
Exact Floating Point

Alan A. Jorgensen and Andrew C. Masters

1 Introduction: IEEE Standard Floating Point

Floating point was used for representing and operating on real numbers in computers
starting with the Zuse Z4 computer in 1942. But there was no standard. At the
instigation of Professor Emeritus William Morton Kahan, the first standard for
floating point, IEEE 754, was published in 1985 (now identified as IEEE 754-1985)
by the Institute of Electrical and Electronics Engineers (IEEE). The current version
of the floating-point standard is ISO/IEC/IEEE 60559 [1].

To represent real numbers, standard floating point uses a data structure based on
scientific notation, as shown in Fig. 1. This standard floating-point format includes
representations for the sign (S), the exponent (E), and the fraction (T).

The sign S is a single bit representing the sign of the value represented, the
exponent E is the offset exponent of length e, and the fraction T is the significand
of length t. The length k is the overall length of the representation. The real number
encoded by this formulaic representation is, in most cases, an approximation, which
introduces error. Amplification of this error causes concern about the accuracy of
the final result.

The IEEE floating-point standard defines “precision” as “the maximum number,
pSFP, of significant digits that can be represented in a format, or the number of
digits to that [sic] a result is rounded” [1]. Using the IEEE standard floating-point
definition of pSFP, in binary format p = t + 1 because of the hidden bit. Instead of
merely identifying the number of significant digits that can be represented, bounded
floating point provides an enhanced pBFP that represents the actual number of digits
(bits) that are significant (have meaning), and the new variable D will represent

A. A. Jorgensen (�) · A. C. Masters
True North Floating Point, Las Vegas, NV, USA
e-mail: aaj@truenorthfloatingpoint.com; andrew@truenorthfloatingpoint.com

© Springer Nature Switzerland AG 2021
H. R. Arabnia et al. (eds.), Advances in Software Engineering, Education, and
e-Learning, Transactions on Computational Science and Computational
Intelligence, https://doi.org/10.1007/978-3-030-70873-3_26

365

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-70873-3_26&domain=pdf
mailto:aaj@truenorthfloatingpoint.com
mailto:andrew@truenorthfloatingpoint.com
https://doi.org/10.1007/978-3-030-70873-3_26


366 A. A. Jorgensen and A. C. Masters

Fig. 1 Standard
floating-point formatnumber
of bits in the significand

the number of digits (bits) of the representation that are NOT significant, where
D = t + 1 – pSFP. In IEEE standard representation, the value of D is not known, nor
is the precision, pBFP, the actual number of significant bits.

The value of the standard representation is shown in (1).

−1S • (
1 + T/2t

) • 2E−O or − 1S • ((
T + 2t

)
/2t

) • 2E−O (1)

where S, T, t, and E are defined above and O is the exponent offset. Offset O is
nominally 2e-1–1.

Most real values (the results from floating-point operations) cannot be repre-
sented exactly in standard floating point [2] nor in any fixed number of digits. In
bounded floating point, the value is defined to be represented “exactly” when the
error between the real value and the floating-point representation is less than ½
units in the last place (ulps) as implied in [2]. In other words, for a given pSFP, there
is no other floating-point representation which is closer to the real value.

However, IEEE standard floating point has no mechanism for indicating that
the representation of a value is exact. Thus, when only using standard floating
point, there is no intrinsic means at present of determining the accuracy of a
standard floating-point result. But knowing that a computation is sufficiently correct
is important and sometimes vital, particularly in large complex critical computations
like weather forecast modeling and other predictive modeling.

Bounded floating point provides that knowledge. Bounded floating point answers
the questions that standard floating point alone cannot, such as:

• Is the result “exact”?
• How many significant digits are there in an inexact result?
• Is the result sufficiently accurate?
• Is the result precisely zero?

2 Bounded Floating Point

Recently issued US patents on bounded floating point define a mechanism that
calculates and saves the range of error associated with a standard floating-point
value [3, 4]. As shown in Fig. 2, bounded floating point extends the standard
floating-point representation by adding an error information field identified as the
“bound” field, B. Various sizes of formats are selected by the determination of the
various field widths where “k” is the total format size or floating-point word length.
For example, in 80-bit bounded floating point, k = 80.



Exact Floating Point 367

Fig. 2 Bounded
floating-point format

Fig. 3 Format of the bound
field B

The bounded floating-point system, implemented in hardware, software, or a
combination of the two, calculates and saves the range of error associated with
a standard floating-point value, thus retaining and calculating the number of
significant digits. It does this by using the bound field B.

The bound field B contains subfields (D, C, R, see Fig. 3) to retain error
information provided by prior operations on the represented value, but the field of
primary importance is the “lost bits” field, D. This field identifies the number of bits
in the represented value that are no longer significant. If the value is exact, the value
of the D field will be zero.

With the exception of zero detection, bounded floating point retains the exception
features of standard floating point. Bounded floating point exactly identifies zero
when the significant remaining bits are all zero.

Bounded floating point provides a means of identifying the required number of
significant bits (or decimal digits) required in a bounded floating-point calculation.
(A default value may be used for the required number of significant bits, or the
programmer may specify the required number.) When a result lacks this required
number of significant bits, bounded floating point identifies it. A result that lacks
the required number of significant bits is represented with the “quiet” not-a-number
representation, “qNaN.sig,” indicating excessive loss of significance.

Under program control, bounded floating point will provide a “signaling” not-a-
number representation, “sNaN.sig,” when a specified bounded floating-point value
does not meet a specified precision requirement. Upon initiation of this command, a
specific result is tested to verify that it has the required number of significant digits.

The interval defined by bounded floating point is given by (2) as follows:

−1S • ((
T + 2t

)
/2t

) • 2E−O · · · − 1S •
((

T + 2t + 2D−1
)

/2t
)

• 2E−O (2)

This is the same as standard floating point except that the term 2D-1 provides
the upper bound, where D is the logarithm of the number of bits that are no longer
significant. Importantly, when D is zero, this indicates that there are no insignificant
digits; the bound is 1/2 ulp (2D-1 when D = 0 is 1/2) and the value of the error is
less than or equal to the bound, which is the definition of an “exact” representation.



368 A. A. Jorgensen and A. C. Masters

In Fig. 3, the R field of the bound is the summation of the most significant bits lost
during the final truncation and is functionally equivalent to the guard and rounding
bits of the standard floating-point operations. The equivalent of the “sticky bit”
occurs when the remainder of the truncated bits is not zero so that one is added
to the value of R, the rounding error field of the bound field. Addition to the R field
carries into the C field, which is the rounding error count in units-in-the-last-place
(ulps).

Range information includes the number of bits in the representation that are
no longer of value (insignificant) and, therefore, are referred to as the “lost bits”
(D). The number of lost bits is the logarithm of the upper bound (furthest from
zero) of the error in the value represented. The lost bits include the accumulated
contributions from both cancellation and rounding errors.

When the based two logarithm of the resulting sum of the rounding error, C, is
greater than or equal to the resulting lost bits, D, the lost bits, D, is increased by one,
and the rounding error sum, C, is set to zero. Carries out of the C field are added to
the D field.

This calculation provides a worst-case interval in which the real value repre-
sented exists. The actual precision, pBFP, of the value represented is no greater than
t + 1-D. When the value of the D field for a represented value is zero, then the
representation is “exact” as defined above.

The truncated floating-point value (round to zero) is the lower bound, and the
upper bound is determined by the addition of the error determined by the lost bits,
D (the real value represented), V ∈ R, is absolutely contained in the interval of (2).

The midpoint is determined by (3), as follows:

−1S •
( ((

T + 2t + 2D−2
)

/2t
)

• 2E−O (3)

Bounded floating point allows accuracy of the source of real values, measured
or entered, to be specified. External data sources provide data with intrinsic error;
for example, keyboard data entry with a limited precision input field or an industrial
sensor that provides fewer significant bits than that required by the precision of the
floating-point format in use.

According to Ashenhurst and Metropolis [5]:

It is convenient, and by now more or less traditional, to distinguish three sources of error,
designated generated, inherent and analytic. Generated error reflects inaccuracies due to the
necessity of rounding or otherwise truncating the numeric results of arithmetic operations,
inherent error reflects inaccuracies in initially given arguments and parameters, and analytic
error reflects inaccuracies due to the use of a computing procedure which calculates only
an approximation to the theoretical result desired.

Bounded floating point permits the representation of inherent error (inaccuracies in
input parameters). If the number of significant digits in the value provided is limited,
then bounded floating point can accurately represent that number by subtracting the
number of bits required to represent that number from pSFP to obtain D (the number
of lost bits), which are then carried throughout the calculation.



Exact Floating Point 369

Bounded floating point can manage generated error by calculating the number
of bits that are lost due to “the necessity of rounding or otherwise truncating the
numeric results of arithmetic operations.”

Additionally, bounded floating point can be used in conjunction with imple-
mentations of the current floating-point standard. Conversion between the two
formats can be accomplished when needed, which allows continued use of existing
software that is dependent upon the current floating-point standard. However, error
information will be lost when converting from bounded floating point to standard
floating point.

3 Similar Floating-Point Numbers

Catastrophic cancellation occurs when subtracting similar numbers when error
already exists [2, 6, p. 124, 7, 8, pp., 10–11, 9].

“Similar numbers” can be defined by (4) that describes the loss of significant
digits, as suggested by [10].

D = Log2(z); iff V • z/ (z + 1) > M/S

≥ V • (z − 1) /z and z ⊂
{

2i , i = 3..pSFP
} (4)

where D is the resulting number of insignificant (lost) bits, M is the minuend, S is
the subtrahend, V is the represented floating-point value (V ∈ R), pSFP is the number
of bits in the significand including the hidden bit, and M or S is inexact. Note that
for n less than 3, when guard digits are applied, the result will be “exact” [8, pp.
48–50, 11, p. J23].

The error, as represented by bounded floating point, due to the cancellation is no
greater than 2D-1.

Bounded floating point uses the value of D to determination the number of
significant digits of a value. This is done by taking the value of pSFP, which identifies
the highest number of significant digits that can be represented in a format, and
subtracting D, which identifies the number of insignificant or lost bits. The result,
which is the enhanced pBFP, of the subtraction establishes the number of significant
digits in an “exact” or inexact result.

Also, by using D a determination can be made as to whether the result is
sufficiently accurate. The required number of significant digits is known (either by
use of a default value or by programming a number required). If the result pBFP (the
number of actual significant digits) is less than the required number of significant
digits, the number is inexact. If the resulting pBFP is equal to or greater than the
required number of significant digits, the number is sufficiently accurate.

Another advantage of having the value of D known and available for use is that
a determination can be made as to whether a result is precisely zero. Knowing the
number of significant digits in a number allows bounded floating point to compare



370 A. A. Jorgensen and A. C. Masters

the number of digits that are significant against the number of leading zeros in the
result. If the significant digits of the result are all zero, the result is determined to be
significantly zero. This is in contrast to standard floating point, in which all digits of
the result must be zero.

Consequently, bounded floating point enables a determination of the “exactness”
of a value, discloses the actual number of significant bits, and ascertains when a
result is precisely zero, none of which are available without using bounded floating
point.

4 Exact and Inexact Subtraction

Subtraction is “exact” when the subtrahend and minuend have no rounding error,
as stated by Goldberg in “What Every Computer Scientist Should Know About
Floating-Point Arithmetic” [11]. However, when inexact, but similar, values are
subtracted, rounding error will cause catastrophic cancellation with a corresponding
loss of significant digits , [8 , p. 11, 11].

Table 1 shows subtraction of similar values and demonstrates catastrophic
cancellation, which occurs when the two values (minuend A and subtrahend B) to
be subtracted are similar as defined in (4).

For a test case we have selected A – B where A = 10,000,000,000 • π (scaled
for ease of representation of the result), selected z = 4,294,967,296 (232), and used
B = A • (z-1)/z from (4). The selection of 232 indicates that there are 32 lost bits in
this example.

To assure that no error was introduced by standard floating point, Table 1
provides these values as computed by Mark Mason’s High Precision Calculator that
was set for “High Precision” [12, 13], which provides a surplus number of digits
(not the limited number of digits of the 64-bit or 128-bit floating point) for the
calculations. Consequently, the values shown are “exact” values.

Using the example in Table 1, the value of B, which is 31415926528.583341988 . . .

is subtracted from the value of A, which is 31415926535.897932384 . . . We know
that standard floating-point calculations are constrained to a limited number of
digits. If we consider this calculation as limited to nine decimal digits, when the

Table 1 Subtraction of similar values

High precision results

A = 1010 •π = 31415926535.89793238462643383279502884197169399375
z = 232 = 4,294,967,296,496,729
(z-1)/z = 0.9999999997671693563461303710937
B = A • (z-1)/z = 314159265
28.5833419882906354275383398204227325084871797295159194618463516235351562
A-B =
7.3145903963357984052566890215489614852638202704840805381536483764648437



Exact Floating Point 371

subtraction is performed, the first nine digits will all be zero (will cancel out),
leaving no significant digits – clearly showing catastrophic cancellation.

This potential for the lack of significant digits in standard floating point is not
new. It has been known from at least 1952 when an early floating-point patent
[14] by IBM explicitly stated “ . . . under some conditions, the major portion of the
significant data digits may lie beyond the capacity of the registers. Therefore, the
result obtained may have little meaning if not totally erroneous.” Bounded floating
point can be used to clearly identify when there is a lack of significant digits.

Table 2 presents the comparison of “exact” and inexact values differing by
one binary ulp calculated with 64-bit standard floating point and 128-bit standard
floating point.

The first row shows that the decimal representation of the value of A, using
64-bit floating point, is 31415926535.897930, while the second row shows that
after adding only one ulp of error to A the decimal equivalent of A + 1 is
31415926535.897934.

The second and third rows show the decimal equivalents of A and A + 1 using
128-bit floating point.

Table 2 shows the effect of even a very small error of only one ulp, which creates
an inexact value. When similar values are subtracted, cancellation [2] occurs, and
the one-bit error is multiplied exponentially. This is a standard floating point hidden
and unknown error, but this error is revealed in bounded floating point.

Table 3 demonstrates “exact” and inexact calculations in 64-bit, 128-bit, and 80-
bit bounded floating-point calculations. This table illustrates the results of adding
a one ulp error injected into the “A” values by adding one to the significand field
(T) of the 64-bit and 128-bit standard floating-point values and adding one to the
lost bits field (D) of the bounded floating-point value. Overflow is avoided by the
selection of test values.

Table 2 High precision similar values calculation

Represented value Decimal representation of value

64-bit FP A 31415926535.897930
64-bit FP A + 1 ulp 31415926535.897934
128-bit FP A 31415926535.897932384626433832795028075364135510
128-bit FP A + 1 ulp 31415926535.897932384626433832795031384086585722

Table 3 Exact and error-injected values – 64-bit results

Exact 64-bit result 7.31459045410156250
Inexact 64-bit result 7.31459426879882810
Exact 128-bit result 7.314590396335798405256687972038204802
Inexact 128-bit result 7.314590396335798405256691280760655014
Exact BFP 80-bit result 7.314590454101562
Inexact BFP 80-bit result 7.314590



372 A. A. Jorgensen and A. C. Masters

Tests were performed using IEEE standard 64-bit floating point, 128-bit standard
floating point, and 80-bit bounded floating point (BFP), as seen in Table 3. The 80-
bit bounded floating-point model consists of S, E, and T, which are identical to
64-bit standard floating point with a 16-bit bound field, where d = 6, c = 6, and
r = 4. These values are chosen so that the total width, b, is a multiple of 8 bits and
d (the length of the lost bits field) satisfies d > log2 (t + 1) to ensure that a loss of
all significant bits can be represented. The value for c (the accumulated rounding
error in ulps) is chosen such that exponential growth rate of the loss of significant
bits due to rounding error will not exceed 2n where n = 1/2c, or, in this case, 1/64.
The width r of the rounding error field R is chosen to round the width b of the bound
field, B, up to the nearest multiple of 8-bits.

The bold and underlined digits of the 64-bit inexact results are those digits that
differ from the same digit positions of the “exact” 64-bit calculation. Similarly,
the bold and underlined digits of the 128-bit inexact result differ from the “exact”
128-bit calculation. Table 3 makes it easy to see the difference in “exact” and
inexact values. And when similar numbers with inexact values (such as may arise
from error in earlier calculations or error from input with limited significant digits)
are subtracted using floating point, these errors can multiply exponentially due to
catastrophic cancellation.

5 Conclusions

Floating-point cancellation errors that occur during subtract operations on inexact
operands are detectable and measurable under bounded floating point though they
are invisible in IEEE standard floating-point results.

Bounded floating point answers the following questions that standard floating
point cannot:

• Is the result “exact”?

– An “exact” floating-point result, defined as a result that has error within + or
- ½ units in the last place (ulps), is shown by using the value of D.

• How many significant digits are there in an inexact result?

– The number of digits known to be insignificant, D, is subtracted from the
possible number of significant digits, which is known from pSFP.

• Is the result sufficiently accurate?

– The number of significant digits needed is merely compared to the number of
significant digits that is known by use of bounded floating point.

• Is the result precisely zero?

– When bounded floating point determines the number of significant digits of
the result is all zero, then the result is significantly zero.



Exact Floating Point 373

Thus, bounded floating point precisely defines whether the real value represented
is “exact” for all digits provided and, if not, defines the number of significant digits.
And bounded floating point provides notification if the result is not significantly
accurate.

The bounded floating-point methodology provides greater assurance that com-
plex mission critical computations provide results sufficient to successfully com-
plete that mission. Therefore, it is recommended that bounded floating point should
be required for all mission critical systems to avoid catastrophic failures due to
accumulated floating-point error.

References

1. ISO/IEC/IEEE 60559, Information Technology – Microprocessor Systems – Floating-Point
Arithmetic (Institute of Electrical and Electronics Engineers, Piscataway, 2011)

2. D. Goldberg, What every computer scientist should know about floating-point arithmetic. ACM
Comput. Surv. 23(1), 5–48 (1991)

3. A. A. Jorgensen, Apparatus for calculating and retaining a bound on error during floating point
operations and methods thereof. US Patent No. 9,817,662, 14 Nov 2017

4. A. A. Jorgensen, Apparatus for calculating and retaining a bound on error during floating point
operations and methods thereof. US Patent No. 10,540,143, 21 Jan 2020

5. R.L. Ashenhurst, N. Metropolis, Error estimation in computer calculation. Am Math Monthly,
Part 2: Comp Comp 72(2), 47–58 (1965)

6. J.-M. Muller, F. de Dinechin, C.P. Jeannerod, V. Lefevre, G. Melquiond, N. Revo, D. Stehle, S.
Torres, Handbook of Floating-Point Arithmetic (Birkhauser, Boston, 2010)

7. N.J. Higham, Accuracy and Stability of Numerical Algorithms (SIAM, Philadelphia, 1996), p.
vii-xxviii, 1–688

8. W. M. Kahan, A Logarithm Too Clever by Half, 2004. [Online]. Available: http://
people.eecs.berkeley.edu/~wkahan/LOG10HAF.TXT. Accessed 26 Feb 2019

9. W.E. Ferguson Jr., Exact computation of a sum or difference with applications to argument
reduction, in Proceedings of the 12th IEEE Symposium on Computer Arithmetic, (Bath, 1995)

10. W.M. Kahan, Desperately needed remedies for the undebuggability of large floating-point com-
putations in science and engineering, in IFIP/SIAM/NIST Working Conference on Uncertainty
Quantification in Scientific Computing, (Boulder, 2011)

11. D. Goldberg, What every computer scientist should know about floating-point arithmetic. ACM
Comput. Surv. 23(1), 5–47 (1991)

12. A.A. Jorgensen, A. Masters, R. Guha, Assurance of accuracy in floating-point calculations –
A software model study, in 2019 International Conference on Computational Science and
Computational Intelligence (CSCI), (Las Vegas, 2019)

13. N. M. Mason, High Precision Calculator – Freeware, 2017. [Online]. Available: http://
www.markmason.net/hpc/index.htm. Accessed 28 Feb 2020

14. H. M. Sierra, Floating decimal point arithmetic control means for calculator, United States
Patent 3,037,701, 5 June 1962

http://people.eecs.berkeley.edu/~wkahan/LOG10HAF.TXT
http://www.markmason.net/hpc/index.htm

	Exact Floating Point
	1 Introduction: IEEE Standard Floating Point
	2 Bounded Floating Point
	3 Similar Floating-Point Numbers
	4 Exact and Inexact Subtraction
	5 Conclusions
	References


