sustained success of these devel-
oping targeted therapies.

 Smaller Targets in Cholangiocarcinoma

 KRAS

The KRAS proto-oncogene encodes for a small GTPase that participates in several 
cell signaling pathways, including the MAPK-ERK pathway which regulates cell 
differentiation and proliferation. Mutations can disable the GTPase activity of 
KRAS, keeping it constitutively active in a GTP-bound state. This leads to continu-
ous activation of downstream signal transduction pathways that drive tumor growth, 
remodeling, and migration [21].
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The reported prevalence of KRAS mutations in intrahepatic CCA varies consid-
erably between studies from 7% to 24% [22–25]. Although the reported frequency 
of KRAS mutations is variable, there is some data to suggest that testing for KRAS 
mutations may carry prognostic value. Robertson et al. conducted DNA extraction 
and pyrosequencing of 54 iCCA cases and found that four cases carried KRAS 
mutations. The reported median overall survival was 13.5 months for KRAS mutant 
cases, compared to 37.3 months for wild-type cases, suggesting a worse prognosis 
for KRAS mutant cases. KRAS mutant cases were also associated with higher 
tumor stage and greater likelihood of lymph node involvement at time of resection 
[23]. Javle et al. reported similar findings from a multicenter study using hybrid 
capture-based comprehensive genomic profiling (CGP) of 412 intrahepatic CCA 
samples. KRAS mutations were observed in 22% of iCCA samples, and among the 
224 iCCA cases analyzed, KRAS-mutated tumors were associated with poorer 
overall survival (P  =  0.048) in comparison with KRAS wild-type tumors [26]. 
Although these studies suggest that KRAS mutations may carry prognostic signifi-
cance, target specific treatments for this pathway are still in the early stages of 
development. The Amgen pharmaceutical company has introduced an irreversible 
KRAS p.G12C inhibitor (AMG510) which is being tested in phase 1/2 trials 
(NCT03600883). However, the G12C mutation has not been commonly reported in 
CCA, and as such AMG510 may have limited practical significance in treating CCA.

 B-raf

The B-raf proto-oncogene encodes a serine-threonine protein kinase which engages 
the MAPK/ERK proliferation signaling pathway. Activating mutations in B-raf, 
such as BRAF V600E, lead to continuous activation of its downstream signaling 
molecules, resulting in cell cycle progression [27]. The nucleotide sequence of the 
raf gene was first determined from murine sarcoma virus 3611 (MSV-3611) in 1983 
[28, 29]. Raf or “rapidly accelerated fibrosarcoma” was discovered after MSV-3611 
was shown to enhance fibrosarcoma induction in mice. Two years later, the C-raf-1 
gene was cloned from human cells, and shortly afterward, the A-raf and B-raf iso-
forms were discovered.

The B-raf gene gained attention in 2002 when researchers identified B-raf 
somatic missense mutations in 66% of malignant melanomas [30]. The BRAF 
V600E mutation accounted for 80% of these mutations, providing a promising new 
therapeutic target. BRAF inhibitors, dabrafenib and vemurafenib, have shown dra-
matic results in BRAF V600E-mutated metastatic melanoma and, therefore, might 
be effective treatments for BRAF-mutated CCA. However, in CCA, B-raf mutations 
occur at a low frequency (3–5%) compared to the frequency of these mutations in 
melanoma [22, 24, 31]. There are limited studies that evaluate the efficacy of vemu-
rafenib in BRAF-mutated CCA cases. In a phase 2 basket study of vemurafenib in 
BRAF V600E-mutated non-melanoma cancers, one patient from a cohort of eight 
patients with CCA achieved a durable partial response of over 1 year [32]. ROAR, 
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a phase 2 trial investigating combination therapy with B-raf and MEK inhibition 
(dabrafenib and trametinib) in subjects with BRAF V600E-mutated rare cancers, is 
ongoing (NCT02034110). Preliminary data for the ROAR trial was presented at the 
2019 Gastrointestinal Cancers Symposium [33]. Of the 33 biliary tract cancer 
patients enrolled in the study, 30 patients harbored BRAF V600E mutations. The 
objective RR was 41% (13/32; 95% CI, 24–59%), with 6 of 13 responses ongoing 
at data cutoff, and 7 of 13 (54%) patients with a duration of response ≥6 months. 
The median PFS was 7.2 months (95% CI, 4.6–10.1 months), and median overall 
survival was 11.3 months (95% CI, 7.3–17.6 months).

 BRCA1 and BRCA2: PPAR Inhibition

The BRCA1 and BRCA2 tumor-suppressor genes encode proteins that repair 
double- stranded DNA breaks (DSBs) by homologous recombination. BRCA1/2- 
mutated cells are unable to carry out homologous recombination and perform DNA 
repair by alternative error-prone mechanisms, making them more prone to genomic 
instability [34]. One approach to targeting BRCA-mutated tumors is by inhibiting 
both BRCA and poly-ADP-ribose polymerase (PARP) proteins. Normally, PARP 
enzymes repair single-stranded DNA breaks via base excision repair. In PARP- 
deficient cells, single-stranded DNA breaks remain unrepaired and, when encoun-
tered by a replication fork, evolve into double-stranded breaks. BRCA-mutated 
cells are unable to repair these DSBs and overcome the collapsed replication fork 
[35]. In this way, PARP inhibition can exploit the inherent vulnerability of BRCA- 
mutated tumors as well as other DNA repair deficient cells.

In a retrospective analysis of patients with BRCA-mutated CCA (n = 18), one of 
four patients who received PARP inhibitors had a sustained disease response with a 
PFS duration of 42.6 months [36]. However, given the limited number of patients in 
this study, more research is needed to establish the success of PARP inhibition in 
BRCA-mutated CCA. A phase 2 trial of PARP inhibitor, niraparib, is underway at 
the University of Florida (NCT03207347). A basket phase 2 trial of PARP inhibitor, 
olaparib, is also ongoing and will include patients with metastatic solid tumors har-
boring IDH1 or IDH2 mutations (NCT03212274).

 Her2/neu

The Her2/neu gene was initially discovered when a series of neuroglioblastomas 
from carcinogen treated rats were found to have the same oncogene [37]. The Her2/
neu gene encodes for the Her2 (human epidermal growth factor receptor 2) protein, 
a transmembrane receptor with tyrosine kinase activity which lies upstream of mul-
tiple signal transduction pathways that drive tumorigenesis. Overexpression of Her2 
has long been used as a predictive marker in breast and gastric cancers. However, 
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the prevalence of Her2 overexpression in biliary tract cancers was previously 
understudied.

In 2017, a systematic review and meta-analysis of 40 studies (including 3839 
patients in total) by Galdy et al. demonstrated that extrahepatic biliary tumors have 
higher Her2 overexpression compared to intrahepatic CCA: 19.9% (95% CI, 
12.8–27.1%) vs 4.8% (95% CI, 0–14.5%), respectively [38]. In addition to the low 
prevalence of Her2 mutations in intrahepatic CCA, previous phase 2 trials of lapa-
tinib, a dual inhibitor of EGFR and Her2/neu, have shown poor results [39]. A phase 
2 study of lapatinib in 17 patients with advanced biliary tract cancer reported a 
median PFS duration of 1.8 months with a zero percent RR. A similar phase 2 study 
of lapatinib in nine biliary tract cancer patients reported zero responses and a median 
PFS of 2.6 months [39, 40]. In comparison to lapatinib, monoclonal antibodies such 
as trastuzumab might be better alternatives for Her2 overexpressing biliary tract 
cancers. Varlitinib, a small molecule Her 1/2/4 inhibitor, is also being investigated 
in a phase 2/3 study in combination with capecitabine as second-line treatment for 
unselected advanced biliary tract cancers [41]. Preliminary results from an ongoing 
clinical trial (NCT02091141) has shown that pertuzumab plus trastuzumab has 
activity in Her2-mutated biliary tract cancers, further supporting Her2 as a potential 
therapeutic target for these cancers. Additionally, data from a phase 1 study showed 
single-agent ZW25, a bispecific antibody, induced antitumor activity in heavily pre-
treated patients with a variety of Her2-expressing cancers, including CCA [42]. 
Phase 2 clinical trials are currently underway testing ZW25 in breast, gastric, and 
other Her2-expressing cancers.

 Role of Immunotherapy in Cholangiocarcinoma

As immunotherapy gains popularity as a treatment option for cancers such as mela-
noma and colorectal cancer, studies investigating the role of immunotherapy in 
CCA are also emerging. Immunotherapies such as programmed cell death protein 1 
(PD-1) inhibitors enable tumor recognition by blocking the PD-1 and PD-L1 (pro-
grammed cell death protein 1 ligand) interaction that allows tumor cells to evade 
T-cell recognition. The presence of mismatch repair (MMR) deficiency further 
enhances tumor recognition since MMR deficiency results in a high mutation bur-
den with subsequent creation of neoantigens and microsatellite instability. 
Consequently, tumors with MMR deficiency have been shown to be especially sen-
sitive to PD-1 inhibitors such as pembrolizumab [43]. With regard to the prevalence 
of MMR deficiency in CCA, Goyal et al. report a 9% rate of MMR protein loss, with 
only 4.5% patients being microsatellite instability (MSI)-high [44].

The phase 1b KEYNOTE-028 trial evaluated 24 patients with biliary tract can-
cers, all of whom were PD-L1-positive but negative for MSI-H. The reported over-
all RR to pembrolizumab was 13.0% (3/23, all partial response; 95% CI, 2.8–33.6%), 
and median duration of response was not reached (range, 21.5 to 29.4+ mo). Median 
OS and PFS were 6.2 mo (95% CI, 3.8–10.3) and 1.8 mo (95% CI, 1.4–3.7), 
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respectively [45]. In the larger KEYNOTE-158 phase 2 basket trial, 104 patients 
were enrolled in the biliary tract cancer cohort and treated with pembrolizumab; 
58% were PD-L1-positive and none harbored MSI-H. The overall RR was 5.8% 
(6/104, all partial response; 95% CI, 2.1–12.1%), and median duration of response 
was not reached (range, 6.2 to 23.2+ mo). Results from these trials, especially the 
low overall RR in the larger KEYNOTE-158 trial, suggest that pembrolizumab is 
not an effective single-agent treatment option for CCA. Although there is no exist-
ing literature for immunotherapy combination regimens in CCA, combination ther-
apy with atezolizumab and cobimetinib is being studied in the treatment of metastatic 
colorectal cancer. Results from a phase 3, randomized controlled trial with 363 
metastatic colorectal cancer patients showed a median OS of 8.8 months (95% CI, 
7.00–10.61) with atezolizumab plus cobimetinib, compared to 7.1 months (95% CI, 
6.05–10.05) with atezolizumab, and 8.5 months (95% CI, 6.41–10.71) with rego-
rafenib [46]. Although these results do not demonstrate that immunotherapy combi-
nations are superior, this trial presents the possibilities for studying immunotherapy 
combinations. The first randomized trial of immunotherapy in BTC was the phase 2 
trial of atezolizumab plus cobimetinib in metastatic, unresectable CCA in 2017. 86 
patients were enrolled in 23 centers across the USA (NCT03201458). Results were 
notable for a median PFS of 3.65  months (cobimetinib + atezolizumab) vs 
1.87 months (atezolizumab monotherapy) (p = 0.027) [47]. OS data was still pend-
ing at the time of analysis. Treatment was well tolerated in both groups as grade 3–4 
treatment-related adverse events were similar in both arms, and there were no 
treatment- related deaths [47]. Ultimately, the combination of atezolizumab + cobi-
metinib significantly prolonged PFS as compared to atezolizumab monotherapy in 
BTC without significant toxicity, warranting further investigation in treatment of 
biliary tract cancers.

A single-center, prospective cohort study, conducted between May 2018 and 
February 2019  in Korea, evaluated the efficacy and safety of pembrolizumab in 
patients who were positive for programmed death ligand-1 (PD-L1) and progressed 
on first-line gemcitabine plus cisplatin. A total of 40 patients were enrolled, and 
pembrolizumab 200 mg was administered intravenously every 3 weeks. The objec-
tive response rate was 10% and 12.5% by Response Evaluation Criteria in Solid 
Tumor (RECIST) v1.1 and immune-modified RECIST (imRECIST), and median 
duration of response was 6.3 months [48]. The median PFS and OS were 1.5 months 
(95% confidence interval [CI], 0.0 to 3.0) and 4.3 months (95% CI, 3.5 to 5.1), 
respectively, and objective response per imRECIST was significantly associated 
with PFS (p < 0.001) and OS (p = 0.001) [48]. The data presented in this study sug-
gests pembrolizumab having modest antitumor activity in heavily pretreated PD-L1- 
positive BTC patients, with a durable response seen in patients who showed 
objective response.

In a recent phase 2 trial, Kim et al. investigated the efficacy of nivolumab, a PD-1 
inhibitor in refractory biliary tract cancers. 54 patients were enrolled in this multi-
center study between October 2016 and December 2018 [49]. Of these patients, 46 
were examined for objective response via radiologic imaging. Investigator-assessed 
objective responses (all partial responses) were observed in 10 (22%) of 46 patients. 
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Additionally, it was noted 17 (37%) patients had stable disease, yielding DCR of 
59%. Of note, all responses were observed in patients with mismatch repair protein- 
proficient tumors. Among all 54 patients, median PFS was 3.68 months, and median 
OS was 14.24 months [49]. Patients with PD-L1-positive tumors had significantly 
prolonged PFS (median = 10.4 vs 2.3 months, HR = 0.23, P < 0.001) and nonsignifi-
cantly prolonged overall survival (median = not reached vs 10.8 months, P = 0.19) 
vs patients with PD-L1-negative tumors [49]. This study found nivolumab was well 
tolerated and showed modest efficacy and durable response with patients with 
refractory BTC. The median OS of 14.24 months was impressive given the refrac-
tory patient population. Additionally, the ORR of 22% was a strikingly higher ORR 
than what has been previously reported with other checkpoint inhibitors, such as 
pembrolizumab. However, it is important to note centrally reviewed ORR was lower 
at 11% and more in line with previously published results. Interestingly, although 
all the patients were noted to be mismatch repair-proficient, there appeared to be a 
correlation between PD-L1 positivity and response. Moving forward, further stud-
ies to both verify these findings and to evaluate biomarkers for improved treatment 
selection are needed.

One such ongoing study is a randomized, multi-institutional, phase 2 study 
investigating the role of combinational immunotherapy, using nivolumab with che-
motherapy (gemcitabine/cisplatin) or as dual immunotherapy (nivolumab and ipili-
mumab) in patients with advanced BTC (NCT03101566). The primary objective is 
to evaluate the PFS rate at 6 months. Secondary objectives include evaluation of 
ORR, median PFS and OS, and safety. Exploratory objectives include identification 
of biomarker predictors of response and mechanisms of resistance through serial 
biopsies and blood collection, including sequential whole exome/transcriptomic 
analysis and immune cell analysis of tissue and blood [50]. Patient accrual was 
completed as of January 2020 and final data analysis is pending. These results will 
not only provide information regarding efficacy of nivolumab in combination with 
gem-cis and ipilimumab but may also elucidate the role of NGS data in guiding 
treatment selection for patients.

 Conclusion: Future Directions of Targeted Therapy

Since gem-cis combination therapy was established as first-line therapy in the treat-
ment of advanced biliary tract cancers in 2010, advances in systemic options extend-
ing to standard clinical practice have been minimal. NGS has started to elucidate the 
pathogenesis of CCA at a molecular level, bringing hope of identifying actionable 
mutations for the development of targeted therapies. The notion of a “one size fits 
all” for the treatment of CCA is likely outdated, given the varying etiologies and 
heterogeneity of the disease. Looking to the future, NGS should become central to 
clinical and therapeutic decision-making, and there is clear need to sequence all 
patients with CCA.  IDH1 inhibitor IVO showed considerable promise in the 
ClarIDHy study, and FGFR inhibitors BGJ398 and TAS-120 have also shown 
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meaningful activity in phase 2 clinical trials. Marking a big step for targeted thera-
pies, pemigatinib became the first FDA-approved therapy for CCA patients with 
FGFR2 fusions, as of April 2020. It is not unrealistic to expect more of these tar-
geted therapies to enter the front line of care in coming years.

Although other molecular targets, such as B-raf and BRCA mutations, occur at 
lower frequencies in CCA, many of these targets are actionable with approved ther-
apies in other cancer types. Therefore, further investigation is needed to evaluate the 
efficacy of targeting these mutations in CCA.  One approach to increasing these 
investigations is through basket trials, which allow for evaluation of rare tumor 
subsets with shared controls. Introducing more basket trials should provide research-
ers with more opportunities for studying infrequent mutations in rare cancers 
such as CCA.

While immunotherapy has shown promising results for malignancies such as mel-
anoma and colorectal cancer, results for pembrolizumab treatment in CCA have been 
mixed. Kang et al. reported modest efficacy of pembrolizumab in PD-L1- positive 
patients, but the applicability of this study remains unknown given all patients were 
enrolled were Asian. Additionally, the results of Kim et al. study are intriguing given 
reported ORR 22%, which was notably higher than prior studies, namely, the large 
KEYNOTE-158 study. The data was certainly suggestive of durable response in 
patients who responded to nivolumab. However, it is important to note no molecular 
profiling data was reported in patients to this study. Looking to the future, the possi-
bilities of using immunotherapy combinations in treating CCA remain ripe for fur-
ther investigation, particularly with trials incorporating NGS information.

Challenges remain despite the optimism surrounding targeted therapies, particu-
larly regarding how targeted therapies will be used—whether in combination with 
systemic therapies or other treatment modalities. Additionally, as noted in clinical 
trials, issues with resistance to IDH and FGFR inhibitors and durability of treatment 
will need to be explored further and appropriately addressed. Furthermore, it is clear 
not all CCAs are created equal; however, how to stratify CCA remains a mystery. 
Despite the unknowns that remain in the treatment of CCA, targeted therapies have 
provided a hope of a future in which patients with this disease will have improved 
survival.
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 Introduction

Cholangiocarcinoma (CCA) encompasses a group of malignancies that may 
emerge at different anatomic sites along the intrahepatic (iCCA) and extrahe-
patic (eCCA) biliary tree. Recent studies have revealed that the molecular land-
scape of CCA is heterogeneous and segregates with the anatomical location 
and underlying risk factors [1]. The highly dismal prognosis of CCA, along 
with the rising global incidence, highlights the critical need for new therapeu-
tic strategies for this disease. In an effort to address this challenge, the develop-
ment of preclinical models allowing high-throughput experimental approaches 
to quickly gain insight into biological processes and effectiveness of therapies 
have becomes a paramount in understanding CCA carcinogenesis, progression, 
and therapeutic strategies. To date, two- dimensional (2D) and three-dimen-
sional (3D) cell culture as well as animal models have been employed for the 
study of liver physiology, disease pathogenesis, and treatment. In CCA, the 
lack of a uniform phenotype and molecular signature makes more challenging 
the development of preclinical models that accurately represent the phenotypic 
and genetic complexity that characterizes this disease. Despite this drawback, 
the spectrum of currently available in  vitro and in  vivo models of CCA 
(Fig.  22.1) offers an unprecedented opportunity to elucidate the molecular 
mechanisms underlying cholangiocarcinogenesis as well as to develop more 
efficacious treatment options for this disease.

This chapter summarizes the current knowledge and understanding of the pre-
clinical in vitro and in vivo models of CCA, critically underlining their translational 
usefulness as well as their limitations.

Tumor cell lines

CCA

Primary tumor cells

3D cultures

Tumor organoids

Animal models2D cultures

Tumor spheroids

Fig. 22.1 Current preclinical models available for CCA
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 CCA In Vitro Culture Systems

 Two-Dimensional (2D) Cell Cultures

Much of our understanding on the biological mechanisms underlying tumor cellular 
functions, such as proliferation, migration, invasion, and differentiation, has been 
garnered from studies of two-dimensional (2D) cell cultures. For this purpose, the 
use of tumor cell lines is essential. Cell line models have the advantage of guaran-
teeing a large amount of material, allowing high reproducibility and highly con-
trolled experimental conditions; moreover, these models are relatively simple to use 
and manage [2]. The first well-characterized CCA cell line was established in 1985 
from a specimen of an iCCA patient’s autopsy; this cell line was known as HChol-Y1 
[3]. Since then, different CCA cell lines have been established and characterized. 
Currently available CCA cell lines are derived from iCCA, eCCA, perihilar CCA 
(i.e., Klatskin tumor), and CCA metastases (Table 22.1). Of these, iCCA and eCCA 
represent approximately 39% and 37%, respectively, of the primary sites from 
which CCA cell lines have been isolated; cell lines of Klatskin tumor account only 
for 5% of all CCA cell lines, while the remaining 19% are derived from CCA metas-
tases [35]. Molecular characterization has revealed a heterogeneous pattern of pro-
tein expression among these cell lines, akin to the molecular heterogeneity of 
CCA [36].

Table 22.1 Current established cell lines for iCCA, eCCA, and Klatskin CCA

iCCA eCCA Klatsin CCA

HChol-Y1 [3] Sk-ChA-1 [7, 20] HBDC [33]
Oz [4] EGI-1 [7] SNU-1196 [16]
HuH-28 [5] MEC [21] KKU-100 [34]
HuCC-T1 [6, 7] KMBC + BDC [7, 22]
SG231 [8, 9] BDC [23, 24]
HuCCA-1 [10] TFK-1 [7, 25]
KMC-1 [11] OCUCh-LM1 [26]
CC-SW-1 + CC-LP-1 [12] ICBD-1 [27]
KMCH-2 [13] TK [28]
ETK1 [14] SCK + JCK + Cho-CK+ 

Choi-CK [29]
RBA+ SSP-25 [15] SNU-245 [16]
SNU-1079 [16] TGBC-47 [30]
HKGZ-CC [17] TBCN6 [31]
NCC-CC1 + NCC-CC3–1 + NCC-CC3–2+ 
NCC-CC4–1 [18]

RMCCA-1 [32]

HCCC-9810 [19] NCC-BD1 + NCC-BD2 [18]
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Depending on the cell line, expression of receptors (EGFR, HGFR, IGF1R 
IGF2R, VEGFR1, VEGFR2), intermediate filaments (keratin, vimentin), antigens 
(HLA-1), or secreted proteins such as tumor markers CA-19-9, CEA, AFP, and 
CA125 have been observed [3, 7, 14, 20, 28, 31, 32, 34, 37]. Currently the establish-
ment of a CCA cell line can be achieved with a success rate of approximately 10% 
[35]. This unsatisfactory result is mainly related to the stringent selection by 2D 
culture, to possible fungal or bacterial contamination and also to frequent fibroblast 
overgrowth in the culture plate [35]. Moreover, the time from sampling to process-
ing has a critical role in success rate, as cells are prone to undergoing necrosis in a 
nonphysiological environment.

Despite cell lines representing an important tool for functional studies to better 
understand the molecular pathogenesis of CCA, they have several important limita-
tions. First, the homogeneity of cell line populations cannot sufficiently represent 
the complex molecular and phenotypic heterogeneity of CCA [36]. Second, the 
high number of passages in monolayer systems makes these models prone to 
genetic drift that may alter the tumor genome over time; therefore, their genetic 
profile, as well as their gene expression pattern, may significantly differ from that 
of patient tumor tissue [38–40]. Furthermore, 2D systems fail to faithfully capture 
the physiological behavior of cells in vivo, as they lack realistic cell-cell and cell-
matrix interactions [41]. Indeed, in vivo, cells exist embedded within a complex 
environment containing multiple extracellular matrix (ECM) components, mixed 
cell populations that interact with each other, and a medley of cell-secreted factors 
[42]. This is particularly true in the context of CCA, whose highly malignant 
behavior relies on a tight interplay between tumor cells and tumor microenviron-
ment, including stromal, endothelial, and immune cells [43]. The suboptimal clini-
cal translational value of cell lines may be responsible for the failure of many 
compounds in clinical trials and has encouraged researchers to explore new ways 
of cancer modelling. Accordingly, primary cultures from patient-derived tumor 
samples have been established in recent years [44, 45]. These preclinical models 
better (though still only partially) reproduce the natural in situ tumor microenviron-
ment, maintaining the cross talk between malignant and healthy components [2]. In 
addition, conversely to immortalized tumor cell lines, primary cultures also may 
preserve cancer subpopulations, including cancer cells with stem-like phenotypes. 
This is of particular relevance, as cancer stem cells are known to play an important 
role in drug resistance [46]. However, primary cultures from patient tissue are very 
laborious and less efficient. In particular, in highly desmoplastic tumors such as 
CCA, the overgrowth of stromal cells may significantly reduce establishment effi-
ciency [16]. Moreover, primary cultures have to be used shortly after isolation in 
order to retain most of the patient tumor features [47]. Another important caveat of 
these models is that they can be established only from surgically resected speci-
mens; therefore, their applicability is limited only to patients who have undergone 
tumor resection.
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 Three-Dimensional (3D) Cell Cultures

Many cell types, when isolated from tissues and placed into 2D cell culture, become 
progressively flatter, divide aberrantly, and lose their differentiated phenotype. 
Interestingly, most of these cells can maintain their physiological form and function 
when cultured in a 3D system [42]. This observation has led to the notion that the 
dimension in which cells are cultured in vitro (2D or 3D) is a crucial determinant of 
cell fate and that while culturing cells in 2D monolayer may drive abnormal cell 
function or dedifferentiation, 3D cultures are able to better reproduce a more physi-
ological state. This aspect should particularly be kept in mind when culturing tumor 
cells in vitro. Indeed, tumors are dynamic cell systems where malignant and healthy 
cell populations of the stroma are in continuous coevolution, supported by an extra-
cellular 3D matrix that is constantly remodelled [42]. The complexity of this inter-
action cannot be faithfully reproduced in 2D monolayer models.

To overcome these drawbacks, 3D cell cultures models that more realistically 
mimic the pathophysiological features of the tumor niche have been developed. 
Tumor spheroids are in  vitro aggregates of tumor cells grown in suspension or 
embedded in a 3D matrix; despite their establishment being more expensive and 
time-consuming compared to 2D cell cultures, they are widely used as in  vitro 
experimental models on the basis of their advantages [41]. Indeed, they can mimic 
the growth characteristics of in vivo solid tumors, including cell-cell and cell-matrix 
interactions between tumor cells and the microenvironment, which collectively lead 
to tumor genetic and adaptive changes [41]. Moreover, as it occurs in vivo, tumor 
cells in spheroids are exposed to concentration gradients of signalling effector mol-
ecules, nutrients, and waste products; conversely, in 2D monolayers, cells are 
exposed to a uniform concentration of factors due to direct contact with the culture 
medium [48]. In terms of therapeutic applications, this may, in part, explain the 
failure of 2D cell culture systems to recapitulate drug screening outcomes as seen 
in vivo [49].

When performing experiments with spheroids, tumor size represents an impor-
tant variable. Indeed, spheroids ranging from 200 to 500 μm diameter are suffi-
ciently large to develop gradients of oxygen, nutrients, and catabolites [50]; 
conversely, spheroids not reaching a diameter of approximately 200 μm can repro-
duce cell-cell and cell-matrix interactions but are not large enough to recapitulate 
oxygen gradients with hypoxic regions or proliferation gradients [50]. On the other 
hand, above a critical size of 400–600  μm diameter, tumor spheroids typically 
develop a necrotic core, similar to what observed in poorly vascularized tumors 
[50]. Currently, spheroids have been established from both CCA cancer cell lines 
and primary cultures. The pattern of protein expression in two cell lines arising from 
a differentiated (Mz-ChA-1) and undifferentiated (SK-ChA-1) eCCA and undergo-
ing spheroid formation has been recently investigated [51]. Compared to 2D cul-
tures, ECC spheroids displayed a decrease in E-cadherin and vimentin expression 
and an increased expression of several enzymes involved in glycolysis, hypoxia 
signalling, protein ubiquitination pathway, NADH repair, and superoxide radical 
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degradation [51]. These effects are likely to increase cell growth rate and redifferen-
tiation of cholangiocytes in the 3D aggregation form, which is therefore likely to 
associate with more invasive behavior in vivo. In another recent study, CCA spher-
oids were established from SG231, HuCC-T1, CC-LP1, and primary human iCCA- 
derived (CCA4) cell lines [52]. Characterization of these CCA spheroids revealed 
that they were highly enriched for cancer stem cells; moreover, a core of 30 com-
mon dysregulated genes was identified in all CCA spheroid types. In particular, an 
increased expression of key genes involved in pluripotency and self-renewal, drug 
resistance and survival, as well as stem-like surface markers was reported; in addi-
tion, an overexpression of the hepatic oncogenic drivers CDKN1A, BCL2L1, 
CTNNB1, IGF2, ITGB1, and LEF1 was found [52]. Intriguingly, these CCA spher-
oids engrafted in 100% of transplanted mice, showing a sustained tumorigenic 
potential through diverse xenograft generations [52].

A more recent promising culture system to bridge the gap between 2D cultures 
and in vivo mouse/human models is represented by organoids, an innovative 3D 
model established from resected specimens and core needle biopsies [53]. A com-
prehensive discussion about the development of CCA organoids is discussed else-
where in this book (Chap. 23, Mertens et al.).

 CCA in Vivo Models

Preclinical in vivo CCA models are an intermediate step of experimentation between 
2D/3D cell cultures and human clinical trials, thus representing a valuable tool to 
gain new insights into the pathophysiology of these diseases as well as to investigate 
the efficacy of therapies. Compared to in vitro systems, in vivo models of CCA may 
more closely mimic the complex interplay between tumor and stromal cells [54]. To 
date a repertoire of different murine models for CCA (including neoplastic transfor-
mation of biliary cells, CCA progression, and metastasis) have been developed, 
including carcinogen-based, genetic, xenograft, and syngeneic models (Fig. 22.2).

 Carcinogen-Based Murine Models

With carcinogen-based models, CCA development is induced by the administration 
of a chemical carcinogen, typically diethylnitrosamine (DEN), furan, thioacetamide 
(TAA), or carbon tetrachloride (CCl4). These carcinogens are able to induce a geno-
toxic effect by affecting the DNA structure or by promoting tumor development by 
expansion of preneoplastic cells. The main advantage of carcinogen-based murine 
CCA models is that tumor development is closely associated with chronic liver 
injury, thus mimicking human disease [55].

Diethylnitrosamine (DEN) promotes carcinogenesis inducing DNA methylation 
[56]. DEN administration in mice results in formation of multifocal biliary cystic 
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lesions and may induce CCA development when administered in combination with 
pentachlorophenol [57, 58]. However, the formation of both CCA and hepatocellu-
lar carcinoma (HCC) in this model limits its applicability for the study of iCCA. In 
another murine model, DEN administration was combined with cholestasis induced 
by surgical ligation of the left and median bile duct (LMBDL) [59]. This combina-
tion was found to result in CCA formation in 50% of the animals by week 28, 
whereas none of the animals undergoing LMBDL alone or DEN administration 
alone developed CCA [59]. The main advantages of this model are the higher tumor 
incidence and the shorter duration to tumor development compared to other similar 
models, but it requires significant technical skills.

Furan is a heterocyclic compound whose carcinogenic effects are related to the 
ability to induce oxidative stress, thus generating DNA mutations in target cells 
[60]. Furan-induced CCA is one of the most commonly used animal models of liver 
cancer. In rats, chronic administration of furan at a high dose of 8  mg/kg for 
15 months was able to promote CCA development in 98% of animals [61]. At higher 
doses (15–60 mg/kg/per day), furan administration induced a rapid development of 
cholangiofibrosis (i.e., fibrosis of the bile ducts) after 2–3 weeks of treatment; chol-
angiofibrosis in the caudate liver lobe with the development of dysplastic glands 
persisted also after 6 weeks from treatment [62], thus mimicking the natural pro-
gression from chronic bile duct lesions inducing cholangiofibrosis to subsequent 
CCA development. Molecular analysis have shown that in rat liver furan may affect 
the expression of several genes involved in cell proliferation, apoptosis, and DNA 
repair; moreover changes in miRNA expression profile and DNA methylation have 
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been reported, suggesting that genetic and epigenetic alterations may also contrib-
ute to furan-induced iCCA carcinogenesis [63]. Overall furan-induced CCA pro-
vides a simple and reproducible model of iCCA. However, it is worth mentioning 
that furan can also induce other malignancies, including malignant mesothelioma 
and mononuclear cell leukemia [64].

TAA is a potent hepatotoxin able to induce a progressive damage of the biliary 
epithelium that, starting from a typical dysplasia, ultimately results in iCCA devel-
opment [65]. Though the molecular mechanisms of TAA-induced carcinogenesis 
have not yet been fully elucidated, it seems that TAA may induce reactive oxygen 
species (ROS) production, which can directly modify amine groups on membrane 
proteins or phospholipids and interfere with ribosomal activity [66]. In rodents TAA 
is capable of inducing hepatic fibrosis and cirrhosis [67, 68]; moreover it stimulates 
an inflammatory response on the bile ducts and an intense desmoplastic reaction, 
thus representing an excellent model to assess cholangiocarcinogenesis in vivo [69]. 
Typically biliary dysplasia occurs at 9 weeks of TAA treatment in about 50% of the 
rats, and after 12–16  weeks, cancerous microfoci are detected. Development of 
mass-forming iCCA lesions occurs at longer treatment (22–24 weeks) in 100% of 
all treated animals [65]. Notably, the molecular phenotype observed in TAA-induced 
CCA shares traits with the human disease, including ErbB2 and c-Met overexpres-
sion and upregulation of c-Kit, estrogen receptor, EGFR, and mucin 1 [65, 69, 70]. 
The main advantages of this model are its feasibility and reproducibility, as no sur-
gical intervention is required; however, this model has been standardized only 
in rats.

CCl4 is a potent hepatotoxin that induces membrane lipid peroxidation and ROS 
production [71]. When administered in mice, a pronounced toxic effect on the bili-
ary epithelium, resulting in widespread bile duct injury and necrosis, is observed 
[72]. Experiments conducted on p53+/+, p53+/−, and p53−/− mice treated with CCl4 
have shown that mass-forming iCCA occurred in 54% of p53−/− mice, while only in 
18% of p53+/− mice [72]. Notably, the neoplastic lesions were embedded in a highly 
desmoplastic stroma, thus well reproducing what occurs in human disease [73]. 
Loss of p53 seems a prerequisite for CCA development in this in vivo model. It is 
indeed conceivable that loss of p53 tumor suppressor activity may cooperate with 
biliary injury, inflammation, and fibrosis induced by CCl4. The main limitations of 
this model are the time span for tumor development, which may be longer than 
50 weeks, and the limited number of mice that ultimately develop CCA.

 Genetically Engineered Mouse Models

Currently, genetically engineered mouse models (GEMMs) represent the most 
sophisticated animal model for the study of human cancer. In these models, tumor 
develops in an immunocompetent host with the appropriate tumor microenviron-
ment and under tight control of specific genetic modifications, faithfully reproduc-
ing most of the histopathological and molecular features of human cancer [74]. To 
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date, different GEMMs harboring some of the most frequent molecular alterations 
of human CCA have been developed. The main advantage of these models is that 
tumors arise through different stages of cholangiocarcinogenesis, in some cases also 
including the formation of preneoplastic lesions. However, it should be noted that in 
GEMMs, CCA develops in the absence of chronic tissue injury, and in most cases 
tumor latency is relatively long; in addition, the generation of GEMMs is techni-
cally challenging, time-consuming, and expensive.

The first GEMM of CCA was established by combined disruption of SMAD4 
and PTEN tumor suppressor genes using Cre-loxP recombination [75]. In this 
model, mice harboring a conditional knockout allele for SMAD4 and PTEN genes 
were crossed with mice carrying a Cre-recombinase gene under the control of albu-
min promoter (Alb-Cre). In the resulting Alb-Cre/SMAD4flox/flox/PTENflox/flox model, 
mice typically display bile duct hyperplasia within 2–3 months, multiple tumor foci 
within 4–5 months, and iCCA between 4 and 7 months of age. Once established, 
tumor progressively increases in size, resulting in animal death before 10 months of 
age. Therefore, this model reproduces the sequential progression from bile duct 
hyperplasia-dysplasia-carcinoma in situ to invasive iCCA, as frequently seen in 
humans. From a molecular point of view, tumors show increased ERK and AKT 
phosphorylation and cyclin D1 overexpression [75]. Some important limitations of 
the Alb-Cre/SMAD4flox/flox/PTENflox/flox model are that, unlike human CCA, the 
tumors arise in the absence of chronic liver injury and inflammation, and metastases 
do not develop. Additionally, it is worth recognizing that it might not represent a 
pure iCCA model, as in the majority of mice, liver-specific disruption of PTEN 
results in HCC development at 74–78 weeks of age [76].

Using the same Alb-Cre approach, a GEMM carrying the KRASG12D mutation 
and TP53 deletion was established [77]. This model was developed by intercrossing 
Alb-Cre mutants with KRASG12D mice with or without TP53 deletion. Among the 
resulting genotypes (Alb-Cre/KRASG12D, Alb-Cre/KRASG12D/p53L/L and Alb-Cre/
KRASG12D/p53L/+), only mice with homozygous p53 deletion (Alb-Cre/KRASG12D/
p53L/L) developed tumors at 9 weeks of age. Of these, 83% histologically resembled 
iCCA, while the remaining 17% displayed a mixed HCC/iCCA or HCC phenotype. 
Molecular characterization of iCCA tumors showed the activation of the MAPK 
and PI3K/ AKT pathways, similar to a subset of human CCA [78]. In line with the 
human disease, iCCAs were characterized by an extensive collagen deposition and 
displayed adjacent organ invasion or distant metastasis. Notably, the presence of 
preneoplastic biliary lesions closely resembling intraductal papillary neoplasms of 
the bile duct highlights the ability of this model to recapitulate the multistage histo-
pathologic progression of human CCA. Nevertheless, this model does not repro-
duce the background of chronic liver injury and the inflammatory microenvironment 
typical of human CCA.  Moreover, as also observed in Alb-Cre/SMAD4flox/flox/
PTENflox/flox model, it does not exclusively develop iCCA, as 17% of the liver tumors 
are consistent with mixed HCC/iCCA or HCC.

Another CCA GEMM established using the Cre-loxP system was developed by 
combining KRASG12D mutation with PTEN deletion [79]. Alb-Cre/KRASG12D/
PTENflox/flox mice developed macroscopic CCA-like nodules at 7  weeks of age, 

22 In Vitro and In Vivo Model Systems of Cholangiocarcinoma



480

preceded by biliary hyperplasia at 4 weeks and by bile duct dysplasia at 5 weeks. 
Mouse death occurred after 46 days, making this CCA GEMM one of the fastest 
described to date using the Alb-Cre strain. Histologically, the tumors displayed vari-
able grading and were accompanied by an abundant desmoplastic stroma closely 
resembling well-differentiated iCCA; however, no evidence of metastatic disease 
was observed. Notably, while Alb-Cre/KRASG12D/PTENflox/flox mice exclusively 
developed iCCA, Alb-Cre/KRASG12D/PTENf+/+ developed hepatocellular dysplasia 
but no iCCA, suggesting that PTEN may play a pivotal role in hepatotumorigenesis. 
The main advantages of this model are the relatively short time required for tumor 
development without the need for highly technical skills.

Several other GEMMS have been described based on observations in human 
CCA.  For instance, IDH1 and IDH2 gain of function occurs in approximately 
20–25% of human CCAs [80] and has been reported to block progenitor cell dif-
ferentiation toward hepatocyte lineage by downregulation of hepatocyte nuclear 
factor-4α expression due to aberrant production of 2-hydroxyglutarate (2-HG) 
onco-metabolite [81]. Intercrossing a transgenic IDH2LSL-R172K mouse strain with 
KRASSLSL-G12D and Alb-Cre mice led to the generation of Alb-Cre/ IDH2LSL-R172K/ 
KRASSLSL-G12D animals showing multifocal liver masses consistent with iCCA from 
33 to 58 weeks of age [81]. Notably, precancerous lesions, as well as splenic inva-
sion and peritoneal metastases at later time, were observed, thus recapitulating the 
multistage progression of human CCA [81].

Notch signalling is known to be involved in biliary tree development during 
embryogenesis [82], and aberrant activation of this pathway occurs during CCA 
carcinogenesis [83]. Basing on these findings, a CCA GEMM with constitutive 
Notch expression in liver tissue has been developed by crossing transgenic mice 
with tissue-specific overexpression of the intracellular domain of Notch 1 (NICD) 
(Rosa26Notch1C) with Alb-Cre mice [83]. When NICD was expressed under the 
regulation of Alb-Cre, epithelial cells with features of hepatocytes and cholangio-
cyte differentiation were observed in liver of mice at 7 months of age, whereas ini-
tial features of malignant transformations by the age of 8  months; notably, 
xenotransplantation of these altered cells into immunodeficient mice resulted in 
formation of tumors with histopathologic features of human iCCAs, including a 
desmoplastic stroma and CK7 and CK17 expression [83].

Another CCA GEMM, reproducing liver mitochondrial dysfunction, has been 
developed by Yuan et al. [84]. Mitochondrial dysfunction is indeed known to lead to 
increased ROS levels, inflammation, and severe liver injury, a condition often linked 
to CCA development. In order to reproduce hepatic mitochondrial dysfunction, 
mice with liver-specific Hspd1 deletion (AlbCre;Hspd1flox/flox) were generated by 
crossing Hspd1flox/flox mice with Alb-Cre strain. Though cholangiocellular lesions 
resembling human biliary intraepithelial neoplasia were observed at 8 weeks of age, 
these animals died prior to iCCA development due to severe liver injury. However, 
transplantation of liver tissues was found to give rise to tumors showing histological 
features of CCA [84]. Despite this model not allowing long-term experiments due 
to the premature death of mice, it provides a unique opportunity to study the role of 
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the microenvironment in the context of chronic liver injury promoting CCA 
development.

Overall the abovementioned GEMMs are representative only for iCCA. In 2017 
the first eCCA GEMM, namely, KRASLSL-G12D/Tgfbr2flox/flox/Cdh1flox/flox;Ck19- CreERT, 
was established [85]. These mice, after 4 weeks of tamoxifen administration, devel-
oped moderately differentiated adenocarcinomas resembling human Klatskin CCA/
eCCA; peribiliary glands, located within the walls of the extrahepatic bile ducts, 
have been shown to be the site of malignant transformation. An important caveat of 
this model is the concomitant development of lung cancer, resulting in mouse death, 
thus limiting its applicability for survival studies.

 Transposon-Based Models

Transposons are nonviral gene delivery vectors able to stably integrate into the 
genome of target cells by specific recombinase-mediated mechanisms, enabling 
persistent expression of genes of interest. Sleeping Beauty (SB) transposon-based 
systems represent a sophisticated technology for genetic manipulation [86]. The 
first transposon-based CCA model was developed combining lobar bile duct liga-
tion in C57BL/6 mice with injection into the biliary tree of SB transposons with 
active AKT and YAP, followed by intraperitoneal injection of recombinant IL-33 for 
3 days [87]. Ten weeks later tumors were observed in 72% of mice receiving SB 
transposons plus IL-33 as compared to only 20% of mice receiving SB transposons 
alone, suggesting a pivotal tumorigenic role of IL-33 in this model [87]. Morphologic 
and phenotypic analysis of these tumors showed hyperplasia, SOX9 expression, and 
abundant α-SMA positive myofibroblasts. Overall this represents a time-efficient 
in vivo CCA model recapitulating many features of the human disease, including a 
desmoplastic stroma and alterations in signalling pathways involved in CCA devel-
opment. However, SB transposon-based models require high technical skills.

Combination delivery of SB transposon systems with hydrodynamic tail vein 
injection (HTVI) may better allow for stable integration of transgenes in target tis-
sues [88]. In HTVI, controlled hydrodynamic pressure in capillaries increases the 
permeability of endothelial and parenchymal cells, thus allowing DNA uptake in 
target cells by the transient opening of membrane pores [89]. In the liver, DNA is 
efficiently delivered only to 10% of cells by HTVI; therefore, this model may mimic 
the human setting, where normal and transformed cells coexist. In addition, in 
HTVI models, tumors develop in 1–2 months, thus providing an efficient in vivo 
tool for accelerating experimental procedures. The main drawbacks of these models 
are that tumors develop in the absence of an inflammatory microenvironment, thus 
limiting their applicability to studies of tumor-stroma interaction; moreover, they 
represent a good model for the early stages of carcinogenesis, but not for progres-
sion and metastasis [89].

The first transposon-based system in combination with HTVI was developed by 
the exogenous expression of NRASG12V oncogene in Arf−/− mice [90]. Despite the 
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advantageous early onset of liver tumors (4–6 weeks), both HCC and iCCA devel-
oped in this model, limiting its application for CCA studies. Similarly, HTVI of 
NRASG12V and of a constitutively active AKT (myrAKT) failed to induce only 
iCCA, as HCC also occurred in mice at 3–4 weeks after injection [91].

In another study, stable overexpression of the intracellular domain of Notch1 
receptor (NICD) in the liver of mice by HTVI resulted in development of CCA-like 
lesions in 100% of animals at 20 weeks after injection [92]; similar lesions were 
observed after 3.5 weeks when NICD plasmid was injected with an AKT plasmid 
by HTVI. Such lesions replaced most of the liver parenchyma by 5 weeks following 
injection and were associated with strong mitotic activity and tissue invasion [92]. 
Notably, concomitant delivery of these oncogenic pathways exclusively resulted in 
iCCA formation at 8 weeks postinjection [93].

A similar HTVI model investigated the effect of yes-associated protein (YAP) 
and AKT overexpression on liver carcinogenesis [94, 95]. In the said model, YAP/
AKT mice developed iCCA by 3 weeks postinjection, whereas death occurred by 
5.5–7.5 weeks. As expected, tumors expressed active AKT, mTOR, and downstream 
targets of the PI3K-AKTmTOR pathway; high levels of pyruvate kinaseM1/M2, 
hexokinase ½, and survivin were also observed [95]. In another transposon-based 
HTVI model, an active-mutant form of YAP (S127A) was simultaneously delivered 
with PIK3CA (H1047R) into mice liver, resulting in liver tumor formation approxi-
mately by 12–13 weeks postinjection. However, in this model tumor lesions resem-
bled HCC (40%), iCCA (10%), and mixed HCC/iCCA (50%) [96].

A combination of two of the most common genetic events in human CCA has 
been studied by the overexpression of a NICD plasmid in KRASLSL-G12D mice, show-
ing development of cholangiocellular tumors closely resembling human iCCA at 
8 weeks postinjection [97]. Notably, no HCC or mixed HCC/iCCA lesions occurred 
in K-Ras/NICD mice. Thus, this model represents an ideal preclinical tool to study 
KRAS-driven iCCA development in vivo and to evaluate the therapeutic potential 
of drugs targeting the Ras pathway for iCCA treatment.

In a further pioneer study, HTVI was combined with the CRISPR-Cas9 approach 
to establish iCCA [98]. CRISPR-Cas9 technology provides an efficient tool to gen-
erate functional knockout of cancer-related genes or to recreate oncogenic driver 
mutations [99]. In this iCCA model, HTVI of single guide RNAs targeting TP53 
and PTEN resulted in tumors of biliary differentiation 3 months after injection into 
wild-type FVB mice, faithfully reproducing the liver lesions observed in adeno- 
Cre- activated/TP53flox/flox/PTENflox/flox mice [98].

 Alternatives to HTVI for Targeted Gene Delivery

An alternative technique to HTVI for efficient liver gene delivery is represented by 
electroporation, where plasmids are injected into the liver parenchyma by an elec-
tric pulse. In this context, a recent study showed that while delivery of Myc and 
NRASG12V (or Myc and AKT1) by HTVI technology gives rise to multifocal liver 
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tumors with HCC-like histology, their delivery by electroporation gives rise to com-
bined HCC-iCCA tumors, highlighting the pivotal role of surrounding hepatic 
microenvironment in determining the phenotypic differentiation of liver tumors 
[100]. Therefore both HTVI and liver electroporation approaches failed to induce 
only iCCA development.

To bypass this limitation, a novel model of direct intrabiliary injection coupled 
with lobar bile duct ligation has been recently described [87]. In this model, intro-
duction of AKT and YAP transgenes into biliary cells led to iCCA development in 
20% of mice 10 weeks after in vivo transfection [87]. However, tumor formation 
was not restricted to the intrahepatic biliary tree but also to the extrahepatic, sug-
gesting that this model, although technically challenging, may be suitable also for 
eCCA development.

 Xenograft Models

The main limitation of carcinogen-based and genetically engineered CCA models is 
the slow tumor growth. To overcome this issue, CCA xenograft models have been 
established by implantation of tumor cells subcutaneously (heterotopic xenograft) 
or into the liver (orthotopic xenograft) of athymic nude or severe combined immu-
nodeficient mice. Tumor xenografts have the advantage of closely resembling the 
molecular alterations occurring in human tumors. However, these models generally 
reflect an advanced stage of the disease, being therefore unsuitable to study the early 
stages of CCA tumorigenesis [55]; moreover, the host is immuno-compromised, 
and a species mismatch between the human tumor and the murine host microenvi-
ronment typically occurs.

The most common xenograft model is a heterotopic graft, where human tumor 
cells are subcutaneously implanted into the flank of immunodeficient or nude mice. 
To date, xenograft models have been developed employing different CCA cell lines, 
including the QBC939 and Sk-ChA-1 eCCA cells, as well as the HuCC-T1 and 
CC-LP-1 iCCA cells, with a tumor formation success rate of nearly 100% [55, 101].

More recently, a heterotopic xenograft mouse model using CCA organoids has 
been developed [102]. Interestingly, organoid xenografts from patients with meta-
static CCA reproduce the same metastatic profile in mice; moreover, this model 
maintains the same mutational profile after long-term culturing and has a high 
engraftment rate, with 100% of mice developing tumors [53, 102]. However, xeno-
graft models using cancer cell lines have some important limitations. The first is that 
they do not reflect the complex phenotypic and molecular heterogeneity of the 
tumor of origin. Indeed, most tumors contain highly heterogeneous subpopulations 
of cancer cells, resulting from genomic instability that increases the complexity of 
the cancer phenotype by the simultaneous alterations in several oncogenes and 
tumor suppressors [103]. Moreover, xenograft models using cancer cell lines do not 
reproduce the tumor microenvironment (fibroblasts, vessel cells, and immune cells), 
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whose interaction with tumor cells is a critical factor for tumor behavior and 
response to treatments.

To overcome these limitations, there has been an increasing interest in patient- 
derived xenograft (PDX) development as a more advanced preclinical in vivo can-
cer model. In this model, a tumor specimen is directly implanted into immunodeficient 
mice either by subcutaneous injection or by direct injection into target organs. PDXs 
are able to retain the histological features, molecular characteristics, and intratu-
moral heterogeneity of human cancer, thus providing a faithful representation of 
individual tumor phenotype and genotype [104]. Typically, the first generation of 
mice receiving the patient’s tumor fragment is commonly denoted as F0. When the 
tumor reaches 1 cm3 size, it is reimplanted into another recipient mice; each gen-
eration thereafter is denoted as F1, F2, F3, and Fn [104]. Recently, two heterotopic 
PDX models have been established in CCA. The first has been generated from an 
Italian patient with iCCA.  This PDX model harbors a KRAS mutation, and the 
fourth generation of PDXs was found to share the same biliary epithelial markers, 
tissue architecture, and genetic aberrations of the native tumor [105]. The second 
PDX model has been established from a metastatic lung nodule of an iCCA patient; 
this PDX model, designated LIV31, endogenously expresses the fusion protein 
FGFR2-CCDC6 [106]. Overall the creation of PDX models is expensive and time- 
consuming, with a long engraftment period and a rate of efficacy variable among 
cancer types [104]; in particular, successfully engraftment is low for CCA, as 
reported in previous studies [105, 107, 108]. However, a recent study showed that in 
CCA PDX models failing primary engraftment, secondary engraftment of cryopre-
served patient tissues resulted in a high success rate (70%) of secondary PDX gen-
eration [109].

An important caveat of heterotopic tumor xenografts is the considerable differ-
ence between the microenvironment of the subcutaneous tissue where tumors are 
implanted and the microenvironment wherein the primary tumor originates and dis-
seminates. Conversely, in orthotopic xenograft models, tumor cells are implanted 
into the organ of origin. The organ-specific microenvironment induces tumor growth 
and dissemination similar to that observed in the original tumor. In addition, as drug 
responsiveness is dependent on tumor location, orthotopic models more faithfully 
reproduce human pharmacodynamics, thus providing a more accurate model to pre-
dict clinical therapeutic outcomes [55]. Intrahepatic orthotopic xenografts can be 
established by injecting human cancer cells through the mouse portal or splenic vein 
or directly into the liver parenchyma. Though intrasplenic injection is technically 
easier and at lower risk of perioperative complications compared to intraportal 
injection, tumor cells generally engraft not only in the liver, but also in the spleen 
[110]. Recently, spheroids from cancer stem cells of human CCA primary cell cul-
tures have been injected into the liver of normal and cirrhotic NOD/SCID mice; 
notably, after 4  weeks, only cirrhotic mice developed several intrahepatic tumor 
masses [111]. Unfortunately, the generation of orthotopic xenograft models is time- 
consuming, and the assessment of tumor growth and metastatic dissemination is 
complex, relying on imaging techniques and/or on the sacrifice of the experimental 
animal [112].
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 Syngeneic Models

Syngeneic tumor models allow for the use of immunocompetent recipient animals, 
as transplanted cells derive from a donor strain that belongs to the same species. 
This model overcomes many of the immunologic and stromal limitations of other 
xenograft models; however, murine and rat tumors are not able to fully recapitulate 
the complex biological and molecular heterogeneity of human tumors [55].

The first syngeneic CCA model was established by inoculation of BDEneu tumor 
rat cholangiocytes into the bile ducts of Fisher 344 rats [113]. Following transplan-
tation, BDEneu cells generated macroscopic, moderately differentiated, iCCA nod-
ules; clinically, rats developed severe biliary obstruction, with increased serum 
bilirubin levels and peritoneal metastases. Similar features of tumor growth and 
metastatic dissemination were also obtained by inoculating BDEneu cells under the 
capsule of the left hepatic lobe in rats previously having undergone bile duct liga-
tion [113]. In these models, CCA development was rapidly achieved and faithfully 
reproduced, with clinicopathological, cellular, and molecular features of human 
advanced CCA; in particular, this rodent model recapitulates the high desmoplastic 
reaction typical of human CCA [54]. However, this model requires abdominal 
manipulation and consequent surgical risks for animals; moreover, it does not repro-
duce de novo CCA development, since tumors arise following implantation of 
malignant cells.

More recently, a syngeneic mouse model has been described. In this model seven 
malignant mouse cell lines (SB1–7) were established from tumor nodules derived 
from a genetic transposon-based CCA model [87]. These cell lines have been 
implanted into the medial lobe of mouse liver; the resulting tumors showed histo-
pathologic characteristics of human CCA including desmoplasia, malignant glands, 
and CK-19 expression [114]. This model has the potential to be a valuable tool to 
increase our knowledge of CCA tumor-stroma interactions, pathogenesis, and 
therapeutics.

 Conclusions

The recent advances of high-throughput techniques such as next-generation 
sequencing and other omics approaches have provided an unprecedented opportu-
nity to broaden our understanding of the molecular mechanisms driving CCA devel-
opment, progression, and metastasis, leading to an extremely large body of data that 
need to be properly interpreted and translated into clinical practice. To address this 
issue, several in vitro and in vivo models recapitulating many of the molecular alter-
ations of human CCA have been developed in the last years, providing new insights 
regarding the potential role of such alterations in this disease. Nonetheless, the pos-
sibility to translate into clinical practice the results obtained with these models still 
remains limited, as they are not able to fully recapitulate the extreme phenotypic 
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and molecular heterogeneity of CCA. This observation implies that existing and 
future in vitro and in vivo models should be devoted to addressing more specific and 
clinically relevant issues in CCA. In this context, the development of models mim-
icking specific molecular features of human CCA would serve as preclinical plat-
forms to address important questions of cholangiocarcinogenesis as well as to 
develop novel, more personalized, and effective treatments against this aggressive 
malignancy.
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 The Case for Organoids

One of the major hurdles in furthering our understanding and treatment of cancer is 
the ability to produce models that faithfully recapture the in vivo cancer phenotype 
and environment [1]. Historically, animal cancer models have made important con-
tributions, yet they are inherently limited as they do not adequately reflect the histo-
logical architecture or genetic heterogeneity of human cancers [2]. Two-dimensional 
(2D) cell culture using human immortalised cancer cell lines has also contributed 
tremendously to cancer research; however, cell lines used to generate these models 
have often undergone significant selection and adaption to enable successful expan-
sion over many generations [3]. As a result, many cell lines have undergone substan-
tial genotypic drift and no longer reflect the underlying heterogeneity of the original 
tumour [3]. Moreover, 2D culture is inherently limited as it does not enable cell-cell 
interactions in 3D (as they would be in vivo); such interactions are important for our 
understanding of tumour biology as they are involved in regulating important cel-
lular activities such as differentiation, proliferation, gene expression, and drug 
response [4]. In addition, cells within a tumour are often exposed to differing con-
centration gradients of signalling molecules, nutrients, and waste products, whereas 
cells in 2D culture are exposed uniformly with direct contact to the culture medium. 
Patient-derived tumour xenografts (PDTXs) are another commonly used cancer 
model that involves transplanting fresh human tumour tissue into immunodeficient 
mice; however, issues with graft uptake for certain tumour types along with the 
general expense and time-consuming nature of the technique are limitations. 
Equally, many PDTXs undergo mouse-specific tumour evolution, thus limiting their 
clinical relevance [5] (Table 23.1).

The requirement for more functionally representative tissue models led to the 
development of novel culture techniques. One such technique, using patient-derived 
epithelial stem cells embedded in a 3D cellular matrix, results in the growth of self- 
renewing, self-organising 3D organotypic structures called ‘organoids’ [6]. This 
culture technique was pioneered by Sato et  al., who first demonstrated that an 
organoid could be established from a single leucine-rich repeat-containing G 
protein- coupled receptor 5 (LGR5) intestinal stem cell [7]. Organ-specific adapta-
tions to this technique have enabled organoids to be established from a wide range 
of healthy human tissues (breast, colon, liver, pancreas, prostate, stomach, lung) 
[8–15] and more recently from human cancers including colon, pancreas, prostate, 
liver, and bile duct [14, 16–20]. These patient-derived organoid models (PDOs) are 
able to more faithfully recapture the genotypic and phenotypic expression of the 
source tissue and better reflect the natural cellular environment compared to 2D 
culture systems [17, 21]. Furthermore, as they are established from patient-specific 
tissue, they provide a useful platform for drug discovery projects [18, 22, 23]. PDOs 
also hold the potential to drive a more personalised approach to medicine through 
the molecular characterisation and targeted drug testing of a patient’s own tumour 
prior to treatment [22, 24, 25]. The ability to grow matched normal and cancerous 
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tissue from the same patient also provides a valuable control in comparative studies. 
In light of these benefits and the promise PDOs hold in advancing our understand-
ing of cancer biology, they have become a rapidly expanding field and were named 
by Nature as ‘method of the year’ in 2017 [26].

In this chapter we review the development of PDOs as a model for cholangiocar-
cinoma (CCA). We highlight some current applications of PDOs, including their 
potential role in drug development and personalised medicine, whilst also discuss-
ing some present limitations.

Table 23.1 Comparison of 2D cell lines, PDTX, and organoid models for cancer research

Feature 2D cell lines PDTX Organoids

Cost Low High Moderate
Ease of 
maintenance

Low maintenance High maintenance Moderate/high 
maintenance

Resource 
consumption

Low High Moderate

Long-term 
expansion

Immortalised for 
long-term expansion

Limited long-term 
expansion

Can be expanded long 
term and retains source 
tumour features

Source tissue Immortalised cell lines Tissue-specific cells Tissue-specific stem cells
Morphology 2D monolayer Cell clusters within 

3D environment
Self-organising 3D 
structures, mimicking 
organ structure.

In vivo features Limited cell-cell 
interactions
Homogeneous cell line 
derived from a single 
cell
Poor retention of 
histological and 
mutational landscape of 
source tissue

Cell-cell interactions
Cell-stromal 
interaction
Cellular 
heterogeneity
Histological and 
phenotypic features 
of source tissues

Cell-cell interactions
Cellular heterogeneity 
retains histological and 
mutational landscape of 
original tumour

Genetic 
manipulation for 
cancer modelling

Amenable No Amenable

Incorporation of 
immune system

None None Can be co-cultured

Tumour/stromal 
interactions

None Stromal interaction 
with murine host

Can be co-cultured

Drug testing Suitable for HTS
Highly sensitive due to 
2D structure – limited 
translation to in vivo 
effects

Not suitable for 
HTS
Better predictor of 
in vivo response

Patient-specific responses
Suitable for personalised 
therapy. Can predict 
in vivo drug response
Possible to have matched 
normal controls

Key: HTS high-throughput screening, PDTX patient-derived tumour xenograft
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 Development of Organoid Models in CCA

CCA is amongst the most aggressive GI malignancies, with overall 5-year survival 
between 5% and 10% [27–29]. Whilst comparatively rare, the incidence of CCA is 
rising globally [27, 28, 30]. Surgical resection remains the only curative treatment 
option. However, the majority of patients will present with advanced disease that is 
not surgically curative and that often displays a stubborn chemo resistance [31, 32]. 
Given the poor prognosis, there is clearly an unmet clinical need to develop novel 
treatments that are able to effectively combat CCA. Until now the lack of reproduc-
ible in vitro models that mimic the in vivo properties of CCA has frustrated attempts 
at understanding the underlying tumour biology, rationalising current treatments 
protocols, and identifying novel therapies.

 Establishment of CCA Organoids in Long-Term In Vitro Culture

Based on the work that first established the growth of healthy liver organoids from 
human tissue [10, 15], Boutier et al. were the first group to successfully establish 
PDOs from patients with primary liver cancers [20]. Using a novel culture protocol, 
they successfully established PDOs from eight different patients including speci-
mens of HCC (n = 3), intrahepatic/perihilar CCA (n = 3), and combined HCC/CCA 
(CHC; n = 2) [20]. Interestingly, the investigators found a strong correlation between 
the establishment rate of the organoids and the proliferation index of the original 
tumour [20]. Thus, the efficiency in establishing an organoid culture was higher in 
samples derived from poorly differentiated tumours as opposed to samples from 
well-differentiated lesions. Following this work, other groups have also been suc-
cessful in establishing patient-derived CCA organoids [33–37]. These PDOs are 
sustainable over the long term, being expanded up to a year in culture [34]. The 
success rates for establishment of CCA organoids vary between 50% and 100% 
[33–37]. Where establishments rates are low, this is often due to non-tumoural tis-
sue contaminating the samples and outcompeting the cancer cells [20, 34], essen-
tially leading to the growth of a ‘healthy’ organoid.

 CCA Organoids Maintain the Histopathological Features 
of the Source Tumour

Microscopic examination of CCA PDOs shows them to retain the architecture of the 
parental tissue with the atypical histological features of the cancerous cells corre-
sponding to the differentiated adenocarcinomas from which they are derived [34]. 
Equally, they display a preference for forming cystic glandular domains and grow in 
cribriform patterns, with the cancerous cells seen to be invading tubular structures, 
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as observed in the original patient samples [20, 33, 34, 37]. Immunohistochemistry 
for tumour-specific markers show CCA organoids to express known markers for 
CCA and the biliary tract such as the epithelial marker EpCAM [20]. They are also 
shown to be highly positive for the expression of cytokeratin 7 (CK7) and 19 (CK19) 
and the mucin marker mucicarmine (MUC1), consistent with patterns in the origi-
nating tumour samples [20, 33–37]. Similarly, CCA PDOs are shown not to express 
AFP, a well-established marker for HCC [20].

 CCA Organoids Maintain Histology and Metastatic 
Potential in Vivo

Subsequent analyses have sought to establish whether the histopathological features 
of CCA PDOs can be maintained in vivo. To establish this, several groups orthotopi-
cally transplanted their organoids into immunodeficient mice [20, 33, 36]. 
Histological analysis of the xenograft organoid tissue revealed cancerous growths 
with a strong desmoplastic stromal reaction, a typical CCA feature and one seen in 
the original patient samples [38], even though this was not observed in the organ-
oids whilst in vitro (due to an absence of stromal cells). This finding in the xenograft 
organoid tissue suggests that the ability to induce a desmoplastic reaction and repro-
duce the tumour microenvironment (TME) in vivo is intrinsically programmed into 
CCA cells [36]. Similarly, Boutier et al. also saw a strong stromal reaction on histol-
ogy following implantation of their organoids [20]. The xenograft tissue also 
showed tumours forming glandular structures with proliferative cells growing in 
cribriform patterns reminiscent of the corresponding patient’s original tumour tis-
sue [20]. In addition, the metastatic potential of organoids in culture is also pre-
served. This was demonstrated by the formation of lung metastases in NOD-acid 
gamma (NSG) mice following injection of their kidney capsule with a PDO from a 
patient with metastatic CCA [33].

 CCA Organoids Retain Genetic Alterations Present 
in the Original Tumour

Whilst important to ensure that organoid cultures are histologically representative 
of their source tissue, it is equally important that their genetic and mutational land-
scape is also preserved. A primary failing of immortalised cancer cells is that sub-
stantial genetic modifications within these cell lines mean they no longer reflect the 
underlying heterogeneity of the original tumour. It is important that cancer models 
maintain the genetic mutations of the parental tumour if they are to be used as clini-
cally relevant models to interrogate the mutational processes underpinning carcino-
genesis or as platforms to identify therapeutic targets. Saito et al. compared gene 
expression profiles by performing whole-exome sequencing (WES) of their CCA 
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PDOs and corresponding primary tumour tissue [34]. This analysis showed high 
concordance rates between the two, with an average 88% of genetic variants 
observed in the patient’s tumour being retained in the organoid. Similar genetic 
comparisons performed by Lampis et al. confirmed that the genetic background of 
their CCA PDOs closely matched that of the parental biopsy, with a Spearman r 
correlation score of 0.96. Likewise, the transcriptome of the PDO closely reflected 
that of the parental tissue (Spearman r score of 0.91 for housekeeping genes and 
0.61 for the whole transcriptome [p < 0.0001]) [33]. These observations provide 
confirmation that it is possible for CCA PDOs to retain the genomic landscape of 
the original tumour from which they are derived.

 Applications of Organoids in CCA Research

 A Biobank for CCA Research

PDOs can be passaged and cryopreserved, much like 2D immortal cell lines, whilst 
simultaneously maintaining the genetic and histological features of the source 
tumour. Currently, PDO biobanks have been established for breast and colorectal 
cancer [8]. The development of a CCA biobank from a wide range of individuals 
will provide the ideal material to assess the overall genetic landscape of CCA and 
identify common genetic mutations. In turn, biobanks will then provide a valuable 
repository for drug screening programmes. In combination with matched normal 
tissue, these biobanks could also be used in help to predict drug toxicity, thus pro-
viding valuable insight for preclinical studies.

 A Model to Understand CCA Carcinogenesis

Identification and in-depth understanding of cancer-driving genetic mutations is 
critical to understanding the nature of carcinogenesis. PDOs can be used as a plat-
form to study the initiation and progression of this process by driving healthy organ-
oids towards cancer through engineered genetic mutations [39, 40, 42] (Fig. 23.1). 
This was first demonstrated by two groups who transformed healthy human intesti-
nal organoids into adenomas by using genome editing technology to introduce com-
binations of common CRC oncogene mutations including APC, SMAD4, TP53, 
KRAS, and PIK3CA [40, 41]. Via similar mechanisms, murine liver organoids have 
been used to examine the effects of certain genetic mutations on the initiation and 
progression of iCCA [43]. In this study, no single genetic alteration was found to 
induce tumour transformation; however, mutant KRAS, in conjunction with repres-
sion of tumour suppressor genes, did induce tumour development. Additionally, two 
presumed oncogenes (mutant Pik3ca and FGFR2-AHCYL) showed to be only mod-
est drivers of carcinogenesis [43]. More recently Artegiani et al. engineered CCA 
PDOs from healthy human cholangiocytes by introducing four common CCA 
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mutations (TP53, PTEN, SMAD4, and NF1) [83]. These studies highlight the 
potential of gene-edited organoid systems to identify and validate key driver muta-
tions underpinning carcinogenesis.

Importantly, organoids can also be used to investigate the complex interactions 
between genetic mutations and niche factors within the extracellular matrix (ECM) 
that help drive carcinogenesis. For instance, Fujii et al., by using different combina-
tions of growth factors in their culture media, identified the niches that supported or 
inhibited growth of their mutated CRC organoids. Results from this study showed 
that organoids carrying mutations in APC, CTNNB1, and TCF7L2 could grow 
without Wnt activators (Wnt3A/R-spondin1), whilst mutation of the KRAS gene 
and the PI3K pathway led to EGF-independent growth [84]. This demonstrates that 
organoids with different carcinogenic mutations have a distinct dependence on dif-
ferent niche factors and thereby serve as an effective tool to help understand the 
interaction between the genetic mutations and TME during carcinogenesis [24].

 A Model of Intra-Tumoural Heterogeneity

Intra-tumoural heterogeneity arises as tumours inherently harbour unstable 
genomes, and consequently, individual tumour cells in different parts of the same 
tumour may contain separate sets of genetic mutations [44, 85]. This heterogeneity 
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is increasingly recognised as playing an important role in tumour progression, che-
moresistance, and disease recurrence [44, 45]. To reflect this situation, individual 
organoids can be generated from different regions of the same parent tumour. This 
then enables the analysis of genetic, epigenetic, and transcriptomic profiles of dif-
ferent regions of the same tumour and can subsequently be used to help determine 
the drug sensitivities of different tumour subclones. Initially explored in organoid 
models of CRC [46], this has more recently been replicated in CCA [35]. In said 
study, investigators generated six PDOs from different regions of the same resected 
iCCA. WES as well as RNA sequencing of the six PDOs showed a variety of genetic 
mutations across the separate organoids: all PDOs showed mutations in KMT2C 
and PTCHD3, two displayed a frame-shift mutation in fibroblast growth factor 
receptor 1 (FGFR1), and further mutations were also seen in FMN2, USP2, 
ARID1B, RTK, and HDAC5. These PDOs were then treated with a panel of differ-
ent drugs in order to understand whether genomic profiles could predict drug 
response. For example, FGFR1 mutation should correlate with an increased sensi-
tivity to ponatinib. Indeed, the two PDOs with FGFR1 mutations were killed by of 
10 μM of ponatinib, whilst those without this mutation survived [35].

 A Platform for the Identification of Novel Therapeutics in CCA

As highlighted above, PDOs can act as an important platform for drug discovery 
projects whilst helping explore the mechanisms underlying drug sensitivity and 
resistance (Fig.  23.1). Ling et  al. recently tested 129 different therapeutic com-
pounds on 27 PDOs derived from 5 patients (3 iCCA and 2 HCC) [35]. Of the 129 
drugs tested, only 9 showed effectiveness across all CCA organoid lines. The 
remainder showed interpatient variability in terms of response. Interestingly, 
amongst the drugs that showed the most interpatient divergence were gemcitabine 
and cisplatin, which are traditionally used as a front-line chemotherapy agents in 
CCA [35, 47].

A similar drug discovery project using high-throughput screening (HTS) tech-
niques on a large library of 484 targeted small molecules assessed impact of these 
compounds on the viability of iCCA and extrahepatic CCA human cell lines [33]. 
From this small-molecule library, HSP90 inhibitors were shown to be particularly 
effective, with the highest activity recorded for the HSP90 inhibitor, AUY922 [33]. 
To assess the clinical relevance of these findings, the authors then assessed AUY922 
activity in PDOs established from liver biopsies of a patient with chemo-resistant 
iCCA. The PDOs were shown to be sensitive to AUY922 in both in vivo culture and 
xenograft models, with sensitivity significantly enhanced after inducible inhibition 
of MIR2I [33], an oncogenic microRNA known to modulate drug sensitivity and 
drive CCA carcinogenesis [48, 49]. These studies highlight the utility of organoid 
models in screening for novel therapeutic but also open the possibility of developing 
a more personalised approach to medicine through identification of patient-specific 
drug sensitivities. In this regard Saito et al. correlated the gene expression profiles 
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of their CCA PDOs with sensitivity to the anti-epidermal growth factor receptor 
(EGFR) tyrosine kinase inhibitors, erlotinib [34]. The effect of EGFR inhibitors has 
previously been shown to be associated with KRAS mutation status [50]. However, 
in the setting of CCA, erlotinib was shown to function independent of KRAS muta-
tion. In contrast, reduced sensitivity to erlotinib was shown to correlate with 
increased expression of the CPB2 gene, which was also associated with poorer 
overall patient survival [34].

 Personalised Medicine and ‘Live’ Drug Screening in CCA

As discussed PDOs are valuable tools for screening multiple novel therapeutic 
agents and also hold the potential to generate a more personalised approach to anti-
cancer therapies. However, their ability to actually predict ‘real-world’ clinical out-
comes in patients has remained unclear. PDOs were recently included in a phase I/
II clinical trial that involved 71 patients with advanced CRC or gastro-oesophageal 
cancer [51]. In this trial, investigators compared the in vitro response of anticancer 
agents in the PDO with the in  vivo clinical response of the corresponding trial 
patient. On comparing the matched organoid and patient clinical response, they 
found PDOs to have 100% sensitivity, 93% specificity, 88% positive predictive 
value, and 100% negative predictive value in forecasting the in vivo patient response 
to drug treatment [51]. This suggests that PDOs can faithfully recapture clinical 
patient responses and could be used to develop personalised treatment programmes 
within the lifetime of the patient. A further use for organoids in personalised medi-
cine is to grow matched cancer organoid and healthy liver and kidney tissue from an 
individual which can then be used to model drug- and dose-related toxicities on 
normal patient tissue whilst simultaneously assessing for therapeutic response in the 
cancer organoid.

 Limitations of Organoid Models

Although organoids are widely regarded as a highly promising in vitro model, limi-
tations are still present. The 3D structure helps better recapitulate the cell-to-cell 
arrangement of the parental tumour; however, as organoids are solely epithelial cell- 
derived, they lack the stromal tissue, blood vessels, and immune cells that make up 
the whole extracellular environment [39, 52]. This is important as we know the 
interaction between the extracellular environment, host immune system, and cancer 
cells play a key role in disease progression, tumour angiogenesis, and response to 
drug treatment [53–57]. For example, under healthy circumstances, the rigidity of 
the ECM provides tumour suppressor functions [58]. However, in the presence of a 
tumour, an increase in the rigidity of the ECM by cancer-associated fibroblasts and 
stimulation of the YAP pathway facilitates an increase in malignant behaviour 
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[59–61]. As a result, almost all CCA patients exhibit a high expression of YAP and 
its co-activator TAZ [60, 62]. Likewise, modulation of the TME by MMP-7 and 
MMP-9 and an increased expression of periostin are associated with a worse prog-
nosis and development of lymph node metastases [63–65]. Similarly, lower survival 
rates, higher recurrence rates, and increased metastasis are all linked to angiogene-
sis and lymphangiogenesis in CCA [66–69]. A focus on developing in vitro organ-
oid models that more fully incorporate the whole TME would provide better 
mechanistic insight into its role in disease progression and provide potential targets 
for therapeutic intervention [70–73]. Combining organoids with a more representa-
tive TME has been attempted by several groups who have co-cultured organoids 
with lymphocytes and stromal cells [74–82]; further studies are required to better 
address these issues. Notably, the successful co-culture of organoids with immune 
cells is of particular importance when looking to provide an accurate model for 
immunotherapy agents.

 Summary

PDOs hold much promise in helping advance our understanding of CCA, with clear 
advantages over traditional 2D cell culture. In addition to being able to be grown at 
high efficiencies, expanded over many generations, and cryopreserved in biobanks, 
they maintain the histological and mutational genetic landscape of the source 
tumour from which they are derived. This makes them ideal platforms to function-
ally dissect the underlying tumour biology and explore novel drug targets for all 
solid tumours, including CCA. Future studies with the development of co-culture 
techniques will undoubtedly refine organoid models to include more aspects of the 
extracellular environment with the aim of generating a sophisticated organoid with 
full representation of the TME. In terms of patient treatment, PDOs have the poten-
tial to significantly alter the treatment paradigm in CCA, changing the current sys-
temic approach to patient treatment to a more personalised programme, whereby 
combinations of anticancer drugs can be given based on the mutational profile and 
sensitivity of the individual patient’s tumour.
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 Introduction to the Tumor Microenvironment 
in Cholangiocarcinoma

Malignant cancers are in fact a complex tissue consisting of the cancer cells and 
nonmalignant stromal cells with their cell-cell interactions and respective extracel-
lular matrix (ECM) [1, 2], forming the so-called tumor microenvironment (TME). 
Over the last decade, the TME in cholangiocarcinoma (CCA) has gained increasing 
interest, and we have seen a surge in research into this particular compartment of 
CCA. Often arising from a chronic inflammatory background, cholangiocarcinoma 
has long been known as a “stroma-rich” cancer, characterized by an extensive 
fibrous tissue around the often small clusters of cancer cells (Fig. 24.1) [3]. In most 
CCA, the tumor stroma makes up the largest part of the tumor tissue. Therefore, the 
hypothesis has been for some time that the vast stromal compartment plays a more 
important role in the biology of this devastating malignancy [4].

The TME consists of a variety of cells including cancer-associated fibroblasts 
(CAFs), inflammatory cells, and endothelial cells. Inside this multicellular compart-
ment, CAFs are able to shape the (premalignant) microenvironment by remodeling 
the ECM and recruiting and interacting with cells of the innate and adaptive immune 
response, thereby supporting cancer initiation and progression.

More specific studies into the overall gene expression profile of the stromal 
compartment have revealed gene signatures that correlate with worse clinical out-
come. Among differentially expressed genes are receptors and ligands of the che-
mokine (CXCR4, CCR7, CCL2, CCL5, CCL19, CCL21) and interleukin (IL) 
family (IL3RA, IL7R, IL-10RA, IL-18RAP, IL-6, IL-16, IL-33) [7]. Moreover, 

Fig. 24.1 Trichrome stain 
shows spread of tumor into 
scar with collagen 
deposition (Photography 
by TexasPathologistMSW 
[5] is licensed under CC 
BY-SA 4.0 [6])

A. Moncsek and J. C. Mertens



511

overexpression of genes such as KIAA0101 (proliferating cell nuclear antigen- 
associated factor), transforming growth factor (TGF)-β2, laminin subunit γ2, and 
osteopontin, has been found in the stromal compartment of CCA [8]. An increased 
stromal expression of CAF marker alpha-smooth muscle actin (αSMA) was 
reported as an independent prognostic factor for overall and disease-free survival 
[9, 10].

In this chapter, we review the different components of the CCA microenviron-
ment. We focus on CAFs, their origin, heterogeneity, and activation. We further 
address different immune cells subpopulations in CCA, their cellular cross talk with 
CAFs, as well as their potential application for therapeutic intervention.

 Cancer-Associated Fibroblasts

The most abundant cell types in CCA are activated stromal fibroblasts, also referred 
to CAFs [11]. This cell type is of mesenchymal origin and often outnumbers all 
other cells in the tumor, including the tumor cells themselves [12]. Many studies 
have highlighted the pivotal role of CAFs in the CCA microenvironment and the 
importance of cross talk among CAFs and cancer cells with respect to tumor devel-
opment, progression, and even drug resistance [9, 12–15].

The phenotype of a CAF is that of an activated fibroblast. These cells character-
istically express αSMA, vimentin, S100A4 or fibroblast-specific protein 1, fibro-
blast activation protein alpha (FAP), fibronectin, and collagen type  I [16]. They 
secrete an array of growth factors, especially platelet-derived growth factor (PDGF) 
in its variant PDGF-BB, TGF-β, CCL2, CXCL12 (also referred to as stromal- 
derived factor-1), CXCL14, insulin-like growth factor, fibroblast growth factor 
(FGF), heparin-binding epidermal growth factor (HB-EGF), hepatocyte growth fac-
tor (HGF), and granulocyte-macrophage colony-stimulating factor [11] and are pro-
liferative. Interestingly, the activated state of a CAF comes at the cost of increased 
apoptosis sensitivity induced by altered expression of B-cell lymphoma-2 (Bcl-2) 
family proteins – a state termed “apoptotic priming” [17].

 Origin and Heterogeneity

Regarding the origins of CAFs, several sources have been proposed. The most obvi-
ous are resident intrahepatic periportal fibroblasts. A second and probably the most 
important source of CAFs are likely hepatic stellate cells (HSCs) from the perisinu-
soidal space of Disse. HSCs have been identified as an important source of activated 
fibroblasts in various models of biliary fibrosis [18, 19]. In addition, circulating 
mesenchymal stem cells from the bone marrow are a third likely source of CAFs in 
CCA. The hypothesis of epithelial to mesenchymal transition has been debated con-
troversially but has not been confirmed so far [19–21]. This heterogeneity of origin 
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and phenotype poses a challenge with regard to identifying specific CAF markers 
and biological functions of CAFs in cancer development.

 Activation

In contrast to the tissue resident fibroblasts of the organ affected by the tumor, CAFs 
are generally in an activated cell state. A large number of markers have been pro-
posed and described to identify and further characterize CAFs in tumor tissue. 
Many of these markers show different expression depending on the tissue type ori-
gin, the subtype of CAF, and possibly the stage of tumor development [22, 23].

One the most well-known markers is αSMA, which is found overexpressed in 
CAFs of many tumors. In CCA, high expression of αSMA is an indicator of poor 
prognosis and is correlated with larger, less differentiated tumors that metastasize 
more readily [24]. It has been proposed that the high αSMA positivity of CAFs from 
hepato- and pancreatobiliary cancers is due to their origin from stellate cells [25]. 
Another commonly found marker is PDGFRα, which has been attributed to a fibro-
blast origin of CAFs [26]. Among the many additional CAF markers, fibulin-2 and 
desmin as well as glial fibrillary acidic protein have been interpreted as indicators of 
the heterogeneous sources of CAFs in CCA, namely, HSCs and portal fibroblasts [27].

As we begin to better understand the phenotype and role of CAFs in CCA, the 
concept that cancer cells “educate” surrounding mesenchymal cells to transform 
into several CAF subtypes that serve different functions in the TME has been sug-
gested in CCA, similar to pancreatic carcinoma [28, 29]. This could explain the 
multitude of functions that have been attributed to CAFs such as tumor cell growth, 
metastasis, ECM remodeling, or angiogenesis. Even more importantly, different 
populations of CAFs within the tumor could also explain pro- and anti-tumori-
genic effects of CAFs. The mechanisms by which CCA cells “educate” mesenchy-
mal cells to become CAFs are still under investigation. Tumor-derived PDGF and 
TGF-β are probably the most important stimulating factors that trigger CAF devel-
opment [30]. Besides these, an ever more detailed panel of CAF-promoting stim-
uli is evolving and includes inflammatory signals such as IL-1, IL-6, and tumor 
necrosis factor (TNF) but also direct contact signals via Notch or properties of the 
ECM (Fig. 24.2). In an elegant review by Kalluri et al., these factors are summa-
rized [22].

 Pro- and Anti-tumorigenic Functions of CAF

CAFs exhibit a variety of functions and interactions within the CCA microenviron-
ment. CAFs directly interact with CCA cells and have been found to modulate CCA 
cell behavior, resulting in more aggressive growth and invasiveness. Cultivation of 
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CCA cells in conditioned medium from CAFs as well as co-cultivation of these two 
cell types leads to an increase in proliferation and migration of CCA cells [9, 32]. 
Moreover, co-cultivation of CAFs and CCA cells from a syngeneic rat model in 
more sophisticated three-dimensional cultures systems has been reported to lead to 
a change in growth behavior, with increased duct formation by the CCA cells [33]. 
Other studies suggest that CAFs could inhibit apoptosis of normal biliary epithelial 
cells and by this promote the proliferation of these cells in the very early stages of 
cholangiocarcinogenesis [9].

 CAF and PDGF Signaling

Among the various signaling molecules mediating CAF-CCA cell interaction in 
CCA, PDGF has been of particular interest. CAF-derived PDGF-BB in the TME 
binds to PDGFRβ, which is highly expressed on the CCA cell surface [34]. In a 
recent study, PDGF-BB-induced resistance of CCA cells to TNF-related apoptosis- 
inducing ligand (TRAIL)-mediated apoptosis by activating the Hedgehog signaling 
pathway [35]. At the same time, PDGF-BB acts in an autocrine fashion, binding to 
PDGFRβ on HSCs and CAFs and inducing fibroblast migration [36]. The PDGF- 
PDGFRβ signal and downstream effects in CAFs are further propagated by activa-
tion of intracellular Rho GTPases, via induction of Rac1 and Cdc42, as well as 
activation of the JNK pathway [21]. Upon treatment with PDGF, CAFs have been 
reported to acquire a more spindle-like shape and increased expression of αSMA in 
vitro [37].

DNA damage
(chemotherapy
and radiotherapy)

TGF Physiological stress
(ROS and disrupted
metabolism)

Inflammatory signals
(lL-1, lL-6 and TNF)

RTK ligands (PDGF and FGF)

Normal fibroblast

CAF

CAF
activation

Extracellular matrix
(stiffness and composition

Contact signals
(Notch and Eph-ephrins)

Fig. 24.2 Diverse mechanisms of cancer-associated fibroblast (CAF) activation. This schematic 
highlights the multiple mechanisms that can contribute to CAF activation. FGF fibroblast growth 
factor, PDGF platelet-derived growth factor, ROS reactive oxygen species, RTK receptor tyrosine 
kinase, TGF-β transforming growth factor-β, TNF tumor necrosis factor (Figure reprinted from 
Sahai et al. [31] is licensed under CC BY-SA 4.0 [6])
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 CAF and CXCL Signaling

In conditioned media from co-cultures of CCA cells and HSCs, a remarkable 
increase of cancer cell-mediated C-X-C motif chemokine ligand 5 (CXCL5) has 
been described [14]. At the same time, CAF showed an increase in IL-1β production 
[33]. IL-1β is known to induce the expression of CXCL5 as an inflammatory cyto-
kine. In vitro experiments have demonstrated a stimulatory effect of CXCL5 on 
CCA cell migration and proliferation as well as invasive properties. This effect is 
most likely mediated via CXCR2-dependent PI3/Akt and extracellular signal- 
regulated kinase (ERK) 1/2 activation [33]. Furthermore, CXCL5 has been described 
as a chemokine that strongly drives neutrophil recruitment into the tissue in differ-
ent diseases [38, 39].

In contrast, thrombospondin-1 secretion by CAFs appears to induce immunosup-
pression via TGF-β activation [40]. CAFs are meanwhile seen as a central player in 
tumor immune mechanisms and tumor-promoting immunosuppression. Effects of 
CAFs on tumor immunity are discussed further below.

CXCL12, or stromal cell-derived factor-1, is secreted by CAFs as a ligand of 
the CXCR4 and CXCR7 chemokine receptors that act in a G protein-coupled 
manner. Together with molecules from the interleukin family, it regulates the 
recruitment of endothelial cells and leukocytes in inflammation and malignancy. 
CAFs have been described as one of the primary sources of CXCL12, and the 
CXCL12 / CXCR4 axis has been found as important tumor promoter in various 
malignancies [41, 42], including gallbladder carcinoma [43]. Overexpression of 
CXLC12 is associated with poor prognosis in CCA [44]. In vitro, CXCL12 pro-
motes cell survival and invasive growth of CCA cells. The mechanism is most 
likely an upregulation of anti-apoptotic Bcl-2 and activation of phosphatidylinosi-
tol 3-kinase (PI3K) and ERK 1/2 pathways [45]. This effect could be further 
enhanced through the overexpression of CXCR4 in CCA cells, induced by CAF-
secreted HGF or tumor- associated macrophage (TAM)-released TNF-α [46, 47]. 
CXLC12 also seems to act in an autocrine and paracrine fashion, not only acting 
on CCA cells but also activating quiescent HSC and stromal fibroblasts to a CAF 
phenotype [45].

 CAF and EGF Signaling

The interplay between CAF and CCA cells also relies on the HB-EGF/epidermal 
growth factor receptor (EGFR) signaling axis. Activating EGFR mutations and over-
expression are among the most common alterations in CCA and have been linked to 
worse prognosis in CCA patients [7, 48, 49], while HB-EGF as an EGFR ligand has 
been implicated in cancer development [50]. This interaction of CAF- derived 
HB-EGF and EGFR on CCA cells has also been characterized in vitro [37]. CCA 
cells were reported to demonstrate enhanced proliferative, migratory, and invasive 
activity when incubated with HB-EGF-conditioned media from activated fibroblasts. 
In addition, HB-EGF-treated CCA cells have been found to overexpress TGF-β and 
thereby further stimulate CAFs to secrete EGF in a paracrine fashion [51].
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 CAF and Pro-angiogenic Signaling

CAFs have a well-known pro-angiogenic role, as they represent a main source of 
vascular endothelial growth factor A (VEGFA) in the TME [52]. In a VEGF- 
independent way, CAFs further support neoangiogenesis by PDGF and FGF2 as 
well as osteopontin release [53]. The recruitment of endothelial cells and bone 
marrow- derived monocytes via the CXCL12 pathway is another mechanism of pro- 
angiogenic CAF effects [54].

Besides their evident pro-tumorigenic effects, CAFs, or at least certain subpopu-
lations thereof, do exert antitumor effects. These are primarily mediated through 
regulation of antitumor immunity. In genetically engineered mouse models of pan-
creatic cancer, depletion of αSMA-positive CAFs was (surprisingly) shown to result 
in more aggressive, enhanced tumor growth [55]. These findings underscore that the 
role of CAFs in the tumor is more complex and multidimensional than merely form-
ing the soil for cancer growth.

 Druggable Targets in CAFs

As previously mentioned, CAFs exhibit an increased sensitivity to apoptotic stim-
uli. This is due to changes in the expression of apoptosis-regulating Bcl-2 proteins. 
In vitro as well as in a rat model of CCA, the pro-apoptotic BH3 mimetic navitoclax 
was effective in depleting CAFs by inducing apoptosis and subsequently improved 
survival in the animal model [17].

Inhibiting PDGF, its receptor PDGFR or downstream activation of the Hedgehog 
pathway, for example, by imatinib mesylate or cyclopamine, has been shown to pro-
mote cancer cell apoptosis in vitro and in a murine CCA model [34, 35]. Of impor-
tance, reduction of tumor growth and vascularization was seen in models of 
co-implanted xenografts only, supporting the concept that HSCs or CAFs are pivotal 
for activation of the Hedgehog pathway [56]. PDGFRβ-directed therapy with sorafenib 
has been explored in a clinical trial for advanced ICC, with some beneficial effect [57].

In another study, inhibition of TGF-β signaling was similarly found to result in 
reduced CCA growth in a rat model [58].

Targeting the EGFR signaling axis is currently being explored in clinical trials 
[59, 60], as are other approaches.

Reprogramming of Cellular Immunity
CAFs can be activated by tumor cells but also interact with other cells types by 
secreting a multitude of factors to modulate the TME, thereby influencing innate 
and adaptive immune responses. Thus, CAFs have a crucial influence on the recruit-
ment of immune cells such as macrophages, monocytes, and neutrophils into the 
tumor [61]. In other tumor entities such as lymphoma or breast cancer, CAF- 
mediated recruitment of macrophages has been shown to promote tumor growth and 
metastasis [62, 63]. More detailed knowledge regarding CAF subpopulations sug-
gests that a distinct phenotype of inflammatory CAFs are primarily responsible for 
contributing to an inflammatory milieu [64].
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 Extracellular Matrix

The ECM is a noncellular mixture of macromolecules, including fibrous proteins 
such as collagen, fibronectin, laminin, and tenascin, and proteoglycans [65]. By 
providing structural signals for tumor growth and migration, the ECM can favor 
tumor progression.

Besides cancer cells, CAFs are able to produce ECM macromolecules but also 
ECM remodeling enzymes such as lysyl oxidases (LOXs) and matrix metallopro-
teinase (MMPs). LOX enzymes increase the crosslinking of collagen and elastin, 
thereby contributing to increased stiffness of the TME [66]. It has been demon-
strated for many cancers that LOX levels are elevated in and correlate with tumor 
progression [67]. In CCA, increased LOXL2 expression correlates with αSMA 
expression and poor overall survival [68]. LOX inhibitors have been tested in com-
bination with anticancer drugs to improve drug delivery. LOX inhibition was found 
to improve the diffusion of doxorubicin in a 3D spheroid model using four different 
mouse tumor cell lines [69] and demonstrated potent antitumor activities in vitro 
and in vivo in breast and pancreatic cancers [70, 71]. However, recent clinical trials 
failed to show enhancement of anticancer benefits in breast and colorectal cancer 
[63, 72].

Tissue stiffness can lead to increased malignancy through activation of the intra-
cellular mechanosensor yes-associated protein (YAP), the effector protein of the 
Hippo pathway [73]. CCA patients show an upregulated expression of YAP and its 
transcriptional coactivator with PDZ-binding motif (TAZ). Moreover, increased 
nuclear localization of YAP correlates with metastasis and poor prognosis [74, 75]. 
Lentivirus-mediated silencing of YAP has been shown to increase tumor sensitivity 
to chemotherapy and inhibit CCA tumorigenesis both in vivo and in vitro [75].

To migrate through the stiff matrix, cancer cells produce matrix-degrading 
MMPs. MMP2 and MMP9 are increased in many cancer types [76]. CAFs have 
been shown to be the major producer of MMP2 in mouse lung tumors [77]. In CCA, 
CAF-mediated expression of MMP1, MMP2, MMP3, and MMP9 is associated with 
tumor aggressiveness [78, 79]. In addition, MMP9 expression correlates with CCA 
progression and metastasis [80]. Thus, MMP inhibition might be a new target for 
future cancer therapy. To date, however, although more than 50 MMP inhibitors 
have been investigated in clinical trials, none of them showed antitumor effects. 
Thus, more research is needed to unravel the, to some extent controversial, impact 
of MMPs on cancer.

 Immune Cells

In order to escape immune surveillance and killing by cytotoxic lymphocytes, can-
cer cells manipulate their environment toward a tolerant and immunosuppressive 
setting. In addition to the cancer cells themselves, CAFs are central players in 
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shaping the TME (Fig. 24.3). Both CAF and cancer cells communicate extensively 
with tumor-infiltrating immune cells from the innate and adaptive immune system, 
thereby stimulating immune suppression, angiogenesis, and tumor progression. The 
impact of immune cells on CCA is summarized in Table 24.1.

TAM

MMP9 IL-10

ECM
remodeling

Immune
suppression

Angiogenesis

Inflammation Anti-tumor response

MDSC TAN

CAF

DC NK TIL

recruitment

VEGF

recruitment
polarization inhibition ?inhibition

Fig. 24.3 Influence of cancer-associated fibroblasts (CAFs) on regulation and function of immune 
cells in cholangiocarcinoma. By mediating soluble factors, CAFs support the recruitment and 
activity of immune cells in the tumor microenvironment. CAFs favor M2 polarization of tumor- 
associated macrophages (TAMs) that support tumor progression via remodeling of the extracellu-
lar matrix (ECM), stimulation of angiogenesis and enhancing immune suppression. In addition, 
CAFs are able to recruit immunosuppressive myeloid-derived suppressor cells (MDSCs). On the 
other hand, CAFs inhibit the activity of dendritic cells (DCs) and natural killer cells (NKs). 
Whether CCA-derived CAFs can affect tumor-infiltrating lymphocytes (TILs), as demonstrated 
for other cancers, is not yet fully understood

Table 24.1 Impact of immune cell components on cholangiocarcinoma

Immune cell 
component Impact on cholangiocarcinoma

TAMs Immunosuppressive via IL-10 secretion and T-cell suppression
ECM remodeling via MPP9 secretion
Angiogenesis via VAGF secretion

TANs Recruitment of other immunosuppressive immune cells
MDSCs Immunosuppressive regulation other immune cells (inhibition of T and 

NK cells)
DCs Tumor inhibition via recruitment and activation of lymphocytes
NKs Tumor inhibition via cancer cell cytotoxicity
TILs Tumor inhibition
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 Components of the Innate Immune Response

Tumor-associated macrophages (TAMs) are alternatively activated, pro- tumorigenic 
M2-like macrophages that mediate their immunosuppressive properties via ECM 
remodeling, angiogenesis, and suppression of T-cell activity/proliferation. CAFs 
have been demonstrated to recruit M2 macrophages via secretion of monocyte che-
moattractant protein 1 (MCP1), also referred to as CCL2 [81]. In CCA, the M2-like 
phenotype is associated with poor prognosis and metastasis [82]. TAMs secrete a 
variety of factors that promote tumor progression on many levels such as angiogen-
esis (VEGFA), ECM remodeling (TGF-β, MMP9), antigen presentation, and immu-
nosuppression (IL-10) [83]. In CCA, TAMs are the main source of MMP9, and the 
number of MMP9-secreting TAMs is significantly correlated with patient sur-
vival [84].

Tumor-associated neutrophils (TANs) in CCA are recruited predominantly by 
CXCL5, a chemoattractant secreted by cancer and stromal cells [85]. TANs express 
CCL2 and CCL17, which recruit other immune cells such as TAMs and Tregs to 
the TME. In CCA, the number of TANs has been associated with poor progno-
sis [86].

Myeloid-derived suppressor cells (MDSCs) are a subset of immature myeloid 
cells with potent immunosuppressive activity [87]. Although the exact definition 
of an MDSC is debated, MDSCs are closely related to neutrophils and are even 
considered to be neutrophils of a certain phenotype [88]. MDSC are strongly 
increased in pathological conditions such as cancer and possess strong immuno-
suppressive activities, regulating the function of other immune cells. Among oth-
ers, MDSC inhibit cytotoxic T cells and NK cells via antigen-dependent and 
antigen- independent mechanisms. In CCA, a specific FAP-positive CAF subset 
enhances MDSC recruitment via CCL2/MCP1 secretion, thereby mediating 
tumor-promoting inflammation and immunosuppression [89]. Nevertheless, the 
contribution of MDSC to CCA progression is relatively unexplored, and further 
studies are needed.

Dendritic cells (DCs) are a heterogeneous group of functionally specialized 
antigen- presenting cells, uniquely able to initiate the adaptive immune response by 
presenting immunogenetic peptides via antigen-presenting major histocompatibil-
ity complex (MHC) class I and II molecules to naïve T cells [90]. Hence, DCs 
induce a cellular immune response that involves both CD4+ T helper and cytolytic 
CD8+ T cells.

CAFs are able to mediate immunosuppression on DCs via downregulation of 
MHC class II molecules in a TGF-β-dependent manner, thus reducing the capability 
to activate cytotoxic T cells [91]. In CCA patients, mature DCs might be able to 
enhance CD8- and CD4-positive cell infiltration into cancers, since increased num-
bers of mature DCs at the invasive margin correlate significantly with the number of 
CD8-positive or CD4-positive T cells in the cancerous region [92]. In addition, 
CCA patients with increased numbers of mature DCs have a significantly lower 
incidence of lymph node metastasis and a better outcome [92]. Immunotherapy 
using mature DCs loaded with aspartate-β-hydroxylase, a highly expressed tumor-
associated cell surface protein, has been reported to induce antigen-specific 
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immunity, cytotoxicity against tumor cells, and inhibition of tumor growth in a syn-
geneic rat model of CCA [93].

In addition to the abovementioned immune cells, the liver hosts an abundance of 
natural killer (NK) cells, which are important mediators of immunological toler-
ance in the liver [94]. NK cells are able to recognize and eliminate abnormal cells 
such as cancer cells. In CCA, genetic variants of the NK cell receptor NKG2D are 
associated with development of CCA in PSC patients [95]. Furthermore, treatment 
of CCA cells with cytokine-activated killer cells (including acNK and T cells) and 
cetuximab has been shown to enhance cytotoxic efficiency on cancer cells in vitro 
[96]. In vivo, infusion of ex vivo-expanded human NK cells in HuCCT-1 tumor- 
bearing nude mice has similarly been found to result in significant inhibition of 
CCA [97].

 Components of the Adaptive Immune Response

Tumor-infiltrating lymphocytes (TILs) are a heterogeneous group of immune cells 
that are recruited from the blood into the tumor to eliminate cancer cells. TILs 
include CD8+ cytotoxic T cells, CD4 + T helper cells, Foxp3+ regulatory T cells, 
and B lymphocytes.

Biliary tract cancer patients with increased numbers of tumor-infiltrating CD4+, 
CD8+, and FoxP3+ T lymphocytes showed a significantly longer overall survival 
[98]. Analysis of the adaptive immune system in CCA is based primarily on immu-
nohistochemical studies. Although adaptive immune response components decrease 
with CCA progression, more than half of CCAs are positive for CD4+ and CD8+ 
TILs [98], and an increased number of TILs are associated with improved overall 
patient survival [99, 100]. Interestingly, CD8+ TILs are predominantly located 
within the tumor tissue and CD4+ TILs in the peritumoral area [101].

Regulatory T cells, which express FoxP3, play a role in promoting antigen toler-
ance and immunosuppression in different malignancies. In CCA, FoxP3 expression 
is associated with a worse prognosis in CCA [102].

In cancer therapy, adoptive T-cell therapy is an approach to increase the number 
of endogenous/autologous activated cytotoxic T lymphocytes in the TME. Ongoing 
clinical trials evaluate the benefit of adoptive immunotherapy in biliary tract cancers 
in combination with additional therapeutic approaches [103].

Among TILs, B cells represent only a minor proportion in CCA. However, it has 
been observed that their presence is associated with a favorable prognosis [98].

 Exosomes: Biological Role and Clinical Implications

Exosomes are small, lipid bilayer extracellular vesicles of endosomal origin with an 
average size of 100 nm in diameter. Depending on their origin, exosomes can con-
tain a variety of cellular components including proteins, mRNAs, miRNAs, lipids, 
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and metabolites. Although exosomes have been described already in the early 1980s 
[104, 105], the physiological role remains largely unknown, but over the last decade, 
the general interest of the scientific community has evolved exponentially [106]. 
Recent studies suggest a role in near and long-distance intracellular communica-
tion, thereby affecting various physiological and pathological conditions such as 
immune response, mammalian reproduction, viral infection, cardiovascular disease, 
and cancer. Most cell types, including cancer cells, can release exosomes. 
Interestingly, tumor cells exhibit an enhanced production of these extracellular ves-
icles and have been shown to promote tumor growth, ECM remodeling, angiogen-
esis, metastasis, and resistance to therapy in various cancer types [22]. Cancer 
cell-derived exosomes are enriched in immunosuppressive and pro- tumorigenic 
molecules including death receptor ligands such as Fas-ligand (FasL) or TRAIL, 
check point receptor ligands such as programmed death-ligand 1 (PD- L1), and 
inhibitory cytokines such as IL-10 and TGF-β1 [107]. Most studies suggest that 
cancer-derived exosomes are able to reprogram their microenvironment to favour 
tumor progression. Well-studied stromal recipient cells are CAFs and immune cells.

Recent studies in liver cancer suggest that CCA-derived extracellular vesicles 
(in most cases exosomes) carry oncogenic proteins that promote CCA growth and 
progression [108]. Although there appear to be no differences in serum concentra-
tions of extracellular vesicle in patients with PSC, CCA, and healthy controls 
[108], intravesicular differences do exist; indeed, well-characterized cancer-asso-
ciated miRNAs are significantly up- and downregulated in CCA-derived exosomes 
compared with normal cholangiocyte-derived exosomes and controls [109]. Given 
that exosomes are released into body fluids such as blood and urine, they have 
potential as noninvasive biomarkers. CCA-derived exosomes contain molecules 
with relvant diagnostic potential. Arbelaiz et al. identified several proteins differ-
entially expressed between the serum extracellular vesicles of PSC, CCA, and 
healthy patients. In particular, fibrinogen gamma chain, alpha-1-acid glycoprotein 
1, and S100A8 showed the best differential diagnostic capacity whereas ficolin-2 
and inter-alpha-trypsin inhibitor heavy chain H4, among others, showing higher 
diagnostic value than the traditional serum tumor marker carbohydrate antigen 
19–9 [108]. Of note, although serum concentrations of extracellular vesicles are 
not elevated in CCA patients, biliary concentrations of extracellular vesicles are 
significantly increased in CCA patients [110]. Furthermore, a panel of miRNAs 
(miR-191, miR-486-3p, miR-1274b) are upregulated in bile extracellular vesicles 
of CCA patients [110].

Due to their membrane structure, exosomes could serve as natural carriers of 
therapeutic agents for cancer therapy as well. An interesting candidate for extracel-
lular vesicle-based CCA therapy is miR-195, a fibroblast-derived extracellular ves-
icle cargo that is downregulated in human CCA cells and was demonstrated to 
inhibit CCA growth in vitro and in vivo [111]. Therapeutic delivery of miR-195 
might therefore be a future therapeutic approach.
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 Conclusions

Cholangiocarcinoma epitomizes the concept of a stroma-driven malignancy. The 
stromal part of the cancer not only forms the largest part of the tumor but contains 
several nonmalignant cell populations that together with their respective signals 
must be considered crucial for tumor development and progression. First and fore-
most, CAFs are the most abundant cell type in CCA and contribute essential growth 
factors and ECM components that promote CCA growth. Cancer-associated 
immune cells of the stromal compartment further contribute to the highly complex 
and heterogenous tumor microenvironment. Deciphering, understanding, and spe-
cifically targeting the CCA stroma hold the promise to contribute effective therapies 
for this still dismal disease.
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GalCer Galactosylceramide
GalT Galactosyltransferase
GalNAcT5 GalNAc-transferase 5
Glc Glucose
GlcCer Glucosylceramide
GFAT Glutamine-fructose amidotransferase
GSL Glycosphingolipid
HC Healthy controls
hnRNP-K Heterogeneous nuclear ribonucleoprotein-K
HE4 Human epididymis protein 4
LacCer Lactosylceramide
MAL Maackia amurensis lectin
MAL-SG MAL-II-binding glycan
Man Mannose
MMP Matrix metalloproteinase
mAb Monoclonal antibody
MUC Mucin
GalNAc N-acetylgalactosamine
GlcNAc N-acetylglucosamine
GlcNAc-T N-acetylglucosaminyltransferase
NEU Neuraminidase
POFUT1 O-fucosyltransferase 1
OGP O-GlcNAcylated protein
OGT O-linked β-N-acetylglucosaminyltransferase
OST Oligosaccharyltransferase
PSA Pisum sativum agglutinin
PSC Primary sclerosing cholangitis
PSA Prostate-specific antigen
SNA Sambucus nigra agglutinin
Ser Serine
sLea Sialyl-Lewis A
sLex Sialyl-Lewis X
sTn Sialyl-Tn
ST Sialyltransferase
SNAG SJA-binding N-acetylgalactosamine-associated glycan
SNA-SG SNA-binding glycan
SJA Sophora japonica agglutinin
SBA Soybean agglutinin
TFG Terminal α1,2-fucose glycan
Thr Threonine
GalNAc-T UDP-GalNAc-polypeptide GalNAc-transferase
UEA-I Ulex europaeus agglutinin-I
UDP-GlcNAc Uridine diphospho-N-acetylglucosamine
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VVL Vicia villosa lectin
VBG VVL-binding GalNAc glycan
WFA Wisteria floribunda agglutinin
XIAP X-linked inhibitor of apoptosis protein
Xyl Xylose
OGA β-N-acetylglucosaminidase

 Introduction

Glycosylation is an enzymatic process that modifies glycans, lipids, or proteins 
with sugar molecules. The biosynthesis of glycan branches is effectuated through a 
specific set of glycosylation machinery, e.g., glycosyltransferases and glycosi-
dases, sugar transporters, and activated sugar donors. The resulting glycan micro-
heterogeneity and complexity is intricately involved with many physiological 
processes, e.g., cell identity, cell-cell cross talk, and cell-environment interactions. 
The specific terminal glycan modification can confer unique function and proper-
ties to oligosaccharides and is often regulated during ontogeny and cellular differ-
entiation [1].

Changes in glycan patterns have been observed as early events in several path-
ological conditions and used as biomarkers of many diseases, including cancer. 
Alteration of glycan structure of cell surface glycoproteins was first reported in 
SV-40-transformed murine fibroblasts [2]. Since then, the significance of glycan 
patterns in tumor development and progression has been extensively studied [3]. 
At present, it is well accepted that aberrant glycosylation is a universal feature of 
cancer cells and plays a crucial role in cancer biology [4]. Aberrant glycans that 
modify the cell surface or the secreted glycoproteins of cancer cells can be poten-
tial cancer biomarkers [5] and therapeutically targeted and manipulated to pro-
vide a new avenue to improving cancer treatment [6]. Advancements in 
high-throughput approaches for glycome analysis have accelerated the glycopro-
teomics-based discovery of glyco-biomarkers and drawn much attention from 
researchers to investigate glycomics for medical applications. Lectin-based 
approaches [7–10] and mass spectrometry [11, 12] have been applied to deter-
mine the aberrant glycosylation in clinical samples from cholangiocarcinoma 
(CCA) patients.

In this chapter, we present a broad overview of cellular glycosylation processes 
and the dysregulation of glycosylation in cancer. We then describe the aberrant 
glycosylation, in core (N- and O-glycosylation) and peripheral glycosylation 
(fucosylation, sialylation) as well as O-GlcNAcylation and glycosphingolipid 
synthesis, in the development and progression of CCA.  Lastly, we explore the 
potential of using these glycosylated products to improve diagnosis and treat-
ment of CCA.
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 Glycans and Glycosylation in Biology

 Biochemistry of Glycans

Glycans reported in eukaryotic cells can be classified according to the linkage to 
proteins or lipids and include glycoproteins, proteoglycans, sulfated glycosamino-
glycans, hyaluronan, and glycosphingolipids (GSLs) [13, 14]. A glycoprotein is a 
glycoconjugate in which a protein carries one or more glycans attached to a poly-
peptide chain, mostly via N- or O-linkages [15]. An N-linked glycosylation refers to 
the co- or posttranslational modification of a polypeptide with an oligosaccharide 
that is covalently linked to the amide nitrogen of an asparagine (Asn) residue and 
can be classified into three main types: high-mannose, complex, and hybrid types 
[16]. N-glycosylation is the most common glycosylation observed in a large num-
ber of proteins synthesized in humans. O-linked glycosylation refers to the post-
translational linkage of an oligosaccharide to the OH group of a serine (Ser) or 
threonine (Thr) residue of a polypeptide. The first sugar that attaches to Ser or Thr 
can be mannose (Man), fucose (Fuc), galactose (Gal), glucose (Glc), 
N-acetylgalactosamine (GalNAc), N-acetylglucosamine (GlcNAc), or xylose (Xyl). 
An attachment of GalNAc to Ser/Thr is the most common O-glycosylation of mem-
brane-bound and secreted glycoproteins such as mucin (MUC) glycoproteins; 
therefore, O-linked GalNAc modifications are generally called mucin-type glyco-
sylation. One of the polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts) 
transfers a GalNAc to Ser or Thr of the specific proteins in different cell types and 
organs [17]. The oligosaccharide is further extended with Gal and GlcNAc, forming 
eight types of core mucin O-glycan [18, 19]. In addition, the linkage of Ser/Thr with 
a single molecule of GlcNAc, called O-GlcNAcylation, is another O-glycosylation 
that has been aggressively studied in the past decade. Several nucleocytoplasmic 
proteins, especially transcription factors, have been identified as O-GlcNAcylated 
proteins [20].

Proteoglycans are a polymeric glycoconjugate that contains one or more gly-
cosaminoglycan chains, linear polysaccharides, and uronic acid or galactose, 
attached to a core protein [21, 22]. Hyaluronan is one of the glycosaminoglycans; 
it is unique from other classes of glycosaminoglycans in that it is not further 
modified by sulfation or by epimerization of the glucuronic acid moiety to idu-
ronic acid [22]. A GSL consists of a glycan usually attached via glucose or galac-
tose to the terminal primary hydroxyl group of the lipid moiety ceramide, which 
is composed of a long chain base (sphingosine) and a fatty acid; therefore, they 
can be neutral or acidic [21, 22]. A ganglioside is an acidic glycolipid containing 
one or more residues of sialic acid [23]. All forms of glycosylation are synthe-
sized in the endoplasmic reticulum (ER) and Golgi apparatus, except 
O-GlcNAcylation.
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 Glycosylation Process

Unlike DNA, RNA, and protein, glycan structure is not directly encoded from the 
genome; rather, it is tightly regulated by a cellular process called “glycosylation” 
[13]. Particular glycan structures are generated and sequentially modified by a vari-
ety of glycosyltransferases and glycosidases as well as the presence of sugar donors 
inside the cells [19]. The sub-compartmentalization of glycan biosynthesis in the 
Golgi apparatus can also modulate the order of glycosylation [19]. A variety of 
glycan structures mediate the diversity and complexity of cellular biology. 
Furthermore, glycan structures and production can reflect small changes in intra- or 
extracellular environment.

Protein N-linked glycosylation is compartmentalized in the ER. The biosynthe-
sis of N-glycan precursors begins on the outer leaflet of the ER and is completed in 
the ER lumen, with proficiently glycosylated proteins then being exported to the 
Golgi apparatus for further elongation and addition of peripheral glycans moieties 
(Fig. 24.1) [16, 24, 25]. The biosynthesis of the core oligosaccharide (14-sugar 
glycan) for N-glycan requires several known enzymes. Firstly, the sugar moieties 
are sequentially added to the dolichol phosphate (Dol-P) on the outer part of the ER 
membrane by the asparagine-linked glycosylation family of glycosyltransferases 
[16, 24]. The mature oligosaccharide is then transferred to the acceptor protein in 
the sequence of asparagine-X-serine/threonine (X can be any amino acid except 
proline) by the oligosaccharyltransferase (OST) complex [24, 25]. The glucoses of 
the core oligosaccharide are then removed by glycosidase I–II. Generally, glycopro-
teins exiting ER to Golgi contain either eight or nine mannose residues of N-glycans. 
In the cis-Golgi, the oligomannoses are trimmed by α-mannosidases to form Man5, 
an important intermediate glycoform for synthesizing hybrid and complex N-glycans 
[16, 19]. In the last step of N-glycan processing, the biosynthesis of hybrid and 
complex N-glycans is started in the medial Golgi by adding and branching of 
GlcNAc to mannose residues via the action of N-acetylglucosaminyltransferases 
(GlcNAc-Ts) [16]. There are several glycosyltransferases, including galactosyl-
transferases (GalTs), fucosyltransferases (FUTs), and sialyltransferases (STs) 
involved in the extension of N-glycans to form mature N-glycans which ordinarily 
occur in the trans Golgi [16, 19].

Different from N-glycosylation, the synthesis of O-linked glycan is initiated by 
the addition of a monosaccharide to a Ser or Thr residue followed by the stepwise- 
elongation into an oligosaccharide chain. Biosynthesis of mucin-type O-linked gly-
cosylation is initiated in the Golgi apparatus by the transfer of a GalNAc to a Ser or 
Thr residue on the peptide chain by one of the UDP-GalNAc enzymes (Fig. 25.1) 
[18]. The Tn antigen is further elongated to form complex O-glycan by several gly-
cosyltransferases [18, 19].

GSL biosynthesis starts with an addition of the first sugar to ceramide (Cer) and 
then transfer of subsequent sugars by glycosyltransferases. Cer is synthesized at the 
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outer part of the ER and consequently equilibrates to the luminal part and transfers 
to the Golgi apparatus (Fig. 25.2) [26, 27]. Glucosylceramide (GlcCer) is synthe-
sized at the cytoplasmic face of the ER and cis-Golgi apparatus and then flipped into 
the Golgi lumen, where it is further elongated by a series of glycosyltransferases. In 
contrast, galactosylceramide (GalCer) is synthesized inside of the ER lumen and 
consequentially traffics through the Golgi, where it can be sulfated to form sulfatide 
[26, 27].

 The Significance of Glycans and Glycosylation in Medicine

Glycosylation is one of the important co- and/or posttranslational modifications 
required for modulating the normal biological function of cells and is necessary to 
control protein folding, conformation, localization, stability, and activity [14, 28]. 
Glycans have various structures and biophysical roles, including surface antigens, 
adhesion molecules, signaling receptors, cell-cell recognition, and cell-matrix inter-
actions [29–31]. In addition, glycan elements in the matrix, such as proteoglycans, 
are important for maintaining tissue structure, porosity, and integrity [31]. Therefore, 
aberration of glycosylation has been shown to be involved in many human diseases, 
including cancer [28–30].

Several glycan/glycoprotein antigens have been used for detecting and monitor-
ing the growth status of tumors. For CCA, these include carbohydrate antigen 19–9 
(CA19–9), i.e., sialyl-Lewis A (sLea), attached to mucin glycoproteins and 

Endoplasmic Reticulum
-Synthesizing of N-Glycan

Golgi Apparatus
- Trimming and Extending of N-Glycan
- Synthesizing and extending of O-Glycan

Cytoplasm
Extracellular

matrix

GCS

OST
complex

N
ucleus

Fig. 25.1 Biosynthesis of protein glycosylation in mammalian cells. N-glycosylation is started in 
the ER by the synthesis of core N-glycan on a dolichol phosphate and then transferred to the pep-
tide and elongated to a more complex oligosaccharide in the Golgi apparatus. Mucin-type 
O-glycosylation is started and sequentially modified in the Golgi apparatus by several glycosyl-
transferases to form the complex oligosaccharides
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gangliosides and MUC5AC for screening, surveillance, and prognosis [34–36]. 
Examples in other tumors include CA15–3 (a sialylated O-glycan on MUC1), 
CA27–29 (recognizes MUC1), and HER2 for breast cancer; CEA for colon cancer; 
CA125 (i.e., MUC16) and human epididymis protein 4 (HE4) for ovarian cancer; 
alpha- fetoprotein (AFP) and its fucosylated form (i.e., AFP-L3) for hepatocellular 
carcinoma (HCC); sialyl-Lewis X (sLex)-related glycans for lung and breast can-
cers; prostate-specific antigen (PSA) for prostate cancer; and thyroglobulin for thy-
roid cancer [32, 33]. Although many candidate glycan/glycoprotein markers have 
been suggested, most of them yield only limited accuracy for cancer screening, 
diagnosis, prognosis, and/or monitoring. Therefore, the discovery of new biomark-
ers focused on carbohydrate antigens may improve the quality of diagnostic and 
prognostic predictions of particular cancers.

From a therapeutic perspective, inhibition of protein glycosylation using the 
antibiotic tunicamycin (in vitro) can induce cancer cell apoptosis and reduce 
metastasis of cancer cells via several mechanisms, e.g., ER-stress activation, reduc-
tion of stemness ability, inhibition of signaling pathways (TNF-related apoptosis-
inducing ligand, MAPK/Erk, EGFR, IGF-1R, and several RTKs), induction of 
drug sensitivity, etc. [37–40]. Tunicamycin, however, has not been used in humans 
due to its severe side effects [41, 42]. Several plant lectins have been shown to 
inhibit progression of cancer [43]; however, lectins again might cause side effects 
in human patients such as aggregation of red blood cells. Recently, 
5-[(Dimethylamino)sulfonyl]-N-(5-methyl-2-thiazolyl)-2-(1-pyrrolidinyl)-benza-
mide (NGI-1, ML414), a new inhibitor of protein glycosylation, was established [44]. 
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Fig. 25.2 Synthesis of GSLs. The synthesis of GSL starts with CER synthesis by ceramide syn-
thase (CERS) and related enzymes, followed by sequential glycosylation processes with different 
glycosyltransferases
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NGI-1 targets OST subunit and blocks N-linked glycosylation, reducing cancer 
growth and increasing cancer sensitivity to radiation in vitro and in vivo [44–46]. 
The synergistic effects of NGI-1 with other chemotherapeutics have been reported 
in glioma and non-small cell lung cancer, especially in drug-resistant cell lines. The 
low solubility of NGI-1 and its ability to pass through the blood-brain barrier, how-
ever, limit the benefit of this compound in cancer treatment [47]. Nevertheless, 
inhibition of protein glycosylation is still a potential strategy for developing the 
effective therapy for cancer.

 Clinical Relevance of Aberrant Glycosylation and Glycans 
in Cholangiocarcinoma

Alteration of glycosylation and elevation of cancer-associated glycans and glyco-
proteins in CCA have been increasingly reported. The aberrantly expressed glyco-
conjugates play important roles in CCA progression and are potentially useful as 
markers for detection of the disease. Direct evidence to demonstrate the alteration 
of glycosylation in CCA has been discovered by glycomics using lectin-based 
approaches [7–10] and mass spectrometry [11, 12]. The collective evidence sug-
gests that glycosylation is globally altered in CCA. The alterations can be observed 
either in N-linked and O-linked glycosylations [12, 48–50]. Peripheral glycosylat-
ing processes, including fucosylation and sialylation, and synthesis of glycosphin-
golipids have also been found to be altered in CCA [51–53], as described below.

 N-Glycans

Alteration in specific N-glycans can serve as a distinct molecular signature for can-
cer progression. Circulating N-glycoprotein/N-glycoform markers are suggested to 
be useful for diagnosis, disease monitoring, and assessment of clinical outcomes. 
Most serum/plasma N-glycoproteins are synthesized by the hepatobiliary system 
and reflect the status of the liver. In-depth analysis of the glycans in the serum/
plasma of CCA patients may facilitate the discovery of novel diagnostic/therapeutic 
markers of CCA.

The plasma glycoproteome of patients with CCA (n = 60) and control group who 
were negative for hepatobiliary diseases (n = 95) was determined by Chang et al. 
using liquid chromatography-tandem mass spectrometry [11]. The analyses revealed 
four proteins closely related to tumor progression and prognosis of hepatobiliary 
malignancies. Of these, galectin-3-binding protein, also named MAC-2-binding 
protein, was found to be highly correlated with tumor stage, tumor grade, recurrence- 
free survival, and overall survival of CCA patients. Talabnin et  al. used positive 
nanospray ionization-linear ion trap mass spectrometry (NSI-MSn) to determine the 
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serum glycoproteomes and aberrant N-glycans in eight CCA patients compared to 
four healthy controls [12]. Similar glycan patterns with different relative quantities 
were obtained. The levels of high-mannose type N-glycan, M6N2, and the complex 
tri-antennary N-glycan containing a core fucose and terminal tri-sialic acid, 
NeuAc3H3N3M3N2F, were significantly increased, while levels of M9N2 were 
decreased, in CCA patients compared to healthy controls. The association of these 
glycans with clinicopathological features of patients, however, was not observed in 
this cohort.

For extrahepatic CCA (ECCA), the N-glycome profiling patterns in serum were 
determined using DNA sequencer-assisted fluorophore-assisted capillary electro-
phoresis (DSA-FACE) in 106 ECCA patients compared to 60 benign bile tract dis-
ease (BBD) and 89 healthy controls [54]. Different N-glycan patterns were observed 
in CCA vs. BBD and CCA vs. healthy controls, suggesting the N-glycan pattern 
specific to the disease condition and the potential use of these N-glycans as diagnos-
tic markers. In addition, high levels of branching fucosylated tri-antennary and 
tetra-antennary N-glycans but not CA19–9 were correlated with positive lymph 
node metastasis. Using logistic regression coefficients, the authors constructed a 
mathematical formula for specific N-glycans to separate ECCA patients from nor-
mal controls with a higher diagnostic power than CA19–9. The combination of an 
N-glycan peak and CA19–9 improved the diagnostic accuracy of CA19–9 from 
90.8% to 94.4% [54]. Moreover, N-glycan profiles but not CA19–9 levels in pre- 
and postoperative sera were significantly different. These data suggest circular 
N-glycan markers as novel and noninvasive markers in the diagnosis and progres-
sion monitoring of CCA.

 O-Glycans

Alterations of O-glycosylation and an increase in O-glycans can be applied to the 
diagnosis and prognostic prediction of many types of cancer [5, 55]. In addition, 
these glycans have also been found to play significant roles in cancer progression 
and therapeutic resistances [17, 56, 57].

Increases in cancer-associated O-glycans in patient tissues and sera are possibly 
triggered by the overexpression of carrier glycoproteins. In CCA, elevation of 
mucin glycoproteins, such as MUC5AC and MUC1, was reported in tissues and 
sera [34, 36, 58, 59]. MUC5AC was elevated in CCA comparing with normal bile 
ducts [58, 59] and was demonstrated to be a good candidate for a diagnostic and 
prognostic marker for CCA. A high level of serum MUC5AC was associated with 
high tumor stage and short survival of CCA patients [59]. MUC1 and its glyco-
forms were found to be elevated in CCA [58, 60, 61], and high levels of MUC1 in 
CCA was associated with vascular invasion and shorter survival of patients [58]. 
These mucins also play significant roles in CCA progression and metastasis 
[62, 63].
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Not only the elevation of carrier proteins but also the variation of glycan pattern 
may have clinical significance in CCA. Truncated mucin-type O-glycans such as 
Tn antigen (GalNAc-Ser/Thr), sialyl-Tn (sTn, Sia-GalNAc-Ser/Thr), Thomsen- 
Friedenreich antigen (T antigen, Gal-GalNAc-Ser/Thr), and sialyl-T antigen (Sia- 
Gal- GalNAc-Ser/Thr) are elevated and appear to play important roles in progression 
and metastasis of cancers; therefore, studies on the potential of using these antigens 
as targets for immunotherapy have been recently performed [64]. In CCA, Tn-, 
STn, and T-antigens were found to be elevated in CCA cells [48, 65]; the methods 
for detection these antigens in patients’ sera are being continuously developed 
[66, 67].

There are many lines of evidence pointing to the elevation of O-GalNAc modi-
fication or mucin-type glycosylation in CCA [8, 48, 61, 68]. Matsuda et al. ana-
lyzed the glycan profiles in CCA and normal bile ducts using lectin microarray 
and showed that a GalNAc-binding lectin, Wisteria floribunda agglutinin (WFA), 
provided the highest power in differentiating CCA from normal bile duct epithelia 
[61]. In addition, lectin histochemistry studies revealed that Gal/GalNAc-binding 
lectins, Sophora japonica agglutinin (SJA) and Vicia villosa lectins (VVL), pro-
vided strong reactivity with hyperplastic/dysplastic bile ducts and CCA com-
pared with normal bile ducts and hepatocytes (Fig. 25.3) [8, 48, 68]. SJA-binding 
N-acetylgalactosamine- associated glycan (SNAG) appeared to be applicable as a 
diagnostic and prognostic marker for CCA; it was highly detected in sera from 
CCA patients compared to non-CCA controls and associated with short survival 
of CCA patients [68]. In addition, VVL-binding GalNAc glycan (VBG) has been 
found to play important roles in CCA metastasis in vitro [48]. Synthesis of VBG 
and its metastatic potential were recently shown to be related with the activity of 
polypeptide GalNAc-transferase 5 (GalNAcT5) in CCA cell lines [48]. Suppression 
of GalNAcT5 expression significantly reduced the migration and invasion abilities 
of CCA cell lines, while the overexpression of GalNAcT5 reversed these features. 
The molecular basis underlying this event involved AKT/ERK signaling pathways. 
In addition, an immunohistochemistry- based study showed that diffusely positive 
staining of GalNAcT3 in cancer cells was associated with lymph node metastasis of 
CCA, suggesting the usefulness of preoperative GalNAcT3 investigation in clinical 
management [69].

Experiments in animal models are useful to better understand the association of 
glycan modification and CCA tumor biology. Using a hamster model of liver fluke- 
associated CCA [70, 71], O-GalNAc modifications, VBG and SNAG, were detected 
in hyperplastic/dysplastic bile ducts of hamster liver tissues as early as 1 month after 
liver fluke infection and CCA induction [48, 68]. No signal of VBG and SNAG was 
detected in normal bile ducts and hepatocytes. This finding suggested the associa-
tion of VBG and SNAG in the development of carcinogenesis.

Collectively, these observations point to the importance of O-GalNAc modified 
glycans in CCA development and metastasis, suggesting the possibility of using the 
enzymes involved in O-GalNAc modification, e.g., GalNAcT5, as a target for CCA 
treatment in the future.
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SNAG
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CA-S27
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MAL-SG

Fig. 25.3 Expression of CCA-associated glycans in patient tissues. Lectin immunohistochemistry 
staining was used to detect VVL-binding glycan (VBG), SJA-binding GalNAc-associated glycan 
(SNAG), terminal fucose glycan (TFG), carbohydrate antigen (CA)-S27, CA-S121, and MAL-II- 
binding glycan (MAL-SG) in CCA tissues. Normal bile ducts (NBD) were for all CCA-associated 
glycans, except CA-S27. Hyperplastic/dysplastic (HP/DP) bile ducts were positive for all the gly-
cans except MAL-SG, while CCA was positive for all examined glycans. Bar = 50 μm
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 O-GlcNAcylation

O-GlcNAcylation is a dynamic posttranslational modification by adding a GlcNAc 
moiety on Ser or Thr residues of proteins via O-β-glycosidic linkage without any 
elongation. The process is regulated by two enzymes; O-linked β-N- 
acetylglucosaminyltransferase (OGT) and β-N-acetylglucosaminidase (OGA). 
OGT transfers GlcNAc from uridine diphospho-N-acetylglucosamine (UDP- 
GlcNAc) to -OH group of Ser or Thr, whereas OGA catalyzes the reversed reaction. 
Unlike the general N-linked or O-linked glycosylation, O-GlcNAcylation is a 
reversible process [20]. The rapid modification of proteins by O-GlcNAcylation can 
dynamically modulate protein function, stability, and activity. Several cellular pro-
cesses including transcription regulation, translation control, inhibition of protea-
somal degradation, stress response, and modulation of signal transduction can be 
regulated by O-GlcNAcylation [72, 73]. The dynamic interplay between 
O-GlcNAcylation and other posttranslational modifications, e.g., phosphorylation, 
has also been reported [20, 72, 74]. The balance between O-GlcNAcylation and 
phosphorylation of proteins is required for normal cell growth and development; 
hence, the alteration of these modifications may lead to the pathobiological pro-
cesses and then disease [72, 75].

O-GlcNAcylation in CCA has been intensively studied in recent years. An 
increase in O-GlcNAcylated proteins (OGPs) in correlation with high OGT and low 
OGA levels was demonstrated in tumor tissues of CCA patients [50]. High expres-
sion of OGT (similar to high levels of SNAG, as discussed above [68]) was found to 
be associated with poor prognosis and shorter survival of CCA patients, suggesting 
the involvement of O-GlcNAcylation in CCA development and progression. The 
roles of O-GlcNAcylation on metastasis were studied in CCA cell lines; without 
any effect on cell proliferation, the migration and invasion abilities of CCA cell 
lines were dramatically reduced when O-GlcNAcylation was suppressed using spe-
cific siRNA against OGT. In contrast, enhancing O-GlcNAcylation by siOGA sig-
nificantly increased migration and invasion abilities of CCA cell lines [76]. This 
effect was shown to be via O-GlcNAcylation of a transcription factor, NF-κB. Nuclear 
translocation of NF-κB was regulated by O-GlcNAc modification, which in turn 
induced expression of matrix metalloprotease enzymes [76].

Besides NF-κB, the glycoproteomics has identified several novel CCA-associated 
OGPs [77]. Among these, heterogeneous nuclear ribonucleoprotein-K (hnRNP-K) 
was abundantly detected in highly metastatic CCA cell lines [77]. O-GlcNAcylation 
was found to be an important modification to mediate nuclear translocation of 
hnRNP-K, which subsequently activated expression of several downstream genes, 
including cyclin D1, X-linked inhibitor of apoptosis protein 1 (XIAP1), epithelial to 
mesenchymal transition (EMT) markers, matrix metalloproteinase 2 (MMP2), and 
MMP7. Suppression of hnRNP-K negatively affected proliferation, migration, and 
invasion of CCA cell lines. In addition, immunohistochemistry of tumor tissues 
from CCA patients revealed that the nuclear localization of hnRNP-K could predict 
metastatic status and poor patient survival [77].
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A recent study in CCA cell lines revealed that O-GlcNAcylation could indirectly 
mediate the N-glycan pattern of the membrane-bound glycoproteins via 
α1-mannosidase 1A (MAN1A1), an enzyme that reduces the high-mannose type 
N-glycan [49]. Suppression of O-GlcNAcylation using si-OGT could reduce the 
level of high-mannose type N-glycan and consequently repressed metastatic ability 
of CCA cells. Decreased O-GlcNAcylation was concomitant with the repression of 
PI3K/Akt and MAPK/Erk signaling pathways, which enhanced the stability of fork-
head box O3 (FOXO3), the transcriptional factor regulating MAN1A1 expression 
[49]. Masking the high-mannose type N-glycan on the CCA cell surface using 
Pisum sativum agglutinin (PSA), a mannose specific lectin, reduced the metastatic 
ability of CCA cells. The correlation between O-GlcNAcylation, high-mannose 
type N-glycan, and CCA metastasis was also demonstrated in tumor tissues from 
CCA patients [49].

Aside from the enzymes OGT and OGA, the concentration of nutrient-sensing 
UDP-GlcNAc can also modulate intracellular O-GlcNAcylation. UDP-GlcNAc is 
synthesized via the hexosamine biosynthesis pathway in which glutamine-fructose 
amidotransferase (GFAT) is a rate-limiting enzyme. Recent studies have indicated 
an association between diabetes mellitus and poor prognosis of CCA patients. In 
vitro experiments have demonstrated that high-glucose media can promote the 
aggressiveness of CCA cells via mediating O-GlcNAcylation [78, 79]. Cultured 
cells in high-glucose conditions could enhance the expression of OGT and GFAT, 
resulting in an increase of O-GlcNAcylation and metastatic abilities of CCA cell 
lines. Vimentin was found to be highly stabilized under high-glucose conditions. 
The GFAT inhibitor, 6-Diazo-5-oxo-L-norleucine (DON), significantly suppressed 
O-GlcNAcylation, migration, and vimentin stability of CCA cells [79]. The associa-
tion between O-GlcNAcylation and the expression level of GFAT in human CCA 
tissues were also confirmed using immunohistochemistry [79].

These findings strongly suggest that a high level of O-GlcNAcylation supports 
progressive phenotypes of CCA cells in several ways (Fig. 25.4). CCA-associated 
OGPs may be of clinical use, either as a prognostic marker or a potential target for 
CCA treatment. Before use in a clinical setting, however, further preclinical and 
clinical studies are needed to confirm the true indicators and utility of these CCA- 
associated OGPs for prognosis and treatment of CCA.

 Fucosylation

Fucosylation is a glycosylation step catalyzed by 1 of 13 fucosyltransferases (FUTs) 
that use GDP-fucose as a donor substrate [81]. FUT adds a fucose to oligosaccha-
rides with through various linkages, providing products with various glycan struc-
tures (Fig. 25.5). FUTs can be classified into four subfamilies based on the glycosidic 
linkage formed. The first group, FUT1 and FUT2, transfers a fucose residue to the 
terminal galactose to form α1,2-linkage, yielding H blood group antigen and related 
structures. The second group, α1,3/4-FUTs, FUT3, FUT4, FUT5, FUT6, FUT7, and 
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FUT9, is involved in the synthesis of Lewis blood group antigens. The third group 
is comprised of FUT8, an α1,6-FUT which directly adds a fucose to the innermost 
GlcNAc of the N-linked oligosaccharides on glycoproteins to produce core fucosyl-
ation. Finally, protein O-fucosyltransferase 1 (POFUT1) and POFUT2 transfer a 
fucose residue via an α-linkage to Ser or Thr to produce O-fucosylation.

Fucose is added to an oligosaccharide chain in the final step in the late cisternae 
of the Golgi apparatus to increase the complexity of glycan structures. This specific 
glycan modification can confer unique function and properties to oligosaccharides 
and is often regulated during ontogeny and cellular differentiation [1]. Abnormal 
fucosylation has been observed in various disease states including cancer. Monitoring 
fucosylation changes across the spectrum of carcinogenesis can be useful for early 
cancer detection and management [57]. Exploring fucosylation in CCA develop-
ment and progression, therefore, may offer an opportunity for early diagnosis and 
targeted treatment.

Glc

Glc

G6P

F6P

PFK

HKII

GFAT 
GIn6P

F1,6BP
UDP-GIcNAc

PEP

PyruvateeTCA
cycle

Lactate

P

UDP

OGT

OGA
OGP

G

G

G

P

Erk

?

G

G

G

G

G

P

P P

Akt

?

FOXO3

FOXO3

FOXO3

Degraded
Activated

hnRNP-KNF-kB

hnRNP-KNF-kB

CCA metastasis
Vimentin

Increased vimentin
stability

High mannose type
N-glycans

MAN1A1

Target genes e.g. EMT markers,
MMPs, cyclin D1, XIAP

Fig. 25.4 Molecular mechanisms of O-GlcNAcylation promote the progression of CCA cells. In 
high-glucose conditions, CCA cells might increase glucose uptake and the hexosamine biosynthe-
sis pathway (HBP) via upregulating glutamine-fructose amidotransferase (GFAT), resulting in an 
increase of UDP-GlcNAc. Together with increased UDP-GlcNAc, OGT is increased while OGA 
is decreased, leading to the elevation of OGP in CCA cells. Increasing O-GlcNAcylation in CCA 
cells promotes CCA metastasis via many mechanisms, including (i) induction of nuclear translo-
cation of NF-κB and hnRNP-K, (ii) activation of Akt and Erk signaling pathways, (iii) modulation 
of vimentin and FOXO3 stability, and (iv) induction of high-mannose type N-glycan at the 
cell surface
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 Blood Group Antigens

Fucosylation is involved in the biosynthesis of blood group-related antigens, such as 
A, B, H, Lea, Leb, Lex, Ley, sLea, and sLex. Several fucosylated products are potential 
biomarkers for CCA. Immunohistochemistry of these blood group-related antigens 
has been reported in 75 cases of CCA tissues (31 peripheral type and 44 hilar type 
CCA) [80]. Expression of A, B, and H were detected in the large bile ducts, whereas 
Lea, Leb, and Ley were variably observed in small and large bile ducts of nonneo-
plastic tissues. In CCA, expression of the blood group A, Lea, Leb, Ley, and sLea 
antigens were differentially expressed according to the histological type of cancer, 
suggesting that the distribution of blood group-related antigens may relate to the 
differentiation of CCA.

 Terminal α1, 2-Fucose Glycans

Clinical relevance of terminal α1,2-fucose glycan (TFG) in CCA was reported by 
Indramanee et al. (2019) [82]. Lectin histochemistry of human CCA tissues using 
Ulex europaeus agglutinin-I (UEA-I) that recognizes TFG was performed in 79 
paraffin-embedded tumors from CCA patients [8]. Neither hepatocytes nor normal 
bile duct epithelia expressed TFG; in contrast, 47% of CCA specimens showed high 
expression of TFG (Fig. 25.3), which was correlated with shorter patient survival, 
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suggesting aberrant terminal fucosylation in CCA and a possible prognostic indica-
tor. The involvement of TFG in carcinogenesis and progression of CCA has been 
demonstrated in the liver fluke-associated CCA hamster model. UEA-I lectin histo-
chemistry of hamster liver sections demonstrated that TFG was absent in normal 
bile duct epithelia but elevated in hyperproliferative bile ducts and gradually 
increased during CCA development. TFG was expressed in CCA but was negative 
in all HCC tissues tested, suggesting TFG as a potential biomarker for differentiat-
ing CCA from HCC.

Significance of TFG on the efficiency of EGF-EGFR binding and/or activation 
has also been examined [82]. Suppression of TFG expression using siFUT1 or neu-
tralizing the surface TFG with UEA-I in CCA cell lines effectively inhibited migra-
tion, invasion, and adhesion abilities in vitro. The observation was concurrent with 
the reduction of Akt/Erk signaling and EMT. The effect was further shown to be 
driven by the decreasing of EGF-EGFR activation that consequently reduced the 
Akt/Erk cascades.

 Carbohydrate Antigen-S27

A novel carbohydrate antigen, CA-S27, recognized by the S27 monoclonal anti-
body (mAb) [83, 84], was proven to be a Lea-associated glycan using glycoconju-
gate microarray [84]. The clinical relevance of CA-S27 was reported by Silsirivanit 
et al. (2013) [84]. Immunohistochemistry of 45 human CCA tissues revealed a high 
reactivity of CA-S27  in almost all CCA tissues but not hepatocytes (Fig.  25.3). 
Additionally, a quantitative determination of serum CA-S27 by sandwich ELISA 
was developed using the CA-S27 monoclonal antibody and soybean agglutinin. 
Using this method, serum CA-S27 of CCA patients (n = 96) was found to be signifi-
cantly higher than those of the control groups (patients with gastrointestinal can-
cers, HCC, benign hepatobiliary diseases, and healthy subjects [n  =  190]) and 
distinguished CCA patients from controls with 87% sensitivity and 59% specificity. 
Serum CA-S27 was secreted from CCA tissues, and serum CA-S27 level declined 
dramatically after tumor removal. Moreover, a high serum CA-S27 level was asso-
ciated with shorter survival of CCA patients. MUC5AC mucin, a secretory mucin- 
related to poor prognosis in CCA [36], was shown to be the major glycoprotein 
possessed by CA-S27 in serum [84].

The significance of CA-S27 in promoting CCA progression was demonstrated in 
CCA cell lines [84]. FUT3, a key enzyme for Le synthesis was highly expressed in 
CCA cells with high CA-S27expression. Silencing of FUT3 expression by siFUT3 
or neutralizing surface CA-S27 by CA-S27 mAb effectively decreased invasion, 
migration, adhesion, and proliferation abilities of CCA cells.

Collectively, these data suggest important roles and significance of CA-S27 in 
CCA. In particular, serum CA-S27 might be a serum marker for diagnosis and pro-
gression of CCA, a prognostic factor for clinical outcomes of CCA, and a potential 
therapeutic target for metastatic CCA.
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 Carbohydrate Antigen-S121

Carbohydrate antigen-S121 (CA-S121 or CCA-CA) is an unidentified sugar 
structure recognized by a monoclonal antibody S121 [83]. The glycan epitope 
was found on MUC5AC mucin and strongly detected in hyperplastic/dysplastic 
and neoplastic bile duct epithelia but not in normal bile ducts or hepatocytes 
(Fig. 25.3). Serum CA-S121 assessment by lectin sandwich ELISA was able to 
distinguish CCA patients from several controls, e.g., healthy individuals, 
Opisthorchis viverrini- infected individuals, patients with benign hepatobiliary 
diseases, and patients with various gastrointestinal cancers or HCC with 87.63% 
sensitivity and 89.58% specificity. CCA patients with high serum CA-S121 had a 
shorter survival than those with low serum CA-S121. Moreover, the combination 
of serum CA-S121 with serum alkaline phosphatase resulted in sensitivity, speci-
ficity, positive predictive value, and negative predictive value all >95% [85]. 
Using the combination of these two markers may be useful for screening people 
who are risk of CCA.

sLea or CA19–9

sLea or CA19–9 has been used clinically since 1997 for diagnosis and surveillance 
of patients with gastrointestinal cancers, especially CCA, pancreatic adenocarci-
noma, and gallbladder adenocarcinoma [86, 87]. Although CA19–9 is not a specific 
biomarker for CCA, it is the most frequent and best studied marker for identifying 
CCA in clinical practice. Recently, use of CA19–9 has also been recommended as 
part of CCA surveillance in primary sclerosing cholangitis (PSC), as discussed in 
greater detail elsewhere in this book (Chap. 20, Ali et al.) [88–92].

The biosynthesis of CA19–9 is based on the enzymatic activity of FUT3 irre-
spective of FUT2 activity [93, 94]. In contrast, inactivity of FUT2 increases levels 
of serum CA19–9 [95]. Based on these observations, Wannhoff A et al. (2013) sug-
gested to use a new optimal cutoff value for CA19–9 based on individual FUT2/3 
genotype [96]. The approach could improve the power of CA19–9 in differentiating 
PSC from CCA with 90% sensitivity and a 43% reduction of false-positive results. 
Serum CA19–9 and FUT genotyping is clinically beneficial and may enhance the 
early detection of CCA in clinical practice.

The clinical relevance of sLea in CCA has been demonstrated in various studies. 
For example, Juntavee et al. (2005) found that sLea was highly expressed in tissue 
of the mass-forming type of CCA and correlated well with vascular invasion and 
unfavorable patient outcomes [51]. The significance of sLea in vascular invasion 
was signified by the fact that CCA cells that possessed high sLea expression adhered 
and transmigrated to IL-1β-activated endothelial cells of the human umbilical vein 
more than CCA cells without sLea expression. Moreover, these abilities were sig-
nificantly diminished in the presence of neutralizing antibodies specific to either 
sLea or E-selectin.
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 Fucosylated Fetuin-A and Kininogen

The aberrant N-linked glycans observed in serum can be used as a diagnostic or 
prognostic marker for specific cancers, including CCA. Betesh et al. used a gly-
comic approach to analyze and compare N-linked glycans in sera from CCA patients 
and controls. Increased levels of serum alpha-1,6 linked core and alpha 1,3 linked 
outer arm fucosylation in CCA patients were noted [97]. Furthermore, the fucosyl-
ated proteome of sera from CCA patients identified numerous fucosylated glyco-
proteins, e.g., alpha-2-macroglobulin, kininogen, hemopexin, fetuin-A, and 
ceruloplasmin. The relative proportion of fucosylation of these proteins was further 
determined using lectin fluorophore-linked immunosorbent assay (lectin-FLISA). 
The technique detects the amount of fucosylation present on an equal number of 
captured molecules independently of the total amount of protein tested. Of these, 
fucosylated fetuin-A and kininogen were significantly elevated in sera from CCA 
patients compared with those from PSC. Fucosylated fetuin-A could differentiate 
PSC from CCA with 62% sensitivity and 90% specificity, while fucosylated kinino-
gen could differentiate CCA from the control group with similar diagnostic perfor-
mance. In addition, these markers, either used alone or in combination, provide 
better detection of CCA than CA-19-9, indicating the potential of these two glyco-
proteins as diagnostic markers for CCA [97].

 Alpha-L-Fucosidase

Alpha-L-fucosidase (AFU), a lysosomal enzyme, hydrolyzes the cleavage of fucose 
𝛼-1,2, 𝛼-1,3, 𝛼-1,4, and 𝛼-1,6 linkages in the glycosylation chains to maintain homeo-
stasis of fucose metabolism. It has been used as a tumor marker for various cancers, 
e.g., HCC and colorectal cancer [98, 99]. A high level of serum AFU has been shown 
to be associated with poor outcomes in HCC [100], though the reversed outcome was 
observed in breast cancer [101]. For CCA, AFU activity in serum was determined in 
148 intrahepatic CCA cases by an automated analyzer. Based on ROC analysis and 
a cutoff of AFU <20.85 U/L, it was found that AFU level was an independent prog-
nostic factor in patients with intrahepatic CCA [102]; patients with a high serum 
AFU level exhibited better outcomes. Treating CCA cells with AFU diminished the 
invasion capacity of CCA cells by suppression of MMP-2 and MMP-9 expression. 
Hence, serum AFU has been proposed to be a prognostic indicator for CCA.

 Sialylation

Sialylation, the addition of sialic acid to subterminal sugar residues on oligosac-
charides, is an important peripheral glycosylation process for maturation of glyco-
proteins and glycolipids (Fig. 25.6). The patterns of sialylation in cells are regulated 
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by levels of nucleotide sugar donor, CMP-sialic acid, and the expressions of sialyl-
transferases (STs) and sialidases. STs are a family of enzymes responsible for 
transferring a sialic acid from a nucleotide sugar donor (CMP-sialic acid) to a gly-
coconjugate acceptor. Desialylation, the process of removing terminal sialic acid 
from glycoconjugates, is driven by sialidases or neuraminidases (NEUs). Altered 
expression of STs and/or NEUs, resulting in increases in uncommon sialylated 
glycans, has been reported in many cancer types [103]. These sialylated glycans 
were found to promote tumor progression and therapeutic resistance in several 
cancers.

Accumulating data over the past few decades have demonstrated alterations of 
sialylation in CCA. Serum sialic acid was found to be increased in CCA patients 
and capable of differentiating CCA patients from those with benign biliary dis-
eases and healthy controls [104]. The elevation of serum sialic acid in CCA patients 
may be due to increases in core glycans/glycoproteins such as MU5AC and sLea 
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[34]. Moreover, sialic acid residues on sLea or sLex (section Fucosylation) are 
important for the binding of these molecules with E-selectin during extravasation 
[105, 106].

Lectin histochemistry of CCA tissues using Maackia amurensis lectin-II 
(MAL-II) and Sambucus nigra agglutinin (SNA) has revealed that alpha-2,3- 
sialylated glycan (MAL-II-binding glycan, MAL-SG) and alpha-2,6-sialylated gly-
can (SNA-binding glycan, SNA-SG) were overexpressed in CCA tissues compared 
to normal bile ducts (Fig. 25.3) [52]. A high level of MAL-SG in CCA tissues was 
associated with shorter survival of CCA patients, suggesting the potential of 
MAL-SG as a prognostic indicator for CCA. In addition, in vitro drug sensitivity 
assays have shown that suppression of sialylation by a sialyltransferase inhibitor 
significantly enhanced the sensitivity of CCA cell lines to 5-fluorouracil (5-FU), a 
common chemotherapeutic drug used for CCA treatment [52]. In addition to 5-FU, 
the involvement of sialylation in drug resistance to cisplatin and paclitaxel has also 
been reported (in other cancers) [107, 108]; a similar effect may be expected for 
CCA, in which cisplatin and paclitaxel are also drugs of choice.

 Glycosphingolipids

GSLs are an important membrane component which play important roles in form-
ing functional membranous microdomains. Synthesis of GSLs is separated into two 
phases: (1) CER synthesis and (2) glycosylation (Fig. 25.2). Hydrophobic interac-
tions between the ceramide part of GSLs and other membrane components, such as 
cholesterol, proteins, and sphingomyelin, are important for determining the func-
tions of microdomains [109–113]. The heterogeneity of GSLs is attributable to 
either glycan or ceramide compositions [114, 115]. The glycan part of a GSL can be 
monosaccharide, such as glucose and galactose, or oligosaccharide such as lactose, 
forming glucosyl-ceramide (GlcCer), galactosylceramide (GalCer), and lactosylce-
ramide (LacCer), respectively. The ceramide part of a GSL can be composed of 
either hydroxylated or non-hydroxylated forms of fatty acids with C16 to C24. 
Aberrant expression of GSLs has been reported in many cancers, including breast, 
endometrial, and lung, and may be due to dysregulated expression of ceramide syn-
thases (CERSs), GTs, and fatty acid-2-hydroxylases (FA2H) [116–122]. Indeed, 
altered expression of these enzymes has been associated with tumor growth and 
metastasis [116, 117, 120, 121, 123].

There is limited information regarding GSL expression in CCA. A recent study 
using LC-MS/MS analysis revealed that GSLs were elevated in CCA tissues com-
pared with the adjacent normal liver [53]. High level of hydroxylated fatty- 
containing GSL was associated with shorter survival of CCA patients, suggesting 
the role of fatty acid hydroxylation in tumor progression of CCA [53]. These find-
ings suggest increased activity of GSL-associated enzymes, e.g., ceramide synthase 
and fatty acid hydroxylase, in CCA as well as potential prognostic implications. 
Further study, however, is needed in this regard.
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 Conclusions and Perspectives

Glycoconjugates are one of the major components in cells that modulate key bio-
logical and physiological processes to maintain cellular homeostasis. Aberrant gly-
cosylation of cell surface molecules alters cellular functions which can contribute to 
human diseases, including cancer. With the advanced technology in glycobiology 
research, several glycan structures and functions related to diseases have been 
revealed. The association of abnormal glycosylation patterns and aggressive pheno-
types, e.g., tumor growth and metastasis, have been reported in CCA. Moreover, 
several CCA-associated glycans have been validated and are applicable for diagno-
sis and prognostic prediction. Directly targeting the synthesis of these glycans for 
cancer treatment, however, remains to be validated and is an area of ongoing inves-
tigation. A number of glycosylation inhibitors have been developed and studied for 
their antitumor activities, many of which appear to effectively suppress tumor 
growth and metastasis and enhance chemosensitivity of cancer cells. A combination 
of glycosylation inhibitors with other therapeutic agents or therapy may be a prom-
ising strategy to improve the treatment of CCA.

Further research into the molecular basis of glycosylation in CCA is expected to 
enhance understanding of cell-cell interactions, extracellular communications, and 
cancer immunology and which may reveal new targets for CCA treatment. 
Furthermore, the integration of large data analysis of glycomics/glycoproteomics 
and several other “-omics,” e.g., genomics, transcriptomics, proteomics as well as 
metabolomics, in CCA cell lines/tissues from patients will provide an avenue for 
greater impact on developing novel approaches for the screening, diagnosis, prog-
nosis, and targeted treatment for this highly lethal malignancy.
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PSC primary sclerosing cholangitis
RIPK1 receptor-interacting protein kinase 1
TGF-β transforming growth factor
TLR4 Toll-like receptor 4
VEGF vascular endothelial growth factor

 Introduction

Preclinical and clinical research on cholangiocarcinoma (CCA) has traditionally 
lagged behind relative to a variety of other tumors. This may be explained in part by 
the fact that CCA has been regarded as a rare tumor, especially in Western countries, 
and until recently has attracted only marginal attention from researchers and indus-
try. In the last 20 years, however, the incidence of CCA has steadily risen world-
wide, and it represents the second most common hepatic tumor after hepatocellular 
carcinoma. Moreover, a recent series of basic science studies, supported by advances 
in technology, have begun to shed light in the pathophysiology of CCA, which is 
characterized by extensive heterogeneity of the tumor, intricate genomic and epi-
genetic alterations, and a complex microenvironment and immunologic landscape.

The application of next-generation sequencing in CCA has unveiled a number of 
genetic alterations that are consistently found in intrahepatic and extrahepatic 
CCA. In particular, mutations in the isocitrate dehydrogenase (IDH1/IDH2), fibro-
blast growth factor receptor 2 (FGFR2) fusion, and mutations in cell proliferation 
genes (KRAS, BRAF, and HER family) offer the possibility to explore the use of 
different small molecules to selectively block intracellular pathways involved in 
CCA.  Current use of such targeted therapies and their possible development in 
future years has been extensively discussed in Chap. 21.

Here, we specifically address the recent advances in angiogenesis, epigenetic 
modifications, and alterations of the Wnt/β-catenin pathway in the pathogenesis of 
CCA, as informed in large part by model systems, with a special attention to molec-
ular pathways that may be amenable of clinical implementation in the diagnosis, 
prognostic stratification, or treatment of patients.

 Angiogenesis and Lymphangiogenesis

The ability to form new blood and lymphatic vessels from preexisting vasculature is 
a fundamental feature of many solid tumors. Neovascularization is indeed para-
mount to provide proper oxygenation and nutrient supply for tumor growth and 
undoubtedly influence the development of distant metastases. CCA is a highly des-
moplastic tumor and displays a limited number of newly developed blood vessels, 
while tumor-associated lymphangiogenesis is pronounced. Early lymph node 
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metastases are indeed frequent at presentation (though in some cases may be diffi-
cult to accurate detect) and deeply influence the prognosis of the disease, whereas 
distant metastases occur in later phases [1]. Nonetheless, CCA tissues have been 
shown to express a number to growth factors that are involved in sustaining de novo 
formation of blood and lymphatic vessels and in orchestrating complex interactions 
with the tumor microenvironment.

 Angiogenesis in CCA

The expression of vascular endothelial growth factor (VEGF), the main molecule 
involved in neoangiogenesis, has been consistently shown in CCA. The VEGF fam-
ily comprises different isoforms (VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, 
and placenta growth factor) which are secreted by a number of cells and interact 
with corresponding receptors (VEGF-R). Among the members of the family, 
VEGF-A binds to VEGF-R1 and VEGF-R2 and mainly mediates the formation and 
permeability of new blood vessels. VEGF-C and VEGF-D, in turn, bind to VEGF-R3 
and are involved in lymphangiogenesis (Fig. 26.1) [2].

VEGF-R3VEGF-R1/2

VEGF-A VEGF-C/D

ANGIOGENESIS LYMPHANGIOGENESIS

Histamine

TGF-β1

Secretin miR-125b

LOXL2 GATA6

S100A8 TLR4 

miR-320 NRP-1 

Endothelin

CCA
cells

CAF

Bevacizumab
(VEGF-A)

Ramucirumab
(VEGF-R2)

HIF-1α

NGF-β

HMGB1

RIPK1

Hypoxia

PDGF-D

Sorafenib
Vandetanib
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(TK inhibitors)

Tyrosine
kinases
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kinases

Fig. 26.1 Activation of the VEGF/VEGF-R signaling pathways in the pathogenesis of 
CCA. Molecular pathways preferentially implicated in the activation or repression of VEGF-A are 
depicted in the left side of the panel. Pathways preferentially involved in the regulation of VEGF-
C/D are represented in the right side of the panel. Small molecules that have been evaluated in the 
treatment of CCA are depicted in the middle of the panel (pathways blocked by each molecule in 
brackets)
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Previous immunohistochemical studies showed that VEGF expression is present 
in both intra- and extrahepatic CCA (53.8% and 59.2%, respectively), with a positive 
correlation with intrahepatic metastases [3]. In extrahepatic CCA, increased immu-
noreactivity against VEGF was correlated with a significantly higher overall mortal-
ity and a trend toward lymph node metastasis and peritoneal recurrence [4]. 
Expression of VEGF and its receptors (VEGF-R1 and VEGF-R2) has been confirmed 
in resected specimens of CCA, in which a coexpression of TGF-β1 and its receptors 
were demonstrated [5]. A more recent systematic review demonstrated that, based on 
data available, expression of VEGF-A was significantly higher in intrahepatic CCA 
compared to extrahepatic CCA [6]. These data are partially in contrast with a previ-
ous study showing that VEGF-A expression was more frequent in distal CCA com-
pared to perihilar CCA and correlated with increased vascular density [7].

The secretion of VEGF is triggered in many cells by hypoxia, which stimulates 
the induction of a series of hypoxia-inducible factors. In addition to stimulating new 
vessel formation, the role of VEGF secretion as a paracrine factor modulating chol-
angiocytes pathophysiology, especially in terms of proliferation, has been evalu-
ated. In vitro studies have demonstrated that proliferating cholangiocytes express 
VEGF-A, VEGF-C, VEGF-R2, and VEGF-R3 and that blocking this pathway 
decreases biliary cell proliferation [8]. In CCA cell lines, transcription of VEGF is 
induced by transforming growth factor-β1 (TGF-β1), which has also been found 
overexpressed in CCA tissue [5]. Multiple studies have evaluated a number of path-
ways that regulate VEGF secretion. Such studies offer a deeper understanding of the 
molecular mechanisms behind VEGF secretion in cholangiocytes and represent the 
basis to devise possible therapeutic strategies to be tested in clinical trials. The 
effect of VEGF on cholangiocyte proliferation is modulated, at least in part, by the 
activation of the H3 histamine receptor (HRH3). Both in vitro and in vivo, the acti-
vation of HRH3 in biliary cells decreases the expression of VEGF-A and VEGF-C 
and inhibits CCA growth in a protein kinase C-dependent manner [9]. Long-term 
administration of histamine, however, has been showed to increase CCA prolifera-
tion and VEGF secretion; such effects could be reversed by blocking histidine 
decarboxylase, the enzyme responsible for histamine synthesis [10].

Additional regulation of the VEGF pathway is mediated by secretin. After biliary 
damage, cholangiocytes produce secretin that, in a paracrine fashion, results in 
upregulation of VEGF via modulation of microRNA 125b and let7a levels [11]. 
Endothelin-1, which is overexpressed in CCA tissue, has also been showed to 
reduce cholangiocyte proliferation as well as VEGF and VEGF-R expression both 
in vitro and in vivo [12]. The list of pathways modulating the VEGF axis has grown 
even more in recent years. Peng et  al. demonstrated in  vitro that the scavenger 
receptor cysteine-rich domain of lysyl oxidase-like 2 (LOXL2) physically interacts 
with GATA-binding protein 6 (GATA6), which in turn stimulates VEGF synthesis 
and secretion. In human CCA samples, expression of LOXL2 and GATA6 was asso-
ciated with poor overall survival and disease-free survival [13]. S100 calcium- 
binding protein A8 (S100A8) regulates in  vitro the expression of VEGF via 
activation of the Toll-like receptor 4 (TLR4)/NF-κB pathway [14]. Finally, micro-
RNA 320 has been recently shown to downregulate the expression of neuropilin- 1 
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(NRP-1), a multifunctional receptor involved in tumor development, growth, and 
metastasis, which in turn stimulates the expression of VEGF [15].

Collectively, these data strongly indicate that modulation of angiogenesis may be 
of therapeutic interest in the treatment of CCA. It seems plausible that, in the clini-
cal context, the regulation of VEGF expression may be under the control of many 
different pathways and that mutual interactions between such pathways need to be 
taken into account when devising possible new treatments.

 Lymphangiogenesis in CCA

The development of a rich intra- and peri-tumoral lymphatic vasculature with subse-
quent early lymph node metastases is a characteristic feature of CCA. In intrahepatic 
CCA patients, the degree of tumor-associated lymphangiogenesis evaluated by 
immunohistochemistry for podoplanin (a specific lymphatic vessel marker) corre-
lated with increased lymphatic metastases, recurrence of the tumor after surgery, and 
reduced overall survival (OS) [16]. Lymphatic vessel density in tumor specimens has 
been shown to correlate to lymph node metastasis and to be an independent negative 
prognostic factor also in perihilar CCA [17]. In fact, tumor spread to regional lymph 
nodes has been consistently demonstrated to strongly impact the prognosis of CCA 
patients, with median survival as low as 15 months for lymph node-positive com-
pared to 37 months in lymph node-negative patients [18, 19]. Aishima et al. showed 
that in intrahepatic CCA patients, the lymphatic vessel density is lower in the tumor 
center and much more pronounced at the periphery of the tumor, especially in poorly 
differentiated CCA. Interestingly, while no correlation was found between prolifera-
tion of lymphatic vessels and development of metastasis, the expression of VEGF-C 
by tumor cells was associated with lymph node metastasis [20]. High expression of 
VEGF-C in CCA has been confirmed by various other studies, with positive percent-
ages comprised between 40% and 75% of the patients [21–23].

The generation of a prominent lymphatic vasculature may be stimulated in CCA 
by the overexpression of hypoxia-inducible factor (HIF)-1α, in a similar fashion to 
a mechanism described for multiple others tumors. HIF-1α is induced in response to 
cancer-related intratumoral hypoxia and regulates the transcription of many genes 
involved in cell survival and invasion, including the expression of VEGFs [24]. 
HIF-1α expression has been shown to be prominent in a majority of CCA tissues 
(66%), again with a positive correlation with lymph node metastasis [25]. Moreover, 
in an in vitro model, hypoxia induces the expression of a number of genes involved 
in tumor progression and chemoresistance in CCA cells [26]. The regulation of 
lymphangiogenesis in CCA may also involve a complex interplay between CCA 
cells and the tumor microenvironment (see Chap. 24 for greater detail). In fact, 
CCA cells secrete platelet-derived growth factor (PDGF)-D, which is functional to 
recruit cancer-associated fibroblast (CAF) in the tumor stroma [27]. The binding of 
PDGF-D to its cognate receptor on CAF induces the release of VEGF-A and 
VEGF-C, which in turn mediates lymphatic vasculature expansion and permeability 
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with invasion of CCA cells [28]. VEGF-C expression in CCA seems also under the 
control of different growth and transcription factors. In vitro, nerve growth factor-β 
(NGF-β) overexpression induced the upregulation of VEGF-C, which stimulated 
the proliferation and migration of lymphatic endothelial cells [29]. In addition, the 
high-mobility group box 1 (HMGB1), a proinflammatory cytokine, has been shown 
to be involved in VEGF-C secretion in intrahepatic CCA cells [30]. More recently, 
Li et al. demonstrated that receptor-interacting protein kinase 1 (RIPK1), a newly 
described mediator in proinflammatory and apoptotic pathways, is upregulated in 
CCA tissue compared to nonneoplastic control. In vitro, silencing of RIPK1 reduced 
protein expression of VEGF-C, while, in vivo, it inhibited lymphangiogenesis in a 
orthotopic CCA model in null mice [31].

Given the strong negative impact on prognosis, the molecular mechanisms regu-
lating tumor-associated lymphangiogenesis appear therefore as possible candidates 
for therapeutic targeting in CCA.  It remains of paramount importance to clearly 
identify the interactions between CCA cells and the tumor microenvironment, 
which are responsible for vasculature changes, in order to devise specific and effec-
tive treatments.

 Angiogenesis Inhibition in Preclinical and Clinical Trials

A possible role of anti-antiangiogenic agents in the treatment of CCA has been 
investigated in a number of preclinical and clinical trials. Bevacizumab, a recombi-
nant monoclonal antibody that inhibits VEGF-A and is already available for clinical 
use, was shown to reduce the growth of CCA in an in vivo xenograft mouse model. 
Treatment with bevacizumab, however, also induced the expression of HIF-1α and 
its responsive genes such as VEGF and carbonic anhydrases, creating the bases for 
a possible drug resistance. Intriguingly, the addition of acetazolamide, a carbonic 
anhydrase inhibitor, improved the antiproliferative effect of the treatment [32]. 
Bevacizumab has also been tested in multiple phase 2 clinical trials. Zhu et  al. 
reported favorable tolerability of the administration of bevacizumab in combination 
with gemcitabine and oxaliplatin (GEMOX) in 35 patients with advanced biliary 
tract cancers, including 25 patients with CCA.  In the CCA subgroup, partial 
response (PR) was achieved in 41% of patients, with a median progression-free 
survival (PFS) and OS of 7.6 and 14.2 months, respectively [33]. The combination 
of bevacizumab and erlotinib, an inhibitor of endothelial growth factor receptor 
(EGFR), has also shown promising results in a phase 2 trial of 53 patients with 
advanced biliary tract cancer, including 43 patients with intra- or extrahepatic 
CCA. In this study, 12% of patients achieved PR, and 51% had stable disease with-
out severe adverse events [34]. After failure of first-line treatment (gemcitabine plus 
oxaliplatin-based), the administration of folinic acid, fluorouracil, and irinotecan 
(FOLFIRI) plus bevacizumab in metastatic intrahepatic CCA patients showed a 
response rate of 38.4% and a disease control rate of 84.5% [35]. More recently, Iyer 
et al. reported the results of the combination of bevacizumab and gemcitabine plus 
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capecitabine in 50 patients with gallbladder cancer (22%), intrahepatic CCA (58%), 
and extrahepatic CCA (20%). Median PFS of 8.1 months (95% confidence interval, 
5.3–9.9) and a median OS of 10.2 months (95% confidence interval, 7.5–13.7) were 
reported for the combination therapy [36].

Preliminary results have also been reported for ramucirumab, a fully human 
monoclonal antibody blocking VEGF-R2. Patients with advanced biliary tract can-
cer and a prior treatment with gemcitabine-based regimens were treated with ramu-
cirumab (8  mg/kg every 2  weeks) until progression. Median PFS and OS of 
2.73 months and 6.31 months, respectively, were reported with six patients present-
ing a prolonged PFS of more than 24 months [37]. Ramucirumab has also been 
investigated in combination with pembrolizumab, an immune checkpoint inhibitor 
blocking the PD-1 receptor, in patients with metastatic CCA with progression after 
first-line treatment. However, the results of the study were suboptimal, with a 
median PFS and OS of 1.6 months and 6.4 months, respectively [38].

Much research has also been conducted evaluating the efficacy of drugs inhibit-
ing tyrosine kinases, which are involved in the activation of a number of intracel-
lular pathways controlled by growth factor receptors. Sorafenib is an orally 
available tyrosine kinase inhibitor acting on VEGF-R, PDGF receptor, and RAF 
kinases, currently employed in the treatment of hepatocellular carcinoma. A pre-
clinical study demonstrated a favorable effect of sorafenib on CCA. In vivo, oral 
administration of sorafenib significantly reduced the growth of a subcutaneous 
xenograft CCA model and prolonged the survival of mice subjected to an intraperi-
toneal CCA dissemination model [39]. However, results of clinical trials were infe-
rior to expectations. One phase 2 study was terminated because of failure to meet 
the meet the requirement of a minimum of one confirmed PR [40]. Another study 
showed a very low PFS (2.3 months) and median OS (4.4 months) in patients with 
advanced biliary tract tumors treated with sorafenib as a single agent [41]. Also 
combination trials have been disappointing and showed no significant improve-
ment with the addition of sorafenib compared to standard chemotherapy alone 
[42, 43].

An alternative possibility has been offered by vandetanib, a tyrosine kinase 
inhibitor of VEGF-R and EGFR. In a preclinical study, vandetanib incubations had 
an antiproliferative effect on TKKK cells, a human CCA cell line derived from 
Japanese patients, and reduced the growth of a TKKK subcutaneous xenograft 
model. Interestingly, the effect of vandetanib was present only in cells with high 
VEGF and EGFR expression and lack of KRAS mutations, suggesting that CCA 
patients with similar molecular characteristics may benefit the most from the treat-
ment [44]. Vandetanib has been investigated also in a phase 2 randomized, multi-
center trial comparing its efficacy as monotherapy or in combination with 
gemcitabine in patients with advanced biliary tract cancers. Unfortunately, despite 
no major side effects being reported, PFS did not differ significantly between groups 
(105 days for vandetanib alone vs. 114 days for vandetanib plus gemcitabine vs. 
148 days for gemcitabine plus placebo) [45].

Axitinib, an inhibitor of VEGF-R1/2/3, also showed promising results in vivo. 
Takahashi et  al. showed that oral administration of axitinib inhibited the 
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subcutaneous growth of two xenograft models based on the injection of NCC-BD1 
and TKKK cells lines [46]. Axitinib has been investigated in only five patients with 
advanced biliary tract cancer and with progressive disease under a gemcitabine-
based regimen. Partial response was achieved in one patient; OS and PFS ranged 
from 2.0 to 19.9 months and 1.5 to 7.4 months, respectively [47].

Despite encouraging in the preclinical setting, the results of clinical trials of 
selective inhibitors of lymphangiogenesis or more broad tyrosine kinase inhibitors 
do not currently justify their widespread use in clinical practice. The very limited 
efficacy of such molecules in the human setting may be due to the extreme hetero-
geneity of CCA patients and tumors, combined with enhanced chemoresistance 
profiles. Undoubtedly, given the increasing incidence of CCA worldwide, future 
studies will have to include large populations in multicenter clinical trials. A care-
ful selection of the patients, based on specific molecular features of the tumor, will 
also be paramount for unveiling effective treatments in the era of precision 
medicine.

 Epigenetic Modifications

Epigenetic modifications are a series of heritable and nonheritable changes in gene 
expression that do not require modification of the DNA sequence. The main epigen-
etic mechanisms described so far are DNA methylation, histone modification, and 
noncoding RNAs. A number of studies have demonstrated that tumor tissues dis-
play early and profound epigenetic changes that are believed to contribute to tumor 
development and progression. In particular, epigenetic modifications are involved in 
silencing of tumor suppressor genes and overexpression of oncogenes. Moreover, 
the study of epigenetic changes may offer interesting possibilities in terms of early 
detection of CCA and therapeutic implications [48].

 DNA Methylation

DNA methylation involves the transfer of a methyl group to cytosine residues of 
DNA, which is catalyzed by various DNA methyltransferase (DNMT) enzymes. 
This process occurs specifically in CpG sites of the genome and results in failure of 
transcription and gene silencing. Lee et al. initially reported that, using a methylation- 
specific polymerase chain reaction (PCR), a selected panel of 18 genes and loci was 
frequently mutated in a cohort of 79 resected intrahepatic CCA patients, while nor-
mal bile ducts showed no methylation at the same sites. Interestingly, OS was 
shorter in patients with CpG island methylation of APC, p16, and TIMP3 than in the 
patients without methylation [49]. Using methylation-specific PCR of limited target 
loci, a number of reports have subsequently showed that methylation occurs in the 
promoter region of various oncosuppressor genes, including p16, p14, DAPK1, 
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E-cadherin, and MLH1, among others (Table  26.1) [50–55]. More recently, 
Goeppert et al. performed a global methylation analysis by methyl-CpG immuno-
precipitation combined with whole-genome CpG island array in 18 patients with 
CCA (intrahepatic and extrahepatic combined). Hypomethylation was more fre-
quent than hypermethylation, and a differential methylation was present in the pro-
moter regions of a number of cancer-related pathways including Wnt, TGF-β, and 
PI3K signaling pathways [56].

DNA methylation appears to be an early event in CCA carcinogenesis, with pos-
sible important implications for early diagnosis. A significant proportion of 

Table 26.1 List of the most frequently differentially methylated gene in CCA and in premalignant 
biliary lesions

Gene Sample Methylation status % positive Reference

APC iCCA
eCCA

Hypermethylated 26.6–47.2%
44.4%

[49, 52]
[52]

p16 iCCA
eCCA
CCA
IPNL

Hypermethylated 17.7–48.6%
54.3–80%
26.1–76%
54.6%

[49, 52]
[52, 54]
[53, 55]
[57]

p14 iCCA
eCCA
CCA

Hypermethylated 8.9–30%
46%
25%

[49, 52]
[52]
[53]

TIMP3 iCCA Hypermethylated 8.9% [49]
E-cadherin iCCA

eCCA
CCA

Hypermethylated 21.5–48.6%
40%
34.8%

[49, 52]
[52, 53]
[55]

RASSF-1 iCCA
eCCA
CCA

Hypermethylated 48.6%
83.3%
30.4%

[52]
[52]
[55]

DAPK1 iCCA
eCCA
CCA

Hypermethylated 0–7.6%
5.7–40%
17.4%

[49, 52]
[52, 53]
[55]

MLH1 iCCA
eCCA
CCA

Hypermethylated 18.5%
32–46.6%
13%

[52]
[52, 54]
[55]

CHFR CCA Hypermethylated 17.4% [55]
RUNX3 CCA

BilIN
Hypermethylated 78.3%

>30%
[55]
[58]

MGMT iCCA
eCCA

Hypermethylated 27%
40–49%

[52]
[52, 55]

TMEFF2 BilIN Hypermethylated >80% [58]
HOXA1 BilIN Hypermethylated >50% [58]
NEUROG1 BilIN Hypermethylated >30% [58]
LINE-1 BilIN Hypomethylated [58]
SAT2 BilIN Hypomethylated [58]

Data on methylation frequency are reported for intrahepatic CCA (iCCA) or extrahepatic CCA 
(eCCA) when available. IPNL intraductal papillary neoplasm of the liver, BilIN biliary intraepithe-
lial neoplasia
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intraductal papillary neoplasms of the liver (IPNLs), a precursor lesion of CCA, 
showed hypermethylation at the p16INK4a promoter region, which correlated with 
decreased protein expression [57]. In parallel, biliary intraepithelial neoplasia 
(BilIN), the premalignant lesion of extrahepatic CCA, has been shown to harbor 
increased methylation levels of TMEFF2, HOXA1, NEUROG1, and RUNX3 com-
pared to normal bile duct tissue. The methylation levels of the same genes increased 
even further in extrahepatic CCA samples, suggesting that cancer-specific CpG 
island hypermethylation occurs early in CCA development [58]. Klump et al. evalu-
ated the promoter methylation of p16 INK4a and p14ARF in bile samples obtained dur-
ing endoscopic retrograde cholangiopancreatography (ERCP) of extrahepatic CCA 
patients, PSC patients, and control subjects. p16 INK4a was found to be methylated in 
53% of patients with CCA and only in 6% of controls, suggesting its possible role in 
the diagnostic workup, especially in cases of diagnostic uncertainty [59]. In a small 
cohort of patients with extrahepatic CCA, the evaluation of the methylation index of 
HOXA1 and NEUROG1 in samples obtained from brush cytology was shown to be 
superior to standard cytology alone [60]. Andresen et  al. tested by methylation- 
specific PCR a total of 13 candidate genes in a 39 CCA and 54 nonmalignant tissue 
samples and, subsequently, in biliary brush samples of 15 CCA and 20 nonmalignant 
PSC controls. The four best performing genes (CDO1, CNRIP1, SEPT9, and VIM) 
were subsequently evaluated in a validation cohort of 34 CCA and 34 PSC controls, 
obtaining a sensitivity of 85%, a specificity of 98%, and an area under the ROC 
curve (AUC) of 0.944 [61]. The evaluation of the methylation of a five-gene panel 
comprising CCND2, CDH13, GRIN2B, RUNX3, and TWIST1 also showed very 
promising results (sensitivity of 83%, superior to standard cytology) when employed 
directly in bile samples collected during ERCP [62]. More recently, the evaluation of 
the methylation status of candidate genes has been attempted also in serum cell-free 
DNA (cfDNA), which consists of DNA fragments released into the blood mainly by 
apoptotic and necrotic tumor cells. The assessment of methylation of OPCML and 
HOXD9, quantified by methylation-sensitive high-resolution melting, showed a 
AUC of 0.850 and 0.789, respectively. The combination of both genes reached val-
ues of sensitivity and specificity of 62.50% and 100% and a positive predictive val-
ues and negative predictive value of 100% and 72.72%, respectively [63].

Taken together, these data show that the study of DNA methylation pattern in 
CCA may not only deepen our understanding on the complex epigenetic regulation 
of the disease but also offer concrete new option for earlier and more sensitive 
detection of biliary cancers in the clinical practice.

 Histone Modifications

In the nucleus of eukaryotic cells, genomic DNA is normally associated with a 
number of proteins in the form of chromatin. The nucleosome, which is the func-
tional unit of chromatin, is composed of 147 base pairs of DNA wrapped around a 
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histone protein octamer that is formed of two subunits of histone H2A, H2B, H3, 
and H4. Posttranslational modifications of histones, which include acetylation, 
methylation, and phosphorylation, are essential in regulating all aspects of DNA- 
directed process such as replication, transcription, and repair [64]. In particular, 
histone acetylation mediated by histone acetyltransferases (HATs) and histone 
deacetylation mediated by histone deacetylases (HDACs) have been known to result 
in activation and repression of transcription, respectively.

In vitro, treatment of CCA cell lines (QBC939, KMBC and OZ) with tricho-
statin A, a known HDAC inhibitor, significantly reduced cell proliferation. In a 
xenograft model using gallbladder cancer cell, trichostatin A also reduced the sub-
cutaneous growth of the tumor in vivo [65]. In the preclinical setting, a similar 
effect on CCA cell growth has been confirmed by a number of studies investigating 
the role of different HDAC inhibitors (valproic acid, NVP-LAQ824, NVP-LBH589) 
[66]. The effect of the HDAC inhibitor MS-275 on CCA cells lines is mediated by 
induction of apoptosis, as suggested by the activation of caspase-3, upregulation of 
Bax, and downregulation of Bcl-2  in treated cells [67]. Moreover, treatment of 
CCA cell lines with trichostatin A or valproic acid induced the expression of 
E-cadherin and zonulin- 1, both epithelial markers, and reduced migration and inva-
sion as compared to cells treated only with gemcitabine, suggesting a possible role 
of HDAC inhibitor in suppressing the epithelial-mesenchymal transition of CCA 
cells [68].

In the clinical setting, in intrahepatic CCA, expression of HDAC correlated with 
higher tumor stage; moreover, the expression of HDAC was associated with a poorer 
prognosis and worse disease-free survival rate [69]. The expression of HDAC2 and 
HDAC3, measured by PCR, Western blot, and immunohistochemistry, was also 
found to be induced in about half of 26 cases of CCA; HDAC2 and HDAC3 corre-
lated with a shorter OS and were identified as independent prognostic factors on 
multivariate Cox regression analysis [70]. Conversely, the expression of HDAC8 
has been shown to be downregulated in intrahepatic CCA tissues compared with 
nonmalignant corresponding bile ducts; lower HDAC8 expression also correlated 
with lymph node metastases and poor prognosis [71].

Despite promising preclinical studies and encouraging results in the manage-
ment of other solid tumors, data regarding the use of HDAC inhibitors clinically in 
the treatment of CCA are currently lacking [72]. The use of valproic acid in combi-
nation with S-1, an oral fluoropyrimidine derivative, was preliminarily tested in a 
phase 1/2 study enrolling a total of 12 patients with advanced pancreatobiliary can-
cers (7 pancreatic cancer, 4 CCA, and 1 gallbladder cancer). A PR was reported only 
in one patient, while a stable disease was obtained in 91.7% of patients, with grade 
3–4 adverse events in about 20% of cases [73]. A clinical trial testing the effect of 
entinostat, an oral class I HDAC inhibitor, in combination with nivolumab is cur-
rently recruiting patients (NCT03250273) [74]. Moreover, a clinical trial evaluating 
HDAC6 inhibition with KA2507 in advanced biliary tract cancer is expected to start 
recruiting patients in the near future (NCT04186156) [75].
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 Noncoding RNAs

Noncoding RNAs (ncRNAs) comprise a group of single-stranded RNA sequences 
that are not translated into proteins but regulate gene expression with complex post-
transcriptional modulation. Based on the their length, ncRNAs are divided into long 
ncRNAs (>200 nucleotides long) and small ncRNAs (<200 nucleotides long); the 
latter includes microRNA (miR), small interfering RNA, piwi-RNA, and small 
nucleolar RNA [76].

A number of ncRNAs have been investigated in CCA. Among them, miRs are so 
far the most studied, with selective miRs having been found to be upregulated or 
downregulated in CCA [77]. miR-21, miR-141, and miR-200b have been shown to 
be highly upregulated in malignant cholangiocytes in vitro. Interestingly, miR-21 
regulated the PTEN-mediated activation of PI 3-kinase signaling, and its inhibition 
increased the sensitivity to gemcitabine [78]. Using a miR array in five primary 
CCAs and five control bile duct specimens, Selaru et al. confirmed that miR-21 is 
overexpressed in human CCA.  In vitro, miR-21 regulated the expression of pro-
grammed cell death 4 and tissue inhibitor of metalloproteinases 3 [79]. Contrasting 
results regarding the possible use of miR-21 as a serum marker for CCA have been 
reported in the literature. For instance, Correa-Gallego et al. reported a significant 
overexpression in the serum levels of miR-21 and miR-221 in a cohort of patients 
formed by 25 intrahepatic CCA patients and 7 healthy controls, with an AUC of 
0.94 when using miR-21 levels to discriminate between cases and controls [80]. In 
contrast, in a cohort of 50 CCA patients, 15 hepatolithiasis patients, and 15 healthy 
volunteers, serum miR-21 levels were suboptimal in discriminating between cases 
and controls (AUC of 0.871, which was inferior to the performance of CA 19-9 in 
this study), though they were significantly correlated with clinical stage, invasion, 
lymphatic vessel infiltration, metastasis, and poor survival [81].

In recent years, the list of upregulated or downregulated miRs in CCA has grown 
exponentially, and this aspect has been reviewed in detail elsewhere [77, 82]. Many 
studies have focused on single miRs, while others have provided a more thorough 
expression profile of cancer tissue compared to control samples. In the latter case, 
among the many miRs identified, only a small proportion of miRs was consistently 
found to be differently expressed in tumoral tissues by different studies. For exam-
ple, miR-21 was found to be upregulated in human CCA cell lines and in two in 
human CCA tissue profiling studies [78, 83, 84], while miR-200c was downregu-
lated in two distinct studies [83, 84]. The small sample size of the majority of the 
studies, given the intrinsic rarity of CCA and the lack of large international collab-
orative studies, may have influenced the results of the investigations (e.g., inade-
quate study power). Altogether, apart from the important role of miRs in the 
pathophysiological alterations of CCA on a molecular level, the available literature 
seems to show a significant potential for miRs as biomarkers. Along with the results 
previously reported for miR-21, a number of different miRs have shown promising 
results in different studies. For example, serum levels of miR-29 were found to be 
significantly increased in a cohort of 66 CCA patients compared to 66 controls, with 
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an AUC of 0.899 and sensitivity and specificity of 84.8% and 81.8%, respectively, 
in distinguishing CCA from controls [85]. Moreover, serum levels of miR-122 were 
significantly more elevated in CCA patients than in PSC patients, despite the latter 
showing increased levels compared to healthy individuals; the AUC of miR-122 
(0.818) was slightly better than the AUC of CA 19.9 (0.778) for discriminating 
between CCA and PSC patients, but this difference did not reach statistical signifi-
cance [86].

An important aid in the diagnosis of CCA may also come from the evaluation of 
miRs directly in bile samples collected during ERCP procedures. Voigtländer et al. 
reported that miR-412, miR-640, miR-1537, and miR-3189 bile levels were signifi-
cantly higher in patients with PSC or PSC-related CCA than in patients with spo-
radic CCA. More importantly, the same miRs were significantly different also in 
PSC or PSC-related CCA patients, suggesting their possible role in detecting the 
neoplastic transformation of cholangiocytes during the course of PSC [87]. Along 
the same lines, by using a microarray platform screening 1209 miRs, miR-30d-5p 
and miR-92a-3p were found to be upregulated in bile of CCA patients compared to 
patients with benign biliary obstruction. In a validation cohort of 37 CCA patients 
and 48 controls, bile miR-30d-5p demonstrated an AUC of 0.730, with a sensitivity 
of 81.1% and a specificity of 60.5%, and outperformed serum levels of CA 19.9 and 
CEA [88]. Since RNA samples may degrade relatively fast in bile samples, the 
validity of measuring miRs in whole bile samples has been questioned by some 
investigators. Moreover, the different protocols used in terms of storing and pro-
cessing samples and analyzing the data (with special reference to internal controls 
for miR evaluation) make the interpretation of the available studies difficult. A 
promising solution may come from the evaluation of miRs in biliary extracellular 
vesicles, which contain abundant and stable RNA material. In this context, one 
study found that a panel of miRs in extracellular vesicles could correctly identify 
CCA patients with a sensitivity of 67% and specificity of 96% [89].

 Alterations in the Wnt/β-catenin Signaling Pathway

The Wnt/β-catenin signaling is an evolutionarily conserved pathway that is funda-
mental for cell fate determination during embryogenesis, cell proliferation, and 
migration [90]. In recent years, after the initial report that the APC gene driving the 
development of familial adenomatous polyposis interacts with β-catenin, a number 
of studies have confirmed the involvement of the Wnt/β-catenin signaling in many 
cancers [91]. High nuclear expression of β-catenin, evaluated by immunohisto-
chemistry, has been reported in a small proportion (about 16%) of intrahepatic CCA 
[92]. In perihilar CCA, substantial expression (between 10 and 49% of cells) of 
Wnt2 and β-catenin has been shown in about 80% and 50%, respectively, of tumors 
[93]. Interestingly, mutations of the β-catenin gene at exon 3 (containing the ele-
ment responsible for Wnt signaling) was not detected in any of 55 intrahepatic CCA 
samples, suggesting an alternative mechanism of deregulation in CCA [94]. 
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Tokumoto et al. also reported a low frequency of β-catenin mutations (8.3%) in a 
cohort of 24 surgically resected samples of intrahepatic CCA patients; however, 
expression levels of downstream target genes of the Wnt/β-catenin signaling were 
significantly upregulated [95]. Boulter et al. clearly demonstrated that the Wnt/β- -
catenin pathway plays a crucial role in CCA; in CCA tissue samples, the expression 
of Wnt target genes and of Wnt ligands WNT7B and WNT10A were significantly 
increased in comparison with matched noncancerous tissues [96].

Wnt ligands seem to be produced by macrophages derived from the bone marrow 
and infiltrating the tumor stroma. After transplantation of GFP-expressing bone 
marrow into irradiated rats subjected to a chemically induced model of CCA, the 
majority of tumor-associated macrophages were GFP-positive. Moreover, depletion 
of macrophages with different strategies resulted in reduced Wnt7b expression in 
xenograft CCA models and reduced tumor burden. The effect of two small mole-
cules ICG-001 and C-59, inhibitors of CTNNB1 and PORCN, respectively, was 
also tested in xenograft CCA models and a chemically induced CCA model and 
found that both reduced the occurrence and volume of tumors [96]. The Wnt/β- -
catenin pathway may also be activated by cancer stem cells, a subpopulation of 
cancer cells that are present in the tumor microenvironment [97]. Wang et al. dem-
onstrated that the presence of human umbilical cord-derived mesenchymal stem 
cells (MSCs) in a xenograft model of CCA significantly increases tumor volume, 
metastatic potential, and chemoresistance. In vitro, incubation of CCA cells with 
MSC-conditioned media resulted in nuclear translocation of β-catenin and upregu-
lation of Wnt target genes [98]. Additional details of the molecular regulation of the 
Wnt/β-catenin pathway in CCA have also emerged lately. For example, osteopontin, 
a chemokine-like phosphorylated glycoprotein, was found to be upregulated in both 
serum and CCA tissue and to promote phosphorylation and nucleus accumulation 
of β-catenin, thereby activating the pathway and sustaining CCA growth and metas-
tasis [99]. Moreover, the SRC-like adaptor protein (SLAP), an adaptor protein that 
regulates signal transduction of various cell surface receptors, seems to be down-
regulated in CCA, thus enabling the activation of the Wnt/β-catenin pathway [100]. 
Preliminary results from a phase 1 clinical trial with DKN-01, an antibody directed 
against the inhibitor of the canonical Wnt/β-catenin DKK1, demonstrated a reason-
able safety profile when administered with gemcitabine in advanced biliary tract 
cancers [101]. A phase 2 clinical trial investigating the response rate of DKN-01 and 
nivolumab in previously treated patients with CCA is currently recruiting patients 
(NCT04057365) [102].

 Conclusions

CCA is an extremely heterogeneous malignancy, and intensive basic and transla-
tional studies have only recently started to shed light on the complex molecular 
landscape of the disease. The application of next-generation sequencing to the CCA 
genome has enabled a deeper understanding of the genetic alterations sustaining 
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tumor progression and identified a number of possible targets for early diagnosis and 
treatment. In parallel, epigenetic modifications are actively studied as possible piv-
otal factors in CCA development, and a number of alterations have been identified.

Despite multiple encouraging results that have come from basic studies in in vitro 
and in vivo models, the outcome of the majority of clinical trials has been below the 
expectations of researchers, clinicians, and patients. Looking ahead, international 
collaborative studies will undoubtedly be useful in order to reach large enough 
patient cohorts, with specific clinical and molecular CCA characteristics. Current 
results of clinical trials are in fact hampered by small sample size and nonuniform 
patient characteristic. The heterogeneity of CCA in terms of anatomical, genetic, 
epigenetic, and molecular differences needs to be taken into account when testing 
new treatments in the human setting, especially in the era of precision medicine.
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