
Chess Is Primitive Recursive

Vladimir A. Kulyukin

1 Introduction

A deterministic two-player board game is played by two players on a finite board.
The players take turns in choosing a move out of finitely many moves. Such a game
has a unique starting board and end boards can be classified as a win for either
player or a draw. Examples of deterministic two-player board games are Tic Tac
Toe [1] and its many variants (e.g., Qubic [2]), chess, and checkers. Let an epoch
be the set of all boards reachable from the starting board after a given number
of moves. A deterministic two-player game is primitive recursive if there exists a
primitive recursive (p.r.) function G(p, i, j), where p is a player and i and j are
epoch numbers such that i < j , that returns for p an optimal sequence of moves
from a given board in epoch i to a board in epoch j if it is p’s turn to play at epoch
i.

In a previous paper [3], we showed Tic Tac Toe to be p.r. In this paper, a proof
is presented to show that chess is a deterministic p.r. game. In Sect. 2, several
operators on Gödel numbers are defined. Section 3 presents a proof that chess is
p.r. Conclusions are presented in Sect. 4.

2 Gödel Number Operators

All variables such as x, y, z, a, b, i, j , k, and t refer to natural numbers (i.e., elements
of N). The Greek letters α, γ , and ω with appropriate subscripts refer to auxiliary

V. A. Kulyukin (�)
Department of Computer Science, Utah State University, Logan, UT, USA
e-mail: vladimir.kulyukin@usu.edu

© Springer Nature Switzerland AG 2021
H. R. Arabnia et al. (eds.), Advances in Software Engineering, Education, and
e-Learning, Transactions on Computational Science and Computational
Intelligence, https://doi.org/10.1007/978-3-030-70873-3_30

421

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70873-3_30&domain=pdf
mailto:vladimir.kulyukin@usu.edu
https://doi.org/10.1007/978-3-030-70873-3_30

422 V. A. Kulyukin

functions. All functions map N to N. Let 〈x, y〉 = z, where z = 2x(2y +1) .−1, x =
max

d
{2d |(z+1)}, and y = ((z+1)/2x −1)/2. The pairing functions l(z) and r(z) are

defined in (1) and shown to be p.r. in [4], where min is the minimalization function
that returns the smallest natural number for which the predicate being minimalized
is true.

l(z) = min
x≤z

{(∃y)≤z{z = 〈x, y〉}}
r(z) = min

y≤z
{(∃x)≤z{z = 〈x, y〉}} (1)

Let (a1, . . . , an) be a sequence of numbers. The Gödel number of this sequence
is defined in (2).

[a1, . . . , an] =
n∏

i=1

p
ai

i (2)

The function [a1, . . . , an] is p.r., because x · y, xy , and pi are p.r., as shown
in [4]. The Gödel number of () is 1. Let x = [a1, . . . , an]. Then the function (x)i =
ai, 1 ≤ i ≤ n defined in (3) is shown to be p.r. in [4].

(x)i = min
t≤x

{¬(pt+1
i |x)}. (3)

The length of x is the position of the last non-zero prime power in the Gödel
representation of x defined by the p.r. function Lt(x) in (4).

Lt(x) = min
i≤x

{(x)i �= 0 ∧ (∀j)≤x{j ≤ i ∨ (x)j = 0}} (4)

Let the p.r. function
x/y� return the integer part of the quotient x/y [4]. Let
γ1(i, b) ≡ i > Lt(b) ∨ i < 1 ∨ b < 1. The p.r. function set in (5) sets the i-th
element of b to x.

set(b, i, x) =
⎧
⎨

⎩
0 if γ1(i, b),

 b

p
(b)i
i

� · px
i otherwise.

(5)

Let

cntx(x, y, 0) = 0,
cntx(x, y, t + 1) = γ2(x, y, t,cntx(x, y, t)),

where s(x) = x + 1 and

γ2(x, y, t, c) =
{
1 + c if (y)s(t) = x,

c otherwise.

Chess Is Primitive Recursive 423

The p.r. function count in (6) returns the count of occurrences of x in y. Let
in(x, y) ≡ count(x, y) �= 0. In the remainder of the paper, in(x, y) and x ∈ y

are used interchangeably.

count(x, y) = cntx(x, y, Lt (y)) (6)

The p.r. function rap in (7) appends its first argument x to the right of the second
argument y.

rap(x, y) =
{

[x] if y = 0 ∨ y = 1,

y · px
Lt(y)+1 otherwise.

(7)

Let

lcx(x1, x2, 0) = x2,

lcx(x1, x2, t + 1) = γ3(x1, t,lcx(x, y, t)),

where γ3(x, t, y) = rap((x)s(t), y). The p.r. function ⊗l in (8) places all elements
of x2, in order, to the left of the first element of x1. Let ⊗l |ki=1xi = x1 ⊗l x2 ⊗l

. . . ⊗l xk = (. . . ((x1 ⊗l x2) ⊗l . . . ⊗l xk) . . .) = (. . . (x1 ⊗l (x2 ⊗l (. . . ⊗l (xk−1 ⊗l

xk) . . .))) . . .).

x1 ⊗l x2 = lc(x1, x2) = lcx(x1, x2, Lt (x1)) (8)

The p.r. function ⊗r in (9) places all elements of x2, in order, to the right of the
last element in x1. Let ⊗r |ki=1xi = x1 ⊗r x2 ⊗r . . . ⊗r xk = (. . . ((x1 ⊗r x2) ⊗r

. . . ⊗r xk) . . .) = (. . . (x1 ⊗r (x2 ⊗r (. . . ⊗r (xk−1 ⊗r xk) . . .))) . . .). Note that
0 ⊗l x = 1 ⊗l x = 0 ⊗r x = 1 ⊗r x = x.

x1 ⊗r x2 = lc(x2, x1) (9)

Let rmx(x, y, 0) = [] and rmx(x, y, t+1) = γ4(x, y,rmx(x, y, t), s(t)), where

γ4(x, y, z, i) =
{

z if (y)i = x,

[(y)i] ⊗l z otherwise.

The p.r. function rm(x, y) = rmx(x, y, Lt (y)) removes all occurrences of x

from y.
Let f (x) be a p.r. predicate and let mapxf (y, 0) = [] and mapxf (y, t + 1) =

γ5(y,mapxf (y, t), s(t)), where

γ5(y, z, i) =
{

z if f ((x)i) = 0,

[(y)i] ⊗l z if f ((x)i) = 1.

424 V. A. Kulyukin

The p.r. function mapf (y) = mapxf (y, Lt (y)) returns the list of occurrences of
those elements x in y for which f (x) = 1.

Let pssx(x, y, 0) = [] and pssx(x, y, t + 1) = γ6(x, y,pssx(x, y, t), s(t)),
where

γ6(x, y, z, i) =
{

[i] ⊗l z if (y)i = x,

z otherwise.

The p.r. function pstn(x, y) = pssx(x, y, Lt (y)) returns all positions of x in
y.

3 Chess

We can encode a chess board as a Gödel number B with 64 elements (see Fig. 1). An
empty cell is encoded as 1. A white pawn is encoded as 2 ≤ n ≤ 9, the two white
rooks are 10 and 17, the two white knights are 11 and 16, the two white bishops
are 12 and 15, the white queen is 13, and the white king is 14. A black pawn is
18 ≤ n ≤ 25, the two black rooks are 26 and 33, the two black knights are 27 and

26 27 28 29 30 31 1 33
18 19 20 21 1 23 24 25
1 1 1 1 1 32 1 1
1 1 1 1 22 1 1 1
1 1 1 1 6 1 1 1
1 1 1 1 1 16 1 1
2 3 4 5 1 7 8 9
10 11 12 13 14 15 1 17

Fig. 1 Chess board after 2 moves (above) and its Gödel number represented as a 2D matrix
(below)

Chess Is Primitive Recursive 425

32, the two black bishops are 28 and 31, the black queen is 29, and the black king is
30. Let b0 be the starting board. Then (b0)j , 1 ≤ j ≤ 16, encode the black pieces,
(b0)j , 49 ≤ j ≤ 64, encode the white pieces, and (b0)j , 17 ≤ j ≤ 48, encode the
four empty rows in the middle of the board.

Let b be a board. The p.r. predicate γ7(b) ≡ count(14, b) = count(30, b) = 1
ensures that b has exactly one white king (i = 14) and exactly one black king (i =
30). The predicate γ8(b) ≡ (∀i)≤64{{i ≤ 1∨i = 14∨i = 30}∨{count(i, b) ≤ 1}}
ensures that, unless i encodes an empty square (i = 1), the white king (i = 14), or
the black king (i = 30), its count on b is 0 or 1. The predicate γ9(b) ≡ (∀i)≤64{{i �=
1} ∨ {32 ≤ count(i, b) ≤ 62}} ensures that the count of the empty spaces on b is
between 32 (in the starting chess board) and 62 (when only the two kings remain on
the board). The predicate valid(b) in (10) is true if b is a valid chess board.

valid(b) ≡ Lt(b) = 64 ∧ γ7(b) ∧ γ8(b) ∧ γ9(b) (10)

For each piece x in a specific position, there is a set of positions reachable for
x from that position. Let z = [1, 2, . . . , 64] be the Gödel number encoding the
board positions, where 1 encodes the top-left corner of the board and 64 encodes the
bottom-right corner of the board, and let Lk

j be the Gödel number whose elements
are the board positions where chess piece j can move from position k. For example,
L1
15 is the list of positions reachable by the light-colored bishop 15 from position

1. The lists of positions reachable by bishop 15 from the positions along the main
diagonal are

L1
15 = [10, 19, 28, 37, 46, 55, 64];

L10
15 = [1, 3, 17, 19, 28, 37, 46, 55, 64];

L19
15 = [1, 10, 5, 12, 26, 33, 28, 37, 46, 55, 64];

L28
15 = [1, 10, 19, 7, 14, 21, 35, 42, 49, 37, 46, 55, 64];

L37
15 = [1, 10, 19, 28, 16, 23, 30, 44, 51, 58, 46, 55, 64];

L46
15 = [1, 10, 19, 28, 37, 32, 39, 53, 60, 55, 64];

L55
15 = [1, 10, 19, 28, 37, 46, 48, 62, 64];

L64
15 = [1, 10, 19, 28, 37, 46, 55].

Let W be the Gödel number whose elements are the white-colored cells on the
chess board. Then L15 in (11) defines the Gödel number whose elements are all
possible board positions for bishop 15.

L15 = ⊗r |i∈WLi
15. (11)

Such lists (i.e., Gödel numbers) can be computed in a p.r. fashion for all pieces
and all positions on the board. Let L = ⊗r |33i=2[<i,Li>] be the list of pairs
<i,Li>, where i denotes a chess piece and Li is the list of all possible positions
where i can move. The p.r. function in (12) returns, for each piece x at position i on
b, all potentially reachable positions where x can move from i.

426 V. A. Kulyukin

prp(x, i, b) =
{

r((Lx)γ10(i,Lx)) if valid(b)

0 otherwise,
(12)

where γ10(i, L) = min
k≤Lt(L)

{i = l((L)k)} and Lx = r((L)γ10(x,L))).

The p.r. predicate wp(x) ≡ 2 ≤ x ≤ 17 is true if x is a white piece and
the p.r. predicate bp(x) ≡ 18 ≤ x ≤ 33 is true if x is a black piece. Let the
predicate arp(x, i, b) be true if and only if position i on b is actually reachable
for piece x (i.e., prp(x, i, b) = 1 and i is not blocked by another piece). Since
arp(x, i, b) can be defined in this manner by cases, each of which is defined in
terms of p.r. predicates such as bp, wp, valid, Lt, rap, etc., and combinations of
compositions and primitive recursions thereof, arp is p.r.

Let z = [1, 2, . . . , 64] be the Gödel number encoding the board positions and b

a chess board. Let f (x) ≡ arp(x, j, b), where j ∈ z and wp(x) = 1 or bp(x) =
1. Then the p.r. function alst(x, b) = mapf (x, z) returns the Gödel number of
actually reachable positions for x on b.

Let bkp(b) = (pstn(30, b))1 be a p.r. function that returns the position of the
black king on b. The black king is checked when there is a white piece (other than
the white king encoded as 14) for which the current position of the black king is
actually reachable. Formally, bchk(b) ≡ (∃x)<34{wp(x) ∧ x �= 14 ∧ γ11(x, b)},
where γ11(x, b) ≡ (∃j)<65{j > 0 ∧ α(x, j, b)} and α(x, j, b) ≡ (pstn(x, b))1 =
j ∧ in(bkp(b),alst(x, b)). The black king is mated if, when checked, it cannot
move to any cell that is not actually reachable by a white piece. The p.r. predicate
bmtd in (13) defines this logic.

bmtd(b) ≡ bchk(b) ∧ γ12(b), (13)

where γ12(b) ≡ (∀j)<65{¬in(j,alst(30, b)) ∨ γ13(j, b)} and γ13(j, b) ≡
(∃x)<34{wp(x) ∧ in(j,alst(x, b))}. The same logic can be used to define a p.r.
predicate wmtd(b) to return 1 when the white king is mated and 0, otherwise.

A draw by stalemate occurs when the player whose turn it is to move is not
in check but has no legal move. The p.r. black stalemate predicate bstlmt(b) ≡
¬bchk(b) ∧ γ14(b), where γ14(b) ≡ (∀j)<65[¬bp(j) ∨ Lt(alst(j, b)) = 0],
checks if the black king is not checked and no black piece has actually reachable
positions. A white stalemate can be defined in the same fashion. All cases of the
dead position rule can be defined as p.r. predicates with count, valid, in, =, and
boolean combinations thereof.

A draw by repetition is achieved when the same position occurs three times in a
row with the same player to move. The 50-move rule states that a game is a draw
when the last 50 moves contain no capture or pawn move. The dead position rule
applies when neither player can checkmate the opponent by any series of moves.
The dead position rule applies to situations when there are only two kings left on
the board, when one side has the king and a bishop and the other side has the king,
when one side has the king and a knight and the other side has the king, when both

Chess Is Primitive Recursive 427

sides have the king and a bishop and the bishops are both light-colored or dark-
colored. The rules for the draw by repetition and the 50-move rule will be outlined
below after we formalize the notion of the board history. Consider the p.r. function
in (14).

(
b
)x

j
=

{
set(b, j, x) if γ15(x, b)

0 otherwise,
(14)

where γ15(x, b) ≡ valid(b)∧{wp(x)∨bp(x)}∧in(j,alst(x, b)). For example,
the chess board in Fig. 1 is

((((
b0

)6
37

)22
29

)16
46

)32
22.

Let b1 be the list of all possible boards obtained from b by exactly one move of
the white player, assuming that it is the white’s turn to move.

b1 = ⊗r |17x=2 ⊗r |64j=1[(b)xj].

Let b2 be the list of all possible moves obtained from b by exactly one move of
the black player, assuming that it is the black’s turn to move.

b2 = ⊗r |33x=18 ⊗r |64j=1[(b)xj].

Since both b1 and b2 are p.r., we can combine b1 and b2 into a single p.r. function
pm(x, p) that maps the current board to the list of all possible boards obtained from
it by exactly one move of either player.

pm(b, p) =

⎧
⎪⎪⎨

⎪⎪⎩

b1 if p = 1 ∧ valid(b)

b2 if p = 2 ∧ valid(b)

0 otherwise.

(15)

Let Z = [bi0 , bi1 , . . . , bik] such that valid(bij) = 1, 0 ≤ j ≤ k. Let p ∈ {1, 2}.
The p.r. function scr(Z, p) in (16) takes a Gödel number that consists of valid
boards and a player’s number and returns another Gödel number that consists of
successor boards such that each successor board is obtained from one of the boards
in Z by exactly one move of p, assuming that it is p’s turn to move.

scr(Z, p) = rm(0,⊗r |Lt(Z)
i=1 pm((Z)i , p)) (16)

Let b1 and b2 be two boards and let p ∈ {1, 2} be a player whose turn it is to
play on b1. The p.r. predicate prn(p, b1, b2) ≡ valid(b2) ∧ in(b2,pm(p, b1)) is
true when b2 is in the Gödel number of the boards obtained from b1 by exactly one

428 V. A. Kulyukin

move of p on it. In other words, b1 is the parent of b2. Let the p.r. function B(t),
defined in (17), return the Gödel number that includes all boards, actually reachable
from b0 after t moves. We will refer to each B(t) as epoch t . Let B(0) = [〈[b0], 1〉].

B(t + 1) = [〈scr(l((B(t))1), γ16(s(t)))〉], (17)

where γ16(x) = 1 if ¬(2|x) and 2 if 2|x. Let G0 = [b0] and Gi , for i > 0, be
the Gödel number encoding all boards actually reachable from the boards in Gi−1
in 1 move by the appropriate player. Let b ∈ Gi , Gi−1 = l((B(i − 1))1), and
p = r((B(i − 1))1). The p.r. function ipb in (18) returns the index of the parent of
b in Gi−1 for i > 0.

ipb(b, i) = min
t≤Lt(G(i−1))

{prn(p, (Gi−1)t , b)} (18)

The p.r. function prb in (19) returns the parent of b.

prb(b, i) = (l((B(i − 1))1))ipb(b,i) (19)

The p.r. function prbs in (20) computes the Gödel number whose last element
is b and whose previous elements are its predecessors. In other words, element 8 is
the parent board of element 9, element 7 is the parent board of element 8, etc.

prbs(b, i) = [prb(. . . (prb(b, i), 7), . . . , 1),

. . . ,

prb(prb(prb(b, i), 7), 6),

prb(prb(b, i), 7), prb(b, i), b] (20)

Let X = prbs(b, i) such that i > 7 and valid(b) = 1. The p.r. predicate
drw3r(b, i) ≡ γ17(X), where γ17(X) ≡ {(X)1 = (X)5 = (X)9} ∧ {(X)2 =
(X)6} ∧ {(X)3 = (X)7} ∧ {(X)4 = (X)8} is true if b is a threefold repetition board.
To put it differently, in the list of b’s predecessors, elements 1 and 5 must be the
same as b (i.e., element 9), element 2 must be the same as element 6, element 3 is
the same as element 7, and element 4 is the same as element 8.

It is straightforward to extend the definition of prbs(b, i) to a p.r. predicate
drw50(b, i) that computes 49 predecessors of a valid board b in epoch B(i) and
checks if each board in the Gödel number of the predecessors and b itself contains
no capture, which can be done by comparing the number of pieces on a given board
and its immediate predecessor (i.e., its parent), or a pawn move, which can be done
by comparing the pawn positions of all the predecessor boards of b and b itself. All
these functions are p.r., because they manipulate Gödel numbers.

We can similarly express, in a p.r. fashion, each case of the dead position rule.
For example, checking if a given board b contains only two kings or whether the
white has the king and a knight and the black has only the king is p.r., because it

Chess Is Primitive Recursive 429

requires checking p.r. properties of a given Gödel number. Consequently, we may
assume that there is a p.r. predicate drw(b, i) that returns 1 if a valid board b in
epoch i > 0 is a draw and 0 otherwise.

Let t ∈ N. We define the chess game history in (21) as the Gödel number
encoding the boards at each epoch and the player whose turn it is to play at the
next epoch.

H(t) = ⊗r |ti=0B(i) (21)

For example H(3) = [B(0),B(1),B(2),B(3)] = [〈G0, 1〉, 〈G1, 2〉, 〈G2, 1〉,
〈G3, 2〉]. Let t, i, j ∈ N. Let Gt

i = l((H(t))i), bt
i,j = (Gt

i)j , Lt = Lt(H(t)),
and Lt

i = Lt(Gt
i). The p.r. predicate ww(t), t ≥ 0, in (22) returns true if there is a

board in epoch i, 0 ≤ i ≤ t , where the white checkmates its opponent.

ww(t) ≡ (∃i)≤Lt {(∃j)≤Lt
i
{bmtd(bt

i,j)}} (22)

The p.r. predicate bw(t) in (23) is true if there is a board in epoch i, 0 ≤ i ≤ t ,
where the black checkmates its opponent.

bw(t) ≡ (∃i)≤Lt {(∃j)≤Lt
i
{wmtd(bt

i,j)}} (23)

If H(t) is the history of the game, then the white can win only in the even-
numbered epochs and the black can win only in the odd-numbered epochs. We
can define two predicates Ww(m) and Wb(m) that are true if the white or black,
respectively, wins within t moves. Specifically, Ww(m) ≡ (∃t)≤m{ww(t)} and
Wb(m) ≡ (∃t)≤m{bw(t)}. The p.r. predicate in (24) combines both predicates into
one.

W(p,m) =

⎧
⎪⎪⎨

⎪⎪⎩

Ww(m) if p = 1

Wb(m) if p = 2

0 otherwise.

(24)

In a similar fashion, we can define the p.r. predicate in (25) that is true if a draw
is achieved for player p within m moves.

D(p,m) ≡ (∃i)≤Lt {(∃j)≤Lt
i
{dwr(bt

i,j , i)}. (25)

Let p ∈ {1, 2}, t ∈ N. The p.r. functions W≤(p, t) in (26) and D≤(p, t) in (27)
return the lists of all win and draw boards for p, respectively, within t moves.

W≤(p, t) = ⊗r |ti=1W(p, i) (26)

D≤(p, t) = ⊗r |ti=1D(p, i) (27)

430 V. A. Kulyukin

Let bx ∈ l((B(i))1) and by ∈ l((B(j))1), where i < j . Let

ptx(bx, by, 0) = γ18(bx, by),

ptx(bx, by, t + 1) = [by] ⊗l ptx(bx,prb(by, s(t)), t),

where

γ18(x, y) =
{

[x] if x = y,

0 otherwise.

The p.r. function path in (28) gives the list of boards, possibly empty, from the
board bx ∈ B(i) to the board by ∈ B(j).

path(bx, by, i, j) = ptx(bx, by, j − i) (28)

If path(bx, by, i, j) �= 0, by ∈ B(j) is reachable from bx ∈ B(i). If
path(bx, by, 1, 3) = 0, then by is unreachable from bx . Let b ∈ l((B(i))1), k ≥ 0,
i < j , and let Z ∈ N be a list of boards. Let

ppx(b, Z, i, j, 0) = [],
ppx(b, Z, i, j, t + 1) = γ19(b, Z, t, i, j) ⊗l

ppx(b, Z, i, j, t),

where γ19(b, Z, t, i, j) = [path(b, (Z)s(t), i, j)]. The p.r. function ppx returns
a list of paths from a given board b to each board in Z. Let ppxx(b, Z, i, j) =
ppx(b, Z, i, j, Lt (Z)). The p.r. function in (29) returns the list of all paths, possibly
empty, from b ∈ l((B(i))1) to a win board b′ ∈ l((B(j))1).

wpss(b, i, j) = ⊗r |jk=i+1γ20(b, k, i, j), (29)

where γ22(b, k, i, j) = ppxx(b,W(p, k), i, j), where p = 1 if 2|i and p = 2,
otherwise. The p.r. function in (30) removes all empty paths from the list returned
by wpss.

wps(b, i, j) = rm(0,wpss(b, i, j)) (30)

The p.r. function in (31) returns the list of all paths, possibly empty, that start at
b ∈ l((B(i))1) and end with a draw board b′ ∈ l((B(j))1).

dpss(b, i, j) = ⊗r |jk=i+1γ21(b, k, i, j), (31)

where γ21(b, k, i, j) = ppxx(b,D(p, k), i, j), where p = 1 if 2|i and p = 2,
otherwise. The p.r. function in (32) removes all empty paths from the list returned
by dpss.

Chess Is Primitive Recursive 431

dps(b, i, j) = rm(0,dpss(b, i, j)) (32)

Let 0 ≤ k < t , k < j ≤ t , p ∈ {1, 2}, and b ∈ l((B(k))1). If p = 1 (i.e., p

plays white), then p is the max player whose objective is to maximize the utility
score of b. Let the highest utility score that can be assigned to b be 3 if there is
at least one win board b′ ∈ B(j) reachable from b. If there are no reachable win
boards, let the utility of b be 2 so long as there is at least one draw board b′ ∈ B(j)

reachable from b. Let b have the lowest utility score of 1 when there is no win or
draw board b′ ∈ B(j) reachable from b. Let the utility score of 0 be assigned to
invalid boards. The p.r. function in (33) returns the utility score of b for p = 1,
where γ22(b, k, t) ≡ Lt(dps(b, k, t)) = Lt(wps(b, k, t)) = 0.

Umax(b, k, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3 if Lt(wps(b, k, t)) > 0,

2 if Lt(dps(b, k, t)) > 0,

1 if γ22(b, k, t),

0 if ¬valid(b).

(33)

If p = 2 (i.e., p plays black), then p is the min player whose objective is to
minimize the utility score of b. Let the utility score of b be 1 if there is at least one
win board b′ ∈ B(j) reachable from b. If there are no win boards in B(j) reachable
from b, let the utility score of b be 2 so long as there is at least one draw board in
b′ ∈ B(j) reachable from b. Let the highest utility score of 3 indicate that there is
no win or draw board b′ ∈ B(j) reachable from b. Again, let the utility score of 0
be assigned to invalid boards. The p.r. function in (34) returns the utility score for b

for player 0.

Umin(b, k, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if Lt(wps(b, k, t)) > 0,

2 if Lt(dps(b, k, t)) > 0,

3 if γ22(b, k, t),

0 if ¬valid(b).

(34)

Let b ∈ l((B(i))1), 0 ≤ i < j , The p.r. function U in (35) returns the utility score
of b ∈ B(i) for player p ∈ {1, 2} when the game continues from epoch B(i) to epoch
B(j).

U(b, p, i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

Umax(b, i, j) if 2|i,
Umin(b, i, j) if ¬(2|i),
0 otherwise.

(35)

432 V. A. Kulyukin

Let 0 ≤ i < j . The p.r. function fb in (36) returns a list of boards with a given
utility score x ∈ {1, 2, 3} for player p from epoch i to epoch j .

fb(p, i, j, x) = fbx(p, i, j, Z,L, x), (36)

where Z = l((B(i))1), L = Lt(l((B(j))1)), fbx(p, i, j, Z, 0, x) = [],
fbx(p, i, j, Z, t + 1, x) = γ23(p, i, j, (Z)s(t),fbx(p, i, j, Z, t, x), x), and

γ23(p, i, j, b, Z, x) =
{

[b] ⊗l Z if U(b, p, i, j) = x,

b if U(b, p, i, j) �= x.

Let 0 ≤ i < j and α3(p, i, j) ≡ fb(p, i, j, 3) �= 0, α2(p, i, j) ≡
fb(p, i, j, 2) �= 0 ∧ fb(p, i, j, 3) = 0, and α1(p, i, j) ≡ fb(p, i, j, 1) �=
0 ∧ fb(p, i, j, 3) = fb(p, i, j, 2) = 0, The p.r. function fbmax returns a list of
boards for player p = 1 from epoch i to epoch j .

fbmax(p, i, j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fb(p, i, j, 3) if α3(p, i, j),

fb(p, i, j, 2) if α2(p, i, j),

fb(p, i, j, 1) if α1(p, i, j),

0 otherwise.

Let β1(p, i, j) ≡ fb(p, i, j, 1) �= 0, β2(p, i, j) ≡ fb(p, i, j, 2) �= 0 ∧
fb(p, i, j, 1) = 0, and β3(p, i, j) ≡ fb(p, i, j, 3) �= 0 ∧ fb(p, i, j, 1) =
fb(p, i, j, 2) = 0. The p.r. function fbmin returns a list of boards for player p = 2
from epoch i to epoch j .

fbmin(p, i, j) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fb(p, i, j, 1) if β1(p, i, j),

fb(p, i, j, 2) if β2(p, i, j),

fb(p, i, j, 3) if β3(p, i, j),

0 otherwise.

The p.r. function fbmnx in (37) returns the list of optimal boards for player p ∈
{1, 2} from epoch i to epoch j .

fbmnx(p, i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

fbmax(p, i, j) if p = 1,

fbmin(p, i, j) if p = 2,

0 otherwise.

(37)

The p.r. function et(k) in (38) determines whose turn it is to play at epoch B(k).

Chess Is Primitive Recursive 433

et(k) =
{
1 if 2|k,

2 if ¬(2|k).
(38)

Let 0 ≤ k < t . Let

ω1(k, t) = ⊗r |t−1
j=k[(fbmnx(et(j), j, t))1].

The p.r. ω1 function chooses the first board returned from the function fbmnx .
Other p.r. functions can also be defined to inspect the first n boards returned by
fbmnx . The p.r. function bseq in (39) returns a sequence of optimal boards for
player p whose turn it is to play at k.

bseq(p, k, t) =
{

ω(k, t) if et(k) = p,

[] otherwise.
(39)

Let 0 ≤ k < t and let b1 and b2 be two boards such that φ(b1, b2, k) ≡
in(b1, l((B(k))1)) ∧ in(b2, l((B(k + 1))1)) and prb(b2, k + 1) = b1. Let

ω2(b1, b2) = min
i≤64

{(b1)i = 1 ∧ (b2)i �= 1}.

The p.r. function ω3(b1, b2) extracts a move 〈p, j 〉, where 1 ≤ j ≤ 64, that
changes b1 to b2.

ω3(b1, b2, k) =
{

〈et(k), ω2(b1, b2)〉 if φ(b1, b2, k),

0 otherwise.
(40)

Let Z = bseq(p, k, t) = [b1, . . . , bt−k+1] and let

mseq(p, k, t) = ⊗r |Lt(Z)−1
i=1 [ω3((Z)i, (Z)i+1, k − 1 + i)]

Let γ24(p, i) ≡ {2|i ∧ p = 1} ∨ {¬(2|i) ∧ p = 2}. The p.r. function in (41)
defines a game of chess for player p and epoch i by returning a sequence of optimal
moves for p beginning at epoch B(i) and ending at epoch B(j).

G(p, i, j) =
{
mseq(p, i, j) if γ24(p, i),

0 otherwise.
(41)

Since G(i, j) is p.r., we have the following theorem.

Theorem Chess is a deterministic two-player p.r. game.

434 V. A. Kulyukin

4 Conclusion

A proof is presented to show that chess is a deterministic two-player primitive
recursive game. To the extent that the proof holds, chess can be characterized
in terms of primitive recursive functions. If this is the case, some deterministic
two-player games and processes that can be formalized as such are likely to have
algorithmic solutions that outperform human players. The techniques developed in
this paper may lead to proofs that other deterministic two-player board games are
primitive recursive and contribute to the theory of primitive recursive functions [5].

References

1. T. Bolon, How to Never Lose at Tic Tac Toe (Book Country, New York, NY, USA, 2013)
2. W. Daly, Jr., Computer Strategies for the Game of Qubic, M. Eng. thesis, Department of

Electrical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts,
USA, Feb. 1961

3. V. Kulyukin, On primitive recursiveness of Tic Tac Toe, in Proceedings of the International
Conference on Foundations of Computer Science (FCS’19), pp. 9–15, Las Vegas, NV, USA, Jul.
29–Aug. 01, 2019

4. M. Davis, R. Sigal, E. Weyuker, Computability, Complexity, and Languages: Fundamentals
of Theoretical Computer Science, 2nd edn. (Harcourt, Brace & Company, Boston, MA, USA,
1994)

5. H. Rogers, Jr., Theory of Recursive Functions and Effective Computability (The MIT Press,
Cambridge, MA, USA, 1988)

	Chess Is Primitive Recursive
	1 Introduction
	2 Gödel Number Operators
	3 Chess
	4 Conclusion
	References

