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1 Introduction

By some estimates, as many as two thirds of American adults currently suffer from
some type of math phobia due to bad educational experiences with mathematics
[1]. Our work with students performing in the bottom quartile in mathematics tests
has demonstrated some ways that adding technologies like mobile apps with a
particular pedagogical approach can help. Many studies have shown that targeted
use of multimedia technologies can make a significant impact on a student’s sense of
ownership and engagement [2—6], and yet the lowest-performing students are often
the most disengaged, while they are often in a resource-poor environment, with less
frequent access to rich interactive technologies. The low cost, the prevalence, and
the social appeal of tablets in the classroom can help.

In four schools in Atlanta where our research was conducted, more than 95% of
the students are eligible for free and reduced cost lunch, and they only had access
to computer labs on the average of once a week, instead of the daily access that is
available in more affluent schools. And yet, most of the students we worked with
either owned or had some type of access to cellphones. With this in mind, we applied
for and received an NSF Early-Concept Grant for Exploratory Research (EAGER) in
which we examined the feasibility of combining mathematics curricula with simple
mobile app development [7].

Throughout the fall of 2016, and the spring and summer of 2017, we have
undertaken to develop a new approach to using mobile apps for introducing
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educational mathematics simulations in a set of middle-school math classes in a
way that blends computing ideas with math instruction. The curricular material
involved was developed specifically for students in the lower quartile by the Algebra
Project, to further enhance these students’ conceptual and procedural knowledge
of mathematics content and to strengthen students’ mathematical practices. The
Algebra Project curriculum is based on an experiential mathematics pedagogy and
a curricular process with extensive past documentation and research and evidence
that it assists the low-performing students that we were targeting [8—13].

2 Study Design

The experientially based curriculum of the Algebra Project engages students in
concrete events and activities that are then examined reflectively to analyze them
mathematically. This reflection and exploration happens during the following five-
step curricular process that occurs during the many different units of the Algebra
Project curriculum:

Step 1: Experience a physical event as a group.

Step 2: Represent that event through drawings or by creating models.

Step 3: Describe the event informally and intuitively, using natural and idiomatic
language.

Step 4: Translate the idiomatic description into a structured, formal, feature-rich
description.

Step 5: Create a symbolic representation of the event using mathematical for-
malisms.

For our EAGER grant, we proposed integrating basic programming experiences
involved in developing mobile apps into these five steps in the following way:

Step 1: Experience a simulation of the physical event.

Step 2: Represent that simulation through drawings or by creating models.

Step 3: Describe the simulation informally and intuitively, using natural and
idiomatic language.

Step 4: Translate the idiomatic description into a structured set of visual program
blocks that represent functional units.

Step 5: Connect the functional programming units to recreate the simulated
experience as a mobile app.

Two units of the Algebra Project curriculum were chosen for this intervention:
the Road Coloring module and the Race Against Time module.
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3 The Curricular Units

The first unit of study in this research was the Road Coloring module. In this unit,
functions are modeled as simultaneous physical movements by groups of students,
and students use ordered pairs and point on a coordinate plane and arrow diagrams to
represent the functional transitions. The notions of domain and range are developed
and have easily accessible, concrete interpretations.

Along with the conceptual underpinning of the function concept, students are
introduced to the Road Coloring challenge based on a famous problem in theoretical
computer science first stated in a paper by Adler, Goodwyn, and Weiss [14] that
remained unsolved for over 30 years. The original problem asks if all strongly con-
nected, aperiodic, directed graphs have an edge labeling for which a synchronizing
instruction exists. In this unit, the directed graphs become “cities” that students
represent with the points on the floor (the vertices) serving as “buildings” with
numbered “addresses” (building 1, building 2, etc.). And the paths between the
points serve as the edges and as one-way roads. The students then attempt to find
a set of directions that will get everyone from their different vertices to the same
building at the same time.

Once the students physically experience the concept of functions in this manner,
multiple representations are introduced. As an example, below are arrow diagrams
the students produce of a city with three buildings, with one red road and one
blue road leading away from each building (this representation constitutes an edge-
colored directed graph with three vertices) (Fig. 1).

Other standard representations are also introduced to the students, and included
are representations of O—1 stochastic matrices (such as permutation matrices)
and one-out directed graphs. The last two representations represent important
innovations for function representations in the high school curriculum and were
particularly important in the mathematics research that led to the eventual solution
of the original Road Coloring problem [15-17].

The second unit of study in this research was the Race Against Time module.
This module uses relay races as the shared concrete event, and through this event,
students are introduced to the concept of linear equations that ultimately lead to the
form ax + b = c. Linear equations are developed within the context of “detective
work” to determine the locations a team has visited in the course of a race. The
concept of slope is introduced and analyzed, as students graph relay race trajectories

Fig. 1 Road Coloring task
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as “distance traveled” versus time elapsed. The “average velocity” of a relay race
leg allows the natural introduction of slope.

The relay races are not outdoor foot races. Students race by stacking plastic
cubes on top of one another in a fixed amount of time. The cubes are then laid
out in a direction determined by a flip of a coin from a starting point, or from
the last endpoint achieved by a previous student racing for the same team. As
each team member adds a new displacement during the race to a set of previous
displacements, a new distance from the origin is produced. Students produce tables,
arrow diagrams, graphs, and equations of the resulting displacements and use these
to explore various linear transformations involved in their analyses (Fig. 2):

This specific development of linear equations makes direct contact with the
more general development of the concept of function in the Algebra Project Road
Coloring module. The two approaches, from Road Coloring to Race Against Time,
provide students with a binocular and complementary perspective on these central
concepts of early algebra.

3.1 Developing the Simulated Units: Road Coloring

The Road Coloring mobile app was designed in the fall semester of the 2016—
2017 school year to simulate the creation of Road Coloring “cities” made up of
a directed graph of vertices called “buildings” connected with edges called red
and blue “roads.” The app was originally developed using MIT App Inventor and
its Visual Blocks system, and it was tested in Algebra Project classrooms in San
Francisco in the fall of 2016, and then it was further developed and tested in the
four Algebra Project classrooms in Atlanta in the spring and summer of 2017.

Without the app, constructing cities of more than four buildings (vertices) was
very difficult for the students, but with the app, students were able to come up
with synchronizing instructions for cities of more than ten buildings. The following
shows cities of three buildings, four buildings, and ten buildings, respectively
(Fig. 3):

Initially the students used the visual programming block system from MIT App
Inventor, to create the apps, but it ran much too slowly when a class of 20+ students
were using the web-based program at the same time. Because of this, we developed
a scaled down version of the same visual programming block system that worked
with blocks that were specific to only the Road Coloring and the Race Against Time
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Fig. 2 Various Race Against Time representations
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Fig. 3 Road Coloring cities and synchronizing instructions

Fig. 4 Road Coloring
program blocks
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units, unlike App Inventor which allows students to create blocks for more general
purposes. The blocks for a three-building city appeared as follows (Fig. 4):

3.2 Developing the Simulated Units: Race Against Time

The Race Against Time app was designed in the spring semester of the 20162017
school year to simulate the relay races that make up the Algebra Project’s Race
Against Time unit. The app is also an Android app, and it was tested in Algebra
Project classrooms in Atlanta in the spring and summer of 2017.
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The Relay Race simulation consisted of students dragging cubes that were
scrolling along in a box at the top of the screen and stacking them in vertical line.
The challenge had different levels of difficulty because of different time constraints
placed on them that the students were able to control programmatically (Fig. 5):

After finishing the race, the arrow diagrams produced by the app look the same
as the textbook arrow diagrams that the students are familiar with in the classroom.
Yet in the app, the students can modify the magnitude and direction of the vectors
in real time. In the following diagram is a set of visual programming blocks the
students could have constructed to create the simulation shown above (Fig. 6):

Using the app, students determine how many legs they will have in their race,
which can be any number from 2 to 10, and they also determine how many seconds
they will have to stack cubes during each leg, which can be some number from 2
to 25. The students run a simulation where a group of cubes moves along the top
of the screen horizontally, and the students must drag them one by one down onto
a stack that they are creating. When a leg ends, their stack has a certain amount of
cubes which represents a magnitude. And the students press a button that randomly
assigns a left or right direction for their stack, which gives it both a magnitude and
a direction, making it a vector.

Once a student has finished all of their legs, they have a set of consecutive vectors
that have a total set of magnitudes (called the “total distance”) and a resulting
displacement from the origin (called the “total displacement”). The total distance
concept involves adding the absolute value of the distance traveled during each leg,

Fig. 5 Race Against Time
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but it also just represents how many cubes the students stacked during all of the legs
combined. The total displacement represents the final distance and direction from
the origin, so it represents a new vector that is the result of adding up all of the
vectors from each leg of the race.

After finishing all of the legs, students calculate the total distance and the total
displacement, and then the students examine tables and arrow diagrams representing
the details of their race in different ways. Then the students use the app to solve
linear equations that involve the resulting displacements that occur when legs of
their race are modified using various linear transformations.

4 Theoretical Underpinnings

The five-step curricular process that we have adapted for this research exploits
an experiential learning cycle that begins with the students working through a
concrete event and moving progressively to an abstract symbolic and mathematical
representation of that event. During this process, the students reflect upon the event
by identifying important features captured in informal language (called people-talk)
and formal representations (called feature-talk) of the event to figure out how the
features are related with symbolic representations (Fig. 7).

The multiple representations of the event that are constructed as students move
through the experiential learning cycle are described by W. V. Quine’s notion of the
language foundations of mathematics as a circular curricular process [18]. Quine
saw mathematics as a conceptual language that has its beginnings in the structuring
and regimentation of ordinary discourse. In the curricular process, this structuring
occurs with the students in their discussions about their exploration of the important

Fig. 7 Experiential learning Concrete
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features of the event. In this discourse, students try to make sense of abstract
symbolic representations of conventional mathematics. Students work to gain the
ability to read algebraic sentences in a meaningful and interpretive fashion. This
ability to interpret the symbols of mathematics enables students to affect a shift from
algorithms and computation to logic and reasoning as the basis for problem-solving
in mathematics.

Our research has allowed us to extend that process of reflection through the
interaction with simulations and computing. By developing apps which produce
simulations of the concrete experiences being used in the Algebra Project curricu-
lum, students acquire an additional dimension to the experiential learning process
they are engaged in. There are both cognitive and affective dimensions to the use of
app-based simulations.

The work of Jerome Bruner is particularly relevant here. Bruner has asserted the
importance of representation in the learning of knowledge domains in general and of
mathematics in particular. In this work, Toward a Theory of Instruction [19], Bruner
describes the structure of a knowledge domain in terms of the representations that
are used to capture its content. This representational view captures the structure
in terms of the modes of representation (enactive, iconic/graphic, or symbolic),
the economy of the representation (the cognitive load that students are required to
carry), and the power of the representation (descriptive, explanatory, and predictive),
and we would add to Bruner’s list the scope of the representation (the degree to
which it facilitates near transfer to problems/questions within its defining context or
far transfer to problems/questions outside of its original/defining context).

For example, students only used the Road Coloring app simulation after they
had built a model city in their classroom. The app’s simulation was always a rep-
resentation for the students of the real event. The app’s simulation also introduced
a hybridization of Bruner’s modes of representations. In traditional mathematics,
classroom students typically use enactive representations of mathematical concepts.
We call them manipulatives. And students construct iconic representations of math-
ematics concepts: pictures, graphs, and diagrams. The app simulations provided
students with enactive-iconic representations of the mathematical concepts they
were engaged with. This type of enactive-iconic representation created a space of
possibilities for different types of student engagement and understanding in the
classroom. The enactive-iconic representation gave students capability to rapidly
construct and manipulate cities of greater complexity than could easily be made of
real materials or from paper and pencil.

We also note that in the case of the Relay Race app simulation, the enactive-
iconic representation provided by the app gave students the cognitive space to apply
visual reasoning and logic to the solution of linear equations. This suggests that the
traditional learning progression that takes students through one-step, two-step, to
multi-step linear equations may be more a consequence of a didactic choice than a
requirement of the cognitive stages that students must go through to achieve mastery
of the subject.

One final point is worth making. The concrete events of the Algebra Project’s
Curricular Process are in stark contrast to the “hands-on” paradigm employed in
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many math curricula. In many of these curricula, every lesson can have its own
hands-on component, each one separate and distinct, characterizing the particular
lesson. Over the years, the Algebra Project has targeted what they consider to
be a few foundational events/experiences which meet the representational criteria
given above of having broad scope. These experiences embody representations of
concepts that apply to broad swaths of the mathematical landscape primarily at
the level of introductory algebra. These events and their representations thus act as
grounding metaphors for the construction of the foundational concepts of algebra.

Our work with app simulations for two of these grounding metaphors suggests
that by providing students, particularly “low-performing” students, with enactive-
iconic representations, we create a space for them to apply cognitive abilities that
do not normally present in the traditional mathematics classroom. We have yet
to see, given the time and the affordances which this technology provides, if the
traditional learning progressions will need to be re-written especially for what are
now considered “low-performing” students.

These considerations are what lead us to develop our app simulations according
to a three-dimensional approach. We sought to design them to include (1) a
physical experience that could be shared as a social activity with mathematical
implications; (2) enactive-iconic representational objects that can connect naturally
to a discourse about the experience and activity; and (3) mathematics knowledge and
computational logic that is involved in specific learning unit/learning progression
currently in the classroom. Our design goals for app simulations of this nature are
thus given by the following image (Fig. 8):

5 Initial Results

Over 200 students participated in some aspect of this intervention. Initially, we had
intended to focus on just four schools in the Atlanta area (Brown, Bunche, Harper

Fig. 8 Three-dimensional .
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Archer, and Long), but due to administrative problems, we were not able to begin
the work in the Atlanta schools until the spring of 2017. So in the fall of 2016, we
worked with approximately 50 students from the June Jordan School for Equity in
San Francisco. During the spring of 2017, we finally began work with about 140
students from the four Atlanta schools. And during the summer of 2017, we worked
with about 15 more students as part of a summer school program at the Harper
Archer Middle School in Atlanta.

In our work during the fall and spring, our instructional material and our modified
visual programming block system were going through an incremental development
process, whereby we would try a particular version of the material and then make
modifications based on student and teacher feedback or our own analysis. This led
to our having a well-defined set of materials and a working version of our own
modified visual programming block system by the summer of 2017.

The difference between the work in the summer and the work in that occurred
earlier in the fall and spring was that during the fall and spring, our materials were
going through constant revision, making it difficult to evaluate formally the impact
of any one set of materials. In the summer, however, our materials development
process was finished, and so we worked with a stable set of materials during the
entire 4 weeks of the summer school. It was during this time that we were able
to implement a set of pre- and post-test to begin to evaluate how the work we did
contributed to a sense of ownership, engagement, and comprehension within the
students.

Our students who participated in the work and the pre- and post-tests over the
summer were a very small sample, only 15 students. But all 15 of the students said
in one-on-one interviews we conducted that they enjoyed working with the apps, and
some explained that they thought of it as a “hands-on” way of doing math. Some
went on to say that they felt a true sense of accomplishment when they were able
to solve difficult problems using the simulations that would have been much more
difficult with only pencil and paper. In many cases, we recorded students showing
other students the solutions they came up with displaying a sense of accomplishment
in their work, and one student said he was doing this to prove to the other students
how “smart” he was.

The summer students were all rising sixth graders, entering the seventh grade,
and none of them had been in an algebra class yet. Therefore, on the pre- and post-
test, we had the students work on algebraic problems before and after they worked
on the curricular material involving the apps. The students spent 2 weeks working
on the Road Coloring unit and 2 weeks working on the Race Against Time unit.

The Road Coloring unit dealt with how Red and Blue functions (enactively and
iconically represented by the roads) which take inputs and produce an output, and
how a sequence of those functions, which is function composition, can be used to
produce a particular output. In the pre- and post-tests, students were asked to analyze
a set of connected cell towers and how phone calls are routed between them to get to
a particular target. Before the unit, only 1 of the 15 could correctly draw composed
sequence of routes and solve problems to achieve a correct route for certain calls.
After the unit, eight students could accomplish the same tasks.
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The Race Against Time unit dealt with representing vectors with arrow diagrams
and using the arrow diagrams to solve linear equations. In the pre- and post-tests,
students were asked to represent trips on the Marta (Atlanta’s tramline) using arrow
diagrams and, when given a sequence of trips, to determine the total distance
traveled and the ultimate displacement (the final distance from the beginning of the
trip to the end of the trip). On these tasks, only three students could draw an accurate
arrow diagram representing a complex trip, only seven students could calculate the
correct total distance traveled, and only two calculated the correct displacement.
After the unit, 11 students were able to draw an accurate arrow diagram, ten were
able to calculate the correct distance, and eight were able to calculate the correct
displacement.

Our tests were designed to show increases in conceptual understanding, visual
reasoning, and representational logic, not just the ability to manipulating math
symbols when solving linear equations. And the majority of the students in both
units did improve in these areas. However, we also did do some tests of the ability of
students to manipulate mathematical symbols as well after the second unit. Students
were shown the following arrow diagram, which was similar to the ones they dealt
with in the app simulation (Fig. 9):

And without any instruction in algebra, students were then shown the following
equation and asked to solve for X:

44X +4=13

Fourteen of the students were able to answer the question correctly. Then a
diagram was shown for the equation 4 + X + 4 = —13, and only ten of the students
were still able to solve for X. Then the following was shown with the equation
4 4+ 2X 4+ 4 = —2, and still ten students (67%) solved this expression for X, again
using non-algebraic processes (Fig. 10).

This indicated that for those ten students, the conceptual understanding of what
that equation represents was grounded in visual reasoning and representational
logic. From many indicators, we saw obvious improvements in ownership, engage-
ment, and increased comprehension.

Fig. 9 Displacement arrow

diagram >4

(Displacement)
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Fig. 10 Another
displacement arrow diagram —>4

6 Conclusion and Future Directions

Because our research was part of an EAGER grant, which involves early-concept
exploratory research, our work was primarily focused on demonstrating that a fuller
study is warranted. Although about 200 students participated in some aspect of the
research, only 15 students in the summer were part of the sample that dealt with the
actual pre- and post-test. The others helped in our exploratory and developmental
effort that the EAGER grant is designed for. However, the summer students didn’t
have a traditional math class context where we could spend more time with them
and see how they performed on traditional mathematics materials before and after
our intervention. We see this as the logical next step for our research, as well as to
expand on the number of curricular units that we develop simulations for using our
three-dimensional design criteria.

And finally, we also see the potential for expanding this intervention into science
curricula as well. The Algebra Project was a great fit for this intervention because
simulations and experiential learning can be aligned by identifying an appropriate
simulation for the concrete experiences in their curriculum. Other math curricula
may not always have easily identified concrete experiences that are enactive-iconic
and reasonable to simulate. However, we believe that science classes are often
focused on physical phenomena that would satisfy this criterion and be reasonable
to simulate, and therefore this presents us with another area for future research.
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