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1 Introduction

Elliptic curves are a fundamental tool in modern cryptography. The abelian group
structure on an elliptic curve makes it suitable for versions of Diffie–Hellman
key exchange and ElGamal key encryption, as well as providing techniques for
primality testing and integer factorization, among many other applications relevant
to network security [4, 22, 32, 36]. In this chapter, we consider an approach to integer
factorization using elliptic curves.

The elliptic curve method (ECM) due to Lenstra [24] is one of the most effective
methods known for finding medium-sized prime factors of large integers, in contrast
to trial division, Pollard’s rho method, or the p−1 method, which quickly find small
factors, or sieve methods, which are capable of finding very large prime factors. For
factoring an integer N , the basic idea of the ECM is to pick (at random) an elliptic
curve E and a point P ∈ E, then compute the scalar multiple sP = P + · · · + P
(s times) in the group law of the curve, using arithmetic in the ring Z/NZ, take a
rational function f on E with a pole at the point O corresponding to the identity in
the group E, and evaluate f (sP) for some s chosen as the largest prime power less
than some fixed bound B1 or as the product of all such prime powers. For certain
choices of E and P, this computation may lead to an attempt to divide by a non-unit
in the ring, resulting in a factor of N being found.
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To be more precise, traditionally, one starts with a Weierstrass cubic defined over
Q, which can be taken with integer coefficients as

y2 = x3 + Ax + B, A,B ∈ Z,

so that arithmetic modN corresponds to working with the pseudocurve (or group
scheme) E(Z/NZ) consisting of all (x, y) ∈ (Z/NZ)2 that satisfy the cubic
equation together with O, the point at infinity; but, when N is composite, the group
addition P1 + P2 is not defined for all pairs of points P1,P2 ∈ E(Z/NZ). Typically,
f is taken to be the coordinate function x, and the method is successful if computing
the scalar multiple sP leads to an x-coordinate with a denominator D which is not
a unit in Z/NZ, such that gcd(D,N) > 1 is a non-trivial factor of N . When this
fortunate occurrence arises, it indicates that there is a prime factor p|N for which
sP = O in the group law of the bona fide elliptic curve E(Fp), which is guaranteed
if s is a multiple of the order #E(Fp).

The original description of the ECM was based on computations with affine
coordinates for a Weierstrass cubic; computing the scalar multiple sP is now known
as “stage 1” of the ECM, and there is a further “stage 2”, due to Brent, involving
computing multiples �sP for small primes � less than some bound B2 > B1, but
here we only focus on stage 1. Improvements in efficiency can be made by using
various types of projective coordinates and/or Montgomery curves (see chapter 7 in
[4]). However, all of these approaches share an inconvenient feature of the addition
law for P1 + P2 on a Weierstrass cubic, namely that the formulae for P2 = ±P1 or
P2 = O are different from the generic case.

An important new development was the proposal of Bernstein and Lange [1] to
consider a different model for E, namely the Edwards curve [6]

Ed : x2 + y2 = 1 + dx2y2 (1)

(d is a parameter), for which the addition law

(x1, y1) + (x2, y2) =
(

x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − x1x2

1 − dx1x2y1y2

)
(2)

has the advantage that it is also valid for a generic pair of points P1,P2 ∈ Ed , even
when P1 = P2, so it can be used for doubling (following [1], we have used a rescaled
curve compared with the original version in [6]). The fact that the addition law (2)
on Ed is unified in this sense is implicit in the classical addition formula for the
Jacobi sine function (see chapter XXII in [35], or chapter 22 in [28]), for we have
been

sn(z + w) = sn(z)cd(w) + cd(z)sn(w)

1 + k2sn(z)sn(w)cd(z)cd(w)
,
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cd(z + w) = cd(z)cd(w) − sn(z)sn(w)

1 − k2sn(z)sn(w)cd(z)cd(w)
,

using Glaisher’s notation for the quotient cd(z) = cn(z)/dn(z) = sn(z + K), with
the complete elliptic integral K = K(k) being a quarter period of the Jacobi sine,
which yields (2) when we parametrize the points on Ed by

(x, y) = (
sn(z), cd(z)

) = (
sn(z), sn(z + K)

)
(3)

and identify d = k2.
It was shown in [1] that, compared with the Weierstrass representation and its

variants, the Edwards addition law gives more efficient formulae for computing an
addition step (P1,P2) �→ P1 + P2 or a doubling step P1 �→ 2P1, both of which
are required to obtain the scalar multiple sP in subexponential time O(log s) via
an addition chain. The implementation EECM-MPFQ introduced in [2] gains even
greater efficiency by using twisted Edwards curves, with an extra parameter a in
front of the term x2 on the left-hand side of (1), and further optimizing the ECM
in other ways, including the use of projective coordinates in P

2, extended Edwards
coordinates in P

3, and choosing curves with large torsion.
In this chapter, we explore implementations of the ECM using other models of

elliptic curves, which arise in the context of QRT maps, an 18-parameter family of
birational maps of the plane introduced by Quispel, Roberts, and Thompson [30]
to unify diverse examples of maps and functional relations appearing in dynamical
systems, statistical mechanics, and soliton theory. A QRT map is one of the simplest
examples of a discrete integrable system, being a discrete avatar of a Hamiltonian
system with one degree of freedom, with an invariant function (conserved quantity)
and an invariant measure (symplectic form) [5].

Each orbit of a QRT map corresponds to a sequence of points P0 + nP on a
curve of genus one, and in the special case P0 = O, the orbit consists of the scalar
multiples nP, being closely related to an elliptic divisibility sequence (EDS) [34].
Thus, we can implement the ECM by iterating a QRT map with a special choice of
initial data and performing all the arithmetic in Z/NZ.

A terse overview of QRT maps is provided in the next section; see [5, 20, 21, 33]
for further details. Section 3 briefly introduces Somos sequences and related EDS,
showing how three particular examples of QRT maps arise in this context, namely
the Somos-4 QRT map, the Somos-5 QRT map, and the Lyness map. Each of the
subsequent Sects. 4–6 is devoted to one of these three types of QRT map, including
the doubling map that sends any point P1 �→ 2P1 and a corresponding version of the
ECM. In Sect. 7, we analyse the complexity of scalar multiplication, concentrating
on the Lyness case in projective coordinates, and the final section contains some
conclusions.
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2 A Brief Review of QRT Maps

A QRT map can be constructed from a biquadratic curve of the general form

F(x, y) :=
2∑

i,j=0

aij x
iyj = 0. (4)

For generic coefficients aij , this is a smooth affine curve, and with the inclusion of
additional points at infinity, it lifts to a smooth curve in P

1 × P
1, by introducing

homogeneous coordinates
(
(X : W), (Y : Z)

)
and setting x = X/W , y = Y/Z to

obtain a homogeneous equation of bidegree (2, 2), that is,

F̂ (X,W, Y,Z) = W 2Z2F(X/W, Y/Z) = 0;

this curve is a double cover of P1 with four branch points and so has genus one by
Riemann-Hurwitz. A biquadratic curve admits two simple involutions, namely the
horizontal/vertical switches given by

ιh : (x, y) �→ (x†, y), ιv : (x, y) �→ (x, y†),

where x† is the conjugate root of (4), viewed as a quadratic in x, and similarly for
y†; the Vieta formulae for the sum/product of the roots of a quadratic allow explicit
birational expressions to be given for these two involutions. On a given biquadratic
curve, the QRT map is defined to be the composition of the two switches,

ϕQRT = ιv ◦ ιh,

which acts as a translation in the group law of the curve, ϕQRT : P0 �→ P0 + P,
where the shift P is independent of the choice of initial point P0 on the curve.

So far, the map ϕQRT is restricted to a single curve, but to define a map on the
plane, one should allow each coefficient aij = aij (λ) to be a linear function of a
parameter λ, so that (4) becomes a biquadratic pencil,

Eλ : F(x, y) ≡ F1(x, y) + λ F2(x, y) = 0. (5)

The map (x, y) �→ λ = −F1(x, y)/F2(x, y), obtained by solving (5) for λ, defines
an elliptic fibration of the plane over P1 (except at finitely many base points where
F1 = F2 = 0). Each value of λ corresponds to a unique curve in the pencil, where
the map ϕQRT is defined, and on each such curve, a suitable combination of Vieta
formulae yields a birational expression, which is independent of λ, so defines a
birational map on the (x, y) plane, also denoted ϕQRT. By construction, the function
−F1/F2 is constant on each orbit and so is a conserved quantity for the map ϕQRT
in the plane.
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Henceforth, we restrict to the symmetric case F(x, y) = F(y, x), so that each
curve in the pencil also admits the involution

ι : (x, y) �→ (y, x),

making the horizontal/vertical switches conjugate to one another; thus, ϕQRT is a
perfect square: ιv = ι ◦ ιh ◦ ι, hence ϕQRT = (ι ◦ ιh)

2 = ϕ ◦ ϕ, where the “square
root” of ϕQRT is the symmetric QRT map

ϕ = ι ◦ ιh.

As a simple example, note that the Edwards curve (1) is a symmetric biquadratic,
and we can identify d = λ as the parameter of the pencil. Then, the Vieta formula
for the sum of the roots gives an expression that is independent of this parameter,
and the symmetric QRT map ϕ = ϕEdwards associated with this pencil has the very
simple form

ϕEdwards : (x, y) �→ (y,−x),

which is periodic with period four, i.e. (ϕEdwards)
4 = id. This is another

manifestation of the well-known fact that Edwards curves have 4-torsion or of the
fact that the complete elliptic integral K in (3) is a quarter period of the Jacobi sine.

A generic symmetric QRT map is far from being so simple: starting from an
initial point P0 in the plane, each orbit is a sequence of points Pn = P0 + nP on a
particular curve Eλ, and in general (at least, over an infinite field), the shift P need
not be a torsion point. Even over a finite field Fp, where every point is torsion, the
order of P typically varies with the choice of curve in the pencil, i.e. with the value
of λ.

In the cases of interest for the rest of the chapter, the symmetric QRT map ϕ can
be written in multiplicative form, so that the sequence of points Pn has coordinates
(x, y) = (un, un+1), where un satisfies a recurrence of second order,

un+2 un = R(un+1), (6)

for a certain rational function R of degree at most two, with coefficients that are
independent of λ (cf. Proposition 2.5 in [15], or [20, 21], for more details).

3 Somos and Elliptic Divisibility Sequences

A Somos-k sequence satisfies a quadratic recurrence of the form
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τn+kτn =
�k/2�∑
j=1

αj τn+k−j τn+j , (7)

where (to avoid elementary cases) it is assumed that k ≥ 4 with at least two
parameters αj 
= 0. It was a surprising empirical observation of Somos [31] that
such rational recurrences can sometimes generate integer sequences, which was
proved by Malouf [26] for the Somos-4 recurrence

τn+4τn = α τn+3τn+1 + β (τn+2)
2, (8)

in the particular case that the coefficients are α = β = 1 and the initial values
are τ0 = τ1 = τ2 = τ3 = 1. A broader understanding came from the further
observation that the recurrence (8) has the Laurent property [10], that is, τn ∈
Z[α, β, τ±1

0 , τ±1
1 , τ±1

2 , τ±1
3 ] ∀n ∈ Z. Somos sequences arise from mutations in

cluster algebras [9] or LP algebras [23] and as reductions of the bilinear discrete
KP/BKP equations, being associated with translations on Jacobian/Prym varieties
for the spectral curve of a corresponding Lax matrix [7, 17].

The three simplest non-trivial examples of Somos recurrences, with two terms
on the right-hand side, are the Somos-4 recurrence (8), the Somos-5 recurrence

τn+5τn = α̃ τn+4τn+1 + β̃ τn+3τn+2, (9)

and the special Somos-7 recurrence

τn+7τn = a τn+6τn+1 + b τn+4τn+3. (10)

All three of them can be reduced to two-dimensional maps of QRT type, and hence
their orbits correspond to sequences of points P0 + nP on curves of genus one. (In
contrast, generic Somos-6 sequences and Somos-7 sequences are associated with
points on Jacobians of genus 2 curves [7].)

To see the connection with QRT maps, in (8), one should substitute

un = τn−1τn+1

τ 2n
�⇒ un+2 un = α un+1 + β

(un+1)2
, (11)

yielding a second-order recurrence that can be reinterpreted as the map

(un, un+1) �→ (un+1, un+2)

in the plane, and it turns out to be a symmetric QRT map; for the associated
biquadratic pencil and other details, see Sect. 4. Similarly, for the Somos-5 recur-
rence (9), one can make the substitution
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un = τn−2τn+1

τn−1τn

�⇒ un+2 un = α̃ un+1 + β̃

un+1
, (12)

where the latter recurrence for un is equivalent to the QRT map described in Sect. 5.
Finally, for the special Somos-7 recurrence (10), one should substitute

un = τn−3τn+2

τn−1τn

�⇒ un+2 un = a un+1 + b, (13)

reducing the order from seven to two. The recurrence for un in (13) is known in the
literature as the Lyness map, after the particular periodic case b = a2 found in [25];
for details, see Sect. 6. The first two of these substitutions were derived in an ad hoc
way in [14] and [15], but they all have a very natural interpretation in the theory of
cluster algebras [8], which implies that these are the only Somos-k recurrences that
can be reduced to two-dimensional maps.

Morgan Ward’s elliptic divisibility sequences (EDSs) [34] are sequences of
integers τn with τ0 = 0, τ1 = 1, τ2, τ3, τ4 ∈ Z, and τ2|τ4, subject to the relations

τn+mτn−m = (τm)2τn+1τn−1 − τm+1τm−1(τn)
2, (14)

τ2τn+m+1τn−m = τm+1τmτn+2τn−1 − τm+2τm−1τn+1τn (15)

for allm, n ∈ Z. An EDS corresponds to a sequence of points nP on an elliptic curve
over Q. The relation (14) for m = 2 is a special case of the Somos-4 recurrence (8),
with α = (τ2)

2 and β = −τ3; similarly, (15) with m = 2 gives a special case
of (9), and a linear combination of this relation for m = 2 and m = 3 yields (10)
with the coefficients/initial values related in a particular way. The fact that the same
EDS satisfies these higher Somos relations [29] provides one way to derive the
isomorphisms between the associated biquadratic curves and a Weierstrass cubic
in Theorem 1 below, which can also be deduced from results in [18].

4 Somos-4 QRT Map

Here, we give further details of the QRT map defined by (11) and the associated
family of curves.

QRT map : ϕ : (x, y) �→
(
y,

(
α y + β

)
/(xy2)

)
. (16)

Pencil of curves : x2y2 + α (x + y) + β − J xy = 0. (17)

Elliptic involution : ιE : (x, y) �→ (
x, (α x + β)/(x2y)

)
. (18)

Identity element and shift : O = (∞, 0), P = (0,−β/α). (19)
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Doubling map : ψ : (x, y) �→
(

α (x − y)y (α x + β − x3y)

(α x + β − x2y2)2
,− (α x + β − x2y2)(α y + β − x2y2)

α xy(x − y)2

)
. (20)

The map (16) preserves the symplectic form ω = (xy)−1dx ∧ dy, that is, ϕ∗(ω) =
ω, and the doubling map ψ gives ψ∗(ω) = 2ω; the same is true for the Somos-
5/Lyness maps. Each orbit of ϕ lies on a fixed biquadratic curve of the form (17),
with λ = −J being the parameter of the pencil (5); equivalently, solving (17) for
J = J (x, y) gives a conserved quantity for the map. On any curve (17), the elliptic
involution (18) sends any point P �→ −P. A special sequence of points (un, un+1) on
the curve is generated by iterating (16) with a suitable starting point, corresponding
to the scalar multiples nP of a particular point P (the shift). To have both coordinates
finite and non-zero, one should start with

2P = (−β/α,−α(α2 + βJ )/β2) = (u2, u3). (21)

However, in order to calculate a particular scalar multiple sP in timeO(log s), rather
than O(s), one must employ the doubling map on the curve, using some variant of
the “double-and-add” method (an addition chain).

We can now present a version of the ECM based on the QRT map (16).

Algorithm 1 ECM with Somos-4 QRT To factorize N , pick α, β, J ∈ Z/NZ at
random and some integer s > 2. Then, starting from the point 2P = (u2, u3) on the
curve (17), given by (21), use the QRT map (16) to perform addition steps and (20)
to perform doubling steps, working in Z/NZ, to compute sP = (us, us+1). Stop if,
for some denominator D, g = gcd(D,N) > 1 appears at any stage; when g < N ,
the algorithm has been successful, but if g = N or no forbidden divisions appear,
then restart with new α, β, J , and/or a larger value of s.

Example 1 Given N = 1,950,153,409, we pick α = β = 1 and J = 4 to find
(u2, u3) = (−1,−5), take s = 12, and compute the sequence (un mod N), that is,

∞, 0,−1,−5, 1482116591, 121884579, 452175879, 1062558798, 154165861,
1566968710, 1329544730, 56956778,

where the last term is u11; then, g = gcd(u11, N) = 16,433, so the algorithm
terminates. Of course, not all the above terms are necessary, since by writing 12 =
22 × (2 + 1), it is more efficient to compute the addition chain 2P �→ 3P �→ 6P �→
12P using (16) and (20) as

(u2, u3)
ϕ�→ (u3, u4)

ψ�→ (u6, u7)
ψ�→???

and then observe that the denominator αx + β − x2y2 in (20) has common factor
g > 1 with N when (x, y) = (u6, u7).
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5 Somos-5 QRT Map

Here, we describe the features of the QRT map corresponding to recurrence (12).

QRT map : ϕ : (x, y) �→
(
y,

(
α̃ y + β̃

)
/(xy)

)
. (22)

Pencil of curves : xy(x + y) + α̃ (x + y) + β̃ − J̃ xy = 0. (23)

Elliptic involution : ιE : (x, y) �→ (y, x).

Identity element and shift : O = (∞,∞), P = (∞, 0).

Doubling map : ψ : (x, y) �→
(

(x2y − α̃x − β̃)(x2y − α̃y − β̃)

x(x − y)(xy2 − α̃x − β̃)
,
(xy2 − α̃x − β̃)(xy2 − α̃y − β̃)

y(y − x)(x2y − α̃y − β̃)

)
. (24)

The double of the translation point (shift) is 2P = (0,−β̃/α̃) = (u2, u3), so to
obtain the sequence of multiples nP, one must start with

3P = (−β̃/α̃, J̃ + α̃2/β̃ + β̃/α̃) = (u3, u4). (25)

We can paraphrase Algorithm 1 to get another version of the ECM.

Algorithm 2 ECM with Somos-5 QRT To factorize N , pick α̃, β̃, J̃ ∈ Z/NZ

at random and some integer s > 3. Then, starting from 3P = (u3, u4) on the
curve (23), given by (25), use (22) to perform addition steps and (24) to perform
doubling steps, working in Z/NZ, to compute sP = (us, us+1). Stop if, for some
denominator D, g = gcd(D,N) with 1 < g < N appears at any stage.

6 Lyness Map

The real and complex dynamics of the recurrence (13), known as the Lyness map,
has been studied by many authors, with a very detailed account in [5].

QRT map : ϕ : (x, y) �→
(

y,
a y + b

x

)
. (26)

Pencil of curves :
xy(x + y) + a (x + y)2 + (a2 + b) (x + y) + ab − K xy = 0. (27)

Elliptic involution : ιE : (x, y) �→ (y, x).

Identity element and shift : O = (∞,∞), P = (∞,−a). (28)
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Doubling map : ψ : (x, y) �→
(
R(x, y), R(y, x)

)
,

R(x, y) = (xy − ay − b)(x2y − a2x − by − ab)

x(x − y)(y2 − ax − b)
. (29)

Doubling and tripling P give 2P = (−a, 0), 3P = (0,−b/a), so to obtain the
multiples nP = (un, un+1) by iteration of (26) and (29), one should begin with

4P =
(

−b

a
,−a − b(Ka + b)

a(a2 − b)

)
= (u4, u5). (30)

Henceforth, it will be assumed that b 
= a2, since otherwise all orbits of (13)
are periodic with period five, meaning that P is a 5-torsion point on every curve
in the pencil. This special case is the famous Lyness 5-cycle [25], related to the
associahedron K4 via the A2 cluster algebra and to the Abel pentagon identity for
the dilogarithm [27], among many other things.

The above formulae (and those for Somos-4/5) can all be obtained via the
birational equivalence of curves described in the following theorem (cf. [18]).

Theorem 1 Given a fixed choice of rational point P = (ν, ξ) ∈ Q
2 on aWeierstrass

cubic

E(Q) : (y′)2 = (x′)3 + Ax′ + B

over Q, a point (x, y) on a Lyness curve (27) is given in terms of (x′, y′) ∈ E(Q)

by

x = −β(αu + β)

uv
− a, y = −βuv − a,

where

(u, v) =
(

ν − x′, 4ξy
′ + Ju − α

2u2

)

are the coordinates of a point on the Somos-4 curve (17), and the parameters are
related by

a = −α2 − βJ, b = 2a2 + aβJ − β3, K = −2a − βJ, (31)

with

α = 4ξ2, J = 6ν2 + 2A, β = 1

4
J 2 − 12νξ2.
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Also,

(
−x + a

β
,−y + a

β

)

is a point on the Somos-5 curve (23) with parameters

α̃ = −β, β̃ = α2 + βJ, J̃ = J.

Conversely, given a, b,K ∈ Q, a point (x, y) on (27) corresponds to (x̄, ȳ) ∈ Ē(Q),
a twist of E(Q) with coefficients Ā = α2β4A and B̄ = α3β6B, and P in (28)
corresponds to the point (ν̄, ξ̄ ) = ( 1

12 (βJ )2 − 1
3β

3, 1
2α

2β3) ∈ Ē(Q).

Algorithm 3 ECM with Lyness To factorize N , pick a, b,K ∈ Z/NZ at random
and some integer s > 4. Then, starting from 4P = (u4, u5) on the curve (27), given
by (30), use (26) to perform addition steps and (29) to perform doubling steps,
working in Z/NZ, to compute sP = (us, us+1). Stop if, for some denominator D,
g = gcd(D,N) with 1 < g < N appears at any stage.

7 Complexity of Scalar Multiplication

Of the three symmetric QRT maps above, the Lyness map (26) is the simplest, so we
focus on that for our analysis. Before proceeding, we can make the simplification
a → 1 without loss of generality, since over Q we can always rescale (x, y) →
(ax, ay) and redefine b and K . To have an efficient version of Algorithm 3, it is
necessary to work in projective coordinates, to avoid costly modular inversions;
then, only a single gcd needs to be calculated at the end. For cubic curves, it is most
common to work in the projective plane P

2 (or sometimes, Jacobian coordinates
in the weighted projective space P(1, 2, 3) are used for Weierstrass cubics [11]).
However, for the biquadratic cubics (27), P1 ×P

1 is better, since doubling with (29)
is of higher degree in P2.

In terms of projective coordinates in P1 × P
1, the Lyness map (26) becomes

(
(X : W), (Y : Z)

)
�→

(
(Y : Z), ((aY + bZ)W : XZ)

)
. (32)

Then, taking a → 1, each addition step using (32) requires 2M + 1B, i.e. two
multiplications and one multiplication by parameter b.

The affine doubling map (29) for the Lyness case lifts to the projective version

(
(X : W), (Y : Z)

)
�→

(
(A1B1 : C1D1), (A2B2 : C2D2)

)
, (33)

where

X∗ = A1B1, W ∗ = C1D1, Y ∗ = A2B2, Z∗ = C2D2,
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A1 = A+ + A−, A2 = A+ − A−, B1 = B+ + B−, B2 = B+ − B−,

C1 = 2XT, C2 = −2YT , D1 = ZA2 + C2, D2 = WA1 + C1,

with A− = aT and

A+ = 2G−aS−2H ′, B+ = S(G−a2H−H ′)−2aHH ′, B− = T (G−a2H+H ′),

S = E+F, T = E−F, E = XZ, F = YW, G = XY, H = WZ, H ′ = bH.

Setting a → 1 once again for convenience and using the above formulae, we see
that doubling can be achieved with 15M + 1B. (To multiply by 2, use addition:
2X = X + X.)

This should be compared with EECM-MPFQ [2]: using twisted Edwards curves
ax2 + y2 = 1+ dx2y2 in P2, the projective addition formula requires 10M+ 1S+
1A + 1D (S,A, and D denote squaring and multiplication by the parameters a and
d, respectively), while doubling only takes 3M + 4S + 1A. So, the Lyness addition
step (32) is much more efficient than for twisted Edwards, but doubling requires
twice as many multiplications. For any addition chain, the number of doublings
will be O(log s), so employing Algorithm 3 to carry out the ECM with the Lyness
map in projective coordinates should require on average roughly twice as many
multiplications per bit as for EECM-MPFQ.

8 Conclusions

Due to the complexity of doubling, it appears that scalar multiplication with Lyness
curves is not competitive with the state of the art using twisted Edwards curves.
However, in a follow-up study [19], we have shown that the projective doubling
map (33) for Lyness curves can be made efficient by distributing it over four
processors in parallel, dropping the effective cost to 4M + 1B. On the other hand,
this is still roughly twice the cost of the best known algorithm for doubling with
four processors on twisted Edwards curves in the special case a = −1 [13].

However, by Theorem 1, any elliptic curve over Q is isomorphic to a Lyness
curve, while twisted Edwards curves only correspond to a subset of such curves.
Thus, there may be other circumstances, whether for the ECM or for alternative
cryptographic applications, where Lyness curves and QRT maps will prove to be
useful. For instance, one could use families of Lyness curves with torsion subgroups
that are impossible with twisted Edwards curves in EECM-MPFQ. Also, bitcoin
uses the curve y2 = x3 + 7, known as secp256k1, which cannot be expressed in
twisted Edwards form.
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The remarkable simplicity of the addition step (32) means that it might also
be suitable for pseudorandom number generation. In that context, it would be
worth exploring non-autonomous versions of QRT maps modN . For example, the
recurrence

un+2un = un+1 + bnq
n, bn+6 = bn (34)

is a q-difference Painlevé version of the Lyness map (13) (see [16]), and overQ, the
arithmetic behaviour of such equations appears to be analogous to the autonomous
case [12], with polynomial growth of logarithmic heights; although for (34), the
growth is cubic rather than quadratic as in the elliptic curve case. It is interesting
to compare this with the case where q = 1 and the coefficient bn is periodic with
a period that does not divide 6, when generically (34) appears to display chaotic
dynamics [3], e.g. the period 5 example un+2un = un+1 + bn, bn+5 = bn, for
which the logarithmic height along orbits inQ grows exponentially with n. Working
modN , it would be worth carrying out a comparative study of the pseudorandom
sequences generated by (34) to see how the behaviour for q 
= 1 differs from the
Lyness case (13) and the effect of changing the period of bn.
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