
Introducing Temporal Behavior to
Computing Science

János Végh

1 Introduction

Computing science is on the border of mathematics and, through its physical imple-
mentation, science. Since the beginning of computing, the computing paradigm
itself, “the implicit hardware/software contract [1]”, defined how mathematics-
based theory and its science-based implementation must cooperate. Mathematics,
however, considers only the dependencies between its operands; it assumes that the
needed operands are instantly available. That is, computing science considers that
performing operations, delivering operands to and from processing units, is as kind
of engineering imperfectness. At the time when von Neumann proposed his famous
abstraction, both time of processing and time of accessing data (including those on
a mass storage device) were in the milliseconds region, while physical data delivery
time was in the range of microseconds, i.e., three orders of magnitude smaller. It
was a plausible assumption to consider that total time of processing comprises only
time of computation plus time of data access; data delivery time was neglected.

For today, however, technical development changed the relations between those
timings drastically. Today the data access time is much larger than the time
needed to process them. Besides, the relative weight of the data transfer time
has grown tremendously, for many reasons. Firstly, miniaturizing the processors
to sub-millimeter size, while keeping the rest of the components (such as buses)
above the centimeter scale. Secondly, the single-processor performance stalled [2],

Project no. 136496 has been implemented with the support provided from the National Research,
Development and Innovation Fund of Hungary, financed under the K funding scheme.

J. Végh (�)
Kalimános BT, Debrecen, Hungary

© Springer Nature Switzerland AG 2021
H. R. Arabnia et al. (eds.), Advances in Software Engineering, Education, and
e-Learning, Transactions on Computational Science and Computational
Intelligence, https://doi.org/10.1007/978-3-030-70873-3_33

471

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70873-3_33&domain=pdf
http://orcid.org/0000-0002-3247-7810
https://doi.org/10.1007/978-3-030-70873-3_33


472 J. Végh

mainly because of reaching the limits, the laws of nature enable [3]. Thirdly,
making truly parallel computers failed [1], and to reach the needed high computing
performance we need to put together an excessive number of segregated processors.
This latter way replaces parallel computing with parallelized sequential computing,
disregarding that the operating rules of that different kind of computing [4–6]
sharply differ from those of the segregated processors. Fourthly, the mode of
utilization (mainly multitasking) forced out using operating system (OS), which
imitates a “new processor” for a new task, at serious time expenses. Finally, the idea
of “real-time connected everything” introduced geographically large distances with
the corresponding several millisecond data delivery times. Theory of computing
kept the idea of “instant delivery”; although even within the core, wiring has an
increasing role. The idea of non-temporal behavior was confirmed by accepting
“weak scaling” [7], suggesting that all housekeeping times, such as organizing
joint work of parallelized serial processors, sharing resources, using exceptions and
OS services, delivering data between processing units and data storage units, are
negligible.

Vast computing systems can cope with their tasks with growing difficulty,
enormously decreasing computing efficiency, and enormously growing energy
consumption; one can experience similar issues in the world of networked edge
devices. Being not aware of that collaboration between processors needs a different
approach (another paradigm), resulted in demonstrative failures already known
(such as supercomputers Gyoukou and Aurora’18, or brain simulator SpiNNaker)1

and many more may follow: such as Aurora’21 [9], the China mystic supercom-
puters2 and the EU planned supercomputers.3 General-purpose computing systems
comprising “only” millions of processors already show the issues, and brain-like
systems want to comprise four orders of magnitude higher number of computing
elements. When targeting neuromorphic features such as “deep learning training”,
the issues start to manifest already at a couple of dozens of processors [10, 11]. The
scaling is nonlinear [5], strongly depending on the workload type, and the Artificial
Intelligence (AI)-class workload is one of the worst workloads [5, 11] one can run
on conventional architectures.4

“Successfully addressing these challenges [of neuromorphic computing] will
lead to a new class of computers and systems architectures” [12]. However, the
roundtable concentrated only on finding new materials and different gate devices.
They did not even mention that for such systems new computing paradigm may

1The explanations are quite different: Gyoukou was withdrawn after its first appearance; Aurora
failed: retargeted and delayed; Despite the failure of SpiNNaker1, the SpiNNaker2 is also under
construction [8]; “Chinese decision-makers decided to withhold the country’s newest Shuguang
supercomputers even though they operate more than 50 percent faster than the best current US
machines”.
2https://www.scmp.com/tech/policy/article/3015997/china-has-decided-not-fan-flames-super-
computing-rivalry-amid-us.
3https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=60156.
4https://www.nextplatform.com/2019/10/30/cray-revamps-clusterstor-for-the-exascale-era/: arti-
ficial intelligence, . . . it’s the most disruptive workload from an I/O pattern perspective.

https://www.scmp.com/tech/policy/article/3015997/china-has-decided-not-fan-flames-super-computing-rivalry-amid-us
https://www.scmp.com/tech/policy/article/3015997/china-has-decided-not-fan-flames-super-computing-rivalry-amid-us
https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=60156
https://www.nextplatform.com/2019/10/30/cray-revamps-clusterstor-for-the-exascale-era/


Introducing Temporal Behavior to Computing Science 473

also be needed. The result was that, as noticed by judges of the Gordon Bell Prize,
“surprisingly, [among the winners of the supercomputer competition] there have
been no brain-inspired massively parallel specialized computers” [13]. Despite the
vast need and investments, furthermore the concentrated and coordinated efforts,
just because of the vital bottleneck: the missing theory.

2 Introducing Time to Computing

As suspected by many experts, the computing paradigm itself, “the implicit
hardware/software contract [1]”, is responsible for the experienced issues: “No
current programming model is able to cope with this development [of processors],
though, as they essentially still follow the classical van Neumann model” [14]. When
thinking about “advances beyond 2020”, the solution was expected from the “more
efficient implementation of the von Neumann architecture” [15], however.

There are many analogies between science and computing [16]; among others,
how they handle time. Both classic science and classic computing assume instant
(infinitely quick) interaction between its objects. That is, an event happening at
any location can be instantly seen at all other locations: time has no specific role,
and an event has immediate effect on all other considered objects. In science,
discovering that the speed of light is insurmountable, led to introducing the four-
dimensional space-time. Special relativity introduces a ‘fourth space dimension’,
and we calculate that coordinate of the Minkowski space from the time as the
distance the light traverses in a given time.

2.1 Why Temporal Logic Is Needed

In computing, distances get defined during fabrication of components and assem-
bling the system. In biological systems, nature defines neuronal distances, and in
‘wet’ neuro-biology, signal timing rather than axon length is the right (measurable)
parameter. To describe temporal operation of computing systems correctly, we need
to find out how much later a component notices that an event occurred in the system.
To introduce a temporal logic (i.e. that value of a logical expression depends on
where and when it is evaluated) into computing, the reverse of Minkowski transform
is required: we need to use a special 4-vector, where all coordinates are time values:
the first three are the corresponding local coordinates (distances from the location of
the event, divided by the speed of interaction) having time dimension, and the fourth
coordinate is the time itself; that is, we introduce a 4 dimensional time-space system.
The resemblance with the Minkowski-space is obvious, and the name difference
signals the different aspects of utilization.

Figure 1a shows why time must be considered explicitly in all kinds of computing.
The figure shows (for visibility) a 3-dimensional coordinate system: how an event



474 J. Végh

behaves in a two-dimensional space plus time (the concept is easier to visualize
with the number of spatial dimensions reduced from three to two). In the figure, the
direction ‘y’ is not used, but enables to place observers at the same distance from
the event, without the need to locate them in the same point. The event happens at
point (0,0,0), the observers are located on the ‘x’ axis; the vertical scale corresponds
to the time.

In the classic physical hypothetical experiment, we switch on a light in the origo,
and the observer switches his light when notices that the first light was switched
on. If we graph the growing circle with the vertical axis of the graph representing
time, the result is a cone, known as the future light cone (in 2D space plus a time
dimension). Both light sources have some “processing time”’, that passes between
noticing the light (receiving the instruction) and switching the light on (performing
the instruction). That is, the instruction is received at the origo, at the bottom of
the green arrow. The light goes on at the head of the arrow, (i.e., at the same
location, but at a later time), after that the ‘processing time’ Tp passed. Following
that, the light propagates in the two spatial dimensions as a circle around axis “t”.
Observers at larger distance notice the light at a later time: a ‘transmission time’ Tt

is needed. If “processing time” of the light source of the first event were zero, the
light would propagate along the gray surface at the origo. However, because of the
finite processing time, the light will propagate along the blueish cone surface, at the
head of the green arrow.

−1
1 2

2

1

x

y

t

(a)

105
106

10710−7 10−6 10−5 10−4

10−4

10−3

10−2

10−1

100

105
106

10710−7 10−6 10−5 4

10−4

10−3

10−2

10−1

100

No of
pro

ces
sor

s

Non − payload/payload

E
f
f
ic

ie
n
cy

TOP500’2020.06

Fugaku

Summit

Sierra

Taihulight

K computer

≈Brain

(b)

Fig. 1 The origin of “idle waiting time” and its effect on the efficiency on parallelized sequential
processing systems. (a) The computing operation in time-space approach. The processing operators
can be gates, processors, neurons or networked computers. (b) The surface and the figure marks
show at what efficiency the top supercomputers run the ‘best workload’ benchmark HPL, and the
‘real-life load’ HPCG [6]. The right bottom part displays the expected efficiency [17] of running
neuromorphic calculations on SPA computers



Introducing Temporal Behavior to Computing Science 475

A circle denotes position of our observer on the axis “x”. With zero “transmission
time”, the second gray conical surface (at the head of the green dotted arrow) would
describe his light. However, its “processing time” can only begin when the observer
notices the light at his position: when the dotted red arrow hits the blueish surface. At
that point begins “processing time” of the second light source; the yellowish conical
surface describes the second light propagation. The horizontal (green dotted) arrow
describes the physical distance of the observer (as a time coordinate), the vertical
(red dotted) arrow describes the time delay of the observer light. It comprises two
components: the Tt transmission time to the observer and its Tp processing time.
The light cone of the observer starts at t = 2 ∗ Tp + Tt .

The red arrow represents the resulting apparent processing time TA: the longer
is the red vector; the slower is the system. As the vectors are in the same plane,

TA =
√

T 2
t + (2 · Tp + Tt )2, that is TA = Tp · √

R2 + (2 + R)2. This means,
that the apparent time is a non-linear function of both of its component times and
their ratio R. If more computing elements are involved, Tt denotes the longest
transmission time. (Similar statement is valid if the Tp times are different) The
effect is significant: if R = 1, the apparent execution time of performing the
two computations is more than 3 times longer than the processing time. Two more
observers are located on the axis ‘x’, at the same position. For visibility, their timings
are displayed at points ‘1’ and ‘2’, respectively. Their results illustrate the influence
of the transmission speed (and/or the ratio R). In their case the transmission speed
differs by a factor of two compared to that displayed at point ‘0’; in this way three
different R = Tt/Tp ratios are displayed.

Notice that at half transmission speed (the horizontal green arrow is twice as long
as that in the origo) the vector is considerably longer, while at double transmission
speed, the decrease of the time is much less expressed.5 Given that the apparent
processing time TA defines the performance of the system, Tp and Tt must be
concerted.

2.2 Consequences of Temporal Behaviour

Notice an important aspect: the Tp transmission time is an ‘idle time’ (the orange
arrow on the figure) for the observer: it is ready to run, takes power, but does
no useful work. Due to their finite physical size and limited interaction speed
(both neglected in the classic paradigm), temporal operation of computing systems
results inherently in an idle time of their processing units,6 and—since it sensitively
depends on many factors and conditions—can be a significant contributor to non-
payload portion of their processing time. With other major contributors, originating

5Reference [6] discusses this phenomenon in details.
6It can be a crucial factor of inefficiency of general-purpose chips [18].



476 J. Végh

Listing 1. The essential lines of source code of the one-bit adder implemented in SystemC
//We are making a 1-bit addition
aANDb = a.read() & b.read();
aXORb = a.read() ^ b.read();
cinANDaXORb = cin.read() & aXORb;

//Calculate sum and carry out
sum = aXORb ^ cin.read();
cout = aANDb | cinANDaXORb;

from their technical implementation (see Sect. 3.2), these “idle waiting” times
sharply decrease payload performance of the systems. Figure 1b depicts how
efficiencies of recent supercomputers depend [6] on the number of single-threaded
processors in the system and the parameter (1 − α), describing non-payload portion
of the corresponding benchmark task. It is known since decades that “this decay
in performance is not a fault of the architecture, but is dictated by the limited
parallelism” [4]; in excessive systems of modern hardware (HW), is also dictated
by laws of nature [16].

Using shorter operands (half precision rather than double precision) reduces TA

non-proportionally: the housekeeping costs (such as fetching, addressing) remain
constant (although the amount of data movement and manipulation decreases). One
expects a four-fold performance increase when using half-precision rather than dou-
ble precision operands [19], and the consumed power consumption data underpin
that expectation. However, the measured increase in computing performance was
only three times higher: the apparent execution time TA and the processing time Tp

differ.

2.3 Example: Temporal Diagram of a 1-Bit Adder

Although for its end-users, the processor is the “atomic unit” of processing,7

principles of computing are valid also at “sub-atomic” level of gate operations.
Describing the temporal operation at gate level is an excellent example, that
the line-by-line compiling (sequential programming, called also Neumann-style
programming [20]), formally introduces only logical dependence, but through
its technical implementation it implicitly and inherently introduces a temporal
behavior, too.

The one-bit adder is one of the simplest circuits used in computing. Its common
implementation comprises 5 logic gates, 3 input signals and 2 output signals. Gates

7The reconfigurable computing, with its customized processors and non-processor-like processing
units, does not change significantly the landscape.



Introducing Temporal Behavior to Computing Science 477

are logically connected internally: they provide input and output for each other. The
relevant fraction of the equivalent source code is shown in Listing 1.

Figures 2a and b show the timing diagram of a one-bit adder, implemented using
common logic gates. The three input signals are aligned on axis y, the five logic
gates are aligned on axis x. Gates are ready to operate as well as signals are ready
to be processed (at the head of the blue arrows). The logic gates have the same
operating time (the length of green vectors), their access time includes the needed
multiplexing. Signals must reach their gate (dotted green arrows), that (after its
operating time passes) produces its output signal, that starts immediately towards the
next gate. Vertical green arrows denote gate processing (one can project the arrow to
axis x to find out the ID of the gate), labelled with the name of the produced signal.
There are “pointless” arrows in the figure. For example, signal a&b reaches the OR

gate much earlier, than the signal to its other input. Depending on the operands of
OR, it may or may not result in the final sum.

Notice, that considering physical distance and finite interaction speed, drastically
changes the picture we have (based on “classic computing”), that the operating time
of an adder is simply the sum of the corresponding “gate times”. For example, the
very first AND and XOR operations could work in parallel (at the same time), but
the difference in their physical distance the signals must travel, changes the times
when they can operate with their signals. Also, compare the temporal behavior of
the signal sum on the two figures. The only difference between subfigures is that
the second XOR gate moved to another place.

a
b

ciXa
Xb

&a
&b

OR

a&b

a ↑b

(a ↑ b&ci)
(a ↑ b ↑ ci)− > sum

sum

((a&b)‖(ci&(a ↑ b)))− > co

co

xy

t

(a)

a
b

ciXa

Xb

&a
&b

OR

a&b

a ↑b

(a ↑ b&ci)

(a ↑ b ↑ ci)− > sum

sum

((a&b)‖(ci&(a ↑ b)))− > co

co

xy

t

(b)

Fig. 2 Temporal diagram of a one-bit adder in time-space system. The diagram shows the logical
equivalent of the SystemC source code of Listing 1., the time from axis x to the bottom of green
arrows signals “idle waiting” time (undefined gate output). Notice how changing position of a gate
affects signal timing. (a) Temporal dependence diagram of a 1-bit adder. The second XOR gate is
at (−1,0) . (b) Temporal dependence diagram of a 1-bit adder. The second XOR gate is at (+1,0).



478 J. Végh

The difference in timing roots not only in the different number of gates involved:
the distance traversed by the signals can contribute equally, and even counterbal-
ance the different number of involved gates. As the co output is the input ci for the
next bit, is must be wired there. The total execution time of, say, a 64-bit adder
shall be optimized at that level, rather than at bit level. Orchestrating temporal
operation through considering both complexity of operation, and positions of signals
and operators, can significantly enhance performance.

The goal of this section and Figs. 2a and b is only to call the attention to
that in addition to the viewpoint of mathematics (using standard gates and logic
functions) and technology (which technology enables to produce smaller gate
times and smaller expenses), also the temporal behavior must be considered, when
designing chips. Even inside a simple adder circuit, the performance can be changed
significantly, only via changing physical distance of gates; in strong contrast with
the “classic computing”.

The meaning of “idle waiting” is slightly changed here, The gates produce valid
output only after they received all of their internally-produced operand(s), plus their
“gate time”, at the head of the corresponding green arrow. The total operating time
of the adder is considerably longer than the sum of operating times of its gates. The
proper positioning of gates (and wiring them) is a point to be considered seriously,
and maybe also the role of gates must be rethought.

2.4 Using New Effect/Technology/Material in Computing
Chain

Given that apparent processing time TA defines performance of the system, Tp

(physical processing time, a vector perpendicular to the XY plane) and Tt (transfer
time, a vector between different planes) must be concerted. In a complex system, it is
not reasonable to fabricate smaller components without decreasing their processing
time proportionally; and similarly, replacing a Processing Unit (PU) with a very
much quicker one has only marginal effect, if the physical distance of the PUs cannot
be reduced proportionally, at the same time.

Figure 3 demonstrates why: two different topologies and two different physical
cache operating speeds are used in the figure. Two cores are in positions (−0.5,0)
and (0.5,0), furthermore two cache memories at (0,0.5) and (0,1). The signal,
requesting to access cache, propagates along the dotted green vector (it changes both
its time and position coordinates), the cache starts to operate only when the green
dotted arrow hits its position. After its operating time (the vertical orange arrow),
the result is delivered back to the requesting core. This time can also be projected
back to the “position axes”, and their sum (red thin arrow) can be calculated. The
physical delivery of the fetched value begins at the bottom of the lower vertical
green arrows, includes waiting and finishes at the head of the upper vertical green
arrows; their distance defines the apparent cache access time TA. Physical cache



Introducing Temporal Behavior to Computing Science 479

MRQ1
MRQ2

MDT1

MDT2

−0.5
0.5

1

2

3

4

x

y

t

(a)

MRQ1
MRQ2

MDT1

MDT2

−0.5
0.5

1

2

3

4

x

y

t

(b)

Fig. 3 Performance dependence of an on-chip cache memory, at different cache operating times,
in the same topology. Cores at x= −0.5 and x=0.5 positions access on-chip cache at y=0.5 and
y=1.0, respectively. Vertical orange arrows represent physical cache operating time, and vertical
green arrows the apparent access time. The physical operations speed of cache memory of the right
subfigure is 10 times better. Compare the apparent access times to the corresponding physical ones
(the time ratio is better only about a factor of two). Notice also that the apparent operating speed
is more sensitive to the position rather than to the speed of the cache memory. (a) Normal speed
cache memory. Two different cache memories, with the same physical cache sped, but at different
internal on-chip cache position. (b) Super-quick (10 times quicker) cache memory. Assumes new
material/physical mechanism. Two different cache memories, with the same physical cache sped,
but at different internal on-chip cache position

access time (the vertical orange arrow) begins when signal reaches the cache. Till
that time, cache is idle waiting. Core is also idle waiting until the requested content
arrives. Notice that apparent processing time is a monotonic function of the physical
processing time, but because of the included—fixed time—‘transmission times’ due
to physical distance of the respective elements, their dependence is far from being
linear. Repeated operation of course can change the idle/to active ratio; one must
consider, however, the resources the signal delivery uses.

The apparent processing time (represented by the distance of the vertical green
arrows) is only slightly affected by the physical speed of the cache memory
(represented by vertical orange arrows). The right subfigure assumes that some new
material/technology/effect decreases access time to one tenth of the time assumed on
the left subfigure. In the figure, the technology (at considerable expenses) improved
physical access time by a factor of ten, but the apparent access speed has improved
only by a factor of less than two. Even if the physical cache time could be reduced
to zero, the apparent access time cannot be reduced below the time defined by the
respective distances/interaction times. Mimicking the biology is useful also here:
the time window, where the decision is made, is of the same size, independently



480 J. Végh

of the path traversed by the signal (the axon length) and the speed of the signal
(conduction velocity); and is in the order of the ‘processing time’ of the neurons.8

A recently proposed idea is to replace slow digital processing with quick analog
processing [21, 22], and may be proposed using any future new physical effect
and/or material, such as in [23]: they decrease Tp, but to make them useful
for computing, their in-component transmission time Tt , and especially inter-
component transmission time must be considerably decreased. Neglecting their
temporal behavior limits the utility of any new method, material or technology, if
they are designed/developed/used in the spirit of the old (timeless) paradigm.

3 Identifying Bottlenecks of Computing Due to Their
Technical Implementation

3.1 Synchronous and Asynchronous Operation

The case depicted in Fig.1a is an asynchronous operation: when the light cone
arrives at the observer, the second processing can start. If we have additional
observers, their T A

t and T B
t may be different, and we have no way to synchronize

their operation. If we have another observer at the point mirrored to the origo, the
light cone arrives at it at about the same T A

t , but to synchronize the operation of the
two observers, we would need Tsynch = Tt + T A

t + T B
t . Instead, we issue another

light cone (a central clock) at the origo (it the case of that light cone, the processing
time is zero, just a rising edge) and observers are instructed to start their processing
when this synchronizing light cone reaches their point of observation.

In the time-space system, not only observers on the surface of the cone, but also
the ones inside the cone, can notice that the first light went on. If Tsynch is large
enough, all observers will notice the first light. After noticing the light, they all can
start their processing at that time t = 2 ∗ Tp + Tsync. Given that both Tp,i and
Tt,i can be different, Tsynch ≥ Tp,i + Tt,i , for any observer i, must be fulfilled.
This time is larger than any of the Tp,i + Tt,i times: for the rest of observers, the
idle time increases. Given that their internal wiring can be very different, we must
choose the clock period according to the “worst-case”. For the rest of observers, this
constraint means a significant increase in their value Tt,i . All observers must wait
for the slowest one. The more observers (and the more steps!), the more waiting.
This effect is considerable even inside the chip (at ≤ cm distances); in the case of
supercomputers, the distance is about 100 m.

A careful analysis [17] discovered that using synchronous computing (using
clock signals) has a significant effect on performance of large-scale systems mim-
icking neuromorphic operation. The performance analysis [25] of large-scale brain

8The biology can change the conduction velocity, that needs energy, so finding an optimum is not
as simple.



Introducing Temporal Behavior to Computing Science 481

simulation facilities demonstrated an exciting parallel between modern science and
large-scale computing. The commonly used 1 ms integration time, limited both the
many-thread software (SW) simulator, running on general-purpose supercomputers,
and the purpose-build HW brain simulator, to the same value of payload perfor-
mance. Similar shall be the case very soon in connection with building the targeted
large-scale neuromorphic systems, despite the initial success of specialized neuronal
chips (such as [26, 27]). Although at a higher value (about two orders of magnitude
higher than the one in [25]), systems built from such chips also shall stall because
of the “quantal nature of time” [16], although using asynchronous operating mode
can slinghtly rearrange the scene.

3.2 The High Speed Serial Bus

Components of technical computing systems (including biology-mimicking neu-
romorphic ones) are connected through a set of wires, called “bus”. The bus is
essentially the physical appearance of the “technical implementation” of commu-
nication, stemming from the SPA, as illustrated in Fig. 4. The inset shows a simple
neuromorphic use case: one input neuron and one output neuron communicating
through a hidden layer, comprising only two neurons. Figure 4a mostly shows the
biological implementation: all neurons are directly wired to their partners, i.e.,
a system of “parallel buses” (axons) exists. Notice that the operating time also
comprises two non-payload times (Tt ): data input and data output, which coincide
with the non-payload time of the other communication party. The diagram displays
logical and temporal dependencies of the neuronal functionality. The payload
operation (“the computing”) can only start after data is delivered (by the, from this
point of view, non-payload functionality: input-side communication), and output
communication can only begin when the computing finished. Importantly, com-
munication and calculation mutually block each other. Two important points that
neuromorphic systems must mimic noticed immediately: i/ the communication time
is an integral part of the total execution time, and ii/ the ability to communicate is a
native functionality of the system. In such a parallel implementation, performance
of the system, measured as the resulting total time (processing + transmitting),
scales linearly with increasing both non-payload communication speed and payload
processing speed.

Figure 4b shows a technical implementation of a high-speed shared bus for
communication. To the right of the grid, the activity that loads the bus at the given
time is shown. A double arrow illustrates communication bandwidth, the length of
which is proportional to the number of packages the bus can deliver in a given time
unit. We assume that the input neuron can send its information in a single message
to the hidden layer, furthermore, that the processing by neurons in the hidden layer
both starts and ends at the same time. However, the neurons must compete for
accessing the bus, and only one of them can send its message immediately, the
other(s) must wait until the bus gets released. The output neuron can only receive the



482 J. Végh

x

a1 a2

y

In
pu

t
L
ay
er

H
id
de

n
L
ay
er

O
ut
pu

t
L
ay
er

Neuron

T
im

e(
n
ot

p
ro

p
or

ti
on

a
l)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

A
Parallel buses

Linear communication/processing

N0 N1 N2 N3

T
0,
in

P
ro

ce
ss

0
T
0,
o
u
t

T
1,
in

P
ro

ce
ss

1
T
1,
o
u
t

T
2,
in

P
ro

ce
ss

2
T
2,
o
u
t

T
3,
in

P
ro

ce
ss

3
T
3,
o
u
t

T
ot

a
l
ti

m
e

Neuron

T
im

e(
n
ot

p
ro

p
or

ti
on

a
l)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

B
Sequential bus

Communication bound; nonlinear

N0 N1 N2 N3 B
U

S

T
0,
in

T
0,
in

P
ro

ce
ss

0
T
0,
o
u
t

T
0,
o
u
t

T
1,
in

P
ro

ce
ss

1

T
2,
in

P
ro

ce
ss

2

T
1,
o
u
t

T
2,
o
u
t

T
1,
o
u
t

T
2,
o
u
t

T
3,
in

T
3,
in

P
ro

ce
ss

3
T
3,
o
u
t

T
3,
o
u
t

T
ot

a
l
ti

m
e

B
a
n
d
w

id
th

B
a
n
d
w

id
th

Neuron

T
im

e(
n
ot

p
ro

p
or

ti
on

a
l)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

C
Sequential bus

Communication roofline; nonlinear

N0 N1 N2 N3 B
U

S

T
0,
in

T
0,
in

P
ro

ce
ss

0
T
0,
o
u
t

T
0,
o
u
t

T
1,
in

P
ro

ce
ss

1

T
2,
in

T
1,
o
u
t

P
ro

ce
ss

2

T
1,
o
u
t

T
2,
o
u
t

T
3,
in

T
3,
in

T
2,
o
u
t

T
3,
in

T
3,
in

P
ro

ce
ss

3

T
3,
o
u
t

T
3,
o
u
t

T
ot

a
l
ti

m
e

B
a
n
d
w

id
th

B
a
n
d
w

id
th

Fig. 4 Implementing neuronal communication in different technical approaches. (a): the parallel
bus; (b) and (c): the shared serial bus, before and after reaching the communication “roofline” [24]

message when the first neuron completed it. Furthermore, the output neuron must
first acquire the second message from the bus, and the processing can only begin
after having both input arguments. This constraint results in sequential bus delays
both during non-payload processing in the hidden layer and payload processing in
the output neuron. Adding one more neuron to the layer, introduces one more delay.

Using the formalism introduced above, Tt = 2 · TB + Td + X, i.e., the bus must
be reached in time TB (not only the operand delivered to the bus, but also waiting
for arbitration: the right to use the bus), twice, plus the physical delivery through the
bus. The X denotes “foreign contribution”: if the bus is not dedicated for “neurons
in this layer only”, any other traffic also loads the bus: both messages from different
layers and the general system messages may make processing slower.

Even if only one single neuron exists in the hidden layer, it must use the
mechanisms of sharing the bus, case by case. The physical delivery to the bus takes
more time than a transfer to a neighboring neuron (both the arbiter and the bus
are in cm distance range). If we have more neurons (such as a hidden layer) on
the bus, and they work in parallel, they all must wait for the bus. The high-speed
bus is very slightly loaded when only a couple of neurons are present, and its load
increases linearly with the number of neurons in the hidden layer (or, maybe, all
neurons in the system). The temporal behavior of the bus, however, is different.
Under the biology-mimicking workload, the second neuron must wait for all its
inputs originating in the hidden layer. If we have L neurons in the hidden layer, the
transmission time of the neuron behind the hidden layer is Tt = L · 2 ·TB +Td +X.
This temporal behavior explains why “shallow networks with many neurons per
layer . . . scale worse than deep networks with less neurons” [10]: the physical bus
delivery time Td , as well as the processing time Tp, become marginal if the layer



Introducing Temporal Behavior to Computing Science 483

forces to make many arbitrations to reach the bus: the number of the neurons in
the hidden layer defines the transfer time (Recall Fig. 1a for the consequences of
increasing the transfer time). In deeper networks, the system sends its messages
at different times in different layers (and, even they may have independent buses
between the layers), although the shared bus persists in limiting the communication.
Notice that there is no way to organize the message traffic: only one bus exists.

Figure 5 discusses, in terms of “temporal logic”, the case depicted in the inset
in Fig. 4 (where the same operation is discussed in conventional terms): why using
high-speed buses for connecting modern computer components leads to very severe
performance loss, especially when one attempts to imitate neuromorhic operation.
The two neurons of the hidden layer are positioned at (−0.3,0) and (0.6,0). The bus
is at position (0,0.5). The two neurons make their computation (green arrows at the
position of neurons), then they want to tell their result to fellow neurons. Unlike in
biology, first they must have access to the shared bus (red arrows). Core at (−.3,0)
is closer to the bus, so its request is granted. As soon as the grant signal reaches
requesting core, the bus operation is initiated, and the data starts to travel to the bus.
As soon as it reaches the bus, it is forwarded by the high speed of the bus, and at
that point bus request of the other core is granted, and finally, also calculated result
of the second neuron is bused.

At this point comes into picture the role of the workload on the system: the two
neurons in the hidden layer want to use the single shared bus, at the same time,
for communication. As a consequence, the apparent processing time is several
times higher, than the physical processing time, and it increases linearly with the
number of neurons in the hidden layer (and maybe with also the total number of
neurons in the system, if a single high-speed bus is used). In vast systems, especially
when attempting to mimic neuromorphic workload, the speed of the bus is getting
marginal. Notice that times shown in the figure are not proportional: the (temporal)
distances between cores are in the several picoseconds range, while the bus (and the
arbiter) are at a distance well above nanoseconds, so the actual temporal behavior
(and the idle time stemming from it) is much worse than the figure suggests. This

Fig. 5 The operation of the
sequential bus, in time-space
coordinate system system.
Near to axis t, the lack of
vertical arrows signals “idle
waiting” time

BRQ1

BGT1

BRQ2

Bdt1

BGT2

Bdt2

−0.4 −0.2 0.2 0.4 0.6

1
2

3

4

x

y

t



484 J. Végh

is why “The idea of using the popular shared bus to implement the communication
medium is no longer acceptable, mainly due to its high contention” [28]. The figure
suggests to use another design principle instead of using the bus exclusively, directly
from the position of the computing component (Fig. 5).

Given that the bus bandwidth is finite, there comes the point when the amount of
messages exceeds the available bus bandwidth. Figure 4c demonstrates the case,
where for better visibility, the bus bandwidth is lower, but the required packet
bandwidth slice is the same. In this case, the second neuron in the hidden layer
cannot send its message when the first one finishes its transmission: the bus
transmission roofline [24] is reached. In that case the transmission time shall be
extended with a new term Tt = (B + L) · 2 · TB + Td + X, where B is the
number of messages above the number of messages that the bus can deliver in a
unit time. Reaching the roofline causes further extra delay in both non-payload and
payload processing times, extending the total execution time. A single sequential
bus can deliver messages only one after the other, i.e., increasing number of neurons
increases utilization of the bus and prolongs total execution time as well as apparent
processing time of the individual neurons. This effect can be so strong in large
systems, that emergency measures must have been introduced: the events “are
processed as they come in and are dropped if the receiving process is busy over
several delivery cycles” [25].

When using a shared bus, increasing either processing speed or communication
speed does not affect linearly the total execution time any more. Furthermore, it
is not the bus speed that limits performance. Recall Fig. 1a again, to see, how
the time projection of a relatively small increase in the transfer time Tt can lead
to a relatively large change in the value of apparent processing time TA; and so

Proc1
Proc2

Res1

Res2

−0.5 0.5 1

1
2

2

4

x

y

t

(a)

1993 2018
(Sunway/Taihulight)

α = 1− 1 · 10−3 α = 1− 3.3 · 10−8

Total = 1013 clocks

Ncores = 103 Ncores = 107

RMax

RPeak
= 1

N ·(1−α)+α

= 1
103·10−3+1

= 0.5

RMax

RPeak
= 1

N ·(1−α)+α

= 0.74

Proc

T
im

e(
n
ot

p
ro

p
or

ti
on

a
l)

0

1

2

3

4

5

6

7

8

9

10

α =
Payload

Total
P0 P1 P2 P3 P4

AccessInitiation

SoftwarePre

OSPre

T
0

P
D

00
P

ro
ce

ss
0

P
D

01

T
1

P
D

10
P

ro
ce

ss
1

P
D

11

T
2

P
D

20
P

ro
ce

ss
2

P
D

21

T
3

P
D

30
P

ro
ce

ss
3

P
D

31

T
4

P
D

40
P

ro
ce

ss
4

P
D

41

Just waiting

Just waiting
OSPost

SoftwarePost

AccessTermination

P
a
y
lo

a
d T

ot
a
l

E
x
te

n
d
ed

(b)

Fig. 6 The parallelized sequential operation as described in the proposed time-space system, with
its simplified, non-technical model [6]. (a) Time diagram of parallelized sequential operation in
time-space. (a) A non-technical, simplified model of parallelized sequential computing operations.
Notice the different nature of those contributionsand that they have only one common feature: they
all consume time. The vertical scale displays the actual activity for processing units shown on the
horizontal scale



Introducing Temporal Behavior to Computing Science 485

leads to incomprehensible slowdown of the system: the slowest component defines
efficiency. Conventional way of communication may work fine as long as there is
no competition for the bus, but leads to queuing of messages in the case of (more
than one!) independent sources of communication. The bursty nature, caused by the
need of central synchronization, tops the effect, and leads to a “communicational
collapse” [29], that denies huge many-processor systems, especially neuromorphic
ones [30].

To have a chance to connect a large number of computing units in biology-
mimicking systems, drastically new bus system and drastically new traffic organi-
zation is required [31]. Using a single high-speed bus greatly contributes to the
experienced very low efficiency of Artificial Neural Network (ANN)s [5], and finally
that “Core progress in AI has stalled in some fields” [32].

3.3 Parallelized Sequential Processing

Present technical approaches assume a linear dependence between payload and
nominal performances of computing systems as “Gustafson’s formulation [7] gives
an illusion that as if N [the number of the processors] can increase indefinitely” [33].
The fact that “in practice, for several applications, the fraction of the serial part
happens to be very, very small thus leading to near-linear speedups” [33] (see also
value of α in Fig. 1b), however, misled the researchers. Gustafson’s “linear scaling”
neglects all non-payload contributions entirely, including the temporal behavior of
the components. He established his conclusions on only several hundred processors.
The interplay of improving parallelization and general HW development (including
non-determinism of modern HW [34]) covered for decades that weak scaling
was used far outside of its range of validity [5]. In our terminology, Gustafson’s
assumption means that Tt = 0, which is not the case, in any computing system,
and especially not in the case of neuromorphic computing systems. As pointed out
above, having idle time in computing systems is inevitable; the vastly increased
number of idle cycles due to physical size and operating mode of computing systems
led to the effects detailed above.

Figure 6a depicts temporal diagram of distributed parallel processing in the
introduced time-space system. One of the PUs (in our case the one at (0,0.5))
orchestrates the operation, including receiving the start command and returning
the result. This core makes some sequential operations (such as initializing data
structures, short green arrow), then it sends the start command and operands to
fellow cores at (−0.5,0) and (1,0), one after the other. Signal propagation takes time
(depending on distance from the coordinator), and after that time, fellow cores can
start their calculation (their part of the parallelized portion). Of course, orchestrator
PU must start all fellow PUs (red arrows), then it can start its portion of distributed
processing. In the case of large number of fellow processors, it may be advantageous



486 J. Végh

if the coordinator does not have its own portion of parallelizable code:9 executing
that code may delay receiving results from the fellow processors.

As fellow PUs finish their portion, they must transmit their data Resi to the
orchestrator, that receives those data in sequential mode, and finally makes some
closing sequential processing. Again, the inherently sequential-only portion [35] of
the task increases with number of cores and its idle waiting time (time delay of
signals) increases with physical size (cable length). The times shown in the figure
are not proportional, and largely depend on type of the system. For example, in
supercomputers, total calculation time is in the hours range, number of red arrows
(without clustering) can be up to several millions, and the delay, due to the finite
speed of signal propagation, in several thousand clock cycles (in the case of using
Ethernet networks, several millions).

Notice, that the figures assume no dependence (such as logical dependence on
sharing physical resources) between the computing objects (threads), and especially
not the case when several SW threads share the same PU. Notice also, that the
orchestrating PU must wait results from all fellow PUs, i.e. the slowest branch
defines performance.

Amdahl listed [36] different reasons why losses in “computational load” can
occur. Fortunately, Amdahl’s idea enables us to put everything that cannot be paral-
lelized, i.e., distributed between the fellow processing units, into the sequential-only
fraction. For describing the parallel operation of sequentially working units, the
model depicted in Fig. 6b was prepared. The technical implementations of the
different parallelization methods show up virtually infinite variety [37], so we
present here a (by intention) strongly simplified, non-technical, model. The model
has some obvious limitations, among others, because of the non-determinism of
modern HW systems [34, 38].

In addition to “idle time”s discussed above, the serialized parallel processing
adds one more contribution. Even the simplest (parallelized sequential) task has
a non-parallelizable portion of time, that—according to Amdahl’s Law—limits
the achievable payload computing performance. Here the sequential bus and the
transmission delay play a role, again. Because, in the SPA, the initiating processor
can address only one processor (or through clustering: only a few of them), the other
processors must make additional idle waiting: the loop to address them takes time,
and the cable length significantly increases their Tt . This effect, however, comes
to light only at a relatively high number of cores and real-life workloads. At a
lower number of cores and HPL-class benchmarks, only a slight deviation from
the linearity, predicted by the “weak scaling”, can be noticed.

The right subfigure in Fig. 7 displays the payload performance of a many-
processor SPA system when executing different workloads (that define the non-
payload to payload ratio); for the math details see [6, 16]. The top diagram
lines represent the best payload performance that the supercomputers can achieve
when running the benchmark HPL, which represents the minimum communication

9For examples see the architectures of supercomputers T aihulight and Summit .



Introducing Temporal Behavior to Computing Science 487

105 106 107 108
106

107

108

time(s)

sp
ee

d
(m

/s
)

Relativistic speed of body accelerated by ’g’

v(t), n = 1
v(t), n = 2.5
v(t), n = 5

10−5 10−4 10−3 10−2 10−1 100
10−5

10−4

10−3

10−2

10−1

100

Nominal performance (EFlops)

Pa
yl
oa
d
pe
rf
or
m
an
ce

(E
Fl
op
s)

Payload performances of N cores @100GFlops

1-alpha = 1e − 10
1-alpha = 1e − 8
1-alpha = 1e − 7
1-alpha = 1e − 6
1-alpha = 1e − 5
1-alpha = 1e − 4

Fig. 7 The limiting effect considered in the “modern” theories. One left side, the speed limit, as
explained by the theory of relativity, is illustrated. The refractory index of the medium defines
the value of the speed limit. On the right side, the payload performance limit of the parallelized
sequential computing systems, as explained by the “modern paradigm”, is illustrated. The ratio of
the non-payload to payload processing defines the value of the payload performance

a parallelized sequential system needs. The bottom diagram line represents the
estimation of the payload performance that neuromorphic-type processing can
achieve in SPA systems (See also Fig. 1b). Notice the similarity with the left
subfigure: under extreme conditions, in the science, an environment-dependent
speed limit exist, and in computing, a workload-dependent payload performance
limit exists [16].

To have hopes to significantly increase computing performance of our present
cutting-edge conventional and future neuromorphic computing systems, principle
other than parallelizing otherwise sequentially processing systems, must be discov-
ered. The recent paradigm leads to not only inherent performance limits, but also to
irrationally high power consumption.

3.4 Communication

One of the worst computing performance limiting factors is the method of com-
munication between processors, which increases exponentially with increasing
complexity/number. Historically, in the model of computing proposed by von
Neumann, there was one single entity, an isolated (non-communicating) proces-
sor, whereas in bio-inspired models, billions of entities, organized into specific
assemblies, cooperate via communication. (Communication here means not only
sending data, but also sending/receiving signals, including synchronization of the
operation of entities.) Neuromorphic systems, expected to perform tasks in one
paradigm, but assembled from components manufactured using principles of (and
implemented by experts trained in) the other paradigm, are unable to perform at
the required speed and efficacy for real-world solutions. The larger the system, the
higher the communication load and the performance debt. With reference to Fig. 1a,



488 J. Végh

time contribution of the communication is part of the processing time Tp, although
the overwhelming part of it could be done in parallel with the computing activity.
This feature both decreases available processing capacity of a neuron, and strongly
changes value of R. More importantly, it must use communication facilities through
Input/Output (I/O) instructions, wasting a massive amount of time for that.

4 The Effect of Temporal Behavior on Scaling

Dependence of payload performance on nominal performance in many-many
processor systems is strongly nonlinear at higher performance values (implemented
using a large number of processors). This effect is especially disadvantageous for
networks, such as neuromorphic ones, that show up non-proportionally much idle
wait time, mainly because of the reasons presented above. The linear dependence
at low nominal performance values explains why initial successes of any new
technology, material or method in the field, using the classic computing model,
can be misleading: in simple cases classic paradigm performs tolerably well thanks
to that compared to biological neural networks, current neuron/dendrite models are
simple, the networks small and learning models appear to be rather basic.

The biology is aware of that the transmission time is a crucial part of the
processing. “Importantly, distally projecting axons of long-range interneurons have
several-fold thicker axons and larger diameter myelin sheaths than do pyramidal
cells, allowing for considerably faster axon conduction velocity” [39]. Faster
conduction increases the energy consumption of a cell (needing more myelin),
but it prevents a race condition between the signals. The biology “wastes” extra
energy only when required, and here there appears the need to refine the “fire
and wire together” operating principle with modulating the conduction velocity.
The surprising resemblance between Fig. 8a and Fig. 7 in [39] also underlines
the importance of making a clear distinction between handling ‘near’ and ‘far’
signals. Although the Inter-Core Communication Block (ICCB) blocks in the
biology-mimicking architecture [31] can adequately represent ‘locally connected’
interneurons and the ‘G’ gateway the ‘long-range interneurons’, the biological
conduction time must be separately maintained. Computer technology cannot speed
up communication selectively, as biology does, and it is not worth to slow it
down selectively. Making time-stamps and relying on computer network delivery
principles is not sufficient: temporal behavior is a vital feature of biology-mimicking
systems and we must not replace them with synchronization principles of computing.

5 Summary

Statements such as “The von Neumann architecture is fundamentally inefficient
and non-scalable for representing massively interconnected neural networks” [40]



Introducing Temporal Behavior to Computing Science 489

Inter-ICCB Communication
(Local Neuron Communication)

Inter-Cluster Communication
(Distant Neuron Communication)

A

G,M

(a)

B

ICCB =Inter-Core
Communication Block

M Memory handling/bus

G Gateway handling/bus

M G

N

NW

SW

S

SE

NE

(b)

Fig. 8 The communication scheme between local and farther neurons, as can be implemented
in technically [31]. (a) The conceptual communication diagram (compare to Fig. 7 in [39]),
mimicking the communication between local neurons the farther neurons. (b) The proposed
implementation: the Inter-Core Communication Blocks represent a “local bus” (directly wired,
with no contention), while the cores can communicate with the cores in other clusters through the
‘G’ gateway as well as the ‘M’ (local and global) memory

should be modified like this “the architectures based on the non-temporal abstrac-
tion proposed by von Neumann”. Especially the figures above, provide a very clear
pointer: to make efficient and large systems (including neuromorphic ones), the
fundamental principles of operation of computing, communication, including the
bus system and principle of handling messages, as well as the cooperation between
processors, must be scrutinized and drastically changed. Comprehending the timely
behavior of the components can serve as a good starting point to do so.

References

1. K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan,
D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, K. Yelick, A view of the parallel computing
landscape. Commun. ACM 52(10), 56–67 (2009)

2. US National Research Council, The Future of Computing Performance: Game Over or
Next Level? (2011). [Online]. Available: http://science.energy.gov/~/media/ascr/ascac/pdf/
meetings/mar11/Yelick.pdf

3. I. Markov, Limits on fundamental limits to computation. Nature 512(7513), 147–154 (2014)
4. J.P. Singh, J.L. Hennessy, A. Gupta, Scaling parallel programs for multiprocessors: Methodol-

ogy and examples. Computer 26(7), 42–50 (1993)

http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/mar11/Yelick.pdf
http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/mar11/Yelick.pdf


490 J. Végh

5. J. Végh, Which scaling rule applies to Artificial Neural Networks, in Computational Intelli-
gence (CSCE) The 22nd Int’l Conf on Artificial Intelligence (ICAI’20) (IEEE, 2020). Accepted
ICA2246, in print. [Online]. Available: http://arxiv.org/abs/2005.08942

6. J. Végh, Finally, how many efficiencies the supercomputers have? J. Supercomput. (2020).
[Online]. Available: https://doi.org/10.1007%2Fs11227-020-03210-4

7. J.L. Gustafson, Reevaluating Amdahl’s law. Commun. ACM 31(5), 532–533 (1988)
8. C. Liu, G. Bellec, B. Vogginger, D. Kappel, J. Partzsch, F. Neumäker, S. Höppner, W. Maass,

S.B. Furber, R. Legenstein, C.G. Mayr, Memory-efficient deep learning on a SpiNNaker 2
prototype. Frontiers Neurosci. 12, 840 (2018). [Online]. Available: https://www.frontiersin.
org/article/10.3389/fnins.2018.00840

9. Top500.org, Retooled Aurora Supercomputer Will Be America’s First Exascale System
(2017). https://www.top500.org/news/retooled-aurora-supercomputer-will-be-americas-first-
exascale-system/

10. J. Keuper, F.-J. Preundt, Distributed training of deep neural networks: Theoretical and practical
limits of parallel scalability, in 2nd Workshop on Machine Learning in HPC Environments
(MLHPC) (IEEE, 2016), pp. 1469–1476. [Online]. Available: https://www.researchgate.net/
publication/308457837

11. J. Végh, How deep the machine learning can be, ser. A Closer Look at Convolutional Neural
Networks (Nova, In press, 2020), pp. 141–169. [Online]. Available: https://arxiv.org/abs/2005.
00872

12. US DOE Office of Science, Report of a Roundtable Convened to Consider Neuromor-
phic Computing Basic Research Needs (2015). https://science.osti.gov/-/media/ascr/pdf/
programdocuments/docs/Neuromorphic-Computing-Report_FNLBLP.pdf

13. G. Bell, D.H. Bailey, J. Dongarra, A.H. Karp, K. Walsh, A look back on 30 years of the
Gordon Bell Prize. Int. J. High Performance Comput. Appl. 31(6), 469–484 (2017). [Online].
Available: https://doi.org/10.1177/1094342017738610

14. S(o)OS project, Resource-independent execution support on exa-scale systems (2010). http://
www.soos-project.eu/index.php/related-initiatives

15. Machine Intelligence Research Institute, Erik DeBenedictis on supercomputing (2014).
[Online]. Available: https://intelligence.org/2014/04/03/erik-debenedictis/

16. J. Végh, A. Tisan, The need for modern computing paradigm: Science applied to computing,
in Computational Science and Computational Intelligence CSCI The 25th Int’l Conf on
Parallel and Distributed Processing Techniques and Applications (IEEE, 2019), pp. 1523–
1532. [Online]. Available: http://arxiv.org/abs/1908.02651

17. J. Végh, How Amdahl’s Law limits the performance of large artificial neural networks. Brain
Informatics 6, 1–11 (2019). [Online]. Available: https://braininformatics.springeropen.com/
articles/10.1186/s40708-019-0097-2/metrics

18. R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B.C. Lee, S. Richardson,
C. Kozyrakis, M. Horowitz, Understanding sources of inefficiency in general-purpose chips,
in Proceedings of the 37th Annual International Symposium on Computer Architecture, ser.
ISCA ’10 (ACM, New York, NY, USA, 2010), pp. 37–47. [Online]. Available: http://doi.acm.
org/10.1145/1815961.1815968

19. A. Haidar, P. Wu, S. Tomov, J. Dongarra, Investigating half precision arithmetic to accelerate
dense linear system solvers, in Proceedings of the 8th Workshop on Latest Advances in Scalable
Algorithms for Large-Scale Systems, ser. ScalA ’17 (ACM, New York, NY, USA, 2017),
pp. 10:1–10:8

20. J. Backus, Can programming languages be liberated from the von Neumann Style? A functional
style and its algebra of programs. Commun. ACM 21, 613–641 (1978)

21. E. Chicca, G. Indiveri, A recipe for creating ideal hybrid memristive-CMOS neuromorphic
processing systems. Appl. Phys. Lett. 116(12), 120501 (2020). [Online]. Available: https://doi.
org/10.1063/1.5142089

22. Building brain-inspired computing. Nature Communications 10(12), 4838 (2019). [Online].
Available: https://doi.org/10.1038/s41467-019-12521-x

http://arxiv.org/abs/2005.08942
https://doi.org/10.1007%2Fs11227-020-03210-4
https://www.frontiersin.org/article/10.3389/fnins.2018.00840
https://www.frontiersin.org/article/10.3389/fnins.2018.00840
https://www.top500.org/news/retooled-aurora-supercomputer-will-be-americas-first-exascale-system/
https://www.top500.org/news/retooled-aurora-supercomputer-will-be-americas-first-exascale-system/
https://www.researchgate.net/publication/308457837
https://www.researchgate.net/publication/308457837
https://arxiv.org/abs/2005.00872
https://arxiv.org/abs/2005.00872
https://science.osti.gov/-/media/ascr/pdf/programdocuments/docs/Neuromorphic-Computing-Report_FNLBLP.pdf
https://science.osti.gov/-/media/ascr/pdf/programdocuments/docs/Neuromorphic-Computing-Report_FNLBLP.pdf
https://doi.org/10.1177/1094342017738610
http://www.soos-project.eu/index.php/related-initiatives
http://www.soos-project.eu/index.php/related-initiatives
https://intelligence.org/2014/04/03/erik-debenedictis/
http://arxiv.org/abs/1908.02651
https://braininformatics.springeropen.com/articles/10.1186/s40708-019-0097-2/metrics
https://braininformatics.springeropen.com/articles/10.1186/s40708-019-0097-2/metrics
http://doi.acm.org/10.1145/1815961.1815968
http://doi.acm.org/10.1145/1815961.1815968
https://doi.org/10.1063/1.5142089
https://doi.org/10.1063/1.5142089
https://doi.org/10.1038/s41467-019-12521-x


Introducing Temporal Behavior to Computing Science 491

23. P. Cadareanu, et al., Rebooting our computing models, in Proceedings of the 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE) (IEEE Press, 2019), pp. 1469–
1476

24. S. Williams, A. Waterman, D. Patterson, Roofline: An insightful visual performance model for
multicore architectures. Commun. ACM 52(4), 65–76 (2009)

25. S.J. van Albada, A.G. Rowley, J. Senk, M. Hopkins, M. Schmidt, A.B. Stokes, D.R. Lester,
M. Diesmann, S.B. Furber, Performance comparison of the digital neuromorphic hardware
SpiNNaker and the neural network simulation software NEST for a full-scale cortical
microcircuit model. Frontiers Neurosci. 12, 291 (2018)

26. F. Akopyan, Design and tool flow of IBM’s TrueNorth: An ultra-low power programmable
neurosynaptic chip with 1 million neurons, in Proceedings of the 2016 on International
Symposium on Physical Design, ser. ISPD ’16 (ACM, New York, NY, USA, 2016), pp. 59–
60. [Online]. Available: http://doi.acm.org/10.1145/2872334.2878629

27. M. Davies, et al, Loihi: A neuromorphic manycore processor with on-chip learning. IEEE
Micro 38, 82–99 (2018)

28. L. de Macedo Mourelle, N. Nedjah, F.G. Pessanha, Reconfigurable and Adaptive Computing:
Theory and Applications, ch. 5: Interprocess Communication via Crossbar for Shared Memory
Systems-on-chip (CRC press, 2016)

29. S. Moradi, R. Manohar, The impact of on-chip communication on memory technologies for
neuromorphic systems. J. Phys. D Appl. Phys. 52(1), 014003 (2018)

30. S.B. Furber, D.R. Lester, L.A. Plana, J.D. Garside, E. Painkras, S. Temple, A.D. Brown,
Overview of the SpiNNaker system architecture. IEEE Trans. Comput. 62(12), 2454–2467
(2013)

31. J. Végh, How to extend the Single-Processor Paradigm to the Explicitly Many-Processor
Approach, in 2020 CSCE, Fundamentals of Computing Science (IEEE, 2020). Accepted
FCS2243, in print. [Online]. Available: https://arxiv.org/abs/2006.00532

32. M. Hutson, Core progress in AI has stalled in some fields. Science 368, 6494/927 (2020)
33. Y. Shi, Reevaluating Amdahl’s Law and Gustafson’s Law (1996). https://www.researchgate.

net/publication/228367369_Reevaluating_Amdahl’s_law_and_Gustafson’s_law
34. V. Weaver, D. Terpstra, S. Moore, Non-determinism and overcount on modern hardware

performance counter implementations, in 2013 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pp. 215–224 (April 2013)

35. F. Ellen, D. Hendler, N. Shavit, On the inherent sequentiality of concurrent objects. SIAM J.
Comput. 43(3), 519–536 (2012)

36. G.M. Amdahl, Validity of the single processor approach to achieving large-scale computing
capabilities,” in AFIPS Conference Proceedings, vol. 30, pp. 483–485 (1967)

37. K. Hwang, N. Jotwani, Advanced Computer Architecture: Parallelism, Scalability, Pro-
grammability, 3rd edn. (McGraw Hill, 2016)

38. P. Molnár, J. Végh, Measuring performance of processor instructions and operating system
services in soft processor based systems, in 18th Internat. Carpathian Control Conf. ICCC,
pp. 381–387 (2017)

39. G. Buzsáki, X.-J. Wang, Mechanisms of gamma oscillations. Ann. Rev. Neurosci. 3(4), 19:1–
19:29 (2012)

40. J. Sawada et al., TrueNorth ecosystem for brain-inspired computing: Scalable systems,
software, and applications, in SC ’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 130–141 (2016)

http://doi.acm.org/10.1145/2872334.2878629
https://arxiv.org/abs/2006.00532
https://www.researchgate.net/publication/228367369_Reevaluating_Amdahl's_law_and_Gustafson's_law
https://www.researchgate.net/publication/228367369_Reevaluating_Amdahl's_law_and_Gustafson's_law

	Introducing Temporal Behavior to Computing Science
	1 Introduction
	2 Introducing Time to Computing
	2.1 Why Temporal Logic Is Needed
	2.2 Consequences of Temporal Behaviour
	2.3 Example: Temporal Diagram of a 1-Bit Adder
	2.4 Using New Effect/Technology/Material in Computing Chain

	3 Identifying Bottlenecks of Computing Due to Their Technical Implementation
	3.1 Synchronous and Asynchronous Operation
	3.2 The High Speed Serial Bus
	3.3 Parallelized Sequential Processing
	3.4 Communication

	4 The Effect of Temporal Behavior on Scaling
	5 Summary
	References


