
Random Self-modifiable Computation

Michael Stephen Fiske

1 Introduction

What is computation? This question usually assumes that the Turing machine1

[23] is the standard model [18, 19, 21]. We reexamine this question with a new
model, called the ex-machine [12]. This model adds two special instructions to
the Turing machine instructions. The name ex-machine comes from the Latin
term extra machinam because the ex-machine computation is a non-autonomous
dynamical system [10] that may no longer be considered a machine.2 The meta
instruction adds new states and new instructions or can replace instructions. The
random instruction can be physically realized with a quantum random number
generator [14, 15]. When an ex-machine uses meta and random instructions, its
program complexity (machine size [3]) can increase, unlike a lever, pulley, or Turing
machine. Two identical ex-machines can evolve to different ex-machines even when
both start executing with the same tape input and initial state.

The original version of this chapter was revised: The DOI in reference 12 has been corrected.
The correction to this chapter is available at https://doi.org/10.1007/978-3-030-70873-3_72

1The conception of the Turing machine was motivated by Hilbert’s goal to find a general method
for constructing proofs of mathematical theorems [15].
2Each Turing machine is a discrete autonomous dynamical system in C. See the Appendix.

M. S. Fiske (�)
Aemea Institute, San Francisco, CA, USA
e-mail: mf@aemea.org

© Springer Nature Switzerland AG 2021, corrected publication 2021
H. R. Arabnia et al. (eds.), Advances in Software Engineering, Education, and
e-Learning, Transactions on Computational Science and Computational
Intelligence, https://doi.org/10.1007/978-3-030-70873-3_27

375

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70873-3_27&domain=pdf
https://doi.org/10.1007/978-3-030-70873-3_72
mailto:mf@aemea.org
https://doi.org/10.1007/978-3-030-70873-3_27

376 M. S. Fiske

We combine self-modification and randomness and construct an ex-machine
Z(x) whose program complexity |Q||A| increases as it executes.3 Z(x)’s non-
autonomous behavior circumvents the contradiction in an information-theoretic
proof [4, 5] of Turing’s halting problem. The proof’s contradiction depends upon
an information-theoretic property: each Turing machine is representable with a
finite number of bits that stays constant during the entire execution. Some ex-
machines violate this property. Z(x)’s circumvention occurs because its meta
instructions increase the number of states and instructions in Z(x), based on random
information obtained from its random instructions. Hence, the minimal number of
bits that represent an ex-machine’s evolved program can increase without bound as
execution proceeds.

1.1 Related Work—Computation

In [24], the notion of providing an oracle was introduced. Turing stated that an
oracle cannot be a machine but did not provide a physical basis for its existence.
For a summary of various physical realizations that use quantum events to generate
random binary outcomes, see [14]. In [7], the following question was asked: Is
there anything that can be done by a machine with a random element but not
by a deterministic machine? They showed for a Turing computable probability
p (e.g., p = 1

2) that any set of output symbols that can be enumerated with
positive probability by their probabilistic machine can also be enumerated by
a Turing machine. Overall, they were unable to produce Turing incomputable
computation when p is Turing computable. In [13], a framework is developed for
self-modifying programs, but it does not include randomness and does not address
computability. In [11], a parallel machine self-modifies with meta commands and
takes quantum random measurements to execute a Turing incomputable black box.
Prior hypercomputation models [8, 16, 17] are not physically realizable.

2 The Ex-machine

Z, N, and N
+ are the integers, non-negative integers, and positive integers,

respectively. The finite set Q = {0, 1, 2, . . . , n − 1} ⊂ N represents the ex-machine
states. As a subset of N, Q helps specify how new states are added to Q when a meta
instruction executes. Let V = {a1, . . . , an}. The set A = {0,1,#} ∪ V consists of
alphabet (tape) symbols, where # is the blank symbol and {0, 1, #} ∩ V = ∅. In
some ex-machines, A = {0,1,#,Y,N,a}, where V = {Y,N,a}. Sometimes,
A = {0,1,#}. Alphabet symbols are scanned from and written on the tape. The
tape is a function T : Z → A. We say T is finite [21], whenever a finite number of
tape squares T (k) contain non-blank symbols.

3Q and A represent the ex-machine states and alphabet, respectively.

Random Self-modifiable Computation 377

2.1 Standard Instructions

Definition 1 (Execution of Standard Instructions) Standard instructions S

satisfy S ⊂ Q × A × Q × A × {−1, 0, 1} and a uniqueness condition: If
(q1, α1, r1, a1, y1) ∈ S and (q2, α2, r2, a2, y2) ∈ S and (q1, α1, r1, a1, y1) �=
(q2, α2, r2, a2, y2), then (q1, α1) �= (q2, α2). Instruction I = (q, a, r, α, y) follows
[19]. When the ex-machine is in state q and the tape head is scanning a = T (k) at
tape square k, I executes as follows. The ex-machine state moves from state q to
state r . Alphabet symbol a is replaced with α so that T (k) = α. If y = −1 or 1, the
tape head moves one square to the left or right, respectively. If y = 0, the tape head
does not move.

A Turing machine [23] has a finite set of machine states, a finite alphabet, a finite
tape, and a finite set of standard instructions that execute according to Definition 1.
An ex-machine that uses only standard instructions is called a standard machine
and is computationally equivalent to a Turing machine. The Turing machine is the
standard mathematical model of computation, realized by digital computers [1].

2.2 Random Instructions

This subsection defines two random axioms and the random instructions. Repeated
independent trials are called quantum random Bernoulli trials [9] if all trials have a
quantum random measurement [14] with only two outcomes and the probability of
each outcome stays constant. Unbiased means that the probability of both outcomes
is the same.

Random Axiom 1 (Unbiased Trials) Quantum random outcome xi measures 0 or
1. Probability P(xi = 1) = P(xi = 0) = 1

2 .

Random Axiom 2 (Stochastic Independence) Prior measurements x1, . . . , xi−1
have no effect on the next measurement xi . For each bi ∈ {0, 1}, the conditional
probabilities satisfy P(xi = 1|x1 = b1, . . . , xi−1 = bi−1) = 1

2 and P(xi = 0|x1 =
b1, . . . , xi−1 = bi−1) = 1

2 .

Definition 2 (Execution of Random Instructions) Random instructions R

are a subset of Q × A × Q × {−1, 0, 1}. R satisfies uniqueness condition:
If (q1, α1, r1, y1) ∈ R and (q2, α2, r2, y2) ∈ R and (q1, α1, r1, y1) �=
(q2, α2, r2, y2), then (q1, α1) �= (q2, α2). When scanning symbol a and in state
q, instruction (q, a, r, y) executes as follows:

(1) Measure bit b ∈ {0, 1} from a quantum random source that satisfies both
axioms.

(2) On the tape, an alphabet symbol a is replaced with a random bit b. Note {0,
1} ⊂ A.

(3) The ex-machine state q changes to state r .

378 M. S. Fiske

(4) The tape head moves left if y = −1, moves right if y = 1, and does not move
if y = 0.

Example 1 lists a random walk ex-machine; it shows how the random instructions
execute and how the ex-machine can exhibit non-autonomous dynamical behavior.

Example 1 (Random Walk Ex-machine) Alphabet A = {0, 1, #, E}. Q =
{0,1,2,3,4,5,6,h} with halting state h = 7. There are 3 random instructions
(0,#,0,0), (1,#,1,0), and (4,#,4,0).

(0,#,0,0) (0,0,1,0,-1) (0,1,4,1,1) ; Comments follow a semicolon.
(1,#,1,0) (1,0,1,0,-1) (1,1,2,#,1) ; Resume random walk to the left

of tape square 0
(2,0,3,#,1) (2,#,h,E,0) (2,1,h,E,0)
(3,#,0,#,-1) ; Go back to state 0. Number of random 0’s = Number of

random 1’s.
(3,0,1,0,-1) ; Go back to state 1. Number of random 0’s > Number of

random 1’s.
(3,1,h,E,0)
(4,#,4,0) (4,1,4,1,1) (4,0,5,#,-1) ; Resume random walk to the right

of tape square 0
(5,1,6,#,-1) (5,#,h,E,0) (5,0,h,E,0)
(6,#,0,#,1) ; Go back to state 0. Number of random 0’s = Number of

random 1’s.
(6,1,4,1,1) ; Go back to state 4. Number of random 1’s > Number of

random 0’s.
(6,0,h,E,0)

A valid initial tape contains only blank symbols. A valid initial state is 0. At
step 1, random instruction (0,#,0,0) measures 0, so it executes (0,#,0,0,0).
At step 3, instruction (1,#,1,0) measures 1, so it executes (1,#,1,1,0). (Per
Definition 2, 0r means 0 was randomly measured, and 1r means 1 was measured.)
In all executions shown, the tape head is reading the symbol to the right of the space.
The sequence of tape symbols shows the tape contents after the instruction in the
same row has executed.
First Execution of Random Walk Ex-machine. Steps 1–7.

STATE TAPE HEAD INSTRUCTION
0 ### 0### 0 (0,#,0,0r,0)
1 ## #0### -1 (0,0,1,0,-1)
1 ## 10### -1 (1,#,1,1r,0)
2 ### 0### 0 (1,1,2,#,1)
3 #### ### 1 (2,0,3,#,1)
0 ### #### 0 (3,#,0,#,-1)
0 ### 0### 0 (0,#,0,0r,0)

For the second execution, at step 1, a random measurement returns a 1, so
(0,#,0,0) executes as (0,#,0,1,0). Instruction (4,#,4,0) measures 0, so
(4,#,4,0,0) executes.
Second Execution of Random Walk Ex-machine. Steps 1–7.

STATE TAPE HEAD INSTRUCTION
0 ### 1### 0 (0,#,0,1r,0)
4 ###1 ### 1 (0,1,4,1,1)
4 ###1 0## 1 (4,#,4,0r,0)
5 ### 1### 0 (4,0,5,#,-1)
6 ## ##### -1 (5,1,6,#,-1)
0 ### #### 0 (6,#,0,#,1)
0 ### 1### 0 (0,#,0,1r,0)

Random Self-modifiable Computation 379

The first and second executions show that the execution behavior of the same ex-
machine with identical initial conditions may be distinct at two different instances.
Hence, the ex-machine is a discrete, non-autonomous dynamical system [10].

2.3 Meta Instructions

This subsection defines the meta instruction and the notion of evolving an ex-
machine. The execution of a meta instruction can add new states and new
instructions or replace instructions. Formally, the meta instructions M satisfy
M ⊂ {(q, a, r, α, y, J) : q ∈ Q and r ∈ Q ∪ {|Q|} and a, α ∈ A

and instruction J ∈ S ∪ R}. Define I = S ∪ R ∪ M, as the set of
standard, random, and meta instructions. To help describe how a meta instruction
modifies I, the unique state, scanning symbol condition is defined. For any two
distinct instructions in I, at least one of the first two coordinates must differ. More
precisely, all six of the following uniqueness conditions must hold.

1. If (q1, α1, r1, β1, y1) and (q2, α2, r2, β2, y2) both are in S, then (q1, α1) �=
(q2, α2).

2. If (q1, α1, r1, β1, y1) ∈ S and (q2, α2, r2, y2) ∈ R, then (q1, α1) �= (q2, α2).
3. If (q1, α1, r1, y1) and (q2, α2, r2, y2) both are in R, then (q1, α1) �= (q2, α2).
4. If (q1, α1, r1, y1) ∈ R and (q2, α2, r2, a2, y2, J2) ∈ M, then (q1, α1) �=

(q2, α2).
5. If (q1, α1, r1, β1, y1) ∈ S and (q2, α2, r2, a2, y2, J2) ∈ M, then (q1, α1) �=

(q2, α2).
6. If (q1, α1, r1, a1, y1, J1) ∈ M and (q2, α2, r2, a2, y2, J2) ∈ M, then (q1, α1) �=

(q2, α2).

Given a valid machine specification, conditions 1–6 assure that there is no ambiguity
on what instruction to execute. The execution of a meta instruction preserves
conditions 1–6.

Definition 3 (Execution of Meta Instructions) Meta instruction (q, a, r, α, y, J)

executes as follows:

(1) The first five coordinates (q, a, r, α, y) are executed as a standard instruction
according to Definition 1 with one caveat. State q may be expressed as |Q|-c
and state r may be expressed as |Q| or |Q|-d, where 0 < c, d ≤ |Q|.
When (q, a, r, α, y) is executed, if q is expressed as |Q|-c , the value of q

is instantiated to the current value of |Q| − c. Similarly, if r is expressed as
|Q| or |Q|-d, the value of state r is instantiated to the current value of |Q| or
|Q| − d, respectively.

(2) Instruction J modifies I, where J has the form J = (q, a, r, α, y) or J =
(q, a, r, y). If I ∪ {J } satisfies the unique state, scanning symbol condition,
then I is updated to I∪{J }. Otherwise, there is an instruction I in I whose first

380 M. S. Fiske

two coordinates q and a equal instruction J ’s first two coordinates. In this case,
instruction J replaces instruction I in I, and I is updated to I ∪ {J } − {I }.

Remark 1 (Ex-machine Instructions are Sequences of Sets) This remark clarifies
the definitions of machine states, standard, random, and meta instructions. The
machine states are formally a sequence of sets. When the notation is formally
precise, the machine states are expressed as Q(m), where m indicates that the
mth computational step has executed. The standard, random, and all ex-machine
instructions are also sequences of sets, represented as S(m), R(m), and I(m),
respectively. Usually, index m is not shown in expressions Q, S, R, M, or I.

Example 2 shows how to add an instruction to I and how to instantiate new states
in Q.

Example 2 (Adding New States and Instructions) Consider a meta instruction
(q, a1, |Q|-1, α1, y1, J), where J = (|Q|-1, a2, |Q|, α2, y2). After instruction
(q, a1, |Q|-1, α1, y1) executes, this meta instruction adds a new state |Q| to the
states Q and adds instruction J , instantiated with the current value of |Q|. For
clarity, states are red and alphabet symbols are blue. Set Q = { 0, 1, 2, 3, 4, 5,
6, 7}. Set A = { #, 0, 1}. An initial configuration is shown below.
State Tape

5 ##11 01##

Meta instruction (5, 0, |Q| − 1, 1, 0, J) executes with values q = 5, a1 = 0,
α1 = 1, y1 = 0, a2 = 1, α2 = #, and y2 = −1. Note J = (|Q|-1, 1, |Q|, #, −1).
Since |Q| = 8, instruction (5, 0, 7, 1, 0) is executed. Also, standard instruction J =
(7, 1, 8, #, −1) is added as a new instruction. The instantiation of |Q| = 8 in J adds
state 8; the states are updated to Q = {0, 1, 2, 3, 4, 5, 6, 7, 8}. After (5, 0, |Q| − 1,
1, 0, J) executes, the new ex-machine configuration is shown below.
State Tape

7 ##11 11##

Now, the ex-machine is scanning a 1 and lying in state 7, so the standard
instruction J = (7, 1, 8, #, −1) executes. (Note that J was just added to the
instructions.) After J executes, the new configuration is shown below.
State Tape

8 ##1 1#1##

Remark 2 (Self-reflection of |Q|) Consider an ex-machine X with a meta instruc-
tion I containing symbol |Q|. The instantiation of |Q| invokes self-reflection about
X’s current number of states, at the moment when X executes I . This type of self-
reflection can be physically realized.

Definition 4 (Simple Meta Instructions) (q,a,|Q|-d,b,y), (q,a,|Q|,
b,y), (|Q|-c,a,r,y), (|Q|-c,a,|Q|-d,b,y), or (|Q|-c,a,|Q|,b,y)
are valid expressions for simple meta instructions, where 0 < c,d ≤ |Q|. Symbols
|Q|-c, |Q|-d, and |Q| instantiate to a state based on the value of |Q| when the
simple meta instruction executes.

Herein, ex-machines self-reflect only with symbols |Q|-1 and |Q|.

Random Self-modifiable Computation 381

Example 3 (Execution of Simple Meta Instructions.) A = {0,1,#} and Q = {0}.
Instructions (|Q|-1,#,|Q|-1,1,0) (|Q|-1,1,|Q|,0,1)
STATE TAPE HEAD INSTRUCTION NEW INSTRUCTION

0 # 1## 0 (0,#,0,1,0) (0,#,0,1,0)
1 #0 ## 1 (0,1,1,0,1) (0,1,1,0,1)
1 #0 1# 1 (1,#,1,1,0) (1,#,1,1,0)

2 #00 # 2 (1,1,2,0,1) (1,1,2,0,1)

With an initial blank tape and starting state of 0, four computational steps are
shown above. At step 1, X scans # and lies in state 0. Since |Q| = 1, a simple meta
instruction (|Q|-1,#,|Q|-1,1,0) instantiates to (0,#,0,1,0) and executes.
At step 2, X scans 1 and lies in state 0. Since |Q| = 1, (|Q|-1,1,|Q|,0,1)
instantiates to (0,1,1,0,1), updates Q = {0, 1}, and executes (0,1,1,0,1).

Definition 5 (Finite Initial Conditions) Ex-machine X has finite initial conditions
if the 4 conditions hold before X’s instructions are executed: (1) The number of
states |Q| is finite. (2) The number of alphabet symbols |A| is finite. (3) The
number of instructions |I| is finite. (4) The tape is finite.

An ex-machine’s initial conditions are analogous to a differential equation’s
boundary value conditions. Remark 3 assures that the ex-machine computation is
physically plausible.

Remark 3 (Finite Initial Conditions) If the machine starts its execution with finite
initial conditions, then after the machine has executed l instructions for any positive
integer l, the current number of states Q(l) is finite and the current set of instructions
I(l) is finite. Also, tape T is still finite, and the number of quantum random
measurements obtained is finite.

Proof The execution of one meta instruction adds at most one new instruction and
one new state to Q. Using induction, Remark 3 follows from Definitions 1, 2, 3,
and 5.

An ex-machine can evolve from a prior computation. Evolution is useful:
random and meta instructions can increase an ex-machine’s complexity via self-
modification.

Definition 6 (Evolving an Ex-machine) Let T0, T1, T2 . . . Ti−1 each be a finite
tape. Consider an ex-machine X0 with finite initial conditions. X0 starts executing
with tape T0 and evolves to ex-machine X1 with tape S1 after the execution halts.
Subsequently, X1 starts executing with tape T1 and evolves to X2 with tape S2.
This means that when ex-machine X1 starts executing on tape T1, its instructions
are preserved after the halt with tape S1. The ex-machine evolution continues until
Xi−1 starts executing with tape Ti−1 and evolves to ex-machine Xi with tape Si after
the execution halts. One says that the ex-machine X0 evolves to Xi after i halts.

When X0 evolves to X1, then X1 evolves to X2, and so on up to Xn, then Xi is an
ancestor of Xj if 0 ≤ i < j ≤ n. Similarly, Xj is a descendant of Xi when i < j .
The sequence of ex-machines X0 → X1 → · · · → Xn . . . is an evolutionary path.

382 M. S. Fiske

3 Computing Ex-machine Languages

A class of ex-machines are evolutions of a fundamental ex-machine Z(x), whose 15
instructions are listed in Definition 9. These ex-machines compute languages L that
are subsets of {a}∗ = {an : n ∈ N}. an stands for n a’s. The empty string is a0 and
a3 = aaa. Set language space L = ⋃

L⊂{a}∗
{L}. Function f : N → {0, 1} defines

language Lf .

Definition 7 (Language Lf) f : N → {0, 1} induces language Lf = {an :
f (n) = 1}. String an is in Lf iff f (n) = 1.

Trivially, Lf is a language in L. Moreover, these functions f generate all of L.

Remark 4 (Language Space) L = ⋃

f ∈{0,1}N
{Lf }.

Definition 8 (X Computes Language L in L) Set alphabet A = {#, 0, 1, N, Y, a}.
Let X be an ex-machine. The language L in L that X computes is defined as follows.
A valid initial tape has the form # #an#. The valid initial tape # ## represents
the empty string. After X starts executing with initial tape # #an#, string an is in
X’s language if X halts with tape #an# Y#. String an is not in X’s language if X
halts with tape #an# N#.

The use of special alphabet symbols Y and N—to decide whether an is in
the language—follows [18]. For string # #am# , some X could first halt with
#am# N# and in a second execution could halt with #am# Y#. The oscillation of
halting outputs can continue indefinitely, and X’s language is not well defined per
Definition 8. In this chapter, we avoid ex-machines whose halting outputs do not
stabilize.

3.1 Ex-machine Z(x)

The purpose of Definition 9 is to show that Z(x) can evolve to compute any language
Lf in L; and that evolutions of Z(x) compute Turing incomputable languages on a
set of Lebesgue measure 1 in language space L, where L also has measure 1.

Definition 9 (Ex-machine Z(x)) A = {#, 0, 1, N, Y, a}. States Q = { 0, h, n, y, t, v, w,

x, 8 } where halting state h = 1 and states n = 2, y = 3, t = 4, v = 5, w = 6, x = 7. The
initial state is always 0. For the reader’s benefit, letters represent states instead of
explicit numbers. State n indicates NO that the string is not in the language. State y

indicates YES that the string is in the language. State x helps generate a new random
bit.

(0,#,8,#,1) (8,#,x,#,0)
(y,#,h,Y,0) (n,#,h,N,0)
(x,#,x,0) (x,a,t,0)

Random Self-modifiable Computation 383

(|Q| − 1,a,x,a,0)
(|Q| − 1,#,x,#,0)

(x,0,v,#,0,(|Q| − 1,#,n,#,1))
(x,1,w,#,0,(|Q| − 1,#,y,#,1))

(t,0,w,a,0,(|Q| − 1,#,n,#,1))
(t,1,w,a,0,(|Q| − 1,#,y,#,1))

(v,#,n,#,1,(|Q| − 1,a,|Q|,a,1))
(w,#,y,#,1,(|Q| − 1,a,|Q|,a,1))
(w,a,|Q|,a,1,(|Q| − 1,a,|Q|,a,1))

With initial state 0 and tape # #aaaa##, an execution instance of Z(x) is below.
STATE TAPE HEAD INSTRUCTION EXECUTED NEW INSTRUCTION

8 # aaaa### 1 (0,#,8,#,1)
x # aaaa### 1 (8,a,x,a,0) (8,a,x,a,0)
t # 1aaa### 1 (x,a,t,1r,0)
w # aaaa### 1 (t,1,w,a,0,(|Q| − 1,#,y,#,1)) (8,#,y,#,1)
9 #a aaa### 2 (w,a,|Q|,a,1,(|Q| − 1,a,|Q|,a,1)) (8,a,9,a,1)
x #a aaa### 2 (9,a,x,a,0) (9,a,x,a,0)
t #a 1aa### 2 (x,a,t,1r,0)
w #a aaa### 2 (t,1,w,a,0,(|Q| − 1,#,y,#,1)) (9,#,y,#,1)

10 #aa aa### 3 (w,a,|Q|,a,1,(|Q| − 1,a,|Q|,a,1)) (9,a,10,a,1)
x #aa aa### 3 (10,a,x,a,0) (10,a,x,a,0)
t #aa 0a### 3 (x,a,t,0r,0)
w #aa aa### 3 (t,0,w,a,0,(|Q| − 1,#,n,#,1)) (10,#,n,#,1)

11 #aaa a### 4 (w,a,|Q|,a,1,(|Q| − 1,a,|Q|,a,1)) (10,a,11,a,1)
x #aaa a### 4 (11,a,x,a,0) (11,a,x,a,0)
t #aaa 1### 4 (x,a,t,1r,0)
w #aaa a### 4 (t,1,w,a,0,(|Q| − 1,#,y,#,1)) (11,#,y,#,1)

12 #aaaa ### 5 (w,a,|Q|,a,1,(|Q| − 1,a,|Q|,a,1)) (11,a,12,a,1)
x #aaaa ### 5 (12,#,x,#,0) (12,#,x,#,0)
x #aaaa 0## 5 (x,#,x,0r,0)
v #aaaa ### 5 (x,0,v,#,0,(|Q| − 1,#,n,#,1)) (12,#,n,#,1)
n #aaaa# ## 6 (v,#,n,#,1,(|Q| − 1,a,|Q|,a,1)) (12,a,13,a,1)
h #aaaa# N# 6 (n,#,h,N,0)

This instance of Z(x)’s execution replaces (8,#,x,#,0) with (8,#,y,#,1).
Instruction (w,a,|Q|,a,1,(|Q|-1,a,|Q|,a,1)) replaces (8,a,x,a,0) with new
instruction (8,a,9,a,1). Also, the simple meta instruction (|Q|-1,a,x,a,0)
temporarily added instructions (9,a,x,a,0), (10,a,x,a,0), and (11,a,x,a,0).
These instructions are replaced by (9,a,10,a,1), (10,a, 11,a,1), and (11,a

12,a,1), respectively. Instruction (|Q|-1,#,x,#,0) added (12,#,x,#,0) and
instruction (12,#,n,#,1) replaced (12,#,x, #,0). Instructions (9,#,y,#,1),
(10,#,n,#,1), (11,#,y,#,1), and (12,a,13,a,1) are added. Five new states
9, 10, 11, 12, and 13 are added to Q. After halting, Q = {0, h, n, y, t, v, w, x, 8, 9, 10,

11, 12, 13}, and the evolved ex-machine Z(11010 x) has 24 instructions.
Two different instances of Z(x) can evolve to two different machines and

compute distinct languages according to Definition 8. After Z(x) has evolved to
a new machine Z(a0a1 . . . am x) as a result of a prior execution with input tape #
#am#, then for each i with 0 ≤ i ≤ m, machine Z(a0a1 . . . am x) always halts with
the same output when presented with input tape # #ai#. Z(a0a1 . . . am x)’s halting
output stabilizes on all input strings ai where 0 ≤ i ≤ m. Example 4 shows this
stabilization property.

384 M. S. Fiske

Example 4 (Ex-machine Z(1101 x))

(0,#,8,#,1) (y,#,h,Y,0) (n,#,h,N,0)

(x,#,x,0) (x,a,t,0)
(x,0,v,#,0,(|Q| − 1,#,n,#,1))
(x,1,w,#,0,(|Q| − 1,#,y,#,1))

(t,0,w,a,0,(|Q| − 1,#,n,#,1))
(t,1,w,a,0,(|Q| − 1,#,y,#,1))

(v,#,n,#,1,(|Q| − 1,a,|Q|,a,1))
(w,#,y,#,1,(|Q| − 1,a,|Q|,a,1))
(w,a,|Q|,a,1,(|Q| − 1,a,|Q|,a,1))

(|Q| − 1,a,x,a,0)
(|Q| − 1,#,x,#,0)

(8,#,y,#,1) (8,a,9,a,1)
(9,#,y,#,1) (9,a,10,a,1)
(10,#,n,#,1) (10,a,11,a,1)
(11,#,y,#,1) (11,a,12,a,1)
(12,#,n,#,1) (12,a,13,a,1)

New instructions (8,#,y,#,1), (9,#,y,#,1), and (11,#,y,#,1) help
Z(11010 x) compute that the empty strings a and aaa are in its language,
respectively. Similarly, the new instructions (10,#,n,#,1) and (12,#,n,#,1)

help Z(11010 x) compute that aa and aaaa are not in its language, respectively.
The 1’s in Z(11010 x)’s name indicate that the empty strings a and aaa are in its
language. The 0’s indicate that strings aa and aaaa are not in its language. Symbol
x indicates that Z(11010 x) has not yet determined for n ≥ 5 whether strings an are
in Z(11010 x)’s language.

Starting at state 0, Z(11010 x) computes that the empty string is in its language

STATE TAPE HEAD INSTRUCTION
8 ## ### 1 (0,#,8,#,1)
y ### ## 2 (8,#,y,#,1)
h ### Y# 2 (y,#,h,Y,0)

Starting at state 0, Z(11010 x) computes that string aa is not in its language.

STATE TAPE HEAD INSTRUCTION
8 ## aa### 1 (0,#,8,#,1)
9 ##a a### 2 (8,a,9,a,1)

10 ##aa ### 3 (9,a,10,a,1)
n ##aa# ## 4 (10,#,n,#,1)
h ##aa# N# 4 (n,#,h,N,0)

Similarly, starting at state 0, Z(11010 x) computes that a and aaa are in its language
and Z(11010 x) computes that aaaa is not in its language. For each of these
executions, no new states are added and no instructions are added or replaced. Thus,
for all subsequent executions, Z(11010 x) computes that the empty strings a and
aaa are in its language, and strings aa and aaaa are not.

Starting at state 0, below is an execution of Z(11010 x) on input tape
#aaaaaa##.

Random Self-modifiable Computation 385

STATE TAPE HEAD INSTRUCTION EXECUTED NEW INSTRUCTION
8 # aaaaaa## 1 (0,#,8,#,1)
9 #a aaaaa## 2 (8,a,9,a,1)

10 #aa aaaa## 3 (9,a,10,a,1)
11 #aaa aaa## 4 (10,a,11,a,1)
12 #aaaa aa## 5 (11,a,12,a,1)
13 #aaaaa a## 6 (12,a,13,a,1)
x #aaaaa a## 6 (13,a,x,a,0)
t #aaaaa 0## 6 (x,a,t,0r,0)
w #aaaaa a## 6 (t,0,w,a,0,(|Q| − 1,#,n,#,1)) (13,#,n,#,1)

14 #aaaaaa ## 7 (w,a,|Q|,a,1,(|Q| − 1,a,|Q|,a,1)) (13,a,14,a,1)
x #aaaaaa ## 7 (14,#,x,#,0) (14,#,x,#,0)
x #aaaaaa 1# 7 (x,#,x,1r,0)
w #aaaaaa ## 7 (x,1,w,#,0,(|Q| − 1,#,y,#,1)) (14,#,y,#,1)
y #aaaaaa# # 8 (w,#,y,#,1,(|Q| − 1,a,|Q|,a,1)) (14,a,15,a,1)
h #aaaaaa# Y 8 (y,#,h,Y,0)

Z(11010 x) evolves to Z(11010 01 x). The first random instruction (x,a,t,0)

measures a 0, so it executes as (x,a,t, 0_r,0). Instruction (13,#,n,#,1) is
added due to the random 0 bit; in all subsequent executions of Z(11010 01 x), string
a5 is not in Z(11010 01 x)’s language. The second random instruction (x,#,x,0)

measures a 1 and executes as (x,#,x,1_r,0). Instruction (14,#,y,#,1) is added.
In all subsequent executions, string a6 is in Z(11010 01 x)’s language.

Definition 10 specifies Z(a0a1 . . . am x) and covers Z(11010 x)’s execution.

Definition 10 (Ex-machine Z(a0a1 . . . am x)) Let m ∈ N. Set Q = {0, h, n, y, t,
v, w, x, 8, 9, 10, . . . m+8,m+9 }. For 0 ≤ i ≤ m, ai is 0 or 1. In Z(a0a1 . . . am x)’s
instructions, symbol b8 = y if a0 = 1, else b8 = n if a0 = 0; symbol b9 = y if
a1 = 1, else b9 = n if a1 = 0; and so on until the second to the last instruction
(m + 8,#,bm+8,#,1), bm+8 = y if am = 1, else bm+8 = n if am = 0.

(0,#,8,#,1) (y,#,h,Y,0) (n,#,h,N,0)

(x,#,x,0)
(x,a,t,0)

(|Q| − 1,a,x,a,0)
(|Q| − 1,#,x,#,0)

(x,0,v,#,0,(|Q| − 1,#,n,#,1))
(x,1,w,#,0,(|Q| − 1,#,y,#,1))

(t,0,w,a,0,(|Q| − 1,#,n,#,1))
(t,1,w,a,0,(|Q| − 1,#,y,#,1))

(v,#,n,#,1,(|Q| − 1,a,|Q|,a,1))
(w,#,y,#,1,(|Q| − 1,a,|Q|,a,1))
(w,a,|Q|,a,1,(|Q| − 1,a,|Q|,a,1))
(8,#, b8,#,1) (8,a,9,a,1) (9,#,b9,#,1) (9,a,10,a,1)
(10,#, b10,#,1) (10,a,11,a,1) . . . (i + 8,#,bi+8,#,1) (i + 8,a,i +
9,a,1) . . .

(m + 7,#,bm+7,#,1) (m + 7,a,m + 8,a,1) (m + 8,#,bm+8,#,1) (m + 8,a,m +
9,a,1)

386 M. S. Fiske

Lemma 1 If i satisfies 0 ≤ i ≤ m, string ai is in Z(a0a1 . . . am x)’s language if
ai = 1, and string ai is not in Z(a0a1 . . . am x)’s language if ai = 0. If n > m, it
has not yet been determined whether an is in Z(a0a1 . . . am x)’s language or not in
its language.

Proof When 0 ≤ i ≤ m, the first consequence follows immediately from the
definition of ai being in Z(a0a1 . . . am x)’s language and from Definition 10. In
instruction (i + 8,#,bi+8,#,1) , the state value of bi+8 is y if ai = 1 and bi+8 is
n if ai = 0.

For the indeterminacy of strings an when n > m, Z(a0 . . . am x) executes its last
instruction (m+ 8,a, m+ 9,a,1) when scanning the mth a in an. For each a to the
right of #am on the tape, Z(a0 . . . am x) executes random instruction (x,a,t,0).

If (x,a,t,0) measures 0, then meta instructions (t,0,w,a,0,(|Q|-1,#,n,
#,1)) and (w,a,|Q|,a,1 (|Q|-1,a,|Q|,a,1)) execute. Otherwise, (x,a,t,0)

measures 1, so (t,1,w,a,0, (|Q|-1,#,y,#,1)) and (w,a,|Q|,a,1, (|Q|-1,a,
|Q|,a, 1)) execute. If the next alphabet symbol to the right is an a, then a new
standard instruction executes, derived from an instantiation of (|Q|-1,a,x,a,0).
When the tape head scans the last a in an, a new standard instruction executes,
derived from (|Q|-1,#,x,#,0).

For each a to the right of #am on the tape, the execution of random
instruction (x,a,t,0) determines whether string am+k , such that 1 ≤
k ≤ n − m, is in Z(a0a1 . . . an x)’s language. After the execution of
(|Q|-1,#,x,#,0), the tape head is scanning a blank symbol, so the random
instruction (x,#,x,0) is executed. If the random source generates 0, the meta
instructions (x,0,v,#,0, (|Q|-1,#,n,#,1)) and (v,#,n,#,1, (|Q|-1,a,|Q|,
a, 1)) execute. Then, instruction (n,#,h,N,0) executes last, which indicates
that an is not in Z(a0a1 . . . an x)’s language. If the execution of (x,#,x,0)

measures 1, the instructions (x,1,w,#,0,(|Q|-1,#,y,#,1)) and (w,#,y,#,

1,(|Q| -1,a,|Q|,a,1)) execute. Then, instruction (y,#,h,Y,0) executes last,
which indicates that an is in Z(a0a1 . . . an x)’s language. During the execution
of the instructions, for each a on the tape to the right of #am, Z(a0a1 . . . am x)

evolves to Z(a0a1 . . . an x) according to the instructions, specified by Definition 10,
where one substitutes n for m.

3.2 Some Turing Incomputable Properties of Z(x)

When the measurements in Z(x)’s two random instructions satisfy both axioms, all
2n finite paths of length n in the infinite binary tree of Fig. 1 are equally likely. The
1-to-1 correspondence between f : N → {0, 1} and an infinite downward path (red)
in the binary tree helps show that Z(x) can evolve to compute any language Lf in L.

Consider Z(x) and all Z(a0 . . . am x) for each m ∈ N and a0 . . . am in {0, 1}m+1.

Theorem 1 Each language Lf in L can be computed by the evolving sequence of
ex-machines Z(x), Z(f (0) x), Z(f (0)f (1) x), . . . , Z(f (0)f (1) . . . f (n) x),

Random Self-modifiable Computation 387

Fig. 1 Infinite binary tree. A graphical representation of {0, 1}N

Proof Apply Definitions 9 and 10 and Lemma 1.

Corollary 1 For any f : N → {0, 1} and any n, the evolving sequence Z(f (0) x),
. . .Z(f (0)f (1) . . . f (n)f (n + 1) x), computes language Lf .

Corollary 2 For each n, the evolution of ex-machines Z(x), Z(f (0)x),
Z(f (0)f (1) x), . . . , Z(f (0)f (1) . . . f (n) x) have cumulatively used only a finite
amount of tape, finite number of states, finite number of instructions, and finite
number of instruction executions, and only a finite amount of quantum information
is measured by the random instructions.

Proof Remark 3 and Definitions 5 and 10 imply finite computational resources.

Theorem 2 and Corollary 3 come from the following intuition. A set X is
countable if there exists a bijection between X and N. L is uncountable, so most
languages Lf in L are Turing incomputable. Since each Lf is equally likely of
being computed by Z(x), most languages computed by Z(x)’s evolution are Turing
incomputable.

For each n ∈ N, define language tree L(a0 . . . an) = {Lf : f ∈ {0, 1}N and
f (i) = ai for i such that 0 ≤ i ≤ n}. Define subtree S(a0 . . . an) =
{f ∈ {0, 1}N : f (i) = ai such that 0 ≤ i ≤ n}. Let � be this 1-to-

1 correspondence: L
�↔ {0, 1}N and L(a0 . . . an)

�↔ S(a0 . . . an). Since random
axioms 1 and 2 hold, each finite path f (0)f (1) . . . f (n) is equally likely. There
are 2n+1 of these paths, so each path has probability 2−(n+1). The uniform
probabilities on finite strings of the same length extend to Lebesgue [9, 22] measure
μ on probability space {0, 1}N. Subtree S(a0 . . . an) has measure 2−(n+1), where
μ

(
S(a0 . . . an)

) = 2−(n+1) and μ({0, 1}N) = 1. Via �, μ induces uniform
probability measure ν on L, where ν

(
L(a0 . . . an)

) = 2−(n+1) and ν(L) = 1.

Theorem 2 The Turing incomputable languages Lf have measure 1 in (ν,L).

Proof The Turing computable functions f : N → {0, 1} are countable. Via the �

correspondence, the Turing computable languages Lf have ν-measure 0 in L.

Corollary 3 For all a0 . . . am in {0, 1}m+1, Z(a0 . . . am x) is not a Turing machine.

Proof Z(x) can evolve to compute Turing incomputable languages on a set of
ν-measure 1 in L. Z(a0 . . . am x) can evolve to compute Turing incomputable

388 M. S. Fiske

languages on a set of ν-measure 2−(m+1) in L. Each Turing machine only computes
one language, so the measure of all Turing computable languages is 0 in L.

4 An Ex-machine Halting Problem

In [23], Turing posed the question, does there exist a Turing machine D that can
determine for any given Turing machine M and finite tape T whether M’s execution
on tape T eventually halts? Turing proved that no Turing machine could solve this
problem. His halting problem can be extended to ex-machines. Does there exist
an ex-machine X(x) such that for any given Turing machine M , then X(x) can
sometimes compute whether M’s execution on finite initial tape T will eventually
halt? In order for this question to be well-posed, the phrase can sometimes compute
whether must be defined.

From the universal Turing machine / enumeration theorem [21], there is
a Turing computable enumeration E : N → {Turing machines M} ×
{Each initial state of M} of every Turing machine. Similar to ex-
machines, for each machine M , the set {Each initial state of M} is
realized as a finite subset {0, . . . , n − 1} of N. Since E(n) is an ordered pair, the
phrase “Turing machine E(n)” refers to the first coordinate of E(n). The “initial
state E(n)” refers to the second coordinate of E(n). Turing’s halting problem is
equivalent to the blank-tape halting problem [19]. The blank-tape halting problem
translates to: for each Turing machine E(n), does E(n) halt when E(n) begins
executing with a blank initial tape and initial state E(n)?

Lemma 1 implies that the same initial ex-machine can evolve to two different ex-
machines; these two ex-machines will never compute the same language no matter
what descendants they evolve to. For example, Z(0 x) and Z(1 x) can never compute
the same language in L. Hence, sometimes means that for each n, there exists an
evolution of X(x) to X(a0x), then to X(a0a1x), and so on up to X(a0a1 . . . an x)

. . . , where for each i with 0 ≤ i ≤ n, then X(a0a1 . . . an x) correctly computes
whether Turing machine E(n) halts or does not halt. The word computes means
that X(a0a1 . . . ai x) halts after a finite number of instructions executed, and the
halting output written by X(a0a1 . . . ai x) on the tape indicates whether machine
E(n) halts. For example, if the input tape is # #ai#, then enumeration machine
ME writes the representation of E(i) on the tape, and then X(a0a1 . . . am x) with
m ≥ i halts with # Y# written to the right of the representation for machine E(i).
Alternatively, X(a0a1 . . . am x) with m ≥ i halts with # N# written to the right
of the representation for machine E(i). The word correctly means that ex-machine
X(a0a1 . . . am x) halts with # Y# written on the tape if machine E(i) halts and ex-
machine X(a0a1 . . . am x) halts with # N# written on the tape if machine E(i) does
not halt.

Next, the ex-machine halting problem is transformed so that the results from
Sect. 3 can be applied. Choose alphabet A = {#, 0, 1, a, A, B, M, N, S, X, Y}.

Random Self-modifiable Computation 389

As before, identify the set of Turing machine states Q as a finite subset of N. Let
ME be the Turing machine that computes a Turing computable enumeration 4 as
Ea : N → {A}∗ × N, where the tape # #an# represents natural number n. Each
Ea(n) is an ordered pair where the first coordinate is the Turing machine and the
second coordinate is an initial state chosen from Ea(n)’s states. Define the halting
function hEa

: N → {0, 1} such that for each n, set hEa
(n) = 1, whenever Ea(n)

halts. Otherwise, set hEa
(n) = 0, if Ea(n) with blank initial tape and initial state

Ea(n) does not halt. Function hEa
(n) is well defined because for each n ∈ N, with

blank initial tape and initial state Ea(n), Turing machine Ea(n) either halts or does
not halt. Via function hEa

(n) and Definition 7, define halting language LhEa
.

Theorem 3 There exists an evolutionary path for ex-machine Z(x) that computes
halting language LhEa

; namely, Z(hEa
(0) x) → Z(hEa

(0) hEa
(1) x) → . . .

Z(hEa
(0) hEa

(1) . . . hEa
(m) x) . . .

Proof Apply the mathematical developments in the previous three paragraphs,
using halting function hEa

, language LhEa
, and Theorem 1.

Theorem 3 implies that a proof by contradiction for Turing’s halting problem
does not hold for ex-machines: the existence of path Z(hEa

(0) x) → Z(hEa
(0)

hEa
(1) x) → . . . Z(hEa

(0) hEa
(1) . . . hEa

(m) x) . . . circumvents the
contradiction. From an information-theoretic perspective, almost every (w.r.t. to μ

on {0, 1}N) evolutionary path Z(f (0) x) → Z(f (0)f (1) x) → . . . Z(f (0)f (1)

. . . f (n) x) . . . avoids the contradiction in Chaitin’s information-theoretic proof
[5] that the halting problem for Turing machines is unsolvable. The contradiction
depends upon the following: the minimum number of bits needed to represent
a Turing machine stays constant. In contrast, there is a set F ⊂ {0, 1}N with
μ(F) = 1 such that for all f ∈ F, the minimum number of bits needed to represent
Z(f (0)f (1) . . . f (n) x) increases without bound as n increases.

5 A Research Direction

Theorem 3 and information-theoretic analysis both show that a proof by contradic-
tion of the unsolvability of Turing’s halting problem does not apply to ex-machines.
This capability suggests that novel self-modification procedures, cleverly integrated
with randomness, should be explored to help enhance theorem proving [2, 6] and
constructive type systems that use conservative workarounds [20] to avoid the
halting problem.

4Chapter 7 of [19] provides explicit details of encoding quintuples with a particular universal
Turing machine. Alphabet A was selected to be compatible with this encoding. A careful study of
chapter 7 provides a clear path of how ME’s instructions can be specified to implement Ea .

390 M. S. Fiske

Fig. 2 Machine configuration (q, k, T) before executing a standard instruction

6 Conclusion

We showed that ex-machines can compute Turing incomputable languages and
that ex-machines are not limited by the halting problem for Turing machines. The
language computed by an ex-machine reflects its computational capabilities. The
problem of determining program correctness for a digital computer program is
unsolvable by a Turing machine. The detection of an infinite loop in a computer
program (i.e., a case of program correctness) can be reduced to Turing’s halting
problem. For these reasons, it is important to understand how far methods of
evaluating program correctness for digital computer programs can be extended with
randomness and advanced self-modification procedures.

Appendix: A Turing Machine Is an Autonomous Dynamical
System

Fix a Turing machine M . Transformation φ maps a machine configuration to a point
in the complex plane C; φ also maps each of M’s instructions to a finite number |A|
of unique affine functions each with a distinct domain. These affine functions can
be extended to a function F on a bounded region W in C, containing these domains
and a disjoint bounded set, called the halting attractor. Via φ, one computational
step of M corresponds to one iteration of the discrete autonomous dynamical system
(F,W).

Let machine states Q = {q1, . . . , qm}. Let alphabet A = {a1, . . . , an}, where
a1 is the blank symbol. Halt state h is a special state that is not in Q. Function η :
Q×A → Q∪{h}×A×{−1,+1} is the machine M’s program. A single instruction
is η(q, a) = (r, b, x), where q ∈ Q, r ∈ Q ∪ {h}, a, b ∈ A, and x ∈ {−1,+1}.
Set B = |A| + |Q| + 1. Define symbol value function ν : {h} ∪ Q ∪ A → N as
ν(a1) = 0, . . . , ν(ai) = i − 1, . . . , ν(an) = |A| − 1, ν(h) = |A|, ν(q1) = |A| + 1,
. . . , ν(qi) = |A| + i, . . . , ν(qm) = |A| + |Q|.

Fig. 3 Machine configuration after executing instruction η(q, Tk) = (r, b,+1)

Random Self-modifiable Computation 391

Fig. 4 Machine configuration after executing instruction η(q, Tk) = (r, b,−1)

T : Z → A is the tape and is finite. Tk is the alphabet symbol in tape square
k. Machine configuration (q, k, T) lies in Q × Z × AZ and maps to the complex
number:

φ(q, k, T) = |A|ν(Tk) +
∞∑

j=0

ν(Tk+j+1)|A|−j +
(
Bν(q) +

∞∑

j=0

ν(Tk−j−1)|A|−j
)
i.

(1)

In Eq. 1, the infinite series in both the real and imaginary parts sums to rational
numbers because the initial tape squares contain a finite number of non-blank
symbols.

Next, we define how φ maps each instruction in program η to a finite set of affine
functions. When instruction η(q, Tk) = (r, b,+1) executes, state q moves to state
r , symbol b replaces Tk on tape square k, and the head moves to tape square k + 1.

The right affine functions corresponding to instruction η(q, Tk) = (r, b,+1)

are of the form f (x + yi) = f1(x) + f2(y) i, where f1(x) = |A|x + m and
f2(y) = 1

|A|y + n. Using Eq. 1 and Fig. 3 to solve for m and n, φ maps instruction
η(q, Tk) = (r, α,+1) to the affine function f (x + yi) = f1(x) + f2(y) i, where

f1(x) = |A|x + (|A| − 1)ν(Tk+1) − |A|2ν(Tk) (2)

f2(y) = 1

|A|y + Bν(r) + ν(b) − B

|A|ν(q). (3)

For each of the |A| distinct values v(Tk+1) in f1, f is a different affine function.
Thus, there are |A| distinct affine functions that correspond to instruction η(q, Tk) =
(r, b,+1). The domain of each right affine function is Uj,k = {

x + yi ∈ C : j ≤
x < j + 1 and k ≤ y < k + |A|}, where j = |A|ν(Tk) + ν(Tk+1) and k = Bν(q).

When η(q, Tk) = (r, b,−1) executes, state q moves to state r , symbol b replaces
Tk on square k, and the head moves to tape square k − 1.
From Eq. 1 and Fig. 4, φ maps instruction η(q, Tk) = (r, b,−1) to affine function
g(x + yi) = g1(x) + g2(y) i, where

g1(x) = 1

|A|x + |A|ν(Tk−1) + ν(b) − ν(Tk) (4)

g2(y) = |A|y + Bν(r) − |A|Bν(q) − |A|ν(Tk−1). (5)

For each of the |A| distinct values v(Tk−1) in g1 and g2, g is a different
affine function. Thus, there are |A| distinct left affine functions that correspond

392 M. S. Fiske

to instruction η(q, Tk) = (r, b,−1). The domain of each left affine function is
Vj,k = {

x + yi ∈ C : j ≤ x < j + |A| and k ≤ y < k + 1
}
, where j = |A|ν(Tk)

and k = Bν(q) + ν(Tk−1).
Define halting attractor H = {

x + yi ∈ C : 0 ≤ x < |A|2 and B|A| ≤ y ≤
(B + 1)|A|}. The points in C that correspond to halting configurations (h, k, T)

are called halting points. Using elementary algebra and simple geometric series
calculations, one can verify that the halting points are a subset of H . Define halting
map h : H → H , where h(x + yi) = x + yi on H . Every point in the halting
attractor is a fixed point of h. Moreover, the intersection of each affine function’s
domain and H is empty. This implies that h and all left and right affine functions
corresponding to η’s instructions can be extended to a function F on domain W that
contains H and all domains Uj,k and Vj,k .

Overall, the φ correspondence transforms Turing’s halting problem to a discrete
autonomous dynamical systems problem in C. If machine configuration (q, k, T)

halts after n computational steps, then the orbit of φ(q, k, T) exits one of the
domains Uj,k or Vj,k on the nth iteration and enters the halting attractor H . If
machine configuration (r, j, S) never halts, then the orbit of φ(r, j, S) never reaches
the halting attractor.

References

1. H. Abelson, G.J. Sussman, J. Sussman, Structure and Interpretation of Computer Programs,
2nd edn. (MIT Press, Cambridge, 1996)

2. Y. Bertot, P. Castéran, Interactive Theorem Proving & Program Development (Springer, Berlin,
2004)

3. M. Blum, On the size of machines. Inf. Control 11, 257–265 (1967)
4. C. Calude, Information and Randomness (Springer, Berlin, 2002), pp. 362–363
5. G. Chaitin. Information, Randomness, and Incompleteness (World Scientific, Singapore, 1987)
6. T. Coquand, G. Huet, Calculus of constructions. Inf. Comput. 76, 95–120 (1988)
7. K. de Leeuw, E.F. Moore, C.E. Shannon, N. Shapiro, Computability by probabilistic machines,

in ed. by Shannon & McCarthy Automata Studies (Princeton University Press, Princeton,
1956), pp. 183–212

8. G. Etesi, I. Nemeti, Non-Turing computations via Malament-Hogarth spacetimes. Int. J.
Theoret. Phys. 41(2), 341–370 (2002)

9. W. Feller, Introduction to Probability Theory and Its Applications, vol. 1 (Wiley, Hoboken,
1957), vol. 2 (1966)

10. M.S. Fiske, Non-autonomous Dynamical Systems Applicable to Neural Computation (North-
western University, Evanston, 1996)

11. M.S. Fiske, Turing incomputable computation. Turing-100. The Alan Turing Centenary.
EasyChair 10, 66–91 (2012). https://doi.org/10.29007/x5g2

12. M.S. Fiske, Quantum random self-modifiable computation. Logic Colloquium 2019. Prague,
Czech Republic, August 11–16. Bull. Symb. Logic. 25(4), 510–511 (2019). https://doi.org/10.
1017/bsl.2019.56

13. H. Godfroy, J.Y. Marion, Abstract Self Modifying Machines (HAL CCSD, Lyon, 2016)
14. M. Herrero-Collantes, J.C. Garcia-Escartin, Quantum random number generators. Rev. Modern

Phys. 89(1), 015004, (2017). https://arxiv.org/abs/1604.03304

https://doi.org/10.29007/x5g2
https://doi.org/10.1017/bsl.2019.56
https://doi.org/10.1017/bsl.2019.56
https://arxiv.org/abs/1604.03304

Random Self-modifiable Computation 393

15. D. Hilbert, Mathematische probleme. Nachrichten von der Gesellschaft der Wissenschaften zu
Göttingen, Mathematische-Physikalische Klasse 3, 253–297 (1900)

16. M. Hogarth, Non-turing computers and Non-turing computability, in Proceedings of the
Biennial Meeting of the Philosophy of Science Assoc., vol. 1 (University of Chicago, Chicago,
1994), pp. 126–138

17. T. Kieu, Quantum algorithm for Hilbert’s tenth problem. Int. J. Theoret. Phys. 42, pp. 1461–
1478 (2003)

18. H.R. Lewis, C. Papadimitriou, Elements of the Theory of Computation (Prentice-Hall, Upper
Saddle River, 1981)

19. M. Minsky, Computation: Finite and Infinite Machines (Prentice-Hall, Upper Saddle River,
1967), pp. 132–155

20. B. Pierce, Types and Programming Languages (MIT Press, Cambridge, 2002), pp. 99–100
21. H. Rogers. Theory of Recursive Functions and Effective Computability (MIT Press, Cambridge,

1987)
22. H.L. Royden, Real Analysis (Prentice-Hall, Upper Saddle River, 1988)
23. A.M. Turing, On computable numbers, with an application to the Entscheidungsproblem. Proc.

London Math. Soc. Series 2. 42 (3, 4), 230–265 (1936)
24. A.M. Turing, System of logic based on ordinals. Proc. London Math. Soc. Series 2. 45, 161–

228 (1939)

	Random Self-modifiable Computation
	1 Introduction
	1.1 Related Work—Computation

	2 The Ex-machine
	2.1 Standard Instructions
	2.2 Random Instructions
	2.3 Meta Instructions

	3 Computing Ex-machine Languages
	3.1 Ex-machine Z(x)
	3.2 Some Turing Incomputable Properties of Z(x)

	4 An Ex-machine Halting Problem
	5 A Research Direction
	6 Conclusion
	Appendix: A Turing Machine Is an Autonomous Dynamical System
	References

