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1 Introduction

Physical implementations of a computer processor in the 70-year old computing
paradigm have several limitations [1]. As the time passes, more and more issues
come to light, but development of processor, the central element of a computer,
could keep pace with the growing demand on computing till some point. Around
2005 it became evident that the price paid for keeping Single Processor Approach
(SPA) paradigm [2], (as Amdahl coined the wording), became too high. “The
implicit hardware/software contract, that increases transistor count and power
dissipation, was OK as long as architects maintained the existing sequential pro-
gramming model. This contract led to innovations that were inefficient in transistors
and power—such as multiple instruction issue, deep pipelines, out-of-order exe-
cution, speculative execution, and prefetching—but which increased performance
while preserving the sequential programming model” [3]. The conclusion was that
“new ways of exploiting the silicon real estate need to be explored” [4].

“Future growth in computing performance must come from parallelism” [5] is
the common point of view. However, “when we start talking about parallelism and
ease of use of truly parallel computers, we’re talking about a problem that’s as
hard as any that computer science has faced” [3]. Mainly because of this, parallel
utilization of computers could not replace the energy-wasting solutions introduced
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to the formerly favorited single-thread processors. They remained in the Multi-Core
and/or Many-Core (MC) processors, greatly contributing to their dissipation and,
through this, to the overall crisis of computing [6].

Computing paradigm itself, the implicit hardware/software contract, was sus-
pected even more explicitly: “Processor and network architectures are making rapid
progress with more and more cores being integrated into single processors and
more and more machines getting connected with increasing bandwidth. Processors
become heterogeneous and reconfigurable . . . No current programming model is
able to cope with this development, though, as they essentially still follow the
classical van Neumann model” [7]. On one side, when thinking about “advances
beyond 2020”, the solution was expected from the “more efficient implementation
of the von Neumann architecture” [8]. On the other side, there are statements such
as “The von Neumann architecture is fundamentally inefficient and non-scalable for
representing massively interconnected neural networks” [9].

In our other works [10–13] we have pointed out that one of the major reasons is
neglecting the temporal behavior of computing components. The other major reason
is, that the architecture developed for that classic paradigm is development-unaware,
and cannot be equally good for the present needs and the modern paradigm.
These two reasons together represent the major bottleneck—among others—to
build supercomputers having reasonable efficiency in solving real-life tasks and
biology-mimicking systems with the required size and efficiency, such as Artificial
Intelligence (AI)s [14, 15] and brain simulators [16]. The interplay of these two
reasons is that conventional processors do not have autonomous communication.
The classic paradigm is about a segregated processor and, because of this, its
communication is implemented using Input/Output (I/O) instructions and needs
help of the operating system (OS). Both of these features increase non-payload
(and sequential!) portion of the code and so they degrade efficiency, especially in
excessive systems.

It is worth, therefore, to scrutinize that implicit hardware/software contract,
whether the processor architecture could be adapted in a better way to the changes
that occurred in the past seven decades in technology and utilization of computing.
Implicitly, both hardware (HW) and software (SW) solutions advantageously use
multi-processing. The paper shows that using a less rigid interpretation of terms that
that contract is based upon, one can extend the single-thread paradigm to use several
processors explicitly (enabling direct core-to-core interaction), without violating the
‘contract’, the 70-year old HW/SW interface.

Section 2 shortly summarizes some of the major challenges, modern computing
is expected to cope with and sketches the principles that enable it to give a
proper reply. The way to implement those uncommon principles proposed here is
discussed in Sect. 3. Because of the limited space, only a few of the advantages are
demonstrated in Sect. 4.
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2 The General Principles of EMPA

During the past two decades, computing developed in direction to conquer also some
extremes: the ‘ubiquitous computing’ led to billions of connected and interacting
processors [17], the always higher need for more/finer details, more data and shorter
processing times led to building computers comprising millions of processors
to target challenging tasks [18], different cooperative solutions [19] attempt to
handle the demand of dynamically varying computing in the present, more and
more mobile, computing. Using computing under those extreme conditions led to
shocking and counter-intuitive experiences that can be comprehended and accepted
using parallels with modern science [10].

Developing a new computing paradigm being able to provide a theoretical basis
for the state of the art of computing cannot be postponed anymore. Based on
that, one must develop different types of processors. As was admitted following
the failure of supercomputer Aurora’18: “Knights Hill was canceled and instead
be replaced by a “new platform and new microarchitecture specifically designed
for exascale”” [20]. Similarly, we expect shortly to admit that building large-scale
AI systems is simply not possible based on the old paradigm and architectural
principles [14, 15, 21]. The new architectures, however, require a new computing
paradigm, that can give a proper reply to power consumption and performance
issues of our present-day computing.

2.1 Overview of the Modern Paradigm

The new paradigm proposed here is based on fine distinctions in some points,
present also in the old paradigm. Those points, however, must be scrutinized
individually, whether and how long omissions can be made. These points are:

• consider that not only one processor (aka Central Processing Unit) exists, i.e.

– processing capability is one of the resources rather than a central singleton
– not necessarily the same processing unit is used to solve all parts of the

problem
– a kind of redundancy (an easy method of replacing a flawed processing unit)

through using virtual processing units is provided (mainly to increase the
mean time between technical errors)

– instruction stream can be transferred to another processing unit [22, 23]
– different processors can and must cooperate in solving a task, including direct

data and control exchange between cores, communicating with each other,
being able to set up ad-hoc assemblies for more efficient processing in a
flexible way

– the large number of processors can be used for replacing memory operations
with using more processors

– a core can outsource the received task
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• misconception of segregated computer components is reinterpreted

– efficacy of using a vast number of processors is increased by using multi-port
memories (similar to [24])

– a “memory only” concept (somewhat similar to that in [25]) is introduced (as
opposed to the “registers only” concept), using purpose-oriented, optionally
distributed, partly local, memory banks

– principle of locality is introduced at hardware level, through introducing
hierarchic buses

• misconception of “sequential only” execution [26] is reinterpreted

– von Neumann required only “proper sequencing” for a single processing unit;
this concept is extended to several processing units

– tasks are broken into reasonably sized and logically interconnected fragments
– the “one-processor-one process” principle remains valid for task fragments,

but not necessarily for the complete task
– fragments can be executed (at least partly) simultaneously if both data depen-

dence and hardware availability enables it (another kind of asynchronous
computing [27])

• a closer hardware/software cooperation is elaborated

– hardware and software only exist together: the programmer works with virtual
processors, in the same sense as [28] uses this term, and lets computing system
to adapt itself to its task at run-time, through mapping virtual processors to
physical cores

– when a hardware has no duty, it can sleep (“does not exist”, does not take
power)

– the overwhelming part of the duties such as synchronization, scheduling of
the OS are taken over by the hardware

– the compiler helps work of the processor with compile-time information and
the processor can adapt (configure) itself to its task depending on the actual
hardware availability

– strong support for multi-threading, resource sharing and low real-time latency
is provided, at HW level

– the internal latency of large-scale systems is much reduced, while their
performance is considerably enhanced

– task fragments shall be able to return control voluntarily without the interven-
tion of OS, enabling to implement more effective and more simple operating
systems

– the processor becomes “green”: only working cores take power
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2.2 Details of the Concept

We propose to work at programming level with virtual processors and to map them
to physical cores at run-time, i.e., to let the computing system to adapt itself to its
task. A major idea of EMPA is to use quasi-thread (QT) as atomic unit of processing,
that comprises both HW (the physical core) and the SW (the code fragment running
on the core). Its idea was derived with having in mind the best features of both HW
core and SW thread. QTs have “dual nature” [10]: in the HW world of “classic
computing” they are represented as a ‘core’, in SW world as a ‘thread’. However,
they are the same entity in the sense of ‘modern computing’. We borrow the terms
‘core’ and ‘thread’ from conventional computing, but in ‘modern computing’, they
can actually exist only together in a time-limited way.1 EMPA is a new computing
paradigm (for an early version see [29]) which needs a new underlying architecture,
rather than a new kind of parallel processing running on a conventional architecture,
so it can be reasonably compared to terms and ideas used in conventional computing
only in a minimal way; although the new approach adapts many of its ideas and
solutions, furthermore borrows its terms, from ’classic computing’.

One can break the executable task into reasonably sized and loosely dependent
Quasi-Thread (QT)s. (The QTs can optionally be nesteded, akin to subroutines.)
In EMPA, for every new QT a new independent Processing Unit (PU) is also
implied, the internals (PC and part of registers) are set up properly, and they execute
their task independently2 (but under the supervision of the processor comprising the
cores).

In other words: we consider processing capacity as a computing resource in the
same sense as memory is considered as a storage resource. This approach enables
programmers to work with virtual processors (mapped to physical PUs by the
computer at run-time) and they can utilizequick resource PUs to replace utilizing
slow resource memory (say, renting a quick processor from a core pool can be
competitive with saving and restoring registers in slow memory, for example when
making a subroutine call). The third primary idea is that PUs can cooperate in
various ways, including data and control synchronization, as well as outsourcing
part of the received job (received as an embedded QT) to a helper core. An obvious
example is to outsource housekeeping activity to a helper core: counting, addressing,
comparing, can be done by a helper core, while the main calculation remains to
the originally delegated core. As mapping to physical cores occurs at run-time (a

1Akin to dynamic variables on the stack: their lifetime is limited to the period when the HW and
SW are appropriately connected. The physical memory is always there, but it is “stack memory”
only when handled adequately by the HW/SW components.
2Although the idea of executing the single-thread task “in pieces” may look strange for the first
moment, the same happens when the OS schedules/blocks a task. The key differences are that in
EMPA not the same processor is used, the Explicitly Many-Processor Approach (EMPA) cuts the
task into fragments in a reasonable way (preventing issues like priority inversion [30]). The QTs
can be processed at the same time as long as their mathematical dependence and the actual HW
resource availability enable it.
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Fig. 1 EMPA processors
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function of actual HW availability), an EMPA processor can avoid using (maybe
temporarily) denied cores as well as to adapt the resource need (requested by the
compiler) of their task to actual computing resource availability.

Processor has an additional control layer for organizing joint work of its cores,
see Fig. 1. Cores have just a few extra communication signals and can execute
both conventional and so-called meta-instructions (for configuring their internal
architecture) in the two layers. A core executes a meta-instruction in a co-processor
style: when finding a meta-instruction, the core notifies its processor which suspends
conventional operation of the core, then controls executing the meta-instruction
(utilizing resources of the core, providing helper cores and handling connections
between cores as requested), then resumes core operation.

The processor needs to find the needed PUs (cores), and its processing ability has
to accommodate to the received task. Also, inside the processor, quickly, flexibly,
effectively, and inexpensively. A kind of ‘On demand’ computing that works ‘As-
a-Service’. This task is not only for the processor: the complete computing system
must participate, and for that goal, the complete computing stack must be rebuilt.

Behind former attempts to optimize code execution inside processor, there
was no established theory, and they had only marginal effect, because processor
is working in real-time, it has not enough resources, knowledge and time do
discover those options entirely [31]. In contrary, compiler can find out anything
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about enhancing performance but has no information about actual run-time HW
availability. Furthermore, it has no way to tell its findings to the processor. Processor
has HW availability information but has to “reinvent the wheel” to enhance its
performance; in real-time. In EMPA, compiler puts its findings in the executable
code in form of meta-instructions (“configware”), and the actual core executes
them with the assistance of a new control layer of the processor. The processor
can choose from those options, considering actual HW availability, in a style ‘if
NeededNumberOfResourcesAvalable then Method1 else Method2’, maybe nested
one into another.

2.3 Some Advantages of EMPA

The approach results in several considerable advantages, but the page limit enables
us to mention just a few of them.

• as a new QT receives a new PU, there is no need to save/restore registers and
return address (less memory utilization and less instruction cycles)

• OS can receive its PU, initialized in kernel mode and can promptly (i.e., without
the need of context change) service the requests from the requestor core

• for resource sharing, a PU can be temporarily delegated to protect the critical
section; the next call to run the code fragment with the same offset shall be
delayed (by the processor) until processing by the first PU terminates

• processor can natively accommodate to the variable need of parallelization
• out-of-use cores are waiting in low energy consumption mode
• hierarchic core-to-core communication greatly increases memory throughput
• asynchronous-style computing [32] largely reduces loss stemming from the gap

[33] between speeds of processor and memory
• principle of locality can be applied inside the processor: direct core-to-core

connection (more dynamic than in [34]) greatly enhances efficacy in large
systems [35]

• the communication/computation ratio, defining decisively efficiency [11, 15, 36],
is reduced considerably

• QTs thread-like feature akin to f ork() and hierarchic buses change the depen-
dence of the time of creating many threads on the number of cores from linear to
logarithmic (enables to build exascale supercomputers)

• inter-core communication can be organized in some sense similar to Local Area
Network (LAN)s of computer networking. For cooperating, cores can prefer
cores in their topological proximity

• as the processor itself can candle scheduling signals in HW and in most cases
the number of runnable tasks does not exceed the number of available computing
resources, the conventional scheduling iin multi-tasking systems can be reduced
considerably
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Fig. 2 The logical overview of the EMPA-based computing.

3 How to Implement EMPA

The best starting point to understand implementation of EMPA principles is
conventional many-core processors. Present electronic technology made kilo-core
processors available [37, 38], in a very inexpensive way and in immediate proximity
of each other, in this way making the computing elements a “free resource” [39].
Principles of SPA, however, enable us to use them in a rather ineffective way
[40]. Their temporal behavior [12] not only makes general-purpose cores ineffective
[41], but their mode of utilization (mainly: their interconnection) leads to very low
efficiency in performing real-life tasks [16, 42].

Given that true parallelism cannot be achieved (working with components
anyhow needs time and synchronization via signals and/or messages, the question
is only time resolution), EMPA targets an enhanced and synchronized paral-
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lelized sequential processing based on using many cooperating processors. The
implementation uses variable granularity and as much truly parallel portions as
possible. However, focus is on the optimization of the operation of the system,
rather than providing some new kind of parallelization. Ideas of cooperation
comprise job outsourcing, sharing different resources and providing specialized
many-core computing primitives in addition to single-processor instructions; as well
as explicitly introducing different types of memory.

In this way EMPA is an extension of SPA: conventional computing is consid-
ered consisting of a single non-granulated thread, where (mostly) SW imitates
the required illusion of granulating and synchronizing code fragments. Mainly
because of this, many of components have a name and/or functionality familiar
from conventional computing. Furthermore, we consider the computing process
as a whole to be the subject of optimization rather than segregated components
individually.

In SPA, there is only one active element, the Central Processing Unit (CPU).
The rest of components of the system serves requests from CPU in a passive way.
As EMPA wants to extend conventional computing, rather than to replace it, its
operating principle is somewhat similar to the conventional one, with important
differences in some key points. Figure 2 provides an overview of operating
principle and major components of EMPA. We follow hints by Amdahl: “general
purpose computers with a generalized interconnection of memories or as specialized
computers with geometrically related memory interconnections and controlled by
one or more instruction streams” [2].

3.1 The Core

An EMPA core of course comprises an EMPA Processing Element (EPE). Further-
more, it addresses two key deficiencies of conventional computing: inflexibility
of computing architecture by EMPA Morphing Element (EME), and lack of
autonomous communication by EMPA Communicating Element (ECE). Notice the
important difference to conventional computing: the next instruction can be taken
either from memory pointed out by the instruction pointer (conventional instruction)
or from the Meta FIFO (morphing instruction).

The Processing Element

The EPE receives an address, fetches the instruction (if needed, also its operands). If
the fetched instruction is a meta-instruction, EPE sets its ‘Meta’ signal (changes to
‘Morphing’ regime) for the EME and waits (suspends processing instructions) until
the EME clears that signal.
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The Morphing Element

When EPE sets ‘Meta’ signal, EME comes into play. Since the instruction and
its operands are available, it attempts to process the received meta-instruction.
However, the meta-instruction refers to resources handled by the processor. At
processor level, order of execution of meta-instructions depends on their priority.
Meta-instructions, however, may handle the ‘Wait’ of the core signal correspond-
ingly. Notice that the idea is different from configurable spatial accelerator [43, 44]:
the needed configuration is assembled ad-hoc, rather than chosen from a list of
preconfigured assemblies.

Unlike in SPA, communication is a native feature of EMPA cores and it is
implemented by ECE. Core assemble message content (including addresses), then
after setting a signal, the message is routed to its destination, without involving
a computing element and without any respect to where destination is. Message
finds its path to its destination autonomously, using EMPA’s hierarchic bus system
and ECEs of the fellow cores, taking the shortest (in terms of transfer time) path.
Sending messages is transparent for both programmer and EPE.

The Storage Management Element

EMPA Storage Manager Element (ESME) is implemented only in cluster head
cores, and its task is to manage storage-related messages passing through ECE. It
has the functionality (among others) similar to that of memory management unit
and cache controller in conventional computing.

3.2 Executing the Code

The Quasi-Threads

Code (here it means a reasonably sized sequence of instructions) execution begins
with ‘hiring’ a core: the cores by default are in a ‘core pool’, in low energy
consumption mode. The ‘hiring core’ asks for a helper core from its processor.
If no cores are available at that moment, the processor sets the ‘Wait’ signal for the
requester core and keeps its request pending. At a later time, processor can serve
this pending request with a ‘reprocessed’ core.

Notice that the idea is quite different from the idea of eXplicit MultiThreading
[45, 46]. Although they share some ideas such as the need for fine-grained multi-
threaded programming model and architectural support for concurrently executing
multiple contexts on-chip, unlike XMTs, QTs embody not simply mapping the idea
of multi-threading to HW level. QTs are based on a completely unconventional
computing paradigm; they can be nested.
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This operating principle also means that code fragment and active core exist
only together, and this combination (called Quasi-Thread) has a lifetime. Principle
of the implementation is akin to that of the ‘dynamic variable’. EMPA hires a core
for executing a well-defined code fragment, and only for the period between creating
and terminating a QT. In two different executions, the same code fraction may run
on different physical cores.

Process of Code Execution

When a new task fragment appears, an EMPA processor must provide a new
computing resource for that task fragment (a new register file is available). Since
an executing core is ‘hired’ only for the period of executing a specific code
fragment, it must be returned to core pool when execution of the task fragment
terminates. The ‘hired’ PU is working on behalf of the ‘hiring’ core, so it must have
the essential information needed for performing the delegated task. Core-to-core
register messages provide a way to transfer register contents from a parent core to a
child core.

Beginning execution of an instruction sets signal ‘Meta’, i.e. selects either EPE or
EME for the execution, and that element executes the requested action. The acting
core repeats the process until it finds and ‘end of code fragment’ code. Notice the
difference to conventional computing: processing of the task does not terminate;
only the core is put back into ‘core pool’ as at the moment it is not anymore needed.

When ‘hired’ core becomes available, processing continues with fetching an
instruction by the ‘hired’ core. For this, the core sends a message with the address
of the location of the instruction. The requested memory content arrives at the core
in a reply message logically from the addressed memory, but the ESME typically
intercepts the action. The process is similar to the one in conventional computing.
However, here memory triggers sending a reply to the request when it finds the
requested contents, rather than keeping the bus busy. Different local memories,
such as addressable cache, can also be handled. Notice also that the system uses
complete messages (rather than simple signals with the address); this makes possible
accessing some content independently from its location, although it needs location-
dependent time.

Of course, ‘hiring’ core wants to get back some results from the ‘hired’ core.
When starting a new QT, ’hiring’ core also defines, with sending a mask, which
register contents the hired core shall send back. In this case, synchronization is a
serious issue: parent core utilizes its registers for its task, so it is not allowed to
overwrite any of its registers without an explicit request from parent. Because of this,
when a child terminates, it writes the expected register contents to a latch storage of
the parent, then it may go back to ‘core pool’. When parent core reaches the point
where it needs register contents received from its child, it explicitly asks to clone
the required contents from latches to its corresponding register(s). It is the parent’s
responsibility to issue this command at such a time when no accidental register
overwriting can take place.
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Notice that beginning execution of a new code fragment needs more resources,
while terminating it frees some resources. Because of this, terminating a QT has a
higher priority than creating one. This policy, combined with that cores are able to
wait until their processor can provide the requested amount of resources, prevents
“eating up” computing resources when the task (comprising virtually an infinite
number of QTs) execution begins.

Compatibility with Conventional Computing

Conventional code shall run on an EMPA processor (as an implicitly created
QT). However, that code can only use a single core, since it contains no meta-
instructions to create more QTs. This feature enables us to mix EMPA-aware code
with conventional code, and (among others) to use the plethora of standard libraries
without rewriting that code.

Synchronizing the Cooperation

The cores execute their instruction sequences independently, but their operation
must be synchronized at several points. Their initial synchronization is trivial:
processing begins when the ‘hired’ core received all its required operands (including
instruction pointer, core state, initial register contents, mask of registers the contents
of which the hiring core requests to return). The final synchronization on the side
of ‘hired’ core is simple: the core simply sends contents of the registers as was
requested at the beginning of executing the code fragment.

On the side of a ‘hiring’ core, the case is much more complex. The ‘hiring’ core
may wait for the termination of the code fragment running on the ‘hired’ core, or
maybe it is in the middle of its processing. In the former case, a simple waiting until
the message arrives is sufficient, but in the latter case, receiving some new register
contents in some inopportune time would destroy its processing. Because of this,
register contents from the ‘hired’ core are copied to the corresponding registers
only when the ‘hiring’ core requests so explicitly. Figure 3 attempts to illustrate the
complex cooperation between EMPA components.

3.3 Organizing ‘ad hoc’ Structures

EME can ‘morph’ nternal architecture of the EMPA processor, as required by
the actual task (fragment). EMPA uses principle of creating ‘parent-child’ (rather
than ’Master-Slave’) relation between its cores. The ‘hiring’ core becomes parent,
and the ‘hired’ core becomes child. A child has only one parent, but parents can
have any number of children. Children can become parents in some next phase of
execution; in this way, several ‘generations’ can cooperate. This principle provides
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Fig. 3 Implementing the parent-child relationships: registers and operations of the EICB

a dynamic processing capacity for different tasks (in different phases of execution).
The ‘parent-child’ relations simply mean storing addressing information, in the case
of children combined with concluding the address from ‘hot’ bits of a mask.

As ‘parents are responsible for their children’, parents cannot terminate their
code execution until all their children returned result of the code fragment that
their parent delegated for them. This method enables parents also to trust in their
children: when they delegate some fragment of their code to their children, they can
assume that that code fragment is (logically) executed. It is the task of compiler
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to provide the required dependence information, how those code fragments can be
synchronized.

This fundamental cooperation method enables the purest form of delegating code
to existing (and available) cores. In this way, all available processing capacity can be
used, while only the actually used cores need energy supply (and dissipate). Despite
its simplicity, this feature enables us to make subroutine calls without needing to
save/restore contents through memory and to implement mutexes working thousands
of times quicker than in conventional computing.

3.4 Processor

Processor comprises many physical EMPA cores. An EMPA processor appears
in role of a ‘manager’ rather than a number-crunching unit, it only manages its
resources.

Although individual cores initiate meta-instructions, their synchronized oper-
ation requires the assistance of their processor. Meta-instructions received by
EMPA cores are written first (without authorization) in a priority-ordered queue
(Meta FIFO) in the processor, so the processor can always read and execute only
the highest priority meta-instruction (a core can have at most one active meta-
instruction).

3.5 Clustering the Cores

The idea of arranging EMPA cores to form clusters is somewhat similar to that of
CNNs [47]. In computing technology, one of the most severe limitations is defined
by internal wiring, both for internal signal propagation time and area occupied on
the chip [1]. In conventional architectures, cores are physically arranged to form
a 2-dimensional rectangular grid matrix. Because of SPA, there should not be any
connection between segregated cores, so the inter-core area is only used by some
kind of internal interconnection networks or another wiring.

In EMPA processors, even-numbered columns in the grid are shifted up by a
half grid position. In this way cores are arranged in a way that they have common
boundaries with cores in their neighboring columns. In addition to these neighboring
cores, cores have (up to two) neighbors in their column, with altogether up to six
immediate neighbors, with common boundaries. This method of positioning also
means that cores, logically, can be arranged to form a hexagonal grid, as shown in
Fig. 4. Cores physically have a rectangular shape with joint boundaries with their
neighbors, but logically they form a hexagonal grid. This positioning enables to
form “clusters” of cores, forming a “flower”: an orange ovary (the cluster head) and
six petals (the leaf cores of cluster, the members).
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Fig. 4 The (logically) hexagonal arrangement (internal clustering) of EMPA cores in the EMPA
processor

Between cores arranged in this way also neighborhood size can be interpreted
similarly to the case of cellular computing. Based on neighborhood of size r = 1
(that means that cores have precisely one common boundary), a cluster comprising
up to six cores (cluster members) can be formed, with the orange cell (of size
r = 0, the cluster head) in the middle. Cluster members have shared boundaries
with their immediate neighbors, including their cluster head. These cores define the
external boundary of the cluster (the “flower”). Cores within this external boundary
are “ordinary members” of the cluster, and the one in the central position is head of
the cluster.

There are also “corresponding members” (of size r = 2): cores having at
least one common boundary with one of the “ordinary members” of the cluster.
“Corresponding members” may or may not have their cluster head, but have a
common boundary with one of the “ordinary members”. White cells in the figure
represent “external members” (also of size r = 2): they have at least one common
boundary with an “ordinary member”, like the “corresponding members”, but unlike
the “corresponding members” they do not have their cluster head. Also, there are
some “phantom members” (see the violet petals in the figure) around the square
edges in the figure: they have a cluster head and the corresponding cluster address,
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Fig. 5 Implementation of the
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but (as they are physically not implemented in the square grid of cores during the
manufacturing process) they do not exist physically.

That means: a cluster has one core as “cluster head”; up to six “ordinary
members”, and up to twelve “corresponding members”; i.e., an “extended cluster”
can also be formed, comprising up to 1+6+12 members. Notice that around the edge
of the square grid “external members” can be in the position of the “corresponding
members”, but the upper limit of the total number of members in an extended cluster
does not change. Interpreting members of size r >= 2 has no practical importance.
The cores with r <= 2 have a direct communication mechanism (Fig. 5).

3.6 Communication in EMPA

As discussed in [14], communication strongly degrades computing performance,
even in relatively small-size computing systems [15, 21]. Its basic reason is the
shared medium (whether it is physically Ethernet-like or serial connection), so
EMPA introduces network-like addressing scheme, organizes traffic and introduces
hierarchic bus system, to implement principle of locality at HW level.

Addressing and transport systems must provide support for all transport modes.
Cluster addressing is of central importance because of the topology of cores:
cores having common boundary surely do not need a bus between the neighboring
cores. In this sense, the native, cross-boundary data transfer represents a zeroth-
level communication bus (actually several, parallelly working “buses”), with no
contention. This feature, combined with the “small world” nature of most computing
tasks (especially the biology mimicking ones) and that nearby cores can share
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Fig. 6 Implementing the hierarchical cluster-based addressing bit fields of the cores of EMPA
processors. A cluster address is globally unique.

memory contents available through the cluster head core) results in a serious perfor-
mance boost. These architectural changes shall be useful for future neuromorphic
architectures/applications, as AIs represent a very specific workload.3

Addressing (see also Fig. 6) must support the goal to keep messages at the
lowest level of communication buses. Messages from/to outside the cluster are
received/sent by cluster head. The rest of the messages are sent directly (through the
corresponding Inter-Core Communication Block (ICCB)) or with using a proxy to
their final destination. To implement that goal, EMPA processors use the addressing
scheme shown in Fig. 6. Notice that the proposed addressing system a network
logical address can be directly (and transparently) mapped to the ID and vice versa.

In EMPA, cluster addressing carries also topological information, partly relies
on relative topological positions, and enables to introduce different classes of
relationship between cells. As mentioned, cluster head cores have a physically
distinct role (In this sense, they can also be a “fat” core) and enables us to introduce
cluster addressing for members of the extended clusters. Only cluster head cores
have an immediate global memory access, see Fig. 5 (considerably reducing the
need for wiring). The cores being in neighborhood of size r = 1 can access memory
through their cluster head. These cores can also be used as a proxy for cores in
neighborhood of size r = 2. The latter feature also enables to replace a denied
cluster head core.

In SPA, the grid and linear addressing are purely logical ones, which use absolute
addresses known at compile time. Similarly to computer networks, EMPA cores
have (closely related through the cluster architecture) both logical and physical
addresses, enabling autonomous (computing-unrelated) communication and virtual
addressing.

3.7 The Compiler

Compiler plays a significant role in EMPA. It should discover all possibilities of
cooperation, especially the ones that become newly available with the philosophy

3https://www.nextplatform.com/2019/10/30/cray-revamps-clusterstor-for-the-exascale-era/: arti-
ficial intelligence, . . . it’s the most disruptive workload from an I/O pattern perspective.

https://www.nextplatform.com/2019/10/30/cray-revamps-clusterstor-for-the-exascale-era/
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that appearance of a new task is attached with appearance of new computing
resource, with a new register file. Because at the time of compilation actual HW
availability cannot be known, code for different scenarios must be prepared and put
in the object code.

The philosophy of coding must be drastically changed. Given that, with outsourc-
ing, a new computing facility appears, and processor assures proper synchronization
and data transfer, there is no need to store/restore return address and save/restore
data in the registers, leading to less memory traffic, and quicker execution time.

Object code is essentially unchanged, except that some fragments (the QTs) are
bracketed by meta-instructions. The QTs can be nested (i.e., meta-instructions are
inserted into conventional code). One can consider that QTs represent a kind of
atomic macros which have some input and output register contents but do not need
processing capacity from the actual core.

4 New Features EMPA Offers

Although EMPA does not want to address all challenges of computing, it addresses
many of them (and leaves the door open for addressing further challenges). Due to
lack of space, code examples, comparisons, and evaluations, based on the loosely-
timed SystemC simulation [48], are left for simulator documentation and the early
published version [49].

4.1 Architectural Aspects

Notice that ad hoc assemblies consider both current state of cores, and also their
‘Denied’ signal. That is, the flawed (or just temporarily overheated) cores are not
used, significantly increasing mean time between machine failures. Also, notice
that this approach enables using ‘hot swap’ cores, in this way providing dynamic,
connected systems (the addressing is universal, and the information is delivered by
messages; it takes time, but possible), as well as to deliver the code to the data: the
physical cores can be located in the proximity of the ‘big data’ storage, instruction
is delivered to the place, and only processed, needed result is to be transported back.

Virtualization at HW Level

In EMPA no absolute processor addresses are utilized: virtual processors seen by
the programmer are mapped ‘on the fly’ to physical core by the EMPA processor.
Physical cores have a ‘denied’ state that can be set permanently (like fabrication
yield) or temporarily (like overheating), in which case the core will not be used to
map a virtual core to it. When combined with a proper self-diagnostic system, this
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feature prevents extensive systems to fail because of a failing core. Processor has
the right and possibility to replace a physical core with another one at any time.

Redundancy

Huge masses (literally millions/billions) of silicon-based elements are deployed
in all systems. As a consequence, components showing a tolerable error rate in
“normal” systems, but (purely due to the high number of components) need special
care in the case of large-scale systems [50].

The usual engineering practice is to rely on the high reliability of components.
Fault-tolerant systems require particular technologies, typically majority voting, but
they are also based on the same type of single high-reliability components.

Reduced Power Consumption

The operating principle of a processor is based on the assumption that processors
are working continuously, executing instructions one after the other, as their control
unit defines the required sequencing. Because of this principle, in the OS an ‘idle’
task is needed. In EMPA, cores can return control voluntarily, enabling most of the
cores to stay in a ‘ilow power’ state.

Also, as discussed in [12], a major contribution of power consumption comes
from moving data unnecessarily. Given that EMPA reduces memory usage in many
ways (and, that according to [51], about 80% of consumed energy is used for moving
data), it shall have a significant effect also of power efficiency of computing.

4.2 Attacking Memory Wall

The ‘memory wall’ is known as the ‘von Neumann’ bottleneck of computing,
especially after that memory access time became hundreds of times slower than
processing time. Although in SPA systems ‘register only’ processing and cache
memories can seriously mitigate its effect, in the case of large systems the
‘sparse’ calculations that poorly use the cache, show up orders of magnitude worse
computing efficacy, i.e., further improvement in using the memory is of utmost
importance.

Register-to-Register Transfer

The idea of immediate register-to-register transfer [34] seriously can increase
performance of real-life tasks [35]. In EMPA, the idea is used in combination with
the flexibility of using virtual cores, multiple register arrays via children.
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Subroutine Call Without Stack

In SPA, a subroutine call requires to save/restore return address and (at least
part of) register file; unfortunately, one can use only main memory for that
temporary storage. In EMPA, for executing subroutine code, another PU is provided.
Because of this solution, HW can remember (in a nested way) the return address.
Furthermore, working area is provided by the register file of the ‘hired’ core. Given
that a register-to-register transfer is provided, code execution can be hundreds of
times quicker. With proper organization, hiring and hired cores can also run partly
parallel.

Interrupt and Systems Calls Without Context Switching

Given that interrupts and OS service calls can be considered as special service
calls, where also context switching is needed, using a prepared (waiting in kernel
mode) core can service a request thousands of times quicker. Event, interrupts can
be serviced without interrupting the running process.

Resource Sharing Without Scheduling

For multitasking, only the OS can provide exclusive access to some resource (as
in SPA, no other processor/task exists). EMPA offers a simple, elegant, and quick
solution: it can delegate a QT for the task of guarding a critical section, and all tasks
issue a conditional subroutine call to the code guarded by that QT. All but the first
requester QT must wait (but are scheduled automatically by the processor), and after
servicing all requests, the delegated core is put back to the pool. Since compiler
creates reasonably sized code fragments, cases leading to priority inversion [30]
cannot happen, so no specialized protocols are needed in the OS: the orchestrated
work in EMPA prevents those issues.

4.3 Attacking the Communication Wall

In SPA, communication is not natively present (no other processor exists); it
must be performed and synchronized using I/O instructions and OS operations, in
payload processing time; resulting in performing a severe amount of non-payload
instructions.
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Decreasing the Internal Latency

When using interconnected cores, ECE can take over most of the non-payload
duties, enabling to decrease the sequential-only portions of the task that decisively
define communication/computation ratio [36]; a significant point when developing
large scale computing systems [11] or using AI-type workloads [15]. As discussed
in [11], the housekeeping (the FP0) contribution is a considerable limitation when
running High Performance Linpack (HPL) benchmark. Borrowing nearby cores
and using their physical proximity enables us to achieve higher HPL maximum
performance values.

Hierarchic (Local) Communication

Using temporally or spatially local memory accesses can increase efficiency dozens
of times. Similarly, providing ‘interconnection cache’ for EMPA processor can
result in considerable improvement in final efficiency of the system. As computing
tasks change their state between ‘computing bound’ and ‘communication bound’
dynamically, this solution mitigates both limiting factors as much as possible.

Fully Asynchronous Operation

As von Neumann only required a ‘proper sequencing’ of instructions, and hav-
ing less ‘idle’ times during core operation appears as performance increase,
asynchronous operation (i.e., turning all components to active) can considerably
contribute to more effective (i.e., comprising fewer losses) operation.

5 Summary

In computing, incremental development methods face more and more difficulties,
because of the drastic changes both in technology and utilization. The final reason,
as has been suspected by many researchers, is the computing paradigm reflecting a
70-year old state of the art. Computing needs renewal [49] and rebooting. Firstly,
the ever smaller components driven by ever quicker clock signal, because of
scientific reasons, show a temporal behavior [12], and suppressing their natural
behavior causes severe computing performance loss (and enormously increased
power consumption). Secondly, many technical implementations and architectural
solutions, inherited from the past decades, become outdated. It was presented that
it is not a necessary condition that the same computer solves all the tasks: von
Neumann only required a “proper sequencing” in executing machine instructions.
This requirement can be satisfied in a much better way via using the presently
available many “free” processors. That way requires an entirely different thinking
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(and component base) and offers real advantages. We can implement the introduced
new paradigm by putting the presently available technology solutions along with
different principles that approach offers considerable advantages.
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