
Evaluation of Classical Data Structures
in the Java Collections Framework

Anil L. Pereira

1 Introduction

The Java Collections framework [1] is a unified architecture for representing and
manipulating data collections. The classical data structures [2] implemented in the
Java Collections framework and considered in this paper are array, array list, linked
list, doubly linked list, stack, and queue [3]. This paper asks an important question
and attempts to answer it. The question is, what are the important performance
considerations of the classical data structures as implemented in the Java Collections
framework when using asymptotic analysis [4] for software design? For example,
inserting or removing an element at the end of an array list or linked list data
structure takes constant time irrespective of the number of elements in the data
structure. However, the software execution time relative to the array list is much
faster due to its memory being allocated contiguously and with less overhead.
Even though the time complexity in this case is the same for both data structures,
clearly the array list would be a better choice among the two in order to buffer
small amounts of data while transmitting or receiving data at high speeds through
a network. The paper seeks to answer the above question by analyzing the
performance gap between the data structures when similar operations have equal
time and equal space complexity. To the best of the author’s knowledge, there is
no work reported in the available technical literature that poses the above question
and attempts to answer it. Why is this question important? It is important because
the performance of software applications for computer networking, Web services,
and cloud computing, with respect to speed, scalability, fault tolerance, and quality
of service, is critical. Designing software for these applications involves choosing

A. L. Pereira (�)
School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, USA
e-mail: apereira@ggc.edu

© Springer Nature Switzerland AG 2021
H. R. Arabnia et al. (eds.), Advances in Software Engineering, Education, and
e-Learning, Transactions on Computational Science and Computational
Intelligence, https://doi.org/10.1007/978-3-030-70873-3_34

493

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70873-3_34&domain=pdf
mailto:apereira@ggc.edu
https://doi.org/10.1007/978-3-030-70873-3_34


494 A. L. Pereira

the right kind of data structure. Choosing the right kind of data structure is crucial
because its performance with respect to space (memory utilization, i.e., how much
memory is used to store data and what is the overhead) and performance of its
operations with respect to time (execution speed, i.e., how fast does the software
implementation run) play a significant role in determining the overall performance
of the application.

Software developers should know how to compare various data structures based
on their memory utilization and performance of their operations. As with most
choices in computer programming and design, no method is well suited to all
circumstances. A linked list data structure might work well in one case, but cause
problems in another case. Also, how does the performance of one data structure
scale with data size compared to another data structure? To answer this question,
software developers can use asymptotic analysis for a theoretical comparison
between the data structures regarding the scalability of their performance. However,
software developers should be aware of any practical considerations affecting
scalability of performance that may arise from the implementation of the data
structures and their operations. They should be able to identify any implementation
overhead that may adversely affect practical performance, for example, using data
types incorrectly (using double where byte would suffice) or excessive recursion
where iteration might be used. In this paper, improvements are proposed to obtain
better performance than currently available. The required data for performance
evaluation was obtained through software implementation conducted in Java. For
the software implementation, Java methods to profile available program memory
and execution time of operations were used.

The broader impacts of this work can be in academia and research. The Java
Collections framework is increasingly used in undergraduate computer science and
information technology courses covering data structures. Students can experimen-
tally verify the practical performance of the data structures using the performance
evaluation method described in this paper. Researchers can explore and possibly
improve the implementation of data structures in similar frameworks of other
programming languages.

The paper is organized as follows. Section 2 contains an explanation of data
structures. Section 3 discusses array lists and the asymptotic analysis of their
operations. Section 4 discusses linked lists and the asymptotic analysis of their
operations and compares them to array lists. Section 5 discusses doubly linked lists
and the asymptotic analysis of their operations. Section 6 contains performance
evaluation. Section 7 explains stacks and discusses how best to implement them.
Section 8 explains queues and discusses how best to implement them. Section 9
contains conclusions and future work.



Evaluation of Classical Data Structures in the Java Collections Framework 495

2 Data Structure

A data structure is an organized collection of data. A data structure not only
stores data but also supports the operations for manipulating data in the structure.
For example, a classical data structure, array list, holds a collection of data in
sequential order and is dynamically resizable (its capacity can increase or decrease
to accommodate the amount of data). You can find the size of the array list and store,
retrieve, delete, and modify data in the array list. Other examples of classical data
structures are arrays, lists, stacks, and queues. A list is a collection of data stored
sequentially. Insertion and deletion operations are supported anywhere in the list.
A stack can be perceived as a special type of list where insertions and deletions
take place only at one end, referred to as the top of the stack. A queue represents a
waiting list, where insertions take place at the back (also referred to as the tail) of
the queue and deletions take place from the front (also referred to as the head) of a
queue.

3 Array List

To explain an array list and its limitations, we will first see how the Java program
code implementing it complies and executes. Instantiating a generic class by passing
a specific type (e.g., String) to the parameterized type is called generic type
invocation, as shown in the first line of the Java program code below.

ArrayList <String> list = new ArrayList<>(4);
list.add(“Atlanta”);
list.add(“Chicago”);
list.add(“Denver”);ArrayList list = new ArrayList();
list.add(“Atlanta”);
list.add(“Chicago”);
list.add(“Denver”);

Because, the class ArrayList is instantiated with the generic type invocation of
String, the compiler first checks if only String objects are added to the array list. If
any other object, for example, Integer, is added, then there will be a compile time
error. Also, String is declared final, meaning it cannot be extended, and thus cannot
have subclasses. A class would be made final if the programmer desires that none
of its methods be overridden, so that only those specific behaviors that are desired
by the programmer are maintained. But, an array list of a class that is not declared
final, can contain objects of the subclasses, because of the compiler support for
Polymorphism [5]. In the next step, as shown in the fifth line of code above, the
compiler performs type erasure. Meaning, the parameterized type is removed. This
can be done because at this point only objects of the class or subclass of the generic
type invocation would be stored in the array list. The array list has an instance
variable named elementData that can reference an array of instances of the class
Object, as shown in Fig. 1. The class Object is the root of the hierarchical class tree



496 A. L. Pereira

Fig. 1 Array list
implemented using an array
of the class Object

in Java. In other words, it is the superclass of all the classes. When class ArrayList
is instantiated with generic type invocation, an array of Object is also instantiated.
Objects of the generic type invocation that are added to the array list are stored in
the array.

The performance of the add (or insert) operation, that is, adding (or inserting)
an object to the array list, depends upon where in the underlying array the object is
being added. If adding objects to the end of an existing sequence of objects (best
case), one after another, then it takes constant time to add an object no matter how
many objects there are in the array and how many objects are added because the
array is indexed. Indexes allow for direct access (also called random access) to
memory. This means that it does not matter where in memory you are accessing
or storing an object or how many objects are accessed or stored, it takes the same
time to access or store a single object, i.e., constant time.

The constant time to add is represented by a time complexity of Big-Theta (1),
symbolically noted as � (1). Big-Theta notation is used in asymptotic analysis.
Asymptotic analysis refers to the study of an algorithm’s or operation’s performance
with respect to resource usage (time complexity, i.e., execution time, and space
complexity, i.e., memory size) as the data size grows larger. Asymptotic analysis
provides a simplified model of resource usage of an algorithm or operation.
Asymptotic notation shows how an algorithm or operation scales when compared to
another algorithm or operation. In other words, it shows the rate of growth of cost
of an algorithm or operation with respect to time or space as n (the data size grows).
� is used to indicate that the upper and lower bounds for the cost of an operation
are the same within a constant factor.

3.1 Limitations of Array List

If the array list is full, then the elements have to be copied to a new bigger array,
and the next element can then be added to the new array. This reallocation is done
automatically in an array list. It may not be possible to reallocate if memory is
fragmented. The cost of reallocation can be averaged out over many insertions, and
the time complexity of an insertion due to reallocation would still be � (1).



Evaluation of Classical Data Structures in the Java Collections Framework 497

Insertion at the Beginning of an Array List

For adding to the beginning of the array list (worst case), all elements must be shifted
one place to the right before adding the element to the beginning of the array list.
Reallocation may be required. The execution time increases linearly with the size of
the array list. Asymptotically the time complexity is �(n).

Insertion at a Specified Index in an Array List

Before inserting a new element at a specified index, all the elements at and after
the index must be shifted to the right one place and the list size must be increased
by 1. On average, half the elements in the array list must be shifted to the right
one place when adding (inserting) an element at a particular index. The execution
time increases linearly with the size of the array list. Reallocation may be required.
Asymptotically, the time complexity is also �(n). This is because, asymptotically
n/2, the data size to be right shifted if adding in the middle (average case), or,
n, the data size to be right shifted if adding at the beginning, does not matter.
Linear increase or decrease of the data size (i.e., increase or decrease by a constant
factor) does not affect the growth rate of the cost of an operation with respect to its
execution time.

Deletion at a Specified Index

To remove an element at a specified index (average case for remove), all the
elements after the index must be shifted to the left by one position, and the list
size must be decreased by 1. On average, half the elements in the array list must
be shifted to the left one place when removing (deleting) an element at a particular
index. The execution time increases linearly with the size of the array list. The left
shifts are necessary to avoid fragmentation in the array list. Fragmentation adversely
affects iteration because the elements are no longer stored contiguously. An array
from (which many elements are removed) may also have to be resized in order to
avoid wasting too much space, though the cost of resizing can be averaged out over
many deletions. Asymptotically, the time complexity is �(n).

Deletion at the Beginning

To remove from the beginning (worst case), all following elements must be shifted
to the left one place. The execution time increases linearly with the size of the array
list. An array from which many elements are removed may also have to be resized
in order to avoid wasting too much space. Asymptotically, the time complexity is
also �(n).



498 A. L. Pereira

Deletion at the End

To remove from the end (best case), the reference to the last element can be replaced
by a null pointer. This operation is done in constant time. An array from which many
elements are removed may also have to be resized in order to avoid wasting too much
space. Asymptotically, the time complexity is �(1).

Asymptotically n/2 (data size shifted if adding or removing from middle), n
(data size shifted if adding or removing from beginning), or any other linear
decrease (e.g., n/3, n/4, n/5, and so on) or increase (e.g., 2n, 3n, 4n, and so
on) does not matter. Linear increase or decrease of the data size (i.e., increase
or decrease by a constant factor) does not affect the growth rate of the cost of
an operation with respect to its execution time. Asymptotic notation of Big-Oh
(O), Big-Omega (�), Big-Theta (�), small-Oh (o), and small-omega (ω) are not
the same as the best, worst, or average case. For example, there is a difference
between the best, worst, or average case and asymptotic notation like Big-Theta
(�). For an array list, the best/worst/average case for the add (or insert) operation is
addLast/addFirst/addMiddle. They are each �(1)/�(n)/�(n).

4 Linked List

A linked list, as shown in Fig. 2, consists of a chain of objects called nodes, each
containing a data element and linked to its next neighbor via a pointer. A node can
be defined as a class in Java. The Java class for a node consists of two variables,
an element (generic) object reference to data and an object reference to the next
neighboring node. Nodes can be non-contiguously stored in memory. The memory
size due to storing the references to data and the next node can be considered
overhead. Asymptotically, the space complexity of memory overhead in a linked
list is �(n). The maximum size, i.e., the maximum number of nodes of a linked list,
is constrained by the amount of available heap memory allocated to the program. A
linked list is less susceptible to memory fragmentation than array list because nodes
in a linked list do not have to be contiguously stored in memory, unlike the object
references in an array list.

Data access and reading take longer in a linked list as the number of nodes
increases, because on average, in order to access and read an element, all preceding

Fig. 2 Linked list of class String containing three nodes



Evaluation of Classical Data Structures in the Java Collections Framework 499

nodes must be traversed to get to the particular node. Asymptotically, the time
complexity to access and read a data element in a linked list is �(n).

An array list consists of object references pointing to the data. Object references
in an array list are stored contiguously. Array lists require less memory than linked
lists for the same number of data elements. Asymptotically, the space complexity of
the memory overhead is also �(n). The maximum size, i.e., the maximum number
of object references of an array list, is equal to the maximum positive value of the int
data type, which is (231–1). However, the maximum size is restricted practically by
heap memory allocated to the program. An array list is more susceptible to memory
fragmentation than a linked list due to the need for contiguous memory allocation,
and in extreme cases reallocation to resize the array list may not be possible due to
a memory block of sufficient size being unavailable.

Data access and reading in an array list is done in constant time, because an array
list supports random access (direct access). An index (as shown in the Java program
code below) is translated to a memory address which allows direct retrieval via the
operating system and hardware. Asymptotically, the time complexity to access and
read a data element in an array list is �(1).

list.get(0) => array[0] => “Atlanta”
list.get(1) => array[1] => “Chicago”
list.get(2) => array[2] => “Denver”

4.1 Insertion Operations for a Linked List

There are three implementations of the add operation: addLast(E o), addFirst(E o),
and add(int index, E o).

addLast(E o): Creates a new node for the given element and adds the node to the
end of the linked list. Takes constant time no matter how big the linked list, because
a node needs to be added only at the end without displacing any other nodes before
it. Asymptotically, the time complexity is �(1).

addFirst(E o): Creates a new node for the given element and adds the node to the
beginning of the linked list. Takes constant time no matter how big the linked list,
because a node needs to be added only at the beginning without displacing other
nodes after it. Asymptotically, the time complexity is �(1).

add(int index, E o): Creates a new node for the given element and adds the node
at a particular position (given by the index) in the linked list. On average, a linked
list must be traversed along its nodes (beginning from the first node) in order to
reach the point of insertion. Asymptotically, the time complexity is �(n). It takes
constant time if a pointer to the last node inserted is maintained. This could be done
if a sequence of nodes were inserted one after another. Asymptotically, the time
complexity is �(1).



500 A. L. Pereira

4.2 Deletion Operations for a Linked List

There are three implementations of the remove operation: removeFirst(), remove-
Last(), and remove(int index).

removeFirst(): Removes the first node of the linked list and returns its reference to
the calling program. Takes constant time no matter how big the linked list, because
a node needs to be removed only at the beginning without displacing other nodes
after it. Asymptotically, the time complexity is �(1).

removeLast(): Removes the last node of the linked list and returns its reference
to the calling program. A linked list must be traversed along its nodes (beginning
from the first node) in order to reach the last node for removal. Asymptotically, the
time complexity is �(n). It takes constant time if the pointer to the node before the
last one is maintained. This could be done if a sequence of nodes were removed,
one after another. Asymptotically, the time complexity is �(1).

remove(int index): Removes the node at a particular position (given by the index)
in the linked list and returns its reference to the calling program. A linked list must
be traversed along its nodes (beginning from the first node) in order to reach the
node for deletion at the given index. Asymptotically, the time complexity is �(n). It
takes constant time if the pointer to the node before the node before the one that was
deleted is maintained. This could be done if a sequence of nodes were removed, one
after another. Asymptotically, the time complexity is �(1).

5 Doubly Linked List

A doubly linked list contains nodes with two pointers. One points to the next node
and the other points to the previous node. These two pointers are called a forward
pointer and a backward pointer. So, a doubly linked list can be traversed forward
and backward. The java class for the node consists of three variables, an element
(generic) object reference to data and two object references to the next neighboring
nodes. Nodes can be non-contiguously stored in memory. The memory size due to
the references to data and the next and previous nodes can be considered overhead.
Asymptotically, the space complexity of memory overhead in a doubly linked list is
�(n). Data access and reading can be faster than a linked list because traversal can
be done in both directions. Asymptotically, the time complexity to access and read
a data element in a linked list is �(n).



Evaluation of Classical Data Structures in the Java Collections Framework 501

5.1 Insertion and Deletion Operations for a Doubly Linked List

For a doubly linked list, addFirst is always done in constant time no matter how big
the doubly linked list, because displacement of the following nodes is not required.
Asymptotically, the time complexity is �(1).

The addLast operation is always done in constant time no matter how big
the doubly linked list, because displacement of preceding nodes is not required.
Asymptotically, the time complexity is �(1).

For add(index, E o), on average, half the doubly linked list must be traversed in
order to reach the point of insertion. Asymptotically, the time complexity is �(n).
Asymptotically, the time complexity is �(1), if a pointer to the last node inserted
is maintained. This could be done if a sequence of nodes were inserted, one after
another.

removeFirst(): Takes constant time no matter how big the doubly linked list,
because displacement of the following nodes is not required. Asymptotically, the
time complexity is �(1).

removeLast(): Takes constant time no matter how big the doubly linked list,
because displacement of preceding nodes is not required. Asymptotically, the time
complexity is �(1).

remove(index): On average, half the doubly linked list must be traversed in
order to reach the node for deletion at the given index. Asymptotically, the time
complexity is �(n). Asymptotically, the time complexity is �(1), if a pointer to the
node before the one that was deleted is maintained. This could be done if a sequence
of nodes were removed, one after another.

6 Performance Evaluation

Performance evaluation of the add and remove operations for array list and
linked list were undertaken on a 2018 MacBook Pro with 2.6 GHz 6-Core Intel
Core i7 processor and 32 GB 2400 MHz DDR4 RAM. The profiling software
and experiments were implemented using Java version 11.0.1 on Eclipse IDE
version 4.10.0. The generic LinkedList class in the Java Collections framework is
implemented as a doubly linked list. The time complexity of the addLast operation
for both an array list and linked list as discussed in the previous sections is �(1).
A time complexity of �(1) means that an operation takes constant time to complete
irrespective of the data size. The time complexity does not provide information
about the practical execution time of the operation. An operation that is �(1) might
take 5 ms to complete when implemented one way and 50 ms to complete for a
completely different implementation. Obviously, with respect to execution time, the
one that takes 5 ms is the better choice of the two. This kind of information is
important when a software developer needs to identify operations in software that
perform poorly and improve upon their implementation.



502 A. L. Pereira

6.1 Performance of Insertion Operations

As shown in Figs. 3 and 4, the practical performance (with respect to execution
time and memory usage) of the addLast operation is different for array list and
linked list implementations in the Java Collections framework. The memory profile
was obtained using the Java Runtime class, and the software execution time was
obtained using the Java System class. The profile of the heap memory allocated to
the program is as follows: total memory is 512 MB and maximum memory is 8 GB.
The objects of integer (wrapper class for the 4-byte int data type) were used to
store data generated as uniform random integers in the range 0 to 1,000,000, where
0 is inclusive and 1,000,000 is exclusive. The objects are created on the heap. A
logarithmic scale is used for n (the data size, i.e., the number of integers) on the
x-axis of the graphs.

Figures 3 and 4 show how the execution time and memory size for calling
addLast repeatedly (to create an array list or doubly linked list) increases as n
increases. For a linked list, a separate node is created for each call of addLast which
has greater memory overhead per data point and thus leads to greater total memory
allocation compared to an array list. For n > 200,000,000, the memory usage for
doubly linked list nears the maximum heap size (8 GB) and for array list nears
70% of the maximum heap size. The performance gap widens to the point where
the performance for array list is 8.5 times faster than that for linked list. Also, the
execution time and memory usage for array list are little more than doubles when
the data size increases from n = 100,000,000 to n > 200,000,000. This is expected.
For the same increase in data size, the memory usage for linked list is also little more
than doubles; however the execution time is more than triples. This is because, in
nearing the maximum heap size, there is greater overhead of growing the heap in the
case of a linked list. Also, the Java garbage collector (GC) [6] runs more frequently,

0

10000

20000

30000

40000

50000

60000

70000

1 10 100 1000 10000 100000 1000000100000001000000001E+09

addLast - execution time (msecs) vs n

Array list Linked list cp_AL_LL

msecs

Fig. 3 Execution time vs data size for addLast and cp_AL_LL



Evaluation of Classical Data Structures in the Java Collections Framework 503

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 10 100 1000 10000 100000 100000010000000100000000 1E+09

addLast - memory usage (MB) vs n

Array list Linked list cp_AL_LL

MB

Fig. 4 Memory utilization vs data size for addLast and cp_AL_LL

when more than 70% of the heap is used [7]. GC is a program that deletes objects
for which no object reference exists in the program. GC is run automatically and
periodically by the Java virtual machine (JVM). It can be invoked using the Runtime
class, but is non-deterministic, which means the exact start time of execution cannot
be predicted.

The addFirst method shows similar performance to addLast for linked list, but
worse performance for array list because of the overhead of right shifting each
object reference one place. To construct a doubly linked list in the Java Collections
framework that does not exceed the maximum data capacity of an array list, the
author proposes that instead of using addFirst or addLast operations for linked list,
the software developer should first create an array list and then use the addAll
method to create the linked list from the array list. Figure 4 shows that this method
(cp_AL_LL) uses more memory because both the array list and linked list are
resident on the heap. This also means that the maximum possible data size of the
linked list will be half of that which is possible with addLast. However, the proposed
method performs better in constructing a linked list and takes 20% less time for
n = 100,000,000. If greater data size is desired, then the heap memory size can be
increased, which is possible in Eclipse or on the command line when running the
program. Using a different data type such as Double (wrapper class for the 8-byte
double data type) has negligible effect on the performance.

6.2 Performance of Deletion Operations

Figures 5 and 6 show how the execution time and memory size for calling
removeLast repeatedly (to delete an array list or linked list) increases as n increases.



504 A. L. Pereira

0

500

1000

1500

2000

2500

3000

3500

1 10 100 1000 10000 100000 100000010000000100000000 1E+09

removeLast - execution time (msecs) vs n

Array list Linked list rmAll_LL

msecs

Fig. 5 Execution time vs data size for removeLast and rmAll_LL

0
1 10 100 1000 10000 100000 100000010000000100000000 1E+09

removeLast - memory usage (MB) vs n

Array list Linked list rmAll_LL

MB

1000

2000

3000

4000

5000

6000

7000

8000

9000

Fig. 6 Memory utilization vs data size for removeLast and rmAll_LL

In Fig. 6, the plot for linked list is hidden because it follows the same trajectory
as the plot for the removeAll method for linked list. Also, the plots for the memory
usage of linked list and array list in Fig. 6 follow the same trajectory as in Fig. 4. For
n > 200,000,000, the performance gap widens to the point where the performance
for array list is more than 2.5 times faster than that for linked list. This is because
the GC runs more frequently when the heap is greater than 70% its maximum size.
Also, prior to deletion of the linked list, the heap is already close to its maximum
size; therefore there is no overhead to grow the heap, thus limiting the performance
gap. Furthermore, Figs. 3 and 5 show that deleting a linked list is about 25 times
faster than creating the link list and deleting an array list is about 10 times faster
than creating the array list. It should be noted, however, that the GC did not run



Evaluation of Classical Data Structures in the Java Collections Framework 505

during the repeated calls to removeLast and thus the execution time did not include
the overheads for object deletion and reduction of the heap size.

As memory usage for linked list reduces to half the maximum heap size for
n = 100,000,000, the performance gap widens to the point where the performance
for array list is nearly 20 times faster than that for linked list, but the performance
for linked list stays about the same. This almost static performance level for linked
list even though the memory usage is cut by half is interesting and requires further
investigation. The removeFirst method shows similar performance to removeLast
for linked list, but worse performance for array list because of the overhead of
left shifting each object reference one place. Also, as shown in Figs. 5 and 6,
the removeAll method for the LinkedList class shows almost static performance
level for linked list even though n and the memory usage are cut by half from
nearly the maximum heap size for n > 200,000,000. Again, this is interesting and
requires further investigation. Repeated calls to the removeLast method for deletion
of the linked list performs about 25% faster than removeAll as the memory usage
approaches maximum heap size for n > 200,000,000. Using removeLast also has
the advantage of returning the objects containing the data points. The comparatively
poorer performance of removeAll is due to its implementation which includes
several recursive calls and conditional statements as fail safes. The removeAll
method also calls removeFirst, and hence its performance for array list is extremely
poor and reduces exponentially. If simply deleting all objects in the array list or
linked list is desired, then the author proposes that the clear method be used. The
clear method is implemented for the classes ArrayList and LinkedList and simply
assigns a null reference to each data object reference. The clear method performs
about 60% faster for array list and about 30% faster for linked list when compared
to repeated calls of removeLast as the memory usage approaches maximum heap
size for n > 200,000,000. The clear method also shows almost static performance
level for linked list even though n and the memory usage are cut by half from nearly
the maximum heap size for n > 200,000,000. This is interesting and requires further
investigation.

7 Stack

A stack can be viewed as a special type of list, where the elements are accessed,
inserted, and deleted only from the end, called the top, of the stack. Parsing
algorithms used by compilers to determine whether a program is syntactically
correct involve the use of stacks. Stacks can be used to evaluate arithmetic
expressions. A stack is a last-in-first-out (LIFO) or first-in-last-out (FILO) data
structure. It behaves like a stack of books. Objects are pushed (added) to the stack
on top of previous objects. Objects are popped (removed) from the top of the stack.
Other important applications of stacks are in recursive backtracking and method
calls in computer programs.



506 A. L. Pereira

A linked list can be used to implement a stack because insertion and deletion
operations are efficient when done at the front end of the linked list. However,
memory overhead is greater than that of an array list. For a doubly linked list,
insertion and deletion operations are efficient irrespective of being done at the front
end or back end. A doubly linked list supports search better than a linked list, if
search functionality is desired. However, memory overhead is greater than a linked
list.

The best choice for implementing a stack of objects is an array list because it is
faster to add and remove objects, has less memory overhead than a linked list and
search, and performs much better than a doubly linked list due to random access.
However, for data that consists only of numbers, an array of primitive data type (the
type depends on the range of values in the data) has the least memory overhead
and best search performance. However, an array is not dynamically resizable and
additional implementation will be required to implement a stack that is not of
fixed capacity. Furthermore, on systems that allow heap memory size expansion to
accommodate extremely large data sizes, the maximum capacity (231–1) of arrays
and array lists may prove restrictive. Also, the size variable for the LinkedList class
is of type int, thus restricting the maximum positive value to (231–1). In this case,
a doubly linked list should be implemented, because its capacity is restricted only
by the maximum heap size. The size variable could be implemented as type long
(8-bytes) for a maximum positive value of (263–1). Alternatively, the BigDecimal
class could be used to store and manipulate extremely large integers as Strings.

8 Queue

A queue represents a waiting list. A queue can be viewed as a special type of list,
where the elements are inserted into the end (tail) of the queue and are accessed
and deleted from the beginning (head) of the queue. Queues are widely used in
modeling and simulations. They are used in serving requests of a single shared
resource (printer, disk, CPU), transferring data asynchronously (data not necessarily
received at same rate as sent) between two processes (IO buffers), and interrupt
handling in operating systems. A queue is a first-in-first-out (FIFO) data structure. It
has the same methods as a stack except that the method push is replaced by enqueue
and the method pop is replaced by dequeue. The method enqueue adds an object to
the end of the queue and dequeue removes an object from the front of the queue.

A priority queue can be perceived as a special type of queue where data is
prioritized for deletion. The data at highest priority is deleted first.

The best choice for implementing a queue is either a linked list or a doubly linked
list. Removal operations from the front of a linked list and doubly linked list are
efficient. If less memory overhead is desired, then the best choice is a linked list.
However, if increased search capability is desired, then the best choice is a doubly
linked list. This is because a doubly linked list can be traversed from both directions.



Evaluation of Classical Data Structures in the Java Collections Framework 507

For an array and arraylist, removals from the front end are inefficient because all the
following elements must be moved one position toward the front end.

9 Conclusion and Future Work

Insertion and deletion operations of data structures that are asymptotically identical
might display severe performance gaps practically. Some of these gaps are identified
in this paper and alternative approaches leading to improved performance are
proposed. As per the performance evaluation, it was found that a stack can be
best implemented using an array list and a queue can be best implemented using
a linked list. The stack class in the Java Collections framework uses the class Vector
which gives similar performance to an array list. However, Vector is deprecated and
class ArrayList is essentially its replacement. Furthermore, to implement a queue
the ArrayDeque class can be used because it implements a circular array in which
the left shift of elements is eliminated for the removeFirst method. Furthermore,
searches are faster because of random access in ArrayDeque. The average case,
where data is inserted or deleted from the middle of the array list or linked list,
takes about the same time to execute for a single operation. This is expected as
right or left shifts are required for an array list and traversal of preceding objects are
required for a linked list. Furthermore, the locality of reference for a linked list is
far poorer than that of an array list causing greater paging overhead with respect to
the CPU cache.

Future work can involve the evaluation of multiple successive calls and main-
tenance of a reference to avoid multiple traversals in a linked list. Using the
Iterator class can speed up the above operation because it maintains references to
the nodes in the linked list. Also, for future work, compiler optimization effects
on performance can be evaluated. The approach adopted in this paper can be
leveraged to evaluate practical performance of data structures implemented in other
programming languages such as the C++ standard template library and compare
and contrast them with the Java Collections framework.

References

1. Oracle JavaSE Documentation, The collections framework (2018), https://docs.oracle.com/
javase/7/docs/technotes/guides/collections/index.html. Accessed 23 June 2020

2. Wikipedia The Free Encyclopedia, Data structure (2020), https://en.wikipedia.org/wiki/
Data_structure. Accessed 23 June 2020

3. Wikipedia The Free Encyclopedia, Linked list (2020), https://en.wikipedia.org/wiki/
Linked_list#Linked_lists_vs._dynamic_arrays. Accessed 23 June 2020

4. C.A. Shaffer, A Practical Introduction to Data Structures and Algorithm Analysis, Second edn.
(Prentice Hall, New Jersey, 2001)

https://docs.oracle.com/javase/7/docs/technotes/guides/collections/index.html
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Linked_list#Linked_lists_vs._dynamic_arrays


508 A. L. Pereira

5. Y.D. Liang, Introduction to Java Programming and Data Structures, Comprehensive Version,
Eleventh edn. (Pearson, New York, 2017)

6. Oracle Learning Library, Java Garbage Collection Basics (2012), https://www.oracle.com/
webfolder/technetwork/tutorials/obe/java/gc01/index.html. Accessed 23 June 2020

7. IBM Knowledge Center, Heap Sizing Problems (2020), https://www.ibm.com/support/
knowledgecenter/SSYKE2_8.0.0/com.ibm.java.vm.80.doc/docs/mm_heapsize_problems.html.
Accessed 26 June 2020

https://www.oracle.com/webfolder/technetwork/tutorials/obe/java/gc01/index.html
https://www.ibm.com/support/knowledgecenter/SSYKE2_8.0.0/com.ibm.java.vm.80.doc/docs/mm_heapsize_problems.html

	Evaluation of Classical Data Structures in the Java Collections Framework
	1 Introduction
	2 Data Structure
	3 Array List
	3.1 Limitations of Array List
	Insertion at the Beginning of an Array List
	Insertion at a Specified Index in an Array List
	Deletion at a Specified Index
	Deletion at the Beginning
	Deletion at the End


	4 Linked List
	4.1 Insertion Operations for a Linked List
	4.2 Deletion Operations for a Linked List

	5 Doubly Linked List
	5.1 Insertion and Deletion Operations for a Doubly Linked List

	6 Performance Evaluation
	6.1 Performance of Insertion Operations
	6.2 Performance of Deletion Operations

	7 Stack
	8 Queue
	9 Conclusion and Future Work
	References


